Skip to content

Latest commit

 

History

History
89 lines (74 loc) · 2.82 KB

File metadata and controls

89 lines (74 loc) · 2.82 KB

1856. Maximum Subarray Min-Product

The min-product of an array is equal to the minimum value in the array multiplied by the array's sum.

  • For example, the array [3,2,5] (minimum value is 2) has a min-product of 2 * (3+2+5) = 2 * 10 = 20.

Given an array of integers nums, return the maximum min-product of any non-empty subarray of nums. Since the answer may be large, return it modulo 109 + 7.

Note that the min-product should be maximized before performing the modulo operation. Testcases are generated such that the maximum min-product without modulo will fit in a 64-bit signed integer.

A subarray is a contiguous part of an array.

Example 1:

Input: nums = [1,2,3,2]
Output: 14
Explanation: The maximum min-product is achieved with the subarray [2,3,2] (minimum value is 2).
2 * (2+3+2) = 2 * 7 = 14.

Example 2:

Input: nums = [2,3,3,1,2]
Output: 18
Explanation: The maximum min-product is achieved with the subarray [3,3] (minimum value is 3).
3 * (3+3) = 3 * 6 = 18.

Example 3:

Input: nums = [3,1,5,6,4,2]
Output: 60
Explanation: The maximum min-product is achieved with the subarray [5,6,4] (minimum value is 4).
4 * (5+6+4) = 4 * 15 = 60.

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 107

Solutions (Rust)

1. Solution

impl Solution {
    pub fn max_sum_min_product(nums: Vec<i32>) -> i32 {
        let n = nums.len();
        let mut prefix_sum = vec![0; n + 1];
        let mut stack = vec![];
        let mut indexl = vec![None; n];
        let mut indexr = vec![None; n];
        let mut ret = nums[0] as i64 * nums[0] as i64;

        for i in 0..n {
            prefix_sum[i + 1] = prefix_sum[i] + nums[i] as i64;

            while let Some(&j) = stack.last() {
                if nums[j] >= nums[i] {
                    stack.pop();
                } else {
                    indexl[i] = Some(j);
                    break;
                }
            }
            stack.push(i);
        }

        stack.clear();
        for i in (0..n).rev() {
            while let Some(&j) = stack.last() {
                if nums[j] >= nums[i] {
                    stack.pop();
                } else {
                    indexr[i] = Some(j);
                    break;
                }
            }
            stack.push(i);

            let mut sum = prefix_sum[indexr[i].unwrap_or(n)];
            if let Some(j) = indexl[i] {
                sum -= prefix_sum[j + 1];
            }
            ret = ret.max(nums[i] as i64 * sum);
        }

        (ret % 1_000_000_007) as i32
    }
}