forked from fmihpc/vlasiator
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathopen_bucket_hashtable.h
399 lines (349 loc) · 13.5 KB
/
open_bucket_hashtable.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*
* This file is part of Vlasiator.
* Copyright 2010-2016 Finnish Meteorological Institute
*
* For details of usage, see the COPYING file and read the "Rules of the Road"
* at http://www.physics.helsinki.fi/vlasiator/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#pragma once
#include <algorithm>
#include <vector>
#include <stdexcept>
#include <cassert>
#include "definitions.h"
// Open bucket power-of-two sized hash table with multiplicative fibonacci hashing
template <typename GID, typename LID, int maxBucketOverflow = 4, GID EMPTYBUCKET = vmesh::INVALID_GLOBALID > class OpenBucketHashtable {
private:
int sizePower; // Logarithm (base two) of the size of the table
size_t fill; // Number of filled buckets
std::vector<std::pair<GID, LID>> buckets;
// Fibonacci hash function for 64bit values
uint32_t fibonacci_hash(GID in) const {
in ^= in >> (32 - sizePower);
uint32_t retval = (uint64_t)(in * 2654435769ul) >> (32 - sizePower);
return retval;
}
//Hash a chunk of memory using fnv_1a
static uint32_t fnv_1a(const void* chunk, size_t bytes) {
assert(chunk);
uint32_t h = 2166136261ul;
const unsigned char* ptr = static_cast<const unsigned char*>(chunk);
while (bytes--){
h = (h ^ *ptr++) * 16777619ul;
}
return h ;
}
// Generic h
uint32_t hash(GID in) const {
static constexpr bool n = (std::is_arithmetic<GID>::value && sizeof(GID) <= sizeof(uint32_t));
if (n) {
return fibonacci_hash(in);
} else {
return fnv_1a(&in, sizeof(GID));
}
}
public:
OpenBucketHashtable() : sizePower(4), fill(0), buckets(1 << sizePower, std::pair<GID, LID>(EMPTYBUCKET, LID())) {};
// Resize the table to fit more things. This is automatically invoked once
// maxBucketOverflow has triggered.
void rehash(int newSizePower) {
if (newSizePower > 31) {
throw std::out_of_range("OpenBucketHashtable ran into rehashing catastrophe and exceeded 32bit buckets.");
}
std::vector<std::pair<GID, LID>> newBuckets(1u << newSizePower, std::pair<GID, LID>(EMPTYBUCKET, LID()));
sizePower = newSizePower;
int bitMask = (1u << sizePower) - 1; // For efficient modulo of the array size
// Iterate through all old elements and rehash them into the new array.
for (auto& e : buckets) {
// Skip empty buckets
if (e.first == EMPTYBUCKET) {
continue;
}
uint32_t newHash = hash(e.first);
bool found = false;
for (int i = 0; i < maxBucketOverflow; i++) {
std::pair<GID, LID>& candidate = newBuckets[(newHash + i) & bitMask];
if (candidate.first == EMPTYBUCKET) {
// Found an empty bucket, assign that one.
candidate = e;
found = true;
break;
}
}
if (!found) {
// Having arrived here means that we unsuccessfully rehashed and
// are *still* overflowing our buckets. So we need to try again with a bigger one.
return rehash(newSizePower + 1);
}
}
// Replace our buckets with the new ones
buckets = newBuckets;
}
// Element access (by reference). Nonexistent elements get created.
LID& at(const GID& key) {
int bitMask = (1 << sizePower) - 1; // For efficient modulo of the array size
uint32_t hashIndex = hash(key);
// Try to find the matching bucket.
for (int i = 0; i < maxBucketOverflow; i++) {
std::pair<GID, LID>& candidate = buckets[(hashIndex + i) & bitMask];
if (candidate.first == key) {
// Found a match, return that
return candidate.second;
}
if (candidate.first == EMPTYBUCKET) {
// Found an empty bucket, assign and return that.
candidate.first = key;
fill++;
return candidate.second;
}
}
// Not found, and we have no free slots to create a new one. So we need to rehash to a larger size.
rehash(sizePower + 1);
return at(key); // Recursive tail call to try again with larger table.
}
const LID& at(const GID& key) const {
int bitMask = (1 << sizePower) - 1; // For efficient modulo of the array size
uint32_t hashIndex = hash(key);
// Try to find the matching bucket.
for (int i = 0; i < maxBucketOverflow; i++) {
const std::pair<GID, LID>& candidate = buckets[(hashIndex + i) & bitMask];
if (candidate.first == key) {
// Found a match, return that
return candidate.second;
}
if (candidate.first == EMPTYBUCKET) {
// Found an empty bucket, so error.
throw std::out_of_range("Element not found in OpenBucketHashtable.at");
}
}
// Not found, so error.
throw std::out_of_range("Element not found in OpenBucketHashtable.at");
}
// Typical array-like access with [] operator
LID& operator[](const GID& key) { return at(key); }
// For STL compatibility: size(), bucket_count(), count(GID), clear()
size_t size() const { return fill; }
size_t bucket_count() const { return buckets.size(); }
size_t count(const GID& key) const {
if (find(key) != end()) {
return 1;
} else {
return 0;
}
}
void clear() {
buckets = std::vector<std::pair<GID, LID>>(1 << sizePower, {EMPTYBUCKET, LID()});
fill = 0;
}
// Iterator type. Iterates through all non-empty buckets.
class iterator {
OpenBucketHashtable<GID, LID>* hashtable;
size_t index;
public:
// Define iterator traits
using iterator_category = std::random_access_iterator_tag;
using value_type = std::pair<GID, LID>;
using difference_type = std::ptrdiff_t;
using pointer = std::pair<GID, LID>*;
using reference = std::pair<GID, LID>&;
iterator(OpenBucketHashtable<GID, LID>* hashtable, size_t index) : hashtable(hashtable), index(index) {}
iterator& operator++() {
index++;
while(index < hashtable->buckets.size()){
if (hashtable->buckets[index].first != EMPTYBUCKET){
break;
}
index++;
}
return *this;
}
iterator operator++(int) { // Postfix version
iterator temp = *this;
++(*this);
return temp;
}
bool operator==(iterator other) const {
// comparison of iterators between two different hashtables undefined
assert(hashtable == other.hashtable);
return index == other.index;
}
bool operator!=(iterator other) const {
return !(*this == other);
}
std::pair<GID, LID>& operator*() const { return hashtable->buckets[index]; }
std::pair<GID, LID>* operator->() const { return &hashtable->buckets[index]; }
size_t getIndex() { return index; }
};
// Const iterator.
class const_iterator {
const OpenBucketHashtable<GID, LID>* hashtable;
size_t index;
public:
// Define iterator traits
using iterator_category = std::random_access_iterator_tag;
using value_type = std::pair<GID, LID>;
using difference_type = std::ptrdiff_t;
using pointer = std::pair<GID, LID>*;
using reference = std::pair<GID, LID>&;
explicit const_iterator(const OpenBucketHashtable<GID, LID>* hashtable, size_t index) : hashtable(hashtable), index(index) {}
const_iterator& operator++() {
index++;
while(index < hashtable->buckets.size()){
if (hashtable->buckets[index].first != EMPTYBUCKET){
break;
}
index++;
}
return *this;
}
const_iterator operator++(int) { // Postfix version
const_iterator temp = *this;
++(*this);
return temp;
}
bool operator==(const_iterator other) const {
// comparison of iterators between two different hashtables undefined
assert(hashtable == other.hashtable);
return index == other.index;
}
bool operator!=(const_iterator other) const {
return !(*this == other);
}
const std::pair<GID, LID>& operator*() const { return hashtable->buckets[index]; }
const std::pair<GID, LID>* operator->() const { return &hashtable->buckets[index]; }
size_t getIndex() { return index; }
};
iterator begin() {
for (size_t i = 0; i < buckets.size(); i++) {
if (buckets[i].first != EMPTYBUCKET) {
return iterator(this, i);
}
}
return end();
}
const_iterator begin() const {
for (size_t i = 0; i < buckets.size(); i++) {
if (buckets[i].first != EMPTYBUCKET) {
return const_iterator(this, i);
}
}
return end();
}
iterator end() { return iterator(this, buckets.size()); }
const_iterator end() const { return const_iterator(this, buckets.size()); }
// Element access by iterator
iterator find(GID key) {
int bitMask = (1 << sizePower) - 1; // For efficient modulo of the array size
uint32_t hashIndex = hash(key);
// Try to find the matching bucket.
for (int i = 0; i < maxBucketOverflow; i++) {
const std::pair<GID, LID>& candidate = buckets[(hashIndex + i) & bitMask];
if (candidate.first == key) {
// Found a match, return that
return iterator(this, (hashIndex + i) & bitMask);
}
if (candidate.first == EMPTYBUCKET) {
// Found an empty bucket. Return empty.
return end();
}
}
// Not found
return end();
}
const const_iterator find(GID key) const {
int bitMask = (1 << sizePower) - 1; // For efficient modulo of the array size
uint32_t hashIndex = hash(key);
// Try to find the matching bucket.
for (int i = 0; i < maxBucketOverflow; i++) {
const std::pair<GID, LID>& candidate = buckets[(hashIndex + i) & bitMask];
if (candidate.first == key) {
// Found a match, return that
return const_iterator(this, (hashIndex + i) & bitMask);
}
if (candidate.first == EMPTYBUCKET) {
// Found an empty bucket. Return empty.
return end();
}
}
// Not found
return end();
}
// More STL compatibility implementations
std::pair<iterator, bool> insert(std::pair<GID, LID> newEntry) {
bool found = find(newEntry.first) != end();
if (!found) {
at(newEntry.first) = newEntry.second;
}
return std::pair<iterator, bool>(find(newEntry.first), !found);
}
// Remove one element from the hash table.
iterator erase(iterator keyPos) {
// Due to overflowing buckets, this might require moving quite a bit of stuff around.
size_t index = keyPos.getIndex();
if (buckets[index].first != EMPTYBUCKET) {
// Decrease fill count
fill--;
// Clear the element itself.
buckets[index].first = EMPTYBUCKET;
int bitMask = (1 << sizePower) - 1; // For efficient modulo of the array size
size_t targetPos = index;
// Search ahead to verify items are in correct places (until empty bucket is found)
for (unsigned int i = 1; i < fill; i++) {
GID nextBucket = buckets[(index + i)&bitMask].first;
if (nextBucket == EMPTYBUCKET) {
// The next bucket is empty, we are done.
break;
}
// Found an entry: is it in the correct bucket?
uint32_t hashIndex = hash(nextBucket);
if ((hashIndex&bitMask) != ((index + i)&bitMask)) {
// This entry has overflown. Now check if it should be moved:
uint32_t distance = ((targetPos - hashIndex + (1<<sizePower) )&bitMask);
if (distance < maxBucketOverflow) {
// Copy this entry to the current newly empty bucket, then continue with deleting
// this overflown entry and continue searching for overflown entries
LID moveValue = buckets[(index+i)&bitMask].second;
buckets[targetPos] = std::pair<GID, LID>(nextBucket,moveValue);
targetPos = ((index+i)&bitMask);
buckets[targetPos].first = EMPTYBUCKET;
}
}
}
}
// return the next valid bucket member
++keyPos;
return keyPos;
}
size_t erase(const GID& key) {
iterator element = find(key);
if(element == end()) {
return 0;
} else {
erase(element);
return 1;
}
}
void swap(OpenBucketHashtable<GID, LID>& other) {
buckets.swap(other.buckets);
int tempSizePower = sizePower;
sizePower = other.sizePower;
other.sizePower = tempSizePower;
size_t tempFill = fill;
fill = other.fill;
other.fill = tempFill;
}
};