-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathswift_infer_dataset.py
201 lines (165 loc) · 7.9 KB
/
swift_infer_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import json
import argparse
import glob
import torch
from swift.llm import (
ModelType, get_lmdeploy_engine, get_default_template_type,
get_template, inference_lmdeploy, get_vllm_engine, inference_vllm,
get_model_tokenizer, inference
)
from swift.utils import seed_everything
from tqdm import tqdm
model_name_map = {
'Qwen-VL-Chat': ModelType.qwen_vl_chat,
'InternVL2-8B': ModelType.internvl2_8b,
'DeepSeek-VL-1.3B-Chat': ModelType.deepseek_vl_1_3b_chat,
'MiniCPM-Llama3-V-2_5': ModelType.minicpm_v_v2_5_chat,
'LLaVA-1.6-Vicuna-13B': ModelType.llava1_6_vicuna_13b_instruct,
'llama3-llava-next-8b-hf': ModelType.llama3_llava_next_8b_hf,
"chartgemma": ModelType.paligemma_3b_pt_448,
"llava-1.5-13b-hf": ModelType.llava1_5_13b_instruct
}
# TODO: paste your local path to the datasets
dataset_path_map = {
'ReachQA': "ReachQA/data/reachqa_test",
'ChartQA': "ReachQA/data/chartqa_test",
'ChartX': "ReachQA/data/chartx",
'ChartBench': "ReachQA/data/chartbench",
'CharXiv': "ReachQA/data/charxiv",
'MathVista': "ReachQA/data/mathvista",
'Math-Vision': "ReachQA/data/math_v",
"ReachQA-Reas": "ReachQA/data/reachqa_test",
"CharXiv-Reas": "ReachQA/data/charxiv",
}
def load_datasets(dataset_names):
all_datasets = []
for name in dataset_names:
if name not in ['ReachQA', 'ChartQA', 'ChartX', 'ChartBench', 'CharXiv', 'MathVista', 'Math-Vision']:
raise ValueError(f"Dataset name '{name}' is not in the allowed choices.")
dataset_path = dataset_path_map[name]
data_file = os.path.join(dataset_path, 'data.json')
with open(data_file, 'r') as file:
dataset = json.load(file)
# Update image paths to full paths
for item in dataset:
item['image'] = os.path.join(dataset_path, item['image'])
all_datasets.append(dataset)
return all_datasets
def prepare_requests(datasets, model_type):
requests = []
for dataset in datasets:
for item in dataset:
if model_type in [ModelType.qwen_vl_chat, ModelType.llava1_6_vicuna_13b_instruct, \
ModelType.deepseek_vl_1_3b_chat, ModelType.llama3_llava_next_8b_hf, \
ModelType.llava1_5_13b_instruct]:
request = {
'query': f"<image>{item['question']} Let's think step by step.",
'images': [item['image']]
}
elif model_type in [ModelType.minicpm_v_v2_5_chat, ModelType.internvl2_8b, ModelType.paligemma_3b_pt_448]:
request = {
'query': item['question'] + " Let's think step by step.",
'images': [item['image']]
}
else:
raise ValueError(f"Unsupported model type: {model_type}")
requests.append(request)
return requests
def infer_requests(requests, infer_backend):
# Set generation info
generation_info = {
"do_sample": False,
"max_new_tokens": 1024,
# "max_num_batched_tokens": 4096,
# "temperature": 0,
}
print(f"Running inference with {infer_backend} backend...")
if infer_backend == 'lmdeploy':
responses = inference_lmdeploy(lmdeploy_engine, template, requests, generation_info=generation_info, use_tqdm=True)
elif infer_backend == 'vllm':
responses = inference_vllm(vllm_engine, template, requests, generation_info=generation_info, use_tqdm=True)
else: # 'none'
responses = []
for request in tqdm(requests):
query = request['query']
response, _ = inference(model, template, query)
responses.append({'response': response})
return responses
def save_results(responses, datasets, dataset_names, output_folder, suffix):
os.makedirs(output_folder, exist_ok=True)
dataset_to_results = {name: [] for name in dataset_names}
current_idx = 0
for dataset_name, dataset in zip(dataset_names, datasets):
dataset_length = len(dataset)
dataset_responses = responses[current_idx:current_idx + dataset_length]
for item, response in zip(dataset, dataset_responses):
dataset_to_results[dataset_name].append({
"question": item['question'],
"answer": item['answer'],
"split": item['split'],
"prediction": response['response']
})
current_idx += dataset_length
for dataset_name, results in dataset_to_results.items():
output_file = os.path.join(output_folder, f"{model_name}-{suffix}-{dataset_name}.json")
with open(output_file, 'w') as file:
json.dump(results, file, indent=4)
print(f"Results saved to {output_file}")
def arg_parser():
parser = argparse.ArgumentParser(description="Run multimodal inference with different models.")
parser.add_argument('--model_name', type=str, required=True,
help='Name of the model to use (e.g., LLaVA-1.6-Vicuna-13B)')
parser.add_argument('--model_id_or_path', type=str, default=None,
help='Model ID or path for the specific model checkpoint')
parser.add_argument('--datasets', type=str, required=True,
help='Comma-separated list of datasets to use (e.g., ReachQA,ChartQA)')
parser.add_argument('--output_folder', type=str, required=True,
help='Folder to save the inference results')
parser.add_argument('--suffix', type=str, default='',
help='Suffix to append to the output filename')
parser.add_argument('--infer_backend', type=str, choices=['lmdeploy', 'vllm', 'none'], required=True,
help='Inference backend to use (lmdeploy, vllm, or none)')
parser.add_argument('--tp', type=int, default=None,
help='Tensor parallelism level (used with lmdeploy)')
return parser.parse_args()
def main():
args = arg_parser()
print(args)
seed_everything(42)
global model_name, model_type, model_id_or_path
model_name = args.model_name
if model_name not in model_name_map:
raise ValueError(f"Unsupported model name: {args.model_name}")
model_type = model_name_map[args.model_name]
model_id_or_path = args.model_id_or_path
# load model and template
global template
if args.infer_backend == 'lmdeploy':
global lmdeploy_engine
lmdeploy_engine = get_lmdeploy_engine(model_type, model_id_or_path=model_id_or_path, tp=args.tp)
template_type = get_default_template_type(model_type)
template = get_template(template_type, lmdeploy_engine.hf_tokenizer)
lmdeploy_engine.generation_config.max_new_tokens = 1024
elif args.infer_backend == 'vllm':
global vllm_engine
vllm_engine = get_vllm_engine(model_type, model_id_or_path=model_id_or_path)
template_type = get_default_template_type(model_type)
template = get_template(template_type, vllm_engine.hf_tokenizer)
vllm_engine.generation_config.max_new_tokens = 1024
else: # 'none'
global model, tokenizer
model, tokenizer = get_model_tokenizer(model_type, torch.bfloat16, model_kwargs={'device_map': 'auto'})
model.generation_config.max_new_tokens = 1024
template_type = get_default_template_type(model_type)
template = get_template(template_type, tokenizer)
# Process datasets
dataset_names = [name.strip() for name in args.datasets.split(',')]
datasets = load_datasets(dataset_names)
# Prepare requests and infer
requests = prepare_requests(datasets, model_type)
responses = infer_requests(requests, args.infer_backend)
# Save results
save_results(responses, datasets, dataset_names, args.output_folder, args.suffix)
if __name__ == "__main__":
main()