-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChapter02D.tex
123 lines (107 loc) · 4.13 KB
/
Chapter02D.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
\section{卷积积分的性质}
\subsection{卷积代数运算}
\begin{BoxProperty}[卷积积分的交换律]
卷积积分满足交换律
\begin{Equation}
f_1(t)*f_2(t) = f_2(t) * f_1(t)
\end{Equation}
\end{BoxProperty}
\begin{BoxProperty}[卷积积分的分配律]
卷积积分满足分配律
\begin{Equation}
f_1(t)*\left[f_2(t) + f_3(t)\right]= f_1(t)*f_2(t) + f_1(t)*f_3(t)
\end{Equation}
即系统并联时总的响应为子系统响应之和。
\end{BoxProperty}
\begin{BoxProperty}[卷积积分的结合律]
卷积积分满足结合律
\begin{Equation}
\left[f(t)*f_1(t)\right]*f_2(t) = f(t)*\left[f_1(t)*f_2(t)\right]
\end{Equation}
即系统级联时总的响应等于子系统响应的卷积。
\end{BoxProperty}
\begin{BoxProperty}[卷积积分的时移特性]
若$f_1(t)*f_2(t) = f(t)$,则
\begin{Equation}
f_1(t-t_1)*f_2(t-t_2) = f_1(t-t_2)*f_2(t-t_1) = f(t-t_1-t_2)
\end{Equation}
\end{BoxProperty}
\subsection{与冲击函数或阶跃函数的卷积}
\begin{BoxProperty}[与冲激函数卷积的筛选性]
$f(t)$与$\delta(t)$卷积积分满足
\begin{Equation}
f(t)*\delta(t) = \delta(t)*f(t) = f(t)
\end{Equation}
即\xref{def:信号的时域分解}
\begin{Equation}
f(t)*\delta(t) = \int_{-\infty}^{\infty} f(\tau)\delta(t-\tau)d\tau = f(t)
\end{Equation}
推广
\begin{Equation}
f(t)*\delta(t-t_0) = f(t-t_0)
\end{Equation}
根据\xref{ppt:卷积积分的时移特性}再次推广
\begin{Equation}
f(t-t_1)*\delta(t-t_2) = f(t-t_1-t_2)
\end{Equation}
\end{BoxProperty}
\begin{BoxProperty}[与阶跃函数卷积]
与阶跃函数卷积满足
\begin{Equation}
f(t)*\varepsilon(t) = \int_{-\infty}^{\infty} f(\tau)\varepsilon(t-\tau)d\tau = \int_{-\infty}^{t} f(\tau) d\tau
\end{Equation}
推广
\begin{Equation}
\varepsilon(t) * \varepsilon(t) = t\varepsilon(t)
\end{Equation}
但$\varepsilon(t)*\varepsilon(-t)$不存在。
该性质可简记为求原函数的积分上限函数。
\end{BoxProperty}
\subsection{卷积的微积分性质}
\begin{BoxProperty}[卷积的微分性质]*
若$f(t) = f_1(t)*f_2(t) = f_2(t)*f_1(t)$,则:
\begin{Equation}
f^{(1)}(t) = f_1^{(1)}(t) * f_2(t) = f_1(t) * f_2^{(1)}(t)
\end{Equation}
\end{BoxProperty}
证明:
\begin{Equation}
f^{(1)}(t) = \frac{d}{dt}\int_{-\infty}^{\infty} f_1(\tau)f_2(t-\tau)d\tau = \int_{-\infty}^{\infty} f_1(\tau) \frac{d}{dt}f_2(t-\tau) = f_1(t)*f_2^{(1)}(t)
\end{Equation}
$f_1^{(1)}(t) * f_2(t)$同理。
\begin{BoxProperty}[卷积的积分性质]*
若$f(t) = f_1(t)*f_2(t) = f_2(t)*f_1(t)$,则:
\begin{Equation}
\int_{-\infty}^{t}\left[f_1(\tau)*f_2(\tau)\right]d\tau = \left[\int_{-\infty}^{t}f_1(\tau)d\tau\right]*f_2(t) = f_1(t)*\left[\int_{-\infty}^{t}f_2(\tau)d\tau\right]
\end{Equation}
\end{BoxProperty}
\begin{BoxProperty}[卷积的微积分性质]
在$f_1(-\infty) = 0$\footnote{先微分再积分}或$f_2^{(-1)}(\infty) = 0$\footnote{先积分再微分}前提下,有
\begin{Equation}
f_1(t)*f_2(t) = f_1^{(1)}(t)*f_2^{(-1)}(t)
\end{Equation}
条件推导:
该式成立要以原式进行一次微分再积分能够还原为条件,即
\begin{Equation}
\int_{-\infty}^{t}\frac{d\left[f_1(\tau)*f_2(\tau)\right]}{d\tau} d\tau = f_1(t)*f_2(t) - \lim\limits_{t\rightarrow -\infty} \left[f_1(t)*f_2(t)\right]
\end{Equation}
即满足
\begin{Equation}
\lim\limits_{t\rightarrow -\infty} \left[f_1(t)*f_2(t)\right]=0
\end{Equation}
即
\begin{Equation}
f_1(-\infty) = f_2(-\infty) = 0
\end{Equation}
性质推广:
\begin{Equation}
f^{(i)}(t) = f_1^{(j)}(t)*f_2^{(i-j)}(t)
\end{Equation}
\end{BoxProperty}
因此,对于求解连续时间系统的零状态响应还可以使用杜阿密积分。
\begin{BoxFormula}[杜阿密积分]
杜阿密积分
\begin{Equation}
y_{zs}(t) = f(t)*h(t) = f^{(1)}*h^{(-1)}(t) = f^{(1)}(t)*g(t) = \int_{-\infty}^{\infty} f^{(1)}(\tau)g(t-\tau)d\tau
\end{Equation}
\end{BoxFormula}