-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocess_seas5.py
22 lines (12 loc) · 1.02 KB
/
process_seas5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import xarray
forecasts = xarray.open_dataset('data/seas5_forecasts.nc')
forecasts = forecasts.rename({'initial_time1_hours': 'initial_time', 'forecast_time2': 'forecast_time',
'g0_lat_3': 'lat', 'g0_lon_4': 'lon', 'ensemble0': 'ensemble', 'TP_GDS0_SFC': 'p'})
forecasts = forecasts.reindex(lat=forecasts.lat[::-1])
diff = forecasts['p'].isel(forecast_time=range(1, 60)).values - forecasts['p'].isel(forecast_time=range(0, 59)).values
forecasts['p'][:, :, 1:, :, :] = diff
forecasts['p'] *= 1000
model_clim = forecasts['p'].sel(initial_time=(forecasts['p'].initial_time.dt.year <= 2007) & (forecasts['p'].initial_time.dt.year >= 1993)).assign_coords(dayofyear=forecasts['p'].initial_time.dt.strftime("%m-%d")).groupby('dayofyear').mean().mean('ensemble')
model_clim.to_netcdf('data/seas5_clim.nc')
model_anomalies = forecasts['p'].assign_coords(dayofyear=forecasts['p'].initial_time.dt.strftime("%m-%d")).groupby('dayofyear') - model_clim
model_anomalies.to_netcdf('data/seas5_anomalies_combined.nc')