-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVCM.Rmd
268 lines (217 loc) · 9.65 KB
/
VCM.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
---
title: "VCM"
author: "linsq"
date: "2017年3月10日"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
以下是会调用到但是不用发布的函数
```{r}
beta <- function(x,z,y,p,nknots,m,knots,lambda,sigma_error=diag(1,length(y)),Dm){
n <- length(y)
df1 <- nknots+p
Psi <- bs(z,knots = knots,degree = p)
Psi <- as.matrix(Psi[1:n,1:df1])
x1 <- diag(x)
coef <- solve(t(Psi) %*% x1 %*% solve(sigma_error) %*% x1 %*% Psi +
lambda*(nknots^(2*m-1))*t(Dm)%*%(Dm)) %*%t(Psi) %*% x1 %*% solve(sigma_error) %*% y
coef
}
valcv <- function(fold,x,z,y,p,nknots,m,knots,lambda,sigma_error=diag(1,length(y)),Dm){
df1 <- nknots+p
k = sample(rep(1:fold,length=n))
fit1 <- rep(NA,n)
for (j in 1:fold){
testset = (1:n)[k==j]
coef <- beta(x=x[-testset],z=z[-testset],y=y[-testset],
p=p,nknots = nknots,m=m,knots=knots,lambda=lambda,Dm=Dm)
l <- length(x[testset])
NPsi <- bs(z[testset],df=df1,degree = p)
Npsi <- as.matrix(NPsi[1:l,1:df1])
Ntheta <- Npsi %*% coef
fit1[testset] <- diag(x[testset]) %*% Ntheta
}
mse <- mean((y-fit1)^2)
return(mse)
}
```
## R Markdown
假设$y_t=x_t \theta(z_t)= x_t \cdot (z_t-0.25)^2+u_t$,其中$x_t=x_{t-1}+v_t$即$x_t$非平稳,$y_t$和$z_t$平稳,$u_t,v_t \sim N(0,1)$
也就是系数$\theta$是可变的,利用B样条估计各个变系数
估计系数,因为目前拟合结果是随lambda单调的,所以先给定lambda
参数说明:
y:因变量;x:自变量;z:辅助变量
p:B样条的次数;nknots:选取的节点个数
m:惩罚项阶数;lambda:惩罚项系数
cv=c("gcv","AIC","ocv","k-fold cv","MLE","REML"),选择最优lambda的方法
分别是按照gcv、aic、ocv和K折交叉验证来选,后两种方法还在开发中。
sigma_error:扰动项u的协差阵
knotsmethod=c("quantile,range"),样条取节点方法,"quantile"表示按数据的quantile取节点,"range"表示按数据的范围等距离取节点。
```{r}
require(splines)
val <- function(x,z,y,p=3,nknots,m=2,lambda=NULL,cv,sigma_error=diag(1,length(y)),knotsmethod="quantile"){
if(any(is.na(x)) | any(is.na(z)) | any(is.na(y)))
stop("NAs in data!")
n <- length(y)
df1 <- nknots+p
if(knotsmethod=="quantile"){
Psi <- bs(z,df=df1,degree = p)
knot <- attr(Psi,"knots")
}else{
knot<- approx(range(z),n=(nknots+2))$y[-c(1,nknots+2)]
Psi<- bs(z,df=df1,knots = knot)
}
Psi <- as.matrix(Psi[1:n,1:df1])
D <- diag(1,df1)
D[which(D==1)[-df1]+1] <- -1
Dm <- D
for(i in 1:(m-1)){Dm <- D %*% Dm}
Dm <- Dm[-(1:m),]
X <- diag(x) %*% Psi
u <- svd(X)$u
A <- diag(svd(X)$d)
v <- svd(X)$v
M <- solve(A) %*% t(v) %*% (nknots^(2*m-1)*t(Dm) %*% Dm) %*% v %*% solve(A)
c <- eigen(M)$values;w <- eigen(M)$vectors
if(is.null(lambda)){
lamb <- seq(-5,10,0.01)
crit <- rep(NA,length(lamb))
for(i in 1:length(lamb)){
Q <- diag(lamb[i]/(lamb[i]+1/c))
H <- u %*% t(u)- u%*%w %*% Q %*% t(u%*%w)
if(cv=="gcv"){
crit[i] <- sum((y-H %*% y)^2)/(n-sum(diag(H)))^2
}else if(cv=="ocv"){
crit[i] <- sum((y-H %*% y)/(1-diag(H))^2)
}else if(cv=="AIC"){
H0 <- X %*% solve(t(X) %*% X) %*% t(X)
var0 <- var(y-H0 %*% y)
crit[i] <- sum((y-H %*% y)^2)/var0+2*sum(diag(H))-2*n*log(var0)-n*log(2*pi)
}else if(cv=="MLE" | cv=="REML"){
stop("This method is still under development, please use other methods. ")
}else{
k <- as.numeric(strsplit(cv,split = "-")[[1]][1])
if(is.na(k)){
stop("Please choose the correct menthod!")
}else{
warning("Using this method may cost more time, please wait a moment.
And because of the uncertainty of the grouping may lead to different optimal lambda")
}
crit[i] <- valcv(fold=k,x=x,z=z,y=y,p=p,nknots=nknots,m=m,knots = knot,
lambda=lamb[i],sigma_error=diag(1,length(y)),Dm=Dm)
}
}
lambda <- lamb[which.min(crit)]
}
coef <- solve(t(X) %*% solve(sigma_error) %*% X +
lambda*(nknots^(2*m-1))*t(Dm)%*%(Dm)) %*% t(X) %*% solve(sigma_error) %*% y
theta <- Psi %*% coef
fit <- diag(x) %*% theta
residuals <- y-fit
H <- X %*% solve(t(X) %*% solve(sigma_error) %*% X +
lambda*(nknots^(2*m-1))*t(Dm)%*%(Dm)) %*% t(X) %*% solve(sigma_error)
gcv <- sum((y-fit)^2)/(n-sum(diag(H)))^2
var0 <- var(y- X %*% solve(t(X) %*% X) %*% t(X) %*% y)
AIC <- sum((y-fit)^2)/var0+2*sum(diag(H))-2*n*log(var0)-n*log(2*pi)
R-square <- 1- sum((y-fit)^2)/((n-1)*var(y))
Adjusted_R^2 <- 1- (sum((y-fit)^2)/(n-nknots))/((n-1)*var(y)/(n-1))
pvalue <- LRTval(x, z, y,nknots=nknots)$p.value
res <- list(coef=drop(coef),lambda=lambda,GCV=gcv,fit=fit,knots=knots,
theta=theta,residuals=residuals,degree=p,nknots=nknots,
m=m,sigma_error=sigma_error,R-square=R-square,Adjusted_R^2=Adjusted_R^2,
test_pvalue <- pvalue)
class(res) <- "val"
res
}
```
预测
```{r}
valpredict <- function(model,newx,newz){
if(class(model)!="val")
stop("the model must be varying-coffecient!")
n <- length(newx)
p <- model$degree
nknots <- model$nknots
df <- p+nknots
Psi <- bs(newz,df=df,degree = p)
Psi <- as.matrix(Psi[1:n,1:df])
theta <- Psi %*% model$coef
predict <- diag(newx) %*% theta
predict
}
```
检验是否应该用变系数,原假设是常系数
参数跟以上一致,需要注意的的是,这边的基函数是截断幂基函数(论文中证明了并没有影响),常用p=1就可以了。
```{r}
library(lme4)
library(RLRsim)
library(nlme)
LRTval=function(X, Z, Y, p=1,nknots=20,df=1,sigma.output=diag(rep(1, length(Y)))){
n=length(Y)
x1 <- diag(X)
z1 <- rep(1,n)
for (i in 1:p){z1=cbind(z1, z^i)}
myknots = quantile(unique(z),seq(0,1,length=(nknots+2))[-c(1,(nknots+2))])
z2 <- outer(z, myknots, FUN="-")
z3 <- z2*(z2>0)
if(p>1) {z3=z3^p}
A1 <- x1 %*% z1
A2 <- x1 %*% z3
Xnames = paste("X",1:ncol(A1),sep="")
Znames = paste("Z",1:ncol(A2),sep="")
fixed.model = as.formula(paste("DATA.temp ~ -1+",
paste(paste("X",1:ncol(A1),sep=""),collapse="+")))
fixed.model2 = as.formula(paste("DATA.temp ~ -1+",
paste(paste("X",1:(ncol(A1)-df),sep=""),collapse="+")))
random.model = as.formula(paste("~-1+",paste(paste("Z",1:ncol(A2),sep=""),collapse="+")))
DATA.output = as.vector( sigma.output %*% Y )
hat1 = sigma.output %*% A1 ;
hat2 = sigma.output %*% A2
DATA.temp= DATA.output
colnames(hat1)=Xnames
colnames(hat2)=Znames
subject<-rep(1,n)
ALLDATA = data.frame(cbind(subject,DATA.temp, hat1, hat2))
mA = lme(fixed=fixed.model, data=ALLDATA,
random=list(subject = pdIdent(random.model)), method="ML")
m0 = lm(fixed.model2, data=ALLDATA)
obs.LRT = as.numeric(2*(logLik(mA)-logLik(m0)))
pvalue = pchisq(obs.LRT,1,lower.tail = FALSE)
pvalue =ifelse(pvalue <1*10^-16,"<1e-16",pvalue)
res <- list(LRT =obs.LRT,p.value = pvalue)
res
}
```
#举个例子
```{r}
n=500
z <- runif(n)
v <- rnorm(n)
x <- cumsum(v)
theta=function(t){(t-0.25)^2}
u <- rnorm(n)
y <- x*theta(z)+u #实际的y
model <- val(x,z,y,p=3,nknots=20,lambda = 0.01) #指定lambda
model <- val(x,z,y,p=3,nknots=20,cv="gcv") #不指定lambda,根据gcv值选择最优lambda
model$lambda
model$coef #beta
model2 <- val(x,z,y,p=3,nknots=20,cv="AIC") #根据AIC选择
model2$lambda
model3 <- val(x,z,y,p=3,nknots=20,cv="ocv") #根据ocv选择
model3$lambda
model4 <- val(x,z,y,p=3,nknots=20,cv="5-fold cv") #根据5折交叉验证选择
model4$lambda
#想用10折交叉验证的话就用cv=“10-fold cv”
#耗时很长,不建议使用!!
#model$theta #x的变系数,也就是theta(z)
plot(theta(z),model$theta)
#检验是否应该用这模型
LRTval(x, z, y, p=1,nknots=20,df=1)
#预测
z2 <- runif(100)
v2 <- rnorm(100)
x2 <- cumsum(v2)
pre<- valpredict(model,newx = x2,newz = z2)
```