-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsettings.ini
35 lines (34 loc) · 1.57 KB
/
settings.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
[global]
N = 500
dt = 0.1 # usar o menor valor entre (Pe/Cc) /10 e (St/Cc) / 10
t_fim = 10000
nimpre = 100
dimX = 2000
dimY = 250
Th = 2.5
Tc = 1
Pe0 = 20
St0 = 3
Kn0 = 150
slip_correction = .false.
rhof = 1 # sensitividade da diferença de densidade com temperature
GField = 0 0
wall = 'eeee'
x = -1 -1 # se negativo, a posição será aleatória
v = 0 0 # velocidade inicial
# para estimar Cc
# import numpy as np
# import matplotlib.pyplot as plt
# def Cc(Kn0, T_loc):
# return (1 + (Kn0 * T_loc)*(1.155 + 0.471 * np.exp(-0.596 / (Kn0 * T_loc) )))
# C = np.zeros((10,10))
# Kn0 = np.linspace(150,300,10)
# T_loc = np.linspace(1,3,10)
# for i in range(len(Kn0)):
# for j in range(len(T_loc)):
# C[i,j] = Cc(Kn0[i],T_loc[j])
#
# fig, ax = plt.subplots()
# ax.contourf(Kn0,T_loc,C)
# cntr1 = ax.contourf(Kn0, T_loc, C)
# fig.colorbar(cntr1,ax=ax)