forked from TransformerLensOrg/TransformerLens
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHookedTransformerConfig.py
247 lines (227 loc) · 12.3 KB
/
HookedTransformerConfig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from __future__ import annotations
import logging
import pprint
import random
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
import numpy as np
import torch
SUPPORTED_ACTIVATIONS = ["relu", "gelu", "silu", "gelu_new", "solu_ln", "gelu_fast"]
@dataclass
class HookedTransformerConfig:
"""
Configuration class to store the configuration of a HookedTransformer model.
See further_comments.md for more details on the more complex arguments.
Args:
d_model (int): The dimensionality of the embeddings.
d_head (int): The dimensionality of each attention head.
n_layers (int): The number of transformer blocks (one block = one attn layer AND one MLP layer).
n_ctx (int): The maximum sequence length.
n_heads (int): The number of attention heads. If not
specified, will be set to d_model // d_head. (This is represented by a default value of -1)
d_mlp (int, *optional*): The dimensionality of the feedforward mlp
network. Defaults to 4 * d_model, and in an attn-only model is None.
d_vocab (int): The size of the vocabulary. Defaults to -1, which means not set. If not set, will be
automatically set from the tokenizer's vocab size.
act_fn (str, *optional*): The activation function to use. Always
lowercase. Supports ['relu', 'gelu', 'silu', 'gelu_new', 'solu_ln',
'gelu_fast']. Must be set unless using an attn-only model.
eps (float): The epsilon value to use for layer normalization. Defaults
to 1e-5
use_attn_result (bool): whether to explicitly calculate the amount
each head adds to the residual stream (with a hook) and THEN add it
up, vs just calculating the sum. This can be very memory intensive
for large models, so defaults to False
use_split_qkv_input (bool): whether to explicitly calculate the input of
each head separately, with a hook. Defaults to false to save memory.
use_attn_scale (bool): whether to scale the attention weights by
1/sqrt(d_head)
model_name (str): the name of the model, used to load
weights from HuggingFace or initialized to "custom" if not passed
original_architecture (str, *optional*): the family of the model, used
to help load
weights from HuggingFace or initialized to "custom" if not passed
from_checkpoint (bool): Whether the model weights were
loaded from a checkpoint (only applies to pretrained models)
checkpoint_index (int, *optional*): The index of the
checkpoint loaded (only applies to pretrained models).
checkpoint_label_type (str, *optional*): Whether
checkpoints are labelled by the number of steps or number of tokens.
checkpoint_value (int, *optional*): The value of the
checkpoint label (whether of steps or tokens).
tokenizer_name (str, *optional*): the full name of the model, passed into
HuggingFace to access the tokenizer. Only used when passing in
custom config, if loading from pretrained then this is not needed.
use_local_attn (bool): whether to use local attention - ie each
destination token can only attend to source tokens a certain distance back.
window_size (int, *optional*): the size of the window for local
attention
attn_types (List[str], *optional*): the types of attention to use for
local attention
weight_init_mode (str): the initialization mode to use for the
weights. Only relevant for custom models, ignored for pre-trained.
Currently the only supported mode is 'gpt2', where biases are
initialized to 0 and weights are standard normals of range
initializer_range.
normalization_type (str, *optional*): the type of normalization to use.
Options are None (no normalization), 'LN' (use LayerNorm, including weights
& biases) and 'LNPre' (use LayerNorm, but no weights & biases).
Defaults to LN
device(str): The device to use for the model. Defaults to 'cuda' if
available, else 'cpu'. Must be 'cuda' if `n_devices` > 1.
n_devices (int): The number of devices to use for the model. Defaults to 1. Layers are loaded
to support "pipeline parallelism", where each device is responsible for a subset of the layers.
attention_dir (str): Whether to use causal (aka unidirectional aka GPT-2
style) or bidirectional attention. Options are 'causal' and
'bidirectional'. Defaults to 'causal'
attn_only (bool): Whether to only use attention layers, no feedforward
layers. Defaults to False
seed (int, *optional*): The seed to use for the model.
Used to set sources of randomness (Python, PyTorch and
NumPy) and to initialize weights. Defaults to None. We recommend setting a seed, so your experiments are reproducible.
initializer_range (float): The standard deviation of the normal used to
initialise the weights, initialized to 0.8 / sqrt(d_model) .
init_weights (bool): Whether to initialize the weights. Defaults to
True. If False, does not initialize weights.
scale_attn_by_inverse_layer_idx (bool): Whether to scale the attention
weights by 1/(layer_id+1), used by Mistral (Stanford) models for numerical stability when
training in FP16. Defaults to False.
positional_embedding_type (str): The positional embedding used. Options
are 'standard' (ie GPT-2 style, absolute, randomly initialized learned positional
embeddings, directly added to the residual stream), 'rotary'
(described here: https://blog.eleuther.ai/rotary-embeddings/ ) and
'shortformer' (GPT-2 style absolute & learned, but rather than being
added to the residual stream they're only added to the inputs to the
keys and the queries (ie key = W_K(res_stream + pos_embed), but
values and MLPs don't get any positional info)). Sinusoidal are not
currently supported. Defaults to 'standard'.
final_rms (bool): Whether to replace the final normalization (just
before the unembed) with RMSNorm (ie no centering or bias, just
scaling + weights). Only included because of a dumb bug in my
original SoLU code. Defaults to False.
d_vocab_out (int, *optional*): The size of the output vocabulary. Defaults to -1, which means not set. If not
set, will be equal to d_vocab. Mainly useful for algorithmic tasks
where the input and output vocabularies may be different.
parallel_attn_mlp (bool): Whether to parallelize the attention and MLP
layers - a weird cursed thing done by GPT-J. Means that
mlp_out=MLP(ln1(resid_pre)) and resid_post=resid_pre+attn_out+mlp_out. Defaults to False.
rotary_dim (int, *optional*): The dimensionality of the rotary
embeddings, may be d_head in which case only the first rotary_dim
dimensions of each head are rotated. Defaults to None, if
positional_embedding_type=="rotary" it defaults to d_head.
n_params (int, *optional*): The number of (hidden weight)
parameters in the model. This is automatically calculated and not
intended to be set by the user. (Non embedding parameters, because
the [scaling laws paper](https://arxiv.org/pdf/2001.08361.pdf) found
that that was a more meaningful number. Ignoring biases and layer
norms, for convenience)
use_hook_tokens (bool): Will add a hook point on the token input to
HookedTransformer.forward, which lets you cache or intervene on the tokens.
Defaults to False.
"""
n_layers: int
d_model: int
n_ctx: int
d_head: int
model_name: str = "custom"
n_heads: int = -1
d_mlp: Optional[int] = None
act_fn: Optional[str] = None
d_vocab: int = -1
eps: float = 1e-5
use_attn_result: bool = False
use_attn_scale: bool = True
use_split_qkv_input: bool = False
use_local_attn: bool = False
original_architecture: Optional[str] = None
from_checkpoint: bool = False
checkpoint_index: Optional[int] = None
checkpoint_label_type: Optional[str] = None
checkpoint_value: Optional[int] = None
tokenizer_name: Optional[str] = None
window_size: Optional[int] = None
attn_types: Optional[List] = None
init_mode: str = "gpt2"
normalization_type: Optional[str] = "LN"
device: Optional[str] = None
n_devices: int = 1
attention_dir: str = "causal"
attn_only: bool = False
seed: Optional[int] = None
initializer_range: float = -1.0
init_weights: bool = True
scale_attn_by_inverse_layer_idx: bool = False
positional_embedding_type: str = "standard"
final_rms: bool = False
d_vocab_out: int = -1
parallel_attn_mlp: bool = False
rotary_dim: Optional[int] = None
n_params: Optional[int] = None
use_hook_tokens: bool = False
gated_mlp: bool = False
def __post_init__(self):
if self.n_heads == -1:
self.n_heads = self.d_model // self.d_head
if not self.d_model % (self.d_head) == 0:
logging.warning(
f"d_model {self.d_model} is not divisible by d_head {self.d_head}. n_heads was inferred to be {self.n_heads}, rounding down the ratio."
)
if self.seed is not None:
self.set_seed_everywhere(self.seed)
if self.use_local_attn:
assert (
self.window_size is not None
), "window_size must be specified for local attention"
assert (
self.attn_types is not None
), "attn_types must be specified for local attention"
if not self.attn_only:
if self.d_mlp is None:
# For some reason everyone hard codes in this hyper-parameter!
self.d_mlp = self.d_model * 4
assert (
self.act_fn is not None
), "act_fn must be specified for non-attn-only models"
assert (
self.act_fn in SUPPORTED_ACTIVATIONS
), f"act_fn={self.act_fn} must be one of {SUPPORTED_ACTIVATIONS}"
if self.initializer_range < 0:
# Roughly copy the GPT-2 value, but proportional to sqrt(1/d_model)
self.initializer_range = 0.8 / np.sqrt(self.d_model)
if self.d_vocab_out == -1:
# d_vocab_out defaults to d_vocab, unless there's an algorithmic task
# If d_vocab is not set, it'll be inferred from tokenizer_name or from a tokenizer explicitly passed to HookedTransformer initialisation.
self.d_vocab_out = self.d_vocab
if self.positional_embedding_type == "rotary" and self.rotary_dim is None:
self.rotary_dim = self.d_head
# The number of parameters in attention layers (ignoring biases and layer norm). 4 because W_Q, W_K, W_V and W_O
self.n_params = self.n_layers * (
(self.d_model * self.d_head * self.n_heads * 4)
)
if not self.attn_only:
# Number of parameters in MLP layers (ignoring biases and layer norm). 2 because W_in and W_out
self.n_params += self.n_layers * self.d_model * self.d_mlp * 2
if self.device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
if self.n_devices > 1:
assert (
self.device == "cuda"
), "n_devices > 1 is only supported on CUDA devices"
assert (
torch.cuda.device_count() >= self.n_devices
), f"Not enough CUDA devices to support n_devices {self.n_devices}"
@classmethod
def from_dict(cls, config_dict: Dict[str, Any]) -> HookedTransformerConfig:
"""
Instantiates a `HookedTransformerConfig` from a Python dictionary of
parameters.
"""
return cls(**config_dict)
def to_dict(self):
return self.__dict__
def __repr__(self):
return "HookedTransformerConfig:\n" + pprint.pformat(self.to_dict())
def set_seed_everywhere(self, seed: int):
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)