-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_nn.py
40 lines (32 loc) · 1.14 KB
/
test_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
from sklearn.model_selection import train_test_split
from tensorflow.keras.layers import BatchNormalization, Dense, Dropout
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import SGD
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
nsample = 10000
ndim = 2
nhidden1 = nhidden2 = 1000
x = np.random.normal(0, 1, (nsample, ndim))
y = x[:, 0] ** 2 + x[:, 1] ** 2 + np.sin(x[:, 1])
x_train, x_test, pb_train, pb_test = train_test_split(x, y)
model = Sequential()
model.add(Dense(nhidden1, input_shape=(x_train.shape[1],), activation="sigmoid"))
model.add(BatchNormalization())
model.add(Dense(nhidden2, activation="sigmoid"))
model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(Dense(1))
opt = SGD(0.000001)
model.compile(loss='mse',
optimizer=opt,
metrics=['mse'])
model.summary()
history = model.fit(x_train, pb_train,
batch_size=100,
epochs=1000,
validation_split=0.1,
initial_epoch=0,
validation_data=(x_test, pb_test))