-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path461.sh
933 lines (826 loc) · 23.4 KB
/
461.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
#! /bin/sh
# This is a shell archive, meaning:
# 1. Remove everything above the #! /bin/sh line.
# 2. Save the resulting text in a file.
# 3. Execute the file with /bin/sh (not csh) to create the files:
# Fortran/
# Fortran/Sp/
# Fortran/Sp/Drivers/
# Fortran/Sp/Drivers/Makefile
# Fortran/Sp/Drivers/driver.f
# Fortran/Sp/Drivers/res
# Fortran/Sp/Src/
# Fortran/Sp/Src/src.f
# This archive created: Wed Jan 18 20:30:15 2006
export PATH; PATH=/bin:$PATH
if test ! -d 'Fortran'
then
mkdir 'Fortran'
fi
cd 'Fortran'
if test ! -d 'Sp'
then
mkdir 'Sp'
fi
cd 'Sp'
if test ! -d 'Drivers'
then
mkdir 'Drivers'
fi
cd 'Drivers'
if test -f 'Makefile'
then
echo shar: will not over-write existing file "'Makefile'"
else
cat << "SHAR_EOF" > 'Makefile'
all: Res
src.o: src.f
$(F77) $(F77OPTS) -c src.f
driver.o: driver.f
$(F77) $(F77OPTS) -c driver.f
DRIVERS= driver
RESULTS= Res
Objs1= driver.o src.o
driver: $(Objs1)
$(F77) $(F77OPTS) -o driver $(Objs1) $(SRCLIBS)
Res: driver
./driver >Res
diffres:Res res
echo "Differences in results from driver"
$(DIFF) Res res
clean:
rm -rf *.o $(DRIVERS) $(CLEANUP) $(RESULTS)
SHAR_EOF
fi # end of overwriting check
if test -f 'driver.f'
then
echo shar: will not over-write existing file "'driver.f'"
else
cat << "SHAR_EOF" > 'driver.f'
program main
c*******************************************************************************
c
cc TOMS461_PRB tests TOMS461,
c
c Modified:
c
c 12 January 2006
c
c Author:
c
c John Burkardt
c
implicit none
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'TOMS461_PRB:'
write ( *, '(a)' ) ' Tests for ACM algorithm 461.'
call test01
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'TOMS461_PRB:'
write ( *, '(a)' ) ' Normal end of execution.'
write ( *, '(a)' ) ' '
stop
end
subroutine test01
c*******************************************************************************
c
cc TEST01 tests SPNBVP.
c
implicit none
integer np
integer nk
parameter ( np = 81 )
parameter ( nk = np - 2 )
real a
real b
real ep
real exact
integer i
integer kg(np)
real mat(nk,nk)
integer gt(np)
real t
real vg(np)
real vm(np)
real vp(np)
real vq(np)
real vr(np)
real x(nk)
real xdp(np)
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'TEST01'
write ( *, '(a)' ) ' SPNBVP computes a cubic spline'
write ( *, '(a)' ) ' approximation to the solution of'
write ( *, '(a)' ) ' x"(t)=p(t)*x(t)+q(t)*x(g(t))+r(t)'
write ( *, '(a)' ) ' on the interval [a,b], with boundary'
write ( *, '(a)' ) ' conditions:'
write ( *, '(a)' ) ' x(t) = u(t) for t <= a,'
write ( *, '(a)' ) ' x(t) = v(t) for b <= t.'
write ( *, '(a)' ) ' '
write ( *, '(a)' ) ' Because of the argument g(t), this is'
write ( *, '(a)' ) ' a more complicated problem than it seems.'
a = 0.0E+00
b = 3.141592653589793E+00
ep = 1.0E-04
write ( *, '(a)' ) ' '
write ( *, '(a,f10.4)' ) ' A = ', a
write ( *, '(a,f10.4)' ) ' B = ', b
write ( *, '(a,g14.6)' ) ' Error tolerance EP = ', ep
call spnbvp ( a, b, np, nk, x, xdp, ep, gt, kg, vp, vq, vr,
& vg, mat, vm )
write ( *, '(a)' ) ' '
write ( *, '(a)' )
& ' T X Exact Error'
write ( *, '(a)' ) ' '
do i = 1, nk
t = ( real ( nk - i + 1 ) * a
& + real ( i ) * b )
& / real ( nk + 1 )
exact = sin ( t )
write ( *, '(2x,f10.4,2x,g14.6,2x,g14.6,2x,g10.2)' )
& t, x(i), exact, abs ( x(i) - exact )
end do
return
end
function g ( t )
c*******************************************************************************
c
implicit none
real g
real t
g = t - 1.0E+00
return
end
subroutine ludcmp ( a, n )
c*******************************************************************************
c
cc LUDCMP factors a matrix by nonpivoting Gaussian elimination.
c
c Discussion:
c
c The storage format is used for a general M by N matrix. A storage
c space is made for each logical entry.
c
c This routine will fail if the matrix is singular, or if any zero
c pivot is encountered.
c
c If this routine successfully factors the matrix, LUSUB may be called
c to solve linear systems involving the matrix.
c
c Modified:
c
c 13 January 2006
c
c Author:
c
c John Burkardt
c
c Parameters:
c
c Input/output, real A(N,N).
c On input, A contains the matrix to be factored.
c On output, A contains information about the factorization,
c which must be passed unchanged to LUSUB for solutions.
c
c Input, integer N, the order of the matrix.
c N must be positive.
c
implicit none
integer n
real a(n,n)
integer i
integer j
integer k
do k = 1, n-1
if ( a(k,k) == 0.0E+00 ) then
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'LUDCMP - Fatal error!'
write ( *, '(a,i6)' ) ' Zero pivot on step ', k
stop
end if
do i = k+1, n
a(i,k) = -a(i,k) / a(k,k)
end do
do j = k+1, n
do i = k+1, n
a(i,j) = a(i,j) + a(i,k) * a(k,j)
end do
end do
end do
if ( a(n,n) == 0.0E+00 ) then
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'LUDCMP - Fatal error!'
write ( *, '(a,i6)' ) ' Zero pivot on step ', n
stop
end if
return
end
subroutine lusub ( b, a_lu, x, n )
c*******************************************************************************
c
cc LUSUB solves a system factored by LUDCMP.
c
c Modified:
c
c 13 January 2006
c
c Author:
c
c John Burkardt
c
c Parameters:
c
c Input, real B(N), the right hand side vector.
c
c Input, real A_LU(N,N), the LU factors from LUDCMP.
c
c Output, real X(N), the solution.
c
c Input, integer N, the order of the matrix.
c N must be positive.
c
implicit none
integer n
real a_lu(n,n)
real b(n)
integer i
integer j
real x(n)
do i = 1, n
x(i) = b(i)
end do
do j = 1, n-1
do i = j+1, n
x(i) = x(i) + a_lu(i,j) * x(j)
end do
end do
do j = n, 1, -1
x(j) = x(j) / a_lu(j,j)
do i = 1, j-1
x(i) = x(i) - a_lu(i,j) * x(j)
end do
end do
return
end
function p ( t )
c*******************************************************************************
c
implicit none
real p
real t
p = 1.0E+00
return
end
function q ( t )
c*******************************************************************************
c
implicit none
real q
real t
q = 1.0E+00
return
end
function r ( t )
c*******************************************************************************
c
implicit none
real g
real p
real q
real r
real t
r = - sin ( t ) - ( p ( t ) * sin ( t ) + q(t) * sin ( g(t) ) )
return
end
function u ( t )
c*******************************************************************************
c
cc U evaluates the left boundary condition.
c
implicit none
real t
real u
u = sin ( t )
return
end
function v ( t )
c*******************************************************************************
c
cc V evaluates the right boundary condition.
c
implicit none
real t
real v
v = sin ( t )
return
end
SHAR_EOF
fi # end of overwriting check
if test -f 'res'
then
echo shar: will not over-write existing file "'res'"
else
cat << "SHAR_EOF" > 'res'
TOMS461_PRB:
Tests for ACM algorithm 461.
TEST01
SPNBVP computes a cubic spline
approximation to the solution of
x"(t)=p(t)*x(t)+q(t)*x(g(t))+r(t)
on the interval [a,b], with boundary
conditions:
x(t) = u(t) for t <= a,
x(t) = v(t) for b <= t.
Because of the argument g(t), this is
a more complicated problem than it seems.
A = 0.0000
B = 3.1416
Error tolerance EP = 0.100000E-03
T X Exact Error
0.0393 0.392590E-01 0.392598E-01 0.78E-06
0.0785 0.784575E-01 0.784591E-01 0.16E-05
0.1178 0.117535 0.117537 0.23E-05
0.1571 0.156431 0.156434 0.31E-05
0.1963 0.195087 0.195090 0.38E-05
0.2356 0.233441 0.233445 0.45E-05
0.2749 0.271435 0.271440 0.52E-05
0.3142 0.309011 0.309017 0.58E-05
0.3534 0.346111 0.346117 0.63E-05
0.3927 0.382677 0.382683 0.69E-05
0.4320 0.418652 0.418660 0.74E-05
0.4712 0.453983 0.453991 0.77E-05
0.5105 0.488613 0.488621 0.80E-05
0.5498 0.522490 0.522499 0.82E-05
0.5890 0.555562 0.555570 0.83E-05
0.6283 0.587777 0.587785 0.85E-05
0.6676 0.619085 0.619094 0.85E-05
0.7069 0.649440 0.649448 0.85E-05
0.7461 0.678792 0.678801 0.85E-05
0.7854 0.707098 0.707107 0.83E-05
0.8247 0.734315 0.734323 0.80E-05
0.8639 0.760398 0.760406 0.77E-05
0.9032 0.785310 0.785317 0.72E-05
0.9425 0.809010 0.809017 0.67E-05
0.9817 0.831464 0.831470 0.61E-05
1.0210 0.852635 0.852640 0.53E-05
1.0603 0.872491 0.872496 0.47E-05
1.0996 0.891002 0.891007 0.41E-05
1.1388 0.908140 0.908143 0.33E-05
1.1781 0.923877 0.923880 0.25E-05
1.2174 0.938190 0.938191 0.16E-05
1.2566 0.951056 0.951057 0.54E-06
1.2959 0.962456 0.962455 0.66E-06
1.3352 0.972372 0.972370 0.19E-05
1.3744 0.980788 0.980785 0.32E-05
1.4137 0.987693 0.987688 0.45E-05
1.4530 0.993074 0.993068 0.58E-05
1.4923 0.996924 0.996917 0.72E-05
1.5315 0.999238 0.999229 0.85E-05
1.5708 1.00001 1.00000 0.98E-05
1.6101 0.999240 0.999229 0.11E-04
1.6493 0.996930 0.996917 0.12E-04
1.6886 0.993082 0.993068 0.14E-04
1.7279 0.987704 0.987688 0.15E-04
1.7671 0.980802 0.980785 0.16E-04
1.8064 0.972388 0.972370 0.18E-04
1.8457 0.962474 0.962455 0.19E-04
1.8850 0.951077 0.951056 0.20E-04
1.9242 0.938213 0.938191 0.21E-04
1.9635 0.923902 0.923880 0.22E-04
2.0028 0.908167 0.908143 0.23E-04
2.0420 0.891031 0.891006 0.24E-04
2.0813 0.872521 0.872496 0.25E-04
2.1206 0.852666 0.852640 0.26E-04
2.1598 0.831496 0.831470 0.26E-04
2.1991 0.809044 0.809017 0.27E-04
2.2384 0.785344 0.785317 0.27E-04
2.2777 0.760434 0.760406 0.28E-04
2.3169 0.734351 0.734322 0.28E-04
2.3562 0.707135 0.707107 0.28E-04
2.3955 0.678829 0.678801 0.28E-04
2.4347 0.649476 0.649448 0.28E-04
2.4740 0.619122 0.619094 0.28E-04
2.5133 0.587813 0.587785 0.28E-04
2.5525 0.555598 0.555570 0.27E-04
2.5918 0.522525 0.522498 0.27E-04
2.6311 0.488647 0.488621 0.26E-04
2.6704 0.454015 0.453990 0.25E-04
2.7096 0.418684 0.418660 0.24E-04
2.7489 0.382706 0.382683 0.23E-04
2.7882 0.346138 0.346117 0.21E-04
2.8274 0.309036 0.309017 0.19E-04
2.8667 0.271458 0.271440 0.18E-04
2.9060 0.233461 0.233445 0.16E-04
2.9452 0.195104 0.195090 0.14E-04
2.9845 0.156446 0.156434 0.11E-04
3.0238 0.117546 0.117537 0.87E-05
3.0631 0.784650E-01 0.784590E-01 0.60E-05
3.1023 0.392628E-01 0.392597E-01 0.31E-05
TOMS461_PRB:
Normal end of execution.
SHAR_EOF
fi # end of overwriting check
cd ..
if test ! -d 'Src'
then
mkdir 'Src'
fi
cd 'Src'
if test -f 'src.f'
then
echo shar: will not over-write existing file "'src.f'"
else
cat << "SHAR_EOF" > 'src.f'
SUBROUTINE SPNBVP ( A, B, NP, NK, X, XDP, EP, GT, KG, VP,
& VQ, VR, VG, MAT, VM )
C
C THIS ALGORITHM COMPUTES ITERATIVELY A CUBIC SPLINE
C APPROXIMATION TO THE SOLUTION OF THE DIFFERENTIAL EQUATION
C X''(T)=P(T)X(T)+Q(T)X(G(T))+R(T) ON THE INTERVAL (A,B)
C WITH BOUNDARY CONDITIONS GIVEN BY U(T) IF T.LE.A AND
C V(T) IF T.GE.B.
C
C A AND B ARE TWO REAL VARIABLES DEFINED AS ABOVE.
C
C NP AN INTEGER VARIABLE SPECIFYING THE NUMBER OF KNOTS
C ON THE INTERVAL (A,B).
C
C NK AN INTEGER VARIABLE SPECIFYING THE NUMBER OF INTERIOR
C KNOTS. THUS NK=NP-2. IT IS USED TO ESTABLISH THE
C DIMENSION OF CERTAIN ARRAYS MENTIONED BELOW.
C
C X ON RETURN TO THE CALLING PROGRAM X WILL CONTAIN THE
C VALUES OF THE APPROXIMATION TO THE SOLUTION AT THE
C NK INTERIOR KNOTS. THIS IS AN ARRAY OF DIMENSION
C NK AND TYPE REAL.
C
C XDP ON RETURN, XDP CONTAINS THE QUANTITIES H*H/6.0
C MULTIPLIED BY THE SECOND DERIVATIVE VALUES AT ALL THE
C KNOTS. XDP IS A REAL ARRAY OF DIMENSION NP.
C
C EP THIS REAL VARIABLE IS SET TO THE VALUE 1.0E-M IF WE
C REQUIRE M IDENTICAL FIGURES IN SUCCESSIVE ITERATES.
C
C GT AN INTEGER ARRAY OF LENGTH NP WHICH ASSIGNS TO EACH
C KNOT T SUB J AN INTEGER VALUE BETWEEN 1 AND 6. THIS
C VALUE DESIGNATES RESPECTIVELY THE CASES WHEN
C G(T SUB J) IS 1) .LE. A, 2) .GE. B, 3) WITHIN EP OF
C SOME KNOT VALUE, 4) IN THE FIRST SUBINTERVAL,
C 5) IN THE LAST SUBINTERVAL, AND 6) IN ANY OTHER
C SUBINTERVAL. GT(I+1) CORRESPONDS TO KNOT T SUB I.
C
C KG AN INTEGER ARRAY OF LENGTH NP WHICH ASSIGNS TO EACH
C KNOT AN INTEGER BETWEEN 2 AND NP-1. IF GT(I+1) = 3,
C THEN KG(I+1) CONTAINS THE SUBSCRIPT OF THE KNOT
C AT THE POINT G(T SUB I). IF GT(I+1) = 6, THEN KG(I+1)
C CONTAINS THE SUBSCRIPT OF THE KNOW AT THE RIGHT HAND
C ENDPOINT OF THE SUBINTERVAL IN WHICH G(T SUB I) LIES.
C
C VP, VQ, VR, AND VG ARE ALL REAL ARRAYS OF DIMENSION NP AND
C CONTAINS THE VALUES OF THE FUNCTIONS P, Q, R AND G
C RESPECTIVELY, EACH EVALUATED AT THE NP KNOTS.
C
C MAT IS A REAL NK BY NK ARRAY USED IN THE MATRIX EQUATION
C (MAT)(X)=(VM) SET UP TO SOLVE FOR THE X SUB J VALUES
C STORED IN ARRAY X.
C
C VM AN ARRAY OF LENGTH NK AND TYPE REAL USED AS
C DESCRIBED ABOVE.
C
C THE USER MUST SUPPLY REAL FUNCTION SUBPROGRAMS TO COMPUTE
C THE FUNCTIONS U(T),V(T),P(T),Q(T),R(T) AND G(T) DEFINED AS
C ABOVE. HE MUST ALSO SUPPLY SUBPROGRAMS WHICH SOLVE THE
C SYSTEM (MAT)*(X)=(VM). THE ROUTINE LUDCMP(MAT,NK) IS TO
C REAPLCE MAT BY ITS LU DECOMPOSITION. THE ROUTINE
C LUSUB(VM,MAT,X,NK) IS TO COMPUTE X WHEN VM AND THE LU
C FORM OF MAT IS GIVEN.
C
IMPLICIT NONE
INTEGER NK
INTEGER NP
REAL A
REAL APLSE
REAL B
REAL BMINE
REAL C
REAL CCC
REAL COEF
REAL EP
REAL G
INTEGER GT1
INTEGER GTE
INTEGER GT(NP)
INTEGER GTNP
INTEGER GTYP
REAL H
REAL HR
REAL HS
INTEGER J
INTEGER JF
INTEGER JJ
INTEGER JJZ
INTEGER JZ
INTEGER K
INTEGER KG(NP)
INTEGER KNOT
REAL MAT(NK,NK)
INTEGER N
INTEGER NK1
INTEGER NNN
REAL P
REAL Q
REAL R
REAL RK
REAL RKNOT
REAL RN
REAL T
REAL TJ
REAL TM
REAL TSTVL1
REAL TSTVL2
REAL U
REAL V
REAL VDH
REAL VG(NP)
REAL VGE
REAL VM(NK)
REAL VP(NP)
REAL VPA
REAL VPB
REAL VQ(NP)
REAL VR(NP)
REAL X(NK)
REAL XA
REAL XB
REAL XDP(NP)
REAL XDPA
REAL XDPB
REAL XGAA
REAL XGAB
C ( T ) = T * ( T * T - 1.0 )
C
C INITIALIZATION.
C
N = NP - 1
RN = N
C
C NK is presumably set by the user!
C
C NK = N - 1
DO 20 K = 1, NK
DO 10 J = 1, NK
MAT(K,J) = 0.0
10 CONTINUE
20 CONTINUE
XA = U ( A )
XB = V ( B )
C
C INITIALIZE XDP TO ZERO (INITIAL SPLINE).
C
DO 30 K = 1, NP
XDP(K) = 0.0
30 CONTINUE
C
C SET UP P, Q, R, G VECTORS.
C
H = ( B - A ) / RN
HS = H * H / 6.0
HR = 1.0 / H
DO 40 K = 1, NP
RK = K - 1
TM = A + RK * H
VP(K) = P ( TM )
VQ(K) = Q ( TM )
VR(K) = R ( TM )
VG(K) = G ( TM )
40 CONTINUE
C
C SET UP *TYPE OF G VALUE* ARRAY AND KG ARRAY.
C
APLSE = A + EP * ABS ( A )
BMINE = B - EP * ABS ( B )
DO 70 K = 1, NP
GTE = 6
VGE = VG(K)
IF ( VGE .LT. A + H ) GTE = 4
IF ( VGE .GT. B - H ) GTE = 5
IF ( VGE .LE. APLSE ) GTE = 1
IF ( VGE .GE. BMINE ) GTE = 2
VDH = ( VGE - A ) / H
KNOT = VDH + EP
RKNOT = KNOT
IF ( ( KNOT .LT. 1 ) .OR. ( KNOT .GT. NK ) ) GO TO 50
IF ( ABS ( VDH - RKNOT ) .GT. EP ) GO TO 50
GTE = 3
KG(K) = KNOT
GO TO 60
50 KG(K) = KNOT + 1
60 GT(K) = GTE
70 CONTINUE
C
C PUT XSUBJ COEFFICIENTS INTO (MAT) AND INITIALIZE X TO ZERO.
C
DO 90 J = 1, NK
X(J) = 0.0
IF ( J .EQ. 1 ) GO TO 80
MAT(J,J-1) = 1.0 - HS * VP(J)
80 MAT(J,J) = -2.0 * ( 1.0 + 2.0 * HS * VP(J+1) )
IF ( J .EQ. NK ) GO TO 90
MAT(J,J+1) = 1.0 - HS * VP(J+2)
90 CONTINUE
C
C ADD INTO (MAT) X SUB G SUB T COEFFICIENTS.
C
DO 150 J = 1, NK
DO 140 JJ = 1, 3
JZ = JJ - 1
JJZ = J + JZ
COEF = HS * VQ(JJZ)
IF ( JZ .EQ. 1 ) COEF = COEF * 4.0
GTYP = GT(JJZ)
GO TO ( 140, 140, 100, 110, 120, 130 ), GTYP
100 KNOT = KG(JJZ)
MAT(J,KNOT) = MAT(J,KNOT) - COEF
GO TO 140
110 MAT(J,1) = MAT(J,1) - COEF * ( VG(JJZ) - A ) * HR
GO TO 140
120 MAT(J,NK) = MAT(J,NK) - COEF * ( B - VG(JJZ) ) * HR
GO TO 140
130 KNOT = KG(JJZ)
RKNOT = KNOT
CCC = RKNOT + ( A - VG(JJZ) ) * HR
MAT(J,KNOT-1) = MAT(J,KNOT-1) - COEF * CCC
CCC = ( VG(JJZ) - A ) * HR - RKNOT + 1.0
MAT(J,KNOT) = MAT(J,KNOT) - COEF * CCC
140 CONTINUE
150 CONTINUE
C
C REPLACE (MAT) BY ITS LU DECOMPOSITION.
C
CALL LUDCMP ( MAT, NK )
C
C A SEQUENCE OF SPLINES (UP TO 20) IS NOT GENERATED.
C
VPA = VP(1)
VPB = VP(NP)
DO 250 NNN = 1, 20
C
C VECTOR VM I SNOW SET UP.
C
DO 200 J = 1, NK
VM(J) = ( VR(J) + 4.0 * VR(J+1) + VR(J+2) ) * HS
DO 190 JJ = 1, 3
JZ = JJ - 1
JJZ = J + JZ
GTYP = GT(JJZ)
COEF = HS * VQ(JJZ)
IF ( JZ .EQ. 1 ) COEF = COEF * 4.
IF ( GTYP .EQ. 1 ) VM(J) = VM(J) + COEF * U(VG(JJZ))
IF ( GTYP .EQ. 2 ) VM(J) = VM(J) + COEF * V(VG(JJZ))
GO TO ( 190, 190, 190, 160, 170, 180 ), GTYP
160 TM = ( VG(JJZ) - A ) * HR
TJ = 1.0 - TM
CCC = TJ * XA + C ( TM ) * XDP(2) + C ( TJ ) * XDP(1)
VM(J) = VM(J) + COEF * CCC
GO TO 190
170 TJ = ( B - VG(JJZ) ) * HR
TM = 1. - TJ
CCC = TM * XB + C ( TM ) * XDP(NK+1) + C ( TJ ) * XDP(NK+1)
VM(J) = VM(J) + COEF * CCC
GO TO 190
180 KNOT = KG(JJZ)
RKNOT = KNOT
TJ = ( A - VG(JJZ) ) * HR + RKNOT
TM = 1.0 - TJ
CCC = C ( TM ) * XDP(KNOT+1) - C ( TJ ) * XDP(KNOT)
VM(J) = VM(J) + COEF * CCC
190 CONTINUE
200 CONTINUE
VM(1) = VM(1) - ( 1.0 - HS * VPA ) * U(A)
VM(NK) = VM(NK) - ( 1.0 - HS * VPB ) * V(B)
C
C THE NEW X ARRAY IS NOW COMPUTED.
C THE ARRAY VP SERVES AS A WORK AREA.
C
DO 210 JF = 1, NK
VP(JF) = X(JF)
210 CONTINUE
CALL LUSUB ( VM, MAT, X, NK )
TSTVL1 = 0.0
TSTVL2 = 0.0
DO 220 JF = 1, NK
TSTVL1 = TSTVL1 + ABS ( VP(JF) - X(JF) )
TSTVL2 = TSTVL2 + ABS ( X(JF) )
220 CONTINUE
C
C CALCULATION OF XDP AT A AND B.
C
GT1 = GT(1)
GTNP = GT(NP)
IF ( GT1 .EQ. 1 ) XGAA = U ( VG(1) )
IF ( GT1 .EQ. 2 ) XGAA = V ( VG(1) )
IF ( GTNP .EQ. 1 ) XGAB = U ( VG(NP) )
IF ( GTNP .EQ. 2 ) XGAB = V ( VG(NP) )
CALL GAGB ( GT1, XGAA, KG(1), VG(1), X, XDP, A, B, NP, NK )
CALL GAGB ( GTNP, XGAB, KG(NP), VG(NP), X, XDP, A, B, NP,
& NK )
XDPA = ( VPA * XA + VG(1) * XGAA + VR(1) ) * HS
XDPB = ( VPB * XB + VG(NP) * XGAB + VR(NP) ) * HS
C
C SOLVE FOR XDP VALUES OF CURRENT SPLINE USING CONTINUITY
C EQUATIONS. VM AND VP ARE USED AS WORKING AREAS.
C
VM(1) = XA + X(2) - 2.0 * X(1) - XDPA
NK1 = NK - 1
VM(NK) = XB + X(NK1) - 2.0 * X(NK) - XDPB
DO 230 J = 2, NK1
VM(J) = X(J-1) + X(J+1) - 2.0 * X(J)
230 CONTINUE
CALL SOLVE ( VM, NK, VP, NP )
XDP(1) = XDPA
XDP(NP) = XDPB
DO 240 J = 1, NK
XDP(J+1) = VM(J)
240 CONTINUE
IF ( TSTVL1 .LE. TSTVL2 * EP ) RETURN
IF ( NNN .EQ. 20 ) WRITE ( *, 1000 )
1000 FORMAT ( ' NO CONVERGENCE IN 20 ITERATIONS')
250 CONTINUE
RETURN
END
SUBROUTINE GAGB ( GTYP, ANS, K, GV, X, XDP, A, B, NP, NK )
IMPLICIT NONE
INTEGER NK
INTEGER NP
REAL A
REAL ANS
REAL B
REAL C
INTEGER GTYP
REAL GV
REAL H
INTEGER K
REAL RK
REAL RNKD
REAL T
REAL TJ
REAL TM
REAL U
REAL V
REAL X(NK)
REAL XA
REAL XB
REAL XDP(NP)
C ( T ) = T * ( T * T - 1. )
RNKD = NK + 1
RK = K
XA = U ( A )
XB = V ( B )
H = ( B - A ) / RNKD
GO TO ( 10, 20, 30, 40, 50, 60 ), GTYP
10 RETURN
20 RETURN
30 ANS = X(K)
RETURN
40 TM = ( GV - A ) / H
TJ = 1. - TM
ANS = TM * X(1) + TJ * XA + C ( TM ) * XDP(2) + C ( TJ ) * XDP(1)
RETURN
50 TJ = ( B - GV ) / H
TM = 1. - TJ
ANS = TM * XB + TJ * X(NK) + C(TM) * XDP(NK+2) + C(TJ) * XDP(NK+1)
RETURN
60 TJ = ( A - GV ) / H + RK
TM = 1. - TJ
ANS = TM * X(K) + TJ * X(K-1) + C(TM) * XDP(K+1) + C(TJ) * XDP(K)
RETURN
END
SUBROUTINE SOLVE ( D, NK, M, NP )
IMPLICIT NONE
INTEGER NK
INTEGER NP
REAL D(NK)
REAL M(NP)
INTEGER I
INTEGER J
INTEGER NK1
NK1 = NK - 1
M(NK) = 0.25
DO 10 I = 1, NK1
J = NK - I
M(J) = 1.0 / ( 4.0 - M(J+1) )
D(J) = D(J) - D(J+1) * M(J+1)
10 CONTINUE
D(1) = D(1) * M(1)
DO 20 I = 2, NK
D(I) = ( D(I) - D(I-1) ) * M(I)
20 CONTINUE
RETURN
END
SHAR_EOF
fi # end of overwriting check
cd ..
cd ..
cd ..
# End of shell archive
exit 0