forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchar_rnn.py
276 lines (218 loc) · 9.58 KB
/
char_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
## @package char_rnn
# Module caffe2.python.examples.char_rnn
from caffe2.python import core, workspace, model_helper, utils, brew
from caffe2.python.rnn_cell import LSTM
from caffe2.proto import caffe2_pb2
from caffe2.python.optimizer import build_sgd
import argparse
import logging
import numpy as np
from datetime import datetime
'''
This script takes a text file as input and uses a recurrent neural network
to learn to predict next character in a sequence.
'''
logging.basicConfig()
log = logging.getLogger("char_rnn")
log.setLevel(logging.DEBUG)
# Default set() here is intentional as it would accumulate values like a global
# variable
def CreateNetOnce(net, created_names=set()): # noqa
name = net.Name()
if name not in created_names:
created_names.add(name)
workspace.CreateNet(net)
class CharRNN:
def __init__(self, args):
self.seq_length = args.seq_length
self.batch_size = args.batch_size
self.iters_to_report = args.iters_to_report
self.hidden_size = args.hidden_size
with open(args.train_data) as f:
self.text = f.read()
self.vocab = list(set(self.text))
self.char_to_idx = {ch: idx for idx, ch in enumerate(self.vocab)}
self.idx_to_char = {idx: ch for idx, ch in enumerate(self.vocab)}
self.D = len(self.char_to_idx)
print("Input has {} characters. Total input size: {}".format(
len(self.vocab), len(self.text)))
def CreateModel(self):
log.debug("Start training")
model = model_helper.ModelHelper(name="char_rnn")
input_blob, seq_lengths, hidden_init, cell_init, target = \
model.net.AddExternalInputs(
'input_blob',
'seq_lengths',
'hidden_init',
'cell_init',
'target',
)
hidden_output_all, self.hidden_output, _, self.cell_state = LSTM(
model, input_blob, seq_lengths, (hidden_init, cell_init),
self.D, self.hidden_size, scope="LSTM")
output = brew.fc(
model,
hidden_output_all,
None,
dim_in=self.hidden_size,
dim_out=self.D,
axis=2
)
# axis is 2 as first two are T (time) and N (batch size).
# We treat them as one big batch of size T * N
softmax = model.net.Softmax(output, 'softmax', axis=2)
softmax_reshaped, _ = model.net.Reshape(
softmax, ['softmax_reshaped', '_'], shape=[-1, self.D])
# Create a copy of the current net. We will use it on the forward
# pass where we don't need loss and backward operators
self.forward_net = core.Net(model.net.Proto())
xent = model.net.LabelCrossEntropy([softmax_reshaped, target], 'xent')
# Loss is average both across batch and through time
# Thats why the learning rate below is multiplied by self.seq_length
loss = model.net.AveragedLoss(xent, 'loss')
model.AddGradientOperators([loss])
# use build_sdg function to build an optimizer
build_sgd(
model,
base_learning_rate=0.1 * self.seq_length,
policy="step",
stepsize=1,
gamma=0.9999
)
self.model = model
self.predictions = softmax
self.loss = loss
self.prepare_state = core.Net("prepare_state")
self.prepare_state.Copy(self.hidden_output, hidden_init)
self.prepare_state.Copy(self.cell_state, cell_init)
def _idx_at_pos(self, pos):
return self.char_to_idx[self.text[pos]]
def TrainModel(self):
log.debug("Training model")
workspace.RunNetOnce(self.model.param_init_net)
# As though we predict the same probability for each character
smooth_loss = -np.log(1.0 / self.D) * self.seq_length
last_n_iter = 0
last_n_loss = 0.0
num_iter = 0
N = len(self.text)
# We split text into batch_size pieces. Each piece will be used only
# by a corresponding batch during the training process
text_block_positions = np.zeros(self.batch_size, dtype=np.int32)
text_block_size = N // self.batch_size
text_block_starts = list(range(0, N, text_block_size))
text_block_sizes = [text_block_size] * self.batch_size
text_block_sizes[self.batch_size - 1] += N % self.batch_size
assert sum(text_block_sizes) == N
# Writing to output states which will be copied to input
# states within the loop below
workspace.FeedBlob(self.hidden_output, np.zeros(
[1, self.batch_size, self.hidden_size], dtype=np.float32
))
workspace.FeedBlob(self.cell_state, np.zeros(
[1, self.batch_size, self.hidden_size], dtype=np.float32
))
workspace.CreateNet(self.prepare_state)
# We iterate over text in a loop many times. Each time we peak
# seq_length segment and feed it to LSTM as a sequence
last_time = datetime.now()
progress = 0
while True:
workspace.FeedBlob(
"seq_lengths",
np.array([self.seq_length] * self.batch_size,
dtype=np.int32)
)
workspace.RunNet(self.prepare_state.Name())
input = np.zeros(
[self.seq_length, self.batch_size, self.D]
).astype(np.float32)
target = np.zeros(
[self.seq_length * self.batch_size]
).astype(np.int32)
for e in range(self.batch_size):
for i in range(self.seq_length):
pos = text_block_starts[e] + text_block_positions[e]
input[i][e][self._idx_at_pos(pos)] = 1
target[i * self.batch_size + e] =\
self._idx_at_pos((pos + 1) % N)
text_block_positions[e] = (
text_block_positions[e] + 1) % text_block_sizes[e]
progress += 1
workspace.FeedBlob('input_blob', input)
workspace.FeedBlob('target', target)
CreateNetOnce(self.model.net)
workspace.RunNet(self.model.net.Name())
num_iter += 1
last_n_iter += 1
if num_iter % self.iters_to_report == 0:
new_time = datetime.now()
print("Characters Per Second: {}". format(
int(progress / (new_time - last_time).total_seconds())
))
print("Iterations Per Second: {}". format(
int(self.iters_to_report /
(new_time - last_time).total_seconds())
))
last_time = new_time
progress = 0
print("{} Iteration {} {}".
format('-' * 10, num_iter, '-' * 10))
loss = workspace.FetchBlob(self.loss) * self.seq_length
smooth_loss = 0.999 * smooth_loss + 0.001 * loss
last_n_loss += loss
if num_iter % self.iters_to_report == 0:
self.GenerateText(500, np.random.choice(self.vocab))
log.debug("Loss since last report: {}"
.format(last_n_loss / last_n_iter))
log.debug("Smooth loss: {}".format(smooth_loss))
last_n_loss = 0.0
last_n_iter = 0
def GenerateText(self, num_characters, ch):
# Given a starting symbol we feed a fake sequence of size 1 to
# our RNN num_character times. After each time we use output
# probabilities to pick a next character to feed to the network.
# Same character becomes part of the output
CreateNetOnce(self.forward_net)
text = '' + ch
for _i in range(num_characters):
workspace.FeedBlob(
"seq_lengths", np.array([1] * self.batch_size, dtype=np.int32))
workspace.RunNet(self.prepare_state.Name())
input = np.zeros([1, self.batch_size, self.D]).astype(np.float32)
input[0][0][self.char_to_idx[ch]] = 1
workspace.FeedBlob("input_blob", input)
workspace.RunNet(self.forward_net.Name())
p = workspace.FetchBlob(self.predictions)
next = np.random.choice(self.D, p=p[0][0])
ch = self.idx_to_char[next]
text += ch
print(text)
@utils.debug
def main():
parser = argparse.ArgumentParser(
description="Caffe2: Char RNN Training"
)
parser.add_argument("--train_data", type=str, default=None,
help="Path to training data in a text file format",
required=True)
parser.add_argument("--seq_length", type=int, default=25,
help="One training example sequence length")
parser.add_argument("--batch_size", type=int, default=1,
help="Training batch size")
parser.add_argument("--iters_to_report", type=int, default=500,
help="How often to report loss and generate text")
parser.add_argument("--hidden_size", type=int, default=100,
help="Dimension of the hidden representation")
parser.add_argument("--gpu", action="store_true",
help="If set, training is going to use GPU 0")
args = parser.parse_args()
device = core.DeviceOption(
workspace.GpuDeviceType if args.gpu else caffe2_pb2.CPU, 0)
with core.DeviceScope(device):
model = CharRNN(args)
model.CreateModel()
model.TrainModel()
if __name__ == '__main__':
workspace.GlobalInit(['caffe2', '--caffe2_log_level=2'])
main()