-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzernick_detection.py
189 lines (159 loc) · 8.15 KB
/
zernick_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# 计算图像的亚像素点并绘制(matplotlib以及cv2),并对亚像素点进行3种椭圆方式拟合绘制
# python zernick_detection.py
import time
import cv2
import imutils
import matplotlib.pyplot as plt
import numpy as np
g_N = 7
M00 = np.array([0, 0.0287, 0.0686, 0.0807, 0.0686, 0.0287, 0,
0.0287, 0.0815, 0.0816, 0.0816, 0.0816, 0.0815, 0.0287,
0.0686, 0.0816, 0.0816, 0.0816, 0.0816, 0.0816, 0.0686,
0.0807, 0.0816, 0.0816, 0.0816, 0.0816, 0.0816, 0.0807,
0.0686, 0.0816, 0.0816, 0.0816, 0.0816, 0.0816, 0.0686,
0.0287, 0.0815, 0.0816, 0.0816, 0.0816, 0.0815, 0.0287,
0, 0.0287, 0.0686, 0.0807, 0.0686, 0.0287, 0]).reshape((7, 7))
M11R = np.array([0, -0.015, -0.019, 0, 0.019, 0.015, 0,
-0.0224, -0.0466, -0.0233, 0, 0.0233, 0.0466, 0.0224,
-0.0573, -0.0466, -0.0233, 0, 0.0233, 0.0466, 0.0573,
-0.069, -0.0466, -0.0233, 0, 0.0233, 0.0466, 0.069,
-0.0573, -0.0466, -0.0233, 0, 0.0233, 0.0466, 0.0573,
-0.0224, -0.0466, -0.0233, 0, 0.0233, 0.0466, 0.0224,
0, -0.015, -0.019, 0, 0.019, 0.015, 0]).reshape((7, 7))
M11I = np.array([0, -0.0224, -0.0573, -0.069, -0.0573, -0.0224, 0,
-0.015, -0.0466, -0.0466, -0.0466, -0.0466, -0.0466, -0.015,
-0.019, -0.0233, -0.0233, -0.0233, -0.0233, -0.0233, -0.019,
0, 0, 0, 0, 0, 0, 0,
0.019, 0.0233, 0.0233, 0.0233, 0.0233, 0.0233, 0.019,
0.015, 0.0466, 0.0466, 0.0466, 0.0466, 0.0466, 0.015,
0, 0.0224, 0.0573, 0.069, 0.0573, 0.0224, 0]).reshape((7, 7))
M20 = np.array([0, 0.0225, 0.0394, 0.0396, 0.0394, 0.0225, 0,
0.0225, 0.0271, -0.0128, -0.0261, -0.0128, 0.0271, 0.0225,
0.0394, -0.0128, -0.0528, -0.0661, -0.0528, -0.0128, 0.0394,
0.0396, -0.0261, -0.0661, -0.0794, -0.0661, -0.0261, 0.0396,
0.0394, -0.0128, -0.0528, -0.0661, -0.0528, -0.0128, 0.0394,
0.0225, 0.0271, -0.0128, -0.0261, -0.0128, 0.0271, 0.0225,
0, 0.0225, 0.0394, 0.0396, 0.0394, 0.0225, 0]).reshape((7, 7))
M31R = np.array([0, -0.0103, -0.0073, 0, 0.0073, 0.0103, 0,
-0.0153, -0.0018, 0.0162, 0, -0.0162, 0.0018, 0.0153,
-0.0223, 0.0324, 0.0333, 0, -0.0333, -0.0324, 0.0223,
-0.0190, 0.0438, 0.0390, 0, -0.0390, -0.0438, 0.0190,
-0.0223, 0.0324, 0.0333, 0, -0.0333, -0.0324, 0.0223,
-0.0153, -0.0018, 0.0162, 0, -0.0162, 0.0018, 0.0153,
0, -0.0103, -0.0073, 0, 0.0073, 0.0103, 0]).reshape(7, 7)
M31I = np.array([0, -0.0153, -0.0223, -0.019, -0.0223, -0.0153, 0,
-0.0103, -0.0018, 0.0324, 0.0438, 0.0324, -0.0018, -0.0103,
-0.0073, 0.0162, 0.0333, 0.039, 0.0333, 0.0162, -0.0073,
0, 0, 0, 0, 0, 0, 0,
0.0073, -0.0162, -0.0333, -0.039, -0.0333, -0.0162, 0.0073,
0.0103, 0.0018, -0.0324, -0.0438, -0.0324, 0.0018, 0.0103,
0, 0.0153, 0.0223, 0.0190, 0.0223, 0.0153, 0]).reshape(7, 7)
M40 = np.array([0, 0.013, 0.0056, -0.0018, 0.0056, 0.013, 0,
0.0130, -0.0186, -0.0323, -0.0239, -0.0323, -0.0186, 0.0130,
0.0056, -0.0323, 0.0125, 0.0406, 0.0125, -0.0323, 0.0056,
-0.0018, -0.0239, 0.0406, 0.0751, 0.0406, -0.0239, -0.0018,
0.0056, -0.0323, 0.0125, 0.0406, 0.0125, -0.0323, 0.0056,
0.0130, -0.0186, -0.0323, -0.0239, -0.0323, -0.0186, 0.0130,
0, 0.013, 0.0056, -0.0018, 0.0056, 0.013, 0]).reshape(7, 7)
def zernike_detection(path):
time1 = time.time()
img = cv2.imread(path)
print('size: ', img.shape)
# imutils.resize(img, height=600)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur_img = cv2.medianBlur(img, 13)
c_img = cv2.adaptiveThreshold(blur_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 7, 4)
time2 = time.time()
print('读取加上预处理时间: ', time2 - time1)
cv2.namedWindow('c_img', 0)
cv2.imshow('c_img', c_img)
time3 = time.time()
ZerImgM00 = cv2.filter2D(c_img, cv2.CV_64F, M00)
ZerImgM11R = cv2.filter2D(c_img, cv2.CV_64F, M11R)
ZerImgM11I = cv2.filter2D(c_img, cv2.CV_64F, M11I)
ZerImgM20 = cv2.filter2D(c_img, cv2.CV_64F, M20)
ZerImgM31R = cv2.filter2D(c_img, cv2.CV_64F, M31R)
ZerImgM31I = cv2.filter2D(c_img, cv2.CV_64F, M31I)
ZerImgM40 = cv2.filter2D(c_img, cv2.CV_64F, M40)
point_temporary_x = []
point_temporary_y = []
scatter_arr = cv2.findNonZero(ZerImgM00).reshape(-1, 2)
for idx in scatter_arr:
j, i = idx
theta_temporary = np.arctan2(ZerImgM31I[i][j], ZerImgM31R[i][j])
rotated_z11 = np.sin(theta_temporary) * ZerImgM11I[i][j] + np.cos(theta_temporary) * ZerImgM11R[i][j]
rotated_z31 = np.sin(theta_temporary) * ZerImgM31I[i][j] + np.cos(theta_temporary) * ZerImgM31R[i][j]
l_method1 = np.sqrt((5 * ZerImgM40[i][j] + 3 * ZerImgM20[i][j]) / (8 * ZerImgM20[i][j]))
l_method2 = np.sqrt((5 * rotated_z31 + rotated_z11) / (6 * rotated_z11))
l = (l_method1 + l_method2) / 2
k = 3 * rotated_z11 / (2 * (1 - l_method2 ** 2) ** 1.5)
# h = (ZerImgM00[i][j] - k * np.pi / 2 + k * np.arcsin(l_method2) + k * l_method2 * (1 - l_method2 ** 2) ** 0.5)
# / np.pi
k_value = 20.0
l_value = 2 ** 0.5 / g_N
absl = np.abs(l_method2 - l_method1)
if k >= k_value and absl <= l_value:
y = i + g_N * l * np.sin(theta_temporary) / 2
x = j + g_N * l * np.cos(theta_temporary) / 2
point_temporary_x.append(x)
point_temporary_y.append(y)
else:
continue
time4 = time.time()
print('检测时间: ', time4 - time3)
return point_temporary_x, point_temporary_y, c_img
image = cv2.imread('D:\\chrome_downloads\\ym.jpg')
path = 'ym_600.jpg'
cv2.imwrite(path, imutils.resize(image, height=600))
# path = 'D:\\chrome_downloads\\ym.jpg'
time1 = time.time()
point_temporary_x, point_temporary_y, c_img = zernike_detection(path)
time2 = time.time()
print('time: ', time2 - time1) # 运算速度太慢了,可以考虑使用多线程进行加速
# gray : 进行检测的图像
gray = cv2.imread(path, 0)
plt.rcParams['figure.dpi'] = 72
# plt.imshow(gray, cmap="gray")
plt.imshow(c_img, cmap="gray")
# point检测出的亚像素点
point = np.array([point_temporary_x, point_temporary_y])
# s:调整显示点的大小
plt.scatter(point[0, :], point[1, :], s=10, marker="*") #颜色为蓝色
plt.show()
def cv_fit_ellipse(points, flag=0):
# cv2.fitEllipse only can estimate int numpy 2D array data
p = np.array(points)
p = np.array(p).astype(int)
center0, axes0, angle0 = cv2.fitEllipse(p)
center1, axes1, angle1 = cv2.fitEllipseAMS(p)
center2, axes2, angle2 = cv2.fitEllipseDirect(p)
print(type(center0))
print("fitEllipse: " + str(np.array(center0)))
print("fitEllipseAMS: " + str(np.array(center1)))
print("fitEllipseDirect: " + str(np.array(center2)))
box = tuple([tuple(np.array(center0)), tuple(np.array(axes0)), angle0])
if flag == 0:
box = tuple([tuple(np.array(center0)), tuple(np.array(axes0)), angle0])
elif flag == 1:
box = tuple([tuple(np.array(center1)), tuple(np.array(axes1)), angle1])
else:
box = tuple([tuple(np.array(center0)), tuple(np.array(axes0)), angle0])
return box
points = np.array(list(zip(point_temporary_x, point_temporary_y)))
print(type(points), points[0], points.shape)
box1 = cv_fit_ellipse(points, flag=1)
image = cv2.imread(path)
cv2.ellipse(img=image, box=box1, color=(255, 0, 255), thickness=1)
cv2.namedWindow('image', 0)
cv2.imshow("image", image)
for i in points:
# 亚像素点绘制随机颜色半径圆
radius = np.random.randint(1, high=10)
color = np.random.randint(0, high=256, size=(3,)).tolist()
# print('radius: ', radius, type(radius))
# print('color: ', color, type(color))
cv2.circle(image, (int(i[0]), int(i[1])), radius, color, -1)
cv2.namedWindow("image1", 0)
cv2.imshow("image1", image)
cv2.waitKey(0)
cv2.destroyAllWindows()