-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp76.cpp
65 lines (63 loc) · 1.73 KB
/
p76.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#include<stdio.h>
int max(int a, int b) { return (a > b)? a : b; }
int knapSack(int W, int wt[], int val[], int n)
{
int i, w;
int dp[n+1][W+1];
for (i = 0; i <= n; i++)
{
for (w = 0; w <= W; w++)
{
if (i==0 || w==0)
dp[i][w] = 0;
else if (wt[i-1] <= w)
dp[i][w] = max(val[i-1] + dp[i-1][w-wt[i-1]], dp[i-1][w]);
else
dp[i][w] = dp[i-1][w];
}
}
for (i = 0; i <= n; i++)
{
for (w = 0; w <= W; w++)
{
printf("%3d",dp[i][w]);
}
printf("\n");
}
return dp[n][W];
}
int countWays(int x, int y) {
// write code here
//int dp[x+1][y+1]={0};
int dp[13][13]={0};
dp[0][0]=0;
for(int i=1;i<y;i++)//第一行初始化,因为只有横着走一种方法。
dp[0][i]=1;
for(int i=1;i<x;i++)//第一列初始化,因为只有竖着一种方法。
dp[i][0]=1;
for(int i=1;i<x;i++)//dp[i][j]的方法,等于走到上面一格和走到左边一个方法之和。
for(int j=1;j<y;j++){
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
for (int i = 0; i <= x; i++)
{
for (int w = 0; w <= y; w++)
{
printf("%3d",dp[i][w]);
}
printf("\n");
}
return dp[x][y];
if(x==0||y==0) return 0;
if(x==1||y==1) return 1;
else return countWays(x-1,y)+countWays(x,y-1);//递归解法
}
int main()
{
int val[] = {60, 100, 120};
int wt[] = {10, 20, 30};
int W = 60;
int n = sizeof(val)/sizeof(val[0]);
printf("%d", countWays(2,2));
return 0;
}