-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
320 lines (262 loc) · 10.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# DCGAN-like generator and discriminator
import numpy as np
import torch
import keras
from torch import nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn import init
import torch.nn.init as weight_init
channels = 3
def normalize_vector(x, eps=.0001):
# Add epsilon for numerical stability when x == 0
norm = torch.norm(x, p=2, dim=1) + eps
return x / norm.expand(1, -1).t()
class Encoder(nn.Module):
def __init__(self, latent_size):
super(Encoder, self).__init__()
self.latent_size = latent_size
self.leaky = nn.LeakyReLU(0.2, inplace=True)
self.conv0 = (nn.Conv2d(channels, 32, 3, stride=2, padding=(1,1)))
self.batch0 = nn.BatchNorm2d(32)
# Input: 40x40x?
self.conv1 = nn.Conv2d(32, 64, 3, stride=2, padding=(1,1))
self.batch1 = nn.BatchNorm2d(64)
# 40 x 40 x 64
self.conv2 = nn.Conv2d(64, 128, 4, stride=2, padding=(1,1))
self.batch2 = nn.BatchNorm2d(128)
# 20 x 20 x 128
self.conv3 = nn.Conv2d(128, 256, 4, stride=2, padding=(1,1))
self.batch3 = nn.BatchNorm2d(256)
# 10 x 10 x 256
self.conv4 = nn.Conv2d(256, 256, 4, stride=2, padding=(1,1))
self.batch4 = nn.BatchNorm2d(256)
# 5 x 5 x 256
self.conv5 = nn.Conv2d(256, 256, 3, stride=1, padding=(0,0))
self.batch5 = nn.BatchNorm2d(256)
# 3 x 3 x 256
self.hidden_units = 3 * 3 * 256
self.fc = nn.Linear(self.hidden_units, latent_size)
def forward(self, x):
#(hx, cx) = memory
x = self.leaky(self.batch0(self.conv0(x)))
x = self.leaky(self.batch1(self.conv1(x)))
x = self.leaky(self.batch2(self.conv2(x)))
x = self.leaky(self.batch3(self.conv3(x)))
x = self.leaky(self.batch4(self.conv4(x)))
x = self.leaky(self.batch5(self.conv5(x)))
x = x.contiguous().view((-1, self.hidden_units))
return self.fc(x)
def catv(x , y):
bs = x.size(0)
y = y.unsqueeze(2).unsqueeze(3)
size_x = x.size(2)
size_y = x.size(3)
v_to_cat = y.expand(bs, y[0].size(0), size_x, size_y )
return torch.cat([x,v_to_cat], dim = 1)
class Generator(nn.Module):
def __init__(self, z_dim, action_size, pac_man=False):
super(Generator, self).__init__()
self.z_dim = z_dim
use_value = 0
action_size += use_value
self.fc = nn.Linear(z_dim + action_size, z_dim)
self.deconv1 = nn.ConvTranspose2d(z_dim + action_size, 512, 4, stride=2)
self.batch1 = nn.BatchNorm2d(512)
if pac_man:
self.deconv2 = nn.ConvTranspose2d(512 + action_size, 256, 4, stride=3, padding=(1,1)) # 11
else:
self.deconv2 = nn.ConvTranspose2d(512 + action_size, 256, 4, stride=2, padding=0) # 10
self.batch2 = nn.BatchNorm2d(256)
self.deconv3 = nn.ConvTranspose2d(256 + action_size, 128, 4, stride=2, padding=(1,1)) #20
self.batch3 = nn.BatchNorm2d(128)
self.deconv4 = nn.ConvTranspose2d(128 + action_size , 128, 4, stride=2, padding=(1,1)) #40
self.batch4 = nn.BatchNorm2d(128)
self.deconv5 = nn.ConvTranspose2d(128 + action_size , 64, 4, stride=2, padding=(1,1))
self.batch5 = nn.BatchNorm2d(64)
self.deconv6 = nn.ConvTranspose2d(64 + action_size , channels, 4, stride=2, padding=(1,1))
def forward(self, x, y):
x = F.relu(self.fc(torch.cat([x,y], dim = 1)))
x = x.view((-1, self.z_dim, 1, 1))
x = F.relu(self.batch1(self.deconv1(catv(x,y))))
x = F.relu(self.batch2(self.deconv2(catv(x,y))))
x = F.relu(self.batch3(self.deconv3(catv(x,y))))
x = F.relu(self.batch4(self.deconv4(catv(x,y))))
x = F.relu(self.batch5(self.deconv5(catv(x,y))))
x = self.deconv6(catv(x,y))
return torch.sigmoid(x)
class Discriminator(nn.Module):
def __init__(self,latent_size, action_size):
super(Discriminator, self).__init__()
self.lin1 = nn.Linear(latent_size, latent_size)
self.lin2 = nn.Linear(latent_size, latent_size)
self.pi = nn.Linear(latent_size, action_size)
self.v = nn.Linear(latent_size, 1)
def forward(self, x):
x = self.lin1(x)
x = F.dropout(x, p=0.2, training=self.training)
x = F.leaky_relu(x)
x = self.lin2(x)
x = F.dropout(x, p=0.2, training=self.training)
x = F.leaky_relu(x)
return F.softmax(self.pi(x), dim=1), self.v(x)
N = 32
def norm(x):
norm = torch.norm(x, p=2, dim=1)
x = x / (norm.expand(1, -1).t() + .0001)
return x
#Encoder
class Q_net(nn.Module):
def __init__(self, z_dim, agent_latent=32):
super(Q_net, self).__init__()
self.lin1 = nn.Linear(agent_latent, N)
self.bn1 = nn.BatchNorm1d(N)
self.lin2 = nn.Linear(N, N)
self.bn2 = nn.BatchNorm1d(N)
self.lin3gauss = nn.Linear(N, z_dim)
def forward(self, x):
#x = F.dropout(self.lin1(x), p=0.25, training=self.training)
x = self.lin1(x)
x = self.bn1(x)
x = F.leaky_relu(x)
x = self.lin2(x)
x = self.bn2(x)
x = F.leaky_relu(x)
#x = F.dropout(self.lin2(x), p=0.25, training=self.training)
#x = F.relu(x)#leaky(x)
xgauss = self.lin3gauss(x)
return norm(xgauss)
# Decoder
class P_net(nn.Module):
def __init__(self, z_dim, agent_latent=32):
super(P_net, self).__init__()
self.lin1 = nn.Linear(z_dim, N)
self.bn1 = nn.BatchNorm1d(N)
self.lin2 = nn.Linear(N, N)
self.bn2 = nn.BatchNorm1d(N)
self.lin3 = nn.Linear(N, agent_latent)
def forward(self, x):
#x = self.lin1(x)
#x = F.dropout(x, p=0.25, training=self.training)
#x = F.relu(x)#leaky(x)
#x = self.lin2(x)
#x = F.dropout(x, p=0.25, training=self.training)
#x = F.relu(x)#leaky(x)
x = self.lin1(x)
x = self.bn1(x)
x = F.leaky_relu(x)
x = self.lin2(x)
x = self.bn2(x)
x = F.leaky_relu(x)
x = self.lin3(x)
return x
# Discriminator
class D_net_gauss(nn.Module):
def __init__(self, z_dim):
super(D_net_gauss, self).__init__()
self.lin1 = nn.Linear(z_dim, N)
self.lin2 = nn.Linear(N, N)
self.lin3 = nn.Linear(N, 1)
def forward(self, x):
x = F.dropout(self.lin1(x), p=0.2, training=self.training)
x = F.relu(x)#leaky(x)
x = F.dropout(self.lin2(x), p=0.2, training=self.training)
x = F.relu(x)#leaky(x)
return torch.sigmoid(self.lin3(x))
class Agent(torch.nn.Module): # an actor-critic neural network
def __init__(self, num_actions, latent_size = 256):
super(Agent, self).__init__()
self.latent_size = latent_size
self.conv1 = nn.Conv2d(4, 32, 3, stride=2, padding=1)
self.conv2 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.conv3 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.conv4 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.linear = nn.Linear(32 * 5 * 5, self.latent_size )
self.critic_linear, self.actor_linear = nn.Linear(latent_size, 1), nn.Linear(latent_size, num_actions)
def get_latent_size(self):
return self.latent_size
def forward(self, inputs):
x = F.elu(self.conv1(inputs))
x = F.elu(self.conv2(x))
x = F.elu(self.conv3(x))
x = F.elu(self.conv4(x))
x = self.linear(x.view(-1, 32 * 5 * 5))
return x
#return self.critic_linear(x), self.actor_linear(x)
def pi(self, x):
return self.actor_linear(x)
def value(self, x):
return self.critic_linear(x)
class KerasAgent(torch.nn.Module):
def __init__(self, agent_file, latent_size=256, num_actions=9):
super(KerasAgent, self).__init__()
self.agent = keras.models.load_model(agent_file)
nb_layers = len(self.agent.layers)
if nb_layers == 9:
# special case for dueling
latent_layer_idx = 6
else:
latent_layer_idx = nb_layers - 2
self.latent_size = latent_size
self.latent_model = keras.models.Model(inputs=self.agent.input,
outputs=self.agent.layers[latent_layer_idx].output)
# transform the last layer to a pytorch layer because pytorch gradients are needed for gradient descent
self.action_layer = nn.Linear(latent_size, num_actions)
action_layer_weights = self.agent.layers[latent_layer_idx + 1].get_weights()[0]
action_layer_biases = self.agent.layers[latent_layer_idx + 1].get_weights()[1]
self.action_layer.weight.data = torch.from_numpy(np.transpose(action_layer_weights))
self.action_layer.bias.data = torch.from_numpy(action_layer_biases)
self.action_layer.cuda()
def get_latent_size(self):
return self.latent_size
def forward(self, inputs):
keras_inputs = inputs.detach().permute(0, 2, 3, 1).cpu().numpy()
prediction = self.latent_model.predict(keras_inputs)
return torch.from_numpy(prediction).cuda()
def pi(self, x):
# keras_x = x.detach().cpu().numpy()
# prediction = self.action_model.predict(keras_x)
# return torch.from_numpy(prediction).cuda()
return self.action_layer(x)
def value(self, x):
raise NotImplementedError()
class ACER_Agent(nn.Module):
"""
The ACER model as used by the openai-baselines repository.
"""
def __init__(self, num_actions=5, latent_size=512):
super(ACER_Agent, self).__init__()
self.latent_size = latent_size
self.conv1 = nn.Conv2d(4, 32, 8, stride=4)
self.conv2 = nn.Conv2d(32, 64, 4, stride=2)
self.conv3 = nn.Conv2d(64, 64, 3, stride=1)
self.fc1 = nn.Linear(64 * 7 * 7, self.latent_size)
self.fc2 = nn.Linear(self.latent_size, num_actions)
self.relu = nn.ReLU()
self.flatten = nn.Flatten()
def transpose_conv(self, x):
"""
For the flatten output to be identical to the one in tensorflow, we have to transpose the output of the last
conv layer. This should be equivalent to np.transpose(0,2,3,1)
"""
x = torch.transpose(x, 1, 3)
return torch.transpose(x, 1, 2)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.relu(x)
x = self.transpose_conv(x)
x = self.flatten(x)
x = self.fc1(x)
latent = self.relu(x)
return latent
def get_latent_size(self):
return self.latent_size
def pi(self, x):
logits = self.fc2(x)
return logits
def value(self, x):
raise NotImplementedError()