forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_autograd.pyi
123 lines (112 loc) · 4.02 KB
/
_autograd.pyi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from enum import Enum
from typing import Any, Callable, List, Optional, Set
import torch
from ._profiler import (
_ProfilerEvent,
ActiveProfilerType,
ProfilerActivity,
ProfilerConfig,
)
# Defined in tools/autograd/init.cpp
class DeviceType(Enum):
CPU = ...
CUDA = ...
MKLDNN = ...
OPENGL = ...
OPENCL = ...
IDEEP = ...
HIP = ...
FPGA = ...
ORT = ...
XLA = ...
MPS = ...
HPU = ...
Meta = ...
Vulkan = ...
Metal = ...
PrivateUse1 = ...
class ProfilerEvent:
def cpu_elapsed_us(self, other: ProfilerEvent) -> float: ...
def cpu_memory_usage(self) -> int: ...
def cuda_elapsed_us(self, other: ProfilerEvent) -> float: ...
def privateuse1_elapsed_us(self, other: ProfilerEvent) -> float: ...
def cuda_memory_usage(self) -> int: ...
def device(self) -> int: ...
def handle(self) -> int: ...
def has_cuda(self) -> bool: ...
def is_remote(self) -> bool: ...
def kind(self) -> int: ...
def name(self) -> str: ...
def node_id(self) -> int: ...
def sequence_nr(self) -> int: ...
def shapes(self) -> List[List[int]]: ...
def thread_id(self) -> int: ...
def flops(self) -> float: ...
def is_async(self) -> bool: ...
class _KinetoEvent:
def name(self) -> str: ...
def device_index(self) -> int: ...
def start_us(self) -> int: ...
def duration_us(self) -> int: ...
def is_async(self) -> bool: ...
def linked_correlation_id(self) -> int: ...
def shapes(self) -> List[List[int]]: ...
def dtypes(self) -> List[str]: ...
def concrete_inputs(self) -> List[Any]: ...
def device_type(self) -> DeviceType: ...
def start_thread_id(self) -> int: ...
def end_thread_id(self) -> int: ...
def correlation_id(self) -> int: ...
def fwd_thread_id(self) -> int: ...
def stack(self) -> List[str]: ...
def scope(self) -> int: ...
def sequence_nr(self) -> int: ...
def flops(self) -> int: ...
def cuda_elapsed_us(self) -> int: ...
def privateuse1_elapsed_us(self) -> int: ...
class _ProfilerResult:
def events(self) -> List[_KinetoEvent]: ...
def legacy_events(self) -> List[List[ProfilerEvent]]: ...
def save(self, path: str) -> None: ...
def experimental_event_tree(self) -> List[_ProfilerEvent]: ...
def trace_start_us(self) -> int: ...
class SavedTensor: ...
def _enable_profiler(
config: ProfilerConfig,
activities: Set[ProfilerActivity],
) -> None: ...
def _prepare_profiler(
config: ProfilerConfig,
activities: Set[ProfilerActivity],
) -> None: ...
def _disable_profiler() -> _ProfilerResult: ...
def _profiler_enabled() -> bool: ...
def _add_metadata_json(key: str, value: str) -> None: ...
def _kineto_step() -> None: ...
def _get_sequence_nr() -> int: ...
def kineto_available() -> bool: ...
def _record_function_with_args_enter(name: str, *args) -> torch.Tensor: ...
def _record_function_with_args_exit(handle: torch.Tensor) -> None: ...
def _supported_activities() -> Set[ProfilerActivity]: ...
def _enable_record_function(enable: bool) -> None: ...
def _set_empty_test_observer(is_global: bool, sampling_prob: float) -> None: ...
def _push_saved_tensors_default_hooks(
pack_hook: Callable[[torch.Tensor], Any],
unpack_hook: Callable[[Any], torch.Tensor],
) -> None: ...
def _pop_saved_tensors_default_hooks() -> None: ...
def _unsafe_set_version_counter(t: torch.Tensor, prev_version: int) -> None: ...
def _enable_profiler_legacy(config: ProfilerConfig) -> None: ...
def _disable_profiler_legacy() -> List[List[ProfilerEvent]]: ...
def _profiler_type() -> ActiveProfilerType: ...
def _saved_tensors_hooks_enable() -> None: ...
def _saved_tensors_hooks_disable(message: str) -> None: ...
def _saved_tensors_hooks_get_disabled_error_message() -> Optional[str]: ...
class CreationMeta(Enum):
DEFAULT = ...
IN_CUSTOM_FUNCTION = ...
MULTI_OUTPUT_NODE = ...
NO_GRAD_MODE = ...
INFERENCE_MODE = ...
def _set_creation_meta(t: torch.Tensor, creation_meta: CreationMeta) -> None: ...
def _get_creation_meta(t: torch.Tensor) -> CreationMeta: ...