-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimagenet_input.py
171 lines (139 loc) · 6.38 KB
/
imagenet_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Routine for decoding the CIFAR-10 binary file format."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
# Process images of this size. Note that this differs from the original CIFAR
# image size of 32 x 32. If one alters this number, then the entire model
# architecture will change and any model would need to be retrained.
import labeltools
import cifar10_input
IMAGE_SIZE = 24
# Global constants describing the CIFAR-10 data set.
NUM_CLASSES = 255
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 500
trainPath ='/imagenet/srsdone/forTrain'
#True 读取打包后的二进制文件作为训练数据
#Flase 读取一个个的图文文件作为训练数据 (性能差,仅供学习参考)
GET_TrainFile_By_BIN =True
def read_from_imagenet(filename_queue,filenames):
class ImageNetRecord(object):
pass
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
image0 = tf.image.decode_jpeg(value,3)
esized_image = tf.image.resize_images(image0, [32, 32],
method=tf.image.ResizeMethod.AREA)
result = ImageNetRecord()
re2=labeltools.splitfilenames(tf.constant( filenames),len(filenames))
key=labeltools.splitfilenames(tf.reshape(key,[1],name="key_debug"),1)
label=labeltools.diff(re2,key)
tf.summary.scalar("label_sum", label)
result.height = 32
result.width = 32
result.depth = 3
result.label = tf.cast(
label, tf.int32,name="label_debug")
result.label = tf.reshape(
result.label, [1])
result.uint8image=esized_image
return result
def _generate_image_and_label_batch(image, label, min_queue_examples,
batch_size, shuffle):
"""Construct a queued batch of images and labels.
Args:
image: 3-D Tensor of [height, width, 3] of type.float32.
label: 1-D Tensor of type.int32
min_queue_examples: int32, minimum number of samples to retain
in the queue that provides of batches of examples.
batch_size: Number of images per batch.
shuffle: boolean indicating whether to use a shuffling queue.
Returns:
images: Images. 4D tensor of [batch_size, height, width, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
# Create a queue that shuffles the examples, and then
# read 'batch_size' images + labels from the example queue.
num_preprocess_threads = 16
if shuffle:
images, label_batch = tf.train.shuffle_batch(
[image, label],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * batch_size,
min_after_dequeue=min_queue_examples)
else:
images, label_batch = tf.train.batch(
[image, label],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * batch_size)
# Display the training images in the visualizer.
tf.summary.image('images', images)
return images, tf.reshape(label_batch, [batch_size])
labelDic={}
labels={}
def inputs(eval_data, data_dir, batch_size):
"""Construct input for CIFAR evaluation using the Reader ops.
Args:
eval_data: bool, indicating if one should use the train or eval data set.
data_dir: Path to the CIFAR-10 data directory.
batch_size: Number of images per batch.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
import os
num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
filenames = []
if GET_TrainFile_By_BIN:
tempfilelist = os.listdir("/tmp/cifar10_data")
for item in tempfilelist:
if item.find(".bin") != -1:
filenames.append(os.path.join("/tmp/cifar10_data", item).replace("\\", "/"))
filename_queue = tf.train.string_input_producer(filenames, name="filename_queue_hcq", shuffle=True)
read_input = cifar10_input.read_cifar10(filename_queue)
else:
data_dir = trainPath
if len(os.listdir(data_dir))!=NUM_CLASSES:
raise Exception('图片分类总数与设置NUM_CLASSES参数不一致')
return
filenames,calist=labeltools.getfilelist(data_dir)
filename_queue = tf.train.string_input_producer(filenames, name="filename_queue_hcq", shuffle=True)
read_input = read_from_imagenet(filename_queue, filenames)
reshaped_image = tf.cast(read_input.uint8image, tf.float32)
height = IMAGE_SIZE
width = IMAGE_SIZE
# Image processing for evaluation.
# Crop the central [height, width] of the image.
resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
width, height)
# Subtract off the mean and divide by the variance of the pixels.
float_image = tf.image.per_image_standardization(resized_image)
# Set the shapes of tensors.
float_image.set_shape([height, width, 3])
#read_input.label.set_shape([])
# Ensure that the random shuffling has good mixing properties.
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(num_examples_per_epoch *
min_fraction_of_examples_in_queue)
# Generate a batch of images and labels by building up a queue of examples.
return _generate_image_and_label_batch(float_image, read_input.label,
min_queue_examples, batch_size,
shuffle=False)