forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_functorch.pyi
71 lines (59 loc) · 2.58 KB
/
_functorch.pyi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from enum import Enum
from typing import Optional, Tuple
from torch import Tensor
# Defined in torch/csrc/functorch/init.cpp
def _set_dynamic_layer_keys_included(included: bool) -> None: ...
def get_unwrapped(tensor: Tensor) -> Tensor: ...
def is_batchedtensor(tensor: Tensor) -> bool: ...
def is_functionaltensor(tensor: Tensor) -> bool: ...
def is_functorch_wrapped_tensor(tensor: Tensor) -> bool: ...
def is_gradtrackingtensor(tensor: Tensor) -> bool: ...
def maybe_get_bdim(tensor: Tensor) -> int: ...
def maybe_get_level(tensor: Tensor) -> int: ...
def unwrap_if_dead(tensor: Tensor) -> Tensor: ...
def _unwrap_for_grad(tensor: Tensor, level: int) -> Tensor: ...
def _wrap_for_grad(tensor: Tensor, level: int) -> Tensor: ...
def _unwrap_batched(tensor: Tensor, level: int) -> Tuple[Tensor, Optional[int]]: ...
def current_level() -> int: ...
def _add_batch_dim(tensor: Tensor, bdim: int, level: int) -> Tensor: ...
def set_single_level_autograd_function_allowed(allowed: bool) -> None: ...
def get_single_level_autograd_function_allowed() -> bool: ...
def _unwrap_functional_tensor(tensor: Tensor, reapply_views: bool) -> Tensor: ...
def _wrap_functional_tensor(tensor: Tensor, level: int) -> Tensor: ...
# Defined in aten/src/ATen/functorch/Interpreter.h
class TransformType(Enum):
Torch: TransformType = ...
Vmap: TransformType = ...
Grad: TransformType = ...
Jvp: TransformType = ...
Functionalize: TransformType = ...
class RandomnessType(Enum):
Error: TransformType = ...
Same: TransformType = ...
Different: TransformType = ...
class CInterpreter:
def key(self) -> TransformType: ...
def level(self) -> int: ...
class CGradInterpreterPtr:
def __init__(self, interpreter: CInterpreter): ...
def lift(self, Tensor) -> Tensor: ...
def prevGradMode(self) -> bool: ...
class CJvpInterpreterPtr:
def __init__(self, interpreter: CInterpreter): ...
def lift(self, Tensor) -> Tensor: ...
def prevFwdGradMode(self) -> bool: ...
class CFunctionalizeInterpreterPtr:
def __init__(self, interpreter: CInterpreter): ...
def key(self) -> TransformType: ...
def level(self) -> int: ...
def functionalizeAddBackViews(self) -> bool: ...
class CVmapInterpreterPtr:
def __init__(self, interpreter: CInterpreter): ...
def key(self) -> TransformType: ...
def level(self) -> int: ...
def batchSize(self) -> int: ...
def randomness(self) -> RandomnessType: ...
class DynamicLayer: ...
def peek_interpreter_stack() -> CInterpreter: ...
def pop_dynamic_layer_stack() -> DynamicLayer: ...
def push_dynamic_layer_stack(dl: DynamicLayer) -> int: ...