-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathurban_sound.py
132 lines (104 loc) · 4.42 KB
/
urban_sound.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import librosa
import pandas as pd
from tqdm import tqdm
import numpy as np
import numpy as np
import matplotlib.pyplot as plt
from librosa import display
from pathlib import Path
# Extract selected audio features from an audio file
def extract_audio_feature(audio_file):
pad = 174
y, sr = librosa.load(audio_file, res_type='kaiser_fast')
# mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)
# mel_spectrogram = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=40, fmax=8000)
chroma_cq = librosa.feature.chroma_cqt(y=y, sr=sr, n_chroma=40)
new_pad = pad - chroma_cq.shape[1]
return np.pad(chroma_cq, pad_width=((0, 0), (0, new_pad)), mode='constant')
# Predict and print class of an unlabeled audio file
def predict_class_of_audio_file(audio_file):
pred = extract_audio_feature(audio_file)
pred = pred.reshape(1, num_rows, num_columns, num_channels)
pred_class = model.predict_classes(pred)
pred_class_trans = le.inverse_transform(pred_class)
print("The predicted class is:", pred_class_trans[0])
# Read metadata of urban sound dataset as pandas dataframe
metadata = pd.read_csv('/home/dimitris/Desktop/UrbanSound8K/metadata/UrbanSound8K.csv')
print(metadata.head())
print(metadata.class_name.value_counts())
# Fill up feature_list List with features extraction of all audio files
path="/home/dimitris/Desktop/UrbanSound8K/audio/fold"
feature_list = []
for i in tqdm(range(len(metadata))):
fold_no = str(metadata.iloc[i]["fold"])
file = metadata.iloc[i]["slice_file_name"]
class_label_id = metadata.iloc[i]["classID"]
class_label = metadata.iloc[i]["class_name"]
filename = path+fold_no+"/"+file
data = extract_audio_feature(filename)
feature_list.append([data, class_label])
# Convert feature_list to pandas dataframe
features_dataframe = pd.DataFrame(feature_list, columns=['feature', 'class_label'])
from sklearn.preprocessing import LabelEncoder
from keras.utils import to_categorical
# Convert features and class labels to numpy arrays
X = np.array(features_dataframe.feature.tolist())
y = np.array(features_dataframe.class_label.tolist())
# Encode classification labels
le = LabelEncoder()
categorical_y = to_categorical(le.fit_transform(y))
from sklearn.model_selection import train_test_split
# Split features array to train and test sets
x_train, x_test, y_train, y_test = train_test_split(X, categorical_y, test_size=0.2, random_state = 42)
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D
#
# from keras import backend as K
# K.tensorflow_backend._get_available_gpus()
num_rows = 40
num_columns = 174
num_channels = 1
x_train = x_train.reshape(x_train.shape[0], num_rows, num_columns, num_channels)
x_test = x_test.reshape(x_test.shape[0], num_rows, num_columns, num_channels)
num_labels = categorical_y.shape[1]
filter_size = 2
# CNN model architecture
model = Sequential()
model.add(Conv2D(filters=16, kernel_size=2, input_shape=(num_rows, num_columns, num_channels), activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Dropout(0.2))
model.add(Conv2D(filters=32, kernel_size=2, activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Dropout(0.2))
model.add(Conv2D(filters=64, kernel_size=2, activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Dropout(0.2))
model.add(Conv2D(filters=128, kernel_size=2, activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Dropout(0.2))
model.add(GlobalAveragePooling2D())
model.add(Dense(num_labels, activation='softmax'))
# CNN model compilation
model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam')
# CNN model summary
model.summary()
# Train CNN model
model.fit(x_train, y_train, batch_size=256, epochs=150, validation_data=(x_test, y_test), verbose=1)
# Evaluate CNN model
score = model.evaluate(x_train, y_train, verbose=0)
print("Training Accuracy: ", score[1])
score = model.evaluate(x_test, y_test, verbose=0)
print("Testing Accuracy: ", score[1])
model.save('/home/dimitris/Desktop/UrbanSound8K/urban_sound_cnn_model1.h5')
# Predict unlabeled audio files
from pathlib import Path
import os
path_str="/home/dimitris/Desktop/urban_sound_dataset/test2"
pathlist = Path(path_str).glob('**/*.wav')
for path in pathlist:
audio_file_path = str(path)
head, tail = os.path.split(audio_file_path)
print(tail)
predict_class_of_audio_file(audio_file_path)
print("\n")