-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathlstm_train.py
47 lines (40 loc) · 1.28 KB
/
lstm_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
from LSTM.lstm import LstmParam, LstmNetwork,Loss
import pickle as pk
def train():
# learns to repeat simple sequence from random inputs
np.random.seed(0)
np.random.seed(2)
T = 100
L = 1000
N = 500
x = np.empty((N, L), 'int64')
t=np.arange(N)
np.random.shuffle(t)
x[:] = np.array(range(L)) +t.reshape(N, 1)
data = np.sin(x / T).astype('float64')
# parameters for input data dimension and lstm cell count
mem_cell_ct = 100
x_dim = 1
lstm_param = LstmParam(mem_cell_ct, x_dim)
lstm_net = LstmNetwork(lstm_param)
loss=Loss(mem_cell_ct)
epoch=1000
for cur_iter in range(epoch):
for n in range(N):
input_val_arr = data[n, :-1]
y_list =data[n, 1:]
print("iter", "%2s" % str(cur_iter), end=": ")
for ind in range(len(y_list)):
lstm_net.x_list_add(input_val_arr[ind])
lossv = lstm_net.y_list_is(y_list, loss)
print("loss:", "%.3e" % lossv)
lstm_param.apply_diff(lr=0.1)
lstm_net.x_list_clear()
if cur_iter % 10 ==0:
fs = open('model%d.pkl'%cur_iter, 'wb')
pk.dump(lstm_param,fs)
pk.dump(loss,fs)
fs.close()
if __name__ == "__main__":
train()