-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathkama.go
103 lines (88 loc) · 2.62 KB
/
kama.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
package tart
import (
"math"
)
// Developed by Perry Kaufman, Kaufman's Adaptive Moving
// Average (KAMA) is a moving average designed to account
// for market noise or volatility. KAMA will closely follow
// prices when the price swings are relatively small and
// the noise is low. KAMA will adjust when the price swings
// widen and follow prices from a greater distance. This
// trend-following indicator can be used to identify the
// overall trend, time turning points and filter price
// movements.
// https://school.stockcharts.com/doku.php?id=technical_indicators:kaufman_s_adaptive_moving_average
type Kama struct {
n int64
constA float64
constB float64
sz int64
hist []float64
absChgHist []float64
sumAbsChg float64
kama float64
}
func NewKama(n int64) *Kama {
return &Kama{
n: n,
constA: 2.0/(2.0+1.0) - 2.0/(30.0+1.0),
constB: 2.0 / (30.0 + 1.0),
sz: 0,
hist: make([]float64, n+1),
absChgHist: make([]float64, n),
sumAbsChg: 0,
kama: 0,
}
}
func (k *Kama) Update(v float64) float64 {
idx := k.sz % (k.n + 1)
prevIdx := (idx + k.n) % (k.n + 1)
nextIdx := (idx + 1) % (k.n + 1)
k.hist[idx] = v
absChgIdx := (k.sz + k.n - 1) % k.n
chg := math.Abs(v - k.hist[prevIdx])
k.sumAbsChg += chg - k.absChgHist[absChgIdx]
k.absChgHist[absChgIdx] = chg
k.sz++
if k.sz <= k.n {
k.kama = v
return 0
}
// er = change / volatility
// = abs(Nth value - 1st value) / (sum of N period abs chg)
totalChg := math.Abs(v - k.hist[nextIdx])
var er float64
if (totalChg >= k.sumAbsChg) || (k.sumAbsChg < 0.00000000000001 && k.sumAbsChg > -0.00000000000001) {
er = 1.0
} else {
er = totalChg / k.sumAbsChg
}
sc := er*k.constA + k.constB
sc *= sc
k.kama = sc*v + (1-sc)*k.kama
return k.kama
}
func (k *Kama) InitPeriod() int64 {
return k.n
}
func (k *Kama) Valid() bool {
return k.sz > k.InitPeriod()
}
// Developed by Perry Kaufman, Kaufman's Adaptive Moving
// Average (KAMA) is a moving average designed to account
// for market noise or volatility. KAMA will closely follow
// prices when the price swings are relatively small and
// the noise is low. KAMA will adjust when the price swings
// widen and follow prices from a greater distance. This
// trend-following indicator can be used to identify the
// overall trend, time turning points and filter price
// movements.
// https://school.stockcharts.com/doku.php?id=technical_indicators:kaufman_s_adaptive_moving_average
func KamaArr(in []float64, n int64) []float64 {
out := make([]float64, len(in))
k := NewKama(n)
for i, v := range in {
out[i] = k.Update(v)
}
return out
}