-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepare_nn_past.py
30 lines (23 loc) · 1.74 KB
/
prepare_nn_past.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import numpy
import xarray
n_regress_days = 29
n_years_total = 107
n_years_training = 92
n_days = 275
n_pcs = 2
D = 4964
x = xarray.open_dataarray('data/prec_out.nc').values
pcs = xarray.open_dataset('data/pcs.h5')["pcs"].values.T
pcs = pcs.reshape(n_years_total, n_days, n_pcs)
n_samples = n_years_training*(n_days - 122)
x_new = numpy.zeros((n_samples, n_regress_days, D))
pcs_new = numpy.zeros((n_samples, n_pcs))
k = 0
for i in range(n_years_training):
for j in range(61, n_days - 61):
x_new[k, :, :] = x[j-n_regress_days:j, :, i]
pcs_new[k, :] = pcs[i, j, :]
k += 1
x_new = numpy.reshape(x_new, (n_samples, -1))
xarray.DataArray(x_new).to_netcdf("data/x_training_past.nc")
xarray.DataArray(pcs_new).to_netcdf("data/pcs_training_past.nc")