-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadd_properties_to_json.py
64 lines (50 loc) · 2.62 KB
/
add_properties_to_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import csv
import codecs
import pandas as pd
import json
import unicodedata
from collections import defaultdict
def ra(text):
return (unicodedata.normalize('NFKD', text).encode('ASCII', 'ignore')).decode('utf-8').lower().replace('/', '_').replace(' ', ' ').replace(' ', '_').replace('.','').split('_(')[0]
filename = '.data/csvs/ocorrenciasmun-brasil'
bairros = ['Brasília','Gama','Taguatinga','Brazlândia','Sobradinho','Planaltina','Paranoá','Núcleo Bandeirante','Ceilândia','Guará','Cruzeiro','Samambaia','Santa Maria','São Sebastião','Recanto Das Emas','Lago Sul','Riacho Fundo','Lago Norte','Candangolândia','Águas Claras','Riacho Fundo Ii','Sudoeste/Octogonal','Varjão','Park Way','Scia (Estrutural)','Sobradinho Ii','Jardim Botânico','Itapoá','S.I.A.','Vicente Pires','Fercal']
df = []
for i in range(2013, 2018):
path = filename+str(i)
df.append(pd.read_csv(path+'-lol.csv', encoding='latin1'))
max_crimes = defaultdict(lambda:defaultdict(lambda:defaultdict(lambda:0)))
for bairro in bairros:
file_name = ra(bairro)
fin = open('.data/jsons/'+file_name+'.json', 'r')
fout = open('.data/jsons/'+file_name+'1.json', 'w')
js = fin.read().strip('}}\n')
tot_crimes = defaultdict(lambda: 0)
for i in range(0, 5):
js += ', "'+str(2013+i)+'":{'
cdf = df[i]
lal = cdf[cdf['Município'] == bairro]
out = lal.to_json(orient='records')
d = json.loads(out)
tot = 0
for j in d:
tipo_crime = j['Tipo Crime']
qtd_crime = int(j['PC-Qtde Ocorrências'])
tot_crimes[tipo_crime] += qtd_crime
max_crimes['Ocorrencias-Totais'][str(2013+i)][tipo_crime] += qtd_crime
max_crimes['Ocorrencias-Totais']['All'][tipo_crime] += qtd_crime
max_crimes['Maiores-Ocorrencias'][str(2013+i)][tipo_crime] = max(max_crimes['Maiores-Ocorrencias'][str(2013+i)][tipo_crime], qtd_crime)
tot += qtd_crime
js += '"' + tipo_crime + '":' + str(qtd_crime) + ','
tot_crimes['Total'] += tot
max_crimes['Ocorrencias-Totais'][str(2013+i)]['Total'] += tot
max_crimes['Ocorrencias-Totais']['All']['Total'] += tot
max_crimes['Maiores-Ocorrencias'][str(2013+i)]['Total'] = max(max_crimes['Maiores-Ocorrencias'][str(2013+i)]['Total'], tot)
js+='"Total":'+str(tot)+'},'
js+='"All":'+str(dict(tot_crimes)).replace('\'', '"')
js+='}}'
for key, value in tot_crimes.items():
max_crimes['Maiores-Ocorrencias']['All'][key] = max(max_crimes['Maiores-Ocorrencias']['All'][key], tot_crimes[key])
fout.write(js.replace(',}', '}').replace(',,', ','))
aaa = [str({key: [{k: dict(v)} for k, v in value.items()]}) for key, value in max_crimes.items()]
for a in aaa:
print(a.replace('\'', '"'))