forked from TransformerLensOrg/TransformerLens
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathActivationCache.py
724 lines (631 loc) · 36.1 KB
/
ActivationCache.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
# %%
from __future__ import annotations
import logging
from typing import Dict, List, Optional, Tuple, Union
import einops
import numpy as np
import torch
from fancy_einsum import einsum
from jaxtyping import Float, Int
from typing_extensions import Literal
import transformer_lens.utils as utils
from transformer_lens.utils import Slice, SliceInput
class ActivationCache:
"""
A wrapper around a dictionary of cached activations from a model run, with a variety of helper functions. In general, any utility which is specifically about editing/processing activations should be a method here, while any utility which is more general should be a function in utils.py, and any utility which is specifically about model weights should be in HookedTransformer.py or components.py.
NOTE: This is designed to be used with the HookedTransformer class, and will not work with other models. It's also designed to be used with all activations of HookedTransformer being cached, and some internal methods will break without that.
WARNING: The biggest footgun and source of bugs in this code will be keeping track of indexes, dimensions, and the numbers of each. There are several kinds of activations:
Internal attn head vectors: q, k, v, z. Shape [batch, pos, head_index, d_head]
Internal attn pattern style results: pattern (post softmax), attn_scores (pre-softmax). Shape [batch, head_index, query_pos, key_pos]
Attn head results: result. Shape [batch, pos, head_index, d_model]
Internal MLP vectors: pre, post, mid (only used for solu_ln - the part between activation + layernorm). Shape [batch, pos, d_mlp]
Residual stream vectors: resid_pre, resid_mid, resid_post, attn_out, mlp_out, embed, pos_embed, normalized (output of each LN or LNPre). Shape [batch, pos, d_model]
LayerNorm Scale: scale. Shape [batch, pos, 1]
Sometimes the batch dimension will be missing because we applied remove_batch_dim (used when batch_size=1), and we need functions to be robust to that. I THINK I've got everything working, but could easily be wrong!
Type-Annotations key:
layers_covered is the number of layers queried in functions that stack the residual stream.
batch_and_pos_dims is the set of dimensions from batch and pos - by default this is ["batch", "pos"], but is only ["pos"] if we've removed the batch dimension and is [()] if we've removed batch dimension and are applying a pos slice which indexes a specific position.
"""
def __init__(
self, cache_dict: Dict[str, torch.Tensor], model, has_batch_dim: bool = True
):
self.cache_dict = cache_dict
self.model = model
self.has_batch_dim = has_batch_dim
self.has_embed = "hook_embed" in self.cache_dict
self.has_pos_embed = "hook_pos_embed" in self.cache_dict
def remove_batch_dim(self) -> ActivationCache:
if self.has_batch_dim:
for key in self.cache_dict:
assert (
self.cache_dict[key].size(0) == 1
), f"Cannot remove batch dimension from cache with batch size > 1, for key {key} with shape {self.cache_dict[key].shape}"
self.cache_dict[key] = self.cache_dict[key][0]
self.has_batch_dim = False
else:
logging.warning(
"Tried removing batch dimension after already having removed it."
)
return self
def __repr__(self):
return f"ActivationCache with keys {list(self.cache_dict.keys())}"
def __getitem__(self, key) -> torch.Tensor:
"""
This allows us to treat the activation cache as a dictionary, and do cache["key"] to it. We add bonus functionality to take in shorthand names or tuples - see utils.get_act_name for the full syntax and examples.
Dimension order is (get_act_name, layer_index, layer_type), where layer_type is either "attn" or "mlp" or "ln1" or "ln2" or "ln_final", get_act_name is the name of the hook (without the hook_ prefix).
"""
if key in self.cache_dict:
return self.cache_dict[key]
elif type(key) == str:
return self.cache_dict[utils.get_act_name(key)]
else:
if len(key) > 1 and key[1] is not None:
if key[1] < 0:
# Supports negative indexing on the layer dimension
key = (key[0], self.model.cfg.n_layers + key[1], *key[2:])
return self.cache_dict[utils.get_act_name(*key)]
def __len__(self):
return len(self.cache_dict)
def to(self, device: Union[str, torch.device], move_model=False) -> ActivationCache:
"""
Moves the cache to a device - mostly useful for moving it to CPU after model computation finishes to save GPU memory. Matmuls will be much slower on the CPU.
Note that some methods will break unless the model is also moved to the same device, eg compute_head_results
"""
self.cache_dict = {
key: value.to(device) for key, value in self.cache_dict.items()
}
if move_model:
self.model.to(device)
return self
def toggle_autodiff(self, mode: bool = False):
"""
Sets autodiff to mode (defaults to turning it off).
WARNING: This is pretty dangerous, since autodiff is global state - this turns off torch's ability to take gradients completely and it's easy to get a bunch of errors if you don't realise what you're doing.
But autodiff consumes a LOT of GPU memory (since every intermediate activation is cached until all downstream activations are deleted - this means that computing the loss and storing it in a list will keep every activation sticking around!). So often when you're analysing a model's activations, and don't need to do any training, autodiff is more trouble than its worth.
If you don't want to mess with global state, using torch.inference_mode as a context manager or decorator achieves similar effects :)
"""
logging.warning(f"Changed the global state, set autodiff to {mode}")
torch.set_grad_enabled(mode)
def keys(self):
return self.cache_dict.keys()
def values(self):
return self.cache_dict.values()
def items(self):
return self.cache_dict.items()
def __iter__(self):
return self.cache_dict.__iter__()
def __len__(self):
return len(self.cache_dict)
def apply_slice_to_batch_dim(self, batch_slice: Union[Slice, SliceInput]):
if not isinstance(batch_slice, Slice):
batch_slice = Slice(batch_slice)
assert (
self.has_batch_dim or batch_slice.mode == "empty"
), "Cannot index into a cache without a batch dim"
still_has_batch_dim = (batch_slice.mode != "int") and self.has_batch_dim
new_cache_dict = {
name: batch_slice.apply(param, dim=0)
for name, param in self.cache_dict.items()
}
return ActivationCache(
new_cache_dict, self.model, has_batch_dim=still_has_batch_dim
)
def accumulated_resid(
self,
layer: Optional[int] = None,
incl_mid: bool = False,
apply_ln: bool = False,
pos_slice: Union[Slice, SliceInput] = None,
mlp_input: bool = False,
return_labels: bool = False,
) -> Float[torch.Tensor, "layers_covered *batch_and_pos_dims d_model"]:
"""Returns the accumulated residual stream up to a given layer, ie a stack of previous residual streams up to that layer's input. This can be thought of as a series of partial values of the residual stream, where the model gradually accumulates what it wants.
Args:
layer (int, *optional*): The layer to take components up to - by default includes resid_pre for that layer and excludes resid_mid and resid_post for that layer. layer==n_layers, -1 or None means to return all residual streams, including the final one (ie immediately pre logits). The indices are taken such that this gives the accumulated streams up to the input to layer l
incl_mid (bool, optional): Whether to return resid_mid for all previous layers. Defaults to False.
mlp_input (bool, optional): Whether to include resid_mid for the current layer - essentially giving MLP input rather than Attn input. Defaults to False.
apply_ln (bool, optional): Whether to apply LayerNorm to the stack. Defaults to False.
pos_slice (Slice): A slice object to apply to the pos dimension. Defaults to None, do nothing.
return_labels (bool, optional): Whether to return a list of labels for the residual stream components. Useful for labelling graphs. Defaults to True.
Returns:
Components: A [num_components, batch_size, pos, d_model] tensor of the accumulated residual streams.
(labels): An optional list of labels for the components.
"""
if not isinstance(pos_slice, Slice):
pos_slice = Slice(pos_slice)
if layer is None or layer == -1:
# Default to the residual stream immediately pre unembed
layer = self.model.cfg.n_layers
assert isinstance(layer, int)
labels = []
components = []
for l in range(layer + 1):
if l == self.model.cfg.n_layers:
components.append(self[("resid_post", self.model.cfg.n_layers - 1)])
labels.append("final_post")
continue
components.append(self[("resid_pre", l)])
labels.append(f"{l}_pre")
if (incl_mid and l < layer) or (mlp_input and l == layer):
components.append(self[("resid_mid", l)])
labels.append(f"{l}_mid")
components = [pos_slice.apply(c, dim=-2) for c in components]
components = torch.stack(components, dim=0)
if apply_ln:
components = self.apply_ln_to_stack(
components, layer, pos_slice=pos_slice, mlp_input=mlp_input
)
if return_labels:
return components, labels
else:
return components
def logit_attrs(
self,
residual_stack: Float[
torch.Tensor, "num_components *batch_and_pos_dims d_model"
],
tokens: Union[
str,
int,
Int[torch.Tensor, ""],
Int[torch.Tensor, "batch"],
Int[torch.Tensor, "batch position"],
],
incorrect_tokens: Optional[
Union[
str,
int,
Int[torch.Tensor, ""],
Int[torch.Tensor, "batch"],
Int[torch.Tensor, "batch position"],
]
] = None,
pos_slice: Union[Slice, SliceInput] = None,
batch_slice: Union[Slice, SliceInput] = None,
has_batch_dim: bool = True,
) -> Float[torch.Tensor, "num_components *batch_and_pos_dims"]:
"""Returns the logit attributions for the residual stack on an input of tokens, or the logit difference attributions for the residual stack if incorrect_tokens is provided.
Args:
residual_stack (Float[torch.Tensor, "num_components *batch_and_pos_dims d_model"]): stack of components of residual stream to get logit attributions for.
tokens (Union[str, int, Int[torch.Tensor, ""], Int[torch.Tensor, "batch"], Int[torch.Tensor, "batch position"]]): tokens to compute logit attributions on.
incorrect_tokens (Union[str, int, Int[torch.Tensor, ""], Int[torch.Tensor, "batch"], Int[torch.Tensor, "batch position"]], optional): if provided, compute attributions on logit difference between tokens and incorrect_tokens.
Must have the same shape as tokens.
pos_slice (Slice, optional): The slice to apply layer norm scaling on.
Defaults to None, do nothing.
batch_slice (Slice, optional): The slice to take on the batch dimension during layer norm scaling.
Defaults to None, do nothing.
has_batch_dim (bool, optional): Whether residual_stack has a batch dimension.
Defaults to True.
Returns:
Components: A [num_components, *batch_and_pos_dims] tensor of the logit attributions or logit difference attributions if incorrect_tokens was provided.
"""
if not isinstance(pos_slice, Slice):
pos_slice = Slice(pos_slice)
if not isinstance(batch_slice, Slice):
batch_slice = Slice(batch_slice)
if isinstance(tokens, str):
tokens = torch.as_tensor(self.model.to_single_token(tokens))
elif isinstance(tokens, int):
tokens = torch.as_tensor(tokens)
logit_directions = self.model.tokens_to_residual_directions(tokens)
if incorrect_tokens is not None:
if isinstance(incorrect_tokens, str):
incorrect_tokens = torch.as_tensor(
self.model.to_single_token(incorrect_tokens)
)
elif isinstance(incorrect_tokens, int):
incorrect_tokens = torch.as_tensor(incorrect_tokens)
if tokens.shape != incorrect_tokens.shape:
raise ValueError(
f"tokens and incorrect_tokens must have the same shape! (tokens.shape={tokens.shape}, incorrect_tokens.shape={incorrect_tokens.shape})"
)
# If incorrect_tokens was provided, take the logit difference
logit_directions = (
logit_directions
- self.model.tokens_to_residual_directions(incorrect_tokens)
)
scaled_residual_stack = self.apply_ln_to_stack(
residual_stack,
layer=-1,
pos_slice=pos_slice,
batch_slice=batch_slice,
has_batch_dim=has_batch_dim,
)
logit_attrs = einsum(
"... d_model, ... d_model -> ...", scaled_residual_stack, logit_directions
)
return logit_attrs
def decompose_resid(
self,
layer: Optional[int] = None,
mlp_input: bool = False,
mode: Literal["all", "mlp", "attn"] = "all",
apply_ln: bool = False,
pos_slice: Union[Slice, SliceInput] = None,
incl_embeds: bool = True,
return_labels: bool = False,
) -> Float[torch.Tensor, "layers_covered *batch_and_pos_dims d_model"]:
"""Decomposes the residual stream input to layer L into a stack of the output of previous layers. The sum of these is the input to layer L (plus embedding and pos embedding). This is useful for attributing model behaviour to different components of the residual stream
Args:
layer (int): The layer to take components up to - by default includes
resid_pre for that layer and excludes resid_mid and resid_post for that layer. layer==n_layers means to return all layer outputs incl in the final layer, layer==0 means just embed and pos_embed. The indices are taken such that this gives the accumulated streams up to the input to layer l
incl_mid (bool, optional): Whether to return resid_mid for all previous
layers. Defaults to False.
mlp_input (bool, optional): Whether to include attn_out for the current
layer - essentially decomposing the residual stream that's input to the MLP input rather than the Attn input. Defaults to False.
mode (str): Values are "all", "mlp" or "attn". "all" returns all
components, "mlp" returns only the MLP components, and "attn" returns only the attention components. Defaults to "all".
apply_ln (bool, optional): Whether to apply LayerNorm to the stack. Defaults to False.
pos_slice (Slice): A slice object to apply to the pos dimension.
Defaults to None, do nothing.
incl_embeds (bool): Whether to include embed & pos_embed
return_labels (bool, optional): Whether to return a list of labels for
the residual stream components. Useful for labelling graphs. Defaults to True.
Returns:
Components: A [num_components, batch_size, pos, d_model] tensor of the accumulated residual streams.
(labels): An optional list of labels for the components.
"""
if not isinstance(pos_slice, Slice):
pos_slice = Slice(pos_slice)
if layer is None or layer == -1:
# Default to the residual stream immediately pre unembed
layer = self.model.cfg.n_layers
assert isinstance(layer, int)
incl_attn = mode != "mlp"
incl_mlp = mode != "attn" and not self.model.cfg.attn_only
components = []
labels = []
if incl_embeds:
if self.has_embed:
components = [self["hook_embed"]]
labels.append("embed")
if self.has_pos_embed:
components.append(self["hook_pos_embed"])
labels.append("pos_embed")
for l in range(layer):
if incl_attn:
components.append(self[("attn_out", l)])
labels.append(f"{l}_attn_out")
if incl_mlp:
components.append(self[("mlp_out", l)])
labels.append(f"{l}_mlp_out")
if mlp_input and incl_attn:
components.append(self[("attn_out", layer)])
labels.append(f"{layer}_attn_out")
components = [pos_slice.apply(c, dim=-2) for c in components]
components = torch.stack(components, dim=0)
if apply_ln:
components = self.apply_ln_to_stack(
components, layer, pos_slice=pos_slice, mlp_input=mlp_input
)
if return_labels:
return components, labels
else:
return components
def compute_head_results(
self,
):
"""Computes and caches the results for each attention head, ie the amount contributed to the residual stream from that head. attn_out for a layer is the sum of head results plus b_O. Intended use is to enable use_attn_results when running and caching the model, but this can be useful if you forget."""
if "blocks.0.attn.hook_result" in self.cache_dict:
logging.warning(
"Tried to compute head results when they were already cached"
)
return
for l in range(self.model.cfg.n_layers):
# Note that we haven't enabled set item on this object so we need to edit the underlying cache_dict directly.
self.cache_dict[f"blocks.{l}.attn.hook_result"] = einsum(
"... head_index d_head, head_index d_head d_model -> ... head_index d_model",
self[("z", l, "attn")],
self.model.blocks[l].attn.W_O,
)
def stack_head_results(
self,
layer: int = -1,
return_labels: bool = False,
incl_remainder: bool = False,
pos_slice: Union[Slice, SliceInput] = None,
apply_ln: bool = False,
) -> Float[torch.Tensor, "num_components *batch_and_pos_dims d_model"]:
"""Returns a stack of all head results (ie residual stream contribution) up to layer L. A good way to decompose the outputs of attention layers into attribution by specific heads. Note that the num_components axis has length layer x n_heads ((layer head_index) in einops notation)
Args:
layer (int): Layer index - heads at all layers strictly before this are included. layer must be in [1, n_layers-1], or any of (n_layers, -1, None), which all mean the final layer
return_labels (bool, optional): Whether to also return a list of labels of the form "L0H0" for the heads. Defaults to False.
incl_remainder (bool, optional): Whether to return a final term which is "the rest of the residual stream". Defaults to False.
pos_slice (Slice): A slice object to apply to the pos dimension. Defaults to None, do nothing.
apply_ln (bool, optional): Whether to apply LayerNorm to the stack. Defaults to False.
"""
if not isinstance(pos_slice, Slice):
pos_slice = Slice(pos_slice)
if layer is None or layer == -1:
# Default to the residual stream immediately pre unembed
layer = self.model.cfg.n_layers
if "blocks.0.attn.hook_result" not in self.cache_dict:
print(
"Tried to stack head results when they weren't cached. Computing head results now"
)
self.compute_head_results()
components = []
labels = []
for l in range(layer):
# Note that this has shape batch x pos x head_index x d_model
components.append(pos_slice.apply(self[("result", l, "attn")], dim=-3))
labels.extend([f"L{l}H{h}" for h in range(self.model.cfg.n_heads)])
if components:
components = torch.cat(components, dim=-2)
components = einops.rearrange(
components,
"... concat_head_index d_model -> concat_head_index ... d_model",
)
if incl_remainder:
remainder = pos_slice.apply(
self[("resid_post", layer - 1)], dim=-2
) - components.sum(dim=0)
components = torch.cat([components, remainder[None]], dim=0)
labels.append("remainder")
elif incl_remainder:
# There are no components, so the remainder is the entire thing.
components = [pos_slice.apply(self[("resid_post", layer - 1)], dim=-2)]
else:
# If this is called with layer 0, we return an empty tensor of the right shape to be stacked correctly
# This uses the shape of hook_embed, which is pretty janky since it assumes embed is in the cache. But it's hard to explicitly code the shape, since it depends on the pos slice, whether we have a batch dim, etc. And it's pretty messy!
components = torch.zeros(
0,
*pos_slice.apply(self["hook_embed"], dim=-2).shape,
device=self.model.cfg.device,
)
if apply_ln:
components = self.apply_ln_to_stack(components, layer, pos_slice=pos_slice)
if return_labels:
return components, labels
else:
return components
def stack_activation(
self,
activation_name: str,
layer: int = -1,
sublayer_type: Optional[str] = None,
) -> Float[torch.Tensor, "layers_covered ..."]:
"""Returns a stack of all head results (ie residual stream contribution) up to layer L. A good way to decompose the outputs of attention layers into attribution by specific heads. The output shape is exactly the same shape as the activations, just with a leading layers dimension.
Args:
activation_name (str): The name of the activation to be stacked
layer (int): Layer index - heads at all layers strictly before this are included. layer must be in [1, n_layers-1], or any of (n_layers, -1, None), which all mean the final layer
sublayer_type (str, *optional*): The sub layer type of the activation, passed to utils.get_act_name. Can normally be inferred
incl_remainder (bool, optional): Whether to return a final term which is "the rest of the residual stream". Defaults to False.
"""
if layer is None or layer == -1:
# Default to the residual stream immediately pre unembed
layer = self.model.cfg.n_layers
components = []
for l in range(layer):
components.append(self[(activation_name, l, sublayer_type)])
return torch.stack(components, dim=0)
def get_neuron_results(
self,
layer: int,
neuron_slice: Union[Slice, SliceInput] = None,
pos_slice: Union[Slice, SliceInput] = None,
) -> Float[torch.Tensor, "*batch_and_pos_dims num_neurons d_model"]:
"""Returns the results of for neurons in a specific layer (ie, how much each neuron contributes to the residual stream). Does it for the subset of neurons specified by neuron_slice, defaults to all of them. Does *not* cache these because it's expensive in space and cheap to compute.
Args:
layer (int): Layer index
neuron_slice (Slice, optional): Slice of the neuron. Defaults to None.
pos_slice (Slice, optional): Slice of the positions. Defaults to None. See utils.Slice for details.
Returns:
Tensor: [batch_size, pos, d_mlp, d_model] tensor of the results (d_mlp is the neuron index axis)
"""
if type(neuron_slice) is not Slice:
assert isinstance(neuron_slice, SliceInput)
neuron_slice = Slice(neuron_slice)
if type(pos_slice) is not Slice:
assert isinstance(pos_slice, SliceInput)
pos_slice = Slice(pos_slice)
neuron_acts = self[("post", layer, "mlp")]
W_out = self.model.blocks[layer].mlp.W_out
if pos_slice is not None:
# Note - order is important, as Slice.apply *may* collapse a dimension, so this ensures that position dimension is -2 when we apply position slice
neuron_acts = pos_slice.apply(neuron_acts, dim=-2)
if neuron_slice is not None:
neuron_acts = neuron_slice.apply(neuron_acts, dim=-1)
W_out = neuron_slice.apply(W_out, dim=0)
return neuron_acts[..., None] * W_out
def stack_neuron_results(
self,
layer: int,
pos_slice: Union[Slice, SliceInput] = None,
neuron_slice: Union[Slice, SliceInput] = None,
return_labels: bool = False,
incl_remainder: bool = False,
apply_ln: bool = False,
) -> Union[
Float[torch.Tensor, "num_components *batch_and_pos_dims d_model"],
Tuple[
Float[torch.Tensor, "num_components *batch_and_pos_dims d_model"], List[str]
],
]:
"""Returns a stack of all neuron results (ie residual stream contribution) up to layer L - ie the amount each individual neuron contributes to the residual stream. Also returns a list of labels of the form "L0N0" for the neurons. A good way to decompose the outputs of MLP layers into attribution by specific neurons.
Note that doing this for all neurons is SUPER expensive on GPU memory and only works for small models or short inputs.
Args:
layer (int): Layer index - heads at all layers strictly before this are included. layer must be in [1, n_layers]
pos_slice (Slice, optional): Slice of the positions. Defaults to None. See utils.Slice for details.
neuron_slice (Slice, optional): Slice of the neurons. Defaults to None. See utils.Slice for details.
return_labels (bool, optional): Whether to also return a list of labels of the form "L0H0" for the heads. Defaults to False.
incl_remainder (bool, optional): Whether to return a final term which is "the rest of the residual stream". Defaults to False.
apply_ln (bool, optional): Whether to apply LayerNorm to the stack. Defaults to False.
"""
if layer is None or layer == -1:
# Default to the residual stream immediately pre unembed
layer = self.model.cfg.n_layers
components = []
labels = []
if not isinstance(neuron_slice, Slice):
neuron_slice = Slice(neuron_slice)
if not isinstance(pos_slice, Slice):
pos_slice = Slice(pos_slice)
neuron_labels = neuron_slice.apply(torch.arange(self.model.cfg.d_mlp), dim=0)
if type(neuron_labels) == int:
neuron_labels = np.array([neuron_labels])
for l in range(layer):
# Note that this has shape batch x pos x head_index x d_model
components.append(
self.get_neuron_results(
l, pos_slice=pos_slice, neuron_slice=neuron_slice
)
)
labels.extend([f"L{l}N{h}" for h in neuron_labels])
if components:
components = torch.cat(components, dim=-2)
components = einops.rearrange(
components,
"... concat_neuron_index d_model -> concat_neuron_index ... d_model",
)
if incl_remainder:
remainder = self[("resid_post", layer - 1)] - components.sum(dim=0)
components = torch.cat([components, remainder[None]], dim=0)
labels.append("remainder")
elif incl_remainder:
components = [pos_slice.apply(self[("resid_post", layer - 1)], dim=-2)]
else:
# Returning empty, give it the right shape to stack properly
components = torch.zeros(
0,
*pos_slice.apply(self["hook_embed"], dim=-2).shape,
device=self.model.cfg.device,
)
if apply_ln:
components = self.apply_ln_to_stack(components, layer, pos_slice=pos_slice)
if return_labels:
return components, labels
else:
return components
def apply_ln_to_stack(
self,
residual_stack: Float[
torch.Tensor, "num_components *batch_and_pos_dims d_model"
],
layer: Optional[int] = None,
mlp_input: bool = False,
pos_slice: Union[Slice, SliceInput] = None,
batch_slice: Union[Slice, SliceInput] = None,
has_batch_dim: bool = True,
) -> Float[torch.Tensor, "num_components *batch_and_pos_dims d_model"]:
"""Takes a stack of components of the residual stream (eg outputs of decompose_resid or accumulated_resid), treats them as the input to a specific layer, and applies the layer norm scaling of that layer to them, using the cached scale factors - simulating what that component of the residual stream contributes to that layer's input.
The layernorm scale is global across the entire residual stream for each layer, batch element and position, which is why we need to use the cached scale factors rather than just applying a new LayerNorm.
If the model does not use LayerNorm, it returns the residual stack unchanged.
Args:
residual_stack (torch.Tensor): A tensor, whose final dimension is
d_model. The other trailing dimensions are assumed to be the
same as the stored hook_scale - which may or may not include
batch or position dimensions.
layer (int): The layer we're taking the input to. In [0, n_layers],
n_layers means the unembed. None maps to the n_layers case, ie
the unembed.
mlp_input (bool, optional): Whether the input is to the MLP or attn
(ie ln2 vs ln1). Defaults to False, ie ln1. If layer==n_layers,
must be False, and we use ln_final
pos_slice (Slice, optional): The slice to take of positions, if residual_stack is not
over the full context, None means do nothing. It is assumed that
pos_slice has already been applied to residual_stack, and this
is only applied to the scale. See utils.Slice for details.
Defaults to None, do nothing.
batch_slice (Slice, optional): The slice to take on the batch dimension.
Defaults to None, do nothing.
has_batch_dim (bool, optional): Whether residual_stack has a batch dimension.
Defaults to True.
"""
if self.model.cfg.normalization_type not in ["LN", "LNPre"]:
# The model does not use LayerNorm, so we don't need to do anything.
return residual_stack
if not isinstance(pos_slice, Slice):
pos_slice = Slice(pos_slice)
if not isinstance(batch_slice, Slice):
batch_slice = Slice(batch_slice)
if layer is None or layer == -1:
# Default to the residual stream immediately pre unembed
layer = self.model.cfg.n_layers
if has_batch_dim:
# Apply batch slice to the stack
residual_stack = batch_slice.apply(residual_stack, dim=1)
# Center the stack
residual_stack = residual_stack - residual_stack.mean(dim=-1, keepdim=True)
if layer == self.model.cfg.n_layers or layer is None:
scale = self["ln_final.hook_scale"]
else:
hook_name = f"blocks.{layer}.ln{2 if mlp_input else 1}.hook_scale"
scale = self[hook_name]
# The shape of scale is [batch, position, 1] or [position, 1] - final dimension is a dummy thing to get broadcoasting to work nicely.
scale = pos_slice.apply(scale, dim=-2)
if self.has_batch_dim:
# Apply batch slice to the scale
scale = batch_slice.apply(scale)
return residual_stack / scale
def get_full_resid_decomposition(
self,
layer: Optional[int] = None,
mlp_input: bool = False,
expand_neurons: bool = True,
apply_ln: bool = False,
pos_slice: Union[Slice, SliceInput] = None,
return_labels: bool = False,
) -> Float[torch.Tensor, "num_components *batch_and_pos_dims d_model"]:
"""Returns the full decomposition of the residual stream into embed, pos_embed, each head result, each neuron result, and the accumulated biases. We break down the residual stream that is input into some layer.
Args:
layer (int): The layer we're inputting into. layer is in [0, n_layers], if layer==n_layers (or None) we're inputting into the unembed (the entire stream), if layer==0 then it's just embed and pos_embed
mlp_input (bool, optional): Are we inputting to the MLP in that layer or the attn? Must be False for final layer, since that's the unembed. Defaults to False.
expand_neurons (bool, optional): Whether to expand the MLP outputs to give every neuron's result or just return the MLP layer outputs. Defaults to True.
apply_ln (bool, optional): Whether to apply LayerNorm to the stack. Defaults to False.
pos_slice (Slice, optional): Slice of the positions to take. Defaults to None. See utils.Slice for details.
return_labels (bool): Whether to return the labels. Defaults to False.
"""
if layer is None or layer == -1:
# Default to the residual stream immediately pre unembed
layer = self.model.cfg.n_layers
if not isinstance(pos_slice, Slice):
pos_slice = Slice(pos_slice)
head_stack, head_labels = self.stack_head_results(
layer + (1 if mlp_input else 0), pos_slice=pos_slice, return_labels=True
)
labels = head_labels
components = [head_stack]
if not self.model.cfg.attn_only and layer > 0:
if expand_neurons:
neuron_stack, neuron_labels = self.stack_neuron_results(
layer, pos_slice=pos_slice, return_labels=True
)
labels.extend(neuron_labels)
components.append(neuron_stack)
else:
# Get the stack of just the MLP outputs
# mlp_input included for completeness, but it doesn't actually matter, since it's just for MLP outputs
mlp_stack, mlp_labels = self.decompose_resid(
layer,
mlp_input=mlp_input,
pos_slice=pos_slice,
incl_embeds=False,
mode="mlp",
return_labels=True,
)
labels.extend(mlp_labels)
components.append(mlp_stack)
if self.has_embed:
labels.append("embed")
components.append(pos_slice.apply(self["embed"], -2)[None])
if self.has_pos_embed:
labels.append("pos_embed")
components.append(pos_slice.apply(self["pos_embed"], -2)[None])
# If we didn't expand the neurons, the MLP biases are already included in the MLP outputs.
bias = self.model.accumulated_bias(
layer, mlp_input, include_mlp_biases=expand_neurons
)
bias = bias.expand((1,) + head_stack.shape[1:])
labels.append("bias")
components.append(bias)
residual_stack = torch.cat(components, dim=0)
if apply_ln:
residual_stack = self.apply_ln_to_stack(
residual_stack, layer, pos_slice=pos_slice, mlp_input=mlp_input
)
if return_labels:
return residual_stack, labels
else:
return residual_stack
# %%