-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path467.sh
455 lines (400 loc) · 11.4 KB
/
467.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
#! /bin/sh
# This is a shell archive, meaning:
# 1. Remove everything above the #! /bin/sh line.
# 2. Save the resulting text in a file.
# 3. Execute the file with /bin/sh (not csh) to create the files:
# Fortran/
# Fortran/Sp/
# Fortran/Sp/Drivers/
# Fortran/Sp/Drivers/Makefile
# Fortran/Sp/Drivers/driver.f
# Fortran/Sp/Drivers/res
# Fortran/Sp/Src/
# Fortran/Sp/Src/src.f
# This archive created: Thu Dec 15 13:28:20 2005
export PATH; PATH=/bin:$PATH
if test ! -d 'Fortran'
then
mkdir 'Fortran'
fi
cd 'Fortran'
if test ! -d 'Sp'
then
mkdir 'Sp'
fi
cd 'Sp'
if test ! -d 'Drivers'
then
mkdir 'Drivers'
fi
cd 'Drivers'
if test -f 'Makefile'
then
echo shar: will not over-write existing file "'Makefile'"
else
cat << "SHAR_EOF" > 'Makefile'
all: Res
src.o: src.f
$(F77) $(F77OPTS) -c src.f
driver.o: driver.f
$(F77) $(F77OPTS) -c driver.f
DRIVERS= driver
RESULTS= Res
Objs1= driver.o src.o
driver: $(Objs1)
$(F77) $(F77OPTS) -o driver $(Objs1) $(SRCLIBS)
Res: driver
./driver >Res
diffres:Res res
echo "Differences in results from driver"
$(DIFF) Res res
clean:
rm -rf *.o $(DRIVERS) $(CLEANUP) $(RESULTS)
SHAR_EOF
fi # end of overwriting check
if test -f 'driver.f'
then
echo shar: will not over-write existing file "'driver.f'"
else
cat << "SHAR_EOF" > 'driver.f'
program main
c***********************************************************************
c
cc TOMS467_PRB tests XPOSE.
c
implicit none
integer a_max
integer moved_max
parameter ( a_max = 3000 )
parameter ( moved_max = 100 )
real a(a_max)
logical moved(moved_max)
integer n1
integer n12
integer n2
integer nwork
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'TOMS467_PRB'
write ( *, '(a)' ) ' Test TOMS algorithm 467, in place'
write ( *, '(a)' ) ' matrix transposition.'
n1 = 10
n2 = 10
n12 = n1 * n2
nwork = ( n1 + n2 ) / 2
write ( *, '(a)' ) ' '
write ( *, '(a,i6)' ) ' Row dimension N1 = ', n1
write ( *, '(a,i6)' ) ' Column dimension N2 = ', n2
write ( *, '(a,i6)' ) ' Total size N12 = ', n12
write ( *, '(a,i6)' ) ' Workspace NWORK = ', nwork
call set_a ( n1, n2, a )
call print_a ( n1, n2, a, 1, 5, 1, 5 )
call xpose ( a, n1, n2, n12, moved, nwork )
call print_a ( n2, n1, a, 1, 5, 1, 5 )
n1 = 7
n2 = 30
n12 = n1 * n2
nwork = ( n1 + n2 ) / 2
write ( *, '(a)' ) ' '
write ( *, '(a,i6)' ) ' Row dimension N1 = ', n1
write ( *, '(a,i6)' ) ' Column dimension N2 = ', n2
write ( *, '(a,i6)' ) ' Total size N12 = ', n12
write ( *, '(a,i6)' ) ' Workspace NWORK = ', nwork
call set_a ( n1, n2, a )
call print_a ( n1, n2, a, 1, 5, 1, 5 )
call xpose ( a, n1, n2, n12, moved, nwork )
call print_a ( n2, n1, a, 1, 5, 1, 5 )
n1 = 24
n2 = 8
n12 = n1 * n2
nwork = ( n1 + n2 ) / 2
write ( *, '(a)' ) ' '
write ( *, '(a,i6)' ) ' Row dimension N1 = ', n1
write ( *, '(a,i6)' ) ' Column dimension N2 = ', n2
write ( *, '(a,i6)' ) ' Total size N12 = ', n12
write ( *, '(a,i6)' ) ' Workspace NWORK = ', nwork
call set_a ( n1, n2, a )
call print_a ( n1, n2, a, 1, 5, 1, 5 )
call xpose ( a, n1, n2, n12, moved, nwork )
call print_a ( n2, n1, a, 1, 5, 1, 5 )
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'TOMS467_PRB'
write ( *, '(a)' ) ' Normal end of execution.'
stop
end
subroutine set_a ( n1, n2, a )
c***********************************************************************
c
cc SET_A sets the matrix A.
c
implicit none
integer n1
integer n2
real a(n1,n2)
integer i
integer j
do i = 1, n1
do j = 1, n2
a(i,j) = 1000 * i + j
end do
end do
return
end
subroutine print_a ( m, n, a, i_lo, i_hi, j_lo, j_hi )
c***********************************************************************
c
cc PRINT_A prints the matrix A.
c
implicit none
integer m
integer n
real a(m,n)
integer i
integer i_hi
integer i_lo
integer j
integer j_hi
integer j_lo
write ( *, '(a)' ) ' '
do i = i_lo, i_hi
write ( *, '(2x,5f8.0)' ) ( a(i,j), j = j_lo, j_hi )
end do
return
end
SHAR_EOF
fi # end of overwriting check
if test -f 'res'
then
echo shar: will not over-write existing file "'res'"
else
cat << "SHAR_EOF" > 'res'
TOMS467_PRB
Test TOMS algorithm 467, in place
matrix transposition.
Row dimension N1 = 10
Column dimension N2 = 10
Total size N12 = 100
Workspace NWORK = 10
1001. 1002. 1003. 1004. 1005.
2001. 2002. 2003. 2004. 2005.
3001. 3002. 3003. 3004. 3005.
4001. 4002. 4003. 4004. 4005.
5001. 5002. 5003. 5004. 5005.
1001. 2001. 3001. 4001. 5001.
1002. 2002. 3002. 4002. 5002.
1003. 2003. 3003. 4003. 5003.
1004. 2004. 3004. 4004. 5004.
1005. 2005. 3005. 4005. 5005.
Row dimension N1 = 7
Column dimension N2 = 30
Total size N12 = 210
Workspace NWORK = 18
1001. 1002. 1003. 1004. 1005.
2001. 2002. 2003. 2004. 2005.
3001. 3002. 3003. 3004. 3005.
4001. 4002. 4003. 4004. 4005.
5001. 5002. 5003. 5004. 5005.
1001. 2001. 3001. 4001. 5001.
1002. 2002. 3002. 4002. 5002.
1003. 2003. 3003. 4003. 5003.
1004. 2004. 3004. 4004. 5004.
1005. 2005. 3005. 4005. 5005.
Row dimension N1 = 24
Column dimension N2 = 8
Total size N12 = 192
Workspace NWORK = 16
1001. 1002. 1003. 1004. 1005.
2001. 2002. 2003. 2004. 2005.
3001. 3002. 3003. 3004. 3005.
4001. 4002. 4003. 4004. 4005.
5001. 5002. 5003. 5004. 5005.
1001. 2001. 3001. 4001. 5001.
1002. 2002. 3002. 4002. 5002.
1003. 2003. 3003. 4003. 5003.
1004. 2004. 3004. 4004. 5004.
1005. 2005. 3005. 4005. 5005.
TOMS467_PRB
Normal end of execution.
SHAR_EOF
fi # end of overwriting check
cd ..
if test ! -d 'Src'
then
mkdir 'Src'
fi
cd 'Src'
if test -f 'src.f'
then
echo shar: will not over-write existing file "'src.f'"
else
cat << "SHAR_EOF" > 'src.f'
SUBROUTINE XPOSE ( A, N1, N2, N12, MOVED, NWORK )
C TRANSPOSITION OF A RECTANGULAR MATRIX IN SITU.
C BY NORMAN BRENNER, MIT, 1/72. CF. ALG. 380, CACM, 5/70.
C TRANPOSITION OF THE N1 BY N2 MATRIX A AMOUNTS TO
C REPLACING THE ELEMENT AT VECTOR POSITION I (O-ORIGIN)
C WITH THE ELEMENT AT POSITION N1*I (MOD N1*N2-1).
C EACH SUBCYCLE OF THIS PERMUTATION IS COMPLETED IN ORDER.
C MOVED IS A LOGICAL WORK ARRAY OF LENGTH NWORK.
C REALLY A(N1,N2), BUT N12 = N1 * N2
C .. Scalar Arguments ..
INTEGER N1,N12,N2,NWORK
C ..
C .. Array Arguments ..
REAL A(N12)
LOGICAL MOVED(NWORK)
C ..
C .. Local Scalars ..
REAL ATEMP,BTEMP
INTEGER I,I1,I1MAX,I1MIN,I2,IA1,IA2,IDIV,IP,ISOID,ISTART,ITEST,M,
+ MMIA1,MMIA2,MMIST,N,NCOUNT,NPOWER
C ..
C .. Local Arrays ..
INTEGER IEXP(8),IFACT(8),IPOWER(8),NEXP(8)
C ..
C .. External Subroutines ..
EXTERNAL FACTOR
C ..
C .. Intrinsic Functions ..
INTRINSIC MOD
IF ( N1 .LT. 2 .OR. N2 .LT. 2 ) RETURN
N = N1
M = N1 * N2 - 1
IF ( N1 .NE. N2 ) GO TO 30
C SQUARE MATRICES ARE DONE SEPARATELY FOR SPEED.
I1MIN = 2
DO 20 I1MAX = N, M, N
I2 = I1MIN + N - 1
DO 10 I1 = I1MIN, I1MAX
ATEMP = A(I1)
A(I1) = A(I2)
A(I2) = ATEMP
I2 = I2 + N
10 CONTINUE
I1MIN = I1MIN + N + 1
20 CONTINUE
RETURN
C MODULUS M IS FACTORED INTO PRIME POWERS. EIGHT FACTORS
C SUFFICE UP TO M = 2*3*5*7*11*13*17*19 = 9,767,520.
30 CALL FACTOR ( M, IFACT, IPOWER, NEXP, NPOWER )
DO 40 IP = 1, NPOWER
IEXP(IP) = 0
40 CONTINUE
C GENERATE EVERY DIVISOR OF M LESS THAN M/2.
IDIV = 1
50 IF ( IDIV .GE. M / 2 ) GO TO 190
C THE NUMBER OF ELEMENTS WHOSE INDEX IS DIVISIBLE BY IDIV
C AND BY NO OTHER DIVISOR OF m IS THE EULER TOTIENT
C FUNCTION, PHI(M/IDIV).
NCOUNT = M / IDIV
DO 60 IP = 1, NPOWER
IF ( IEXP(IP) .EQ. NEXP(IP) ) GO TO 60
NCOUNT = ( NCOUNT / IFACT(IP) ) * ( IFACT(IP) - 1 )
60 CONTINUE
DO 70 I = 1, NWORK
MOVED(I) = .FALSE.
70 CONTINUE
C THE STARTING POINT OF A SUBCYCLE IS DIVISIBLE ONLY BY IDIV
C AND MUST NOT APPEAR IN ANY OTHER SUBCYCLE.
ISTART = IDIV
80 MMIST = M - ISTART
IF ( ISTART .EQ. IDIV ) GO TO 120
IF ( ISTART .GT. NWORK ) GO TO 90
IF ( MOVED(ISTART) ) GO TO 160
90 ISOID = ISTART / IDIV
DO 100 IP = 1, NPOWER
IF ( IEXP(IP) .EQ. NEXP(IP) ) GO TO 100
IF ( MOD ( ISOID, IFACT(IP) ) .EQ. 0 ) GO TO 160
100 CONTINUE
IF ( ISTART .LE. NWORK ) GO TO 120
ITEST = ISTART
110 ITEST = MOD ( N * ITEST, M )
IF ( ITEST .LT. ISTART .OR. ITEST .GT. MMIST ) GO TO 160
IF ( ITEST .GT. ISTART .AND. ITEST .LT. MMIST ) GO TO 110
120 ATEMP = A(ISTART+1)
BTEMP = A(MMIST+1)
IA1 = ISTART
130 IA2 = MOD ( N * IA1, M )
MMIA1 = M - IA1
MMIA2 = M - IA2
IF ( IA1 .LE. NWORK ) MOVED(IA1) = .TRUE.
IF ( MMIA1 .LE. NWORK ) MOVED(MMIA1) = .TRUE.
NCOUNT = NCOUNT - 2
C MOVE TWO ELEMENTS, THE SECOND FROM THE NEGATIVE
C SUBCYCLE. CHECK FIRST FOR SUBCYCLE CLOSURE.
IF ( IA2 .EQ. ISTART ) GO TO 140
IF ( MMIA2 .EQ. ISTART ) GO TO 150
A(IA1+1) = A(IA2+1)
A(MMIA1+1) = A(MMIA2+1)
IA1 = IA2
GO TO 130
140 A(IA1+1) = ATEMP
A(MMIA1+1) = BTEMP
GO TO 160
150 A(IA1+1) = BTEMP
A(MMIA1+1) = ATEMP
160 ISTART = ISTART + IDIV
IF ( NCOUNT .GT. 0 ) GO TO 80
DO 180 IP = 1, NPOWER
IF ( IEXP(IP) .EQ. NEXP(IP) ) GO TO 170
IEXP(IP) = IEXP(IP) + 1
IDIV = IDIV * IFACT(IP)
GO TO 50
170 IEXP(IP) = 0
IDIV = IDIV / IPOWER(IP)
180 CONTINUE
190 CONTINUE
END
SUBROUTINE FACTOR ( N, IFACT, IPOWER, NEXP, NPOWER )
C FACTOR N INTO ITS PRIME POWERS, NPOWER IN NUMBER.
C E.G., FOR N = 1960 = 2**3 * 5 * 7**2, NPOWER = 3, IFACT = 2, 5, 7,
C IPOWER = 8, 5, 49, AND NEXP = 3, 1, 2.
C .. Scalar Arguments ..
INTEGER N,NPOWER
C ..
C .. Array Arguments ..
INTEGER IFACT(8),IPOWER(8),NEXP(8)
C ..
C .. Local Scalars ..
INTEGER IDIV,IFCUR,IP,IQUOT,NPART
IP = 0
IFCUR = 0
NPART = N
IDIV = 2
10 IQUOT = NPART / IDIV
IF ( NPART - IDIV * IQUOT ) 60, 20, 60
20 IF ( IDIV - IFCUR ) 40, 40, 30
30 IP = IP + 1
IFACT(IP) = IDIV
IPOWER(IP) = IDIV
IFCUR = IDIV
NEXP(IP) = 1
GO TO 50
40 IPOWER(IP) = IDIV * IPOWER(IP)
NEXP(IP) = NEXP(IP) + 1
50 NPART = IQUOT
GO TO 10
60 IF ( IQUOT - IDIV ) 100, 100, 70
70 IF ( IDIV - 2 ) 80, 80, 90
80 IDIV = 3
GO TO 10
90 IDIV = IDIV + 2
GO TO 10
100 IF ( NPART - 1 ) 140, 140, 110
110 IF ( NPART - IFCUR ) 130, 130, 120
120 IP = IP + 1
IFACT(IP) = NPART
IPOWER(IP) = NPART
NEXP(IP) = 1
GO TO 140
130 IPOWER(IP) = NPART * IPOWER(IP)
NEXP(IP) = NEXP(IP) + 1
140 NPOWER = IP
RETURN
END
SHAR_EOF
fi # end of overwriting check
cd ..
cd ..
cd ..
# End of shell archive
exit 0