-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaccormack_teste.py
142 lines (108 loc) · 3.03 KB
/
maccormack_teste.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import matplotlib.pyplot as plt
import time
## Setup
c = 343
lx = 10
CFL = 0.9
T = 300 # temperatura
cv = 0.718
k_1 = .4 # k-1 onde k e cp/cv
n = 1001 # No de elementos
steps = 5000
# saida
P = np.zeros((steps,n+2))
Rho = np.zeros((steps,n+2))
U = np.zeros((steps,n+2))
## Volumes
# (n+2) adicionara 2 volumes fantasma
elem = np.array([[0]*2]*(n+2) ,dtype=np.float64)
Q = np.array([[0]*3]*(n+2) ,dtype=np.float64)
F = np.array([[0]*3]*(n+2) ,dtype=np.float64)
# indice linha = Nº do volume
# se vizinho = -1, entao e' contorno (fantasma)
elem[0,0] = -1
elem[n-1,1] = -1
for i in range(1,n-1):
elem[i,0] = i-1; elem[i,1] = i+1;
dx = lx/n;
vol = dx*1; # volumes sempre iguais
## C.I.
# p = rho = 1 para x < 1, p = rho = 2 para x >= 1, u = 0
fu = lambda x: 300/(1+25*x**2)
rho = 1;
p = 1;
for i in range(n+2):
u = fu(dx*i-5)
# rho = 1+u/100
# p = 1+ u/400
e = p/(k_1)
Q[i,0] = rho
Q[i,1] = rho*u
Q[i,2] = e
F[i,0] = Q[i,1]
F[i,1] = rho*u**2+p
F[i,2] = (e+p)*u
P[0,i] = p;
Rho[0,i] = rho;
#fantasma
F[0,0] = -F[1,0]
F[0,1] = -F[1,1]+2*1 #2x a pressao 1
F[0,2] = -F[1,2]
F[n+1,0] = -F[n,0]
F[n+1,1] = -F[n,1]+2*2
F[n+1,2] = -F[n,2]
Qp = Q #passo preditor
# MacCormack
dt = .9*dx/(2*c) # alterar?
a1 = dt/vol
a2 = dt/(2*vol)
S = 1 # superficie unitaria
for step in range(1,steps):
# i denota o elemento
#preditor
Qp[0,:] = Q[0,:] - a1*(F[0,:]*S-F[n+1,:]*S)
#corretor
Q[0,:] = 0.5*(Q[0,:]+Qp[0,:])-a2*(F[1,:]*S-F[0,:]*S)
#preditor
Qp[n+1,:] = Q[n+1,:] - a1*(F[n+1,:]*S-F[n,:]*S)
#corretor
Q[n+1,:] = 0.5*(Q[n+1,:]+Qp[n+1,:])-a2*(F[0,:]*S-F[n+1,:]*S)
for i in range(1,n+1):
#preditor
Qp[i,:] = Q[i,:] - a1*(F[i,:]*S-F[(i-1),:]*S)
#corretor
Q[i,:] = 0.5*(Q[i,:]+Qp[i,:])-a2*(F[i+1,:]*S-F[i,:]*S)
# Q[i,:] = Q[i,:]-a1*(F[i+1,:]*S-F[i-1,:]*S)
# atualiza valores de fluxo
for i in range(0,n+2):
# print('{} {} {} \n'.format(Q[i,0],Q[i,1],Q[i,2]))
Rho[step,i] = Q[i,0]
# print('{} {} {}'.format( k_1*Rho[step,i] , Q[i,2]/Rho[step,i] , (1/2)*(Q[i,1]/Q[i,0] )**2))
P[step,i] = k_1*Rho[step,i]*( Q[i,2]/Rho[step,i] - (1/2)*(Q[i,1]/Q[i,0])**2 )
F[i,0] = Q[i,1]
F[i,1] = (Q[i,1]**2/Q[i,0]) + P[step,i]
F[i,2] = (Q[i,2]+P[step,i])*Q[i,1]/Q[i,0]
U[step,i] = Q[i,1]/Q[i,0]
# dt = CFL*dx/(c+np.amax(np.abs(U[step,:])))
# a1 = dt/vol
# a2 = dt/(2*vol)
# print('{} {} {}'.format(np.amax(np.abs(Q)),np.amax(U),dt))
if np.amax(Q) > 10**6:
print('{}'.format(step))
break
# if not(step % 100):
# plt.plot(Q[:,0])
# plt.plot(Q[:,1])
# plt.plot(Q[:,2])
# plt.show()
plt.plot(U[9,1:n+1],'k')
plt.plot(U[90,1:n+1],'b')
plt.plot(U[500,1:n+1],'g')
plt.plot(U[900,1:n+1],'r')
plt.show()
plt.plot(P[9,1:n+1],'k')
plt.plot(P[90,1:n+1],'b')
plt.plot(P[500,1:n+1],'g')
plt.plot(P[900,1:n+1],'r')
plt.show()