-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathoriginal_big_integer.js
877 lines (771 loc) · 22.2 KB
/
original_big_integer.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
// big_integer.js
// Douglas Crockford
// 2019-02-09
// You can access the big integer object in your module by importing it.
// import big_integer from "./big_integer.js";
/*jslint bitwise */
/*property
abs, abs_lt, add, and, clz32, concat, create, div, divrem, eq, every, fill,
floor, forEach, freeze, gcd, isArray, isInteger, isSafeInteger,
is_big_integer, is_negative, is_positive, is_zero, join, length, lt, make,
map, mask, mul, neg, not, number, or, population, power, push, random,
reduce, reverse, shift_down, shift_up, significant_bits, signum, slice,
split, string, sub, ten, toUpperCase, two, wun, xor, zero
*/
const radix = 16777216;
const radix_squared = radix * radix;
const log2_radix = 24;
const plus = "+";
const minus = "-";
const sign = 0;
const least = 1;
function last(array) {
return array[array.length - 1];
}
function next_to_last(array) {
return array[array.length - 2];
}
const zero = Object.freeze([plus]);
const wun = Object.freeze([plus, 1]);
const two = Object.freeze([plus, 2]);
const ten = Object.freeze([plus, 10]);
const negative_wun = Object.freeze([minus, 1]);
function mint(proto_big_integer) {
// Mint a big integer number from a proto big integer. Delete leading zero
// megadigits. Substitute a popular constant if possible.
while (last(proto_big_integer) === 0) {
proto_big_integer.length -= 1;
}
if (proto_big_integer.length <= 1) {
return zero;
}
if (proto_big_integer[sign] === plus) {
if (proto_big_integer.length === 2) {
if (proto_big_integer[least] === 1) {
return wun;
}
if (proto_big_integer[least] === 2) {
return two;
}
if (proto_big_integer[least] === 10) {
return ten;
}
}
} else if (proto_big_integer.length === 2) {
if (proto_big_integer[least] === 1) {
return negative_wun;
}
}
return Object.freeze(proto_big_integer);
}
function is_big_integer(big) {
return Array.isArray(big) && (big[sign] === plus || big[sign] === minus);
}
function is_negative(big) {
return Array.isArray(big) && big[sign] === minus;
}
function is_positive(big) {
return Array.isArray(big) && big[sign] === plus;
}
function is_zero(big) {
return !Array.isArray(big) || big.length < 2;
}
function neg(big) {
if (is_zero(big)) {
return zero;
}
let negation = big.slice();
negation[sign] = (
is_negative(big)
? plus
: minus
);
return mint(negation);
}
function abs(big) {
return (
is_zero(big)
? zero
: (
is_negative(big)
? neg(big)
: big
)
);
}
function signum(big) {
return (
is_zero(big)
? zero
: (
is_negative(big)
? negative_wun
: wun
)
);
}
function eq(comparahend, comparator) {
return comparahend === comparator || (
comparahend.length === comparator.length
&& comparahend.every(function (element, element_nr) {
return element === comparator[element_nr];
})
);
}
function abs_lt(comparahend, comparator) {
return (
// Ignoring the sign, the number with more megadigits is the larger.
// If the two numbers contain the same number of megadigits,
// then we must examine each pair.
comparahend.length === comparator.length
? comparahend.reduce(
function (reduction, element, element_nr) {
if (element_nr !== sign) {
const other = comparator[element_nr];
if (element !== other) {
return element < other;
}
}
return reduction;
},
false
)
: comparahend.length < comparator.length
);
}
function lt(comparahend, comparator) {
return (
comparahend[sign] !== comparator[sign]
? is_negative(comparahend)
: (
is_negative(comparahend)
? abs_lt(comparator, comparahend)
: abs_lt(comparahend, comparator)
)
);
}
function int(big) {
let result;
if (typeof big === "number") {
if (Number.isSafeInteger(big)) {
return big;
}
} else if (is_big_integer(big)) {
if (big.length < 2) {
return 0;
}
if (big.length === 2) {
return (
is_negative(big)
? -big[least]
: big[least]
);
}
if (big.length === 3) {
result = big[least + 1] * radix + big[least];
return (
is_negative(big)
? -result
: result
);
}
if (big.length === 4) {
result = (
big[least + 2] * radix_squared
+ big[least + 1] * radix
+ big[least]
);
if (Number.isSafeInteger(result)) {
return (
is_negative(big)
? -result
: result
);
}
}
}
}
function number(big) {
let value = 0;
let the_sign = 1;
let factor = 1;
big.forEach(function (element, element_nr) {
if (element_nr === 0) {
if (element === minus) {
the_sign = -1;
}
} else {
value += element * factor;
factor *= radix;
}
});
return the_sign * value;
}
function and(a, b) {
// Make 'a' the shorter array.
if (a.length > b.length) {
[a, b] = [b, a];
}
return mint(a.map(function (element, element_nr) {
return (
element_nr === sign
? plus
: element & b[element_nr]
);
}));
}
function or(a, b) {
// Make 'a' the longer array.
if (a.length < b.length) {
[a, b] = [b, a];
}
return mint(a.map(function (element, element_nr) {
return (
element_nr === sign
? plus
: element | (b[element_nr] || 0)
);
}));
}
function xor(a, b) {
// Make 'a' the longer array.
if (a.length < b.length) {
[a, b] = [b, a];
}
return mint(a.map(function (element, element_nr) {
return (
element_nr === sign
? plus
: element ^ (b[element_nr] || 0)
);
}));
}
function mask(nr_bits) {
// Make a string of 1 bits.
nr_bits = int(nr_bits);
if (nr_bits !== undefined && nr_bits >= 0) {
let mega = Math.floor(nr_bits / log2_radix);
let result = new Array(mega + 1).fill(radix - 1);
result[sign] = plus;
let leftover = nr_bits - (mega * log2_radix);
if (leftover > 0) {
result.push((1 << leftover) - 1);
}
return mint(result);
}
}
function not(a, nr_bits) {
return xor(a, mask(nr_bits));
}
function shift_up(big, places) {
if (is_zero(big)) {
return zero;
}
places = int(places);
if (Number.isSafeInteger(places)) {
if (places === 0) {
return abs(big);
}
if (places < 0) {
return shift_down(big, -places);
}
let blanks = Math.floor(places / log2_radix);
let result = new Array(blanks + 1).fill(0);
result[sign] = plus;
places -= blanks * log2_radix;
if (places === 0) {
return mint(result.concat(big.slice(least)));
}
let carry = big.reduce(function (accumulator, element, element_nr) {
if (element_nr === sign) {
return 0;
}
result.push(((element << places) | accumulator) & (radix - 1));
return element >> (log2_radix - places);
}, 0);
if (carry > 0) {
result.push(carry);
}
return mint(result);
}
}
function shift_down(big, places) {
if (is_zero(big)) {
return zero;
}
places = int(places);
if (Number.isSafeInteger(places)) {
if (places === 0) {
return abs(big);
}
if (places < 0) {
return shift_up(big, -places);
}
let skip = Math.floor(places / log2_radix);
places -= skip * log2_radix;
if (skip + 1 >= big.length) {
return zero;
}
big = (
skip > 0
? mint(zero.concat(big.slice(skip + 1)))
: big
);
if (places === 0) {
return big;
}
return mint(big.map(function (element, element_nr) {
if (element_nr === sign) {
return plus;
}
return ((radix - 1) & (
(element >> places)
| ((big[element_nr + 1] || 0) << (log2_radix - places))
));
}));
}
}
function random(nr_bits, random = Math.random) {
// Make a string of random bits. If you are concerned with security,
// you can pass in a stronger random number generator.
// First make a string of '1' bits.
const wuns = mask(nr_bits);
if (wuns !== undefined) {
// For each megadigit, get a random number between '0.0' and '1.0'.
// Take some upper bits and some lower bits and 'xor' them together.
// Then 'and' it to the megadigit and put it into the new number.
return mint(wuns.map(function (element, element_nr) {
if (element_nr === sign) {
return plus;
}
const bits = random();
return ((bits * radix_squared) ^ (bits * radix)) & element;
}));
}
}
function add(augend, addend) {
if (is_zero(augend)) {
return addend;
}
if (is_zero(addend)) {
return augend;
}
// If the signs are different, then turn this into a subtraction problem.
if (augend[sign] !== addend[sign]) {
return sub(augend, neg(addend));
}
// The signs are the same. Add all the bits, giving the result the same sign.
// We can add numbers of different lengths. We give '.map' the longer wun,
// and use the '||' operator to replace nonexistant elements with zeros.
if (augend.length < addend.length) {
[addend, augend] = [augend, addend];
}
let carry = 0;
let result = augend.map(function (element, element_nr) {
if (element_nr !== sign) {
element += (addend[element_nr] || 0) + carry;
if (element >= radix) {
carry = 1;
element -= radix;
} else {
carry = 0;
}
}
return element;
});
// If the number overflowed, then append another element to contain the carry.
if (carry > 0) {
result.push(carry);
}
return mint(result);
}
function sub(minuend, subtrahend) {
if (is_zero(subtrahend)) {
return minuend;
}
if (is_zero(minuend)) {
return neg(subtrahend);
}
let minuend_sign = minuend[sign];
// If the signs are different, turn this into an addition problem.
if (minuend_sign !== subtrahend[sign]) {
return add(minuend, neg(subtrahend));
}
// Subtract the smaller from the larger.
if (abs_lt(minuend, subtrahend)) {
[subtrahend, minuend] = [minuend, subtrahend];
minuend_sign = (
minuend_sign === minus
? plus
: minus
);
}
let borrow = 0;
return mint(minuend.map(function (element, element_nr) {
if (element_nr === sign) {
return minuend_sign;
}
let diff = element - ((subtrahend[element_nr] || 0) + borrow);
if (diff < 0) {
diff += 16777216;
borrow = 1;
} else {
borrow = 0;
}
return diff;
}));
}
function mul(multiplicand, multiplier) {
if (is_zero(multiplicand) || is_zero(multiplier)) {
return zero;
}
// The sign of the result will be positive if the signs match.
let result = [
multiplicand[sign] === multiplier[sign]
? plus
: minus
];
// Multiply each element of 'multiplicand' by each element of 'multiplier',
// propagating the carry.
multiplicand.forEach(function (
multiplicand_element,
multiplicand_element_nr
) {
if (multiplicand_element_nr !== sign) {
let carry = 0;
multiplier.forEach(function (
multiplier_element,
multiplier_element_nr
) {
if (multiplier_element_nr !== sign) {
let at = (
multiplicand_element_nr + multiplier_element_nr - 1
);
let product = (
(multiplicand_element * multiplier_element)
+ (result[at] || 0)
+ carry
);
result[at] = product & 16777215;
carry = Math.floor(product / radix);
}
});
if (carry > 0) {
result[multiplicand_element_nr + multiplier.length - 1] = carry;
}
}
});
return mint(result);
}
function divrem(dividend, divisor) {
if (is_zero(dividend) || abs_lt(dividend, divisor)) {
return [zero, dividend];
}
if (is_zero(divisor)) {
return undefined;
}
// Make the operands positive.
let quotient_is_negative = dividend[sign] !== divisor[sign];
let remainder_is_negative = dividend[sign] === minus;
let remainder = dividend;
dividend = abs(dividend);
divisor = abs(divisor);
// We do long division just like you did in school. We estimate the next
// digit of the quotient. We subtract the divisor times that estimate
// from the dividend, and then we go again. We are using base 16777216
// instead of base 10, and we are being more systematic in predicting
// the next digit of the quotent.
// In order to improve our predictions, we first mint the divisor. We shift it
// left until its most significant bit is '1'. We also shift the dividend by
// the same amount. See Algorithm 4.3.1D in 'The Art of Computer Programming'.
// To determine the shift count, we find the number of leading zero bits.
// The 'clz32' function counts in a field of 32 bits, but we are only
// concerned with a field of 24 bits, so we subtract 8.
let shift = Math.clz32(last(divisor)) - 8;
dividend = shift_up(dividend, shift);
divisor = shift_up(divisor, shift);
let place = dividend.length - divisor.length;
let dividend_prefix = last(dividend);
let divisor_prefix = last(divisor);
if (dividend_prefix < divisor_prefix) {
dividend_prefix = (dividend_prefix * radix) + next_to_last(dividend);
} else {
place += 1;
}
divisor = shift_up(divisor, (place - 1) * 24);
let quotient = new Array(place + 1).fill(0);
quotient[sign] = plus;
while (true) {
// The estimate will not be too small, but it might be too large. If it is
// too large then subtracting the product of the estimate and the divisor
// from the dividend produces a negative. When that happens, make the
// estimate smaller and try again.
let estimated = Math.floor(dividend_prefix / divisor_prefix);
if (estimated > 0) {
while (true) {
let trial = sub(dividend, mul(divisor, [plus, estimated]));
if (!is_negative(trial)) {
dividend = trial;
break;
}
estimated -= 1;
}
}
// The corrected estimate is stored in the 'quotient'.
// If that was the final place, then move on.
quotient[place] = estimated;
place -= 1;
if (place === 0) {
break;
}
// Prepare for the next place. Update 'dividend_prefix' with the first two
// words of the remaining 'dividend', and scale down the 'divisor'.
if (is_zero(dividend)) {
break;
}
dividend_prefix = last(dividend) * radix + next_to_last(dividend);
divisor = shift_down(divisor, 24);
}
// Fix the remainder.
quotient = mint(quotient);
remainder = shift_down(dividend, shift);
return [
(
quotient_is_negative
? neg(quotient)
: quotient
),
(
remainder_is_negative
? neg(remainder)
: remainder
)
];
}
function div(dividend, divisor) {
let temp = divrem(dividend, divisor);
if (temp) {
return temp[0];
}
}
function power(big, exponent) {
let exp = int(exponent);
if (exp === 0) {
return wun;
}
if (is_zero(big)) {
return zero;
}
if (exp === undefined || exp < 0) {
return undefined;
}
let result = wun;
while (true) {
if ((exp & 1) !== 0) {
result = mul(result, big);
}
exp = Math.floor(exp / 2);
if (exp < 1) {
break;
}
big = mul(big, big);
}
return mint(result);
}
function gcd(a, b) {
a = abs(a);
b = abs(b);
while (!is_zero(b)) {
let [ignore, remainder] = divrem(a, b);
a = b;
b = remainder;
}
return a;
}
const digitset = "0123456789ABCDEFGHJKMNPQRSTVWXYZ*~$=U";
const charset = (function (object) {
digitset.split("").forEach(function (element, element_nr) {
object[element] = element_nr;
});
return Object.freeze(object);
}(Object.create(null)));
function make(value, radix_2_37) {
// The 'make' function returns a big integer. The value parameter is
// a string and an optional radix, or an integer, or a big_integer.
let result;
if (typeof value === "string") {
let radish;
if (radix_2_37 === undefined) {
radix_2_37 = 10;
radish = ten;
} else {
if (
!Number.isInteger(radix_2_37)
|| radix_2_37 < 2
|| radix_2_37 > 37
) {
return undefined;
}
radish = make(radix_2_37);
}
result = zero;
let good = false;
let negative = false;
if (value.toUpperCase().split("").every(
function (element, element_nr) {
let digit = charset[element];
if (digit !== undefined && digit < radix_2_37) {
result = add(mul(result, radish), [plus, digit]);
good = true;
return true;
}
if (element_nr === sign) {
if (element === plus) {
return true;
}
if (element === minus) {
negative = true;
return true;
}
}
return digit === "_";
}
) && good) {
if (negative) {
result = neg(result);
}
return mint(result);
}
return undefined;
}
if (Number.isInteger(value)) {
let whole = Math.abs(value);
result = [(
value < 0
? minus
: plus
)];
while (whole >= radix) {
let quotient = Math.floor(whole / radix);
result.push(whole - (quotient * radix));
whole = quotient;
}
if (whole > 0) {
result.push(whole);
}
return mint(result);
}
if (Array.isArray(value)) {
return mint(value);
}
}
function string(a, radix_2_thru_37 = 10) {
if (is_zero(a)) {
return "0";
}
radix_2_thru_37 = int(radix_2_thru_37);
if (
!Number.isSafeInteger(radix_2_thru_37)
|| radix_2_thru_37 < 2
|| radix_2_thru_37 > 37
) {
return undefined;
}
const radish = make(radix_2_thru_37);
const the_sign = (
a[sign] === minus
? "-"
: ""
);
a = abs(a);
let digits = [];
while (!is_zero(a)) {
let [quotient, remainder] = divrem(a, radish);
digits.push(digitset[number(remainder)]);
a = quotient;
}
digits.push(the_sign);
return digits.reverse().join("");
}
function population_32(int32) {
// Produce the total count of '1' bits in a 32 bit integer.
// Count 16 pairs of bits, producing 16 two bit counts (0, 1, or 2).
// For each pair, we subtract the higher bit from the pair,
// which converts the two bits into a count.
//. HL - H = count
//. 00 - 0 = 00
//. 01 - 0 = 01
//. 10 - 1 = 01
//. 11 - 1 = 10
int32 -= (int32 >>> 1) & 0x55555555;
// Combine 8 pairs of two bit counts, producing 8 four bit counts,
// ranging from 0 thru 4.
int32 = (int32 & 0x33333333) + ((int32 >>> 2) & 0x33333333);
// Combine 4 pairs of four bit counts, producing 4 eight bit counts, ranging
// from 0 thru 8. Overflow into neighbor counts is no longer possible, so we
// only need a single masking operation after the addition.
int32 = (int32 + (int32 >>> 4)) & 0x0F0F0F0F;
// Combine 2 pairs of eight bit counts, producing 2 sixteen bit counts,
// ranging from 0 thru 16.
int32 = (int32 + (int32 >>> 8)) & 0x001F001F;
// Finally, combine the 2 sixteen bit counts,
// producing a number ranging number from 0 thru 32.
return (int32 + (int32 >>> 16)) & 0x0000003F;
}
function population(big) {
// Count the total number of '1' bits.
return big.reduce(
function (reduction, element, element_nr) {
return reduction + (
element_nr === sign
? 0
: population_32(element)
);
},
0
);
}
function significant_bits(big) {
// Count the total number of bits excluding leading zeros.
return (
big.length > 1
? make((big.length - 2) * log2_radix + (32 - Math.clz32(last(big))))
: zero
);
}
export default Object.freeze({
abs,
abs_lt,
add,
and,
div,
divrem,
eq,
gcd,
is_big_integer,
is_negative,
is_positive,
is_zero,
lt,
make,
mask,
mul,
neg,
not,
number,
or,
population,
power,
random,
shift_down,
shift_up,
significant_bits,
signum,
string,
sub,
ten,
two,
wun,
xor,
zero
});