forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_profiler.pyi
238 lines (205 loc) · 6.03 KB
/
_profiler.pyi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Tuple, Union
from torch._C import device, dtype, layout
from typing_extensions import TypeAlias
# defined in torch/csrc/profiler/python/init.cpp
class RecordScope(Enum):
FUNCTION = ...
BACKWARD_FUNCTION = ...
TORCHSCRIPT_FUNCTION = ...
KERNEL_FUNCTION_DTYPE = ...
CUSTOM_CLASS = ...
BUILD_FEATURE = ...
LITE_INTERPRETER = ...
USER_SCOPE = ...
STATIC_RUNTIME_OP = ...
STATIC_RUNTIME_MODEL = ...
class ProfilerState(Enum):
Disable = ...
CPU = ...
CUDA = ...
NVTX = ...
ITT = ...
KINETO = ...
KINETO_GPU_FALLBACK = ...
KINETO_PRIVATEUSE1_FALLBACK = ...
KINETO_PRIVATEUSE1 = ...
class ActiveProfilerType(Enum):
NONE = ...
LEGACY = ...
KINETO = ...
NVTX = ...
ITT = ...
class ProfilerActivity(Enum):
CPU = ...
CUDA = ...
MTIA = ...
PrivateUse1 = ...
class _EventType(Enum):
TorchOp = ...
Backend = ...
Allocation = ...
OutOfMemory = ...
PyCall = ...
PyCCall = ...
Kineto = ...
class _ExperimentalConfig:
def __init__(
self,
profiler_metrics: List[str] = ...,
profiler_measure_per_kernel: bool = ...,
verbose: bool = ...,
performance_events: List[str] = ...,
enable_cuda_sync_events: bool = ...,
) -> None: ...
class ProfilerConfig:
def __init__(
self,
state: ProfilerState,
report_input_shapes: bool,
profile_memory: bool,
with_stack: bool,
with_flops: bool,
with_modules: bool,
experimental_config: _ExperimentalConfig,
) -> None: ...
class _ProfilerEvent:
start_tid: int
start_time_ns: int
children: List[_ProfilerEvent]
# TODO(robieta): remove in favor of `self.typed`
extra_fields: Union[
_ExtraFields_TorchOp,
_ExtraFields_Backend,
_ExtraFields_Allocation,
_ExtraFields_OutOfMemory,
_ExtraFields_PyCall,
_ExtraFields_PyCCall,
_ExtraFields_Kineto,
]
@property
def typed(
self,
) -> Union[
Tuple[Literal[_EventType.TorchOp], _ExtraFields_TorchOp],
Tuple[Literal[_EventType.Backend], _ExtraFields_Backend],
Tuple[Literal[_EventType.Allocation], _ExtraFields_Allocation],
Tuple[Literal[_EventType.OutOfMemory], _ExtraFields_OutOfMemory],
Tuple[Literal[_EventType.PyCall], _ExtraFields_PyCall],
Tuple[Literal[_EventType.PyCCall], _ExtraFields_PyCCall],
Tuple[Literal[_EventType.Kineto], _ExtraFields_Kineto],
]: ...
@property
def name(self) -> str: ...
@property
def tag(self) -> _EventType: ...
@property
def id(self) -> int: ...
@property
def parent(self) -> Optional[_ProfilerEvent]: ...
@property
def correlation_id(self) -> int: ...
@property
def end_time_ns(self) -> int: ...
@property
def duration_time_ns(self) -> int: ...
class _TensorMetadata:
impl_ptr: Optional[int]
storage_data_ptr: Optional[int]
id: Optional[int]
@property
def allocation_id(self) -> Optional[int]: ...
@property
def layout(self) -> layout: ...
@property
def device(self) -> device: ...
@property
def dtype(self) -> dtype: ...
@property
def sizes(self) -> List[int]: ...
@property
def strides(self) -> List[int]: ...
Scalar: TypeAlias = Union[int, float, bool, complex]
Input: TypeAlias = Optional[Union[_TensorMetadata, List[_TensorMetadata], Scalar]]
class _ExtraFields_TorchOp:
name: str
sequence_number: int
allow_tf32_cublas: bool
@property
def inputs(self) -> List[Input]: ...
@property
def scope(self) -> RecordScope: ...
class _ExtraFields_Backend: ...
class _ExtraFields_Allocation:
ptr: int
id: Optional[int]
alloc_size: int
total_allocated: int
total_reserved: int
@property
def allocation_id(self) -> Optional[int]: ...
@property
def device(self) -> device: ...
class _ExtraFields_OutOfMemory: ...
class _PyFrameState:
line_number: int
function_name: str
@property
def file_name(self) -> str: ...
class _NNModuleInfo:
@property
def self_ptr(self) -> int: ...
@property
def cls_ptr(self) -> int: ...
@property
def cls_name(self) -> str: ...
@property
def parameters(
self,
) -> List[Tuple[str, _TensorMetadata, Optional[_TensorMetadata]]]: ...
class _OptimizerInfo:
@property
def parameters(
self,
) -> List[
Tuple[
# Parameter
_TensorMetadata,
#
# Gradient (if present during optimizer.step())
Optional[_TensorMetadata],
#
# Optimizer state for Parameter as (name, tensor) pairs
List[Tuple[str, _TensorMetadata]],
]
]: ...
class _ExtraFields_PyCCall:
@property
def caller(self) -> _PyFrameState: ...
class _ExtraFields_PyCall:
@property
def callsite(self) -> _PyFrameState: ...
@property
def caller(self) -> _PyFrameState: ...
@property
def module(self) -> Optional[_NNModuleInfo]: ...
@property
def optimizer(self) -> Optional[_OptimizerInfo]: ...
class _ExtraFields_Kineto: ...
def _add_execution_trace_observer(output_file_path: str) -> bool: ...
def _remove_execution_trace_observer() -> None: ...
def _enable_execution_trace_observer() -> None: ...
def _disable_execution_trace_observer() -> None: ...
def _set_record_concrete_inputs_enabled_val(val: bool) -> None: ...
def _set_fwd_bwd_enabled_val(val: bool) -> None: ...
def _set_cuda_sync_enabled_val(val: bool) -> None: ...
class CapturedTraceback: ...
def gather_traceback(python: bool, script: bool, cpp: bool) -> CapturedTraceback: ...
# The Dict has name, filename, line
def symbolize_tracebacks(
to_symbolize: List[CapturedTraceback],
) -> List[List[Dict[str, str]]]: ...
class _RecordFunctionFast:
def __init__(self, name: str) -> None: ...
def __enter__(self) -> None: ...
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None: ...