-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_config_cd.py
252 lines (226 loc) · 10 KB
/
test_config_cd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Testing topi conv2d operator for VTA"""
import json
import os
import time
import pytest
import numpy as np
from collections import namedtuple
import tvm
from tvm import te
from tvm import relay
from tvm import autotvm
from tvm.contrib import util
from tvm.contrib.pickle_memoize import memoize
import topi
import topi.testing
import vta
from vta import program_fpga, reconfig_runtime
import vta.testing
from vta.testing import simulator
Workload = namedtuple("Conv2DWorkload",
['batch', 'height', 'width', 'in_filter', 'out_filter',
'hkernel', 'wkernel', 'hpad', 'wpad', 'hstride', 'wstride'])
# Get batch info from env
env = vta.get_env()
# CoDeNet workloads
config_cd_wkls = [
('config_cd', Workload(env.BATCH, 512, 512, 3, 24, 3, 3, 1, 1, 4, 4)),
]
# FIXME: we need a custom clip operator to circumvent a pattern detection limitation
@tvm.te.tag_scope(tag=topi.tag.ELEMWISE)
def my_clip(x, a_min, a_max):
"""Unlike topi's current clip, put min and max into two stages."""
const_min = tvm.tir.const(a_min, x.dtype)
const_max = tvm.tir.const(a_max, x.dtype)
x = te.compute(x.shape, lambda *i: tvm.te.min(x(*i), const_max), name="clipA")
x = te.compute(x.shape, lambda *i: tvm.te.max(x(*i), const_min), name="clipB")
return x
def run_conv2d(env, remote, wl, target,
check_correctness=True, print_ir=False,
samples=10):
# Workload assertions
assert wl.hpad == wl.wpad
# Perform packing only if we are targeting the accelerator
if "arm_cpu" in target.keys:
data_pack = False
layout = "NCHW"
conv2d_fcompute = topi.arm_cpu.conv2d_nchw_spatial_pack
conv2d_fschedule = topi.arm_cpu.schedule_conv2d_nchw_spatial_pack
elif "vta" in target.keys:
data_pack = True
layout = "NCHW%dn%dc" % (env.BATCH, env.BLOCK_IN)
conv2d_fcompute = vta.top.conv2d_packed
conv2d_fschedule = vta.top.schedule_conv2d_packed
# Derive shapes depending upon packing
a_shape = (wl.batch, wl.in_filter, wl.height, wl.width)
w_shape = (wl.out_filter, wl.in_filter, wl.hkernel, wl.wkernel)
b_shape = (wl.batch, wl.out_filter, 1, 1)
if data_pack:
data_shape = (wl.batch//env.BATCH, wl.in_filter//env.BLOCK_IN,
wl.height, wl.width, env.BATCH, env.BLOCK_IN)
kernel_shape = (wl.out_filter//env.BLOCK_OUT, wl.in_filter//env.BLOCK_IN,
wl.hkernel, wl.wkernel, env.BLOCK_OUT, env.BLOCK_IN)
bias_shape = (wl.batch//env.BATCH, wl.out_filter//env.BLOCK_OUT,
1, 1, env.BATCH, env.BLOCK_OUT)
else:
data_shape = a_shape
kernel_shape = w_shape
bias_shape = b_shape
data = te.placeholder(data_shape, name="data", dtype=env.inp_dtype)
kernel = te.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype)
bias = te.placeholder(bias_shape, name="bias", dtype=env.acc_dtype)
padding = relay.nn.get_pad_tuple2d((wl.hpad, wl.wpad))
# Define base computation schedule
with target:
if data_pack:
res = conv2d_fcompute(
data, kernel, (wl.hstride, wl.wstride), padding, (1, 1),
layout, env.acc_dtype)
else:
res = conv2d_fcompute(
data, kernel, (wl.hstride, wl.wstride), padding, (1, 1),
env.acc_dtype)
res = topi.right_shift(res, 8)
res = topi.add(res, bias)
res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1)
res = topi.cast(res, env.out_dtype)
# Derive base schedule
s = conv2d_fschedule([res])
if print_ir:
print(vta.lower(s, [data, kernel, bias, res], simple_mode=True))
# Derive number of ops
fout_height = (wl.height + 2 * wl.hpad - wl.hkernel) // wl.hstride + 1
fout_width = (wl.width + 2 * wl.wpad - wl.wkernel) // wl.wstride + 1
num_ops = 2 * wl.batch * fout_height * fout_width * wl.hkernel * wl.wkernel * wl.out_filter * wl.in_filter
# @memoize("vta.tests.test_benchmark_topi.conv2d.verify_nhwc")
def get_ref_data():
# derive min max for act, wgt, and bias types (max non inclusive)
a_min, a_max = 0 - (1 << (env.INP_WIDTH - 1)), (1 << (env.INP_WIDTH - 1))
w_min, w_max = 0 - (1 << (env.WGT_WIDTH - 1)), (1 << (env.WGT_WIDTH - 1))
b_min, b_max = 0 - 1 << (env.INP_WIDTH + env.WGT_WIDTH - 2), 1 << (env.INP_WIDTH + env.WGT_WIDTH - 2)
a_np = np.random.randint(a_min, a_max, size=a_shape).astype(data.dtype)
w_np = np.random.randint(w_min, w_max, size=w_shape).astype(kernel.dtype)
b_np = np.random.randint(b_min, b_max, size=b_shape).astype(env.acc_dtype)
r_np = topi.testing.conv2d_nchw_python(
a_np.astype(env.acc_dtype), w_np.astype(env.acc_dtype), (wl.hstride, wl.wstride), wl.hpad).astype(env.acc_dtype)
return a_np, w_np, b_np, r_np
# Data in original format
data_np, kernel_np, bias_np, res_ref = get_ref_data()
if data_pack:
data_np = data_np.reshape(
wl.batch//env.BATCH, env.BATCH,
wl.in_filter//env.BLOCK_IN, env.BLOCK_IN,
wl.height, wl.width).transpose((0, 2, 4, 5, 1, 3))
kernel_np = kernel_np.reshape(
wl.out_filter//env.BLOCK_OUT, env.BLOCK_OUT,
wl.in_filter//env.BLOCK_IN, env.BLOCK_IN,
wl.hkernel, wl.wkernel).transpose((0, 2, 4, 5, 1, 3))
bias_np = bias_np.reshape(
wl.batch//env.BATCH, wl.out_filter//env.BLOCK_OUT,
1, 1, env.BATCH, env.BLOCK_OUT)
# Build
if "vta" in target.keys:
mod = vta.build(s, [data, kernel, bias, res],
target=target,
target_host=env.target_host,
name="conv2d")
else:
mod = tvm.build(s, [data, kernel, bias, res],
target=target,
target_host=env.target_host,
name="conv2d")
temp = util.tempdir()
mod.save(temp.relpath("conv2d.o"))
remote.upload(temp.relpath("conv2d.o"))
f = remote.load_module("conv2d.o")
ctx = remote.context(str(target))
res_np = np.zeros(topi.util.get_const_tuple(res.shape)).astype(res.dtype)
data_arr = tvm.nd.array(data_np, ctx)
kernel_arr = tvm.nd.array(kernel_np, ctx)
bias_arr = tvm.nd.array(bias_np, ctx)
res_arr = tvm.nd.array(res_np, ctx)
time_f = f.time_evaluator("conv2d", ctx, number=samples)
# In vta sim mode, collect simulator runtime statistics
stats = {}
cost = None
if env.TARGET in ["sim", "tsim"]:
# Check if we're in local RPC mode (allows us to rebuild the
# runtime on the fly when varying the VTA designs)
local_rpc = int(os.environ.get("VTA_LOCAL_SIM_RPC", "0"))
if local_rpc:
if env.TARGET == "sim":
remote.get_function("vta.simulator.profiler_clear")()
else:
remote.get_function("vta.tsim.profiler_clear")()
cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
if env.TARGET == "sim":
stats = json.loads(remote.get_function("vta.simulator.profiler_status")())
else:
stats = json.loads(remote.get_function("vta.tsim.profiler_status")())
else:
simulator.clear_stats()
cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
stats = simulator.stats()
else:
cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
# Check correctness
correct = False
if check_correctness:
res_orig = res_arr.asnumpy()
if data_pack:
res_orig = res_orig.transpose(
(0, 4, 1, 5, 2, 3)).reshape(wl.batch, wl.out_filter, fout_height, fout_width)
bias_np = bias_np.transpose(
(0, 4, 1, 5, 2, 3)).reshape(wl.batch, wl.out_filter, 1, 1)
res_ref = res_ref >> env.WGT_WIDTH
res_ref += bias_np
res_ref = np.clip(res_ref, 0, (1 << env.OUT_WIDTH - 1) - 1)
res_ref = res_ref.astype(env.out_dtype)
correct = np.allclose(res_orig, res_ref)
gops = (num_ops / cost.mean) / float(10 ** 9)
status = "PASSED" if correct else "FAILED"
if "arm_cpu" in target.keys:
device = "CPU"
elif "vta" in target.keys:
device = "VTA"
print("%s CONV2D TEST %s: Time cost = %g sec/op, %g GOPS" % (device, status, cost.mean, gops))
return correct, cost, stats
@pytest.mark.parametrize("device", ["vta", "arm_cpu"])
def test_conv2d(device):
target_workloads = [config_cd_wkls]
def _run(env, remote):
if device == "vta":
target = env.target
if env.TARGET not in ["sim", "tsim"]:
assert tvm.runtime.enabled("rpc")
program_fpga(remote, bitstream=None)
reconfig_runtime(remote)
elif device == "arm_cpu":
target = env.target_vta_cpu
for wkls in target_workloads:
with autotvm.tophub.context(target): # load pre-tuned schedule parameters
for _, wl in wkls:
print(wl)
run_conv2d(env, remote, wl, target)
# Add to avoid rpc crash
time.sleep(1)
vta.testing.run(_run)
if __name__ == "__main__":
test_conv2d(device="arm_cpu")
#test_conv2d(device="vta")