diff --git a/Chapter16/structured_probabilistic_modelling.tex b/Chapter16/structured_probabilistic_modelling.tex index de856d9..cc92293 100644 --- a/Chapter16/structured_probabilistic_modelling.tex +++ b/Chapter16/structured_probabilistic_modelling.tex @@ -86,7 +86,7 @@ \section{非结构化建模的挑战} 即使样本只有一个从错误分布中产生的元素,那么采样的过程肯定是错误的。 \end{itemize} -图\ref{fig:chap16_polar}中描述了一个使用较小的自然图片的采样任务。 +图\ref{fig:chap16_fig-ssrbm}中描述了一个使用较小的自然图片的采样任务。 % 551 ok \begin{figure}[!htb] @@ -101,7 +101,7 @@ \section{非结构化建模的挑战} \centerline{\includegraphics{Chapter16/figures/fig-ssrbm_samples}} \fi \caption{TODO} - \label{fig:chap16_polar} + \label{fig:chap16_fig-ssrbm} \end{figure} 对上千甚至是上百万的随机变量的分布建模,无论从计算上还是从统计意义上说,都是一个具有挑战性的任务。 diff --git a/Chapter19/approximate_inference.tex b/Chapter19/approximate_inference.tex index a6616a0..cbb8be9 100644 --- a/Chapter19/approximate_inference.tex +++ b/Chapter19/approximate_inference.tex @@ -278,7 +278,7 @@ \section{\glsentrytext{MAP}推断和\glsentrytext{sparse_coding}} \section{变分推断和学习} -\label{variational_inference_and_learning} +\label{sec:variational_inference_and_learning} % 629 diff --git a/deep_learning_research.tex b/deep_learning_research.tex index 87d33a3..d15ef2b 100644 --- a/deep_learning_research.tex +++ b/deep_learning_research.tex @@ -3,12 +3,11 @@ \part{深度学习研究} \label{part:deep_learning_research} -\input{Chapter13/linear_factor_models.tex} -\input{Chapter14/autoencoders.tex} -\input{Chapter15/representation_learning.tex} -\input{Chapter16/structured_probabilistic_modelling.tex} -\input{Chapter17/monte_carlo_methods.tex} -\input{Chapter18/confronting_the_partition_function.tex} -\input{Chapter19/approximate_inference.tex} -%\input{Chapter20/deep_generative_models.tex} - +%\input{Chapter13/linear_factor_models.tex} +%\input{Chapter14/autoencoders.tex} +%\input{Chapter15/representation_learning.tex} +%\input{Chapter16/structured_probabilistic_modelling.tex} +%\input{Chapter17/monte_carlo_methods.tex} +%\input{Chapter18/confronting_the_partition_function.tex} +%\input{Chapter19/approximate_inference.tex} +\input{Chapter20/deep_generative_models.tex} diff --git a/dlbook_cn.tex b/dlbook_cn.tex index d2c7055..33cbc7a 100644 --- a/dlbook_cn.tex +++ b/dlbook_cn.tex @@ -70,6 +70,11 @@ \newcommand{\firstall}[1]{\textbf{\gls{#1}}~(\glsdesc{#1}, \glssymbol{#1})} \newcommand{\ENNAME}[1]{\text{#1}} \newcommand{\NUMTEXT}[1]{\text{#1}} +\newcommand{\figref}[1]{图\ref{#1}} +\newcommand{\chapref}[1]{第\ref{#1}章} +\newcommand{\secref}[1]{第\ref{#1}节} +\newcommand{\eqnref}[1]{式\eqref{#1}} + % Draft \usepackage{draftwatermark} diff --git a/math_symbol.tex b/math_symbol.tex index ed74f1e..45ae083 100644 --- a/math_symbol.tex +++ b/math_symbol.tex @@ -1,6 +1,6 @@ % !Mode:: "TeX:UTF-8" -\newcommand{\argmax}{\arg\max} -\newcommand{\argmin}{\arg\min} +\newcommand{\argmax}{\arg\,\max} +\newcommand{\argmin}{\arg\,\min} \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \newcommand{\Tr}{\text{Tr}} diff --git a/terminology.tex b/terminology.tex index 9d3b67a..62e4ca9 100644 --- a/terminology.tex +++ b/terminology.tex @@ -108,16 +108,16 @@ \newglossaryentry{ANN} { name=人工神经网络, - description={artificial neural networks}, - sort={artificial neural networks}, + description={artificial neural network}, + sort={artificial neural network}, symbol={ANN} } \newglossaryentry{NN} { name=神经网络, - description={neural networks}, - sort={neural networks}, + description={neural network}, + sort={neural network}, } \newglossaryentry{SGD} @@ -303,8 +303,8 @@ \newglossaryentry{critical_points} { name=临界点, - description={critical points}, - sort={critical points}, + description={critical point}, + sort={critical point}, } \newglossaryentry{stationary_point} @@ -337,8 +337,8 @@ \newglossaryentry{saddle_points} { name=鞍点, - description={saddle points}, - sort={saddle points}, + description={saddle point}, + sort={saddle point}, } \newglossaryentry{global_minimum} @@ -351,8 +351,8 @@ \newglossaryentry{partial_derivatives} { name=偏导数, - description={partial derivatives}, - sort={partial derivatives}, + description={partial derivative}, + sort={partial derivative}, } \newglossaryentry{gradient} @@ -506,15 +506,15 @@ \newglossaryentry{equality_constraints} { name=等式约束, - description={equality constraints}, - sort={equality constraints}, + description={equality constraint}, + sort={equality constraint}, } \newglossaryentry{inequality_constraints} { name=不等式约束, - description={inequality constraints}, - sort={inequality constraints}, + description={inequality constraint}, + sort={inequality constraint}, } \newglossaryentry{regularization} @@ -672,7 +672,6 @@ symbol={CNN} } - \newglossaryentry{mcmc} { name=马尔可夫链蒙特卡罗, @@ -718,7 +717,7 @@ \newglossaryentry{partition_function} { - name=分割函数, + name=配分函数, description={Partition Function}, sort={Partition Function}, } @@ -760,9 +759,10 @@ \newglossaryentry{VAE} { - name=变分自编码, + name=变分自动编码器, description={variational auto-encoder}, sort={variational auto-encoder}, + symbol={VAE}, } \newglossaryentry{CV} @@ -789,7 +789,7 @@ \newglossaryentry{RBM} { - name=受限玻耳兹曼机, + name=受限玻尔兹曼机, description={Restricted Boltzmann Machine}, sort={Restricted Boltzmann Machine}, symbol={RBM} @@ -804,21 +804,21 @@ \newglossaryentry{Boltzmann} { - name=玻耳兹曼, + name=玻尔兹曼, description={Boltzmann}, sort={Boltzmann}, } \newglossaryentry{BM} { - name=玻耳兹曼机, + name=玻尔兹曼机, description={Boltzmann Machine}, sort={Boltzmann Machine}, } \newglossaryentry{DBM} { - name=深度玻耳兹曼机, + name=深度玻尔兹曼机, description={Deep Boltzmann Machine}, sort={Deep Boltzmann Machine}, symbol={DBM} @@ -826,7 +826,7 @@ \newglossaryentry{CBM} { - name=卷积玻耳兹曼机, + name=卷积玻尔兹曼机, description={Convolutional Boltzmann Machine}, sort={Convolutional Boltzmann Machine}, symbol={CBM} @@ -1075,17 +1075,17 @@ \newglossaryentry{HMM} { name=隐马尔可夫模型, - description={Hidden Markov Models}, - sort={Hidden Markov Models}, - symbol={HMMs} + description={Hidden Markov Model}, + sort={Hidden Markov Model}, + symbol={HMM} } \newglossaryentry{GMM} { name=高斯混合模型, - description={Gaussian Mixture Models}, - sort={Gaussian Mixture Models}, - symbol={GMMs} + description={Gaussian Mixture Model}, + sort={Gaussian Mixture Model}, + symbol={GMM} } \newglossaryentry{transcribe} @@ -1142,8 +1142,8 @@ \newglossaryentry{GPU} { name=图形处理器, - description={Graphics Processing Units}, - sort={Graphics Processing Units}, + description={Graphics Processing Unit}, + sort={Graphics Processing Unit}, symbol={GPU} } @@ -1185,15 +1185,15 @@ \newglossaryentry{structured_probabilistic_models} { name=结构化概率模型, - description={structured probabilistic models}, - sort={structured probabilistic models}, + description={structured probabilistic model}, + sort={structured probabilistic model}, } \newglossaryentry{graphical_models} { name=图模型, - description={graphical models}, - sort={graphical models}, + description={graphical model}, + sort={graphical model}, } \newglossaryentry{directed_graphical_model} @@ -1523,8 +1523,8 @@ \newglossaryentry{data_points} { name=数据点, - description={data points}, - sort={data points}, + description={data point}, + sort={data point}, } \newglossaryentry{label} @@ -1558,15 +1558,15 @@ \newglossaryentry{parameters} { name=参数, - description={parameters}, - sort={parameters}, + description={parameter}, + sort={parameter}, } \newglossaryentry{weights} { name=权重, - description={weights}, - sort={weights}, + description={weight}, + sort={weight}, } \newglossaryentry{mean_squared_error} @@ -1580,8 +1580,8 @@ \newglossaryentry{normal_equations} { name=标准方程, - description={normal equations}, - sort={normal equations}, + description={normal equation}, + sort={normal equation}, } \newglossaryentry{training_error} @@ -1678,8 +1678,8 @@ \newglossaryentry{benchmarks} { name=基准, - description={bechmarks}, - sort={bechmarks}, + description={bechmark}, + sort={bechmark}, } \newglossaryentry{point_estimator} @@ -1840,21 +1840,21 @@ \newglossaryentry{kernel_machines} { name=核机器, - description={kernel machines}, - sort={kernel machines}, + description={kernel machine}, + sort={kernel machine}, } \newglossaryentry{kernel_methods} { name=核方法, - description={kernel methods}, - sort={kernel methods}, + description={kernel method}, + sort={kernel method}, } \newglossaryentry{support_vectors} { name=支持向量, - description={support vectors}, - sort={support vectors}, + description={support vector}, + sort={support vector}, } \newglossaryentry{SVM} @@ -2036,8 +2036,8 @@ \newglossaryentry{feedforward_network} { name=前馈网络, - description={feedforward networks}, - sort={feedforward networks}, + description={feedforward network}, + sort={feedforward network}, } \newglossaryentry{transition} @@ -2057,8 +2057,8 @@ \newglossaryentry{GSN} { name=生成随机网络, - description={generative stochastic networks}, - sort={generative stochastic networks}, + description={generative stochastic network}, + sort={generative stochastic network}, symbol={GSN} } @@ -2121,7 +2121,7 @@ \newglossaryentry{fixed_point_equation} { - name=固定点方程, + name=不动点方程, description={fixed point equation}, sort={fixed point equation}, } @@ -2150,8 +2150,8 @@ \newglossaryentry{MRF} { name=马尔可夫随机场, - description={Markov random fields}, - sort={Markov random fields}, + description={Markov random field}, + sort={Markov random field}, symbol={MRF} } @@ -2165,8 +2165,8 @@ \newglossaryentry{log_linear_model} { name=对数线性模型, - description={log-linear models}, - sort={log-linear models}, + description={log-linear model}, + sort={log-linear model}, } \newglossaryentry{product_of_expert} @@ -2212,7 +2212,7 @@ \newglossaryentry{boltzmann_distribution} { - name=玻耳兹曼分布, + name=玻尔兹曼分布, description={Boltzmann distribution}, sort={Boltzmann distribution}, } @@ -2522,8 +2522,8 @@ \newglossaryentry{bits} { name=比特, - description={bits}, - sort={bits}, + description={bit}, + sort={bit}, } \newglossaryentry{shannons} @@ -2639,7 +2639,7 @@ \newglossaryentry{harmonium} { - name=harmonium, + name=簧风琴, description={harmonium}, sort={harmonium}, } @@ -3131,8 +3131,8 @@ \newglossaryentry{clip_gradients} { name=梯度截断, - description={clip gradients}, - sort={clip gradients}, + description={clip gradient}, + sort={clip gradient}, } \newglossaryentry{absolute_value_rectification} @@ -3266,8 +3266,8 @@ \newglossaryentry{Krylov_methods} { name=Krylov方法, - description={Krylov methods}, - sort={Krylov methods}, + description={Krylov method}, + sort={Krylov method}, } \newglossaryentry{parallel_distributed_processing} @@ -3585,16 +3585,16 @@ \newglossaryentry{ESN} { name=回声状态网络, - description={echo state networks}, - sort={echo state networks}, + description={echo state network}, + sort={echo state network}, symbol={ESN} } \newglossaryentry{liquid_state_machines} { name=流体状态机, - description={liquid state machines}, - sort={liquid state machines}, + description={liquid state machine}, + sort={liquid state machine}, } \newglossaryentry{reservoir_computing} @@ -3845,15 +3845,15 @@ \newglossaryentry{simple_cells} { name=简单细胞, - description={simple cells}, - sort={simple cells}, + description={simple cell}, + sort={simple cell}, } \newglossaryentry{complex_cells} { name=复杂细胞, - description={complex cells}, - sort={complex cells}, + description={complex cell}, + sort={complex cell}, } \newglossaryentry{fovea} @@ -3873,9 +3873,9 @@ \newglossaryentry{TDNNs} { name=时延神经网络, - description={time delay neural networks}, - sort={time delay neural networks}, - symbol={TDNNs} + description={time delay neural network}, + sort={time delay neural network}, + symbol={TDNN} } \newglossaryentry{reverse_correlation} @@ -4210,8 +4210,8 @@ \newglossaryentry{word_embeddings} { name=词嵌入, - description={word embeddings}, - sort={word embeddings}, + description={word embedding}, + sort={word embedding}, } \newglossaryentry{one_hot} @@ -4294,8 +4294,17 @@ \newglossaryentry{generative_adversarial_networks} { name=生成式对抗网络, - description={generative adversarial networks}, - sort={generative adversarial networks}, + description={generative adversarial network}, + sort={generative adversarial network}, + symbol={GAN} +} + +\newglossaryentry{GAN} +{ + name=生成式对抗网络, + description={generative adversarial network}, + sort={generative adversarial network}, + symbol={GAN} } \newglossaryentry{feedforward_classifier} @@ -4514,8 +4523,8 @@ \newglossaryentry{matrix} { name=矩阵, - description={matrices}, - sort={matrices}, + description={matrix}, + sort={matrix}, } \newglossaryentry{tensor} @@ -4859,15 +4868,15 @@ \newglossaryentry{unsuper_learn_algo} { name=无监督学习算法, - description={unsupervised learning algorithms}, - sort={unsupervised learning algorithms}, + description={unsupervised learning algorithm}, + sort={unsupervised learning algorithm}, } \newglossaryentry{super_learn_algo} { name=有监督学习算法, - description={supervised learning algorithms}, - sort={supervised learning algorithms}, + description={supervised learning algorithm}, + sort={supervised learning algorithm}, } \newglossaryentry{word_embedding}