forked from ermongroup/GraphScoreMatching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
213 lines (188 loc) · 9.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import logging
import time
import os
from easydict import EasyDict as edict
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from evaluation.stats import eval_torch_batch
from model.langevin_mc import LangevinMCSampler
from sample import sample_main
from utils.arg_helper import edict2dict, parse_arguments, get_config, process_config, set_seed_and_logger, load_data
from utils.graph_utils import gen_list_of_data
from utils.loading_utils import get_mc_sampler, get_score_model, eval_sample_batch
from utils.visual_utils import plot_graphs_adj
def loss_func(score_list, grad_log_q_noise_list, sigma_list):
loss = 0.0
loss_items = []
for score, grad_log_q_noise, sigma in zip(score_list, grad_log_q_noise_list, sigma_list):
cur_loss = 0.5 * sigma ** 2 * ((score - grad_log_q_noise) ** 2).sum(dim=[-1, -2]).mean()
loss_items.append(cur_loss.detach().cpu().item())
loss = loss + cur_loss
assert isinstance(loss, torch.Tensor)
return loss, loss_items
def fit(model, optimizer, mcmc_sampler, train_dl, max_node_number, max_epoch=20, config=None,
save_interval=50,
sample_interval=1,
sigma_list=None,
sample_from_sigma_delta=0.0,
test_dl=None
):
logging.info(f"{sigma_list}, {sample_from_sigma_delta}")
assert isinstance(mcmc_sampler, LangevinMCSampler)
optimizer.zero_grad()
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=40, gamma=0.1)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=config.train.lr_dacey)
for epoch in range(max_epoch):
train_losses = []
train_loss_items = []
test_losses = []
test_loss_items = []
t_start = time.time()
model.train()
for train_adj_b, train_x_b in train_dl:
# here,
# train_adj_b is of size [batch_size, N, N]
# train_x_b is of size [batch_size, N, F_i]
train_adj_b = train_adj_b.to(config.dev)
train_x_b = train_x_b.to(config.dev)
train_node_flag_b = train_adj_b.sum(-1).gt(1e-5).to(dtype=torch.float32)
if isinstance(sigma_list, float):
sigma_list = [sigma_list]
train_x_b, train_noise_adj_b, \
train_node_flag_b, grad_log_q_noise_list = \
gen_list_of_data(train_x_b, train_adj_b,
train_node_flag_b, sigma_list)
# thereafter,
# train_noise_adj_b is of size [len(sigma_list) * batch_size, N, N]
# train_x_b is of size [len(sigma_list) * batch_size, N, F_i]
optimizer.zero_grad()
score = model(x=train_x_b,
adjs=train_noise_adj_b,
node_flags=train_node_flag_b)
loss, loss_items = loss_func(score.chunk(len(sigma_list), dim=0), grad_log_q_noise_list, sigma_list)
train_loss_items.append(loss_items)
loss.backward()
optimizer.step()
train_losses.append(loss.detach().cpu().item())
scheduler.step(epoch)
assert isinstance(model, nn.Module)
model.eval()
for test_adj_b, test_x_b in test_dl:
test_adj_b = test_adj_b.to(config.dev)
test_x_b = test_x_b.to(config.dev)
test_node_flag_b = test_adj_b.sum(-1).gt(1e-5).to(dtype=torch.float32)
test_x_b, test_noise_adj_b, test_node_flag_b, grad_log_q_noise_list = \
gen_list_of_data(test_x_b, test_adj_b,
test_node_flag_b, sigma_list)
with torch.no_grad():
score = model(x=test_x_b, adjs=test_noise_adj_b,
node_flags=test_node_flag_b)
loss, loss_items = loss_func(score.chunk(len(sigma_list), dim=0), grad_log_q_noise_list, sigma_list)
test_loss_items.append(loss_items)
test_losses.append(loss.detach().cpu().item())
mean_train_loss = np.mean(train_losses)
mean_test_loss = np.mean(test_losses)
mean_train_loss_item = np.mean(train_loss_items, axis=0)
mean_train_loss_item_str = np.array2string(mean_train_loss_item, precision=2, separator="\t", prefix="\t")
mean_test_loss_item = np.mean(test_loss_items, axis=0)
mean_test_loss_item_str = np.array2string(mean_test_loss_item, precision=2, separator="\t", prefix="\t")
logging.info(f'epoch: {epoch:03d}| time: {time.time() - t_start:.1f}s| '
f'train loss: {mean_train_loss:+.3e} | '
f'test loss: {mean_test_loss:+.3e} | ')
logging.info(f'epoch: {epoch:03d}| '
f'train loss i: {mean_train_loss_item_str} '
f'test loss i: {mean_test_loss_item_str} | ')
if epoch % save_interval == save_interval - 1:
to_save = {
'model': model.state_dict(),
'sigma_list': sigma_list,
'config': edict2dict(config),
'epoch': epoch,
'train_loss': mean_train_loss,
'test_loss': mean_test_loss,
'train_loss_item': mean_train_loss_item,
'test_loss_item': mean_test_loss_item,
}
torch.save(to_save, os.path.join(config.model_save_dir,
f"{config.dataset.name}_{sigma_list}.pth"))
# torch.save(to_save, os.path.join(config.save_dir, "model.pth"))
if epoch % sample_interval == sample_interval - 1:
model.eval()
test_adj_b, test_x_b = test_dl.__iter__().__next__()
test_adj_b = test_adj_b.to(config.dev)
test_x_b = test_x_b.to(config.dev)
if isinstance(config.mcmc.grad_step_size, (list, tuple)):
grad_step_size = config.mcmc.grad_step_size[0]
else:
grad_step_size = config.mcmc.grad_step_size
step_size = grad_step_size * \
torch.tensor(sigma_list).to(test_x_b) \
.repeat_interleave(test_adj_b.size(0), dim=0)[..., None, None] ** 2
test_node_flag_b = test_adj_b.sum(-1).gt(1e-5).to(dtype=torch.float32)
test_x_b, test_noise_adj_b, test_node_flag_b, grad_log_q_noise_list = \
gen_list_of_data(test_x_b, test_adj_b,
test_node_flag_b, sigma_list)
init_adjs = test_noise_adj_b
with torch.no_grad():
sample_b, _ = mcmc_sampler.sample(config.sample.batch_size,
lambda x, y: model(test_x_b, x, y),
max_node_num=max_node_number, step_num=None,
init_adjs=init_adjs, init_flags=test_node_flag_b,
is_final=True,
step_size=step_size)
sample_b_list = sample_b.chunk(len(sigma_list), dim=0)
init_adjs_list = init_adjs.chunk(len(sigma_list), dim=0)
for sigma, sample_b, init_adjs in zip(sigma_list, sample_b_list, init_adjs_list):
sample_from_sigma = sigma + sample_from_sigma_delta
eval_sample_batch(sample_b, mcmc_sampler.end_sample(test_adj_b, to_int=True)[0], init_adjs,
config.save_dir, title=f'epoch_{epoch}_{sample_from_sigma}.pdf')
if init_adjs is not None:
plot_graphs_adj(mcmc_sampler.end_sample(init_adjs, to_int=True)[0],
node_num=test_node_flag_b.sum(-1).cpu().numpy(),
title=f'epoch_{epoch}_{sample_from_sigma}_init.pdf',
save_dir=config.save_dir)
result_dict = eval_torch_batch(mcmc_sampler.end_sample(test_adj_b, to_int=True)[0],
sample_b, methods=None)
logging.info(f'MMD {epoch} {sample_from_sigma}: {result_dict}')
def train_main(config, args):
set_seed_and_logger(config, args)
train_dl, test_dl = load_data(config)
mc_sampler = get_mc_sampler(config)
# here, the `model` get `num_classes=len(sigma_list)`
model = get_score_model(config)
param_strings = []
max_string_len = 126
for name, param in model.named_parameters():
if param.requires_grad:
line = '.' * max(0, max_string_len - len(name) - len(str(param.size())))
param_strings.append(f"{name} {line} {param.size()}")
param_string = '\n'.join(param_strings)
logging.info(f"Parameters: \n{param_string}")
total_params = sum(p.numel() for p in model.parameters())
total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logging.info(f"Parameters Count: {total_params}, Trainable: {total_trainable_params}")
optimizer = optim.Adam(model.parameters(),
lr=config.train.lr_init,
betas=(0.9, 0.999), eps=1e-8,
weight_decay=config.train.weight_decay)
fit(model, optimizer, mc_sampler, train_dl,
max_node_number=config.dataset.max_node_num,
max_epoch=config.train.max_epoch,
config=config,
save_interval=config.train.save_interval,
sample_interval=config.train.sample_interval,
sigma_list=config.train.sigmas,
sample_from_sigma_delta=0.0,
test_dl=test_dl
)
sample_main(config, args)
if __name__ == "__main__":
# torch.autograd.set_detect_anomaly(True)
args = parse_arguments('train_ego_small.yaml')
ori_config_dict = get_config(args)
config_dict = edict(ori_config_dict.copy())
process_config(config_dict)
print(config_dict)
train_main(config_dict, args)