From 9dd97d526bf2ddbb234e921f2853c86c4e82c949 Mon Sep 17 00:00:00 2001 From: mikiiiss Date: Fri, 21 Jun 2024 02:31:02 +0300 Subject: [PATCH 1/5] backtesting --- .gitignore | 164 +----------------------------------- backtesting /backtest.ipynb | 55 ++++++++++++ requirements..txt | 6 ++ 3 files changed, 64 insertions(+), 161 deletions(-) create mode 100644 backtesting /backtest.ipynb create mode 100644 requirements..txt diff --git a/.gitignore b/.gitignore index 82f9275..35a17d8 100644 --- a/.gitignore +++ b/.gitignore @@ -1,162 +1,4 @@ -# Byte-compiled / optimized / DLL files -__pycache__/ -*.py[cod] -*$py.class - -# C extensions -*.so - -# Distribution / packaging -.Python -build/ -develop-eggs/ -dist/ -downloads/ -eggs/ -.eggs/ -lib/ -lib64/ -parts/ -sdist/ -var/ -wheels/ -share/python-wheels/ -*.egg-info/ -.installed.cfg -*.egg -MANIFEST - -# PyInstaller -# Usually these files are written by a python script from a template -# before PyInstaller builds the exe, so as to inject date/other infos into it. -*.manifest -*.spec - -# Installer logs -pip-log.txt -pip-delete-this-directory.txt - -# Unit test / coverage reports -htmlcov/ -.tox/ -.nox/ -.coverage -.coverage.* -.cache -nosetests.xml -coverage.xml -*.cover -*.py,cover -.hypothesis/ -.pytest_cache/ -cover/ - -# Translations -*.mo -*.pot - -# Django stuff: -*.log -local_settings.py -db.sqlite3 -db.sqlite3-journal - -# Flask stuff: -instance/ -.webassets-cache - -# Scrapy stuff: -.scrapy - -# Sphinx documentation -docs/_build/ - -# PyBuilder -.pybuilder/ -target/ - -# Jupyter Notebook -.ipynb_checkpoints - -# IPython -profile_default/ -ipython_config.py - -# pyenv -# For a library or package, you might want to ignore these files since the code is -# intended to run in multiple environments; otherwise, check them in: -# .python-version - -# pipenv -# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. -# However, in case of collaboration, if having platform-specific dependencies or dependencies -# having no cross-platform support, pipenv may install dependencies that don't work, or not -# install all needed dependencies. -#Pipfile.lock - -# poetry -# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. -# This is especially recommended for binary packages to ensure reproducibility, and is more -# commonly ignored for libraries. -# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control -#poetry.lock - -# pdm -# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. -#pdm.lock -# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it -# in version control. -# https://pdm.fming.dev/latest/usage/project/#working-with-version-control -.pdm.toml -.pdm-python -.pdm-build/ - -# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm -__pypackages__/ - -# Celery stuff -celerybeat-schedule -celerybeat.pid - -# SageMath parsed files -*.sage.py - -# Environments .env -.venv -env/ -venv/ -ENV/ -env.bak/ -venv.bak/ - -# Spyder project settings -.spyderproject -.spyproject - -# Rope project settings -.ropeproject - -# mkdocs documentation -/site - -# mypy -.mypy_cache/ -.dmypy.json -dmypy.json - -# Pyre type checker -.pyre/ - -# pytype static type analyzer -.pytype/ - -# Cython debug symbols -cython_debug/ - -# PyCharm -# JetBrains specific template is maintained in a separate JetBrains.gitignore that can -# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore -# and can be added to the global gitignore or merged into this file. For a more nuclear -# option (not recommended) you can uncomment the following to ignore the entire idea folder. -#.idea/ +.venv/* +das +.venv/bin diff --git a/backtesting /backtest.ipynb b/backtesting /backtest.ipynb new file mode 100644 index 0000000..d2a95ae --- /dev/null +++ b/backtesting /backtest.ipynb @@ -0,0 +1,55 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import backtrader as bt\n", + "import datetime\n", + "import yfinance as yf\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt \n", + "import plotly.graph_objects as go" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "cerebro = bt.Cerebro() " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/requirements..txt b/requirements..txt new file mode 100644 index 0000000..895a98d --- /dev/null +++ b/requirements..txt @@ -0,0 +1,6 @@ +backtrader +seaborn +matplotlib +datetime +plotly +yfinance From 858dba92e90426c83cd919da2ba00f7c4454a371 Mon Sep 17 00:00:00 2001 From: mikiiiss Date: Fri, 21 Jun 2024 02:44:22 +0300 Subject: [PATCH 2/5] nvidia stock --- backtesting /backtest.ipynb | 299 +++++++++++++++++++++++++++++++++++- 1 file changed, 298 insertions(+), 1 deletion(-) diff --git a/backtesting /backtest.ipynb b/backtesting /backtest.ipynb index d2a95ae..09d24e4 100644 --- a/backtesting /backtest.ipynb +++ b/backtesting /backtest.ipynb @@ -23,12 +23,309 @@ "cerebro = bt.Cerebro() " ] }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[*********************100%%**********************] 1 of 1 completed\n" + ] + } + ], + "source": [ + "df=yf.download('NVDA', start='2020-06-22')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OpenHighLowCloseAdj CloseVolume
Date
2020-06-229.3000009.5312509.2732509.5267509.498451398468000
2020-06-239.5510009.6425009.4075009.4500009.421928375108000
2020-06-249.4762509.5565009.1445009.2355009.208068449372000
2020-06-259.3557509.5050009.1822509.4900009.461808376072000
2020-06-269.5000009.5000009.1250009.1550009.127806592084000
.....................
2024-06-13129.389999129.800003127.160004129.610001129.610001260704500
2024-06-14129.960007132.839996128.320007131.880005131.880005309320400
2024-06-17132.990005133.729996129.580002130.979996130.979996288504400
2024-06-18131.139999136.330002130.690002135.580002135.580002294335100
2024-06-20139.850006140.759995129.529999130.779999130.779999504887012
\n", + "

1006 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Open High Low Close Adj Close \\\n", + "Date \n", + "2020-06-22 9.300000 9.531250 9.273250 9.526750 9.498451 \n", + "2020-06-23 9.551000 9.642500 9.407500 9.450000 9.421928 \n", + "2020-06-24 9.476250 9.556500 9.144500 9.235500 9.208068 \n", + "2020-06-25 9.355750 9.505000 9.182250 9.490000 9.461808 \n", + "2020-06-26 9.500000 9.500000 9.125000 9.155000 9.127806 \n", + "... ... ... ... ... ... \n", + "2024-06-13 129.389999 129.800003 127.160004 129.610001 129.610001 \n", + "2024-06-14 129.960007 132.839996 128.320007 131.880005 131.880005 \n", + "2024-06-17 132.990005 133.729996 129.580002 130.979996 130.979996 \n", + "2024-06-18 131.139999 136.330002 130.690002 135.580002 135.580002 \n", + "2024-06-20 139.850006 140.759995 129.529999 130.779999 130.779999 \n", + "\n", + " Volume \n", + "Date \n", + "2020-06-22 398468000 \n", + "2020-06-23 375108000 \n", + "2020-06-24 449372000 \n", + "2020-06-25 376072000 \n", + "2020-06-26 592084000 \n", + "... ... \n", + "2024-06-13 260704500 \n", + "2024-06-14 309320400 \n", + "2024-06-17 288504400 \n", + "2024-06-18 294335100 \n", + "2024-06-20 504887012 \n", + "\n", + "[1006 rows x 6 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "feed=bt.feeds.PandasData(dataname=df)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cerebro.adddata(feed)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + ">" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cerebro.run" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbkAAAR6CAYAAABmyXoXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3zO9f/H8ecO1052dhxGSs40cvgmORNDUijns1Chkhy/VEgWnUUlk0MISczXIYfmkFNGvlRUY5s5jZ3Y5tp2/f7w2/V12camXdd28bjfbrvpep8/n7324fbau/fHwWQymQQAAAAAAAAAgB1yLOwFAAAAAAAAAABwt0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJDcAAAAAAAAAwG6R5AYAAAAAAAAA2C3nwl5AXmVmZurs2bPy8vKSg4NDYS8HAAAAAAAAAKzOZDIpKSlJZcuWlaMje5ZzYjdJ7rNnzyowMLCwlwEAAAAAAAAANhcVFaXy5csX9jKKJLtJcnt5eUm68c309vYu5NUUDUajUZs3b1bbtm1lMBgKezm4DxBzsBZiC7ZEvMFaiC3YEvEGayG2YAvEGZA/iYmJCgwMNOdHkZ3dJLmzjijx9vYmyf3/jEajPDw85O3tzV8KsAliDtZCbMGWiDdYC7EFWyLeYC3EFmyBOAPuTn6OcE5OTlZISIj27dun/fv368qVK1q4cKH69++fre2JEyf0yiuvaNeuXXJxcVGHDh00Z84clSxZ0twmMjJSlSpVynGub775Rs8//3y+x5RuHFH93nvv6bPPPlNsbKyqVKmi8ePHq0ePHnm+VsmOktwAAAAAAAAAgDu7dOmS3nrrLVWoUEGPPPKIduzYkWO76OhoNW3aVD4+PpoxY4aSk5P13nvv6ddff9X+/fvl4uJi0b5Hjx4KDg62KHvsscfuesyJEydq5syZGjJkiBo0aKDvv/9ePXv2lIODQ7bE+e2Q5AYAAAAAAACAe0hAQIBiY2NVpkwZHTx4UA0aNMix3YwZM3T16lUdOnRIFSpUkCQ1bNhQbdq0UWhoqIYOHWrRvl69eurdu/dt587rmDExMZo9e7ZefPFFffLJJ5KkwYMHq1mzZnr99dfVrVs3OTk55el6eR0nAAAAAAAAANxDXF1dVaZMmTu2W716tTp27GhORktS69atVaVKFa1cuTLHPlevXtX169f/8Zjff/+9jEajRowYYS5zcHDQ8OHDFR0drb17995x/Vnsbie30WiU0Wgs7GUUCVn3gfsBWyHmYC3EFmyJeIO1EFuwJeIN1kJswRaIMyB/sn5WEhMTLcpdXV3l6up61+PGxMTowoULql+/fra6hg0bKiwsLFv5m2++qddff10ODg569NFHNX36dLVt2/auxjx8+LCKFSum6tWrZ2uXVd+kSZM8XYvdJbk3b94sDw+Pwl5GkbJly5bCXgLuM8QcrIXYgi0Rb7AWYgu2RLzBWogt2AJxBuTNtWvXJEmBgYEW5VOmTNHUqVPvetzY2FhJN442uVVAQIAuX76stLQ0ubq6ytHRUW3btlWXLl1Urlw5/fXXX5ozZ47at2+vdevWqUOHDvkeMzY2VqVLl872Qs2svmfPns3ztdhdkrtt27by9vYu7GUUCUajUVu2bFGbNm14GzFsgpiDtRBbsCXiDdZCbMGWiDdYC7EFWyDOgPzJ2sEdFRVlkRf9J7u4JSklJSXXcdzc3MxtXF1dVaFCBW3atMmiTZ8+fVSjRg299tpr5iR3fsbM+vN27fLK7pLcBoOBB+AtuCewNWIO1kJswZaIN1gLsQVbIt5gLcQWbIE4A/Im6+fE29u7QDf/uru7S5LS0tKy1aWmplq0yYm/v78GDBigmTNnKjo6WuXLl8/XmO7u7nc996148SQAAAAAAAAA3GeyjgXJOmLkZrGxsfL397/jbvGsI1QuX76c7zEDAgJ07tw5mUymbO0kqWzZsnm+FpLcAAAAAAAAAHCfKVeunEqWLKmDBw9mq9u/f7+CgoLuOMZff/0lSSpZsmS+xwwKCtK1a9d04sQJi3b79u0z1+cVSW471rp1a61bt86qcwwbNkxz58616hz5MX36dE2cOLGwlwEAAAAAAADYvWeffVbr169XVFSUuezHH3/UH3/8oW7dupnLLl68mK1vTEyMvvrqK9WpU8fiRZN5HbNz584yGAwWuUeTyaR58+apXLlyaty4cZ6vw+7O5LZXzZs31969e2UwGOTg4KAKFSpo6tSpFt/YoubUqVPasGGDPvroI0lSZGSkKlWqpPr162v//v3mN59+8MEHWrt2rXbs2GH1NY0aNUoPPfSQXn75ZZUpU8bq8wEAAAAAAAD26JNPPlF8fLzOnj0rSfrhhx8UHR0tSXr55Zfl4+OjCRMm6Ntvv1WLFi00atQoJScnKyQkRLVr19aAAQPMY40dO1Z//vmnWrVqpbJlyyoyMlLz58/X1atX9eGHH1rMm9cxy5cvr9GjRyskJERGo1ENGjTQ2rVrFR4erqVLl8rJySnP10qS24beffddjR49WiaTSWFhYerSpYsaNmyoihUrZmtrNBpt9vKF3OaaN2+ennvuObm4uFiU//3331q1alWhJOg9PT3Vvn17LViwgB3dAAAAAAAAQC7ee+89nT592vx5zZo1WrNmjSSpd+/e8vHxUWBgoHbu3KlXX31V48aNk4uLizp06KDZs2dbnMfdtm1bzZs3T59++qmuXLkiX19fNW3aVJMmTVK9evUs5s3rmJI0c+ZM+fn5af78+QoNDdXDDz+sJUuWqGfPnvm6Vo4rKQQODg7q0KGDfH199fvvv0uSduzYIV9fX3322WeqUKGCeTv+kiVLVL16dfn6+qpJkyb65ZdfchwzOTlZTz75pHr16iWj0agLFy6oV69eCggIUNmyZTV69Gjz20pzm+tW69atU8uWLbOVT5gwQZMmTVJ6enqO/c6fP6/u3burZMmSqlChgiZOnGhumzX3l19+qcDAQBUvXlxjx4616L9161Y1bNhQvr6+qlmzZrYjWVq1amX1Y1oAAAAAAAAAexYZGSmTyZTj1wMPPGBuV7NmTW3atElXr17VlStXtGTJEpUuXdpirB49emjnzp26cOGCjEajLl68qDVr1mRLcOdnTElydHTU+PHjFRkZqbS0NB07dky9evXK97WS5C4EmZmZ+v7775WSkmJxgHpSUpKOHDmi3377TTt37tRPP/2k4cOHa/78+bp48aK6du2qdu3aKSEhwWK8ixcvqkWLFqpZs6aWLFkiZ2dnPfXUUypTpoz+/PNP/frrrzpy5IimTZuW61y3unbtmk6ePKlq1aplq+vXr5+cnZ21YMGCHK+vZ8+eMhgM+vvvvxUeHq61a9dq1qxZFnMfP35cJ0+e1K5du/Tpp5+ajzo5evSounXrppkzZ+ry5cuaP3+++vTpY/5lgCTVqFFDERERebnVAAAAAAAAAO5xJLltaPz48fL19VWxYsX0zDPPaNKkSSpVqpS5PjMzUzNnzpSHh4c8PDy0ePFi9e7dW02bNpXBYNDo0aPl5+enDRs2mPucP39ezZo1U7du3TRnzhw5ODjo4MGDOnnypEJCQuTh4aHixYtrwoQJWrZsWa5z3erKlSuSJG9v72x1Tk5OmjFjht58801du3bNoi4mJkbbtm3TnDlz5OnpqYoVK2rixIkKDQ01tzGZTJo2bZrc3NxUvXp1NW7cWIcOHZIkzZ8/X/3791fLli3l6OioJk2aqGPHjlq5cqW5v7e3t65fv55tbgAAAAAAAAD3H5LcNvTOO+8oPj5eKSkp+v3337Vo0SLNnz/fXO/l5SVfX1/z5+joaIv/dUCSKlWqZD4gXpJ2794tR0dHDR8+3FwWGRmp+Ph4+fv7y9fXV76+vuratavOnz+f61y38vPzkyQlJibmWN+5c2dVqlQp28Hy0dHRcnNzs/jfDx588EGLNXt7e1sk1osVK6akpCTz2ufNm2det6+vr77//nvzAflZa3JxcckxOQ8AAAAAAADg/kKSu5BUrlxZwcHBWr9+vbnM0dHy21G+fHlFRkZalEVGRqp8+fLmz126dNG//vUvPfnkk+aEdGBgoEqVKqX4+HjzV0JCgpKTk3Od61YeHh56+OGH9dtvv+Xa5t1339WsWbN0+fJlizWnpqZaJNRvXfPtBAYGatSoURZrT05O1meffWZuc/z4cYtjXgAAAAAAAADcv0hyF5LIyEiFhYWpdu3aubbp3bu3li5dqt27dys9PV0ff/yx4uLiFBwcbG7j4OCgzz//XDVq1FDbtm2VkJCgBg0aKDAwUJMmTVJSUpJMJpNOnz6tjRs35muNnTp10vbt23Otb9KkiZo0aaK5c+eay8qVK6cWLVpozJgxunr1qs6cOaPp06erX79+eZrzhRde0MKFC7V9+3ZlZGQoLS1Ne/fu1YkTJ8xttm3bpo4dO+brWgAAAAAAAADcm0hy29Abb7whT09PeXp6qkmTJmrdurX+/e9/59q+WbNm+vjjjzVo0CAVL15cy5cv18aNG7MdM+Lo6KgvvvhCQUFBat26tRITE7V+/XrFxMSoevXq8vHxUYcOHXTq1Kl8rfeFF17Q8uXLZTQac23zzjvvmM/vzrJs2TKlpKSoYsWKevzxx9WhQweNHTs2T3PWrVtX33zzjSZNmqSSJUuqXLlymjx5stLS0iRJV69eVVhYmAYPHpyvawEAAAAAAABwb3Iu7AXcL3bs2HHb+ubNmys+Pj5beb9+/XLdBb1161aFhYVJurGje968eRb1CxcuzNdct6pSpYqCg4P15Zdfavjw4XrggQdkMpks2tSqVUsZGRkWZWXKlNGqVavyPPfatWstPrds2VItW7bMsf+HH36owYMHKyAg4I7rBwAAAAAAAHDvI8mN27r5xZhFwYQJEwp7CQAAAAAAAACKkHsuyW0ymWS6lmqz+Rw83OTg4GCz+QAAAAAAAAAA/3PvJbmvpervB9rabL5KkZvlUMzdZvMBAAAAAAAAAP6HF08CAAAAAAAAAOzWPbeT28HDTZUiN9t0vsIyaNAgXblyRcHBwYW2BgAAAAAAAAAoTPfcTm4HBwc5FnO32Zc9nce9cuVKNW7cWB4eHgoKCspWbzQa9dJLL8nPz0/+/v56+eWXlZ6ebrP6gl4PAAAAAAAAgHvfPZfkRu78/f01evRoTZw4Mcf6adOmadeuXTp+/Lj++9//Kjw8XDNmzLBZfUGvBwAAAAAAAMC9jyS3jSQmJuqll15SxYoV5e3trQYNGigqKkqSNGfOHD388MPy8vLSQw89pE8++cTcLy0tTQMHDlSJEiXk4+OjWrVq6cCBAxb1vXr1kpeXl6pWraodO3bkuobWrVure/fuKleuXI71X331lSZNmqSAgAAFBARo4sSJWrBggc3qC3o9AAAAAAAAAO5999yZ3EVV//79de3aNe3du1dlypTRkSNH5O7uLkmqWLGitm3bpvLly2vHjh0KDg5W3bp19fjjj2vRokU6cuSITp06JR8fH508edLcT5J27dqldevW6ZtvvtE777yj/v37KzIyMt/ru3LliqKjoy2OMQkKCtKZM2eUkJCgzMxMq9b7+PgU6HpuHQ8AAAAAAADAvYmd3DZw/vx5fffdd/r8889VtmxZOTo6qm7duipRooQk6dlnn1VgYKAcHBzUokULPfnkk+Yd2QaDQUlJSTpx4oRMJpOqVKmiwMBA89iPPvqomjVrJicnJw0YMECnT59WXFxcvteYnJwsSfL19TWXZf13UlKS1esLej0AAAAAAAAA7g8kuW3g9OnTcnV1VYUKFXKsX7p0qerVqyd/f3/5+voqLCxMly5dkiT16dNH/fv317Bhw1SiRAn179/fXCdZJnmLFSsm6e6SvJ6enpKkhIQEc1nWf3t5eVm9vqDXAwAAAAAAAOD+QJLbBipWrKi0tDTzGdw3O3PmjPr166dZs2bpwoULio+PV3BwsEwmkyTJ2dlZEyZM0JEjR3TixAmdOXNGb775ZoGv0c/PT+XLl1dERIS5LCIiQoGBgfLx8bF6fUGvBwAAAAAAAMD9gSS3DZQuXVqdO3fWsGHDFBsbq8zMTB0+fFhxcXFKTk6WyWRSqVKl5OjoqLCwMG3evNncd9u2bYqIiFB6erqKFSsmNzc3OTvf3VHqGRkZSk1NldFolMlkUmpqqtLS0sz1AwYM0PTp03Xu3DmdO3dOM2bM0ODBg21Wf6uCHg8AAAAAAADAvYcXT9rIokWL9MYbb6h+/fpKSkpS9erVtXr1atWoUUMTJ05Uy5YtlZGRoaeeekpPPfWUud/58+f14osvKioqSu7u7mrdurWmTJlyV2tYvHixBgwYYP7s7u6uihUrml9UOXnyZMXFxal69eqSpN69e2vChAnm9tauHzZsmCRp3rx5BTIeAAAAAAAAgHufgynrXIwiLjExUT4+PkpISJC3t3dhL6dIMBqNCgsLU3BwsAwGQ2EvB/cBYg7WQmzBlog3WAuxBVsi3mAtxBZsgTgD8oe86J1xXAkAAAAAAAAAwG6R5AYAAAAAAAAA2C2S3AAAAAAAAAAAu0WSGwAAAAAAAABgt0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJLcdaN68uT744IPCXgYAAAAAAAAAO5CcnKwpU6aoXbt28vf3l4ODg0JDQ3Nse+LECbVr106enp7y9/dXnz59dPHiRYs2v/32m8aOHaugoCB5eXkpICBAHTp00MGDB3McMyYmRt27d5evr6+8vb3VuXNn/fXXXzm2XbBggapXry43Nzc9/PDD+vjjj/N9vSS573Pbt29XixYt5OPjI19f3xzbvPnmmypdurS8vb3Vq1cvJScn27S+oNcDAAAAAAAA3MsuXbqkt956SydOnNAjjzySa7vo6Gg1bdpUp06d0owZMzRmzBht2LBBbdq00fXr183tvvzyS33xxReqX7++Zs+erVdffVW///67/vWvf2nr1q0WYyYnJ6tFixbauXOnJkyYoDfffFOHDx9Ws2bNFBcXZ9F2/vz5Gjx4sGrWrKmPP/5Yjz32mEaOHKl33303X9dLkvs+V6xYMQ0cOFBz5szJsX7hwoVasGCBwsPDdebMGcXFxWnkyJE2qy/o9QAAAAAAAAD3uoCAAMXGxur06dMKCQnJtd2MGTN09epVbdu2TSNHjtSECRO0cuVKHTlyxGLnd48ePRQVFaUvv/xSQ4cO1euvv659+/bJ399fU6dOtRhz7ty5OnnypNavX6+xY8fqlVde0ebNmxUbG6vZs2eb26WkpGjixInq0KGDVq1apSFDhujrr79Wr1699Pbbb+vKlSt5vt57LsltMklXr9ruy2S685ref/99tWzZ0qJsxYoVqlatmiTp8OHDatKkifz9/VWyZEn16NEj2281soSGhiooKMiirH79+hZBt3XrVjVs2FC+vr6qWbOm1q1bl+vaGjZsqD59+uihhx7Ksf6rr77SyJEjVaVKFfn6+urtt9/WN998o5SUFJvUF/R6AAAAAAAAgHudq6urypQpc8d2q1evVseOHVWhQgVzWevWrVWlShWtXLnSXPboo4/K09PTom/x4sX1xBNP6MSJExblq1atUoMGDdSgQQNzWbVq1dSqVSuLMbdv3664uDiNGDHCov+LL76oq1evasOGDXm7WEnOeW5ZRBiNRhmNxlzrr16V/PwMNlvPlStGFSt2+zbdunXTG2+8ob/++kuBgYGSpK+//lo9e/aU0WhURkaGpk2bpoYNG+ry5cvq0aOHxo4dq3nz5kmSTCaTMjIyzG1NJpPFfbi5/ujRo+rWrZtWrFihZs2aae/evercubN2796tqlWr5rrG9PR0Scp2b48ePaqJEyeay2vWrKnU1FT997//1SOPPGL1+lsV9HjIn6z7erufQeBuEFuwJeIN1kJswZaIN1gLsQVbIM6A/Mn6WUlMTLQod3V1laur612PGxMTowsXLqh+/frZ6ho2bKiwsLA7jnHu3DmVKFHC/DkzM1NHjx7VwIEDcxxz8+bNSkpKkpeXlw4fPixJ2eZ/9NFH5ejoqMOHD6t37955uha7S3Jv3rxZHh4eudanpjpJ6miz9WzatElubhl3bFe7dm1NnTpVzz77rOLj47V582Z16dLFIli2bNkiSWrSpIkWLVpkrouLi9Px48cVFhamI0eOKDEx0aJfUlKSjhw5orCwMM2fP19PPPGEUlJS9J///EeSFBQUpBkzZui5557LdX2//vqrjEZjtuBNTk7Wf//7X6WlpZnLXF1dtWXLFsXExFi9/lYFPR7uTlasAgWN2IItEW+wFmILtkS8wVqILdgCcQbkzbVr1yTJvHk2y5QpU7IdFZIfsbGxkm4cbXKrgIAAXb58WWlpabkm0sPDw7V3715NmjTJXJbVJ7cxJens2bOqWrWqYmNj5eTkpFKlSlm0c3FxUfHixXX27Nk8X4vdJbnbtm0rb2/vXOtNphu7q23Fw+NJOTjcuV1SUpJmzJihBQsW6OOPP9bjjz+ufv36SZJOnTqlsWPH6tChQ0pOTlZmZqYMBoOCg4MlSXPmzFGNGjUUHBysS5cuaefOnQoODpbRaNSWLVvk5eWlRx55RMHBwZo/f762bNmin376yTx3enq6qlWrZh4vJ8WKFbOYM4unp6dq1aplPm4lPT1daWlpatOmjR555BGr19+qoMdD/mTFXJs2bWQw2O7/mMC9j9iCLRFvsBZiC7ZEvMFaiC3YAnEG5E/WDu6oqCiLvOg/2cUtyXy8b07juLm5mdvkVH/hwgX17NlTlSpV0tixY/M9ZtafLi4uOa7Nzc0tX8cP212S22Aw3PEBmMu9KVTPPvusXnzxRR09elTLli3TiBEjzNfx8ssvq0qVKlq8eLF8fX21du1a9e/f31zv4OAgJycnGQwG+fj4KCUlxeIeXLhwwVxfoUIFjRo1SjNnzszX+pydb4TCrfe2Tp06OnbsmJ588klJ0pEjR+Tq6qqaNWvKYDBYvf5WBT0e7k5efg6Bu0FswZaIN1gLsQVbIt5gLcQWbIE4A/Im6+fE29v7tpt/88vd3V2SLE5EyJKammrR5mZXr15Vx44dlZSUpF27dlmc1Z2fMd3d3XX9+vUc15aamprj3Lm55148WVS5u7ura9eumjhxoo4fP65u3bqZ6xITE+Xl5SVvb29FRUXd9o2nQUFB+uuvvxQeHq709HStWbPG4iWVL7zwghYuXKjt27crIyNDaWlp2rt3b7YD4LNkZmYqNTXVHFCpqanmgJOkAQMG6KOPPtLJkyeVkJCgf//73+rZs6c5yKxdf6uCHg8AAAAAAAC4H2UdH5J1bMnNYmNj5e/vn21H9vXr1/XMM8/o6NGj+v7771WrVi2L+qw+uY0pSWXLljXPn5GRoQsXLmSbIy4uztwuL0hy21Dfvn21adMmPf300/Ly8jKXz5kzR+vXr5e3t7c6d+6sZ599NtcxKleurFmzZqlr166qUKGCjEajatSoYa6vW7euvvnmG02aNEklS5ZUuXLlNHny5Bx/eyJJP/30k9zd3fXkk08qISFB7u7uFgnhgQMHasCAAXr88cdVvnx5+fr66sMPP7RZ/YwZM9S+ffsCGw8AAAAAAACAVK5cOZUsWVIHDx7MVrd//34FBQVZlGVmZqpv37768ccftWzZMjVr1ixbP0dHR9WuXTvHMfft26cHH3zQnBfNGv/WtgcPHlRmZma2+W/HwWQymfLcuhAlJibKx8dHCQkJBbot355lvSgyODiY/70HNkHMwVqILdgS8QZrIbZgS8QbrIXYgi0QZ0D+/NO86MGDB9WgQQMtXLhQ/fv3t6gbPny4Fi1apN9//938Yssff/xRrVu31meffaZhw4aZ27744ouaO3eu5s+fr6FDh+Y637vvvqtx48bpwIEDql+/viTp999/V82aNTVmzBjzMcspKSkqX768GjdurB9++MHcv0+fPlqzZo2ioqLk7++fp2u0uzO5AQAAAAAAAAC398knnyg+Pl5nz56VJP3www+Kjo6WdOMdgT4+PpowYYK+/fZbtWjRQqNGjVJycrJCQkJUu3ZtDRgwwDzWBx98oLlz5+qxxx6Th4eHlixZYjFXly5dVKxYMUnSiBEj9MUXX6hDhw4aM2aMDAaD5syZo9KlS+u1114z93F3d9fbb7+tF198Ud26ddOTTz6p8PBwLVmyRNOnT89zglsiyQ0AAAAAAAAA95z33ntPp0+fNn9es2aN1qxZI0nq3bu3fHx8FBgYqJ07d+rVV1/VuHHj5OLiog4dOmj27NkW53FHRERIkvbu3au9e/dmm+vvv/82J7m9vLy0Y8cOvfLKK5o2bZoyMzPVvHlzvf/++ypZsqRFvxEjRshgMGj27Nlat26dAgMD9f7772vUqFH5ulaS3AAAAAAAAABwj4mMjMxTu5o1a2rTpk23bRMaGqrQ0NA8z12+fHl9++23eWo7ZMgQDRkyJM9j54QXTwIAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3XIu7AUAAAAAAAAAQG52zTkg1/dmyvE+3q67P+BpbW31qZ45ML6wl1IkkeQGAAAAAAAAUGSd3/iLaj/gK/9hXQt7KYXEpJTdEUr/z7HCXkiRRZIbAAAAAAAAQJHl+2eEPHs3VIm+7Qt7KYXCZDLpQnKK9J//FvZSiqz7eJM/AAAAAAAAgKLs7z2xKpEeK4/H6xb2UlCEkeQGAAAAAAAAUCSdWPKLXNyc5Nm4VmEvBUUYSW4AAAAAAAAARVLa3gi51asuZy8Pi/LZs2crKChIrq6uCg4OtqiLj49X165d5eXlpZIlS2rSpEk2rb9VQY+H7DiTGwAAAAAAAECRc/1ausrGHVOxJs9mqytbtqzGjx+vH3/8UdHR0RZ1w4cP15UrV3T69GmdO3dObdu2VcWKFTVkyBCb1N+qoMdDduzkBgAAAAAAAFDkHPnmhIo5pqhY0+zncffo0UPPPfecihcvblGenJysNWvWaNq0afL391eNGjU0bNgwLVy40Cb1tyro8ZAzdnIXYZmZJl2NS821Pt1o1PWEDCVfTJGzId2GK8P9ipiDtRBbsCXiDdZCbMGWiDdYC7EFWyDOkFeRqw+pdgkfudd8QCaTyaLOwcEhxz7Hjx/X9evXVb9+fXNZ3bp19d5779mkvqDXg7whyV2EXY1L1YUabW/bpp6ky3rfNgsCRMzBeogt2BLxBmshtmBLxBushdiCLRBnyAtXVZfnc7XkIEmZmf+rcMz9cIqkpCR5eHjIYDCYy/z8/JScnGyT+oJeD/KG40oAAAAAAAAAFDlXjS5KO30uX328vLyUkpIio9FoLouPj5enp6dN6gt6PcgbdnIXYcWKu6nU8c251qcbjdq6datat24t55t+2wNYCzEHayG2YEvEG6yF2IItEW+wFmILtkCcIa+83w5X2obPZLycJEMJnzz1qVGjhgwGgw4dOqR//etfkqTDhw+revXqNqkv6PUgb0hyF2GOjg7yKumea73R6CwXHyd5lnS3+F8aAGsh5mAtxBZsiXiDtRBbsCXiDdZCbMEWiDPkVb0X6uv8dyYl7zoq/y5NLeqMRqPS09OVnp6uzMxMpaSkyNHRUZ6enurSpYsmT56slStX6ty5c/rss880ZcoUSbJ6/a0KejzkjONKAAAAAAAAABQ5ATX9dc6tolJ2Hc5W9+9//1seHh567733tGnTJnl4eKhly5aSpHnz5snb21uBgYF64okn1K9fPw0ZMsTc19r1rVu3tkhS/9PxcGfs5AYAAAAAAABQJKVUr6fkn7YrMyNTjk7/26/7zjvv6J133smxj6+vr1avXp3rmNau37p1a4GOhztjJzcAAAAAAACAIqlsx7oyXoxXyonThb0UFGEkuQEAAAAAAAAUSUE9q+tahquuhmc/sgTIQpIbAAAAAAAAQJHk6mlQTPHaukaSG7fBmdwAAAAAAAAAiizXx+oqeeMXOlHl2cJeSuHJzNR1B7/CXkWRRZIbAAAAAAAAQJFVb2RjHXa6fw+kuG68rkWLFmniktfy3OfQoUOaOHGi9uzZI5PJpMcee0yzZs1SUFCQRTuj0agZM2Zo0aJFiomJUbly5TRw4ECNGzdOzs6WqeO0tDT9+9//1uLFi3XlyhXVqVNH06ZNU5s2bbLNv2fPHo0dO1a//PKLvL291b17d82YMUOenp53dQ/uhCQ3AAAAAAAAgCKrTHU/tf+kfWEvo9AkJibq6c+fVmjb0Dy1/+WXX9SkSRMFBgZqypQpyszM1Ny5c9WsWTPt379fVatWNbft3bu3vv32Ww0cOFD169fXzz//rMmTJ+vMmTP6/PPPLcbt37+/Vq1apdGjR+vhhx9WaGiogoODtX37djVp0sTcLiIiQq1atVL16tU1Z84cRUdH67333tPJkye1cePGArkntyLJDQAAAAAAAAD3iMmTJ8vd3V179+5V8eLFJd1IZlepUkUTJkzQ6tWrJUkHDhzQypUrNXnyZL311luSpGHDhqlEiRKaM2eOXnrpJdWpU0eStH//fi1fvlwhISEaM2aMJKlv376qVauWxo4dqz179pjnnzBhgvz8/LRjxw55e3tLkh544AENGTJEmzdvVtu2bQv8mu/fff4AAAAAAAAAcI8JDw9X69atzQluSQoICFCzZs20fv16JScnm9tJ0vPPP2/R//nnn5fJZNKKFSvMZatWrZKTk5OGDh1qLnNzc9OgQYO0d+9eRUVFSbqx63zLli3q3bu3OcEt3UiIe3p6auXKlQV/wbLDndxGo1FGo7Gwl1EkZN0H7gdshZiDtRBbsCXiDdZCbMGWiDdYC7EFWyDOgPzJ+llJTEy0KHd1dZWrq2u29mlpaXJ3d89W7uHhoevXr+vYsWP617/+pbS0NEnK1tbDw0PSjXO9sxw+fFhVqlSxSFxLUsOGDSXdOKIkMDBQv/76q9LT01W/fn2Ldi4uLgoKCtLhw4fzdM35ZXdJ7s2bN5tvNG7YsmVLYS8B9xliDtZCbMGWiDdYC7EFWyLeYC3EFmyBOAPy5tq1a5KkwMBAi/IpU6Zo6tSp2dpXrVpVP//8szIyMuTk5CRJun79uvbt2ydJiomJMbeTpN27d6tSpUrm/lk7vLPaSVJsbKwCAgKyzZVVdvbsWXO7m8tvbZs1dkGzuyR327Zts/3G4H5lNBq1ZcsWtWnTRgaDobCXg/sAMQdrIbZgS8QbrIXYgi0Rb7AWYgu2QJwB+ZO1gzsqKsoiL5rTLm5JGjFihIYPH65BgwZp7NixyszM1LRp08wJ6JSUFElScHCwKlasqDFjxsjDw0OPPvqo9u3bp4kTJ8rZ2dncLqtPTvO5ublZjJn1Z25tbx6zINldkttgMPAAvAX3BLZGzMFaiC3YEvEGayG2YEvEG6yF2IItEGdA3mT9nHh7e+dp8++wYcMUFRWlkJAQLVq0SJJUv359jR07VtOnT5enp6ekG0nnDRs2qHv37nr22Wcl3UhOz5o1y6KddONIk6zjTW6Wmppqrr/5z9za5nSMSkHgxZMAAAAAAAAAcA+ZPn26zp8/r/DwcB09elQHDhxQZmamJKlKlSrmdjVr1tSxY8d07NgxhYeH6+zZsxoyZIguXbpk0S4gIMC8E/xmWWVly5Y1t7u5/Na2We0KGkluAAAAAAAAALjH+Pn5qUmTJqpdu7YkaevWrSpfvryqVatm0c7BwUE1a9ZUkyZN5O/vr+3btyszM1OtW7c2twkKCtIff/yR7eWXWed8BwUFSZJq1aolZ2dnHTx40KLd9evXFRERYW5X0EhyAwAAAAAAAMA9bMWKFTpw4IBGjx4tR8fcU8IpKSmaPHmyAgIC1KNHD3N5165dlZGRoc8//9xclpaWpoULF6pRo0bml2L6+PiodevWWrJkiZKSksxtFy9erOTkZHXr1s0KV2eHZ3IDAAAAAAAAAHL2008/6a233lLbtm1VvHhx/fzzz1q4cKHatWunUaNGWbTt3r27ypYtqxo1aigxMVFfffWV/vrrL23YsEFeXl7mdo0aNVK3bt00fvx4XbhwQZUrV9aiRYsUGRmpBQsWWIw5ffp0NW7cWM2aNdPQoUMVHR2t2bNnq23btmrXrp1VrpkkNwAAAAAAAADcI8qVKycnJyeFhIQoKSlJlSpV0rRp0/Tqq6/K2dkyHVy/fn0tXLhQ8+fPl7u7u5544gktW7Ysx2NFvv76a02ePFmLFy/WlStXVKdOHa1fv15Nmza1aFevXj1t3bpVb7zxhl555RV5eXlp0KBBeuedd6x2zSS5AQAAAAAAAOAe8dBDD2nTpk15ajt27FiNHTs2T23d3NwUEhKikJCQO7Zt0qSJdu/enadxCwJncgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAcA85dOiQ2rVrJ29vb3l5ealt27aKiIjIse3169c1Y8YMVatWTW5ubipdurQ6dOig6Ohoi3ZpaWl64403VLZsWbm7u6tRo0basmVLjmPu2bNHTZo0kYeHh8qUKaORI0cqOTm5oC/TzNlqIwMAAAAAAAAAbOqXX35RkyZNFBgYqClTpigzM1Nz585Vs2bNtH//flWtWtXc1mg0qkOHDtqzZ4+GDBmiOnXq6MqVK9q3b58SEhJUvnx5c9v+/ftr1apVGj16tB5++GGFhoYqODhY27dvV5MmTcztIiIi1KpVK1WvXl1z5sxRdHS03nvvPZ08eVIbN260yjWT5AYAAAAAAACAe8TkyZPl7u6uvXv3qnjx4pKk3r17q0qVKpowYYJWr15tbvv+++9r586d2rVrlxo2bJjrmPv379fy5csVEhKiMWPGSJL69u2rWrVqaezYsdqzZ4+57YQJE+Tn56cdO3bI29tbkvTAAw9oyJAh2rx5s9q2bVvg18xxJQAAAAAAAABwjwgPD1fr1q3NCW5JCggIULNmzbR+/XrzsSGZmZn68MMP1aVLFzVs2FDp6em6du1ajmOuWrVKTk5OGjp0qLnMzc1NgwYN0t69exUVFSVJSkxM1JYtW9S7d29zglu6kRD39PTUypUrrXHJ9reT22g0ymg0FvYyioSs+8D9gK0Qc7AWYgu2RLzBWogt2BLxBmshtmALxBmQP1k/K4mJiRblrq6ucnV1zdY+LS1N7u7u2co9PDx0/fp1HTt2TP/61790/PhxnT17VnXq1NHQoUO1aNEiXb9+XbVr19aHH36oFi1amPsePnxYVapUsUhcSzLv/o6IiFBgYKB+/fVXpaenq379+hbtXFxcFBQUpMOHD9/dTbgDu0tyb968WR4eHoW9jCIltwPeAWsh5mAtxBZsiXiDtRBbsCXiDdZCbMEWiDMgb7J2VwcGBlqUT5kyRVOnTs3WvmrVqvr555+VkZEhJycnSTdeLrlv3z5JUkxMjCTp5MmTkm4cWeLv76/58+dLkmbMmKF27drpwIEDqlOnjiQpNjZWAQEB2ebKKjt79qy53c3lt7YNDw/Px5Xnnd0ludu2bZvtNwb3K6PRqC1btqhNmzYyGAyFvRzcB4g5WAuxBVsi3mAtxBZsiXiDtRBbsAXiDMifrB3cUVFRFnnRnHZxS9KIESM0fPhwDRo0SGPHjlVmZqamTZtmTkCnpKRIkvnYkqSkJB0+fNicRG/ZsqUqV66sWbNmacmSJeY+Oc3n5uZmMWbWn7m1zaovaHaX5DYYDDwAb8E9ga0Rc7AWYgu2RLzBWogt2BLxBmshtmALxBmQN1k/J97e3nna/Dts2DBFRUUpJCREixYtkiTVr19fY8eO1fTp0+Xp6SlJ5iNNHn/8cYtd4hUqVFCTJk0sXibp7u6utLS0bHOlpqZajJX1Z25tczpGpSDw4kkAAAAAAAAAuIdMnz5d58+fV3h4uI4ePaoDBw4oMzNTklSlShVJUtmyZSVJpUuXzta/VKlSunLlivlzQECAeSf4zbLKssbKOqYkt7ZZ7QoaSW4AAAAAAAAAuMf4+fmpSZMmql27tiRp69atKl++vKpVqyZJql27tgwGg/mM7pudPXtWJUuWNH8OCgrSH3/8ke3ll1nnfAcFBUmSatWqJWdnZx08eNCi3fXr1xUREWFuV9BIcgMAAAAAAADAPWzFihU6cOCARo8eLUfHGylhLy8vBQcHa8+ePfrtt9/MbU+cOKE9e/aoTZs25rKuXbsqIyNDn3/+ubksLS1NCxcuVKNGjczHnfj4+Kh169ZasmSJkpKSzG0XL16s5ORkdevWzSrXZ3dncgMAAAAAAAAAcvbTTz/prbfeUtu2bVW8eHH9/PPPWrhwodq1a6dRo0ZZtJ0xY4Z+/PFHtWzZUiNHjpQkffTRR/L399eECRPM7Ro1aqRu3bpp/PjxunDhgipXrqxFixYpMjJSCxYssBhz+vTpaty4sZo1a6ahQ4cqOjpas2fPVtu2bdWuXTurXDNJbgAAAAAAAAC4R5QrV05OTk4KCQlRUlKSKlWqpGnTpunVV1+Vs7NlOrhGjRrauXOn3njjDU2bNk2Ojo5q2bKlQkJCVK5cOYu2X3/9tSZPnqzFixfrypUrqlOnjtavX6+mTZtatKtXr562bt2qN954Q6+88oq8vLw0aNAgvfPOO1a7ZpLcAAAAAAAAAHCPeOihh7Rp06Y8t69Xr562bNlyx3Zubm4KCQlRSEjIHds2adJEu3fvzvMa/inO5AYAAAAAAAAA2C2S3AAAAAAAAAAAu0WSGwAAAAAAAABgt0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJDcAAAAAAAAAwG6R5AYAAAAAAAAA2C2S3AAAAAAAAAAAu0WSGwAAAAAAAABgt5wLewF5lZGRIUmKjo6Wt7d3Ia+maEhPT9elS5cUExMjZ2e7+VbCjhFzsBZiC7ZEvMFaiC3YEvEGayG2YAvEGZA/iYmJkv6XH0V2dvMkOXXqlCSpZs2ahbwSAAAAAAAAALCtU6dOqUGDBoW9jCLJwWQymQp7EXlx5coV+fv7Kyoqip3c/89oNGrz5s1q27atDAZDYS8H9wFiDtZCbMGWiDdYC7EFWyLeYC3EFmyBOAPyJzExUYGBgbp8+bL8/PwKezlFkt3s5HZycpIkeXt7k+T+f0ajUR4eHvL29uYvBdgEMQdrIbZgS8QbrIXYgi0Rb7AWYgu2QJwBdycrP4rsePEkAAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktz3gNdee039+/cv7GXYlaFDh8rf319lypTRmTNn5OnpqYSEhMJeVr4MGzZMc+fOtfm83377rSZPnmzzeQEAAAAAAICckOS2AU9PT/OXk5OTXF1dzZ/bt29f2Mu7azt27JCDg4O6du1qUT569Og8J9137NghX1/fPM3j6ekpLy8vVaxYUZMmTVJmZuZdrXvXrl1atWqV/v77b507d04VKlRQcnKyfHx8JEn9+/fX6NGjc+xbpUoVHT58WKGhoQoKCrqr+QvCqVOntGHDBg0ePFhLly41x1OxYsXM9yrra+nSpQU6d8eOHbVw4UKdO3euQMcFAAAAAAAA7gZJbhtITk42fz3xxBN69913zZ83btxobpeeni6TyVSIK80/V1dXbdq0Sfv377fqPD4+PkpOTlZSUpLWr1+vL774QgsWLMjWzmg03nGsv//+WxUqVDAntfPqt99+U2pqqurWrZuvftYwb948Pffcc3JxcVGvXr3M8fTf//5XkhQdHW0u69Wrl7lfXu7Pnbi7u+vJJ5/M8f4DAAAAAAAAtkaSu5A5ODjok08+Ua1atVSsWDElJydrzpw5evjhh+Xl5aWHHnpIn3zyiUWfn376SbVr15afn59mzpyppKQki/o///xTnTp1UsmSJVWxYkVNmzbNvOv577//VuvWreXj4yN/f389/vjjunbt2l2v383NTa+88orGjRuXa5sLFy6oV69eCggIUNmyZTV69GilpaUpLi5O7du3V0JCgnnXcXh4+B3nrF27tp544gkdPXpUkZGRcnBw0MKFC1W5cmWVL19ekrR582bVrVtXPj4+qlevnrZu3SpJ+uijjzRkyBD9+uuv8vT0VP/+/c1jxMfH66OPPtLSpUs1d+5ceXp6qmbNmuZ5f/jhB3Xq1OmO60tKStLQoUMVEBCggIAADRs2TFevXpUkpaWlaeDAgSpRooR8fHxUq1YtHThwQJK0ZcsW1alTR15eXipdurSGDx+e6xzr1q1Ty5Yt77iWrB3nU6ZMUZkyZfT888/nuAs9KChIoaGh5s9bt25Vw4YN5evrq5o1a2rdunUW7Vu0aJGtDAAAAAAAACgMJLmLgGXLlmnz5s1KTExUsWLFVLFiRW3btk2JiYn68ssv9frrr2v37t2SpCtXruipp57SSy+9pIsXL6ply5ZatmyZeaxr166pVatWatWqlWJiYhQeHq7ly5dr4cKFkqSJEyeqcuXKunTpks6fP6+QkBA5Ozv/o/WPGTNGv/76qzZt2pStzmQy6amnnlKZMmX0559/6tdff9WRI0c0bdo0FS9eXBs3bjTv0s7a6X4nR44c0U8//aR69eqZy9atW6eDBw/q77//1qlTp9S5c2dNnjxZcXFxmjBhgp566in9/fffGjlypObNm6fatWsrOTnZIrErSSNHjlSvXr00YsQIi53RWXM89dRTd1zfqFGjdOrUKR07dky//vqrfvvtN73yyiuSpEWLFunIkSM6deqU4uPjtWbNGpUpU0aS1K9fP73++utKSkrSX3/9pT59+uQ4/rVr13Ty5ElVq1btjmuRpGPHjsnZ2VlnzpzR4sWL79j+6NGj6tatm2bOnKnLly9r/vz56tOnj37//Xdzmxo1aigiIiJP8wMAAAAAAADWRJK7CBg7dqzKli0rV1dXOTo66tlnn1VgYKAcHBzUokULPfnkk9qxY4ckaf369SpbtqxeeOEFOTs7q2HDhmrRooV5rA0bNsjPz0+jR4+Wi4uLKlSooFGjRpkT4QaDQbGxsYqMjJTBYFDjxo3l4uLyj9bv7e2tSZMmafz48dmOWzl48KBOnjypkJAQeXh4qHjx4powYYJFYj4vEhIS5OvrKz8/P3Xv3l0vv/yyxbnfU6ZMka+vrzw8PLRixQo1b95czzzzjJydndW1a1c1adJE33zzzV1fY1xcnI4dO6bmzZvftl1mZqaWLl2qd955R8WLF1eJEiU0Y8YMff3118rMzJTBYFBSUpJOnDghk8mkKlWqKDAwUNKN782pU6d08eJFFStWTI0bN85xjitXrki6cd/zwsfHRxMnTpSLi4s8PDzu2H7+/Pnq37+/WrZsKUdHRzVp0kQdO3bUypUrzW28vLx0/fr1f/R/AQAAAAAAAAAFgSR3EVChQgWLz0uXLlW9evXk7+8vX19fhYWF6dKlS5Kks2fPqmLFirn2j4yM1LFjx+Tr62v+eu2118wvCQwJCVG5cuXUunVrPfDAA5o6dWqOL3C8+WWGNx/ZkZvhw4frypUrWr58uUV5ZGSk4uPjzdfi6+urrl276vz583m7Of/Px8dH8fHxunLlin7//XdNnjxZDg4OOd6D6OhoPfDAAxb9H3zwQUVHR+drzpuFhYWpVatWcnV1vW27ixcv6vr16xbzP/jgg0pLS9OlS5fUp08f9e/fX8OGDVOJEiXUv39/8/f2u+++07Fjx1S1alXVrVvXIql8Mz8/P0lSYmJintZerlw5OTrm/Uc9MjJS8+bNs4ih77//XmfPnjW3SUpKynPSHAAAAAAAALCm+z7JnZoqLV4sPfus1Lz5jT8XL75Rbis3JyDPnDmjfv36adasWbpw4YLi4+MVHBxs3iFdtmxZnT592qJ/VFSU+b8DAwP16KOPKj4+3vyVmJhoPnajVKlSmjt3rk6fPq0ffvhB8+bN03fffZdtTTm9zPB2XFxc9Pbbb2vy5MkWLzcMDAxUqVKlLNaTkJCg5OTkbNf+T9w8Tvny5RUZGWlRHxkZaT6vOz9jZcnrUSUlS5aUi4uLxfyRkZFydXVViRIl5OzsrAkTJujIkSM6ceKEzpw5ozfffFOSVK9ePa1evVqXLl3S5MmT1bNnzxx/GeDh4aGHH35Yv/32211dj6enZ7Yd2Fm/BJFufM9GjRpl8T1LTk7WZ599Zm5z/PjxbOd6AwAAAAAAAIXhvk5yr1snlS0r9e0rrV0r7dx548++fW+U//CD7deUnJwsk8mkUqVKydHRUWFhYdq8ebO5vkOHDoqJidEXX3yh9PR0HTx4UNu3bzfXd+zYUefPn9fcuXOVmpqqjIwM/f777+bjTlauXKkzZ87IZDLJ19dXTk5O//hM7iw9e/ZUsWLFtGLFCnNZgwYNFBgYqEmTJikpKUkmk0mnT5/Wxo0bJUmlS5dWUlKSLly4UCBrkKTnnntOO3bs0Pfff6/09HStWbNGP/30k55//vk89S9durT++usv8y8Wrl+/rq1btyo4ONiinclkUmpqqsWXdOM+TJw4UZcvXzafCd6nTx85Ojpq27ZtioiIUHp6uooVKyY3Nzc5Ozvr+vXrWrx4sa5cuSJHR0f5+vpKUq7fm06dOll83/MjKChIf/31l8LDw5Wenq5Zs2YpLi7OXP/CCy9o4cKF2r59uzIyMpSWlqa9e/fqxIkT5jY7duxQx44d72p+AAAAAAAAoCDdt0nudeukp5+W4uNvfM46sSPrz/h4qXPnG+1sqUaNGpo4caJatmyp4sWLa8WKFRY7iP39/fX999/rww8/VMmSJbVlyxb16NHDXO/p6amtW7fqxx9/1AMPPKDixYurZ8+e5p26hw4dUuPGjeXp6anHHntMgwYNytMO5bxwdHTUzJkzLRKmTk5OWr9+vWJiYlS9enX5+PioQ4cOOnXqlCSpatWqGjRokGrUqCFfX1/t2rXrH6+jcuXKWrNmjaZMmSJ/f3+99dZb+u677/Tggw/mqf/gwYMVExMjf39/1alTRzt37lStWrVUokQJi3ZHjx6Vu7u7xddPP/2kDz/8UA888IBq1KihmjVrqnLlypozZ44k6fz58+rRo4d8fX1VqVIl+fj4aMqUKZJuvIC0cuXK8vLy0ssvv6xly5apePHiOa7xhRde0PLlyy12zefn/syaNUtdu3ZVQECA0tLSLI6kqVu3rr755htNmjRJJUuWVLly5TR58mSlpaVJklJTU/Wf//xHgwcPzvfcAAAAAAAAsL60tDS98cYbKlu2rNzd3dWoUSNt2bIlT31jYmLUvXt3+fr6ytvbW507d9Zff/112z67du2Sg4ODHBwczEfz2pKD6dY3BRZRiYmJ8vHxUUJCQp5fuJeb1NQbO7Xj46XbXb2Dg+TrK509K7m5/aMprcJoNCosLEzBwcEyGAyFvZx71ssvv6wKFSro9ddfL+ylWHjhhRcUFBSk4cOH22xOo9GoAQMGqHz58po5c6bN5sW9j+cZbIl4g7UQW7Al4g3WQmzBFogzIH/uJi/ao0cPrVq1SqNHj9bDDz+s0NBQHThwQNu3b1eTJk1y7ZecnKx69eopISFBr732mgwGg95//32ZTCZFRETkuCEzMzNTjz76qE6ePKmrV6/q4sWL2TaLWlvBnFNhZ779Vrpy5c7tTKYb7Vatknr3tv66UDTVrl1b7du3L+xlZDN//vxCmbdbt27Zjm4BAAAAAABA0bB//34tX75cISEhGjNmjCSpb9++qlWrlsaOHas9e/bk2nfu3Lk6efKk9u/frwYNGkiS2rdvr1q1amn27NmaMWNGtj6ff/65oqKiNHjwYH344YfWuag7uC+PK1m7Vsrr+w4dHaUc3suI+8jQoUMVGBhY2MsAAAAAAAAA7mjVqlVycnLS0KFDzWVubm4aNGiQ9u7dq6ioqNv2bdCggTnBLUnVqlVTq1attHLlymztL1++rEmTJumtt94yv2OuMNjdTm6j0XhX5xDf7NIlJ2Vm5i3LnZkpXbqUKaMx4x/NaQ1Z9+Gf3g8gr4g5WAuxBVsi3mAtxBZsiXiDtRBbsAXiDMifrJ+VxMREi3JXV1e5urpma3/48GFVqVIl29EmDRs2lCRFRETkuKEzMzNTR48e1cCBA7PVNWzYUJs3b1ZSUpK8vLzM5ZMnT1aZMmX0wgsv6O23387/xRUQu0tyb968WR4eHv9ojOvXG8jBIUAmk8Md2zo4mHT9+jmFhR34R3NaU14PjQcKCjEHayG2YEvEG6yF2IItEW+wFmILtkCcAXlz7do1ScqWmJ4yZYqmTp2arX1sbKwCAgKylWeVnT17Nsd5Ll++rLS0tDv2rVq1qiTp6NGjmj9/vsLCwuTk5JT3C7ICu0tyt23b9h+/ePLyZQf9/POdE9ySZDI56IUXShXJM4g7dOigSpUq6f3338/xRQ3Lli3TvHnz9NNPPxXC6nAvMhqN2rJli9q0acPLQVCgiC3YEvEGayG2YEvEG6yF2IItEGdA/mTt4I6KirLIi+a0i1uSUlJScqxzc3Mz1+fWL7dxc+o7cuRItW/fXm3bts3LZViV3SW5DQbDP34A9ughvfaaFB9/4+WSuXFwkHx9peefd1ZBPHObN2+uvXv3ymAwyMXFRXXq1NHs2bP16KOP3tV4GzZsUFhYmAwGg3bv3q2nn35a8fHx5vp+/fqpX79+/3zhwC0K4ucQyAmxBVsi3mAtxBZsiXiDtRBbsAXiDMibrJ8Tb2/vPG3+dXd3V1paWrby1NRUc31u/STlqe+KFSu0Z88eHTt2LA9XYH335Ysn3dykRYtu/LdDLhu6s8oXLbrRvqC8++67Sk5O1tmzZ1W3bl117ty54AYHAAAAAAAAcF8LCAhQbGxstvKssrJly+bYz9/fX66urnnq+/rrr6tbt25ycXFRZGSkIiMjzZtvo6Kicj0SxVruyyS3JHXqJK1de2OntiQ5Olr+6esrff/9jXbWkPVG05iYGJ0/f17du3dXyZIlVaFCBU2cOFHp6emSbpyF06VLF/n5+cnX11ePPvqoTp8+LUlq3bq11q1bp7i4OLVv314JCQny9PSUp6enwsPDFRoaqqCgIEnS+++/r5YtW1qsYcWKFapWrZr58/Lly1WnTh35+vqqQYMG2rNnj3UuHgAAAAAAAIBVBAUF6Y8//sj2osp9+/aZ63Pi6Oio2rVr6+DBg9nq9u3bpwcffND80smoqCgtW7ZMlSpVMn99+OGHkqR69erZ/Ojn+zbJLUlPPSWdPSstXiw9/bTUvPmNPxcvvlFurQS3dOPA+C+//FIVK1ZUz549ZTAY9Pfffys8PFxr167VrFmzJEnvvfee0tPTFRMTo7i4OC1YsMDiDaaSVLx4cW3cuFE+Pj5KTk5WcnKynnjiCYs2PXv21K5duxQVFWUuW7x4sfr06SNJCgsL05gxYxQaGqrLly9r/Pjx6tSpk+Li4qx3EwAAAAAAAAAUqK5duyojI0Off/65uSwtLU0LFy5Uo0aNzC+wPHPmjH777bdsfQ8cOGCR6P7999+1bds2devWzVz23XffZft67rnnJElff/213n//fWteYjZ2dyZ3QXNzk3r3vvFlC+PHj9fUqVPl5uamoKAgLVq0SM2bN9e5c+fMu7AnTpyoqVOnasKECTIYDIqLi9PJkyf1yCOP5PqbljspXbq0WrduraVLl2rcuHG6cOGCtmzZorlz50qSPv30U73++uuqV6+eJOmZZ57R7NmzFRYWZk6EAwAAAAAAACjaGjVqpG7dumn8+PG6cOGCKleurEWLFikyMlILFiwwt+vbt6927twp000vLRwxYoS++OILdejQQWPGjJHBYNCcOXNUunRpvfbaa+Z2Tz/9dLZ5IyIiJEnt27dXiRIlrHZ9Obmvd3IXhnfeeUfx8fE6d+6c/vOf/8jNzU1ubm4qXbq0uc2DDz6o6OhoSTfOt3niiSfUvXt3lSlTRqNGjcr1Dah30rdvXy1evFiS9M0336hx48aqUKGCJCkyMlITJkyQr6+v+SsiIkIxMTH/8IoBAAAAAAAA2NLXX3+t0aNHa/HixRo5cqSMRqPWr1+vpk2b3rafl5eXduzYoaZNm2ratGmaPHmyHnnkEe3cuVMlS5a00erzjyR3IStfvrxSU1N1/vx5c1lkZKTKly8vSfL09NS7776r33//XXv37tWPP/5o3n19M0fHO38rO3furOjoaB06dMjiqBJJCgwM1OzZsxUfH2/+unr1qsaNG1cAVwkAAAAAAADAVtzc3BQSEqLY2FilpqZq//79evLJJy3a7Nixw2IXd5by5cvr22+/VUJCgpKSkvTDDz+ocuXKd5xz6tSpMplMNt/FLZHkLnTlypVTixYtNGbMGF29elVnzpzR9OnT1a9fP0nS+vXr9ccffygzM1Pe3t4yGAxyds5+ykzp0qWVlJSkCxcu5DqXu7u7unbtqokTJ+r48eMW5+i8+OKLCgkJ0aFDh2QymXTt2jVt3brVvKMcAAAAAAAAAIoiktxFwLJly5SSkqKKFSvq8ccfV4cOHTR27FhJ0qlTp9SuXTt5eXmpRo0aeuyxxzR8+PBsY1StWlWDBg1SjRo15Ovrq127duU4V9++fbVp0yY9/fTTFi+w7NSpk2bOnKkhQ4bIz8/P/EbUzMxM61w0AAAAAAAAABSA+/7Fk7a0Y8eOHMvLlCmjVatW5Vg3evRojR49Ose6rVu3KiwszPz5888/t3hrapMmTdS/f3+LPs2aNcvxf0OQpG7dulns7gYAAAAAAACAoo6d3AAAAAAAAAAAu0WSGwAAAAAAAABgt0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJDcAAAAAAAAAwG45F/YCCl1qqvTtt9LatVJcnFS8uPT001K3bpKbW2GvDgAAAAAAAABwG/f3Tu5166SyZaW+fW8kuXfuvPFn3743yn/4obBXaFVnzpyRp6enEhISCnspAAAAAAAAAHBX7t8k97p1N3Zsx8ff+JyZaflnfLzUufONdgWkefPmcnJy0tGjR81l8fHxcnBwUGRkZIHNkxsHBwdFRESYP1eoUEHJycny8fGx+twAAAAAAAAAYA33Z5I7NVXq3//Gf5tMObfJKu/f/0b7AuLn56fx48cX2HgAAAAAAAAAcD+7P5Pc334rXbmSe4I7i8l0o92qVQU29YgRI7R792799NNPOdYvX75cderUka+vrxo0aKA9e/aY6+Lj49WtWzf5+vqqWrVq+vTTT/X000+b65csWaJatWrJy8tLFSpU0OTJk2X6/2ts2LChJKlx48by9PTUjBkzFBkZKQcHB8XHx+vw4cPy8vLStWvXzOPFxsbKxcVFMTExkqRffvlFLVq0kL+/vypXrqwvvviiwO4LAAAAAAAAANyN+zPJvXat5JjHS3d0lL77rsCm9vf31xtvvKFx48ZlqwsLC9OYMWMUGhqqy5cva/z48erUqZPi4uIkSS+//LKuXr2q06dPa/v27Vq6dKlF/+LFi2vNmjVKTEzUunXr9Pnnn2vZsmWSpP3790uS9uzZo+TkZE2YMMGib926dVWxYkV9d9O1Ll26VM2aNVO5cuV07tw5tWnTRsOHD9fFixe1du1aTZkyRT/++GOB3RsAAAAAAAAAyK/7M8kdF/e/s7fvJDNTuny5QKcfPXq0Tp8+rbVr11qUf/rpp3r99ddVr149OTo66plnnlG1atUUFhamjIwMrVixQm+99ZZ8fHwUEBCgV1991aJ/+/btVaVKFTk4OCgoKEg9evTQjh078ryuvn37avHixebPixcvVt++fc3/3bRpU3Xv3l1OTk6qVauWBgwYYE6iAwAAAAAAAEBhuD+T3MWL528nt79/gU7v7u6uKVOmaMKECcrIyDCXR0ZGasKECfL19TV/RUREKCYmRpcuXZLRaFRgYKC5fYUKFSzG3bRpkxo3bqwSJUrIx8dH8+bN06VLl/K8rl69emnbtm2KjY3VkSNH9Oeff+qZZ54xry0sLMxibR999JFiY2P/4d0AAAAAAAAAgLt3fya5n346fzu5u3Qp8CUMGjRImZmZWrRokbksMDBQs2fPVnx8vPnr6tWrGjdunEqUKCGDwaCoqChz+zNnzpj/+/r163rmmWf0wgsvKCYmRgkJCRo2bJj5TG5JcnBwuO2aypUrp2bNmmnZsmVavHixnnnmGRUrVsy8ti5dulisLSkpSWFhYQV1SwAAAAAAAAAg3+7PJHe3bpKfn3SHpK8cHG6069q1wJfg5OSk6dOna8aMGeayF198USEhITp06JBMJpOuXbumrVu3Kjo6Wk5OTurevbumTp2qhIQEnTt3Th988IG5b1pamlJTU1W8eHG5urpq37592Y4SKV26tP7888/brqtv375atGiRli1bZj6qRJL69Omjbdu2afXq1TIajTIajYqIiNCBAwcK5oYAAAAAAAAAwF24P5Pcbm5S1g7q3BLdWeWLFt1obwXPPvusKleubP7cqVMnzZw5U0OGDJGfn58qVaqkDz/8UJn/v+v8448/lqurqypUqKDmzZura9eucnZ2liR5eXnp008/1dChQ+Xt7a3p06frueees5jv7bff1siRI+Xn56eZM2fmuKZnnnlGf//9txwdHdWyZUtzebly5bRp0ybNnz9fAQEBKl26tF588UUlJiYW9G0BAAAAAAAAgDxzLuwFFJpOnaS1a6X+/aUrV26cvZ2Z+b8/fX1vJLg7dSqwKXN6CeTPP/9s8blbt27q1q1bjv39/Py0evVq8+fFixerZMmS5s/Dhg3TsGHDcp1/8ODBGjx4sEXZzceZSFKxYsWUlJSUY/+6detq8+bNuY4PAAAAAAAAALZ2/ya5Jempp6SzZ6VVq6TvvpMuX77xkskuXW4cUWKlHdx36+TJk0pISNCjjz6qU6dO6Z133lHjxo0Le1kAAAAAAAAAUGju7yS3dCOR3bv3ja8i7urVq+rdu7eioqLk4+Ojp59+Ws2bNy/sZQEAAAAAAABAoSHJbUeCgoL022+/mT8bjUaFhYUV4ooAAAAAAAAAoHDdny+eBAAAAAAAAADcE0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJDcAAAAAAAAAwG6R5AYAAAAAAAAA2C2S3AAAAAAAAAAAu0WSGwAAAAAAAABgt0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJDcAAAAAAAAAwG6R5AYAAAAAAACAe0haWpreeOMNlS1bVu7u7mrUqJG2bNmSp74xMTHq3r27fH195e3trc6dO+uvv/7Kse2CBQtUvXp1ubm56eGHH9bHH39ckJeRZyS5AQAAAAAAAOAe0r9/f82ZM0e9evXShx9+KCcnJwUHB2vXrl237ZecnKwWLVpo586dmjBhgt58800dPnxYzZo1U1xcnEXb+fPna/DgwapZs6Y+/vhjPfbYYxo5cqTeffdda15ajpxtPiMAAAAAAAAAwCr279+v5cuXKyQkRGPGjJEk9e3bV7Vq1dLYsWO1Z8+eXPvOnTtXJ0+e1P79+9WgQQNJUvv27VWrVi3Nnj1bM2bMkCSlpKRo4sSJ6tChg1atWiVJGjJkiDIzM/X2229r6NCh8vPzs/KV/g87uQEAAAAAAADgHrFq1So5OTlp6NCh5jI3NzcNGjRIe/fuVVRU1G37NmjQwJzglqRq1aqpVatWWrlypbls+/btiouL04gRIyz6v/jii7p69ao2bNhQgFd0Z3a3k/vixYtKTU01f3ZxcVGxYsWUkZGhxMTEbO2zfmOQlJSk9PR0i7pixYrJxcVFaWlpunbtmkWdwWCQp6enTCaT4uPjs43r4+MjR0dHJScny2g0WtS5u7vLzc1N169f19WrVy3qnJyc5O3tLUmKj4+XyWSyqPf29paTk5OuXbumtLQ0izo3Nze5u7vLaDQqOTlZ6enpyszM1MWLF+Xi4iIfHx9JUkJCgjIzMy36enp6ymAwKCUlxeL+SZKrq6s8PDxyvIcODg7y9fWVJCUmJiojIyPHe5iamqqUlJQc72FmZqYSEhKy3UNfX185ODjkeA89PDzk6uqa4z10dnaWl5eXJOnKlSvZxs26h1evXtX169dvew9vdvP3Jqd76OXlJWdn5xy/N1n3MD09XUlJSRZ1/+QeZsX3ne5hTvGddQ9ziu+se3in+L71Hqanp8tkMsloNN5VfN/tPXR0dDTHd0738HbxfT8/I2528z0sis+IuLg48/PM2fnGX008I+58D4vaM0L6Z/Ftq2fEzX9/enh48IxQ0X9G2Mu/I9zd3SVJcXFxcnS03EvCM+IGe3hG3Kwo/zvi6tWr2f7u5BnxP0XxGWEv/47I+nsy6/p4RtjnM6Ko/zsiK84SEhLk4+PDM8KOnhFZ+HfEDbZ6RmSt69ZxXF1d5erqmm3sw4cPq0qVKuZ7kqVhw4aSpIiICAUGBmbrl5mZqaNHj2rgwIHZ6ho2bKjNmzcrKSlJXl5eOnz4sCSpfv36Fu0effRROTo66vDhw+rdu3e2cazF7pLcP/30kzw8PMyfHR0d5eLiYvGX8M3c3Nwk3Ths/dYANxgMcnJyUnp6erZgyhrXZDJlC37pRhA5ODjo+vXr2R4+zs7OcnZ2VkZGRraHpYODgzn4bg1+6cYPgKOjo4xGY7YfHCcnJxkMhmzjhoeHW1xrTuNmXevtxr3X7mFO4+Z2D/MzblG8hzmNm3UPcxo361rv9nuzZcuWInkPcxqXZ0T2ay3Kz4is55nEMyKLPT4jrBnfBfmMCA8P5xmRw7UW5WfEzYryM2Lnzp25jlsU7yHPCPv+d8TNf3fyjPifovyMsJd/R2zZsoVnhOz/GXGzoviM2LFjB8+IfIxblJ4R/DviBls9I7J+WXBrYnrKlCmaOnVqtrFjY2MVEBCQrTyr7OzZs9nqJOny5ctKS0u7Y9+qVasqNjZWTk5OKlWqlEU7FxcXFS9ePNc5rMXuktxNmzY1/9ZMur9/c5qenq59+/apUaNG7OTO4R7ym1Pr7OTev3+/2rRpI5PJdN/95vRm9vCMuFlR34EVFxdnfp6xk9t+nxGSfeyuuPnvT3ZyZ7+HRfEZYS//jnB3d9eWLVvUrFkzdnLb8TPiZkX53xFXr17V9u3bLf7u5BnxP0XxGWEv/47I+nuyTZs2cnFx4Rlhp8+Iov7viKw4e+KJJ9jJLft6RmTh3xE32Hond1RUlMXu7Jx2cUs3zsvOqS4rsX7r9/vmfrmNe2vflJQUubi45DiOm5tbrnNYi4Pp1u96EZWYmCgfHx8lJCRk22p/vzIajQoLC1NwcLAMBkNhLwf3AWIO1kJswZaIN1gLsQVbIt5gLcQWbIE4A/Inv3nRWrVqqXTp0vrxxx8tyo8fP66aNWtq3rx5euGFF7L1u3TpkkqWLKm33npLkydPtqibO3euXnzxRf3222+qWrWqXnrpJc2bNy9bgl6SSpUqpVatWumbb77J55XePV48CQAAAAAAAAD3iICAAMXGxmYrzyorW7Zsjv38/f3l6uqap74BAQHKyMjQhQsXLNpdv35dcXFxuc5hLSS5AQAAAAAAAOAeERQUpD/++CPbMSn79u0z1+fE0dFRtWvX1sGDB7PV7du3Tw8++KD5yJ6sMW5te/DgQWVmZuY6h7WQ5AYAAAAAAACAe0TXrl2VkZGhzz//3FyWlpamhQsXqlGjRuYXWJ45c0a//fZbtr4HDhywSF7//vvv2rZtm7p162Yua9mypfz9/fXZZ59Z9P/ss8/k4eGhDh06WOPScmV3L54EAAAAAAAAAOSsUaNG6tatm8aPH68LFy6ocuXKWrRokSIjI7VgwQJzu759+2rnzp0WL+ocMWKEvvjiC3Xo0EFjxoyRwWDQnDlzVLp0ab322mvmdu7u7nr77bf14osvqlu3bnryyScVHh6uJUuWaPr06fL397fpNZPkBgAAAAAAAIB7yNdff63Jkydr8eLFunLliurUqaP169eradOmt+3n5eWlHTt26JVXXtG0adOUmZmp5s2b6/3331fJkiUt2o4YMUIGg0GzZ8/WunXrFBgYqPfff1+jRo2y5qXliCQ3AAAAAAAAANxD3NzcFBISopCQkFzb7NixI8fy8uXL69tvv83TPEOGDNGQIUPuZokFijO5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAABQfHy8hg4dqpIlS6pYsWJq0aKFfvnllzz3P3HihNq1aydPT0/5+/urT58+unjx4m37LF26VA4ODvL09LzrdTvfdU8AAAAAAAAAwD0hMzNTHTp00JEjR/T666+rRIkSmjt3rpo3b65Dhw7p4Ycfvm3/6OhoNW3aVD4+PpoxY4aSk5P13nvv6ddff9X+/fvl4uKSrU9ycrLGjh2rYsWK/aO1k+QGAAAAAAAAgPvcqlWrtGfPHn377bfq2rWrJKl79+6qUqWKpkyZomXLlt22/4wZM3T16lUdOnRIFSpUkCQ1bNhQbdq0UWhoqIYOHZqtz7Rp0+Tl5aUWLVpo7dq1d712jisBAAAAAAAAgPvcqlWrVLp0aT3zzDPmspIlS6p79+76/vvvlZaWdtv+q1evVseOHc0Jbklq3bq1qlSpopUrV2Zrf/LkSb3//vuaM2eOnJ3/2V5su9vJbTQaZTQaC3sZRULWfeB+wFaIOVgLsQVbIt5gLcQWbIl4g7UQW7AF4gzIn6yflcTERItyV1dXubq6Ftg8hw8fVr169eToaLkvumHDhvr888/1xx9/qHbt2jn2jYmJ0YULF1S/fv1sdQ0bNlRYWFi28tGjR6tFixYKDg7OMQmeH3aX5N68ebM8PDwKexlFypYtWwp7CbjPEHOwFmILtkS8wVqILdgS8QZrIbZgC8QZkDfXrl2TJAUGBlqUT5kyRVOnTi2weWJjY9W0adNs5QEBAZKks2fP5prkjo2NtWh7a//Lly8rLS3NnJTfsGGDNm/erCNHjhTI2u0uyd22bVt5e3sX9jKKBKPRqC1btqhNmzYyGAyFvRzcB4g5WAuxBVsi3mAtxBZsiXiDtRBbsAXiDMifrB3cUVFRFnnR2+3izszM1PXr1/M0vqurqxwcHJSSkpLjmG5ubpKklJSUXMfIqrtTf1dXV12/fl2vvPKKhg0bpho1auRpjXdid0lug8HAA/AW3BPYGjEHayG2YEvEG6yF2IItEW+wFmILtkCcAXmT9XPi7e2d582/P/30k1q0aJGntidOnFC1atXk7u6e47nbqampkiR3d/dcx8iqy0v/999/X5cuXdKbb76Zp/Xlhd0luQEAAAAAAAAAuatWrZoWLlyYp7ZZR4wEBASYjx25WVZZ2bJl7zhGbv39/f3l6uqqhIQETZs2TSNGjFBiYqJ5l3pycrJMJpMiIyPl4eGhUqVK5WntWUhyAwAAAAAAAMA9pEyZMurfv3+++gQFBSk8PFyZmZkWL5/ct2+fPDw8VKVKlVz7litXTiVLltTBgwez1e3fv19BQUGSpCtXrig5OVmzZs3SrFmzsrWtVKmSOnfurLVr1+Zr7SS5AQAAAAAAAOA+17VrV61atUpr1qxR165dJUmXLl3St99+q06dOlmct/3nn39Kkh566CFz2bPPPqtFixYpKirK/JLMH3/8UX/88YdeeeUVSVKpUqX03XffZZv7o48+0t69e/XNN9/k+PLKOyHJDQAAAAAAAAD3ua5du+pf//qXBgwYoOPHj6tEiRKaO3euMjIysp2f3apVK0lSZGSkuWzChAn69ttv1aJFC40aNUrJyckKCQlR7dq1NWDAAEmSh4eHnn766Wxzr127Vvv378+xLi9IcgMAAAAAAADAfc7JyUlhYWF6/fXX9dFHHyklJUUNGjRQaGioqlatesf+gYGB2rlzp1599VWNGzdOLi4u6tChg2bPnm2xC9waSHIDAAAAAAAAAOTn56cvv/xSX3755W3b3byD+2Y1a9bUpk2b8j1vaGioQkND890vi+OdmwAAAAAAAAAAUDSR5AYAAAAAAAAA2C2S3AAAAAAAAAAAu0WSGwAAAAAAAABgt0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJDcAAAAAAAAAwG6R5AYAAAAAAAAA2C2S3AAAAAAAAAAAu0WSGwAAAAAAAABgt0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJDcAAAAAAAAAwG45F/YC8spoNEqSTpw4IW9v70JeTdGQnp6uqKgo/fbbb3J2tptvJewYMQdrIbZgS8QbrIXYgi0Rb7AWYgu2QJwB+ZOYmCjpf/lRZGc3T5K9e/dKkv71r38V8koAAAAAAAAAwLb27t2rjh07FvYyiiS7SXLXqlVLkrR//34FBAQU8mqKhvT0dP34449q1aoVv/mETRBzsBZiC7ZEvMFaiC3YEvEGayG2YAvEGZA/sbGxatiwoTk/iuzs5kmS9dALCAhQ+fLlC3k1RYPRaFSJEiVUrlw5GQyGwl4O7gPEHKyF2IItEW+wFmILtkS8wVqILdgCcQbcHX4plDtePAkAAAAAAAAAsFskuQEAAAAAAAAAdoskNwAAAAAAAADAbpHkBgAAAAAAAADYLZLcAAAAAAAAAAC7RZIbAAAAAAAAAGC3SHIDAAAAAAAAAOwWSe58Sk9PL+wlAAAAAAAAAAD+H0nufPjhhx9Up04dxcTEFPZSAAAAAAAAAAAiyZ1ny5YtU5cuXXTixAnNnj27QMZcvny5unfvXiBjWcPu3bvVpEmTwl4GAAAAAAAAAOSKJHcefPbZZ+rdu7cyMjLUp08fzZo16x+PmZmZqQkTJmjy5MnmssmTJ6t27dpydnbW6NGj7ziGi4uLunfvruLFi8vf31+PPfaYPvjgAxmNxn+8Pkl6/PHHZTAY9P3339+2XVxcnEaOHKmKFSvK09NTDzzwgPr3768//vgjx/bHjh3Tk08+qRIlSsjBwUHx8fEW9QsXLlTVqlXl4+OjEiVK6JlnntGZM2cs2rz55psqXbq0vL291atXLyUnJ+e6vpo1a8rT09P85erqKm9vb3N9YmKi+vXrp1KlSsnf31/t2rXTn3/+eYe7AwAAAAAAAKAouG+T3ElJSXr55Zc1ZcoUnT9/Ptd2M2fO1IgRI2QymfTiiy8qNDRUzs7O/3j+sLAw+fv7q3bt2uayypUra9asWXrqqafyPM7MmTMVFxen8+fPa+bMmVq0aJE6deokk8n0j9coSf369dMnn3ySa31CQoIaN26s06dPa9OmTUpMTFRERIQaNWqkjRs35tjHYDCoe/fuCg0NzbG+ZcuW2r17txISEhQdHa2HHnpIAwcONNcvXLhQCxYsUHh4uM6cOWNOsufmv//9r5KTk81fbdu21fPPP2+u//e//63ff/9dx48fV2xsrB544AH17t37DncGAAAAAAAAQFFwXya5L168qBYtWuiTTz7RW2+9pYoVK2r48OE6deqUuY3JZNL48eM1fvx4SdLEiRP18ccfy9GxYG7ZunXr1LJlS4uyfv36qX379ha7jPPKYDCoWbNmWrNmjXbu3GlOMB8+fFhNmjSRv7+/SpYsqR49eiguLk6S9P333+vBBx+0SIj//PPP8vf3V2pqqiSpVatW2rFjh5KSknKc94MPPpCjo6NWr16tatWqydHRUb6+vho+fLhGjRqVY5+qVatq0KBBqlWrVo71FStWVIkSJSTd+D44Ojrq5MmT5vqvvvpKI0eOVJUqVeTr66u3335b33zzjVJSUu54n86ePauNGzdq0KBB5rK//vpLTz31lEqUKCFXV1f16dNHv/766x3HAgAAAAAAAFD47rsk95kzZ/TEE0/o0KFDKlGihBo2bKi0tDTNmzdPVapUUbdu3bRv3z69+OKLmjlzpiRp1qxZmjZtmhwcHApsHREREapWrVqBjZelUqVKevTRR7Vz505JkqOjo2bOnKnz58/r2LFjiomJ0bhx4yRJHTp00LVr18xtpRu7pHv06CE3NzdJUmBgoNzc3HTs2LEc59u0aZO6du16293ty5YtU506dfJ1Hbt27ZKvr688PDw0Z84cTZw40Vx39OhRBQUFmT8HBQUpNTU11+NRbrZo0SLVqFFDjRo1Mpe99NJL2rRpk86dO6eUlBSFhoaqU6dO+VovAAAAAAAAgMLxz8/dsCO//fab2rRpo+joaAUGBmrLli2qUqWKwsPDNWvWLG3YsEGrVq3SqlWrJEkODg6aP3++hgwZUuBruXLlyl3t2M6LcuXK6fLly5KkRx55xFxeunRpvfrqq3r99dclSc7OzurXr59CQ0PVvHlzpaamasWKFdq6davFeN7e3rpy5UqOc128eFHlypW77Xp69uypnj175usamjRpovj4eF26dElffvmlatSoYa5LTk6Wr6+v+bPBYJCHh0euu82zmEwmffXVV3rppZcsyh955BH5+PgoICBATk5Oevjhh7Vly5Z8rRcAAAAAAABA4bhvdnIfPHhQTzzxhKKjo1WtWjXt3r1bVatWlYODg5o2bar169fr119/Vd++feXs7CxnZ2d98803VklwS5Kfn58SExOtMnZMTIz8/f0lSadOnVLnzp1VtmxZeXt7q3fv3rp06ZK57cCBA7V69WolJyfru+++U4UKFVS/fn2L8RITE+Xn55fjXCVKlFBMTIxVriNr/EGDBqljx466evWqJMnT01MJCQnmNunp6bp27Zq8vLxuO9bOnTsVFRWV7bztrl27ytvbW5cvX9a1a9c0bNgwPfHEE7p27VrBXxAAAAAAAACAAnVfJLm3b9+uFi1a6NKlS6pfv77Cw8MVGBiYrV2tWrW0aNEiRUVF6eTJk3ruueestqagoCD99ttvBT5uZGSkDh06pObNm0uShg0bpnLlyun48eNKTEzUkiVLLM7grlq1qh555BGtWrVKoaGhGjBggMV4UVFRSk1NzfX87CeffFKrV69Wenp6gV9LFqPRqISEBF24cEGSVKdOHUVERJjrIyIi5OrqqipVqtx2nC+//FJPP/20ihcvblF++PBhDRs2TH5+fnJxcdHIkSMVHR2t48ePF/i1AAAAAAAAAChY93ySe+3atWrXrp2Sk5PVsmVLbdu2zfxSw9yUKVNGDzzwgFXX1alTJ23fvt2izGg0KjU1VRkZGcrIyFBqaqqMRmOexjMajQoPD9ezzz6rZs2aqV27dpJu7ML28vKSt7e3oqKiFBISkq3voEGDNHv2bP3000/Zdjlv27ZNTZs2zXWX9CuvvKKMjAx1795df/zxhzIzM5WQkKAvvvhCH374YY59TCaTUlNTlZaWJklKS0tTamqqOfm+cOFCRUdHy2Qy6dy5c+aXTGZ9TwYMGKCPPvpIJ0+eVEJCgv7973+rZ8+ecnd3z/X+xMfHa/Xq1RYvnMzy2GOP6YsvvlBSUpLS09M1d+5cubm5qXLlyrmOBwAAAAAAAKBouOeT3H/88YeuX7+uLl26aMOGDXc80sJWgoODdenSJYsXOg4ZMkTu7u5asmSJPvnkE7m7u9/xuJRx48bJ399fpUqV0uuvv67evXvrhx9+ML8kc86cOVq/fr28vb3VuXNnPfvss9nG6N69u06fPq327durZMmSFnVff/11tjOsb+bj46M9e/aoXLlyat26tby8vFSnTh3t3r1bHTp0kCQtXbpUNWvWNPc5ffq03N3dzS/eLFOmjNzd3XX69GlJN3ZmN2rUSJ6enqpXr54MBoM2btxovqaBAwdqwIABevzxx1W+fHn5+vpaJNRnzJih9u3bW6xz2bJlKlOmjFq3bp3tGhYuXKirV6/qwQcfVIkSJfT1119r7dq1Fud+AwAAAAAAACiaHEw3n11RhGW9LDIqKkrly5fPV9/Vq1erc+fOcnYuWu/Z/Oabb7R27VqtWLHirvobjUaFhYUpODhYBoPhH63loYce0ocffqiOHTuay/bs2aOxY8dq165d/2hs3DsKMuaAmxFbsCXiDdZCbMGWiDdYC7EFWyDOgPz5J3nR+0XRyvpaSU67l4uCHj16qEePHoW9DC1fvlwZGRnZdj83btyYBDcAAAAAAACAIu2+SHIjd9WrV9fly5e1aNEiOTk5FfZyAAAAAAAAACBfSHLf506cOFHYSwAAAAAAAACAu3bPv3gSAAAAAAAAAHDvIskNAAAAAAAAALBbJLkBAAAAAAAAAHaryJ7JnZaWprS0NPPnpKQkSVJ6erqMRmNhLatIyboP3A/YCjEHayG2YEvEG6yF2IItEW+wFmILtkCcAfmTnp5e2Eso8hxMJpOpsBeRk6lTp+rNN9/MVv7ll1+qRIkShbAiAAAAAAAAALCtS5cuafDgwYqKilL58uULezlFUpFNct+6kzsmJkY1atTQ33//rXLlyhXiymyvdevWeuqppzRy5EiLcqPRqC1btqhNmzYyGAyFtDrcT4g5WAuxBVsi3mAtxBZsiXiDtRBbsAXiDMifmJgYVapUiST3bRTZ40pcXV3l6upq/pyYmChJcnZ2LrAH4L7uI+7YptHKuQUyV3BwsB588EF98sknFuWJiYkqU6aM1q9fr5YtW+bY18HBQU5OTrlet8Fg4C8F2BQxB2shtmBLxBushdiCLRFvsBZiC7ZAnAF54+xcZFO4RcZ9f4cCe3bOtS5q2fcFNs+gQYM0ZMgQzZ492yJ5/8033yggIEAtWrQosLkAAAAAAAAA4H7hWNgLKMr+6PSYFi9efNuvvHrqqafk7OystWvXWpQvXLhQAwcO1NKlS1W9enX5+vqqSZMm+uWXX3IcJzQ0VEFBQRZl9evXV2hoqEX9v//9b5UoUUJlypTRihUrtHv3btWqVUs+Pj4aNGiQMjMzzf1/+eUXtWjRQv7+/qpcubK++OKLPF8XAAAAAAAAgKIlOTlZU6ZMUbt27eTv7y8HBwdz/vBmX3zxhZo1a6bSpUvL1dVVlSpV0oABAxQZGZmtrYODQ45fM2fOtP4F3cF9v5P7TurVq5drXW6J6JwYDAb16dNHX331lZ577jlJ0vHjx3Xw4EG9++676tixozZs2KDHHntMn376qdq1a6eTJ0/Kx8cn32s+duyYBg4cqHPnzmnRokUaOnSonnzySe3cuVNpaWmqW7eu1q5dq2eeeUbnzp1TmzZt9Nlnn+nZZ5/ViRMn1LZtWz344INq1apVvucGAAAAAAAACtKaNWs0btw4LV++/La5OvzPpUuX9NZbb6lChQp65JFHtGPHjhzbHT58WJUqVdJTTz0lPz8//f333/riiy+0fv16HTlyRGXLlrVo36ZNG/Xt29eirG7duta6jDy7Z5PcedllXcUG67jZoEGDVLt2bUVFRSkwMFBfffWVnnzySS1ZskS9e/dW06ZNJUmjR4/WZ599pg0bNqhnz575nqdkyZLml1T26NFDgwcP1qBBg1S8eHFJUrNmzfTLL7/omWee0eLFi9W0aVN1795dklSrVi0NGDBAy5YtI8kNAAAAAACAQrd69WqdPHlSGzduJMmdRwEBAYqNjVWZMmV08OBBNWjQIMd2c+dmfx/h008/rfr16+vrr7/WuHHjLOqqVKmi3r17W2XN/8Q9m+SWbr8LW5KSf9hro5XcUKNGDTVs2FCLFi3SuHHjtGTJEs2dO1dffPGFmjdvbtG2UqVKio6Ovqt5Spcubf5vDw+PHMuSk5MlSZGRkQoLC5Ovr6+5PiMjQ0888cRdzQ0AAAAAAAAUpKw81tWrVwt5JfbD1dVVZcqUuau+DzzwgCQpPj4+x/qUlBQ5ODjIzc3tLldX8DiT28YGDRqk0NBQrV+/XpmZmerUqZPKly+f7ZybyMhIlS9fPlt/T09PXbt2zaLs/Pnzd72ewMBAdenSRfHx8eavpKQkhYWF3fWYAAAAAAAAQEHJSnJn/Xm/SkpKUmJiovkrLS2twMaOi4vThQsXdPDgQQ0YMECScjzlITQ0VMWKFZO7u7tq1KihZcuWFdga/gmS3Db23HPP6dy5c3rllVfUt29fGQwG9e7dW0uXLtXu3buVnp6ujz/+WHFxcQoODs7WPygoSH/99ZfCw8OVnp6uNWvWKC4u7q7X06dPH23btk2rV6+W0WiU0WhURESEDhw48E8uEwAAAAAAACgQWTu47/ed3DVq1JCPj4/565133imwscuVK6fSpUurQYMG2rNnjz766CO1adPGok3jxo01ffp0rV27Vp999pmcnJzUq1cvffbZZwW2jrt1Tx9XcqcXQ1aRFLXs+9wbdHosXy+XzAsvLy91795dCxcu1KBBgyTdOCP7448/1qBBgxQbG6tatWpp48aNFkeIZKlcubJmzZqlrl27KjMzU23atFGNGjXuej3lypXTpk2b9MYbb+iFF15QZmamqlevrrfeeuuuxwQAAAAAAAAKCseV3HD8+HGVK1fO/NnV1bXAxt64caNSU1N14sQJLVmyJMd7vXv3bovPAwcO1KOPPqoJEyaof//+cnd3L7D15Nc9m+Tu06dPXhrdtrpRAa3lVl999ZW++uori7J+/fqpX79+Oba/9e2nr776ql599VUZjUaFhYUpODhYBoNBktS/f3/179/for3JZLL4HBoaavG5bt262rx5c/4vBAAAAAAAALAyjiu5wcvLS97e3lYZu0WLFpKk9u3bq3PnzqpVq5Y8PT310ksv5drHxcVFL730koYNG6ZDhw6pSZMmVllbXnBcCQAAAAAAAIAii53ctvXQQw+pbt26Wrp06R3bBgYGSpIuX75s7WXd1j27kxsAAAAAAACA/SPJbXspKSl5erHlX3/9JUkqWbKktZd0W+zkBgAAAAAAAFAkpaenm5Ot9/txJQUtPT1dV65cyVa+f/9+/frrr6pfv7657OLFi9naJSUl6YMPPlCJEiX06KOPWnWtd8JObgAAAAAAAABF0s27t9nJnT+ffPKJ4uPjdfbsWUnSDz/8oOjoaEnSyy+/LJPJpMDAQD333HOqWbOmihUrpl9//VULFy6Uj4+PJk+ebB7r008/1dq1a9WpUydVqFBBsbGx+uqrr3TmzBktXrxYLi4uhXKNWUhyAwAAAAAAACiSbt69TZI7f9577z2dPn3a/HnNmjVas2aNJKl3794qW7asBg8erO3bt2vVqlVKSUlR2bJl1aNHD02aNEkPPPCAue/jjz+uPXv26Msvv1RcXJyKFSumhg0b6quvvlLLli1tfWnZkOQGAAAAAAAAUCTdnOTmuJL8iYyMvGObDz74IE9jtWnTRm3atPlnC7IizuQGAAAAAAAAUCTdnNhOS0tTenp6Ia4GRRVJbgAAAAAAAABF0q27tzmyBDkhyQ0AAAAAAACgSCLJjbwgyQ3t2LFDvr6+5s/Nmze/43k87dq1U1hYmHUXdg9o27attm7dWtjLAAAAAAAAsEu3JrVJciMnJLltpHnz5nJ1dZWnp6e8vLxUs2ZNffvttwU2/r59+9SiRQv5+fnJ19dXderUUWhoaIGNf7Pt27fr4sWLCg4O1owZM+Tp6SlPT0+5u7vLwcHB/NnT01Ph4eFWWcPtvPnmmypdurS8vb3Vq1evO76U4HbtV65cqcaNG8vDw0NBQUHZ+vbv318uLi4W17x3715z/cSJE/X6668X2LUBAAAAAADcT27N6/DySeTEubAXcD959913NXr0aJlMJoWFhalLly5q2LChKlas+I/GTUpKUrt27fTOO+9o8+bNkqSIiAhdvHixIJadzaeffqoBAwZIkiZMmKAJEyZIurEj/Omnn1Z8fHyO/YxGowwGg1XWlGXhwoVasGCBwsPDVapUKT3//PMaOXKkvvrqq7tq7+/vr9GjR+vkyZO5/lJixIgRue58b9q0qeLj47V79249/vjjBXKNAAAAAAAA94tbk9rR0dEqX758Ia3mn/Hz85OzM+lYa+CuFgIHBwd16NBBvr6++v3331WxYkWFhobqgw8+UEREhLldUFCQRo8erV69eql8+fJasWKFmjdvbq6vXbu2OnXqpNKlS+vq1asaOnSoHB1vbM5v0KCBxZwXLlzQK6+8om3btsnBwUHdu3fXu+++K1dX13yt3Wg06j//+Y/eeuutO7adOnWqDh48qMDAQK1YsUIDBgyQl5eXIiIitHbtWnM7X19frV271nxty5cv14wZM3TmzBk9/PDD+vDDD9W4ceM8re+rr77SyJEjVaVKFUnS22+/raZNm+rTTz+Vu7t7vtu3bt1aku56V7yDg4NatmypdevWkeQGAAAAAADIp6wkt4uLi5ycnDRo0CC7TRR37979jkcE4+7YZ0TYuczMTP3www9KSUnJ8QiMWxkMBvXp00ehoaHmRPDevXt14cIFNWrUSA8//LB8fHz0/PPPq1evXmrUqJHKlClj7m8ymfTUU0/p8ccf159//qmUlBR17dpV06ZN09tvv52vtZ88eVLXrl1T1apV89T+P//5j7788kt9/PHHun79umbNmnXb9mFhYRozZoz+j737jo+qzvc//p70hHRqCIQgRTqIoIg06WKvKxYUUWwrdgQslBXZFVx15WdHEdcCYm+LoICKqICiNAFBIIQQCCSkTzLJ/P7gnmMmBVJm5swkr+d95HFnTv3M8JX7uO98+JyPP/5YvXr10ocffqgLLrhAO3bsUOPGjU96v99++03Tp0833/fq1UuFhYXasWOHevbsWefjK7No0SItWrRICQkJuvHGG3XPPfeYv2yQpC5dupgd9gAAAAAAAKg+I+Tu1KmTpk6dqsjIyBo3bfqC119/XVu3brW6jHqLkNuLpk6dqhkzZshut6uoqEiPP/64mjVrVq1zJ0yYoDPOOEPz589XZGSkFi5cqKuuukrBwcGKjo7W2rVrNW/ePN177736888/1bdvXz3//PPq3bu31q9fr507d+r7779XQECAIiIiNG3aNN166601DrkzMzMVERGhwMDAah3frVs33XDDDZJUrd+y/b//9//0wAMPqHfv3pKkSy+9VE8++aQ+//xzXXfddSc9Pzc31+UhmsHBwYqIiFBOTo5bji9v0qRJmjt3ruLj47Vu3TpdeeWVCggI0D333GMeEx0drczMzGpdDwAAAAAAAMdNnz5dc+bMUWhoqIYPH65BgwYpNjZWERERVpdWY19//bUOHTpkdRn1Fg+e9KI5c+YoKytLBQUF2r59u15//XW9+OKL1Tq3c+fO6tatm5YuXarCwkItXrzYDI8lqX379nrhhRe0a9cu7d+/X+3bt9eFF14op9OpPXv2KCsrS/Hx8YqNjVVsbKwuv/xypaen1/gzxMXFKT8/XyUlJdU6PikpqUbX37Nnj6ZNm2bWGRsbq40bNyo1NbVa50dGRurYsWPme4fDofz8fEVFRbnl+PJ69+6tpk2bKjAwUP369dOUKVO0ePFil2Oys7MVFxdXresBAAAAAABAOnz4sDkuNzAw0Bxl63Q6rSwLPoqQ+/+s0Ap1URet0Aqv3K99+/YaM2aMPv30U0nHw9b8/HyXYw4ePOjyfsKECVq4cKE++OADtWnTRqeddlql127ZsqWmTJmi1NRUHT16VK1bt1azZs2UlZVl/hw7dqxWT6Pt0KGDIiIitH379modX3Zsh1Txc+bl5Sk7O9t837p1az355JMutebl5WnKlCnVul+PHj1c5ppv3LhRoaGh5sztuh5/MuU/ryRt3bq1WmNpAAAAAAAAcFxaWpr5ulGjRmYORsiNyhByS3LKqWmapm3apmmaJqc8/x/Lnj179Pnnn6t79+6Sjs+C3r17t7799ls5HA498cQTOnLkiMs5f/vb37Rhwwb985//1I033mhu//333/Wvf/1Le/bsUWlpqbKysjR//nx17NhRjRs3Vt++fdW6dWs9/PDDysnJkdPp1N69e/XFF1/UuO7g4GCNGjVKK1eurNXn7t27t9auXavff/9dhYWFmjZtmmw2m7n/jjvu0Ny5c7VhwwY5nU7l5+drxYoV2r9/v6TjD4BMTk6u8vrjx4/Xf/7zH+3cuVPHjh3To48+qquvvrrSh05W5/iSkhIVFhaquLhYTqdThYWFstvt5vlLlixRdna2nE6n1q9fr3/+85+67LLLXO6xcuVKnX/++bX6vgAAAAAAABoio/kzICBA/fr1U1hYmKS/Qu758+erT58+Cg0N1cUXX+xy7uWXX66EhARFR0erbdu2euyxx1z2HzhwQGPGjFGjRo2UlJSkl19+uco6vv32W0VGRrr8BAQEaNKkSeYx3333nfr166eYmBglJiZq6tSpKi0tdcfXgGoi5Jb0pb7UOq2TJK3TOn0pzzwk8MEHHzT/YxgwYICGDx+uRx99VNLxzu4nnnjC/I/Qbrera9euLudHRUXpiiuu0O+//65rrrnGZfsvv/yigQMHKjo6WqeeeqoOHz6sTz75RNLxf9Lx6aefKjU1VZ07d1ZMTIzOO+88/fHHH7X6HHfccYcWLlxYq3OHDh2qW265Rf3791f79u3VvXt3l9EgF1xwgf75z3/q5ptvVlxcnNq2batnnnnG/Ith3759Ovvss6u8/o033qjx48fr7LPPVqtWrRQbG6tnnnnG3P/444/r3HPPrfbxb7zxhsLDwzVx4kT99ttvCg8Pd3no5vz585WUlKSoqChdc801uv3223XfffeZ+7/99ltFR0dr4MCBtfq+AAAAAAAAGiIj5A4ODtaAAQPM58MZGVHLli318MMP6+abb65w7vTp07Vnzx5lZ2dr9erVeuutt/Tf//7X3D927Fi1aNFChw4d0rvvvqsHHnhAq1evrrSOgQMHKjc31/zZtWuXAgMDddVVV0k63iB50UUX6aKLLtLRo0e1Zs0avfPOOycMzuF+Df7Bk0459YgeUaACVaISBSpQj+gRjdRI2WQ7+QWqadWqVSc95t5779W9995rvn/kkUcqHJOcnKwLLrhATZo0UXFxsSQpMTFR77zzzgmv3axZM7322muV7hsyZIiysrKqXevQoUMVHx+vL774wiUwLn+dGTNmVHr+vHnzNG/ePPP9TTfd5LL/iiuu0BVXXFHpuatXr9b8+fNPWN+MGTOqvPe0adNqdPwNN9zgMvu8vG+++eaEtTz22GOaO3fuCY8BAAAAAACAq7Ih91lnnWVOAjA6uS+99FJJx0fPGhMADMbkBEmy2WwKCAjQzp07JUm7du3Sd999pyVLlqhRo0Y688wzdc011+jVV1/V4MGDT1rX66+/rg4dOpgzwo8dO6ajR4/q+uuvV2BgoJKTkzV8+HBt2rSpjt8AaqLBd3IbXdwlOv4gxRKVeLSbuy4OHz6sl19+WbfddpvVpWjZsmUuAbe3fPXVV+rcubPX71tby5Yt04gRI6wuAwAAAAAAwK8YIXdCQoJOOeUUs5O7ujO5b7/9dkVERCgpKUm5ublmE+Nvv/2mhIQENW/e3Dy2V69e+u2336p13VdffVUTJkww38fHx+vGG2/UggULVFxcrF27dmnFihU677zzqnU9uEeDDrnLdnGXZXRze2M2d3XNnj1bycnJOu+88zRs2DCrywEAAAAAAAA85uDBgwoMDNSAAQMUFxdXYSb3yTz33HPKzc3VunXrNG7cOMXFxUmScnNzFRsb63JsbGyscnJyTnrNb7/9Vrt379a4ceNctl955ZV66aWXFB4ervbt2+v888/X6NGjq1Un3KNBh9zlu7gNvtjN/dBDDykvL08vvPCC1aUAAAAAAAAAHnXw4EGVlJRo586dioiIUFBQkMLDwxUSElLtawQEBKhPnz6KiorS/fffL0mKjIzUsWPHXI47duyYyzPjqrJgwQJdeOGFatq0qblt+/btuuiii/TUU0+psLBQBw4c0LZt2zRlypRq14m6a7Ahd1Vd3AZf7OYGAAAAAAAAGgJjXMmOHTuUlpam0NBQxcXFKTIyssbXKi4uNmdy9+jRQwcOHNChQ4fM/Rs3bnSZ412Z7OxsvfvuuxWeLbdp0ya1atVKl19+uYKCgpSQkKDrr79en332WY3rRO012JC7qi5ugye6uZOTk/Xhhx+67XoAAAAAAABAfWSE3DabTatXr66w3+FwqLCwUA6HQ6WlpSosLFRRUZH27t2r9957T7m5uSotLdX333+v//znPxo1apQkqV27djr77LM1bdo05efn66efftKbb77pMme7Mm+//bYaN26skSNHumw//fTTdeDAAX344YcqLS3V4cOH9cYbb+i0005z0zeB6miQIffJurgNdHMDAAAAAAAA3mW325WZmSnpeOf1qlWrKhzz2GOPKTw8XLNnz9Ynn3yi8PBwM4B++umn1apVK8XGxurGG2/UnXfe6TI+5O2331ZqaqqaNm2qyy67TE888YQGDx5s7u/atavefPNNl/stWLBA48ePV0CAa5zatm1bvfPOO5o1a5bi4uLUrVs3NWvWTE899ZS7vg5UQ5DVBVjB6OI+mbLd3KM0yguVAQAAAAAAAA1benq6JCk4OFjDhw/Xa6+9ppKSEgUG/tWwOmPGDM2YMaPS87/99tsTXj8xMVFffPFFlfu3bNlSYdtPP/1U5fEXXnihLrzwwhPeE57V4Dq5jS7ugGp+9AAFuLWbe8uWLerdu7eio6M1atQoHThwQHv27JHNZlNWVpZ53N13360bbrhBknTJJZdU+I/21ltv1d///ne31AQAAAAAAAD4CmNUSYsWLTR06FAdO3ZMv/76q8VVwZc1uJC7SEXap30qVWm1ji9VqVKUoiIVueX+r7zyit566y0dPHhQLVq00LXXXnvScyZMmKBFixbJ6TwetBcWFuqdd94xQ3AAAAAAAACgvjh8+LAkqWnTpurVq5eio6O1cuVKi6uCL2tw40pCFap1WqfDOlztc5qpmUIV6pb733bbberUqZMk6YknnlCLFi20f//+E55z7rnnym63a/Xq1RoyZIg++OADtWrVSn369NHnn3/ulroAAAAAAAAAX5CTkyNJio6OVlBQkAYOHKivv/5a48aNs7iy2isoKLC6hHqtwYXcktT6//7HCm3atDFfN2/eXKGhoQoODj7hOYGBgRo3bpwWLlyoIUOGaOHChbrxxhs9XSoAAAAAAADgdbm5uZKkqKgoSdKQIUP0wAMPqGfPnlaWVWcDBw60uoR6q0GG3Fbau3ev+frQoUOy2+1KTEyUJOXn5ys2NlaSlJaWpvDwcPPYG2+8Ub1799bUqVO1evVqvfHGG16tGwAAAAAAAPAGo5M7MjJSknT++eerWbNmVpbkFr1797a6hHqLkNvLXnzxRV100UVKSkrSgw8+qEGDBqlVq1ZKSkrS66+/rgcffFCrV6/W559/rssuu8w8r0OHDurdu7f+9re/6dxzz1WzZs1UXFxs4ScBAAAAAAAA3K98J3dMTIxGjBhhZUnwcQ3uwZNWu/HGGzV27Fg1b95cqampevPNNyVJr776ql577TXFxMToxRdf1FVXXVXh3AkTJujXX3/V+PHjvV02AAAAAAAA4BXlO7mBk6GT24v27NkjSXrooYcq7Bs2bJh27NhxwvOTk5PVvHlzjRkzxhPlAQAAAAAAAJYr38kNnAyd3H6iqKhITz75pG6++WYFBfG7CQAAAAAAANRPdHKjpgi5/cDq1asVFxenjIwMPfDAA1aXAwAAAAAAAHgMndyoKVqC/cDgwYOVl5dndRkAAAAAAACAx9HJjZry2ZDbbrfLbreb743F7XA4VFxcbFVZPsX4Hvg+4C2sOXgKawvexHqDp7C24E2sN3gKawvewDrDyRg5YHh4OOtEx/NQnJjN6XQ6rS6iMjNmzNDMmTMrbH/llVfUpEkTCyoCAAAAAAAA4Gl33nmnUlJSNGvWLPXo0cPqciyXkZGhm266SSkpKWrVqpXV5fgknw25y3dyp6amqkuXLvrzzz+VmJhYt4unpEgZGdU/vmlTyQcXUHFxsZYvX64RI0YoODjY6nLQALDm4CmsLXgT6w2ewtqCN7He4CmsLXgD6wwn0759e+3bt0/ff/+9+vTpY3U5lktNTVXbtm0JuU/AZ8eVhIaGKjQ01HyfnZ0tSQoKCqrbX4B2u9S/v5SeXv1zWrSQ9uyRytTjS4KDg/k/CvAq1hw8hbUFb2K9wVNYW/Am1hs8hbUFb2CdoSrGuJLY2FjWiI7noTixAKsL8LqQECkpSQqo5kcPCJBatz5+HgAAAAAAAACPys3NlSRFRUVZXAn8RcMLuW026R//kEpLq3d8aenx4202z9ZVhRtuuEF33323JGnPnj2y2WzKysqypBYAAAAAAADAk+x2u/mwycjISIurgb9oeCG3JI0cKfXtKwUGnvi4wMDjx40c6Z26AAAAAAAAgAbM6OKWCLlRfQ0z5Da6uUtKTnxcSYmlXdwAAAAAAABAQ2LM4w4LC2MWNaqtYYbc0sm7uT3Qxf3vf/9bSUlJioqKUnJysl555RVJ0ooVK3TGGWcoNjZWXbt21ccff+y2ewIAAAAAAAD+wgi5mceNmmi4vw4xurlHj658v5u7uHfs2KGHH35YP//8szp16qT09HSlp6frt99+0xVXXKH33ntPQ4YM0ffff6/zzjtPP/30k0499VS33BsAAAAAAADwBzx0ErXRcDu5paq7uT3QxR0YGCin06ktW7aooKBAzZs3V48ePfTiiy/qhhtu0NChQxUQEKABAwbo/PPP15IlS9x2bwAAAAAAAMAfGJ3czONGTTTskLuq2dwemMXdrl07vf7665o/f76aN2+ukSNHauPGjdqzZ49eeOEFxcbGmj8fffSRDhw44LZ7AwAAAAAAAP6ATm7URsMOuaWK3dwe6OI2XHnllVq5cqXS09PVs2dPXXfddWrdurXuuusuZWVlmT+5ubl6/vnn3X5/AAAAAAAAwJfRyY3aIOQu383tgS5uSdq+fbuWL1+ugoIChYSEKDIyUkFBQbrlllv02muvaeXKlSopKZHdbtfatWu1bds2t94fAAAAAAAA8HV0cqM2CLmlv7q5JY91cRcVFemRRx5R8+bN1bhxY3399ddauHChTjvtNL399tt6+OGH1bRpUyUmJuqRRx6R3W53ew0AAAAAAACAL6OTG7URZHUBPsFmkx5/XJo06fj/dnMXtyR1795dP/zwQ6X7hg4dqqFDh1a6b+HChebr5ORkOZ1Ot9cGAAAAAAAA+AI6uVEbhNyG4cOlrVutrgIAAAAAAABosOjkRm0wrgQAAAAAAACAT6CTG7VByA0AAAAAAADAJ9DJjdog5AYAAAAAAADgE+jkRm0QcgMAAAAAAADwCXRyozYIuQEAAAAAAAD4BDq5URuE3AAAAAAAAAB8Ap3cqA1CbgAAAAAAAAA+gU5u1AYhNwAAAAAAAACfQCc3aoOQGwAAAAAAAIDlSkpKlJ+fL4lObtQMITcAAAAAAAAAy+Xl5Zmv6eRGTRByAwAAAAAAALCcMaokMDBQYWFhFlcDf0LIDQAAAAAAAMByxkMnIyMjZbPZLK4G/oSQGwAAAAAAAIDljE5u5nGjpgi5AQAAAAAAAHjVH3/8ocmTJys9Pd3cVraTG6iJIKsLAAAAAAAAANCwXHTRRdq6dat+/PFHrV69WhKd3Kg9OrkBAAAAAAAAeNXWrVslSd988425jU5u1BYhNwAAAAAAAACvCg4OrrCNTm7UFiE3AAAAAAAAAK9q3bq1+drpdGry5Mm65ZZbJNHJjZoj5AYAAAAAAADgVS1atDBfb9u2TfPmzTPf08mNmiLkBgAAAAAAAOBVJSUl5uvXX39dTqfTfE/IjZoi5AYAAAAAAADgVQUFBebrBQsWuOxjXAlqipAbAAAAAAAAgFeVDbmPHDnisi8kJMTb5cDPEXIDAAAAAAAA8Kr8/Pwq9/3xxx9erAT1ASE3AAAAAAAAAK8yOrnj4+MlSR06dNBll10mSRo/frxlddUXubm5mj59ukaPHq34+HjZbDYtXLjQ5ZjS0lItXLhQF154oVq3bq1GjRqpW7dueuyxx1RYWFjpdRcsWKDOnTsrLCxMHTp00LPPPuuFT3NyQVYXAAAAAAAAAKBhMULu9evXKysrS02bNlXz5s2VlpampKQki6vzfxkZGZo1a5aSkpLUs2dPrVq1qsIx+fn5Gj9+vPr166dbb71VzZo109q1azV9+nR99dVX+vrrr2Wz2czjX3zxRd1666267LLLdO+99+rbb7/VpEmTlJ+frwcffNCLn64iQm4AAAAAAAAAXuN0Os2QOzw8XG3btjX3EXC7R0JCgtLS0tSiRQutX79effv2rXBMSEiI1qxZo/79+5vbbr75ZiUnJ5tB9/DhwyUd/6XEQw89pPPOO09Lly41jy0tLdU//vEPTZw4UXFxcd75cJVgXAkAAAAAAAAAr7Hb7ebr8PBwCyupv0JDQ9WiRYsTHhMSEuIScBsuueQSSdK2bdvMbStXrtSRI0d0++23uxx7xx13KC8vT5999pkbqq49Qm4AAAAAAAAAXmN0cUuE3DWRk5Oj7Oxs86fsLwvc6eDBg5KkJk2amNt++eUXSVKfPn1cjj399NMVEBBg7rcKITcAAAAAAAAArzFC7oCAAAUHB1tcjf/o0qWLYmJizJ85c+Z45D5PPPGEoqOjde6555rb0tLSFBgYqGbNmrkcGxISosaNG+vAgQMeqaW6mMkNAAAAAAAAwGuMkDsiIsLlwYY4sa1btyoxMdF8Hxoa6vZ7PP7441qxYoWee+45xcbGmtsLCgoUEhJS6TlhYWEu3flWIOQGAAAAAAAA4DVlHzqJ6ouKilJ0dLTHrr948WI9/PDDmjBhgm677TaXfeHh4SoqKqr0vMLCQsv/LBlXAgAAAAAAAMBrCLl9z/LlyzVu3Didd955euGFFyrsT0hIUElJiQ4dOuSyvaioSEeOHFHLli29VWqlCLkBAAAAAAAAeA0ht2/58ccfdckll6hPnz5asmSJgoIqDv/o1auXJGn9+vUu29evX6/S0lJzv1UIuQEAAAAAAAB4DSG379i2bZvOO+88JScn69NPP63yz2To0KGKj4/X888/77L9+eefV0REhM477zxvlFslZnIDAAAAAAAA8BpCbu+YP3++srKydODAAUnSJ598ov3790uS7rzzTgUEBGjUqFHKzMzUAw88oM8++8zl/Hbt2umss86SdPzP6h//+IfuuOMOXXHFFRo1apS+/fZb/fe//9Xs2bMVHx/v3Q9Xjs+G3Ha7XXa73Xyfk5MjSXI4HCouLraqLJ9ifA98H/AW1hw8hbUFb2K9wVNYW/Am1hs8hbUFb2Cdwcj5wsLCWAfV4HA4anXevHnztHfvXvP9+++/r/fff1+SdO2110qSUlJSJElTpkypcP71119vhtySdPvttys4OFhPPvmkPv74Y7Vu3VpPPfWU7rrrrlrV5042p9PptLqIysyYMUMzZ86ssP2VV15RkyZNLKgIAAAAAAAAQF2tWLFC8+fPV58+ffTwww9bXY7Py8jI0E033aSUlBS1atXK6nJ8ks92ck+dOlX33nuv+T41NVVdunTRsGHDlJiYaGFlvqO4uFjLly/XiBEjFBwcbHU5aABYc/AU1ha8ifUGT2FtwZtYb/AU1ha8gXUGo7s4KSlJY8aMsbga35eammp1CT7PZ0Pu0NBQhYaGmu+zs7MlSUFBQfwFWE5wcDDfCbyKNQdPYW3Bm1hv8BTWFryJ9QZPYW3BG1hnDVdRUZEkqVGjRqyBaggK8tkI12cEWF0AAAAAAAAAgIaDB0/C3Qi5AQAAAAAAAHgNITfcjZAbAAAAAAAAgNfk5+dLIuSG+xByAwAAAAAAAPAaOrnhboTcAAAAAAAAALyGkBvuRsgNAAAAAAAAwGuMkDsiIsLiSlBfEHIDAAAAAAAA8Bo6ueFuhNwAAAAAAAAAvIaQG+5GyA0AAAAAAADAawi54W6E3AAAAAAAAAC8Jj8/XxIhN9yHkBsAAAAAAACAVzidTu3du1eS1LJlS4urQX1ByA0AAAAAAADAK44cOaKsrCxJUvv27a0tBvUGITcAAAAAAAAAr9ixY4ckKSkpiXElcBtCbgAAAAAAAABeYYTcHTt2tLgS1CeE3AAAAAAAAAC8gpAbnkDIDQAAAAAAAMArdu7cKYmQG+5FyA0AAAAAAADAK+jkhicQcgMAAAAAAADwuNLSUjq54RGE3AAAAAAAAAA84rnnnlObNm20detW5ebmqqCgQJKUmJhocWWoTwi5AQAAAAAAAHjEHXfcoX379mnevHnKy8uTJAUEBCg0NNTiylCfEHIDAAAAAAAAcLvMzEzzdXx8vPLz8yVJERERstlsVpWFeoiQGwAAAAAAAIDbrV271nwdERHhEnID7kTIDQAAAAAAAMDtvv/+e/N1Tk4OITc8hpAbAAAAAAAAgNutWbPGfJ2bm2uG3I0aNbKqJNRThNwAAAAAAAAA3G7Lli3mazq54UmE3AAAAAAAAADcrqCgwHxNyA1PIuQGAAAAAAAA4HaFhYXm69zcXOXl5Uki5Ib7EXIDAAAAAAAAcKvS0lI5HA7zPZ3c8CRCbgAAAAAAAABuZbfbXd6XffAkITfcjZAbAAAAAAAAgFuVHVUi0ckNzyLkBgAAAAAAAOBW5Tu5CbnhSYTcAAAAAAAAANyqfMidl5en3NxcSVKjRo2sKAn1GCE3AAAAAAAAALcyxpWEhISY2w4fPiyJTm64HyE3AAAAAAAAALcyOrljY2MVEHA8gkxPT5dEyA33I+QGAAAAAAAA4FZGyB0WFqaoqChJhNzwHEJuAAAAAAAAAG5ljCsJDQ1VZGSkJEJueE6Q1QUAAAAAAAAAqF+MTu7Q0FAFBgZKkjIzMyURcsP9CLkBAAAAAAAAuFXZcSU2m81lHyE33I2QGwAAAAAAAIBblR1XEhIS4rKPkBvuRsgNAAAAAAAAwK3KjisxZnIbGjVqZEVJqMd48CQAAAAAAAAAtyo7rqR8yE0nN9yNkBsAAAAAAACAW5UdVxIVFeWyj5Ab7kbIDQAAAAAAAMCtyo4rIeSGpxFyAwAAAAAAAHArxpXAmwi5AQAAAAAAALhV2XElHTt2dNkXFhZmRUmoxwi5AQAAAAAAALhV2XElgwYNctkXEEAkCfdiRQEAAAAAAABwq7LjShITEy2uBvVdkNUFVMVut5v/MUhSTk6OJMnhcKi4uNiqsnyK8T3wfcBbWHPwFNYWvIn1Bk9hbcGbWG/wFNYWvIF11jDk5+dLkoKCglRcXKxu3bpp8+bNkvizrymHw2F1CT7P5nQ6nVYXUZkZM2Zo5syZFba/8soratKkiQUVAQAAAAAAAKiO+fPna8WKFbrmmmt0xRVX6NVXX9XHH38sSfrwww+tLc7PZGRk6KabblJKSopatWpldTk+yWc7uadOnap7773XfJ+amqouXbpo2LBh/BOH/1NcXKzly5drxIgRCg4OtrocNACsOXgKawvexHqDp7C24E2sN3gKawvewDprGJYsWSJJ6tGjh8aMGaMBAwbob3/7m84//3yNGTPG4ur8S2pqqtUl+DyfDblDQ0MVGhpqvs/OzpZ0/J848Begq+DgYL4TeBVrDp7C2oI3sd7gKawteBPrDZ7C2oI3sM7qt6KiIklSRESEgoOD1bhxY61YscLiqvxTUJDPRrg+gwdPAgAAAAAAAHAr41l7ZZtYAU8h5AYAAAAAAADgVkbIHRYWZnElaAgIuQEAAAAAAAC4VWFhoSQ6ueEdhNwAAAAAAAAA3IpxJfAmQm4AAAAAAAAAbsW4EngTITcAAAAAAAAAt2JcCbyJkBsAAAAAAACAWzGuBN5EyA0AAAAAAADArRhXAm8i5AYAAAAAAADgVowrgTcRcgMAAAAAAABwK8aVwJsIuQEAAAAAAAC4FeNK4E2E3AAAAAAAAADcpqSkRA6HQxKd3PAOQm4AAAAAAAAAbmN0cUuE3PAOQm4AAAAAAAAAblM25GZcCbyBkBsAAAAAAACA2xQWFkqSbDabgoKCLK4GDQEhNwAAAAAAAAC3MTq5Q0NDZbPZLK4GDQEhNwAAAAAAAAC3OXbsmCQpOjra4krQUBByAwAAAAAAAHCbjIwMSVLTpk0trgQNBSE3AAAAAAAAALc5fPiwJKlJkyYWV4KGgpAbAAAAAAAAgNsYndyE3NbJzc3V9OnTNXr0aMXHx8tms2nhwoWVHrtt2zaNHj1akZGRio+P13XXXWf+osKwZ88e2Wy2Sn/eeecdL3yiE+PxpgAAAAAAAADchnEl1svIyNCsWbOUlJSknj17atWqVZUet3//fg0aNEgxMTF6/PHHlZubq3nz5mnTpk366aefFBIS4nL82LFjNWbMGJdtZ511lqc+RrURcgMAAAAAAABwG8aVWC8hIUFpaWlq0aKF1q9fr759+1Z63OOPP668vDxt2LBBSUlJkqQzzjhDI0aM0MKFCzVx4kSX43v37q1rr73W4/XXFONKAAAAAAAAALgNndzWCw0NVYsWLU563Hvvvafzzz/fDLglafjw4erYsaOWLFlS6Tl5eXkqKipyW63uQMgNAAAAAAAAwG3o5PaMnJwcZWdnmz92u71O10tNTdWhQ4fUp0+fCvvOOOMM/fLLLxW2z5w5U5GRkQoLC1Pfvn315Zdf1qkGdyHkBgAAAAAAAOA2PHjSM7p06aKYmBjzZ86cOXW6XlpamqTjo03KS0hI0NGjR80gPSAgQCNHjtTcuXP18ccf66mnntKhQ4d07rnn6rPPPqtTHe7ATG4AAAAAAAAAbsO4Es/YunWrEhMTzfehoaF1ul5BQUGV1wkLCzOPCQ0NVVJSkpYtW+ZyzHXXXacuXbrovvvu03nnnVenWuqKTm4AAAAAAAAAbuF0Ounk9pCoqChFR0ebP3UNucPDwyWp0rEnhYWFLsdUJj4+XuPHj9f27du1f//+OtVSV4TcAAAAAAAAANwiOztbxcXFkgi5fZ0xpsQYW1JWWlqa4uPjTxqkt27dWpJ09OhR9xdYA4TcAAAAAAAAANzCeOhko0aNTtgFDOslJiaqadOmWr9+fYV9P/30k3r16nXSa+zevVuS9aNpCLkBAAAAAAAAuAWjSvzLZZddpk8//VQpKSnmtq+++ko7duzQFVdcYW4zfnlRVmpqql599VX16NGj0odXehMPngQAAAAAAADgFjx00nfMnz9fWVlZOnDggCTpk08+MWdn33nnnYqJidG0adP07rvv6pxzztFdd92l3NxczZ07V927d9f48ePNa02ePFm7du3SsGHD1LJlS+3Zs0cvvvii8vLy9Mwzz1jy+coi5AYAAAAAAADgFllZWZKk2NhYS+uANG/ePO3du9d8//777+v999+XJF177bWKiYlR69attXr1at17772aMmWKQkJCdN555+nJJ590mcc9cuRIvfDCC/p//+//KTMzU7GxsRo0aJAefvhh9e7d2+ufrTxCbgAAAAAAAABuYbfbJUlhYWEWV4I9e/ZU67iuXbtq2bJlJzxm7NixGjt2rBuq8gxmcgMAAAAAAABwi6KiIklSSEiIxZWgISHkBgAAAAAAAOAWhNywAiE3AAAAAAAAALcg5IYVCLkBAAAAAAAAuAUhN6xAyA0AAAAAAADALQi5YQVCbgAAAAAAAABuYYTcoaGhFleChoSQGwAAAAAAAIBb2O12SXRyw7sIuQEAAAAAAAC4BeNKYAVCbgAAAAAAAABuQcgNKxByAwAAAAAAAHALQm5YgZAbAAAAAAAAgFsQcsMKhNwAAAAAAAAA3MIIuUNDQy2uBA0JITcAAAAAAAAAt6CTG1Yg5AYAAAAAAADgFna7XRIhN7wryOoCqmK3283/KCQpJydHkuRwOFRcXGxVWT7F+B74PuAtrDl4CmsL3sR6g6ewtuBNrDd4CmsL3sA6q9+MPC8gIIA/YzdxOBxWl+DzbE6n02l1EZWZMWOGZs6cWWH7K6+8oiZNmlhQEQAAAAAAAIATmTJlin7//XdNmTJF/fr1s7qceiEjI0M33XSTUlJS1KpVK6vL8Uk+G3KX7+ROTU1Vly5d9OeffyoxMdHCynxHcXGxli9frhEjRig4ONjqctAAsObgKawteBPrDZ7C2oI3sd7gKawteAPrrH4766yztGHDBn344YcaM2aM1eXUC6mpqWrbti0h9wn47LiS0NBQl6ewZmdnS5KCgoL4C7Cc4OBgvhN4FWsOnsLagjex3uAprC14E+sNnsLagjewzuonY0RJREQEf75uEhTksxGuz+DBkwAAAAAAAADcoqioSJJcmlcBTyPkBgAAAAAAAOAWRsgdEhJicSVoSAi5AQAAAAAAALiF8Yw9Qm54EyE3AAAAAAAAALegkxtWIOQGAAAAAAAA4BaE3LACITcAAAAAAAAAtyDkhhUIuQEAAAAAAAC4hRFyh4aGWlwJGhJCbgAAAAAAAAB1VlJSopKSEkl0csO7CLkBAAAAAAAA1FlxcbH5mpAb3kTIDQAAAAAAAKDO7Ha7+ZqQG95EyA0AAAAAAACgzox53JIUHBxsYSVoaAi5AQAAAAAAANSZEXIHBQUpIIDYEd7DagMAAAAAAABQZ0bIHRoaanElaGgIuQEAAAAAAADUmRFyM48b3kbIDQAAAAAAAKDOCLlhFUJuAAAAAAAAAHVmt9slEXLD+wi5AQAAAAAAANQZndywCiE3AAAAAAAAgDoj5IZVCLkBAAAAAAAA1BkhN6xCyA0AAAAAAACgzoyQOzQ01OJK0NAQcgMAAAAAAACoMzq5YRVCbgAAAAAAAAB1RsgNqxByAwAAAAAAAKgzu90uiZAb3kfIDQAAAAAAAKDO6OSGVQi5AQAAAAAAANQZITesQsgNAAAAAAAAoM6MkDs0NNTiStDQEHIDAAAAAAAAqDM6uWEVQm4AAAAAAAAAdbJx40Y99dRTkgi54X2E3AAAAAAAAABqzel06sorr1R6erokQm54HyE3AAAAAAAAYCGHw6HVq1eruLjY6lJqZd26ddq5c6fVZaABI+QGAAAAAAAALHTzzTdryJAhev75560upVbeeustl/f79u2zqBI0VITcAAAAAAAAgEWcTqcWLlwoSZo9e7a1xVRTSUmJUlJSJB2vf/HixZKk66+/Xk2bNtWkSZOsLA8NECE3AAAAAAAAYJHt27ebr3v06GFhJdX30EMPKSkpSXPnzlVWVpYOHjwoSXr++ed16NAhDR061OIK0dAEWV0AAAAAAAAA0FB9+umn5uu8vDwLK6m+t99+W5I0efJkxcTESJJiY2MVHh5uZVlowOjkBgAAAAAAACyybNky8/WhQ4csrKT6WrRoYb6eMWOGJKl58+YWVQMQcgMAAAAAAACWKfuQxvT0dAsrqb6srCzzdVpamiTX4BvwNkJuAAAAAAAAwCJHjhwxX+fm5io/P9/CaqonMzOzwjZCbliJkBsAAAAAAACwQElJSYXA2Ne7uZ1OJyE3fA4hNwAAAAAAAGCBrKwslZaWSpISEhIk+X7InZ+fL4fDUWE7M7lhJUJuAAAAAAAAwALGqJKoqCi1bt1aku+H3EYXd2BgoJKSksztdHLDSoTcAAAAAAAAgAWMkLtx48ZmJ7Svh9zGQyfj4uLMYF4i5Ia1CLkBAAAAAAAAC/hjyG10csfGxrqE3IwrgZUIuQEAAAAAAAAL+HPITSc3fAkhNwAAAAAAAFBHeXl56t69u+66665qn1M25G7WrJkk3w+5KxtXYrPZ1LRpUwurQkNHyA0AAAAAAADU0a+//qrNmzdryZIl1T7Hnzu5y44radKkiYKDg60sCw0cITcAAAAAAABQR9nZ2ZKOd3RXV2Uh96FDh9xfnBuV7eQ+/fTTFRISojPOOMPaotDgEXIDAAAAAAAAdWSE3Pn5+XI6ndU6xxc7ufPy8tSnTx9Nnjy50v3lZ3Knpqbqgw8+8GaJQAVBVhdQFbvdLrvdbr7PycmRJDkcDhUXF1tVlk8xvge+D3gLaw6ewtqCN7He4CmsLXgT6w2ewtqCN9TXdWaEvyUlJcrLy9PBgwf17LPP6s4771SbNm0qPScjI0OSFBMTo/j4eEnHO6Vzc3MVGhrqncLLef/997VhwwZt2LBBjz32mGw2m8v+o0ePSpKioqJUXFysmJgYSfXvz9OXOBwOq0vweT4bcs+ZM0czZ86ssP2rr75SkyZNLKjIdy1fvtzqEtDAsObgKawteBPrDZ7C2oI3sd7gKawteEN9W2c//fST+fqjjz7SvHnztHHjRr3zzjt66aWXKj1nz549kqTdu3dr7dq1CgoKksPh0DvvvGPZgxw3bdpkvl68eLGio6Nd9m/fvl2StH//fn3++edera2hMn4Zgqr5bMg9depU3Xvvveb71NRUdenSRcOGDVNiYqKFlfmO4uJiLV++XCNGjGC4P7yCNQdPYW3Bm1hv8BTWFryJ9QZPYW3BG+rrOtuwYYP5un///tq/f7+k4zO2x4wZU+k5d9xxhyRp9OjROv3009W8eXOlpqaqW7duOv300z1fdCWMTm1Jateunfr27euyf968eZKkAQMGVPm54F6pqalWl+DzfDbkDg0NdflnGcZco6CgoHr1F6A7BAcH853Aq1hz8BTWFryJ9QZPYW3Bm1hv8BTWFryhvq2zsg+cLCoqUrdu3bRq1SpJUmlpaYXxI06n0+zQbd68uYKDg82Q+8iRI5Z9N7m5uebrffv2qX///i77jx07Jklq2rRpvfrz82VBQT4b4foMHjwJAAAAAAAA1JHxPDnp+MMnW7RoYb7/7bffKhx/4MAB2e12BQQEmMf6wsMns7KyzNe7du1y2ed0Os3ajBnigC8g5AYAAAAAAADqyJhCIB3v6i4oKDDfr1u3rsLxxniTLl26KDw8XJJvhNzGAzSl47PCy0pJSdGhQ4cUFBSkzp07e7s0oEqE3AAAAAAAAEAdlQ258/Pzqx1yl5297Qshd9lO7vIh99q1ayVJPXv2VEREhDfLAk6IkBsAAAAAAACooxN1cv/+++8Vjq8s5G7WrJmkmoXc+fn5Onz4cI3rrcqJxpUYIfdZZ53ltvvBMzZs2KDRo0crOjpaUVFRGjlypDZu3Fjpsd9//70GDBigiIgItWjRQpMmTXKZze4PCLkBAAAAAACAOio7kzsvL0+FhYXm+yNHjrgc63Q6tX79eklSnz59zO216eTu3LmzmjVrZj7Esq7Khtz79+/Xjh07zPeE3P7h559/1oABA7R7925Nnz5djz76qHbu3KnBgwdr+/btLsdu3LhRw4YNU35+vv7973/rpptu0ksvvaQrrrjCouprh0dzAgAAAAAAAHV0onElR48edTn2wIEDSk9PV0BAgHr27GluN0LulStXatiwYYqMjNRLL71kbi/P6XRq3759kqRvvvlGl156aZ0/R9mZ3E6nU71799aWLVvUtGlT/fLLL5IIuX3dI488ovDwcK1du1aNGzeWJF177bXq2LGjpk2bpvfee888dtq0aYqLi9OqVasUHR0tSUpOTtbNN9+sL7/8UiNHjrTkM9QUndwAAAAAAABAHZ1oXElmZqZKS0vN9z/99JMkqWvXri6zrcuG2V9//bU+/vhjLViwoMp7lr2H3W6v2wf4P0Yn9+LFi9WpUyfl5eVp+fLlWrp0qYqLi5WcnKzk5GS33Aue8e2332r48OFmwC1JCQkJGjx4sD799FNzFEl2draWL1+ua6+91gy4JWncuHGKjIzUkiVLvF57bRFyAwAAAAAAAHXgdDpP2MldWlqqY8eOme9/+OEHSVK/fv1crnPqqafqzDPPVP/+/dW9e3dJ0po1a6q8b9lr5uXl1e1D/B8j5O7Ro4eGDh0qSdqzZ4+ef/55SdLNN98sm83mlnuhZnJycpSdnW3+VPWLDbvdrvDw8ArbIyIiVFRUpM2bN0uSNm3aJIfD4TIyR5JCQkLUq1cvs3PfHxByAwAAAAAAAHVgt9vlcDjM9+U7uSXXudxVzbYOCQnRDz/8oDVr1ui1116TdDzkLtsFXlbZ+dnuePhk2TA+NjbW7Nj++OOP9cMPPygoKEgTJkyo831QO126dFFMTIz5M2fOnEqPO/XUU/XDDz+opKTE3FZUVKQff/xRkpSamipJSktLk3S8y7u8hIQEHThwwN0fwWMIuQEAAAAAAIA6KNvFLVUechtzuYuLi82HTp5otnXPnj3VqFEjHTt2TFu2bKn0mLKd3IcOHapV7WVlZ2fL6XRKOh5yt23bVtLxjl9JGjlyZJXzweF5W7du1bFjx8yfqVOnVnrc7bffrh07dmjChAnaunWrNm/erHHjxpmhtrE2jf8dGhpa4RphYWEV1rAvI+QGAAAAAAAA6qCykLuwsFCS1LJlS0l/dXL/+uuvKigoUFxcnDp27FjlNYOCgswQvKqRJWVD7vT09Np/gP9jdIaHhYUpLCyswuztvn371vkeqL2oqChFR0ebP5WF05J06623atq0aXrrrbfUtWtXde/eXbt27dLkyZMlSZGRkZJkjjSpbOxJYWFhpSNPfBUhNwAAAAAAAFAHOTk5Lu+Nrm1JSkxMdNlmjCrp16+fAgJOHM0NGDBAkvTRRx9Vut/dndxGyB0bGytJZie3oVevXnW+B7xj9uzZSk9P17fffqvffvtN69atM8feGL9cMcaUGB3eZaWlpZm/oPEHhNwAAAAAAABAHZTv5M7IyDBft2rVStJfndxVPXSyMtdcc41sNpv+97//afv27RX2e6qTOy4uTpIUHx/v0i1MyO1f4uLiNGDAAPMhpitWrFCrVq3UqVMnSVK3bt0UFBRkjs8xFBUVaePGjX71503IDQAAAAAAANRB+ZDbCLQDAwPNGdblO7lPNI/b0L59e51//vmSpGeffbbC/rIPnnRHJ3dmZqakvzq5bTabyyiLNm3a1PkesMbixYu1bt063X333ea/IIiJidHw4cP13//+1+VfI7zxxhvKzc3VFVdcYVW5NRZkdQEAAAAAAACAP6uqkzs8PFzx8fGSjgff6enp+vPPP2Wz2XTmmWdW69oTJ07UJ598ouXLl1fYV7aTOyMjQyUlJQoMDKztx6gwrqQ8m81W62vDe7755hvNmjVLI0eOVOPGjfXDDz/otdde0+jRo3XXXXe5HDt79mz1799fgwcP1sSJE7V//349+eSTGjlypEaPHm3RJ6g5OrkBAAAAAACAOjBC7oiICEl/dXKHh4ercePGko53chtd3F27dlV0dHS1rm08/LHsnG9D2ZC7tLTUvG9tle/klqRRo0ZJkgYPHlyna8N7EhMTFRgYqLlz5+qOO+7Qd999p8cee0wfffSRgoJce5579+6tFStWKDw8XPfcc49eeuklTZgwQUuXLrWo+tqhkxsAAAAAAACoAyOAbt26tbZv366SkhJJFTu5azKqxGCcf/ToUZWWlro8rLJsyC0dH1nSrFmzWn8OIyQ3gnlJeu211/Tyyy9r4sSJtb4uvKtdu3ZatmxZtY8fMGCA1qxZ48GKPI9ObgAAAAAAAKAOjPEk5WdWl+/k/vzzzyUdDxWry3gIZGlpqcvcZKliyF3Xh09WFnInJCTo0UcfVYsWLep0bcCT6OQGAAAAAAAA6sAIh5OSkly2h4WFmZ3Y69atkyQFBwfrwgsvrPa1w8PDFR4eroKCAu3bt0/R0dFmmF72wZOSZ0JuwB/QyQ0AAAAAAADUQXU6uQ3nnntulQ92rIoRlF9wwQVKTk7W+vXrJf3VyW3sP3jwYI1rL4uQG/6KkBsAAAAAAACoAyPkLt/JHR4erqSkJHPkiCRdddVVNb6+cf7evXslSY8//rikv0LuTp06SZLS0tKqdb3du3fr8ssv15lnnqn//ve/5nZCbvgrQm4AAAAAAACgDk4UckdEROjXX3/VnXfeqQkTJujSSy+t8fWNTm3DH3/8Ian2Iferr76q9957Tz/99JNmz55tbifkhr9iJjcAAAAAAABQB0bI3bJlSwUHB6u4uFjS8ZBbklq3bq3//Oc/tb5+ZSF3cXFxhZD7999/19ChQ3XFFVfotttuq/J6ZR9YaVwrODiYkBt+i05uAAAAAAAAoJbsdrtycnIkSU2bNlViYqK5zwi566p8yF1QUKDvvvtOpaWlkqTOnTtLkjZs2KCVK1fq9ttvP+H18vPzzdcOh0O7d+9WQUGBCgsLJRFyw/8QcgMAAAAAAAC1ZHQ/BwYGKiYmxuXhk54KuSXps88+kyQFBQXplFNOqdH18vLyXN7//vvv5ucICgpSVFRULSsFrEHIDQAAAAAAANSSMaqkcePGCggI8EjIXfbBlYa1a9dKOh6AJyQk1Oh6Jwq5GzduLJvNVstKAWsQcgMAAAAAAAC1ZITcTZo0kSSPd3IbAfS6devM+8XGxio0NNTlHGMueGWMcSXGmJPyITfgbwi5AQAAAAAAgFoq28kteT7k7tevn6S/Quzk5GTZbDa1aNHC5ZyyD5csz+jk7t27tyRp27ZthNzwa4TcAAAAAAAAQC2dqJM7LCzMLfcoG3KfddZZLvvatm0rSQoIcI35srKyqryeEXL36dNHEp3c8H+E3AAAAAAAAEAteXtcyZlnnumyLzk5WZKUnZ3tsv1EIXf5cSXHjh3T/v37JRFywz8RcgMAAAAAAAC1VD7kbt26tbnPCJPrquyDJzt06OASRBshd05Ojss5mZmZVV7P6ORu3ry52QG+a9cuSYTc8E+E3AAAAAAAAEAt/fnnn5KkZs2aSXIdUXLo0CG33KNsyN20aVOXbnEj5J45c6bLOdUZVxIZGamYmBhJf4XcZbvGAX9ByA0AAAAAAADUgt1u19dffy1JGjx4cIX9RgBdV7GxsZo4caJuvPFGJSYmKikpqcI97r//fq1Zs0ajRo2SVHXI7XQ6zQ7zRo0amQH6H3/8IYlObvinIKsLAAAAAAAAAPzR6tWrlZ+fr4SEBPXq1cvc/sMPP+jzzz/XLbfc4rZ7vfjii+Zro5O7efPm5tzvoKAg9e/fX82bN5dUdchtt9tVWloqSYqIiFBsbKykv8abEHLDHxFyAwAAAAAAALXw2WefSZLGjBkjm81mbj/zzDMrPCDSnYxO7so6xY3QuqqQ2xhVIh3v5DaONxBywx8xrgQAAAAAAACoBWNUyZgxY7x635EjR6px48a67LLLKuw7WchtjCoJCQlRUFAQITfqBTq5AQAAAAAAgFpIS0uTJJ166qlevW+3bt10+PBhl+5xQ3U7uSMiIiS5PtRSIuSGf6KTGwAAAAAAAKih0tJSc451fHy81+9fWcAt/RVyZ2RkyOFwVNhvhNyNGjVyOd5gxWcB6oqQGwAAAAAAAKihnJwc8wGO5buhrWSE1l9++aXi4+OVnp7ust8YV1JZyB0VFaWQkBCv1Am4EyE3AAAAAAAAUENHjx6VJIWHhyssLMziav5SNrTOycnRmjVrXPaXH1dS9nhGlcBfEXIDAAAAAAAANWSE3L423qP8+JHw8HCX9+XHlZTtQifkhr8i5AYAAAAAAABqyFdD7vKjU+x2u8v7E40rIeSGvyLkBgAAAAAAAGrIV0Pu8kF1UVGRy3vGlaA+IuQGAAAAAAAAaigzM1OS74XcUVFReu+998z3VYXcdHKjPiHkBgAAAAAAAGrI6OQuPx7EF1x66aU6//zzJTGuBA0DITcAAAAAAABQQ746rsQQGhoq6eTjSnjwJOoDQm4AAAAAAACghnw95A4JCZFUsZO7/LiS8PBwBQcHS/LdzwKcTJDVBVTFbre7/EeYk5MjSXI4HCouLraqLJ9ifA98H/AW1hw8hbUFb2K9wVNYW/Am1hs8hbUFb6gv6ywjI0OSFBMT45OfJSjoeOxXUFDgUl9ubq4kKSwszNweGxurw4cP++xnaegcDofVJfg8nw2558yZo5kzZ1bY/tVXX6lJkyYWVOS7li9fbnUJaGBYc/AU1ha8ifUGT2FtwZtYb/AU1ha8wd/X2e7duyVJf/75pz7//HOLq6koPT1dkrRp0yaX+v744w9J0p49e8ztzZo105EjR3TgwAGf/CwNnfELFVTNZ0PuqVOn6t577zXfp6amqkuXLho2bJgSExMtrMx3FBcXa/ny5RoxYoT5z0oAT2LNwVNYW/Am1hs8hbUFb2K9wVNYW/CG+rLOHnroIUnSsGHDNGzYMIurqejLL7/Ul19+qeTkZI0ZM8bc/tJLL0mS+vbta27v37+/0tPTdeqpp1pSK04sNTXV6hJ8ns+G3KGhoeaAfEnKzs6WdPyfWvjzX4CeEBwczHcCr2LNwVNYW/Am1hs8hbUFb2K9wVNYW/AGf19nmZmZko53Qfvi5wgPD5cklZSUKDg4WCkpKYqNjVVBQYEkKTo62qy7adOmatq0qWW14sSM0TOoGt8QAAAAAAAAUEP+9ODJ9PR0tW/fXr169TKfgRcXF2dleYBbBVhdAAAAAAAAAOBPCgoKVFhYKMn3Q+6ioiLt2LFDRUVF2rRpk8+H80BtEHIDAAAAAAAANWCMKgkMDFRUVJTF1VTOGANst9vNYLugoEBpaWmSpMaNG1tWG+BuhNwAAAAAAABADRihcVxcnGw2m8XVVK5sJ/eRI0fM7Q6HQxKd3KhfCLkBAAAAAACAGvCHkR9lO7nLhtySFBAQoJiYGCvKAjyCkBsAAAAAAACoAX8Iuct2chv1GuLi4hQQQCyI+oPVDAAAAAAAANRA2XElvsro5C4/rkRiHjfqH0JuAAAAAAAAoAaMB0/6Qyd3ZeNKfLluoDYIuQEAAAAAAIAa8LdxJXRyo74LsroAAAAAAAAAwJ/4Q8hd9sGThYWFLvt8uW6gNujkBgAAAAAAAGrAH0JuOrnRkBByAwAAAAAAADVgzOT2hwdPMpMbDQEhNwAAAAAAAFAD/tTJnZWVJbvd7rLPl+sGaoOQGwAAAAAAAKgBfwi5jU7ugwcPVtjHuBLUN4TcAAAAAAAAQA34Q8htdHIbbDab+dqX6wZqg5AbAAAAAAAAqKaSkhIdO3ZMkm+HxeVD7qSkJPM1ndyobwi5AQAAAAAAgGrKysoyX8fGxlpWx8kY40oMSUlJiomJkSQlJCRYURLgMUFWFwAAAAAAAAD4C2NUSVRUlIKDgy2upmrlO7nj4+P19ttvKz09XS1btrSoKsAzCLkBAAAAAACAEygoKJDD4VBUVJRfzOOWKnZyx8fH69xzz7WoGsCzGFcCAAAAAAAAVCEzM1OnnXaaTjnlFKWmpurIkSOSpLi4OIsrO7Hyndy+PFoFqCs6uQEAAAAAAIBKlJaWaty4cdq+fbskacaMGerVq5ckqU2bNhZWdnLlO7kJuVGfEXIDAAAAAAAAlfjXv/6lTz/9VMHBwSouLtarr76qESNGSJI6dOhgcXUnFhTkGvv5euc5UBeMKwEAAAAAAADK+fXXX/Xwww9Lkp577jmNHDlSpaWlWrZsmSSpY8eOVpZ3UjabzWVkCZ3cqM8IuQEAAAAAAIBy1q5dq9LSUg0ePFgTJkzQ4MGDXfb7esgtuY4soZMb9RkhNwAAAAAAAFBOcXGxJKlZs2ay2Wzq06ePy35fH1ciiU5uNBiE3AAAAAAAAEA5RsgdHBwsSTr99NPNfY0aNVJCQoIlddVE2U5uQm7UZ4TcAAAAAAAAQDnlQ+7GjRvrlFNOkXS8i9tms1lWW3WV7eRmXAnqM0JuAAAAAAAAoJzyIbckc2SJP8zjlv76DBKd3KjfCLkBAAAAAACAcioLua+++mpJ0kUXXWRJTTWVl5dnvo6IiLCwEsCzgqwuAAAAAAAAAPA1lYXcF110kUpKShQQ4B99o/n5+eZrfxivAtSWf/wXCQAAAAAAAHhRZSG3JL8JuCWpqKjI6hIAr/Cf/yoBAAAAAAAAL6kq5Abgewi5AQAAAAAAgHIcDockQm7AHxByAwAAAAAAAOXQyQ34D0JuAAAAAAAAoBxCbsB/EHIDAAAAAAAA5dSnkDs0NNTqEgCPIuQGAAAAAAAAyqkPIXevXr0kSVdffbW1hQAeFmR1AQAAAAAAAICvMULuoCD/jc+++OILffTRR7rmmmusLgXwKDq5AQAAAAAAgHLqQyd3ixYtdMsttygyMtLqUuBFN9xwg2w2W5U/qampkqQhQ4ZUun/06NEWf4Ka899fRQEAAAAAAAAeUh9CbjRMt9xyi4YPH+6yzel06tZbb1VycrISExPN7a1atdKcOXNcjm3ZsqVX6nQnQm4AAAAAAACgHEJu+KuzzjpLZ511lsu27777Tvn5+RVG18TExOjaa6/1ZnkewbgSAAAAAAAAoBxCbtQnb731lmw2W6UPIXU4HMrNzbWgKvch5AYAAAAAAADKIeSGr8nJyVF2drb5Y7fbq3VecXGxlixZov79+ys5Odll344dO9SoUSNFRUWpRYsWeuSRR8y1708YVwIAAAAAAACUQ8gNX9OlSxeX99OnT9eMGTNOet6yZct05MiRCqNK2rVrp3POOUfdu3dXXl6eli5dqscee0w7duzQ4sWL3Vm6xxFyAwAAAAAAAOUQcsPXbN261eWhkaGhodU676233lJwcLCuvPJKl+0LFixweX/ddddp4sSJevnll3XPPfeoX79+dS/aSxhXAgAAAAAAAJTjcDgkEXLDd0RFRSk6Otr8qU7InZubq48++kijRo1S48aNT3r8fffdJ0lasWJFnev1JkJuAAAAAAAAoBw6uVEffPjhh8rPz68wqqQqrVu3liQdPXrUk2W5nc+OK7Hb7S7D03NyciQd/y2aPw4/9wTje+D7gLew5uAprC14E+sNnsLagjex3uAprC14g7+sM6M+m83m87WifjP+VUFtvPnmm4qMjNSFF15YreN3794tSWratGmt72kFm9PpdFpdRGVmzJihmTNnVtj+yiuvqEmTJhZUBAAAAAAAgPqmuLhYv/zyi7p3767w8HBz+4QJE3TkyBHNmzdP7du3t7BCNHQZGRm66aablJKSolatWlX7vMOHD6tly5YaO3asFi1a5LIvOztboaGhLiNPnE6nxo4dq8WLF2vDhg3q3bu32z6Dp/lsJ/fUqVN17733mu9TU1PVpUsXDRs2zGXAekNWXFys5cuXa8SIEfzTGXgFaw6ewtqCN7He4CmsLXgT6w2ewtqCN/jaOnv00Uf1z3/+U5deeqneeecdc3tQ0PHYbMiQIerRo4dV5QFKTU2t1XmLFy+Ww+GodFTJzz//rLFjx2rs2LFq3769CgoK9MEHH2jNmjWaOHGiXwXckg+H3OV/k5CdnS3p+F8wvvAXoC8JDg7mO4FXsebgKawteBPrDZ7C2oI3sd7gKawteIOvrLOnnnpKkvT++++71GOMKImIiPCJOtFwGb9wqak333xTzZo10/Dhwyvsa9OmjQYOHKgPPvhABw8eVEBAgDp37qwXXnhBEydOrGvJXuezITcAAAAAAADgaVFRUeZz4ZxOp2w2m6S/Qu7aBoyA1dauXVvlvrZt22rJkiVerMazAqwuAAAAAAAAALBKRESE+To9Pd18bYTcdHEDvo+QGwAAAAAAAA2S0+nU4cOHzfebN282XxNyA/6DkBsAAAAAAAAN0uHDh1VQUGC+N0Jup9OpkpISSYTcgD8g5AYAAAAAAECDtHfvXpf3n376qUpLS80ubomQG/AHhNwAAAAAAABokPbt2+fy/quvvtLAgQNVVFRkbiPkBnwfITcAAAAAAAAaJKOTe8yYMRo6dKgk6fvvv9eRI0fMYwi5Ad9HyA0AAAAAAIAGZcOGDRo1apTuu+8+SVLXrl311VdfKSwsTJJ06NAh81hCbsD3BVldAAAAAAAAAOAthw8f1llnneUyd7tNmzaSpMaNGys1NdUMuQMCAhQQQI8o4OsIuQEAAAAAANBg7N69W8XFxWratKkmTJigH3/8URdddJEkKS4uziXkposb8A+E3AAAAAAAAGgwjAA7OTlZc+bMcdkXFxcnSUpPT5dEyA34C/69BQAAAAAAABoMI+Ru1qxZhX1GyE0nN+BfCLkBAAAAAADQYJwo5I6Pj3c5hpAb8A+E3AAAAAAAAGgw6OQG6h9CbgAAAAAAADQYRoDdtGnTCvvKh9xBQTzODvAHhNwAAAAAAABoMA4fPizpxJ3cPHgS8C+E3AAAAAAAAGgwmMkN1D+E3AAAAAAAAGgwqjOTu7S0VBIhN+AvCLkBAAAAAADQIJSWllZrXImBkBvwD4TcAAAAAAAAqPf27dunu+++Ww6HQ1LlD540xpUYCLkB/8AjYgEAAAAAAFDvPfDAA1qyZIkkKTY2ViEhIRWOoZMb8E90cgMAAAAAAKDe++qrr8zXBQUFlR4TGxvr8p6QG/APhNwAAAAAAACo95o3b26+ttvtlR4THBysyMhIl/cAfB/jSgAAAAAAAFBvZWVlyel0KiUlxdw2a9asKo+Pj49Xbm6uJEJuwF8QcgMAAAAAAKBeKikpUdeuXXXgwAFz27FjxxQdHV3lOU2aNNG+ffskEXID/oJxJQAAAAAAAKiXMjMzXQLu+Pj4EwbckpSYmGi+JuQG/AMhNwAAAAAAAOqlzMxMl/etW7c+6TmtWrUyXxNyA/6BkBsAAAAAAAD1Um1Cbjq5Af9DyA0AAAAAAIB66ejRoy7va9rJHRTE4+wAf0DIDQAAAAAAgHqpfCd3y5YtT3oOndyA/yHkBgAAAAAAQL1UPuQuKCg46TnM5Ab8DyE3AAAAAAAA6qXyIfe111570nPKdnLb7Xa31wTA/Qi5AQAAAAAAUC8ZM7nvvPNO7du3T507dz7pOVFRUebrQ4cOeaw2AO5DyA0AAAAAAIB6yejkTkhIqNZDJ8tLT093d0kAPICQGwAAAAAAAPWSEXLHxcXV6nw6uQH/QMgNAAAAAACAeskYV1LTkPuUU06RJA0bNsztNQFwvyCrCwAAAAAAAAA8wejkjo+Pr9F533zzjZYuXaobbrjBA1UBcDdCbgAAAAAAANRLtR1XkpiYqLvuussTJQHwAMaVAAAAAAAAoF6q60xuAP6BkBsAAAAAAAD1TlFRkfLy8iQRcgP1HSE3AAAAAAAA6h2ji9tmsykmJsbiagB4EiE3AAAAAAAA6h0j5I6JiVFgYKDF1QDwJEJuAAAAAAAA1DtHjx6VxKgSoCEg5AYAAAAAAEC9w0MngYaDkBsAAAAAAAD1jhFyx8fHW1wJAE8j5AYAAAAAAEC9Qyc30HAQcgMAAAAAAKDeYSY30HAEWV1AVex2u+x2u/k+JydHkuRwOFRcXGxVWT7F+B74PuAtrDl4CmsL3sR6g6ewtuBNrDd4CmsL3uCtdXbkyBFJUkxMDGsafs3hcFhdgs+zOZ1Op9VFVGbGjBmaOXNmhe2vvPKKmjRpYkFFAAAAAAAA8BfPPPOMVq5cqXHjxunSSy+1uhyg1jIyMnTTTTcpJSVFrVq1srocn+SzIXf5Tu7U1FR16dJFf/75pxITEy2szHcUFxdr+fLlGjFihIKDg60uBw0Aaw6ewtqCN7He4CmsLXgT6w2ewtqCN3hrnV188cX6/PPP9fzzz2vChAkeuw/gaampqWrbti0h9wn47LiS0NBQhYaGmu+zs7MlSUFBQfwf2nKCg4P5TuBVrDl4CmsL3sR6g6ewtuBNrDd4CmsL3uDpdXbs2DFJUpMmTVjP8GtBQT4b4foMHjwJAAAAAACAeiczM1OSFB8fb3ElADyNkBsAAAAAAAD1jhFyx8XFWVwJAE8j5AYAAAAAAEC9c/ToUUmE3EBDQMgNAAAAAACAeqWgoEB2u10S40qAhoCQGwAAAAAAAPWKMaokMDBQUVFRFlcDwNMIuQEAAAAAAFCvGKNKYmNjZbPZLK4GgKcRcgMAAAAAAKBe4aGTQMNCyA0AAAAAAIB6xQi5mccNNAyE3AAAAAAAAKhX6OQGGhZCbgAAAAAAANQrxkxuQm6gYQiyugAAAAAAAADAHT7++GPt2rVL+/btkyQlJCRYXBEAbyDkBgAAAAAAgN9bt26dLrroIklSq1atJEkdOnSwsiQAXsK4EgAAAAAAAPg1h8OhcePGme/3798vSWrfvr1VJQHwIkJuAAAAAAAA+LUtW7bo999/r7CdTm6gYSDkBgAAAAAAgF/bsWNHhW3BwcFq3bq1BdUA8DZCbgAAAAAAAPg1I+QuO57klFNOUWBgoFUlAfAiQm4AAAAAAAD4NSPkvvjii81tjCoBGg5CbgAAAAAAAPilV155RS1atNCiRYskSWeccYZatWoliYdOAg0JITcAAAAAAAD8zooVK3TzzTcrPT3d3NaxY0f17NlTktSpUyerSgPgZUFWFwAAAAAAAADU1KOPPlphW/v27fXPf/5TvXv31tVXX21BVQCsQMgNAAAAAAAAv+J0OrV169YK2xs1aqRu3bqpW7duFlQFwCqMKwEAAAAAAIBfycjI0LFjxyRJjz/+uCRp8ODBVpYEwEKE3AAAAAAAAPArf/zxhySpVatWmjJlij788EO9+eabFlcF+Jaff/5ZF154oeLj4xUREaFu3brpP//5j8sx33//vQYMGKCIiAi1aNFCkyZNUm5urkUV1x7jSgAAAAAAAOBXjJC7Q4cOstlsuuiiiyyuCPAtX375pS644AKddtppeuSRRxQZGaldu3Zp//795jEbN27UsGHD1LlzZ/373//W/v37NW/ePO3cuVNffPGFhdXXHCE3AAAAAAAA/MrOnTslHQ+5AbjKzs7WuHHjdN5552np0qUKCKh8mMe0adMUFxenVatWKTo6WpKUnJysm2++WV9++aVGjhzpzbLrhHElAAAAAAAA8CtGJ3f79u0trgTwPW+99ZbS09M1e/ZsBQQEKC8vT6WlpS7HZGdna/ny5br22mvNgFuSxo0bp8jISC1ZssTbZdcJITcAAAAAAAD8Cp3caIhycnKUnZ1t/tjt9kqPW7FihaKjo5WamqpTTz1VkZGRio6O1m233abCwkJJ0qZNm+RwONSnTx+Xc0NCQtSrVy/98ssvHv887kTIDQAAAAAAAL9x9OhRbd++XRIhNxqWLl26KCYmxvyZM2dOpcft3LlTDodDF110kUaNGqX33ntPN954o1544QWNHz9ekpSWliZJSkhIqHB+QkKCDhw44LkP4gHM5AYAAAAAAIBfSEtL0wUXXKCcnBy1bt2akBsNytatW5WYmGi+Dw0NrfS43Nxc5efn69Zbb9V//vMfSdKll16qoqIivfjii5o1a5YKCgqqvEZYWJi531/QyQ0AAAAAAACft2/fPp122mnasGGDmjZtqv/9738KCQmxuizAa6KiohQdHW3+VBVyh4eHS5LGjh3rsv3qq6+WJK1du9Y8prKRJ4WFheZ+f0HIDQAAAAAAAJ9nPEyvQ4cO+u6779SlSxerSwJ8UsuWLSVJzZs3d9nerFkzSVJmZqY5psQYW1JWWlqaeQ1/QcgNAAAAAAAAn3fw4EFJ0iWXXKKOHTtaXA3gu04//XRJUmpqqst2Y85206ZN1a1bNwUFBWn9+vUuxxQVFWnjxo3q1auXV2p1F0JuAAAAAAAA+Lz09HRJFbtTAbi68sorJUkLFixw2f7KK68oKChIQ4YMUUxMjIYPH67//ve/ysnJMY954403lJubqyuuuMKrNdcVD54EAAAAAACAzyPkBqrntNNO04033qhXX31VDodDgwcP1qpVq/Tuu+9q6tSp5iiS2bNnq3///ho8eLAmTpyo/fv368knn9TIkSM1evRoiz9FzRByAwAAAAAAwOcdOnRIEiE3UB0vvPCCkpKS9Nprr+mDDz5QmzZt9NRTT+nuu+82j+ndu7dWrFihBx98UPfcc4+ioqI0YcIEzZkzx7rCa4mQGwAAAAAAAD6PTm6g+oKDgzV9+nRNnz79hMcNGDBAa9as8VJVnsNMbgAAAAAAAPg0h8OhI0eOSCLkBlARITcAAAAAAAB82uHDh+V0OhUQEKDGjRtbXQ4AH0PIDQAAAAAAAJ9mjCpp0qSJAgMDLa4GgK8h5AYAAAAAAIBPYx43gBMh5AYAAAAAAIBPI+QGcCKE3AAAAAAAAPBphw4dkkTIDaByhNwAAAAAAADwaXRyAziRGofcubm5mj59ukaPHq34+HjZbDYtXLiwyuM/+eQTXXDBBWrevLlCQkIUHx+vQYMG6cknn1R2dnZdagcAAAAAAEADcPDgQUmE3AAqF1TTEzIyMjRr1iwlJSWpZ8+eWrVqVaXHlZaWasKECVq4cKG6d++u22+/Xa1bt1ZOTo7Wrl2rhx9+WJ9//rm++uqrun4GAAAAAAAA1GNbtmyRJLVr187iSgD4ohqH3AkJCUpLS1OLFi20fv169e3bt9LjnnjiCS1cuFD33HOPnnzySdlsNnPfXXfdpbS0NC1atKj2lQMAAAAAAKDeKyws1KZNmyRJffr0sbgaAL6oxuNKQkND1aJFixMek5+fr3/961/q2rWr5s6d6xJwGxISEvTggw/W9PYAAAAAAABoQDZt2iSHw6EmTZooKSnJ6nIA+KAad3JXx3fffaesrCzdf//9CgwMrNU17Ha77Ha7+T4nJ0eS5HA4VFxc7JY6/Z3xPfB9wFtYc/AU1ha8ifUGT2FtwZtYb/AU1ha8obrrzOFw6Nxzz9Xq1aslSaeffrocDofH6wN8Dev+5DwScv/++++SpG7durlsLykpUWZmpsu2xo0bV9rpPWfOHM2cObPC9q+++kpNmjRxY7X+b/ny5VaXgAaGNQdPYW3Bm1hv8BTWFryJ9QZPYW3BG062zlJSUsyAW5Kio6P1+eefe7oswOdkZGRYXYLP80jInZ2dLUmKjIx02b5p0yaddtppLtsOHz5caWg9depU3Xvvveb71NRUdenSRcOGDVNiYqIHqvY/xcXFWr58uUaMGKHg4GCry0EDwJqDp7C24E2sN3gKawvexHqDp7C24A3VXWflA+0rrrhCY8aM8XR5gM9JTU21ugSf55GQOyoqSpKUm5vrsr19+/bmb+kWLVqkN954o8prhIaGKjQ01HxvBOdBQUH8H9pygoOD+U7gVaw5eAprC97EeoOnsLbgTaw3eAprC95wsnWWkpJivu7Zs6dGjRrFukSDFBTkkQi3Xqnxgyero1OnTpKkzZs3u2yPjIzU8OHDNXz4cJ1yyimeuDUAAAAAAADqgT179kiS7rnnHm3cuFHR0dHWFgTAZ3kk5B44cKBiYmL0zjvvqLS01BO3AAAAAAAAQD32559/SpLatm1rcSUAfJ1HQu6IiAhNnjxZmzdv1pQpU+R0OiscU9k2AAAAAAAAQPqrkzs5OdnSOgD4vloNdJk/f76ysrJ04MABSdInn3yi/fv3S5LuvPNOxcTEaMqUKdq2bZvmzp2rL7/8UpdddplatWqlzMxM/fzzz3r33XfVrFkzhYWFue/TAAAAAAAAoF6gkxtAddUq5J43b5727t1rvn///ff1/vvvS5KuvfZaxcTEKCAgQG+88YYuu+wyvfzyy3r22WeVmZmpyMhIdevWTbNnz9bNN9+syMhI93wSAAAAAAAA1AvHjh1TZmamJDq5AZxcrUJu45+LVMfFF1+siy++uDa3AQAAAAAAQAPz3nvv6fLLL5ckRUVF0SAJ4KQ8MpMbAAAAAAAAqKmSkhI9+OCD5vvOnTtbWA0Af1GrTm4AAAAAAADA3T7++GPt2rVL0vGRuNdff73FFQHwB4TcAAAAAAAA8AkvvfSSJGnatGmaPXu2xdUA8BeMKwEAAAAAAIDlnE6n1q9fL0m65JJLLK4GgD8h5AYAAAAAAIDl0tPTlZGRIZvNpi5dulhdDgA/QsgNAAAAAAAAy23evFmS1L59e0VERFhcDQB/QsgNAAAAAAAAy23atEmS1L17d4srAeBvCLkBAAAAAABgOUJuALVFyA0AAAAAAADLEXIDqC1CbgAAAAAAAFiquLhYW7ZskUTIDaDmCLkBAAAAAABgqZ9//lkFBQWKj49X+/btrS4HgJ8h5AYAAAAAAIClvv32W0nSgAEDFBBAXAWgZvhbAwAAAAAAAJb65ptvJEmDBg2yuBIA/oiQGwAAAAAAAJYpLS3Vd999J0kaOHCgxdUA8EeE3AAAAAAAALDMjh07lJmZqYiICJ122mlWlwPADxFyAwAAAAAAwDIHDx6UJLVp00bBwcEWVwPAHxFyAwAAAAAAwDJHjx6VJMXFxVlcCQB/RcgNAAAAAAAAy2RmZkoi5AZQe4TcAAAAAAAAsAwhN4C6IuQGAAAAAACAZYxxJfHx8RZXAsBfEXIDAAAAAADAMnRyA6grQm4AAAAAAABYhpAbQF0RcgMAAAAAAMAyxrgSQm4AtUXIDQAAAAAAAMvQyQ2grgi5AQAAAAAA6jmHw6FJkyZp0aJFVpdSgRFy8+BJALUVZHUBAAAAAAAA8Kxly5bp2WeflSSNGDFCCQkJFlf0F8aVAKgrOrkBAAAAAADqud9++818bYTd7uJ0OnX33XfrzjvvlNPprNG5paWlysrKkkTIDaD2CLkBAAAAAADquV9++cV8/fzzz8tut7vt2vv27dMzzzyj+fPna/ny5TU6Nzs72wzGCbkB1BYhNwAAAAAAQD3z008/adOmTeb7siF3VlaWtm7d6rZ7le0Sf/LJJ2t0rjGPOzw8XGFhYW6rCUDDQsgNAAAAAABQjxw6dEiDBg3SoEGDlJKSogULFuiPP/6QJHXt2lWSXALwuiobcn/55Zfavn27y36n06lly5bp+uuv19ixY7Vy5UpzH/O4AbgDD54EAAAAAAD1isPh0JIlS/T111/rwQcfVIcOHawuyat+/PFH2e122e12nX322UpJSZEkxcTE6JxzztGWLVu0efNmt92vbMgtSRs2bNCpp54qSfrzzz81ceJErVixwty/detWzZo1S9JfndyE3ADqgpAbAAAAAADUK7feeqsWLFggScrLy9Pbb79tcUXetW7dOvO1EXBL0qBBg9StWzdJ8kjI3bJlSx04cMDsGi8sLNTgwYOVkpKisLAwDRs2TJ999pm2b9+ukpISSYTcANyDkBsAAAAAANQbe/bs0WuvvWa+X7VqlZxOp2w2m4VVedf69etd3oeEhOjaa6/VbbfdpqKiIknuG1dSUFCgHTt2SJIuvfRSzZ8/X7/88oseeugh7d27VykpKWrVqpVWrlyptm3bqlGjRrLb7Tp06JAk6ciRI5IIuQHUDTO5AQAAAABAvfHss8+qtLRUAwYMUGhoqA4ePFhhRnR95nQ6XTq5Jemxxx7TggUL1KdPH3Mm9/79+5WVlVXn+23evFmlpaVq3LixBg0aJEn68MMP9fjjj+vNN9+UJE2ePFnt27dXYGCgOnbsKElKTU2VJPMBmO3bt69zLQAaLkJuAAAAAABQbyxatEiSNHXqVJ111lmSpOXLl8vpdFpZltfs3btXGRkZCgoK0pVXXqk2bdpo3Lhx5v6YmBi1bt1akntGlixevFiSNGDAgEpnnyckJGjChAnm+06dOkk6HrJL0s8//yxJ6t27d51rAdBwEXIDAAAAAOBjfrzydv145e1Wl+F3srOzlZGRIUkaOHCgzjnnHEnSpEmTdNZZZzWIoPu5556TJPXs2VOLFy/Wnj171Lx5c5djTjvtNEmq0PFdU0VFRXr99dclSRMmTKjQjf3UU09p7dq1ioiIMLd17txZ0vGQu7S0VBs3bnSpCQBqg5AbAAAAAADUC8YIjJiYGEVFRemiiy4y9/344486cOCAVaV5xcqVKzV37lxJ0kMPPVTlcf3795ckff/991q3bp2ys7Nrdb+3335bGRkZatmypc4991xFRka67L/99tvVpk0bl21GJ3dqaqp27typvLw8hYeH69RTT61VDQAg1SLkzs3N1fTp0zV69GjFx8fLZrNp4cKFVR7/ySef6IILLlDz5s0VEhKi+Ph4DRo0SE8++WSt/xIFAAAAAAAozwi5W7VqJel4N/PevXsVFhYmSfrjjz8sq80bjNEhN9xwgy655JIqjzNC7qVLl+qMM87QxRdfrBdffFH33HOPSktLq3WvLVu26O9//7sk6bbbblNQUFCFY0JCQipsKzuu5JdffpEk9ejRo9LzAaC6ahxyZ2RkaNasWdq2bZt69uxZ5XGlpaUaP368LrzwQu3du1e33367XnjhBU2fPl0tW7bUww8/fMK/cAEAAAAAAGrCmPNshNySlJSUpCFDhkiSdu7caUVZXvP7779LkoYNG3bC4/r06eMSKq9cuVK33nqrnn76af3www8nvY/T6dRNN92k3NxcnXPOOXrwwQfNfWPGjJEklzncZXXq1Enh4eHKycnRq6++Kol53ADqrsa/JktISFBaWppatGih9evXq2/fvpUe98QTT2jhwoW655579OSTT8pms5n77rrrLqWlpZkPgwAAAAAAAKirykJuSeas6Poecm/fvl2STjr6Izw8XA6Ho9J9v//+u9npXZUVK1bohx9+UFhYmN58800FBweb+15//XV9+OGHuu6666q89/nnn693331Xq1atknR8fjoA1EWNO7lDQ0PVokWLEx6Tn5+vf/3rX+ratavmzp3rEnAbEhISXH7TBwAAAAAAUBdVhdwdOnSQVL/HlRw7dkwHDx6UdPKQW5KmTp0qSRo1apQaN25sbjeC8so4nU45nU7Nnj1bknTrrbcqISHB5ZgmTZropptuUmhoaJXXGTt2rPm6bdu2uvzyy09aLwCciEcGHn333XfKysrS/fffr8DAwFpdw263y263m+9zcnIkSQ6HQ8XFxW6p098Z3wPfB7yFNQdPYW3Bm1hv8BTWFryJ9Vb/lQYd//+lvf1nXNO19cUXX+i6667T/PnzddVVV3mytGpJSUmRdLyxruxnaNu2rSRpx44d9fa/my1btkg6/tnDw8NP+jknT56sHj166IILLlBhYaFefvllTZ06VVu3bq303F9//VVnn322brvtNn3zzTeSpL///e+1+j7POeccRUVFKScnR1OmTJHE32fAiVT1Ly/wF4+E3MYMqG7durlsLykpUWZmpsu2xo0bV9rpPWfOHM2cObPC9q+++kpNmjRxY7X+b/ny5VaXgAaGNQdPYW3Bm1hv8BTWFryJ9VaP/W24JOnzzz+35PbVXVt33323srOzNW7cOIWGhp6we9dTSkpKZLfbFRERoa1bt0qSDhw44PLdHThwQNLxkPvTTz9VQECN/2G7z1u5cqWk4zlLdddNeHi4VqxYIUkqKiqSJP3888+Vnv/GG2+oqKhI//nPf+R0OtWkSRNt3rxZmzdvrlW9DzzwgHbv3q0mTZpYts4Bf5GRkWF1CT7PIyF3dna2JCkyMtJl+6ZNm3Taaae5bDt8+HClofXUqVN17733mu9TU1PVpUsXDRs2TImJiR6o2v8UFxdr+fLlGjFihMv8K8BTWHPwFNYWvIn1Bk9hbcGbWG/13/rrj///w31e/7dX71vTtfX3v//dfL1nzx7dc889nizP5HQ6ZbPZ9PTTT2vWrFnKzc3Ve++9Z/4r8Isvvtil8a64uFh33nmnioqKdNppp9XLXGHt2rWSpLPOOst8+GNN9OjRQ9OnT1d6erqGDx+ukJAQl/1z586VdPy7l6Szzz67VveR/uravu+++/g7DKiG1NRUq0vweR4JuaOioiRJubm5Ltvbt29v/jZ40aJFeuONN6q8RvnfABvBeVBQEH8BlhMcHMx3Aq9izcFTWFvwJtYbPIW1BW9ivdVfAY4SSbLsz7c6aysjI8OcgS1Jixcv1uTJkz1dmg4dOqTTTz9dV1xxhZYuXWpmD++9956OHDkiSUpOTnapPzg4WKeccop27typ33//XcnJyR6vs6yff/5Z999/v3r27KmnnnrKI/cwZml37ty5VusmOTlZjRo1Ul5enlJSUtSpUydzX2FhodatW+dy/Jlnnlnn9cnfYUD1BAV5JMKtVzzy73OMvwjL/5OVyMhIDR8+XMOHD9cpp5ziiVsDAAAAAAAvKB96/vHHH2aXb3nvvfeeRowYoeuvv147duyo033ffPNN7d+/X0899ZQ5g1uS/ve//0mSIiIiFBsbW+G8s88+W9JfYz285bffftPpp5+ulStX6umnnzbHgriTMYZFkvr161era9hsNjPP6dy5s5YtW2bu27BhQ4W6+/btW8tqAcD9PBJyDxw4UDExMXrnnXdUWlrqiVsAAAAAAAAL/fTTT5Kkyy67TNLxf4F99OjRSo+dPHmyVqxYoUWLFmnw4MH6448/an3f8qNRDca9e/XqVemzv4YNGyZJ+vrrr2t979p4//33Xd7v2bPH7fd48MEH5XA4NGbMGJ111lm1vs4555xjvn7uuef03HPP6emnn9aaNWskSfHx8eb+Pn361L5gAHAzj4TcERERmjx5sjZv3qwpU6ZU+pvcqn67CwAAAAAAfJ8Rcg8ePFgtW7aUJO3atavCcfv27dPu3bslHR+JcfDgQd1///21vq/D4XB536dPH5fg2wizyzMC3A0bNigzM7PW968p43sy1CXgr8y+ffv04Ycfymazad68eXW61r/+9S89/fTTkqQ1a9bojjvu0D333KOlS5dKkiZNmqQ+ffrommuuqbRbHgCsUquBLvPnz1dWVpb5dOJPPvnEnMN15513KiYmRlOmTNG2bds0d+5cffnll7rsssvUqlUrZWZm6ueff9a7776rZs2aKSwszH2fBgAAAAAAeJzT6TTHlZxxxhlq166dDhw4oF27dumMM85wOXb16tXmcbNnz9aIESPqNLLEeGaXoVOnTgoNDTW7jasKuRMTE3Xqqadq+/btWrVqlS655JJa11BdTqfTDLmTkpK0b98+7dy50633WLJkiSRp0KBB6ty5c52uFRAQoLFjx+ruu+8255tLf42mGTRokKZPn16newCAJ9Sqk3vevHl65JFH9Pzzz0s6/k9vHnnkET3yyCPmb0MDAgL0xhtv6IMPPlBiYqKeffZZTZw4Uf/4xz+0d+9ezZ49Wzt27KjynxkBhh+vvF0/Xnm71WUAAAAAACRt2bJFP/zwgw4fPqzg4GD17NlT7dq1k1R5J/eqVaskSUOGDDE7vtPS0mp9/2PHjrm879ixo3r27ClJCg8PP+FM6hEjRkiSPvvss1rfvyb+/PNPHTlyRCEhIeZYl7vvvluJiYluC7vfeecdSdJVV13llus1a9ZMTZo0qXRfr1693HIPAHC3WoXce/bskdPprPSn/BOKL774Yn322Wc6dOiQiouLlZmZqW+//Vb333+/YmJi3PEZAAAAAACAF+zfv189evRQ//79JUk9evRQWFhYlSG30+k0H/Q4ZMgQtWjRQpKUlZWlwsLCWtVQPuTu0KGDGWyfc845Cg0NrfLciy++WJL08ccfq6SkpFb3rw6n06ni4mL9+OOPko6Hw127djX3HzhwQM8880yd77N48WJt2LBBgYGBZojuDt26dauwrW3btoqLi3PbPQDAnTwykxsAAAAAANQ/mzZtUmlpqfneGE1SPuTOysrS5MmT9cQTT+jPP/9URESEBgwYoLi4OIWEhEiS0tPTa1VDZZ3cV199tV599VW9+OKLJzx30KBBiouL0+HDh83xJobys75rq7S0VKeffrq6d++uL774QtLx76lDhw4ux50ojK+O7777TldffbUk6ZZbblHTpk3rdL2yygbyht69e7vt+gC8b/bs2bLZbBV+iTVkyBDZbLYKP6NHj7ao0tqp1UxuAAAAAADQ8JQPpqsKuV966SXNnTvXPG7ixImKioqSJLVo0UL79u1TWlqa2rRpI0kqKChQWFiYbDbbSWsoG3KHhISoQ4cOCgwM1Pjx4096bnBwsC688EK9/vrrWrJkiQYNGqQdO3Zo0qRJWr58ud544w0zOK6tHTt26JdffpEkbd++XZJ04YUXqn379i7HZWRk1Ok+ixYtUmlpqS699FI9++yzdbpWeUYIZrPZFBgYKIfDQcgN+LH9+/fr8ccfV6NGjSrd36pVK82ZM8dlmzFeyl/QyQ0AAAAAAKrlwIEDLu+NkNsIcA8cOKCcnBytXbvW5bj77rvPfG2MLDl48KAkadmyZWrUqJGefvrpatVghNzjx4/Xhx9+aIbn1XXNNddIkl555RWlpKTo6quv1rJly1RaWqply5bV6FqV2bBhg8v7du3aadiwYUpISHDZXpe55E6n0+wSv+mmmxQQ4N54xxj/0qdPH/PPeMCAAW69BwDvuf/++9WvXz/16dOn0v0xMTG69tprXX6GDh3q5SrrhpAbAAAAAABUixFyt2vXTs8++6y6dOkiSYqPjzdD3C1btujXX3+VJCUnJ+ull15Sq1atzGsYxxkh9yuvvCKn06mXX365WjVkZ2dLkv72t7/p3HPPrfFnGD58uAYNGiS73a4rr7zSJZTes2dPja9X3s8//+zyfuLEiQoICJDNZtM777yjgQMHSqr4C4Oa2LJli/bv36+wsDANGTKkLuVWqlevXlq9erWWLl2qN998U5988okGDRrk9vsA8LxvvvlGS5cuPekvEh0Oh3Jzc71TlAcwrgQAAAAAAFRLamqqpOOd2bfddpvLvu7duystLU2rV6/Wn3/+Kel44Fv+YYVGJ3daWpqKi4v15ZdfSpK2bdumvXv3miNMqmJ0csfExNTqM9hsNj3xxBPq16+ffvjhB0lSXFycMjMzzbrrwgjNR4wYoebNm+vWW2819/3tb39Tt27d1K1btzp1chtd3EOGDFF4eHjdCq5C2VA7OTnZI/cAUDM5OTnmL/qk47P9TzTfv6SkRHfeeaduuukmde/evcrjduzYoUaNGqmoqEjNmzfXzTffrEcffVTBwcFurd+T6OQGAAAAAADVYnQfVzar1QhQXn/9dUnSKaecUiHgllw7ub///nuXwOZ///vfSWuoa8gtSWeeeabuvPNO8/3UqVMlHQ/xi4qKanStDRs2aMmSJZKOP3TS6OSeN2+e3njjDUVHR7scb3z+o0ePym6316p+I5wfPnx4rc4H4J+6dOmimJgY86f8HO3yXnjhBe3du1f/+Mc/qjymXbt2euihh/T2229r0aJFOvPMM/XYY4/p2muvdXf5HkUnNwAAAAAAqJbqhNzbtm2TJJ1++umVXsPo5E5NTTVHlAQHB6u4uFhffPGFbrnllirv73Q6zVC8LiG3JP3zn//U2rVrlZGRoVtuuUWPPvqoCgsLlZKSYj5Iszouu+wy7d27V127dlVwcLBycnIUFhZmjnIpLy4uTqGhobLb7Tp48OBJO9crs3PnTklS586da3wuAP+1detWJSYmmu9P1MV95MgRPfroo3rkkUfUtGnTKo9bsGCBy/vrrrtOEydO1Msvv6x77rnHnNHv6+jkBgAAAAAAJ1VaWmqO2DhRyG3o27dvpdcxQu7PPvtMb775piRp8uTJkirOsy4vLy9PJSUlkuoeckdEROiHH37Qrl27FB0dbY7kqMlc7iNHjmjv3r2SpF9++cXsRO/bt6+CgirvK7TZbOZ3UJu53E6nU3/88Yekvx74CaBhiIqKUnR0tPlzopD74YcfVnx8vMu/Wqku42HBK1asqHWt3kbIDQAAAAAATurQoUMqKSlRQECAmjdvXmF/+a7i8ePHV3odY1yHJIWFhenNN980u7cPHjyo0tLSKmswRpUEBgYqIiKixp+hvMDAQAUEHI9GahNyb9261Xy9ZcsWvfvuu5KOd3efiPEd1GYud1pamgoKChQYGMisbACV2rlzp1566SVNmjRJBw4c0J49e7Rnzx4VFhaquLhYe/bs0dGjR6s8v3Xr1pJ0wmN8DSE3AAAAAAA4KaPruHnz5pV2KYeHh6t///6y2Wz65JNP1KRJk0qvk5SUZL5+5513dPXVV5udzcXFxTpy5EiVNZQdVWKz2Wr9WSrTtm1bSarRwyfLhtwrVqzQmjVrJEmXXnrpCc8zOuFrE3IbXdxt2rRRSEhIjc8HUP+lpqaqtLRUkyZNUtu2bc2fH3/8UTt27FDbtm01a9asKs/fvXu3JJ1wzImvYSY3AAAAAAA4qRPN4zZ8/PHHOnz4sDp16lTlMS1atNDSpUsVHR2tESNGSDo+k7tZs2Y6dOiQDhw4YAYrdrtdTz31lE455RRdeeWVZid3+Yc5uoPRFT179mwVFxfrX//610nPKRtyr1+/XpLUr18/swuyKnXp5DbmcTOqBEBVunXrpg8++KDC9ocfflg5OTl65pln1K5dO2VnZys0NNRl7InT6dRjjz0mSRo1apTXaq4rQm4AAAAAAOqxxYsX66mnntLbb79tdivXxv79+yXJ5aFn5TVu3FiNGzc+6bUqG+fRsmVLM+Tu2bOnCgsLNXr0aK1evVqBgYHq27evGXLXdR53ZTp06GC+fuKJJ3T++edr4MCBJzxny5YtFbZdc801J72X8YsC4zsty+l0nrBL3ejkLlsvAJTVpEkTXXzxxRW2P/3005Jk7lu1apXGjh2rsWPHqn379iooKNAHH3ygNWvWaOLEierdu7f3iq4jxpUAAAAAAFCPXXXVVfrxxx9188031+k6u3btkiSdcsop7iirAiP4NTrGP/74Y61evVqSVFJSonnz5nk05L7gggv0yCOPmO/nzJlz0nPKdnIbrrvuupOeZ4xs2bdvn8v2DRs2KCYmRvPmzavyXB46CcBd2rRpo4EDB+qDDz7Qfffdp0cffVSFhYV64YUX9MILL1hdXo3QyQ0AAAAAQD3lcDjM12vXrq3TtTw9JqP8CA8j7DbGmCxYsEC//fabJM+E3EFBQZo1a5auv/56dezYUV988YV27Nihjh07Vnp8WlpahXEjPXv2rFZtVT3k8oILLlBOTo4eeOAB3X///ZWey7gSALW1atUql/dt27bVkiVLrCnGzejkBgAAAACgntq+fbv5Oj8/XwcPHqz1tTzdQVy+k9t4AOXll1+uc889V3a7Xd99950kz4Tchnbt2qlfv36SjndWV8WY2d2vXz999tlnGjVqlD788MNq3aNNmzaSpJSUFJWUlEiSSktLTzqj2+Fw6Pfff5ekE849B4CGhpAbAAAAAIB6ZseOHSouLtYvv/zisv3iiy82x47URGlpqXmet0Puxo0b66OPPtLs2bOVmJiogIAADR061CM1GLp16yZJ2rx5c6X79+/fr+eff16SNHPmTI0ZM0b/+9//zA7tk2nZsqWCgoLkcDjMYPvHH390OcYIv8vasWOH7Ha7IiMjPTY2BgD8ESE3AAAAAAD1yPfff69TTz1Vo0aNqhBy//jjj7r88strfM3U1FQVFhYqKCjI7EJ2txOF3MHBwZo2bZr279+vgoICjR8/3iM1GIyQu7IHS0rS66+/rqKiIp199tkaMWJEja8fGBio1q1bS5L27t0rSfr0009djqms694Y19K9e3cFBBDpAICBvxEBAAAAAKhHjIc1rly5Uv/+978lSfPmzdMdd9whSdq4ceNJx2KUZ8yBbtu2rYKCPPN4rxOF3GWFhIR45P5lde3aVVLVndyLFy+WJE2YMEE2m61W9zB+WWDM5d60aZPL/pSUlArnGCF3jx49anVPAKivCLkBAAAAAKhHjh49WmHb8OHDNX/+fPXu3VuS9PXXX1frWj/88IPWrVvn8Xnc0l8h98GDB5WXl2d+jvIhtzcYndy7d+9Wfn6+y74tW7Zo06ZNCg4O1sUXX1zrexght9HJvXv3bpf9hNwAUH2E3AAAAAAA1CP79+83X5933nl65plnzFB02LBhkioPuVNSUjRx4kTde++9evzxx7V+/XoNHDhQ/fv31/vvvy9J6tChg8fqbtasmZo2baqSkhINGDDA/BxWhNzNmjVTkyZN5HQ6tW3bNpd9b7/9tiRp9OjRiouLq/U9jPnde/fuldPpNEPuPn36SHL9czQQcgNA5Qi5AQAAAACoR1JTUyUdH6nx6aefatKkSeZIDeOBjV999ZWcTqfLecOGDdPChQu1e/duzZgxQ3379pXD4ZDD4dCyZcskSf369fNY3UFBQVq6dKni4+O1ceNGHT58WJIUH///2bvv8KbKt4Hj33RPSgu0lLIpLVsomzJlb1BAFBmKgoKICALqT4aiKEtQXlREQYpYQVCmDNmy96ZA2aVAC6WbruT9I+bQdIcmTdren+viojl5cs6T5OSM+9znfjxMtsycZKzL/eGHH/Laa6/x008/AfDKK6/ka/66TO6TJ08SEhJCYmIiVlZWBAYGApkzuaOjo5VpdevWzdeyhRCiqJEgtxBCCCGEEEIIUYToMoB9fHwyPdeqVStUKhU3b95UgsigDaDq6m6/8cYbuLi4KM+VKFECgBEjRjBw4EBTdp3WrVvTrVs3vWnmyOQG/brcly5d4ssvv2TZsmXcu3cPd3f3fJUqAahRowYAR48epWbNmgBUrFiRqlWrApmD3LqSMWXLlsXNzS1fyxZCiKJGgtxCCCGEEEIIIUQRodFolEzu8uXLZ3re2dlZmb5y5Uo6d+7M5cuXlQCql5cXPXr0YMeOHdSqVYuPPvqIQ4cO8euvv7Jo0aJnHmTRENWqVVP+trKyMltAN30m98qVK/Wee+mll3BwcMjX/Js1a8Yvv/yi9/6qVq1KhQoVgMxB7tDQUED/8xFCCKFlmiGRhRBCCCGEEEIIUeAiIyNJTk5GpVLh7e2dZZuqVaty+/Ztxo0bB0DXrl35/PPPgacDSzZo0EAp0wEomcYFIf3glh4eHlhZmSc/T5fJffbsWUJCQgBtVru1tTXvvfdevuevUqkYMmQIu3btYtmyZYA2gK0Lct+6dUuvve5ChAS5hRAiM8nkFkIIIYQQQgghighdqRJPT0/s7OyybJMxSHrt2jWlVEn6ALO5pO+fuUqVwNMg9+3btwkNDcXJyYm7d+/y8OFD/P39jbacHj16KH9XrVpVKVcSHh5OfHy88pxkcgshRPYkyC2EEEIIIYQQQhQROZUq0dEFUdP766+/AMsIcqfvg5OTk9n64eHhoZcN36dPH5ydnY1esqVTp07K366urnh4eCiDbeqyt+FpkNsSviMhhLA0EuQWQgghhBBCCCGKCF0md05B7qwygU+cOJHtcwWtdOnSyt8xMTFm7MnTutwAgwYNMskyXF1deeedd6hQoQL9+/cHwM/PD4ArV65w7do1Bg0axJ49ewDL+I6EEMLSSJBbCCGEEEIIIYQoInRBbh8fn2zbZJXJrWMJWcLpM6WjoqLM2JOnJUtKlSpFx44dTbacb7/9llu3buHp6QlA9erVAbh8+TLjxo3TG/hSgtxCCJGZBLmFEEIIIYQQQogi4ubNmwBUrFgx2zbpg6QDBgzA1dVVeWwJQe70kpKSzLp8Xb3sd955B1tb2wJbri6T++LFi6xfv17vOXPWKRdCCEslQW4hhBBCCCGEEKKI0NVwzinb18PDAzc3NwBatmzJhg0bsLKyom7duri4uBRIP3Pz888/Y2Njw4oVK8zaj/bt2/Po0SOmTp1aoMvVZXJnfP8BAQFGrwkuhBBFgY25OyCEEEIIIYQQQgjj0A1OmFOQW6VSUb9+ffbs2UPTpk1p0qQJV65coUSJEgXVzVy99tprvPLKK9jb25u7K7i7uxf4MnWZ3DrDhw+nRYsWNG3atMD7IoQQhYEEuYUQQgghhBBCiCIgJiaGiIgIIPe6zStXriQkJIQmTZoAT+t0p6SkmLaTBrCEALe5ZCwbM3z4cJo3b26m3gghhOWTciVCCCGEEEIIIYSF2rp1KyNGjCA+Pj7Xtros7jJlyuSalV2uXDnatWtnlD4K43N1daVFixa4ubmxYcMGCXALIUQuJJNbCCGEEEIIIYSwUF26dAG0NZo/+OCDHNvmpVSJKDz27NlDSkoKjo6O5u6KEEJYPMnkFkIIIYQQQgghLFCKOk35OzQ0lCFDhrBhw4Zs2+dl0ElReNjY2EiAWwgh8kgyuYUQQgghhBBCCAt0IyZK+Xv16tU8evSIoKAgYmJicHV1zdRel8mdsZ6zEEIIUdRJJrcQQgghhBBCCGGBrkY/VP5+9OiR8vf333+fZfsrV64AkskthBCi+JEgtxBCCCGEEEIIYYGuPH6Y5fTPPvuMNWvW6E2Lj4/n0KFDAAQEBJi8b0IIIYQlMTjIHRcXx9SpU+nSpQseHh6oVCqWLVuWbfsNGzbQs2dPvLy8sLOzw8PDg9atWzN37lxiYmLy03chhBBCCCGEEKLIyi7IHRsbS//+/Tl16pQy7Z9//iEpKYkqVapQq1atAuqhEEIIYRkMDnJHRkby6aefcvHiRZ577rls26nVal577TV69erFzZs3GTVqFN9//z1Tp06lXLly/O9//6Nv37756rwQQgghhBBCCFEUaTQarkZHZpq+du1aunfvjkajYdGiRcr0jRs3AtCjRw9UKlWB9VMIIYSwBAYPPOnt7U14eDhly5bl2LFjNG7cOMt2s2bNYtmyZYwbN465c+fq7WTHjh1LeHg4y5cvf/aeCyGEEEIIIYQQRdS9hDiikp5kml6lShUmTpzIpk2b+PXXX5k9ezYA69evB7RBbiGEEKK4MTiT297enrJly+bYJiEhga+++oratWsze/bsLK8ie3t7M2nSJEMXL4QQQgghhBBCFHnnHt4DoH79+nrn1OXLl6dVq1bUrl2bhIQE/vjjD1555RUePHhAxYoVadOmjbm6LIQQQpiNwZncefHvv//y+PFjJkyYgLW19TPNIykpiaSkJOVxbGwsAKmpqaSkpBiln4Wd7nMo6p+H2ka7DmV8n8eGvg9Ao1/mFXifiqviss6JgifrlihIsr4JU5F1SxQkWd+KvrNREQAEBgYSFhZGREQE9vb2lChRgtTUVDp37sz58+eZP38+586dw8HBgVWrVmFlZZWv9ULWLVEQZD0TwjCpqanm7oLFM0mQ+9KlSwDUqVNHb3paWhpRUVF600qVKpVlpvfMmTOZPn16puk7duygdOnSRuxt4bd9+3Zzd8G0XuoAwObNm/M2XZhckV/nhNnIuiUKkqxvwlRk3RIFSda3ousUiQDY2dnh5OQEgLu7O3///TegHQcL4Ny5cwAEBARw7949o50fybolCoKsZ0LkTWRk5jEahD6TBLljYmIAcHFx0Zt+9uxZGjRooDctIiIiy6D1hx9+yPvvv688DgsLo1atWrRv3x4fHx8T9LrwSUlJYfv27XTs2BFbW1tzd8dkssvYlkzugldc1jlR8GTdEgVJ1jdhKrJuiYIk61vR9uTJE65dvQrAyJEjOXv2LDdv3sTPz49u3boB2rIl8+fPV17TvXt35bn8kHVLFARZz4QwTFhYmLm7YPFMEuR2dXUFIC4uTm+6r6+vcpVu+fLlBAUFZTsPe3t77O3tlce6wLmNjY1sADOwtbUt0p+JVWoaQKb3mN10YXpFfZ0T5iPrlihIsr4JU5F1SxQkWd+KpvPnz5OqVuNm54Cfnx/e3t4AVKxYUfm+69ati62trVLuoVmzZkZdF2TdEgVB1jMh8sbGxiQh3CLF4IEn86JGjRrA09umdFxcXOjQoQMdOnSgatWqpli0EEIIIYQQwogODxjF4QGjzN0NIYoVXcJYCTt7VCoVfn5+ANSsWVNpY2dnp/c4ICCgYDsphBBCWBCTBLlbtWqFm5sbwcHBSp0wIYQQQgghhBBC5C4pKQkAO2trAN577z3WrFnD2LFj9drVq1cPAD8/P0qWLFmgfRRCCCEsiUmC3E5OTkycOJFz584xefJkNBpNpjZZTRNCCCGEEEIIIYq7J0+eAGBnpQ1yu7i48MILL+Ds7KzXrlmzZgC0bt26YDsohBBCWJhnKuiycOFCHj9+zN27dwHYsGEDd+7cAWDMmDG4ubkxefJkLl68yOzZs9m2bRsvvvgi5cuXJyoqihMnTrB69Wo8PT1xcHAw3rsRQgghhBBCCCEKOV0mt+1/Qe7sjBw5Ejc3N6MMOCmEEEIUZs8U5J4zZw43b95UHq9du5a1a9cC8Oqrr+Lm5oaVlRVBQUG8+OKL/Pjjj3z77bdERUXh4uJCnTp1+Pzzz3nzzTdxcXExzjsRQgghRIHRDR49ePBgM/dECCGEKHoylivJjo2NDa+++mpBdMni6cYOaLpqkZl7IoQQwhyeKch948aNPLft06cPffr0eZbFCCGEEEIIIYQQxU7GciVCCCGEyJlJanILIYQQQgghhBDi2SjlSnLJ5BZCWK7DA0YpdxgIIUxPgtxCCCGEEEIIIYQFUcqVSCa3EEIIkScS5BZCCCGEEEIIISyIUq5EMrmFEEKIPJEgtxBCCCGEEEIIYUEkk1sIIYQwjAS5hRBCCCGEEEIIC6LU5JYgtxBCCJEnEuQWQgghhBBCCGEyQUFBBAUFmbsbhYqUKxFCCCEMI0FuIYQQQgghhBDCgki5EiGEEMIwEuQWQgghhBBCCCEsiFKuRDK5hRBCiDyRILcQQgghhBBCCGFBJJNbCCGEMIwEuYUQQgghhBBCCAsiNbmFEEIIw0iQWwghhBBCCCGEsCBKuRLJ5BZCCCHyRILcQgghhBBCCCGEBZFyJUIIIYRhJMgthBBCCCGEEEJYEClXIoQQQhhGgtxCCCGEEEIIIYQFkUxuIYQQwjAS5BZCCCGEEEIINaQQjwAAl49JREFUISyIUpNbMrmFEEKIPJEgtxBCCCGEEEIIYUGUciWSyS2EEELkiQS5hRBCCCGEEEIIC6KUK5FMbiGEECJPJMgthBBCCCGEEEJYEKVciWRyCyGEEHkiQW4hhBBCmJVarUatVpu7G0IIIYTF0JUrsZdMbiGEECJPJMgthBBCCLO5e/cu7u7uvPHGG+buihBCCGExJJNbCCGEMIwEuYUQQghhNn/++ScxMTEsXbqUx48fm7s7QgghhEVQanJLkFsIIYTIEwlyCyGEEMLkIiIi6NChA6tXr9abrrsdG2DLli0F3S0hhBDC4qjValJSUgAZeFIIIYTIKwlyCyGEEMLkgoOD2bFjBzNmzNCbfvv2beXv9evXF3S3hBBCCIujy+IGKVcihBBC5JUEuYUQQghhchcuXADg/PnzJCQk8MUXX+Ds7MzGjRuVNps3byY1NdVcXRRCCCEsQvogt2RyCyGEEHkjQW4hhBBCmJwuyJ2WlsapU6dYunQpCQkJhIaGKm2io6P1HgOsXr2aefPmodFoCrS/QgghhLmkD3LbqJ6esh8eMIrDA0aZo0tCCCGExbMxdwdE8RMUFATA4MGDzdwTIYQQBeXixYvK35s2beLq1at6z1tZWaFWqzl37hz+/v4AaDQaBgwYAICvry+9evUquA6LIkF3zAFy3CGEKDx041XYW1mjUqnM3BshhBCicJBMbiGEEEKYVGRkJBEREcrjBQsWZGrTtWtXAL766itq1qzJyZMniY2NVZ7POGClEHkVEBBg7i4IIYRBdJnctlKqRAghhMgzCXILIYQQwqTSZ3EDxMfHZ2rTtm1bAI4ePcqlS5d49913uX//vvL8pk2bSE5ONmk/hRBCCEugBLll0EkhhBAizyTILYQQQgiT0tXjbtmyJR4eHlm2qVu3rt7jhIQEHjx4oDyOiorin3/+MV0nhSgCgoKC9Eq0CCEKh7179xIZGak8VsqVSCa3EEIIkWcS5BZCCCGESV26dAmApk2bsnXrVtzc3LC1tdVrU6dOHb3HcXFxepncAKdOnTJpP4UQQoiCduDAAdq0aUOdOnVQq9WAZHILIYQQz0KC3EIIIUzm8IBRyj9RfIWHhwNQoUIFGjVqxKVLlzh58iQtWrRQppcrV07vNdeuXSMsLExvWsayJ0IIIURht3fvXgDu37+vjD+hC3LbSZBbCCGEyDMJcgshhDCpCq/0NncXhJnpMrI9PT0BKFu2LLVr1+a3337jtddeY9OmTahUKkaMGIG7uzsAqampHDp0SO91EuQWQghR1KS/oPvuu+/y/fffK+VK7ApxuRJJchBCCFHQJMgthBBCCJPS1db28vLSm16xYkV+/vlnpR73Dz/8QGRkJPXq1QPg33//BZ4OSnnp0iXlVu68SkhIICEhIT/dF0IIIUzm6tWryt8PHjzg7bff5s8//wSkXIkQQghhCAlyCyGEEOKZaDQa/vnnH+7du5dju4yZ3DmxsrLCz88PgFu3bgHQokULbGxsiI+Pz1TCJCcJCQn4+/vTtGlTUlNT8/w6IYQQoqDogtybNm3itddeA+Cnn34CCncmtxBCCFHQJMgtLJrc4iaEEJbr7NmzdOzYEV9fX9atW5dlm9TUVB4+fAhkzuTOji7IrePj40P16tUBw0qWnD17ljt37nDu3Dl2796d59cJIYQQBSElJYXr168D8NxzzzF16lSsrJ6eoktNbiGEEM/q/Pnz9O/fn6pVq+Lk5ETp0qVp3bo1GzZsyNT24sWLdOnSBRcXFzw8PBg8eDARERFm6HX+SJBbCCGEEM8kJCQEgPj4eAYPHpxltrTu4MjKygoPD488zbd27dp6j728vKhZsyagH+SOiYlh06ZNJCcnZzmf9G1///33PC1bCCGEKCg3b94kLS0NR0dHvL29qVSpEv379zd3t4QQQhQBN2/eJDY2lqFDh7JgwQI++eQTAHr16sXixYuVdnfu3KF169ZcvXqVL774ggkTJrBp0yY6duyY7XmWpZIgtxBCCCGeiS77DCA2NpZx48ZhZ2eHnZ0dixYtAp6WKilTpgzWebztunPnznptvby8lLrdP//8szIg15QpU+jRowdBQUFZzufChQvK32vWrCl0B2lCCCGKNl2pEl9fXyWD+7vvvqNr164AVHXL28VhIYQQIqNu3bqxZcsWpk6dyptvvsnYsWPZtWsXzz33HPPmzVPaffHFF8THx7Nz507effddPvroI1atWsXp06dZtmyZ+d7AMzA4yJ2UlMSkSZMoV64cjo6ONG3alO3bt2dqp1arWb58OR07dqR06dLY2tri6elJp06dWLx4MUlJSUZ5A0IIIYQoeBqNRgly29jYALBw4UJSUlJISUlh9OjRNGjQgObNmwN5L1UCUKpUKeV1oK3l/dZbb1GmTBnOnDnD1KlTgaeZ2tmVMEkf5I6KimLBggXK49DQUA4ePJjnPgkhhBDGduXKFUAb5NZxd3dn06ZNhISE8HbdpubqWqEmJS+FECJr1tbWVKhQgcePHyvT1qxZQ48ePahYsaIyrUOHDvj5+bFq1Soz9PLZGRzkHjZsGPPmzWPQoEEsWLAAa2trunXrxr///qu0SUxMpFu3bgwdOpSEhAQmTJjA4sWLmTRpEg4ODowaNYpRo2THUxxll20nhBCicImMjCQ+Ph47OzteeeUVvecqV64MwKlTp5Ss67wMOple69atlb/d3NwoW7asEqTW1ZG7e/eu3v8Z6YLfQ4cOBeCTTz4hJCSE2NhYPv74Yzp27Eh4eLhB/RJCCCGM5ezZswD4+/vrTVepVPj5+WGtenq6LoFbIYQQoL2DNiYmRvmXWxJxfHw8kZGRhIaG8vXXX/P333/Tvn17AMLCwnjw4AGNGjXK9LomTZpw8uRJk7wHUzEoyH3kyBGCg4OZOXMms2fPZsSIEezcuZNKlSoxceJEpd24cePYunUr8+fPZ//+/UyePJnXXnuN8ePHs379ei5evEjDhg2N/maEEEIIYXpHjx5l5syZANSrV0/voKhSpUqsWbMGFxcXvdcYkskN2mOJ8uXL06tXL1QqFQANGjQAtAdjgBKgzirInZCQoGSaz5o1iy5dupCUlMTHH3/MP//8w5MnT0hOTmbXrl0G9SujoKAguYArhBDimRw6dAiApk0lY1sIIUTe1KpVCzc3N+Wf7rwsO+PHj6dMmTL4+voyYcIE+vbty8KFC4Gn51Pe3t6ZXuft7c2jR48KVSUOG0Ma//HHH1hbWzNixAhlmoODA8OHD+ejjz7i9u3bACxZsoQuXbowduzYLOdTvXp1qlevno9uCyGEEMJcJkyYQGRkJACNGjVS6mUDBAYGEhAQwO3bt5kzZw6ff/45YHgmd+nSpbl+/bpSCgXAx8cH0A44+fDhQx4+fAg8DXqnd+nSJTQaDaVKlaJMmTLMmTOHrVu3smbNGqUGKsDOnTszZaILIYQQphYbG8u5c+cAaNasmZl7I4QQorC4cOGCcl4EYG9vn2P79957j379+nH37l1WrVpFWlqaMlZRYmJitvNwcHBQ2uS2DEthUJD75MmT+Pn5UaJECb3pTZo0AbS3JYeHh5OWlsarr76ar44lJSXpXS2IjY0FIDU1lZSUlHzNu6jQfQ6F9fPIS7/VNk8HHsvYXvdcYX3/hVFhX+dEwVPbWJOGBrWNdY7rjaxbhYsuc9rNzY0xY8bg4fF0YKymTZuSkpKCs7Oz3kl76dKln+n7Tf8aBwcHXFxciIuL4/Dhw3r9SU5OVjK+ExMTeeeddwAICAggNTUVPz8/XnrpJYKDgzl9+rTy2l27dhllvZN113Kp1WqgYL4jS9mWGXv5csxlmSxlfTNEYeqrqR04cACNRkPlypUpVapUlp9N+t9eTudFxmaMdcsc242C/IxE/hXGbZihZP8pjCk1NRUAV1fXTHHZnNSoUYMaNWoAMGTIEDp16kTPnj05fPgwjo6OAFlma+vKTuraFAYqjUajyWvjOnXq4OXlxY4dO/SmX7hwgdq1a/P9998TEhLC119/zalTp3juueeUNsnJycTExDxdsEpFqVKlsl3WtGnTmD59eqbpS5YsoXTp0nntshBCCCGMbMiQIcTExDB//nyl/vY777zD3bt3WbBgARUqVAAgLi5Oueg9ZMgQXnjhhXwve/To0YSFhTFo0CB+/fVXZfqvv/6Ks7MzAN999x1bt27F2dmZL7/8UulPZGQkkyZN4uHDhzg6OpKUlIRarWbx4sUGZ5oLIYQQ+bF69Wp+/fVXWrVqxfjx483dHSGEEBYuMjKSN954g9u3b1O+fPlnns/ixYsZOXIkly5dwsXFhfLly/PVV1/plaEGGDx4MJs3b1buni0MDMrkzi5FPX0Kuy6QnbEW5+bNm+nbt6/y2NnZmbi4uGyX9eGHH/L+++8rj8PCwqhVqxbt27fXS8svzlJSUti+fTsdO3bE1tbW3N3Jk+DgYOXvgQMH5tr+2NCn60CjX+Zl+VzG6cJ0CuM6J8zr2ND3KT+gO3dWbcrxtyrrVuGh0WhISEhQHnfr1g2Abdu28eDBA1q0aKHXXhfk7tq1q9I2P/z8/AgLC1Pu8NKpXbs2tWrVYteuXWzduhXQllnTDaqi07NnT6ZNm4azszO7du3i+PHjuLi4PHPfdPu1vOzTRMELDg6mfv36nDp1qkC+I3Nvy0y1Psoxl2Uy9/pmiOK4rUxLS2PYsGHY29vz448/KncbgTY7bsqUKQD06dMn231Q+t9eTudFxmaMdcsc242C/IyKCnNu3wvTNuxZyf5TGFNWJRqfha5ESXR0NP7+/pQpU4Zjx45lanfkyBHq169vlGUWFIOC3Lqsp4zSp7C7uroCZApgBwYGsn37dgBmz57N/v37c1yWvb29XkBdFzy3sbEpshvAZ2Vra1soP5O89NkqNS3b9rrnCuN7L+wK6zonCp5VahrWqLBKTcvTOiPrluWLi4tTbpVzdnZWvq+aNWtSs2bNTO2PHz/O3r176d+/P9bW1pmeN5Qua+HEiRN60yMiIrC1tWXWrFkAvPXWW3Tp0iXT6z09PVmwYAGbN2/mzp07HD9+nDt37uR7vZP11nJZWWnHWS/I78jc2zJjL1uOuSybudc3QxSWfhpqw4YNlC1blsaNG+tN+/333wFtNlxycjKdO3fG2tqaUaNGcebMGdzd3RkwYEC2n0v6315O50Wmkp91yxzbDXN8RoWdJWzfC9M2zFCW8PmKoiP9WEV58eDBg0x3q6akpLB8+XIcHR2pVasWAC+++CK//PILt2/fVu6A3bFjB5cvX2bcuHHG6XwBMegT8vb2zvLKgW40znLlyinTzp07p1eupEyZMnTo0AGAFStWPFNnhRBCCGFeUVFRAFhbW2NnZ5dr+4CAAAICAoy2fN3dXHfu3NGbrqsTfvbsWQDeeOONXOdVqVIlAG7cuGG0/hUVGo1GL+tQCCFE1i5evEivXr0AbfKXLlFrzpw5SpuOHTsC2tJekyZN4qeffgLg999/z9ct50IIIUR2Ro4cSUxMDK1bt8bHx4d79+7x66+/cunSJebOnatU4Pjoo49YvXo17dq1Y+zYscTFxTF79mzq1q3La6+9ZuZ3YRgrQxrXr1+fy5cv69XWBpTBn+rXr0/Xrl2xtrbWq5MpxLM4PGCUubsghBAiA12Q29nZ2SxB0PQX1NO7e/cujx494sGDBwD4+/vnOq8qVaoAcP36deN1sBALCgoiKCiIxMREGjZsSGBgIGlpabm/UAghirH0dxbt2bMHgJMnT3Lw4MFMbRcuXMjw4cPRaDQEBgYqwW8hhDC1wwNGSYylmHnppZewsrLiu+++4+2332bevHmUL1+edevW6ZWHrlChAnv27KFatWpMnjyZWbNm0a1bN7Zv355lyWpLZlCQu1+/fqSlpbF48WJlWlJSEkuXLqVp06ZUqFCBihUr8vrrr/P333+zcOHCLOdjwFiXQghRJOmCSUIUNumD3OaQcVwOXdA7LCyMkJAQQFvSJOPYIFmRTO6s/fTTT5w8eZIDBw5w6dIlc3dHCCEs2pkzZ5S/169fD6CU5uzSpYty67evry+gHcMC4OWXXy7IbgohhChmBg4cyPbt27l37x4pKSk8evSI7du3K3cfpVe7dm22bt1KfHw8UVFRrFixAi8vLzP0On8MKlfStGlT+vfvz4cffsiDBw/w9fXll19+4caNG8otVwDz58/n+vXrjBkzhuDgYHr27ImnpyeRkZHs37+fDRs25CnDSgghhBCWRRfkdnJyMsvyMwa5mzRpwl9//cX58+eVgGyNGjXyNK/0Qe5Tp05RtWpVSpQoYdwOFxIajYbExERsbW356quvlOkHDx6kdu3aZuyZEEJYttOnTyt/b9iwgW+//ZaTJ08C0KhRI2bOnMmZM2d48cUXadeuHUePHgWgf//+ZumvEMJwuuSkwYMHm7knQoicGJTJDbB8+XLee+89goKCePfdd0lJSWHjxo20bt1aaePk5MSWLVtYunQp9vb2zJo1ixEjRjBr1izi4uJYtGhRpgGjhBBCCGH5LCmTu0aNGnz++ecA7N69mx07dijT86JixYqoVCoSExNp0KABI0aMUJ5Tq9UcP36c5ORkI/becn388ceMGjWKZcuW6dU7P3TokBl7JYQQxpOUlGSSO4rTB7lv3brFjh07OHXqFAANGjSgfv36DBkyBGdnZ7Zs2UKfPn2YMWNGpsHAhBBCCJE/Bge5HRwcmD17NuHh4Tx58oQjR47QuXPnTO2sra0ZNmwYO3bs4OHDh6SkpBAREcE///zDyJEjcXBwMMobEEIIIUTBSR/k9ttwsMBr+/n4+DB06FAGDRrEgQMHqFWrFoGBgWg0GmU8kLwGue3s7PSC5r///jtpaWnEx8fTu3dvGjVqxNSpU03yPizNzJkzSUtLY+/evQA0btwYkCC3sExS8ksYWlv2l19+oWTJkrz99tt5fo1arWb06NF06tSJxMTELNs8ePCAe/fuoVKplMG5Jk2apAyC3KBBA732Hh4e/Pnnn3z88cd57ocQQggh8sbgILcQQgghii9zZ3KrVCqWLVvGihUrcHd3BzLfOlqzZs08zy9j2ZULFy4wYsQINm7cCKBkhxd16b9Pa2trZfyVCxcuEB0dba5uCSFEvq1YsYJhw4bx5MkTfvjhB+7evZun13322WcsWrSI7du3Z7sv0GVxV6tWjS+++AJHR0dOnDhBSkoKbm5uVK5c2VhvQwghhBC5kCC3EEIIIfLM3DW5s/LKK6/QqFEjABwdHalbt26eXxsfH6/3+LvvvmPlypXK47CwMON00sLZ2DwdpqV3797Ur1+fatWqodFoWLt2rRl7JoQQzy4+Pp4PPvhAb9qSJUsAOH/+PI0bN+bPP//M9Lpr164xffp05fHOnTuznL/utU2bNqVs2bL873//U56rUKECKpUq3+9BCCGEEHkjQW4hhBBC5Jm5M7mz4urqyuHDh/n33385cOAAZcqUyfNrv/32W1xdXXnuuecAbZAboGPHjgDcvXuX2NhY43fagiQlJSnZ2t27d2fRokUAjBw5EoBp06aRlJTEwoUL2bJli9n6KYQQhlqwYAH37t2jSpUqLF26FIAffviB1NRUPvvsM44dO8Zbb72V6YLn2rVr9ep3ZxXkjo2NVcrmvP766wB8+OGHyt1F/fr1M8l7EkKIwkLKi4mCJkFuIYQQQuSZJQa5AaysrAgMDKR+/foGva5v377ExMTw1VdfKdPs7OxYsGCBEiy/cuWKMbtqcSIjIwHtZ9i/f3+8vLwAeOeddyhXrhy3bt2iT58+jBkzhq5du5pk4DYhhMiPzZs3M336dFJSUpRpDx8+VLbtM2bM4OWXX6ZUqVLcvXuX4OBgJQv7wYMHfPvtt3rz093BMmXKFEBblmTTpk16tbl/+eUX4uLi8PPzo127dsDTklrHjh3jww8/NN0bFkIUOHOMRSOEMIwEuYUQRZqhAxMJIXJmqUHu/AoMDKR8+fJUrVqVXbt2UbNmTfz8/ADt4IsPHz40cw9N58GDB4A2I97K6umhoaOjI+PHjwfQy+B+9OhRwXZQCCFykJqaSvfu3Zk2bRrz589Xpn/xxRfExMRQv359Bg4ciL29PS+//DKgHcshOTlZ2Zd98803qNVqQHsHz8GDBwEYMWIEderUAaBHjx54eXmxcOFCzp49y6RJkwDtBcH0ZUmsrKxo2LAhdnZ2Jn/vQgghhHhKgtxCCCGEyLOiGuR2cXEhNDSUK1eu0KJFCwAlyD169Gjq1q2rl8FXFOgysnVB7hIlSmRqM2jQIKytrfWmFfXMdiFE4XLo0CHl7zlz5pCYmMjjx4+V0kszZ85ULuANGzZM77Vz5syhRIkShIeHc/jwYVJTU3nzzTcBaN68OT4+PowfP57y5ctTpkwZYmNjmTJlCiNGjCAhIYEOHTowapQkUwghhBCWQILcQgghTELqrxVNljjwpLHY2dnpZTLrgtwA4eHhnDp1yijLiY2NpWvXrvz000/ZtjH1XSi7du2ibNmyjBw5knv37gHaTO6MvLy86Nq1q940CXILQ0lNTmFKmzZtUv5+8OABkyZNYtWqVTx58oTatWvTuXNn5fmAgADatGmDtbU1M2fOZOTIkXTr1g3QDiI5efJkNm/ejKOjo5IVPmzYMG7fvs3du3cpUaIEUVFRSmB92bJlmS4ECmEIuetUCCGMR4LcQgghhMiTvXv3KvWbXVxczNwb0/P19dV7fOzYMaPM97vvvmPLli288cYbSjb1w4cPeeONN+jYsSM///yzUZaTnbt37/LSSy/x4MEDFi9erGQ2ZpXJDTB27Fi94L8EuYUQlkQX5B4wYACgHVBYN3Du0KFD9UqJqFQq/v77b6Kiopg8eTIqlYq+ffsC8OOPPzJ37lxAe2GmSZMmesuxsbFRam8DNG7cGB8fH9O9MSGEEEIYRILcolC43LO5ZAEJIYQZ3bx5ky5duqBWq+ncuTPu7u7m7pLJdezYkYYNGyqPjx49apT5xsbGKn+HhoYC8Ntvv/HTTz/xzz//MHnyZKMsJztz584lIiKCypUr603PLsjdoUMHIiMj+fLLLwEJcgshLMfatWs5e/YsVlZWtGnTRm8QYdCWXMrI0dFR786Vrl274uzszOPHjwFtiaoXX3wxy+V16NBB+btHjx5GeAdCCCGEMBYJcotCIyAgIMfnJQguhBCm8/PPP5OYmEjTpk35888/9TLjiio3NzeOHTvGxo0bAeNlct+9e1f5e+/evQDcuXNHmRYREUFyWppRlpWVS5cuAfDRRx/pBbqzC3IDuLu74+/vD0iQWwhhGcLiYnj99dcBbUkRV1dXJk6cyMaNG2ndujWffPIJ5cqVy3U+rq6u7Nq1i2nTpjFt2jTmzJmTbdv0Qe6ePXvm/00IIYQQwmhszN0BISyFrhZa01WLzNwTIYSwLGq1muXLlwPw7rvv4ujoaOYeFaxGjRoB2uBwbGxslrWrDXHt2jXl77179/L6668rdbF1Ip/EU845+6Bzfly/fh2AKlWq0KpVK27cuAFkXZM7verVqwPaILdGoykWFzqEEJYpOS2N/x3aRnR0NNWrV2fMmDGcPXsWgO7du9O9e3eD5te4cWMaN26cazt/f39GjRpFamoq9evXf5auCyGEEMJEJJNbCCGEEDnauXMnN27cwNXVlT59+jzTPArzwEpeXl5UqFABjUZjlGzujEFu0A5smd6DxPh8LycrGo1GCWpXrlyZVq1aKc/llMkNUK1aNVQqFTExMURERJikf8Ykd3cJUTTFxMQw+cAWLkZF4OHhwahRo7C1tS2QZatUKv7v//6PH374QS70WRjZ5gshhJAgtxBCCCGyde/ePWVgwkGDBuHk5GTeDplJYGAgAHv27MnXfJKTk7l9+7by+Pr168TGxmbK5I4wUZA7IiKCxMREVCoVFStW1Aty55ah7+DgQIUKFQApWSKEMI8bN24QGBjIgXu3sLe24bfffqNUqVLm7laxVpgvYgvLJaVIhRDPQoLcQgghhAGK20H3xIkTCQsLo0aNGsrAg8VRu3btANi1a1e+5nPjxg00Gg3Ozs64ubkBcPv2bSWTu3bt2gA8SIjL13KyoytV4uPjg52dnVJnG8Db2zvX1+tKlly9etUk/RPmFRQUJAErYdF69uzJuXPnKOXgxHdte9OpUydzd0kIIYQQFkKC3EIIIYTIUkJCAmvXrgVgyZIlSlC2ONIFuQ8ePEhCQkKeXpOWlsaKFSsICwtTpulKlVStWlXJir5+/TqRkZEANGzYEHiayW3sYGP6UiWgvfX+5s2bnDhxAnd391xfn74ud0EqLoHX4nYRTQhDREZGcu7cOQCWPP8CtTw8zdwjIYQQQlgSCXILIYQQIkubN28mPj6eSpUq0aJFC6PMs7AGK319ffHx8SElJYUDBw5kej6r9zVt2jQGDx7MkCFDlGlZBbmPHz+ORqPB2tqa5557DjBduZKMQW6AihUr0qBBgzy93lxBblH4+W04WCh/+8JyXLx4EdBuv7yd8zcAsCg6CutxhRBCCOOTILcQQohCTTIfTef3338HYMCAAcV+gC2VSqVkc+/evTtPr5kxYwagHbgTtIM+rly5EoCaNWsqQe4jR44A4OnpqUwzdZC7SpUqz/R6CXILIczlwoULgHb7WdTIsUz+VHilt7m7IIQQwgJIkFsIIYQQCo1Gw4oVKzh48CDr168H4OWXXzZzryxD69atAdi/f3+ubTMGgRMSElizZg379+/HycmJd955RwloHz16FNDWxPbx8QFMF+TWZZKnz+Q2RPogt0ajMVa3RCEh2ZLCnHSZ3LVq1TJzT4QQQghhiSTILYQQQgjF9u3bGTx4MC1atCA5OZlmzZrluZRFURcYGAjA4cOHSUlJybZdfHw8H330kd60s2fPMnnyZAAmTJiAj4+PEuR+8OABAGXLlqV8+fIARD6JR23kIPK2bdvYvn07AHXq1HmmeVStWhUrKyvi4uK4f/++MbtnFDndti5ZkkIUbkU5k9tUJENcCCFEcSJBblHoGHqgJgd3QgiRd6dPn9Z7PHbsWDP1xPLUqFEDd3d3EhMTOXnyZLbthg8fzh9//KFX4mX8+PGEhobi5eXFBx98AKAEuXW8vb3ZsWMHKpWKFLWaR0+eDnCp25ddunSJGTNmEBcXZ1DfU1NTGTJkCBqNhjfffJOQkJBn2jfa2dlRqVIlAC5dumTw64UQ4llJJrd4FnIuKIQQxYcEuUWhJ4ONCCGE8ejKWQDUrl2bF1980Yy9sSxWVlZKNndOJUv++ecfAFatWsXIkSP12k+bNg0XFxcgc5C7bNmy2NjYUK5cOQDOPdLPlA4LC6NmzZp88sknfPfdd8yePVvJzM7N7du3uX//PnZ2dnzzzTd5ek12dJn9r7/+Ordu3crXvIQQIqM9e/YQFhamN+3hw4fcuXMHkExuIYQQQmRNgtyiyNFdrZcr9kIIYbjQ0FAA/u///o+TJ09ia2tr5h5ZFl2Qe9++fVk+Hxsby8OHDwHo1KmTXsahv78/w4cPVx7rSpPo1KtXT2kHcDLirvJcamoqCxYsUB5//vnnTJw4kX79+uUpq1t38aJKlSo4ODjk2j4n8+bNo1q1aly/fp3Zs2fna15CCJHe/v37adu2rd4F1sjISGXb6+vrS8mSJc3Uu4Il5zJCCCGEYSTILYqkgIAAc3dBCCEKJV2Qu3bt2oUqwF1Qd/W0a9cOgH82bmJ/v7cyPX/9+nUAPDw8KFGiBLVr11aemzlzpt5n6ujoqPxdvnx5+vXrB2jLogCcjAhXnt+3bx/37t1THkdHRwMQExPDihUrcu23LshdrVq1XNvmplKlSnzxxRcAHDlyJN/zE0VDQd9Z57fhoNzJV0T88MMPvP/++6SkpLB161ZAO/aBLpv7l19+ISQkhHLlyrFy5UpzdtVsJOAthBBC5E6C3EIIIYQAICUlhZs3bwLGCYYWlIIMdDVq1IiSJUsSm5LMpagHmZ7XBbmrVKkCQLNmzahXrx79+/enT58+mdqPGzcOPz8/9uzZg5WV9rBMF+S+8jiSmOQkUlNTWbduHQCzZs3SC44DLFy4EE0ug1TqLl5UrVrVgHebPd3F5NOnT+c4CKexSYkyYU6y/j2706dPExERkWn6gwcPeOutt/j666+ZNWuW3l0yW7ZsAeDEiRMAjBo1isaNGxdMh4UQQghR6EiQWwghhBAA3Lp1i7S0NOzt7ZW60EKftbU1HTp0AODw/TuZns8Y5HZ2dub06dOsWrVKbyBKnXnz5hESEqIXfC5ZsiQVXdzQAH+GnufSpUs8evQIBwcHxowZQ7NmzQCwtbXFwcGB8+fPc+7cuRz7bcxMboCID+fibGNHUlKSDEBpJJKpKYqqM2fOMHfuXMaPH8+RI0dYsWIFaWlpgHbsAp0pU6awe/du5fHff/8NPA1yy52awlCyXRX5JRc3hShcJMgtCp2cbk/123CwgHsjhBBFR/psX11WsaUzxwlsp06dAPjx/FF+/vln1Gq18lzGILch0r+Xl/2eA+D7c4dZuHAhAD4+Pjg4ONCyZUsAWrduTdu2bQFyHYDS2JncVioVfu6lgacBKCFMpaCDDDK2i3FdvnxZ+btp06YMHjyYadOmAeiVW0q/LQXtdi0yMpKQkBBAgtxCCCGEyFnhOIMVQgghhMnpAqG+vr5m7oll69atG7b/XQTYvXu38rlB/oLc6fWpWotulfzRoK1XC+Dt7Q3A2LFjefPNN5kzZ44ScN+2bVuO89NlchsryA3gX1KC3EKI3D1+/DjTtM8//5yff/6Zw4cPY2VlxcmTJ5Xnnn/+eSpVqkRMTAwTJkxAo9Hg7e2Nl5dXAfZaWJLsLjzJxSghhBDpSZBbFEuSoSNE0SC3DxrXjh07APDz8zNzTyybj48PyzsOwEalPYzSBbbT/53fILdKpaJjRf2LDbogd6lSpVi8eDH169dXgtx79uzhyZMnaDQaPv30U7777jvldY8ePVKCTEYNcruXASTInd6xoe/r/S9EcREVFcXSpUuzDGg/fPhQ+XvMmDEMHjwYjUbDyJEjAejQoQP169fn+PHj9OjRg88//5z33nsP0A46CZLFLQxzuWdzOdcTQohiSILcQgghhAklJSUxYcKEPA0OaE4XL15k7dq1AAwbNsy8nSkEqpRwZ1hNbdDl+vXrnI4MJykt1WhBboBa7p56j7Oqk16rVi3KlSvHkydPOHjwIJcvX2bq1KmMGjVKGcBNl8VdtmxZnJyc8t0vneolSwFw9uxZi163hRCmN3PmTF5//XVq167Ngwf6g/I+evQIgM6dO/PNN98wdepUAFJTUwF49dVXAW0ge8OGDTRr1ozhw4fj5uamzKNhw4YF8TaEEEWYLtHNHHW2JTFHiIIhQW4hhDAjS8gyKagDvaJ2cJfxu0tJSeGzzz6jTZs2jBw5Uqkt+tNPPzF37lzGjBnD0KFDM9UctQSjRo2icePGaDQa+vbtS506dczdpUKhpoc2CL1//35G7vqLz4/tJj4+HhsbGypVqpTv+bvZO1De5WmQR5fJnZ5KpVKCPyEhIUrtWoDRo0eTmpqqlFMx1qCTOpVcS2JjY0N0dDS3b9826ryF0DHVvkMGEzOuXbt2AXD37l3efvttved0mdwuLi6AdlvUpUsXABwdHenTp0+m+bm6uvLrr78yaNAgRo0axahR8l0VdzmNyyREXlnaXSFyh7kQxiVBbiGEEMIIVqxYwZQpU9i7dy+LFy+mf//+fP/994wePVppExQUxOLFi4mNjWXSpEns2bMn1/nGxcXx/vvvs3//fpP0+9KlS3z33XfEx8fj5ubG9OnTTbIcUzD3SUGN/8p16Gy7dQXQnkA5ODgYZRm1/gukW1tb4+npmWUbXfA6NDSUq1evKtPPnj3L5s2blUxuMO7JlK2VNTVq1FCWVVB0t6Gb+/s3JmMGbnSBIHMGg0zx/Uj5Acul0Wj0xib4+++/efLkifI4Y5AbYOLEiVhbW/P666/j6uqa5Xy7d+/OihUr+L//+z+pxy2EKNSy2ofJRRshjE+C3EIIIUQ+aDQakpKSWLZsGQC2trYArF27Vslm8/T0ZObMmQB88MEHDBgwgFmzZtGnTx/279/PmDFjaN26NfPmzSMpKUlv/vPnz+frr79mwIABJCYmGq3Pu3btYsqUKUycOBGALl26EBERQd26dY2yjOKglEPWpT9atWpltGXU/i/I7enpiY2NTZZtdHW2r127phfkBli6dKkS5Pb09DR6BpNufTlz5kyBBlaf5X0UpyzACq/0NncXslQUL1AUdVl9X0FBQUybNo0uXbowb948wsLCiIqKwsrKCmdnZxITE/n333+V9lkFudu1a8f9+/eZP39+gbwPIYQQls3cF+hF0SBBbiGEECIfRo8ejYODA3v37gW0gcZhw4ZRrlw5nn/+efz8/Jg3bx4ffPABLVu2JC4uji1btgDw+PFjWrZsycKFC9m3bx/jx4/Xq4etVqv56aefAO0t4N9//71R+jxx4kSef/55PvvsMzZs2ABo63DrAvSWojAEw7IKaBszyN2+fDXq16/P888/n20bXZA7NDSUK1e02eQTJkwAYOPGjRw8eBAg20zw/NAFuc+ePcua0HO0Wfsj+/fvJy0tjeeff5769euTmJgoJy5CYewLLaZctwpi+2PO34ZuG2vI+1y1ahWjR49m+vTpbN26lWnTpnH69GlAW1JJ9/3q9nPwtCZ3+iA3aAfRze7inTA+2Q4LIYQo6iTILYQQQhhIo9Gwdu1axo4dy3fffadM79y5M+XLl2fp0qWEhYWxY8cOQkJCGDRoENbW1mzcuJEXX3wRgOHDh2NnZwdAt27d+PLLL7GysiI4OJi///4bgB07dnDjxg1l/jNnziQuLi5ffT99+jTz5s0DwN/fH9DWPu3Zs2e+5ltcvfrqqyzr0I+X/Z5TpgUGBhpt/qUdnTl58iSdO3fOto2uXMm1a9eUIHfv3r1p0qQJqampnD9/HoAyZcpkO49nlT6T+/fLZ0hKS2XFihX8+uuv7Nq1i9OnT7Njx45Mr8sp2GLqixsFdfGkMFykKWpM+ZkX1eCgoRcdFi1aRGxsrPI4NjaWP//8E4AKFSoo24T0QW5dJrezs3N+uyuEEKKQkuMiURAkyC2KtMJwQiJZFcJSyYFI9kJDQ/nrr7/45ptvALCxsaFv377Mnj07x9e5ubnxxx9/8OjRI5YsWcL58+e5evUqmzZtYtKkSYwdOxaAyZMnA9o63wAjRozA19eXiIgIZZnPYsuWLfTu3Ru1Ws2AAQM4e/Ysc+fO5Y8//sDJKevSG3lRnLdjjo6O1HAvQ7OyFQB47rnnKF26dIH2oXLlyqhUKmJjY7l58yYAvr6+9O3bV6+dKTK5n3tOG9w/f/48t+KiAdi7d69ebfeNGzfmaxnFdd0q7orzdsXSPHz4kCdPnqBWqzlx4gQAU6dOpXHjxoC2LBJog9y1a9fG2tqa8+fPExISgkajybJciRBCCCGEsUmQWwghhDCQLpAI2hrcp06dYu3atXmuZ+3u7g5oA5G6LFyAjz/+GJVKxZkzZ7h586YSHBw0aBDTpk0DYPbs2XpZdHkVERFBnz59uHnzJuXLl2fu3LnY2try/vvv06lTJ4PnJ/Q19arAjGYdCQ4OLvBlOzg44OPjozx2cXHBy8tLL/vbxsYGNzc3oy+7QoUKtG7dWm/ahQsX9Aa73LhxIxqNBiiYi2cyQGHRYam1xYuT0NBQ3n//fYYNG0ZoaCixsbHY2tpSuXJlGjZsCGhLawFUqlQJV1dXOnbsCEBwcDDx8fGkpKQAZDvApBBC6BSXJJvi8B6FMAcJcgshhBAGunXrFgAvvfQSJ06coHbt2kaZb6lSpWjUqBEA06dP59GjR3h4eNCiRQsGDhxIpUqVePz4sd6AXnm1Y8cOkpKSqFGjBhcvXqR8+fJG6XN6xeXEJDsdKvhSo0YNo84zrwHbypUrK3/7+vqiUqmULGuA1NRUVCqVUfum89lnn2U5fcKECTg5OREWFsaV6IcGz1cyeYUwv0OHDqHRaPjjjz+UEiQVKlTA2tpaCXIDlC1bllq1agHw8ssvA9ogty6L28bGRinRJfJHLuQJUTgVpwGwhTAXg4PcSUlJTJo0iXLlyuHo6EjTpk3Zvn17pnZqtZrly5fTsWNHSpcuja2tLZ6ennTq1InFixeTlJRklDcghBBCFDRdJvcLL7xAnTp1jDpvXQac7vbvHj16YGNjg7W1tZIxe+jQIYPnq6uL3K1bN7llvAjSDT4J8MorrwBgZWWFg4ODyZfdunVrhg0bRnnnEpR1epqpOWbMGGUQzguPHhg0T78NB43aR2Mo7hdxRPF07tw5ANLS0vjwww+BpxfV0ge5hw8frgwi2adPHxwcHLh06RJ79uwBtHeYmOpCmxBFgQQ/hRAi/wwOcg8bNox58+YxaNAgFixYgLW1Nd26ddPLKktMTKRbt24MHTqUhIQEJkyYwOLFi5k0aRIODg6MGjWKUaNkI14cpD8htJQdt5ygCiHyQ61Wc+fOHQC9TFlj0QW5ddLXVW7evDkABw9mHwDUaDQsWLCAtWvX6k3XBbnbt29vrK4alS5r11L2FYXNa6+9RoMGDfj555/54IMPlOm7du3C29ub3377zaTLX7p0KX90G8RrNbWD2DVv3pyKFSsqF4Guxzwy6fIlAF3w5DMv+m7fvk1YWJjyOD4+Hnga5K5duzYlS5YE4I033lDalShRQtnXLF++HJB63EIIIYQwPRtDGh85coTg4GBmz57NhAkTABgyZAh16tRh4sSJHDhwAIBx48axdetW5s+frwyipTN+/HiuXLmSZfa3EEIIy6YLaAwePNjMPTGfe/fukZycjJ2dHb6+vkaff4sWLahUqRJhYWFMnDiR3r2f1qRt1qwZAIcPH0atVmNllfla9W+//cZ7772HSqVi9erVvPjii1y+fJnr169jY2OTqX6yJanwSm9ur1xn7m4USm3btlUGhEuvWbNm3L17FyiYi7w9qtQgYPI7dOjQAUApX3A9JsrkyxZCGNe2bdsA8PLy4vHjx8qduNWrVwfAzs6OgwcPkpycTOXKldm3b5/y2u7du7Np0yblAquzs3MB914IIfJOl2TRdNWiZ56HnCcJYX4GBbn/+OMPrK2tGTFihDLNwcGB4cOH89FHH3H79m0AlixZQpcuXTIFuHWqV6+uHBwJIYQQ6UVGRrJ371569eql3PpsKhqNhuTkZOzt7fP8Gl09bl1NUmOzs7Pj2LFjqNVqPD099Z6rW7cuzs7OxMTEcObMGXbt2sWJEydo1KgRY8eOJSEhgUmTJgHa9/byyy8zbtw49u7dC2gDoZJNJ0zJWmVFv379lMcS5BbmEBQUlOcggwQlsnfkyBEAmjRpwowZMzh16hTly5fXy+7ObhyCrl276j2WfU/BkzsthDAf3e/Pz8z9sFTGuKggRFYMih6cPHkSPz8/SpQooTe9SZMmAJw6dYrw8HDS0tJ49dVX89WxpKQkvbrdsbGxgHbgJN0I3cWd7nMoDJ9HSkoKahvrTNNykrG9buT2jNOzek1WbbNaXvppurYF/Xmaa7nPojCtczqF4fM1d99y+4xy++3kNu80NHleRmhoKN26deP69eu8/fbbLFiwAID79+9z7tw5nn/+eb2anrn9xnOiCwJv376dTZs2KVnSubl+/ToAlSpVMtl35+bmBmT9npo0acKuXbto27Yt0dHRAKxYsYI+ffrw0UcfcefOHSpWrEizZs1YtWoVs2bNAqBkyZJ88803Ru1zdtvjrJaR2z4g/bqS8TlD9hd5eX/G2JalX2Z+1kOAY0Pf1/7RtUmW80wvv9+fbv+Y0/zysoysftNZTdPd7RCRGE+MOjXHtlnNP9vl//c+slqPsmtryHGI7jtp9Mu8TM/l9DrlOMTAdcLQY6Tc5pXdbymvr8/Yh5zej+5xVq/Lah7ZfXc5vY+clpdbv3Kaf17aZ7U8U2xHn2WeRtmW5fB9hISEAFCuXDlq1qxJzZo1Ae2AkjktNyUlBR8fH2rWrMnFixcBlIu2xvrsMn5ueV2vDKF7nwMHDjTaPHOT0zYtP9uJ9Odixt5PZjdfYx+D57ScNDR6bbJi7uPt7Jhq22Lo8s2x7LysZ8bul1qtznY/d7VrEy4HBen95rP6DebWp+z2n7q/D74yBro2KfDv3hK+a93feT2OFPpSU1Nzb1TMqTQajSavjevUqYOXl5dy25nOhQsXqF27Nt9//z0hISF8/fXXnDp1Sq9WaXJyMjExMU8XrFJRqlSpbJc1bdo0pk+fnmn6kiVLKF26dF67LIQQopDQjeGgK60A8Pnnn1OrVi0mTZrE5cuXeeWVVxgwYIBRlnfkyBG++OILADw8PBg3bhx16tTJdWCsjz76iAsXLjBmzBiz1Le+dOkSn376KQkJCdjZ2ZGcnAxAgwYNOHnyJFZWVkydOpV69epx8OBB9u7dS0xMDC+//DJ169Yt8P4K8frrr/Po0SO++uor/P39c2yblpbGxYsXqVmzpknulBBC5Gzfvn2ULVuW6tWr89prrxEVFcXs2bOf6S7c/fv389dff9G8eXO6d+9u0F1TQgghhNAXGRnJG2+8we3btylfvry5u2ORDApyV6tWDX9/fzZv3qw3/dq1a1SrVo2vv/6ac+fO8dNPP3H16lWqVaumtPnrr7/0Bs9ydnYmLi4u22VlzOQOCwujVq1aXL9+HR8fn7x2uUjSZRepbayJfLEdHTt2xNbW1sy9ylr6DIhjQ9/narostdyyIpTMNuBq1ybUr1+fU6dO4fv3kSzbX+3aBN+/j2Rqq1umbnm6PmXsQ05ZW6ZkruU+i5SUFLZv327R61xGlvr5ZlwPzZEtpJPdZ5S+T+n7q5uWm+DgYHz/PkL5Ad25s2pTlsvQefLkCZ06deLQoUOUL1+eJk2asHbtWpo2bcpnn31Gp06dlLYbNmygc+fOSt8z/sbzIiUlhXr16hEaGqoXKB4xYgQLFy4EIDo6mtWrV9OzZ0+8vLwAbQCuZMmSJCUl8cUXXyjjUxS0ixcvsmjRIoYMGcKSJUtYunSp8tznn3+uN/Cgqei+3/Ry+i7Sb9Mh87pwbOj7yrqiey679U7XdndsBIBeP/LyW89tW5aX36Pu/ej2PYYsP6d56ejmmX5abn3KTXBwsLJ/zGqehmyHstpuZLct6dq1Kzt27OCjJs9T451hwNP3l7HtmDFj+OGHHxjTIJCXazTIctnp9/MZ+55+v6+T8fhB93x2fcjuveTl8zky/AMiX2xH6TW7uNaxYa7t0y/PkGOk7KTf7up+H4bMK/3vOqvvNv30jJ9H+s8s43O6+Wb13WUn/TYB9LcvWW1/0i83L+874+8u/fyy+i6y+gyMIT/HKfk9Lku/TRg4cCDr169Xyg1FRkYqiUXff/89r7/+ut7rIPNnnNNvxNjHORnXt7yuV4YoyGOzrJaVfj1Pv6/J63FPxt9DdutaVtMNWbcMme+zym7blHGbl92+E8xzjJ0Xptq2GLp8cyw7q/Us47FfTvtqQ+m2FXEzF2eaZ3bnFFkd72XXl6zOnbL6Dad//CznMc/qWc+b8iOrzyS77ZGlnrdbkrCwMKpUqSJB7hwYVK7E0dFRL/Cs8+TJE+V5V1dXgEwB7MDAQGWwydmzZ7N///4cl2Vvb693tV+XBW5jY1NogmumYpWaRoVXenNz1UYAbG1tLf4zsbW1xSo1LdO0nGRsrxtgLeP0rF6TVdvg4OBM9RbT90HXtqA/S3MtNz8KwzqnUxg+3/R9M0c/c/uMspqe135apaZhjSrLZTx8+JDff/+dkJAQrl69yqFDh7C1teWPP/6gcuXKbNy4kcOHD9OtWze9eU6cOJGuXbtibW2t9xs35LP7/fffCQ0NxdPTk927dzNr1ix++eUXFi9ezODBg2nevDkvvfQSO3fuZMGCBezfv59SpUoREhJCUlISDg4OlCtXzmzrVb169fj+++8BOHfunF6Q+/XXXy+wfmW3Pc5q+bntA9KvK7mti7q2Wc3bkPee27Ysp+fSL/NZl5/V63Oa9qzz15tvFoOVZpxnXpaR1W86u21JnTp12LFjB5ce3qdGLm1/+OEHABafPsQg33q5vo+MJ8O6+fptOMjlns312mY6rshh25fTc3lZLwxdJww9RsptXul/H4bOK6fvNqv5pf9dApwYNBb+++yzmofu+8iuX0od0wz7j+yWl1u/spPV+pDV4LdZLc+Y21hjHKfk57gs/fexfPlyZfrRo0cBbfksJycng34LOfVF95vNbw30jJ9bbutVfhTkvj6rfWNWf2fVNrf5Zreu5ba9y+tvyZD55kZXrxee1uzNaTm6bV5O54mWei5gqm2Locs35+eT03pm7P5ZWVkZtJ/L6jeYW19ye31Oy0w/ToSx61abc13LeL5ryHGkeMrU41UVBZnPdHLg7e1NeHh4pum6aeXKlVMGHzl37pxemzJlytChQwc6dOiAt7f3s/ZXiCIl/QFcYXR4wKhC/x5E1kzxvV7u2VxvEKTXX3+d0aNH880337B582asrKz45ZdfaNq0KV5eXgwZMgTQ1h6ztbXlxIkTuLu7c/HiRVauXPnM/YiOjlbqVL/33nvUrFmTpUuXMnz4cABGjhzJ+PHj2blzJ6CtSTp06FDg6SBcVapUyTJYaA66cTEAGjVqRNmyZc3YG1HY+W04aPTff8eOHQHYdSeUhQsX6v1+w8PD0d1UePXqVWV6WWdXo/ZBFE26Cxm5keOV3D1+/Jht27Ypj9esWQNg9H1KQEBAvuchAyqaRlBQkEV9thVe6Z3j85bUVyHSk3VTCPMx6Ay9fv36XL58Wa+2NsDhw4eV53XZdb/++qvxeimEkcgJjtCRE978ye+JkFqtZvfu3YC2lMGoUaOYPn26cps0wIQJE3B1dcXb25uNGzfSoEEDJk2aBKCUFMlIo9EQHx+fafqePXsICgoiODiYsmXLcvbsWVxcXHjrrbeUNl988QVeXl5cuHBBGfDyk08+wcrKik2bNnHhwgVlf1elShXlczC32rVr4+joCECPHj3M3BtRHLcruW1P27dvj5ONLVFJTzhy5AhbtmwhJjmJvXevU65cOWUMlvTl8KKeJJqsvxqNBgOq9RV7xXGdLo5Wrlyp3J0L8McffwDGD3ILIYQQQpiKQUHufv36kZaWxuLFi5VpSUlJLF26lKZNm1KhQgUqVqzI66+/zt9//51jEEIIIUThld9MrAsXLhATE4OzszPr169n/vz5mQZF9Pf35/r169y4cUOpyT1o0CAAjh07RnR0tF7706dP4+vri4uLC/Xr1+fKlStoNBomTZpE27ZtGTJkCC+//DJPnjzB39+foKAg3N3dldeXKVOGzZs34+LiAsA333zDp59+Sp8+fZTHuiy33AbPK0i2trb07t0bJycni603KfLHb8NBc3chV+kz7jIGvR0cHGjoqT+eypXHkZx4oB1kduXKlfTu3Vu5iAUQk5JEdPITjC02OYn33ntPuZBVWOguLFrChTVDFMY+F0dqtZr58+cD2vIkoM3sBuQO3Dyy9HW9IPpm6Z+BEEKIos+ggi5Nmzalf//+fPjhhzx48ABfX19++eUXbty4wU8//aS0mz9/PtevX2fMmDEEBwfTs2dPPD09iYyMZP/+/WzYsMGiAgRCWLr0tbksQVb1zYUwxMGD2qBdkyZNsLGxISUlJct2pUqV0ntcvnx5fH19uXr1Kvv27aPMf9MfP35M69atlTuNTp8+Te/evenfv79SmkQ3wGSfPn1Ys2ZNluVGAgICOHfuHA8fPlQC+e+++y5r165VagXb2NhQq1atfH8GxrR8+XISEhKU4IQwP0vbbptb98r+7Lt7Q3kc8jiSG7FRANy8eZMrV64A2otNERHaARNvx0bjVsrBqP04fP82UVFRREVF8bh8PUraO+bY3pK+x4CAAE6cOGHubphMUQqOGXO9MXZNVh1dH+Pi4ti6dStXrlzBzc2Nr7/+Wm+QyYoVKyrtLeF3kJvC0k8hzE3u0hFCFEUGFxRdvnw57733HkFBQbz77rukpKSwceNGWrdurbRxcnJiy5YtLF26FHt7e2bNmsWIESOYNWsWcXFxLFq0qEgfpAshRGGjq5dt6iDDnTt3aNeuHSNGjACgefO81VNNr127dgBKuROAEydOEBMTQ61atTh9+jTlypXj4sWLfPrppwDMmTOH06dP8/333/Prr7/mWE+7UqVKepnqrVu31qt77e/vrzcwsiWwtbWVALcACj6TLq8nyW3KVWF2YFfat28PwOWoSG7GPAYgOTkZgMqVKzN79mxlfJc7cdFZzis/7iXEKn+fjrxn9PkbiyHf49dff02DBg2UckpC5IVGo+HHH3+kZcuW/Pbbb4B2TIr0++WmTZtSu3btLF9vivr9QoiClVvd88JE7iQwHlOX9ZTvSZiSwUFuBwcHZs+eTXh4OE+eaGsrdu7cOVM7a2trhg0bxo4dO3j48CEpKSlERETwzz//MHLkSBwcjJuZI8SzkLrMQjxljMGgsqPRaNi7dy/Tpk3TC04/S5C7bdu2AGz86Rdl2vnz5wEYOHAg9erVY/PmzTRt2hSAXr168f7771OjRg1GjhyJk5OTQctTqVRKsBywuCxuIQoDlUpFq3KVqVevHgBnH97TCzgDPPfcc1hZWeHl5QXAbRMEua9FRyl/n4y4S6o6jZMnT6JWq42+rIKwf/9+xo8fz6lTp+jatSt3797N1CYyMpLOnTvz5ptvKiUoLIEcgxWM7AI/kZGR7Nu3j9TUVLy8vPjwww+ZPn06vr6+SimvuXPnolKpcpy/7nuU77LwkO9LCMtXkIFguUAgihKDg9xCCFHUyMG+6f125QxLliwhOTmZtm3b4unpiZubG4GBgQbPS5fJfflxJDdiovj33385deoUAB07dgS0wbJDhw5x584d1qxZk+tJem46depEt27dcHFxoVmzZvmal8ibwvqb1N0VoWPp25eCzsasVKkSAGHxMWQcoUUXANcFuS9FReRpHJfcapYfPHiQP/74g+ikJ1yPeaRMD75yhtd3rCUgIIDXXnstx2VZ4neYnJzM8OHD0Wg0ODg4EBUVpYwbkN7YsWPZtm0bS5YsoVmzZkRHR7Nu3Tq9QQYLWmGoM5+eJX7/+aW7IOLr68vs2bP54osvcHBwwMbGhp07d7J3794876PNmQ0qgRkhiicJzFq+orjvFJZPgtzFiKXvCCy9f6Jokp2vaSQmJrJ48WIm7d/Cd3+uZtnF4wD07NmTHTt2cO3aNUJDQ/UGfswrb29vKrmWRAO8vfsvFi9eTEpKCnZ2djRq1EivrY+PDzY2Bg0/kSWVSsVff/3F/fv3KVOmTO4vEEXGswSpTXlXRGHn7u6ebWkdXZC7evXqAOwPv8nck//me5lTp05l/fr19Ny4nItREXrPXX4cCWjL8S1ZsiTfyypICxcuJCQkBE9PT+bNmwfA7du39dqcO3eOlStXKo9DQkLw8/OjT58+zJ49u0D7m5WMF4VEwdEFuatWrao3PSgoiLNnz9KqVStzdEsUAZZ+cbcwMvQzle9ACFFcSZBbCFGsFaVadJZkzZo1/Pvvv+y5e50Zy38iJjkJT09PXnzxRaysrHB2ds40qKQhAsqUAyAq6WkmYrdu3YwS0M6Ora2twaVOhL7LPZ+Wp5ELm8WTSqVS7sYAlPJ1dnZ2SnDb39+fCQ20Aba1oedJVac98/IePXqkBPOS/5uPlZUVzZo1o5yzK/186zB58mQApk+fTlrasy/L2LLLsk9MTOTjjz9mypQpAMycOVMZG+f27duo02Wk6+p0jxw5kunTpwPw4MED5XXPwtjBE1PeTSDbmeyFh4cDmYPcQhiDMY+vJVgrhBAiryTILYQQwujS193W6dq1a44DPhoiwNNH+dvZ2ZlevXrx1VdfGWXeongpbNlOhSVol1OGbvfu3ZW/27RpQ9WqVenUqZPeRaoXqtXG1soKNRoeJMY/cz+uXr0KQMmSJZVparWaUaNGsbbbq0xo0Ipp06ZRsmRJwsLC2Lt37zMvKzvG/L40Gg3Dhw/niy++ID4+nrZt2zJs2DD8/PywtbXlyZMnSq1zjUbD2bNnAejTpw+vvfaa3jZYrVYrg35mpzD9NrKT3zsrCsPv7VnogtxVqlQxc09EcfYs++BneY0MlGq4wnZ8JAq3orqvFQVPgtyi2Cps9SCFackt0/mn0WhISUkBnga557XsxuKJ/2OwfwPatGljtGXpMrlBGzzv168ffn5+Rpu/KNwKQyC4MPRRx9gnuvb29ixu15dulfzo1asX06ZNY8CAAXptrFQqyjq5AnAvIS7L+dz/4Tfee+89zj28l+2yQkNDAW2gc1KANttZV7s/fX/69esHoFfaw5Ry+v7j4uKIjIzMNF2j0bBx40Z+++03rK2tWbFiBdu2bcPKygpbW1tlUNyr0Q85HnKRFStW8OjRI+zt7WndujUVKlRg4MCBysWEpKQkTpw4odcnUyiI46287MMtcT9/7949jj24Y5Zl6+5wKExB7sK03RRCCCFEwZMgtxDCKOTEo3i7c+cODRs2pHLlymzevJnQ0FCsrKx4rrQ33Zu3ZHS9ZkYtJVLKwYlGnj642NrRokULo81XCGMqahdT8xLoTl+SJif1SpdlSpP2uLq6ZttGF+QOj4/J8vk/rp7j0aNH/H3zcrbz0GVy+/r60rdabYI7D+Sll17K1G7QoEHaef7xh1lLlkRERPDhhx8yefJkItJlsKvVambOnMnq1asBmDVrFoMGDcLW1lZpU7duXQCuPn7E6Hlfsn37dgBat26tlFpatmwZ4eHh9OrVC4D9+/crr09LS2P//v08Tko07ZssIJZ6TJL+eKlv3768s2cDW3JYh00hMjKS2Fhtxn/lypULdNm5OTxgVIEcU8pxqyisZN0tHoraMaQQBcV0xUuFyIegoCAkJ1Pr8IBRkMeggRDm8PjxY1q2bMnNmzeBp6UIKleujLOtncmWO7dlN5LT0ggvXdpkyxDClPw2HORwET+J0Z2IP8s+3dtZF+SO1Zv++PFj7t69y9n/MrivRT/K8vUpKSncuHED0Aa5OXqdyiXcuWyXebvUqlUrnJ2defz4MSEhIc/Q2/xLSUlhzpw5REdHA9qBN/tU1WZn//DDDxw8qF1X5s2bx7hx4zK9Xjdw5+H7t7gdeV+ZXjfiadDa1taW0qVLExgYyPr16/n3338ZP348ACtWrGDHjh1cKV+VL5p3zrGveb2YIbJ3/PhxDh06BMD3544wOSkJe3t7ky0vMjKSFStWUKpUKSV7u1SpUgUy1oQE5ExPdxGy6apFZlm+bBOKH3OvcyL/lOQF+f2KIkQyuYXJSQ00IYoGtVrNxo0bmTt3LjNmzCA+XptlOGvWLG7evEmVKlWoU6eO0r5hw4b5XmZO2Sr21ja42pkuICDyRk5s88dSBr+1xP20LpP73/CbfHvmIImpKaSq05gyZQqdOnUiIVVbHik05hGadIMt6ly7do2UlBQ8PDzw8vLKcVnW1tbUr18f0AYfzSEkJESpkwxwIFx74fDWrVscPHgQKysr3nnnnSwD3AANGjQA4HSkNvjv4uLCtCbtlUB5erqBKvfs2YNarQZgx44dAOy8c81I70jk5Mcff1T+vpcQy9KlS40yX91+M/2+U61WExgYyMSJE7l16xanT58GwMfHJ7vZCFGsST3q4i23C3Pp1w9LyKwvjutrcXzPIm8kyF3E6X78hWkDYO6dhCiaCtNvwFKdOHGCVatWcfr0aYKDg/nkk0/44osvmD9/PgDz58/n6NGjbN++nZMnT9KjRw/zdlgIA8g2wnyyuyVXl8l9KSqCX0NOsfTice7Gx/L48WO9djHJSUr2c3qXLl0CoHHjxqhUqlz7obswl75OdUG6ePEiABUqVADg6P07JKelce7cOQCqVq1KkyZNsn19y5Yt9TKBGzZsSJdKfthZW2dq26hRI1xdXYmKiuLUqVOEhYUpz9motKcHxeE3Ya6LdE+ePOHXX38FoKV3JQB+mjrDaPPPONjmnTt3uHz5MikpKSxevJjDhw8D+qVKsjr+NucxuS5Jpjish5YoODjY3F0wO10d/4L8Hcg6L4QQ+SNB7iJMt0O2lCyx9CS7W4jCR3erfIMGDShfvjyRkZF8/PHHJCYmEhgYSM+ePXFwcKBDhw7Ur18/T0ElS8h+EKIoyvi7Koy/M12QW+dM5D3uxGUOZoM2iJeRLmjcuHHjPC1PFxg0RSZ3Xj5/XVC+U6dOlCxZksS0VP4Nv8H58+cBqFatWo6vd3Bw0LubpmrVqtm2tbGxUQYDXrlyJbNmzVKeS9OoSU5Lk+PHHOSlD1ndXQDasiEHDx4kLi4OX19f3n1OO67EyYhwYmKyrj+fX7p1CLR3BujWR0sfdNIS10FRsMx9t1jGC0amJut83hhjP5DbYMRF5YJDYUx6FCI/JMgthChUJChqHomJiZw6dQrQDpS1Zs0aBg4cSNeuXfnkk09Yv359noLaonAw9+8suwNxSzhIt4Q+FARLOCnydtIPct+Nj+FO3NMgoAqUMiSzZs3i559/VgKLyWlpXLlyBch7kFuXyX3y5EnU2QQo03v33XepX7++Mh5BfiSmpnDtmrZMSK1atQgMDARgzol97Nq1C4Dq1avrvSar36muZAnkHOQGaN++PQBz587lm2++UaZr0JbPyKvCtE8uqCD5tm3bGDNmDEuWLNGb/ueff/L+++8rpUlGjBhBRdeSVHBxI02jVgYLNTZdkNvR0VFvesZBJ9N/l8VhOyeEEDkpKhcdLO19yKCawpQkyC0EhesETYiCptFo2LRpEykpKXh7e1OpUiWcnZ3p1q0bmzdv5tNPP8XDw8MoywoODpbfoxAWwtwnRaUd9QfEe5AYz8mIuwC88MIL/NKxP82bP83y2717Nz+eP8qKFSs49uAOKSkplChRItdgr06NGjVwdHQkLi6OW7GPs20XFBREfHw83377LadPn6Zt27bEx8fnKyh45uE90tLSKFWqFKVLl6Zv375ULeHOo6RE/v77byD3TG6A+vXr42Rji6e7e671ljt06KD8XbduXbp3706pUqWAzIN95ka220/99NNPrFixgpiYGN566y3lIgXAli1b9NoOHToUgEBdyZLxHxm9P6mpqcpgqsOHD1emq1Qqo+27RcEz910N5r4Ybi7GeN95mUdh/XzN3W9z/i7y+77NnVggRFEhQW6Ribl3TkIIy/Ju/RasX78egM6dO5s0Y1s38Jso3rK6PVmyPvQVh/20tcqKQO9KlHZwooyDMwC7wrTZznXq1MGvZGlq166t95qfLx5n27ZtzDy2B9AGrvO6zbKxsVHKfVyLeZRj2yNHjih/37hxI9+DBp54oA3e6/prZ2fHxIDWem18fX2BnI/TSpQowbIO/Vj/5dfY2NgA2d+SXadOHWbPns23337LiRMneOmll5R64HfjDSubUdC39BekR48ecT0mKsvnsvouvv32WwDKlClDWloa/fv358aNG4B+KZxvv/0WT09PANpX0F7A2HbrCr93edmo/d+/fz9JSUl4eXnRqFEjZbpGozHq/tyUZSUODxhVLLZ5hbEOeWH/Xsx511JBL7ewrVvZedb3YOp11Rj7QXMnFwhRFEiQWwghRLaSk5NZfukkAP379+f55583c4+EEIVNfi5QzAnsyp/dX6VluUp60ytWrAiAv78/G3sMYd68eUpQFyDiSTwANWvWNGh5uvY3Yh5zuWdzDh06pJQRuX37Nt9++y1Xrlxh3759eq/bvXt3rvPOKTh94r8M9fT9fa60N87OzspjXQA6NxVdS1LBs2ye2k6YMIF33nlH+ezKlCkDwF0DM7mLqvj4eKZMmcKw7at5kBCX6fnHjx+za9cu4uK0z6WlpSm11ceNG0flypV5+PAh/fr1IykpiTNnzgDaEjHvvPOOMp+6pcrS0rsSaRoN3545iEajQa1Ws3XrVuJTkvPV/7Vr1wIwceJErKysePPNN4GnWeTCskiQq2CYMuBbVILJQghRGEmQWxiV7gSusF/VF3mX26AdonA7fPgwMclJlCpViu7du5u7O0LkSrZHRYtKpcLWypoW3vpB7vQB39KOzpQuXZoxY8bwQjX9zO4aNWoYtDwlyB0bRUhICIsWLeKbb75Bo9Hw119/cfToUT777DOmTp0KoJRL2blxU7YDDeYmPj6ei48e6C0ftO+9b9++AHh6euoF8U3laZDbNAMgFhYajYYTJ07w1VdfERMTQ5I6jQP3bmVq9/PPP7N06VJefPFFUlNTuXbtGklJSdjZ2VGuXDnee+89nJycOH78OD///DMpKSm4uLjQ4uCVTEGwMc81x1plxf7wm6xatYoPPviALl268OP5o0obQ4NnS5YsISoqitKlSzN69GgAWrVqxYMHDwrkorUE+woPcw/wWFBkfSw4EhMQQpiDBLmF0RXlW1aFMIX79+8THh5u7m7oSVGnMXPmTH7++WcAnn/+eaysZJchTENOgkRuAr0r4Wj9NMhbtmzmTOUGDRrwQYNWSqDWzc2NcuXKGbScp5ncURw7dgzQlqu4ERvFiRMnMrXv3Lkztra2RCU94Vbc4zwtI32QJSgoiE8//ZRUjVqpx51ex44dGTlyJOPGjTPofWQlL78z3Wd3Jy4638srzPbt28f8+fOVMiMABzMEuS9duqQMyLxt2zamTJnChQsXAPD29sbKygoPDw969uwJwAcffABAlSpVUKlUmZIEKrm6M6ym9hh64MCBzJs3D4DgK2ee6T2o1Wr+7//+D4AePXpgb2+vPFemTBmzDxZtqjIR5q5VLXImFz6EEEKYkkQsChE5KBDiqaISFNNoNLRq1YrJkyfr1Xg1txMP7nLx4kXS0tIo7eBEmzZtzN0lIUyqKNyVUpSPEaxUKt6o3RgAFxcXrK2ts2ynUql47rnnAMPqcevogtw3Yx/r1U9eeuE4aWlpuLi40LFjR1SAp6MzlStXVgaEPBlh+MXKgIAATp8+nW1/VSoVgYGBuQ4imVe5HUtWqlQJK1SEPI7k4s3rRllmYbRnzx7lbz8/PwCO3r9DqjpNmb5gwQK91yxYsIC9e/cC6H1fL730EqDN2AdtkFsnY2LIsJoB1HQvozfNzsqaVLXa4Pdw5MgRrly5gqOjIy1atNB7Lj/bCmNsJ2WMhacKOtu1uGRsm0JR3scWBln9VvJyUauoZJQXlfchhKmZ/r5HIYQwk6CgIPzM3Ylc3Lt3jytXrgCwcOFChg0bRsOGDc3cq6cZa/Xq1WNR9WZcK1GiQJevHLDKyZgQ4j8v+z2Hk40tjr1yLrPQq1cvSlwPp9mLLxq8jKpVq2JrZUVSWipJkZHK9G23rwLQpEkTBg8ezEibMthb2xBlZYW/vz+XLl1i390b9PKrqzc/jUbD2rVruX//PlWrVqVz5856z1+7do1//vkHgMaNGxvc32d1eMAomq5alGl66dKlaVe+KjvuhLLoz9VM9PQvsD5Zittx0Vy5cgWVSsX8+fNxc3PjvRFv8Tj5CfvDb9HGpwqp6jSCg1cBMHnyZLZv387x48eV7Ov0Qe6uXbtSokQJYmJicHV1pVWrVnDkWpbLtrWyZmGbXnxnE83ff/9NfHw8yeo0bhuQWa/RaPj4449Zt24dAC1btsTBwUGCI7lIHyjL6rchRFZ0v6vBgwebuSfmJdsXIYSlkExuIYQwg4SEBFasWMGGDRv0pn/zzTdm6U9kZCTBwcEsWbKE9u3bK7dHt27dGhurrDMmhRDGI9l1ubNSqehbrTZVq1bNsV3JkiWZGNA6y5ImubGxscHD3kl57OTkpPd8kyZNACjv4kYZR+2gkM2bN0cF7A+/SejjSL32V69eZd26dRw6dIiVK1fyZNmfynMajYYZM2aQlpZGoHclGjRoYHB/8yO7rO5X/esDsG7fbq48fligfbIE225pLzzXqVMHd3d3rKys6FixOgDTj+wgJCqCMw/v8/jxY1xdXalRowYfffSR3jzSl8lxcHBg1apVTJ8+nWvXruHl5ZXj8p1t7Vi9ejXR0dE0a9YMgKsZ1qsc+79tG+vWrcPa2pqhQ4fSr18/vectOYva3JmyMuijKEwKKrNX7iYvnHL73gxdd0yxHujuopSLJKYVFxfH1KlT6dKlCx4eHqhUKpYtW5ap3bBhw1CpVJn+GTq+jblJJrcQOZCr85ahKO74NmzYwLZt25THderU4dy5c6xevZpvvvkGNzc35bm4uDh+/vlnGjVqlOmWY2N4kpbK1KlTiY2NzfRc7dq14f6z1QMtSH4bDnJ4w0HJviqEiuLv2xwK8gS0qJ/s1itdlu3/ZW6PHz+ezz77DNAO2FerVq1M7cuVK8fz5aux404oy84fYwwDled0pUh09oZd57nS3spzR44cwdbWlvENWhJn5hrJOjU9PGnjU4U9YdeZeXw3Pz7fF2tV0cqLyWkdvvpfYL9evXrKtHfqNeNa9EOOR9xl0oEtNPT0UdpYWVnRt29fRowYweLFiwH9gVFBW7s9YxZ/bqytrXnuuec4dOgQV6LzdrEhOjqaVau0GeavvPIKy5YtK9LbWEMuDsoxvcjocs/mRr/ok/Eu0vS/P2OvewEBAVmOFSEMo/uOLPnu3/TrUVBQkN56qzv3udyzOZfTtbPk95OerMemFxkZyaeffkrFihV57rnn2L17d7Zt7e3tWbJkid609HGJwkCC3MIopLSAMLX0O8CIiAg8PDxYsWIF165d4+OPP862Pqslio2NZdeuXXrTevToQVRUFGFhYcyZM4fQ0FBcXV2ZM2cO3bp1499//wW0QZZ27doRFxfHlClTjLLTORB+k9jYWNzd3elTtirHHoRx9uE9/P39cXZ2zvf8hSjqQVFLJUGdZ/Nm7cZUci1JvbeGULJkSbp27UrKuSsMHDo0y/Z+Gw4yrGYAO+6EsuPWVbpevYrnf8/pBiZs0KABJ0+eZO/dG7xTrznx8fH89ttvAHTq1IlyTiW4XADvLa8mNGjFiaj7XHj0gPXXLtK3Wm1zd6nARCRqa2d7eHgo0+ytbfgqsAuv/bOG23HRbLoRAkD9+vUBWLFiBd9//z2NGzcmLi6OUqVKGaUvuvrypyPDSU5OzrZdcHAwAM7OzqSkpFC5cmU6dOhglD6kV5QD5rnR7ccs/WK63v7WDOdllnyngLlIEE+YQoVXenN75bosn7PE32Fx3n+Ym7e3N+Hh4ZQtW5Zjx47lWB7PxsaGV199tQB7Z3xFKy1DCFHknTlzhvHjxzNjxgyGDh3K1KlTlaylwmLp0qUkJCToTatWrRrt27cHYMaMGfz2228sXryYdu3a8e+//+Ls7IytrS379u3j008/Zd68eYwZM8Yo/dlxOxSAPn36MLJOExa26cnkhm144403jDJ/ISyBMW6zLC7B+uJWOiXj91rRtSRv1G5MyZIlAXj55ZeZ0awjdnZ22c6jesnSdKmozZtaunQpGo2GR48ecevWLVQqFYMGDcLGxobbcdGsvHyamTNnEh4ejoeHBz169DDZe3tWZRyd+eDlIQAsPn+EuJQkM/eo4DxIjAP0g9wALrb2fNWiC6UdtCVsHBwcqFOnjvK8SqXijTfe4L333jNaX1q2bIkKOB15j06dOqHWaHJsv3XrVgACAwMNHnTVmIwdzChu26T8krIrBc+cAbzsyj0UhQG1zcUSg8SmItvXos/e3t6gEn5paWnExMSYsEemJUFuITIwdhDjWQIrUpsqe7qBlEJDQ1Gr1QB8+umnJCUlsXfvXh48eGDO7uWJ7j28/PLL9OrVi6VLl2Jvb8/zzz/PhAkT9NoeP34cgE2bNnH9+nUmT56s1G0NCgpi6dKl+epLbGws/4bfBLSDY4E2Y61P1Vq51g1NT9ZZIURx91bdJthaWXH+/Hn2373B7NmzAe1glp6entStqx2U8tszB7l16xaurq78+OOP+b5j5lm2v3k5qR3SpQeVXEsSlfSEv65deNbuFSppaWk8fKK9CO3u7p7p+apuHqzpNogZzTryzz//mPxup7p16zK9aQfsrKzZs2cPN2Ojsm2r0Wj0gtyi+DEkWCUB0Pwx13Hvs5ynZnUuaqnffUH3qzgFs01JzgMLXmxsLDExMcq/pCTjJCMkJCRQokQJ3Nzc8PDwYPTo0cTFxRll3gVFgtxCkZdgrGzA8kf3+cln+Gxu3brFlStXlMf29vaULFmSS5cu4ebmRps2bejZs6cZe5i7xMRE9u/fD2hvQ+7Xrx/Dhg0DwMrKitmzZ3Ps2DG9ciY9evSgTZs2+Pj4MHPmTE6cOMHkyZMBeP3115k3b57SNiwsjDfffJNDhw7lqT8LFiwgKS2VsmXLUrNmTSO9S1HcFdbtnN+GgybL1k4/X2N8Nqbsq3g2ZZ1caV6uMgAf7vubsLAwSpYsydD/ypwMGzaMV/3rU69UWbp06cL06dPx9/c32vKfdb3Kbj2ytbGhVxXtfuHCI8u/gGwMEdGPSdNosLKyUjL5M7K3tqFDBd8CCyR3qlidGu5lALgUlXkAysTERC5fvsy9e/e4efMmNjY2NGrUqED6lp1n2T4Vxn2GEIYoTut4Xt/rsaHv6/1vbHKcVPjIBbi8qVWrFm5ubsq/mTNn5nue3t7eTJw4kaVLl/Lbb7/Rq1cvFi1aRJcuXUhNTTVCrwuG1OQuZnIbnK3CK725HFs8TmTMJSAggGPHjnH27Fk0Go1yO6nUTs3d9u3bAWjSpAkBAQG89NJLPHjwgBEjRhAdHQ3AkSNHOHXqlFIn09Ls37+fpKQk3N3d8fb2zvS87mCs7apF9OjRg507dzJjxoxM7WbMmIFarWbWrFn8b+Ik6u09j6ONDa+d2cWVK1fYv38/Fy7knHkXHh7Ol19+CcALL7xg1lubhTCV/AwolHEAKSFy83wFX/beuUaaRo1KpeLDDz9UtvXu7u68U0+baVlYbg/2LamtLX3lcd4GPizMDt+/zf3dOwAoWbIkVlbZ5wJlHODLFNJvu/zdy3Dm4T1CoiLoWKEa8+fP586dOwQGBjJnzhyOHz9OpUqVAKhRowZOTk4m7ZvQyqpOd2Gp3S3yz2/DwUKzLS9oUodcCNO6cOECPj4+ymN7e/t8zzNjoHzgwIH4+fnx8ccf88cffzBw4MBsXmlZJJO7ECisGXEie7/88gv16tVj2+0ruTc2AmPUojWnY8eOsWzZMg4cOABoB+lq0aIFbdu2ZcCAAdy7d4+jR48qdU2XLVvGX3/9xf/+9z8uP86c9WROukB9rVq1cg0qr127lrt37yoDT6VnbW3Nl19+Sd26dUlMS2XQ3j8ZvH21kul+8eLFXA8uv/nmG+Lj46nt4UnTpk2f8R0JIYoLya7JXaBPZWxtbQFo2rRplhczDWXO26mru2mD3HfioklMTcn0/IULF/jss88YPXo0mlzqRVuyCxcuMHbvRr4I+hnIulRJRgEBAabulsLfvTQAIY8j+evaRcaNG8fcuXPp16+fUtbs5k1t6bEWLVoUWL8Ko4zbMNmmifSe9bzbVHdXGXIOZ4x12djnjHLXmWmZ+rhM4lCWy9XVlRIlSij/jBHkzsq4ceOwsrLin3/+Mcn8TUGC3MIibdiwga7rl+ZYe9DU7t+/z759+9i5cycPHxovg+nSpUvs3r0bgL1hN4w236Lq0aNHLFy4kDlz5pCSkkLlypWpXr26XhsHBwcaNWrE22+/DWh3yH379uXWrVusCDllhl5n9vDhQ/r06cOsWbMAqF27dq6vsbW1xc3NLdvnVSqVMsDVg6gorsdEYW9vj4ODAwANGzbkrbfeIi0tDY1Gw59//smBAwfQaDSkpKSwbNkyAF71byBZ3KJIyu3APDg4OE/zkeBu8WCMk3tnWzu6detGaUdn+vbta6SemY+HgxOlHJzQAKHR+sdCly5d4quvvuLKlSvs2bOH+4mFq2ajTlhYGD/88IPetIyDTpqbf0ltuZLLUZGsv35Rma4bm0THzs6Ohg0bFmjfLF1egjRZBb4Lyza/MPW1uCls30t++2sp9a0L8pitsH3HQhjK0dGRUqVK8ejRI3N3Jc8kyC3yrKA24omJiaxevZqopCesDT1fIMvMSKPR0L17d3788UeWLVtGvXr12Lx5s1HmO2fOHCXb6UzkvUKd+VQQ9u7dq3cS17lz52wDsp06daJOnTp6G+GIxHiT9zE34eHhNGnShHXr1qFSqejZs6dSLzO/GQ6vvPIKtT08qV6+IpMbtuHu3bts3LhRef6HH35g+/btrFq1ihdeeIHAwEAaNWrErFmzuHfvHmXKlKFluUr5fo9CZFQYsncMKWtUkFmbeZXXEzlL/x7MLf3nWOGV3vme32uvvcb6Pq8ZJYvbEuiyuS+nK1mi0WgIDg7WO4a5Gfu4oLuWb1euXGHKlClEReknVeQlk7sgVSlREnt7e+JTk7n8OBJbW1uuXLlC1apVcXBwUAakbtiwIY6OjmburWHkImL+ZRVclDIaRVNR+l7l2MTyyLZYZBQbG0tkZCRlypQxd1fyTILcwuIcPPj0QC0uJbnAlnvu4T3e3vUXv1w8wbxW3Tl+/Dh2dnZ4eXlx9+5dunfvTr9+/fJ1FevMmTMcOnQIGxsbrK2tiXgSz934WCO+C8uVmprK2bNnM2Ud5UaX9V6vXj1GjhyZ4224NjY2bNu2TW8AxevRj9BoNKRp1CQmJua4LGMG5VJSUnjvvfcoV64c7du359q1a1SuXJmTJ0+yfv16Jds6vxwcHPip/Yvs/nYxfarWwsPDg/bt27NixQplGUuWLOHnn39WXnPixAn+97//ATBkyBBsrayfefnmKIUjB8WioFhKVpIQ5vS0LvfT8l8HDhzg2rVr2Nvb4+vrC8DNmMfm6F6eZTVo0o4dO0hJScHf358JDVop0y0tyG1jZa1XVqxnz574+vpy+PBhFi1axKhRoxjfoCWvvvqq3uskYGE+hfVYxRQXqC3ps5CLKnmT3XdW2EtgCiGy9uTJE2JjM8elPvvsMzQaDV26dDFDr56NBLkLCd2JdmG5evusB0gajYadO3cqjwvihEmj0XD27Fne27eJk5HhfHfuMBP2/w1A27ZtmTFjBuPHj8fGxoY1a9bQsGFDIiIicszAzuoAQK1WK7fGd+rUiSpVqgBwKvKuid6ZZXnnnXeoV68e3bp14+TJk3kKdiclJSnrw5AhQwgMDFSyuLNbx7y9vTlz5gxz585FpVLxOPkJq66epeeG5fj6+nLv3r0COTgbNGgQCxYsIDw8nIsXL+Li4sLWrVuzrK9tquUfPnwYgDVr1rBt2zYA/v33X/r160e1atUYNGgQEydOLJD+CCG05ORaFDa1PDwB2HrrCrfjorn8OJKlS5cC0L17d2rUqAFg1hJzuVl37QJvvPEGm25cUqaladScOXMGgH79+tGxoq/ynLX1s1/8NZXg4GCG1GhAwzLlmD59OgBubm54eHhgb29Pf9+6uLq6mrmXxUPG43wJ+hUuht6ZZczAf8ZjgMJybi+Kn/TrZvr1Vi50FE4LFy5kxowZSuLbhg0bmDFjBjNmzCA6Opp79+5RsWJFRo0axTfffMM333xD9+7dmT17Nl26dKF37/zf6VhQJMhdBOS1pmhOLOWk++zZs9y6dUt5fCM2yujlPFJSUtiyZQujd6/j75uX+ezoLmbPnk1cSjJ+JUvj6egMaOsadu7cGXt7e+bMmcORI0eoUqUKN27coG3btpQsWZJXX32VO3fuEBwczJgxY3LMFD516hRhYWE4OjrSs2dP/P39tdMjwzO1DQsLIz7esDIbp06dYt26dURGRjJlyhQ6derEvHnzDJrHs4qPj2fu3Ln8+OOP7N69m3/++Ufve7t//75S73Lr1q0EBATQoUMH4uLiMu0oDxw4wFdffcWrr76Kg4MDZ8+eBVDKe+SFjY0NZcqUwcvLC4CvT+3nUVIid+/eZe7cucZ4yzk6duwYq1evxsbGhk8++YR27drx+++/4+fnZ/Jlp1evXj2aN396gNKyZUsCAwNZvXo1V69eZcWKFXh6ehZon7JjjO2YZOcIkZlko4u8yGnb2bpcFRqU9iYhNYXJ+7cwcf8WkpOTqVOnDr169VLKslhyuZKvT+1HrVbz2dFd/BpyiiuPI7nw6AFxcXE4OTnh6+uLm50DVcv5AFC3bl2jLTv9Z5uffZS3tzej6jbj/9r2pk6dOsboWrFkrIDls5Q2ymtwSI5nzEv2m0/pAp05rZOyrlouuYgidObMmcMnn3zCd999B8DatWv55JNP+OSTT4iKiqJkyZL06NGD7du38+GHHzJx4kRu3rzJF198wfr167GyKjyhYxtzd0AYh+6AqemqRYBl7GyeZaO6YcMGADp06MDOf3YQl5LMwycJRu3XkiVLlJIol6IiiU9NRqVS8ULVWrxdtymONracigin+dfTOHfunPK6Bg0asGbNGpo0acKFCxcA+PXXX9m4cSPR0dGAdqAiOzs7qkY/oqqb/qBFukzaZs2a4ezsjJ+fH5s2beJM5D1+v3KGNf/bhG10HGumzmTd9YvY2dkRFBRE5IXLpJ3YxvDhwzN9z+Hh4SxYsICwsDBWrlyJWq3GwcGBJ0+eALB9+3ZKlSpFjXT9SEhI4ODBg9ja2tK8eXPOnj2Lr68v0dHRaDQaKlasmOPnp9FolNF1K6elce3aNXbs2MHp06cBaNeuHQCLFi1SBoL88ccfAe0owO3bt2fr1q3s2rWL3r17M8PDD6v/srOvXbtGx44dSUjQ/86rVKlC6dKl9S6A5EWFChW4d+8eAM42dsSnJvPdd9/RoX1/StrnrWZlQkICFy9exN/fHxcXl2zb6X5zgwcPVgLpL7/8Mp9++qlBfTa21atXM3XqVHbt2sXUqVPN2hchhPH5bTjIYTkhzzcJamTPxsqK6U07MOyfPwiN0ZZs8/LyYvTo0VhZWWUb5L506RLR0dFUN/PYI7du3eJJ2tNSJd+eOYijtQ2tfbR31NWtW1fJ3F7/5XzO/voHKT4+ZumrMJ7DA0Ypx8vmkv7YsLjLS3A/43lOYVYUg4sBAQHEyb6ySJNjyqLrxo0bubaxhBiiMUiQuwg6PGAUFMId64YNGwgJCcHGxoYePXpw6dBR7sRFczP2Mca6+fLvmyEcPPJ0wx2fqq35Xbt2bT6o+bQWY0NPHxo0aKAX5AZtoHvRokUsXLiQ119/naCgII4fP648rwtoNihTju/a6md46ILcuprSfn5+qNCeFM4/tR/dKWBotPYEMjk5mQMHDmgnPo7kp59+onGdNjja2LJz507mz5/P3r17lQA7aG+vffLkCdWrV6dZs2YEBQUxcuRIVnUYgJeTCzdv3iQwMJCwsDBAG3SOjY3F2tqatLQ0QHuyt379eipXrqzMV61W8+jRI9zc3Pjnn39Yvnw5y5cvp1slPzavvZzlZz158mR69eqFo6Mj33zzDQDfffcdgwYN4ujRo7Rr146dO3dyuJUjzctWJC0tjddff52EhAT8/f0JCAjgrbfeIjExkUuXLmW5jNykr6n5W+eXmHr3HCdPnmTTjRAG+dfP8bW3b9/mk08+4bfffiM5OZnevXvz119/ERsby549e2jfvn2WgzvduHGD1atXAzB+/Phn6rcx+fj4sGTJEnN3QwhhQhVe6c3tlevM3Q1RhHk6ubCk/QtM2r+Fh08SGDt2LM7O2jvfdEHuiMR4opOe4GbvwKZNm/j9998BOFOuMlGX/uV9L/9cTzzUajXnzp3j9u3b3L8bQ/8s6mjnRVJSEj/++CP+/v7KYEnu7u64p8G1mCgS01LZeusKoB2sUcfd1ZUqJTzI+shGFDbGOicKCgqiYO/F0wabTB0oNSSglT74IUF7YY7fhCgY+TmmLEoXqkThJUFuYRG2bt2qBAYHDBiAh4cHlV1LcicumusxUdTL5nWPniSQqlHj6Zh9hq3O7t27+eXoLgD69u1LiYs3+eXSCQACAwMhj+NJvvnmm7z55psAvPXWW3z11Veo1Wq+/PJLkpKSADgZcZdTEXeJ27EDFyAxNYV///0X0Aa5Hz58iLOzM1XdPAiNfoQGqFixIs3t3fjr2kW69+5FnTp1qFevHqHzljD1xG5CQ0PpGBpK1RLuhG9erpRGadiwIV27dqVJkyb4+fmxc+dOBg0ahIuLCzdu3GDfvn38fOEY/XzrMH7QIMLCwvD09CQ2NpbY2Fjs7e1JSkrC2toalUrF2bNneeGFF5gxYwaBgYFYW1vTp08fduzYQcOGDZX6lQCbbz49DWzTpg3Dhw/nlVdeoUWLFhw5coR3330Xd3d3IiIiqFWrFv379wegcePGvPHGGyxYsICZx3bTtZI/TwYNYs+ePTg5ObF582aqVq2qzPvBgwd5+3IyaNeuHSf2/ssr/vXxdHKho8qVk2jrimYX5L4bH8O9e/fo1KmTXnB9w4YN3Lt3j1deeYVdu3bh4+PD77//rl130lmwYAFpaWl06NChwOpvi6InfcaTHCgWHUUlQ0IUT+WcS7C8Y39SNWquly+vTHd2dsbDw4NHjx7Ref1Sni9flZ13rinP77t7A+7CksgY3iLnEg+bN29m1apVAPwO/Ho/lO/qP6+Mx5FXBw8e5MiRIxw5ckQpXda7d2/einfkVuxjBm9bRZI6jXbt2tGkSROD5m0ovUBiHoOWGYOzl3s25/J/QSXd3wADBw40dndFMWNIQCsgIIC46f+nXZ9NGIA3V71f2UfnjTmy1ItiZrwQwjQkyF0M6Q6OLeUqvEajYf78+YA2KKkbubVKCQ/+Db/J8QdhmYLcGo2Gny8eZ9nF49haWfNb5+wP8tVqNb/88gu7dmkD3C1btqRXr164PNnOipBTONvYaus9bzuh9zrdCYbu5CSrQJO9vT1TpkwBoEaNGkyePJmbN28C8NbudbB7Hcs69ONmbBQpKSmUKVOGihUr8vDhQwCeK+2tZG43b96ccWoP3n2uBaG9tIHTF198kcO/76Bf1dKsWLEC0GYgATTy9OGr35bTunVrbGye/pR1tb5BOxpu27ZtWXf9IuuuXwS02dsHDx7EwcGBI0eO0LlzZ+7fv0/JkiWJiYmhUaNGnDx5ku7du+Pi4oKTk5MSZE6fta5jZ2fHjBkzlNrO1tbW/PjjjzRs2JC1a9cq7X744Qfs7OyUx2+99RYLFizgQWK89mLDfxccli1bphfgzg8fHx829hyqPH6+fFXmnvyXy48juR4TRZUS7nrtr8c8Ytj2P0jy/hXQ3o69bt06xowZw9GjR5VBM0FbN3348OGcP3+esLAwFi1axOHDh5Va5BMmTDDKezAl3cG8ZGLknyluSTY0k0KyJ4QQpqZSqbBVZR6UsWfPnvzyyy8ASoC7V69e2v1w0Epux0Vz7EGYUk4tO7pycjVq1OBKSAinrl7mvn8TyjoZdk/fiRNPj+nu37+Pl6MLTZs2hZ1nqOhakkXtehMeH0uFYa8aHEA3FykVYH7pLzYYorgfb13+73xKFAzJstaSz0GI4qnwVA8XmVztatrMk7wy5Gp7YmIi69ev5+OD2xi07XdKlCiBlZUVW7ZsAaBbt25K204Vq6MCdoVd49q1a+zZs4dVq1aRnJbG6Yf3+PH8UVLUahJSU1h19azecuLj44mK0gaDT548ya5du1CpVIyo3Zg333wTa2trKri4sfj5PvzwfB/s7e0z9dXQAWUGDhzIjRs3GD16tN704MtnWH5RGxht1aqV3slU/dLeyt+NGzcGwFqV+WfZqVMnlnfsT1DH/jxXuiw13MvwebNOPP/883oB7ozatGlDz549AXCxtaNdu3asX7+eqlWrUq5cOfr06YOjoyP3J84iZMRHVKxYkc2bN9OrVy+qVatGXFwcDx48oEyZMqxbt44ffviBL7/8Ui+AW6tWLcqWLas3GEG9evWUNlZWVsydO5eWLVsSFBSkHOjXqFGDPn36ANC8bEVatmzJ999/r2R7m0JJe0eala0AwKYbmUugrLl6niR1mvL422+/pWnTprz88ssASoD7448/xsPDg5CQEJYsWUK7du04dOiQEuCuW7cunTp1Mtn7EEJGNs+brE6q5XMTwvg++OAD/n1xBG/VaYIK7THNCy+8QPPmzVnV5WU8PT1JVqfplYG7ExfN3LlzORCuTQ4IDw/n9u3bWFtbM3bsWKq5lQLg4qMIg/qSmJiotxwbGxs+b95RKa8CUNvDiw4VfAtNgFsUbgEBAebugigmcstGl0FNhRBFnWRyiwK1fv16Nm3alOVzdevWVW4pBaheshRdKvnx983LrF27VimT4VmzIUn/DSDkZGNLQmoK665dwOfcOaprNOzYsYPRo0eTlJTEsrZ92RWizWDu2rUrrztX4nK6E5raHtrlGav24uEBo6h894betC23tHMvUaIEHTt21HuuadkKlHF0ppa753+Z0KHZztuvZGkAfmjXF41Gk+cTszVr1rD1hTco7eBEs9Xf5dq+UaNGrFu3Do1Gw6FDh0hLSyMgIAAnJydSUlLYvHkzERER2NnZkZycTP369bOcz7Rp0yhbtiyNGjXKVNJD57fffmNrvzcp6+RaYNmnvavUZH/4TdaGnqdnlRqUiI8jPD6W33//nU2h2pPiwYMH06ZNG/r16wfASy+9xP/+9z8SEhJ48803mTp1Ko6Ojvzvf//jrbfeAqBUqVIMHz6cSpUq0blz52c6cU4fkLOEAZNMJciC7iQRxlcQdUSFEJbHxsqaYTUb0rdabe690FbZD6pUKho0aMDWrVv5888/8fX1paFGzbt7N3A3PpaPrM+zs+8bHDt2DICaNWvi7OxMDfcyXH4cyaWoB7Qrn7c7vJKTk1m1ahWpqamULVuWsWPH4u/vT7nftkudbSGEEMJIivK5qijcDA5yJyUlMWXKFIKCgoiKiqJevXrMmDEjU/BOrVazYsUKgoKCOHnyJNHR0bi7u1O/fn369evH0KFDs8yeFUWHWq1mz549RITfp6lXeTTAvn37ABhYvR5NvMrT9ce5/PXXX/z555/06NEj0zyG1Qzg75uX9epAB185g6ONLQAfNmrLkvNHuRn7mFmzZrGttDenIsOVtgtOH+DsgzuAthQKR65hak28ytOibEXKu7gR5lWC/fv3A/DJJ5/oZREBuNk5sKHHEDQaDVcMWIYhAVRbW1vKODrn3jCLZTRvnnWgyt7envfee4+/Fv+sZKBn1Wbs2LE5LsPBwcHgW5Bzo2RpZhNka1muMr5upbga/ZCXtgRT6eQeqtk6KrdXl3cuwbJly/Qy08uVK8exY8ewsrJSysGMHTuW7du3s2fPHlQqFSNHjqRGjRoSvBVCCFGsudk5cD/DcUqTJk3YunUrt2/f5t1336WNTxXuxscC8CQtlX13b7D7irYkmu64oqZ7GdZfv8ilqMg8LVetVjN//nwli7tDhw74+Pjg5+dHHNuN9faEEPlkaaUzhRDGJ+VihLkYHOQeNmwYf/zxB++99x7Vq1dn2bJldOvWjV27dtGyZUtAe5tg37592bp1Ky1atGDChAl4eXnx6NEj9uzZw6hRozh8+DA//fST0d+QsBwHDhxg6dKlAHg7uVLexY2YmBjc3Nx4p14zbKysqVGjBu1O3KJdpYZcrlw50zwqubpTybUkN2MfK9MSUlNISE0BoHnZCtRwL8NP54+x9fYVJcDt6+vL1atXOXz/NgB16tT5L0vc9EFue2sb5rXqDsDhljVol2xHdbdSDJkwIdvbwwrj7bJ16tThhY79uexq3CC1obKqhVzhld5cjs16sEorlYo3ajdi8oGtANy8H86d/z5/K1SMa9BSL8CtU7NmTb3HLi4u7Nq1iz179mBra8u1a6ZftyxNVqUg8lKbOqc69znJS03L9AN8SXaBEEJYhurVq/NT+xf4IfYOR44cYU/YdUB7sfvJkydMOqAtW+fu7k6LFi0AqOmhHevjYtQDpRxYdtLS0vjtt984d+4cdnZ2vP322zRs2NCE70iIZ1eYMiCDg4MLZDlB6QZWlfrdpmWJd9xd7dqEq1JGxeLl9PuU362wFAbV5D5y5AjBwcHMnDmT2bNnM2LECHbu3EmlSpWYOHGi0m7cuHFs3bqV+fPns3//fiZPnsxrr73G+PHjWb9+PRcvXpQDTxOxpBpbp06dUv4OT4jl6H8Z1a1atcLGKvOgRdkJ9K6k/N2kSRPsrbXXZpp4lcfF1p4KLm5Ma9qevn37AuDp6cnKlSuVgRDBuIPBGcLd3Z0elWvg715Gb3pR2AkU5vqCbX2q8l3b3lRyLQlAmkaDtbU1O194Q299y41KpaJt27aZyrGkrz0uCp6h9fSFEEKYXm0PL0aMGEHdunWxVlkxKaA1n376KQ7WT3Nu+vfvr9zpWbWEB3Y2tsQkJ3E7LlppExYXQ1hYGKAdg2Vt6HmmTJnCtm3bABg+fLicZwiDFMRxeVE49hdCiNwYq+67nE+LZ2VQJvcff/yBtbU1I0aMUKY5ODgwfPhwPvroI27f1mbNLlmyhC5dumRbqqB69epUr149H90WBS3jBia3mrppGjXnz58HYEHrHlx49IBzD+9D1fJ07doVdp/L9rUZtSxXmZWXTwPQq1cvpnnVZMP1S5nqM/bu3Zvm9xOx6dcJJycnhg0bxv6g3+k6+k28vb2zmrVFS5+RKoyvQZly9KpSk2/PaD/jypUr651oG0NespqFEAXv2ND34aUO5u6GEMWOnZ0dy5cv58G0b3Czc+By2bIs69CPDdcvEl+ripLFDWBnbU3T2nXYd/okKy+f5gW6EpOcxLB/VpO0YzVpAW34dOxPJCcnA+Dk5MSQIUOyLbVWFAUHB1OiRAlzd0MIIYRQBAQEcOLECaPOM308Ss6tRU4MiuicPHkSPz+/TAdTTZo0AbSZu+Hh4aSlpfHqq6/mq2NJSUkkJSUpj2NjtXX7UlNTSUlJyde8CyO1jbXe32locnw+Y1vdtPTPZfwcM843t89Z93z6eYK2JuLFmEfEx8fj5OREA++KNPapDGhvRUr/mpSUlEyvz/g+6nj5ULt2bUqVKkX58uUpef4eg+tq6zWq07VXqVQEVqzG1VKlUKvV1KlThz5tE7hasWK2n01Wy9PRfRbp+5qbrN5Lxter1eosv4+s+ld+QHfurNqU7bzz+lvI7T2obay52rUJl//beQwcODDLdulfn/59GNonvfnk8fNVq9X6jzMsO/36mH49zm79Aqhftjz8V+69evXqBn3X2cnqtTnNL6d10pDvV/c7z+o1x4a+D//f3v0HV1XeeRz/JDeBBAi/CQKGSVsMFlEilQaWCnVFBN2UOiKLSIWxjrbsWEdkRNhlFG3rrJn6Y0YdhsFl8Uo37bZqBwsisuJaCmFciUpxCFoRtFFIUUIgJOTH/qHn8txzz8+Qm3tv8n79oznnOc/5Pj/Puc89nCvpig2Pecbg1qaO21zSWqwbEfscZObnFKvVzl514RWjX10kg3meqM8YCsqvHE512Bn91853XDrMZfZt9nnea853u145/R1knHtdG6XEfuw5J3v0eafroFdc5nH28eEXe0IZPPLwis11f4B8nbaFaTv7NrM9vI6xlyNI/zPz9bvm2svhVQbfvtUJfcWel73t3JjXwaBxO6Xx6lcJxwQYH9Z/I5GICvr0jd3DjR48VP8y+MrYPaJ53N3zFujNd/Zq00fva+Tu3Wr6cJ9Onv1qUfuhPf+j5rZWjS4YqKn/NFvf+973VODwCjWv+y77+cL0eXt77Fpwl6TEa61n2/pcS8Okderzfum80gaNS5Ln55KE4wLOpR2d28LEbd8W9Hwd6StB7vGcxq7fXOMWm1cZvOb5jrRdkLnU6Ti3+wMzD6ftTud3m/McY/SZEzpy7fe8l/AZY/axFKY9XPcFuLcJ2v4dvWcyt7n19yDXmCDXMdd1CZ/x6NeGndEegessJ/hnWL+0HZ2vgqQ197l9PvObj92uV27zhKW0tFTV1dVxc0dPWxtsaWlJdQhpL6vd7yV3Buu9xtu3b4/bvn//fl1yySVas2aNDhw4oMcff1zV1dWaMGFCLE1zc7Pq6+vPnTgrS0OGDHE914MPPqjVq1cnbF+3bp2GDh0aNGR0sY8//lgHDx7UG2+8offee0+TJ0/W/fffn+qwAEfWF3KNjY2677774p4gAwAAqffzn/9cb731luv+NWvW6IILLujCiAAAALpeXV2dbr/9dh05ckQXXnhhqsNJS6Ge5G5sbIy9J8+Ul5cX228tZPfr1y8uzebNm2PvTJakvn37qqGhwfVcK1as0NKlS2N/f/rppxo3bpyuvvpqjRo1KkzYGa+yslJjtuyR9NWT0GO27NGF867XjpPH1L9/f9XX1yfst56GsdJ+8ts/JuwznzS0zmHla7HSmD86UldXp3379qmxsVGRSETlX0pFBQN16myzlr/8nM6cOSNJys7O1rRp01T4m9dix5pxSV897WI9ZWp/gsdKY+2zvrkzt5vM8plpzXztdWM/1mTVhRmrxe3JWGu7W75WbA2PrHXc59TOZtvZWef3e1I3yH6z3rye5N62bZvq6+sTyuHUtnZWPzLz94vNOs6KzWLWlZnnW4uWxvVjt/5i+bdbb9OOV15VSUmJCn/zmuP4MOM0+9P8+fMTfpDHbZtTmezlsMfqVSf22Myn/t36pX27GYPZNy1mm9rHp1taO3s/trZZ8Zh11b9/fxUXF+vdd99NaF8zPzuzD5rn8+tTUseeuA7yI0xB83VqG2ubVzm8jnPrw2HY68etn5v1bp3bvs0+z3u1rdv1ytpvchvnQeb8tpyI6m68SsXFxTr97+tcYzP/tvd583xBr1d+ZbbvM/N32m/v827nMLe7zaX2c9nzdaoXU9C2c6pb+7Xb7RxmHl7XIPs2e3u4xWCWw16XbmWyt7/Vt4b+/nX99ZrvJMTu1h5+bWyvHy/m/VzQuJ3S2NvfFOaa4FQOK22QOeGR4ol6vlF66ZODOnHiRFya0aNH67I39umD2X1c68PtvsspTr/xaB7nN5a8trtdd51is6e1x2Z+FnAb505l8Uvr1Ced8pGU8PnBq579+oq1zas9nOILM++6nTfo+bzmXaf2dmpn+z2Qma85dp3GrN//29vDXganed5pXrT6lsU+dt3qxqxLe4zmsfPnz0+4P7DPx051Yc/HXm/2+Ozl8vos5pbWnsat3E7XQL8xZh9LTu3hdH6/ce6Uh9d13q2O3eYgp2uq17XN6bOVdc00+5lXWeznddrn9bcVm9f9g3mOIPVj5uvWzk7HO50/yL2tW9ogc6k9L6fjvK6D9jKY85h93Ljd27ildYrHzuk+Mejn5e7C+k0SuAu1yJ2fnx/3ChGLtaiZn58f+2eC9gXsqVOnatu2bZKkiooK7dy50/NcvXv3jltQtya+nJwc5ebmhgm7W8huaY37/4iyPPfb01rbzH25ublx7zZyytde12+++aaeffbZuH9W8l9Z2fpG/0H61oDBsb5QXnyx/uHORRo1apSyP0p8r3R2S6tqyqfog8pKlRgxuZVJ+mrR3Gm70zFuad3qyelvqy6s7WZdmNuq5i05tz1gOZzawyk+t7azWG1Y4hCjU75++616CzLG3Mrhdy77viDprfOZvwZurw/reHs/9uovkrR41hxdfbxNNb16JYyPuPO71L8U/94xp3J4lc2rTwad6+x9xTzO7B9v33K3yn77jGsMZpu6xRjbZqT1+oV2e2xmfk7l8xvnftvN8wWpv7DXk6p5S6QAv0gfpu3s6a1tXuXwOi5sDF7c8jDHm/3c9m25ubme/dzc7jXnuc3Rfnl6pbH3ec852WV8OB4X4Hpl7bePj8CxO/T5MLG57g+Qr9O2MG1n32a/BrkdYy9HkP5n5hvkniBomYO2j28+Hn3FXhZ727kxr4Nh4za3e/WrhGMCjA+3a43fnFCQFdFPx03S9HuXqHHDSxrVr78WvvGSGhoadMUVV3S4r7idL8x10C+N67E+192OpHXq80HicUsbNC5Jnp9LEo4LOJd2dG4LE7d9W9DzdaSvBLlGO41dt7Hi9f/29rCn85rnO9J2QeZSp+Pc7g/MPJy2O53fbc5zjNFnTujItd/zXsJnjNnHUpj2cN0X4N4maPsHnbv9rrtBPlv5lSXhPF//v/VZLND9h8/9g/n/ndEegeusJfhnWL+0HZ2vgqQ19719y92xz0V+7e8aX8h7P2s9wErb09YGc3I69zfEuqNgd8tfGzFihGpraxO2W9tGjhypiy++WJK0b1/8DwsOGzZMM2bM0IwZMzLyRwB7KvNXbffu3at169apra1N3/zmN7Vq1SrNnDlTre1t+uDE37X18EFJ0s9+9jP966SrAj1xP3HixKTG31WKFsxJdQiS0utXiKvmLYn7AgDoybpqbHp94ZCuSviBXQAB5OTk6DuFo3RBnwLNmTNH4wYXavr06akOCwCAlOE+GogXapG7tLRUNTU1Cf+cpKqqKrZ/9uzZikQi2rhxY+dFiaQKMjG2tLRo48aNam9v1/Tp0/XAAw/ooYce0tatW/XS9QtVXDAolvb6669PZrgpw4Jtx3RFvZVs2pU27dPZC5nd+cuC7louAEByXXvttfqPq2/UoEGD/BMDaYh7IAAAOl+oRe65c+eqtbVVa9eeey9VU1OT1q9fr7KyMhUVFWn06NG67bbbtGXLFj311FOO+YT4rUuch7a2Nt+69tpfsmmXWltb9eqrr+pXv/qVjh49qgEDBmjhwoXKyjr3z2Mu6FOgX0y5RgN65WnSpEnd9p3pNeVTzmsBMxVPWDotkKbT096mzljMTcYHhkxdZM7UuJEoXccsAAAAAADpItQLXcrKynTTTTdpxYoVOnr0qMaMGaMNGzbo0KFDevbZZ2PpnnjiCX300Ue66667VFlZqfLychUWFqqurk47d+7Upk2bNHbs2E4vDM45fPiwHnnkEbU3NWvW0QNaOqxEhw8f1hhjUfuWsaX6w6cf6I6LSlXzm8O6riGiIknHjh3T3r17VXBK+uUvf6mDBw/Gjrnhhhscf3z0WwOG6I/lt+rDH0ztiuIhhKIFc3Tk139IdRhAj1GyaZeqvv4XMk7vQO9JasqnqCYaVUmqAwEAAAAAdGuh31r+3HPPadWqVYpGo/riiy902WWX6eWXX9a0adNiafr06aNXXnkl9vTZo48+qvr6eg0cOFATJkzQM888o0WLFnVqQXBOY8tZPf300zp16pQk6YX/fV3vDHhHH/7+uC4fNlL/fEWxPvnkE/265h1J0uPVO6Vq6fWcXA3+/mQ9/OSj+vLLL1WZla2W9jbl5+dr1qxZGj58uCZPnux63pzsSNwT3kgua/EoU/TkJ1Gj0ah+9KMfpTqMWJ9Jh1i6O+vLpap5S1Ky0G0ttKfDIvvEiRPVwPsCAQAAAABJFHqROy8vTxUVFaqoqPBMF4lEtHjxYi1evLijsaGD1uyrUm1trQYNGqTvDxqhF/+6Xx+eOC5J2nvsb9p7//2xtMXFxTp06JAk6XTLWd28emVsX0t7m3r16qUVK1aouLg44TzpsnCXbmrKp/ADED6s12ikwwJcV7EW+Rkz6In9HwAAwGL+qzd0f+n08AWA7i30IjfSV2PLWe3evVv/fXCfJOn222/XjAN1evVvH+nUmUZNmjRJ+Z8e05u1Hys7O1v/OPIbmr9qhUo2V6lqSolWr1ipk2ebNXbsWN14441699cv6NKbb3Bc4Lbwzl+EFfQLgFQvBFqL0iVy/+Kiat4SKeS71nvyE+2pkOp+5CUa8jUe1heL5zPvmv3P6QuXWN5f9/nYB9AU/KYAAAAAuo/Y5yu+4ACQJCxydxOfnT6pn7z+B312+qQkafLkybr00ks14NAuPb30fr3+wku68s47NX7r/+mt6ZcoJydHpdvfUU1urnKzIyosLNRvZy/Q8DnXaF9uqyTpB5OuUs23v53KYqUlFvZxPiZOnKi333471WEkVcmmXSn5odVUS1W5w85JYfqg2zv9O/IFDwAAgIV//QoA6GzZqQ4A3tatW6fdu3frTMtZSdKXX36pM60tkqT29nb95S9/0ebNm/WT11/SZ6dPasCAAbq+eGzcE3rXTCrTTy+drF69ekmS+vfvrz59+iSca1DvfA0fPKQLStU99cRFvXRC/aMnK1owJ2l5M7YAAADQGfhiA0Ay8SR3Gjt79qxWrlypY8eOKZrbSzeOGa/oC2s1buBQvbzgh1q/fr127NgRSz+iT4GWr16tyTsPqKagIHWB9xDWj/iFed1AOkr2k+lBfiCTJzm8hf3ByLCvwejJevK70t1+V4FFbQAAAABApuFJ7jTW1NSkO++8U0OHDtXJs836z/ffVmtrq977++cqu+NW7dixQ1lZWSotLdWyy6/U8zPnafDgwakOG2kiyLufwyxwR6NRVVZWnk9Ioc6V7liU7x4mTpyY6hDOC69PAgAAANDd8HkbHcEidxrr16+fHn74YT366KOaPvIbkqRBgwZJkj47/ndJ0ty5c7V06VLNHTNefXN7pSzWnoqJt3PVlE/JiAXurpDMuujpdZzJ5c/k2AEAAAAASBYWuTNATk6OfjFlptZc9UNVVFRo7pjxml46UTfffLPmz5+f6vCQQcIukFXNW9KhJ0V53UHncHvKuKPtAndeY4P6BgAAAAAgvfFO7gyRk52t0qEjVNOrl5ZdfqWKFszR9pNHFYlEUh0aMgQLz90Ti6/uOrtuqGsAAAAAANITT3ID3UzJpl3d5pUGvL4knr0uWHQNprP6UdGCOR06zmwntzbjaXEAAAAAADqORW6gh+rIgtqYLXuSEEn315XvbueJfXfRaJQvTQAAAAAA6IZY5AYQp2TTLp4o7QFoY2895clqc9GfLwAAAAAAAJmKd3IDcNQTFvgAO3u/j0ajKklRLJ2NRWwAAAAAQHfFIjcAoMcr2bRLVV34WhkAAAAAANB5eF0JkMG66l3PqXwCtCvfZw0AABAW9yoAAACpxyI3gJThlSjh8L707q2mfEpSvlCKRqOe/YbXmAAAAAAAMh2L3ABSpmjBnFSHAAAAAAAAgAzHIjcAAA5qyqekOoTzxpP/AAAAAICegEVuAAB6MF6DAwAAAADIdCxyAwAAAAAAAAAyFovcAAAAAAAAAICMxSI3AAAAAAAAACBjscgNAAAAAAAAAMhYLHIDAAAAAAAAADIWi9wAAAAAAAAAgIzFIjcAAAAAAAAAIGOxyA0AAAAAAAAAyFgscgMAAAAAAAAAMhaL3AAAAAAAAACAjMUiNwAAAAAAAAAgY7HIDQAAAAAAAADIWCxyAwAAAAAAAAAyFovcAAAAAAAAAICMxSI3AAAAAAAAACBjscgNAAAAAAAAAMhYLHIDAAAAAAAAADIWi9wAAAAAAAAAgIzFIjcAAAAAAAAAIGOFXuRuamrS8uXLNXLkSOXn56usrEzbtm1LSNfW1qbnnntO11xzjYYOHarc3FwVFhZq5syZWrt2rZqamjqlAAAAAAAAAACAniv0IvfixYv12GOP6ZZbbtGTTz6pSCSi6667Tn/6059iaRobG3Xddddp0aJFOn36tJYtW6a1a9dq+fLlysvL05IlS7RkyZJOLQgAAAAAAAAAoOfJCZN4z549qqysVEVFhZYtWyZJuvXWWzV+/Hjdd999+vOf/yxJuueee7R161Y98cQTuvvuu+PyuPfee3Xw4EHHp78BAAAAAAAAAAgj1CL37373O0UiEd1xxx2xbXl5efrxj3+slStX6siRI5KkdevWadasWQkL3JaLLrpIF1100XmEDQAAAAAAAABAyEXuvXv3qqSkRP3794/b/t3vfleSVF1drdraWrW2tmrhwoXnFVhTU1Pce7tPnDghSTpy5IhaWlrOK+9Mc/z4cX3W3Bj3/1l1R3X81HE1NzeroaEhYf/x48clKZbW2mbfZ24z8zX3e7HOa8ZaW1urU7bzmPvNvK205j6nvK20Zl241ZM9rZmvvfxOdWyx6uIzW3z2urandWov83izftxiMNvDnqdTeYO2v1v9mnV8yqF+Y/k1ndbxujo1NDQklMOpX5nHOp3XrW/a8/HqV071YO/HXrxi8CqP+bfV39yY+drTOvUVM1+3seRVDrd8vcaCU/vb95v8xq5XH3SaEySpublZ+fn5gfuPmYd9HnM7h53XvGKP120s2cvtFYPXvBP0fE6x+tVxmD5obztrLLmV1W0OcpvnncaS25znFKdZZqdxHmTOb2vN1vG6OuXn56vRJzbrb6/5Mej1yqkt/do5yNxk9jevfCT39refK2g/tgRtO6853IzNa76zz49e9zZmmYNez/3mTLdjpXN9q63ptONc4dYefm0c5FpjHme/L/GL2ymNvf1NXtcEp/zCzAn2crhdz7yu3U6x+Y3JjtwzufXXIP3fa17xSmuPzfws4DbOncril9avXu33c+a1wqs+/PqKtc2rPZziCzPvup036Pm85l2n9va7vzaPDfqZwuv/w1y7ve4frb5lcbv3czrebeyaf3uNaSsPp7qw15+93tzq1tru9VnMLa09jVu5neYkvzFmH0tu9y728/uNc6c8vK7zbnXsNge53c+ZsXn1Y+ncNdPsZ15lsZ/Xfn10Sut2vXK7fzDPEaR+zHz9rvtubWGlC3Jva0/rNQ+5tbNb/fhdB/3GofW3172NW1q3eJyuH2Ychw4dSsi/O6utrZX01W8gwllWe3t7e9DE48eP1/Dhw7V9+/a47fv379cll1yiNWvW6MCBA3r88cdVXV2tCRMmxNI0Nzervr7+3ImzsjRkyBDXcz344INavXp1mLIAAAAAAAAAQLe0Z88eTZo0KdVhpKVQT3I3Njaqd+/eCdvz8vJi+62F7H79+sWl2bx5s2644YbY33379vX8xm7FihVaunRp7O+Wlha9//77KioqUnZ26N/L7JZOnjypcePGaf/+/SooKEh1OOgB6HNIFvoWuhL9DclC30JXor8hWehb6Ar0MyCctrY2ff7557r88stTHUraCrXInZ+fH/cKEcuZM2di+63Jyb6APXXq1NiPTVZUVGjnzp2e5+rdu3fCgvrUqVPDhNvtWV8ojBo1KuEVMkAy0OeQLPQtdCX6G5KFvoWuRH9DstC30BXoZ0B4o0ePTnUIaS3UI9EjRoyIvQPGZG0bOXKkLr74YknSvn374tIMGzZMM2bM0IwZMzRixIiOxgsAAAAAAAAAQEyoRe7S0lLV1NTEvVtbkqqqqmL7Z8+erUgkoo0bN3ZelAAAAAAAAAAAOAi1yD137ly1trZq7dq1sW1NTU1av369ysrKVFRUpNGjR+u2227Tli1b9NRTTznmE+K3LuGhd+/eeuCBBxzfkw4kA30OyULfQleivyFZ6FvoSvQ3JAt9C12Bfgags2W1h1xxnjdvnl588UXdc889GjNmjDZs2KA9e/Zo+/btmjZtmiTp9OnTmjNnjl577TVNnTpV5eXlKiwsVF1dnXbu3KlNmzZp7Nix2r9/f1IKBQAAAAAAAADoGUIvcp85c0arVq3S888/ry+++EKXXXaZHn74YV177bVx6VpbWxWNRhWNRlVdXa36+noNHDhQEyZM0E033aRFixYpLy+vUwsDAAAAAAAAAOhZQi9yAwAAAAAAAACQLkK9kxsAAAAAAAAAgHTCIjcAAAAAAAAAIGOxyA0AAAAAAAAAyFgscgMAAAAAAAAAMhaL3AAAAAAAAACAjMUiNwAAAAAAAAAgY7HIDQAAAAAAAADIWCxyAwAAAAAAAAAyFovcAAAAAAAAAICMxSI3AAAAAAAAACBjscgNAAAAAAAAAMhYLHIDAAAAAAAAADLW/wP7rO1dwmgxbgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[[
]]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%matplotlib inline\n", + "cerebro = bt.Cerebro()\n", + "#cerebro.broker.setcash(10000.0)\n", + "\n", + "\n", + "cerebro.adddata(bt.feeds.PandasData(dataname = df))\n", + "cerebro.run()\n", + "\n", + "plt.rcParams['figure.figsize'] = [15, 12]\n", + "plt.rcParams.update({'font.size': 12}) \n", + "cerebro.plot(iplot = False)" + ] + }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "cerebro.plot(iplot=False, volume=False, style='candlestick')" + ] } ], "metadata": { From ed8200436e05783909cc28e7c5172934921d20b8 Mon Sep 17 00:00:00 2001 From: mikiiiss Date: Fri, 21 Jun 2024 03:15:30 +0300 Subject: [PATCH 3/5] script --- screenshot/Figure_0.png | Bin 0 -> 193155 bytes script/nvda_backtesting.py | 103 +++++++++++++++++++++++++++++++++++++ 2 files changed, 103 insertions(+) create mode 100644 screenshot/Figure_0.png create mode 100644 script/nvda_backtesting.py diff --git a/screenshot/Figure_0.png b/screenshot/Figure_0.png new file mode 100644 index 0000000000000000000000000000000000000000..2d1c444d29f38fca58352552bce5ee3c6ff7c451 GIT binary patch literal 193155 zcmaI7bzD_xyFa{X6a*9nK|)kYq@)`~K|w)5I;Fe26%>?GX-P!{QMwzX1f)AQ-Q6AU zwPv2rbH+L6_x>TnY}Q_JudBXszj-1nb?z+XSriI&?%{)b@+cIZHwuLngpUiK7}UJBduuyEc6N*Z z9>8X0Ys9`DAFm20Ib;1m)eeOsevbUZNEJ&lL1Ca!5AWT1<{Z0(c5;7a&|9@W`dh#A z3NwlHT=^ONYxk4Syu4KR_HFqOU3E>(EWR+!OGDo?2$b%r67b$)x=%v#c#hup$z8#D zkA=;Xb$y2Diw~mTp=J;F38Ra*i=AdhC{~JRg>jR^?&8z=lKkp147Wq4V$a%ARi%*`-R73Sr>jc(=B;CdoS4$e2*8!{ID^ zu(P~~e*IQ56qWVwQ!&1`nXF$wIb7`%Y&Ffd-Jg!Mn~ihgHKE4BCA=ykf<9I$wA2iZ zU@ViutorxO#a@edU0`0RJoUsqNBL})TgY)qXQBHWHXdGAhNe(P>55=ZZm!7J_4Rc+ z28Q}$|F>^VSH1?ge)!*af$4p8_%&2)sLcYznX523{6OA>r9r3 zvAA;o_#y89UimDcm7-Wo&V!?R9(Av&EMbOx{?SVKha{SU~6e0x4M~<*Zi`! z`#O$hsbgJ3isz@=i3!~gA3hYVlq^z~iH>{7W2*ftM*S7;+1lP#FEFPQ5TNj@sg7V( z@6RzHsH>|(4LkH{PR-2NZucl}&L(($2n(x~6FaUA;v4a=8Apv(4LR9V}@LB{f9>Q##WBZ6qWj%-Bt#;|r5KS}suX2F`)2VIf!Bck3r-W_$> z8~2MAcDYR!@QO{d#CpVK_Br>$aA#Q9#f*vrQwRkA;9$e0{%rH%qW5!ib7TVyBi{6LO)RtwUSE{#y3#6{*{~991b_l(SyigM@Kr7lE!@* z$?De@uF)s{D+g96+4;pk;jPjs`#+fD|k=xr9AH2w{Mwm{V4yHCI9yG=W7rMV=G)L zRN5C%mUm1{Ols@v3+%c6bsFqU4&B-oCdC`as6INzhDXmoMbk;V#=r{}Tpq9SoA3VC zwQdr%b`@ic?BazBm~&WHxw-RRsoUA+445AsZMHp%7pBM^818I2|5@?yte{Ja7c)wor^A(nd*dP^>eCBH znyf01CH3`h*v+<1_o`btgj62y4DBx$jy`zwXev2UYhuK0HQnwCpXKncP&v_u?(V{} zDWULen~-Z=m0n)E+?A&%LQbO|d~e>o*;+xz@Qu2MK24G=Zjh3^Yn=LGd$F)HU45CN z3hoY;uw+taVlNbBO<)`DL3Hk1ILewUd%zqU7xw}srK|MOTz{pP7_rz92YbcdHFT+y z)%=XV(#kU-QQy=cD!jYhkAsQnrua!FjHmWU?gnGgrG@IU12Sy=`amVk$$3?2Dq${Cd>2d+V@J>SVUXWM4c zPNQ`?9NkRO!ge!{T({=#C@CRTNvA1{d24wn(ymni&l_H=b&sMlr_;)?+H7W8Vxo79 zWyzalnaB&5FaP3d6RycK>EgE@LotND86MVPE1A1C)0WV--KX8=N9+0PKDp*SC{p9& z6WiNkMmJmn9+DNw8L~6M* zM{3xfdHVDzO^u9<%>GuFoXgID(SHil?|6}zR|Mp}X2MlJRCA*Q9Zb{TynOiZ;Scq~ zV3*CA^A|7H{(65sTELDWfQ;2v&JMzZ(`Mq{(eZIeaS&2G)4pe16Bee@*4CzRoueb7 z75xnr0kyaAJ#!8gwQ$6h#naPs*mW_zwzk$;UpRo&2RbAFo2`YOfCSHjH(KSc`SuEb zGoS|PGLm~Ym7 z)R1G?Liw|%W`4Lh*Udw5XkmH#&E)^?d=p`cYG<$T{hUvcuw>IWylaz9giHI_#)k9G zojZGb&vuF^X=r3&o#6a3Ha6L%Tef;LVjrib^eroo9kpEN>75Qg+IdXuA)S!%{obCl zySux8NQl+^*FOsvqpvSE(=A^bku9?n(go5@LL#ECd3hI0(JM4cPo9WBc<`XSzRzeM z2M33yhVr(Tro6m-6u-?iBpdk9_6oU~a#UV0R7~8saOFyKj8(-$b8~YUzWaY%gr9Dy zAA^j*9DVlbQxY;s`Ef@m*BZFBlD4Sqq0T zt$(khcw>U#Fe)NEB0nGa#hmvFO2lKvnr#!F4VC_U*K=J-e40=;NU8$+L z*+wvqX8FfsH8sk~hLG7NmdvR)jPa?Qo-h)8`SK;pdi*Y2mVlh?hKNYqd{>H_9$&!Z z1I()Qs@6Cmbeq%iU>%em3?_DVMp4lbO?442uC7V8_wbfrKEa+Nz31*;Cd6|Jac(|R zHXvf5t9uQPhzeCTZcRc?n0bUtK;*TGJU%uRU8xVl; zKu&IV?uYyC3i<{kBbH9K3It(FR#tm?<@b^K5AWVpRr}zH>^OOPR=9a7vzErf8#p;W zgikCj*-*vB#c)%TKjwsWPEU?uE@>07g8LsB7@#>Ea>x;dV&t~F;viQF@v|Ez2K5)} z!fPn3FJadE5E?p=YZT%(2xH3o_wO<01Wy!qousATHk^!P>)}DaLxn{|T!2+GF=0-u zyz02rKOXPcm!Y|GynOJxWXDNT@--ZaoWcuUZOCz4c=&X7B|ORE$?w5s$B;I2N5=v< zqR=YA%}Xe*Rc*I$k*n0})D!*!Z|RULCLv*UJzB(hEwRDKu{nZurOo{Lb2@kzD!0hQ zcO$dhb}d8xz7~8j=EDd1Nv@cWAJ5JqUl*pQr}sYjZ8=(j*7Ir>_*pvZpO!EXdQ5em zmNulv6z84Yz3}6>u&^7m_ySVSOI89>zXa}j!jI1j0zbEl?Uw)kr1iXQ@Vim?VLgD{ z=Fk)s9rA_0j*Tsv^(Ph^{!QyeRc-8>u6{{CKxx-@*-;46#3;cd!rL1a@3taPalE6B ziHR8nLz2?>aA>k|Sy>!{4hywWoO(qN_{Ap&i_qZssfb3LC(qrLkPxYFixucPjvs+S z3SD{)2JOxID^?^VBvsJVmqcmAPWJSmj=*F!lhe$mH&W&jNWoQKo<1Az#)g4`@k6sT z!jHz)AGyBAj;hn4kB^UPsUxd2^N8o6#m@3j!%G|jd?F%8vEB^L0JJ3|H+LAc_y`yR z!{OGn+?IKed;aAa|yFEMda;WVXw=P0=!w8V?3 zGbcaO)%}dwou>FbOkTPrK}!pO=TDpcBVqhP4e{&6wc+ z8P1;+A}a5Flbu~znwbYCbsmdB?%gtPS9r#7c+~Ye^0QB%T)~L|b$x3Un5EjygNnS+ zqpYnc&Abgm-A!?fn`~^dXvZN7)4jFv6_cdTpSw5P#4^L=O`)Hjed4yW^b{5w2Ey-9 zH%e2MJCg%G3OQxKN);9H@7@lVH(ePnPLqjbTQND@UCl(GB)ll(Yu;+5j_Gh5fDEns z_wN^{P>Z@3l`Izw!9&8YDi{k5v|i8PK43mbtEv*;&6|z23;rlz_Z7Yr8%u?g3Y7*~ z^3v6c?`iQBu<~EO$|Yok$)}Z-X<+>I@bGOw$V}pZwpieWaq7MPDD0BsrWM-w1z9_| z6K${Ke9UJ`N)d2U)m+1GoO<;|Dd*0ddCFeC^#MM+#G=F`PR(zP1kC8k4j&Jox7|E= zX@9*uY36*-V^^G1Y9U9a%I&9 z*-36{RteVubAA1xw8-oh+@G!IhuM9wy%;W^QZF#EHeMsmOh4=Y)~*&NyHr$oWMoR% z2Rq-RV5mAhcD3^<2`eY@{EBVoH-zrCo+lRBdiVCto2N?O72#X>`_xckB4J)sKs!$c znGWO_ECA$AS^B#?=>mFR_|4V!432L7`}?!8Nk5dns}-0>$6mkrYt>&-`Wxva)pPEH zo6ZuNj?wZR9ZLDmHU&9D%kVTX=MEo^^vnQ!Ne=VWR!~qtTl{KkQ;v>~UNPzF>Qa3E z{FA&ib3ol^=t$_(LMA4rClnMED<)iAT#C?T;BVi1(%^65b-EBZiYh9p(8mrDX=RW4nZ-oz>CI z9q3_Na!8NTk4i|$oS2vxX3X=!BQB{dgM2|c6{!ZSBYZ&t=!*zfKvU0bZF2^T?Na_~ zr^Rw=fYg!143CI_nj-!1p^eu==43DNV$UZqN2S6b-&mdwRm`+LkYWLuY%eU+12S+nP%^?jA8(y1vG1Ak!ELruv;bLTzf-5om z)qH|#@&b?M2|&RVw-I<;hpAuZk?x5(Q0Y}E{osMMT&c^Z;V!xKojWfMpmIEePM@Qe zj>MiR^z0RrLYOp9J}}+9DG#f%LV65imdMU7^Z_*E$%hXYAVX(GJ5s)WO@rktO+h2i z>QyS5o55bSwPn8>q6MY1+^rC1fm>uS3q(iHXIGM5xGI%YctoSCfQk8AHyuuqUYtdNCi#RtB8FmfoT@M&!|@&ej-=w>gan9CvLkcw-K8S4?xw1c>}3 zRBw^(<~f$4k41S5)Ka>>-69J(bpBzXrW_N@W6`tI$D6*`FWj4_I8d3(34q7 zW8J2HOqC5V>I|xo!$j?him|v8CW+z$gqu99Ik9iU$Nl5(j3WdG?-@sSOgg@_SPpKN=yIj>x+bZ09eoW znwYi~Dm%wzLewplEN_G6h-}ww)6Bd{V@QwrjwC$wLQ81JUkCaaePy;MCHxiM|G!{- zo{}F?HQ#8JL*E_eqS>MbT0f)s7ukBxm(`-U@RZVDp1Y#<@>_z%@HB9G;!}QMwAiHr@9KrPdR62{xfIJ*w1&q>iMp0*GM19 zVKpKQctQ$5!X7l~{k_Q$7a*wt0~n1}y(rrmG$Xvi`=kDLKtKROM*>?r0Tdh~JA26C zYGpz=i?S}q<)VqVEY2_)tZ#09x6|zL*lgj0bx*8c6R?|E1G48f%n|PHrZi+w@ex7* z=ArX2SpsR;pdcsmDkLPt4SjmDTj{d!Erp4db$TYo%JAf9e`Vimf0`T?tp;e?c|iM6 zcqTswu-S$r0GvfAU7&|7ri2n9AR!L?>U2#yZT|)JHJ_e8+6wio@DkH-RBbWQ)pL+! zshaB;o5WhJ%=D@L{1siQUV`&k6iC0apY!$`@J{5FljneE1v0Xk_*DRRk79U(a$5xhppc&N4qz+shq2&YSlB&P zRSGV{-(v$t3Dd}M>Y&*J75GC`)PvCq53|4+9y2n4mipsAUk!U6F7woD+qLijmtj3t zg#lD%6t4v(&;-4Spd$*rOGab!zvvu$u@iiy?`(>~&oOK3UbNtH8H(S- z25wk*&70@|6C1C_|NL6Q>6~AxradQr9tbI&PdE&5F5fG%{wZ+)_zbiuXEk z87#0^q*=8Wbb(14pO6rH45rD6L9@*1rQ9~$G05LZAonI<5obS|Wndr(5n#k?b<5&c zUPqI(s3QnbSkfGLhCs>dFjgX%9pS^NQ5h8(3ouBaOw;+SZbv(x?9Uc&wh9#kT`gRn z{Pk;&?X>jm+qWTg82I_4itT1Mrb6XPu&Sh)5j+BP(tKYgEuw<3u>~X22E0q_nsa;{ z&wpa0>Vv79amY2QfR%Sy%5E68fF1-evv1uo_6QHW9$n&=#+0*Z=d? z6Sct~ErR1Xcs};aLnRMUD%_1_E}KQG6^E$)LMvKwP5bjeudUn~eD{vz=l89&_zxd` z7MVJbmN+a*Lbp5IhKmAKHVgM-Pb>tvzQ4bJ@7}#4Kjvg>eyWweo<2p*n72bu&k_*4 zdHXhv^8_jik{e|Q3*P~#Ip+;M8e4_Fz<;=ui!iFfx3m9XvHca^)M1W#WhQ9bK0KZ!Anqfk zlhv<}u=M740p%dnr0eTCFq6f86hZN{*|KqhHd$(`^LWHGUx2M!={wzP5WCD{dQsu) zqfbB{diVFMKupNM6nFR(xG89?af@keAVmQ&*Q0uka;%PATOXbW)C1SN;X-@ktg z4!LuKJ~QmLT25oZ&c-$aF=H#23+*-&+kB|dstuuhfn$y-yYl^e)~BRv7TI@>`+z#_f){g+Kuux8~1MxnbUlkAiO5CSTcm*+^gMD zKfS4tGd7*?L&}Ul!0g|TW(T@iFPhurLWtOjb6i&fFvZC84ZCl)+>?~t04T6gLoC+K zgf{1v-Pe;+?Ed_I4^|-Fz zF??-k?W|@1jCY~9X_nYO2YM~m>tuiBGb6syV(=v>st|bH;*>OTY9&L|)hF zVkCa~;tK+pT{CMTx3RjZf{My7_R6D)*4TePCk_sXI$6(sJdZQI?mRrRG)ipNJD0dx zAH-oG-CUqR6;m@lmfb*;1Z^C0pgl>7INoK3;#qi}W%5OMW`39k8LwXT238%)W&g`` zOY|3Foetyg%9)}IdyxI_6B4xb_K;WdJ3hVS5wu2lG0U74reY=As>%-KZo7ssT^#LJ zo=!tvegTP(hLOY@%C74cDIo_q9E?6)lUW$uh$% zfM23Tm=Oqfqci?07Yx=y7l%Nzo+olVqcEM#qCW<@eL3? z)}R{8EIF#(x(b)uiP-QxhB z$K34@1I2q20RkX&V$2QZv&cl;dJZkeyY)mfO9ul<2y$(AP86-@9vwui9$-cdhaN@N z-kn})phmr0424V|>UKD19J{71X(x3&Xb7f$pWJ%~vqjq7y2FnLi0 zQPJN0WpnkOgY6^#NsFGFv{hBAMg!4;itDwcqBm~L%>mgm@snWrS3|ZzQ7cwY>G!S8 z&6>8h%=#^;=`&)d`@{gTl0gVHN0)>xMn%1cj6(6vVzOP=b1KcOMd|74JSNeGtO=WJ_29NT{wd=A>Qo&T?&|0Tp{-zfc zEJ=>J{>OCTtoihP^kQbhTX|eE)`R!{_yj^ul4~PwSObNb=SUfDK;Flwmqe%h0MYULCHKh5+x)Vb=R&vU4Uh2-{m7BX_{PoBdu&$T5Eb?r%}U zK-MiB59q!mG&HTi3zn4(>n%@))QMh4FUq9;{TzoQ4wo|VnWAQy!M=L@13gM6Q7{Qqllz ze*>T=hiP}}R_Mo&)~B#1?7Kk}HFT9|oyio(ob038N|j=!cc;2Oajg7K@l zc@o%XeHf7S_4TbGcoC7`1v@XqV5q<%&uTOtFg1^<*V#YXf4brwjA6$Z&y%$p>zQcQ zA)0Y&axG^%#Qrksbt(cQ$`stn#B`*#AqYF(!J#n5cnHH31bvaue6%7C7Aqbi*BVe! zp82FYs4xMNfKjL5b$tag()ac2+q$**AVCsVK~;E^sZ|a-{wJvrnzHr!D=YiA$Ou4Q zBL#sEY6_?InE1)jrrhox@Dv#(3pelHy*t;HLJU19!{Hc&f*&f`FMt~@=q zN?$w#mUs?CVb`jnYLX#n6vGfz;5x~wKM0p!@dH_53ZCmC z8Ci)8)-&MV&=|@oUGtooX8iyk&CnzF1IUndDbX&?u^7rXo2B8^|3z}LdU}#c<3?Oy zH45VG`QyXgOot-~U`W~&z@OV{G~#dzE?XT^iz4NJCh6z?yoaYEvs7!_76S$Ns{p*8 zSHHwTpmD1SAubkJWVqqq*1B2$nMb$1?jKER%=~W$L4ln}dRb=#2RaKpuokbGCsn~#)mKNbhK=&PhIB0Ba6z=(@ zdmJa|05fF8)$7-Npvgc*`3dp>`o$y$7VcWNg53M~_*MXb@V;XK8m#O$1X9#M#=^Is z!z2e4*EtX`?(q>6mk>bab&zS*J`ZJNuCuT-iXRSXgwVVc({X8bQCU&0|0eeM%C#xyN;m#dT(Y^iZr))I@ zbnoElzW}PW0aD4Xf!gU^e0*@%ygu+h&?z8*1Lfa>K|`0DQnkWeKTy@(92TV8&}=1?+&MGJr(8rBxOM_KD)&0x~i( zTj)?7AlaQ9j-K}7pL|VD=JY&r&M4cEj(47TBe@&`(kL$B<*|;GoIhe9;{C_7rw8O= zVceD{8@AM2kLCP$Ew-|X?LIZp?<&0hezckOyz?}Zq~RK5gfTMn12iV26^(_ILn0sU z8KHQf5*YvzLGT?AO*S3($%|*3!72$l7-VRyCA#E18Cma~_blk8NFSo3qeJlZ(dg+h zEjT;l-Hrg$v;xqUh7P+A$fpHX^D>l9w+~1dTu1DNz)wIeBBi2Q zqB(`WnqxI8N_INj|87R$vzWpwtUjY&eiOPPOKoD~ zAI+}bJiAh+KpeW!c9$yV&Nqd8HTUL!6VZ(HF)j5Q)6LO9z8U5gC&zRxf$-A^zO$xC zZO=w;3@o)0fzRPWJ>dH?y$++ZL+HP3atl*YsV0+>mwBYcLV{lT;L))@7IP}z)l$i- zvJ*|#nU;2*I={EbF0%AJbL@kR{kyHDTn8Qd_N#ldmk!t8oUJMJxS@~|-yfX~t`-9F zh1rgdwT))$25O$%l*&C!w(_mLLb>jQ+DbL8$%U1(bZW_v+V9@IYwv9NBe)cx2Zpy1 z)4t|0t8&-}Ytyf$m&)3&=DVsDRW=Go0YqW$fP4jT3WN~XTx3!a^dw*Y$ z%lTl-(5irhQTPms;E#;I>)dg$T~eD{jUr{J%B=k9M|)TDHO*-iR*CPX&}!8=zN%N` z3#j!13)iwt_F>P`mDNH`p*Dkt`UR6n(HNh$HlmU}g9{|6V^6n8?UJK6aw6Boqz;0o zbF4BMx#&V9#CX}VQ<;8TSM|((6ot|(?WH>X&9zob%Hf*Vs%tq^FvA@k4c0?J6=6Gu zvVDeFr});yl@ZN0a*Bb}nKL#`e_O8Ngq&=l;%tIHPUej9KOevtqpr^Sc>7@ghib{_ zh_=@&IWZhR3F6ARYjf>)@ZJ#9`1Wb{)wCFj91j<_e^Wp&&h-(~c(%(fw2>@X%^u!2 zu#exS<8KdfohzV!QQ?uH_k4YH&QRKP02$~{G( zKvE0ASZ%$FUfZ8_J&a`a>6FJO^d;Bw&f?hHH&V&LZWYshS$UWH^pEfi$GS-*smK|*#9^=Qm)#2Y^2q`IBC)cj( zQC=Kl7e75Y=wRA;`%F6qO-)#@GZx!WuWOy2NY*+bPgItkAhsQKE}?MCwsm0V?AKJ@ zZ7q)t3S~W^cR%q6mhDwO=SH2b6Z`)fYKuszobKyh$CKcU!v?x%H5xrt4a}LUC zeN6Fi)ti2N99aEh-?8eOzH+@cYUv#E>Wx0g&+O2eExYSKLk}Kn{x{e-IGnn*{t=e1 z|8bqWu_U+1oR>J!MyuCD#I3Vt_reJZxa@~?3mO{MpZkpyQl+NM4=5OI4VstGs(TMv z`aDev)*cGam&Ucm!mM%?ByAe6Ql-bbOsnA2Yn2+MHDFKsQ}X(-4c?c`?5A&yUgwbf z<;65UKUp6%`5*n!Z2oKPGjJb(quHqlCR-E0s4{#~{|s8SOWzfZmS$!a*JM;SayP%Mu1$1ggx>@TBmT=AVVj^bP0vkXZ4h@l~W z{#Uvcg%K@n)dCS!U&`tj<;~mPHrw}?EF+2Vm0O;W-KEk7gMO^NQo33l$e(8j2(AM` z)oX(6ynr?;Wo*pEWz_nmsHkXUGLlWRX|5yb3?ZTZuXl7j5f-@vML^O3k$(;t2GHZK zxP`NqKqvPBd3|zrwt*h}yxkU!O-;HmTOz;Izj1B6kBH9ig!T|MBDfVGG_U*?=0Z?wznVZqlghbJ&pfaB#w zEe^EG-j4d(rjOHT&zsKTV zA=ut^4;g_{K`hVEmy3JXLF=GF#55RV!MYe48d@W=JFKv}4$nCZVE=cVP+{-17(jl+ zehkBZw%x2O7}A=-liP>nT{7@Ty4HKlVg$E_GGJ4 zwAJVM=3Ho8@jraHx|v0!TM$y9phXlN{X_*{Ch~5AXnQH&(TR|TyA6SPRJti`l^|CC zlQu#fr+q^!Z140Q%&JSvw&AZK3c#Eqiot|KPv5ZmsXKdU3*=-((h7Nw0AY{A9UL8) zY!P(g?~jjwc~FgD%>U+~x(c4Ephtt?A72C3sZ{$E2-8@bdJ5Zaqzzy zPH2ZM2%g?`7?dZ#TKEY#Rybx8>_A!ijTd10T;TES{PIx4rtXqGjQg$AVh3|c2t@;s zn#*ZL1JKhPjThiQTcA})E?rWb$O4QGhr2DmK#Rr9y@Tf+M0CZ|)73MVf~}HjXQ?BkOU^2KdFvO7Ef;le4y!*7 zW9cUKayg;SFosSeitKap1JoY&6SXvfSH1gb14@iy2r| z#@rh}3E1C7M>m3_@4@58)8ODU>E1zL1|rJ>1@!`~_ka$lk*!Yv#wg3n(lBOW<)3J2 zwE`+!2$7(at`IyqK3!?%I9@1b0h)M6ldfAjf5cggJbX4mEw!YniLJ=-nY`g6;?eKF5i zDXO-KrVgHATLCU~-J#Y9H;Z5JK$T)v7MQ+xPFHJ#2)s-Pu@5izRz{Hln5Y84*H(m8 zl@jMjsn-x(XU>c4=b~{Q!%)i9LZ>>EgW`Y?E}({BBz61(4XSwTB>^zRCP@*>Ksq=( z7aisgm?Qhp0Is_RiS_1SgzRg!EpnZ9fP9RQWEn*hXTiLoWu`81_wHq|NeZc}{+mSnbnIHrWkRN65CDxg;GlAh*IULDfpBetJ$R(5p4Mg z*ZMxiJS9BZZEy8aQPPQL9c$OssGMHBcyeA@*mCiE2txZA#k;(gqH*!1mxEkt<)7p+4venXo;`IT#Zv?nL!9sdo-iT(l(m*JxxgCoa{!u*q zNqeq`%!#`C5&MmLV))0Vd8yhUZndB}(>>%(hn zxa5J!=gVSNWJp_;&S%V4`|a*+gyzM<#-Xm1@{m!|a9^(jGdp5TdwN1K23yt=;U$7- z6!7!sT~ToNKBJB!z{A5+P)lF22OIUF3&@_JRk8!syCMb8Z&kjnRO7_J0cL;1(eGIf zXd6i5IhZ(LLjzcdEatkuDFp57>FGf`GJEEhuEYXWSpW>kU`@ary;-S*OHA_!m~e<} zR9IwWF1UdXc2`GJ9nSn?)UJJFdh7~2zmAWB`0RJA^j=o7aT)#GBDjfJ>4?`fZ|-`% zJk@k2UFhASdK)S$gau2b&CjZav0k^urJ$n>DE2!Lz;^q{YDL8BGf69P;TXn=K= zglWY8#3 zI(v#M|0(WI+*6jv6gwrfsyrv;ICt}-6FRv8?amcQH6OR_te;(w6WE)k+SvNxt=ZW2 zZHeZR$#?|4a9E5!2)78sKzy* zaX3LOOHT zC{0n#)_v6=3?#kb&eFh&39ZZ2`H*$QODZI;rf6|!0p*LvLM>Yt2Sn(MhCGCEg6wf% zTQr_DYK?6KojGJM0*8PsOQ#xh*DN{A&E29oL+})t8a*`~PJ4MgfLcOtcK6WGnNA)A z{xZ5B+XTDjK3o1rf0VlZw;=gc(~g>SejfIqt9L8h25J(UhsRwhhdB6hYzpg zKWG#EnXuiDp}Apq1|x@vo)mNHA{j|v6?NZE`<+2dyj}Y2PfcaVtV)66TD|Xa*%e}` zq-C~)aDY^#sY!62I0Kf;M#?U)gZUKL#)E9;?Y$iN{{4&0Osk+M#3cCZ*RM6T7&%^K zDH!D99~m1P%kWKpdB%g)Z*D2#WXKZI+8TCZk z=U{Eo1KF9~0larH%^dLqd zaIIn*=Bj$$;LTMqpd|+Sb$ECf;3$7}>`jPT2;KjS1f+C*#DwGGGPX(_B7&>!fn&&Z zOAQ+f?`}gd$t8m-om7pPb>S&ON58}3#)sbpM}mk_4vTMgC8s^EsMt15>gZ9nF77!l z`7~shHb*=#W?eFyKFH4L==Ob3dt%R~d=(~-hDY9k0Rh0w2LKo=_7k8Y0uLcTxyf^$ z2lI@uYYnlZlXx$kuL!|Y*t&_#xc7eS&&(d+ov^@V`2BS z_ohex;F5z}KjyRWom6==URHIX=W|+#`>1|ZwUzY}Izq#Qw~o)|Py5u8AE%ppz3DZX zsC@%UDq61}WFy4ih-}q<6BGoq;wF?$TWG=<&|<}*Mkh%InZ992AOUAq?ZX>%bT6)0 z7QNUV^#af0!M`>}|74}dIXTo;DOWQ(W?+=?te`Qf{oK< z>;)cdkB2?bVNeFSOuLy{g*Sgk7;l_GHq*x~QNL^Vx*VJwJ#jva42IX&t zMCq}j2?w8N*xuh*=7ySfBKd8~H=0;32T8J(F5Lzl83exZQxG22N>q`;4GajA_|I_3kI45WExDL#g6 z!by?LvhLC^s-Nr+8u}EDzJ46DVZSEHxn5==jL%gM8j!7a3AibSZ8f$ycM} z$XaQea2lC*IyzUKeT`^IDh`i2YQA3N~Z*TErku)p0Wakx{0ZDF6c+gof&{V4uN?v>+XhjzlT zye|89R()(yJOn34q(Gnzyhk$59pn7@ccEA~IPuMoq+f0?I-GtR^&CoVN`I`IJy)f# z`*|eZW-`(1baLqR*HjvFi*LO8`c;wIKXcm_t}f6=Rux!S?`2tPOTLcZnG6~4kQ(2g z9k=q@JULvpUvS9KIKy6!E##yWTsn8Hyfsl) zyrg>JyZ)1Z@0SJPxfMKnvKksxHLuT^&CmSL3guC{xNz89Gan(Wu0D7l{SC_|QKtPR zQASJDr(83)oh=Q?hwaS#3KcCKfGQekQ&G9?-OrJ)QPtU`L*0XVIlOfjgU+!iEX!=xk2)+1LP$R@;yR#

v}m4z z-@3|f@ALim%%sm-_TQBky${QG7up(m6gKA)vIukY0~ctk^*k89=dh3_kjssi#%ZGY z7`!Vmbbnt4MrCj2%5iEybz*LRbMtr&anR8oT6M~+-~$oe0oF!Cg5=BQdfS76j-w;H zMV3_!S{l_K>9?@@uWuIIEk8tM(5zWJLlqg~T5DG8(ABQf|HWg%Ub`{a3u`_G%er)aJr>2imexFXH56!QAyOx$%^Qv7o+7pBjZ!or(x5t+>}R zCAi-3&gd$N4nNzonm9+^o)Pzc&e*>o#m?(MOci}1ZR;ne+ucOIC+LB_AF+9v3-@GK ztbD23r&_V7MW_A6Om6E-peQB$w$`}Xx@(S)t};DnQ{ef^<#@~2ckb%OTIGmAf2+aB zkZSWd*P)TUU=o&0thb6-}p7&;Qu4(0o zTA|*)Z8>p}~eH5waC^#PHWN+xKdu=M&vu^&ys!OuP ztKJ);?BHm_mhk(zKfAbdPx7a>SG7Up{1tk`mY4l1<*Z4P^NxOgi*27e@GFm@&3wNc zzb!PI;Wko!gdrZ16%^=oT1R?&k3hU9u(vk?Lqi5tRPkbXfub^~5tXroRkVZ3+QPVX zulfC7JLJLA2Tu2+KUiU91H%RH)Jn0kz0X9vmLor~l11DWu0GSG_aMDsZ-NHC;Ni5k zXGe4zSpbo3@qwadmiQ^UOf|9$U3C7$qlV~&{DhB4t^TRJBYnqsF=~%;iEwkEx<02% zz+EM>t^DUIyX)&4?`_tMPOOv(Pw`KqgI~BA+qJlqZC%JSNs@WgXSkt{uJFZ1vzx~7 zHjFSvYNZ`ww^q^<5Q$4a(6&8ZRJkLv-8$f3nHz``Vwn4_3`;hJ<|N^?%7=L2w`#lU zx77-D3Tt$wb|s@9@#59#!qEj!?Gz%hpFOXWu~TyfmHY3>;%I-3uTGgavg=i~o(vLX zaox9VBb=VnKXz)r>U?0Lnc=!)PHpW_eBw&oO~cnJWYPSqouV9~<$?XWUD#O7A+e6(hq493)-M?D?6zrHlfGSHy(Mw}1N2UKUgLGgvHI1bg+OPE~ z61l8uQBQsU=ub|0cCukHaqvF*y!i+ea@(7l}Z_luXNe%)4goqKTA&Qmzx@8fWj0Bq$vc6+Nwttxvm z4|jT0BR~Ky-B`@rPEufe@NiwD*JZZaZS~HhN5{R(tC@#tte2n4?)bDb=LB}OGSMeV zqx$8-fk0%wF3I%U@Rtk|Bf0SvwR)be=3fWr10yyB`^H(*o*DH~VjY9eU!v|dTeMm$ zb!1I`-@^DVI;B}yE-vlRPvqnC8vD`g!=38)mE=ENAHdcVRq893(W1DaHLX>ZqBnj$ zsb67Lnh~CE_#|;qUNLon|9C5DSHk@Ed}nXsAy36T!{y2&?buvL&CsD<^1Xo40iF%% zl_CkFG^dpx%}?EYa(`obb0)6yga=`qTx#A}G3r)%zixuRX6F?j7TIT0mOn!{HYhEB z#eI?DS9(0Nxux^F-u#TTvC?xT~#jKIof|S$TbxHv@a~(49M0*f$q-*VZw#xl}CpWtutf`|?=0;NtJH)Zhkc zx#M9ZQATFR9(Ep1m1n(cwP=o^-y=}mF(Z9>^7^e#<;_jY+izH~`Y(@Z8&ESkpP5Um zZV6?=DsrvrQ};kAukIG+FLTk!UXo&dN$1Po0h^X?n{?g)ich_S`M)@UNlA|vSh8q+d!c>g7s?UOyF4s=-X1Td zoEDW)qM=N&^wqZ9uRgIJuZv}<+kLfESy~*ASI#k`Ivj&)%&&U%5{gZVdAettO0G$s zqAG)RZ1BU!ZanL4Z!3}6?-rUg%c%t+YU-6xcW?fc)qv{#fT?n)TsL6-uYS;>HZ=v) z?!msmY@UYD@Cyw;EGbJ2RQaC-q{N6s?p&LZ$ zkgp<0r*wmaba#q?(mm8LGzwBuA}vxP-8rPd(B0kLH88_@{Jm$bbN&Q%xn}kgdw=4( z6{5{kczJU8PRo-NpIp85s5zWYDLAaHDQrt?nNpUg{e6RHN^-S_@qK=tCG4a3Q>Lfu zuf~BICy>4x|NjSCgqfqU%zb2TR>T~?a~;qFn-R=XE!Yvq(@%^zrJHm|QDw6w=lnyF9nxY8cG8lt?iuovCn2WqIr8VVQI1BB)O!zKYm7odWr$~;kN_y1kyAJKsA^pe-VUQ4Uzr!8Ry zhNW`uNsh;W7CoYK(JFTkkG!I#il`}LyFqQ7r9lPNk9soKDU?Yo=?4MKCcwRbGPG+_ zUtTL$OxaIB1Ti9*lY+eMK&fvmw(Ad&yn;5cACUGB=#g^J*iPA&alyQ1%o-T+Tf}$I z6t_n3J&mNZu`f?`9pS1U4sa_5&?cifmN8*87%TXe8o^~h+X9hGz}Np500+#@*FaAW zkQ4y%=HEp!2FlO3d=mn_Fs1$1Wa)nQQjE6FC2~?1mtX>I{2!)Ay>R#s(MLalRT>To z!#2A4TEJ`cm{w6@<_J^domu-~GbalUghoMQ_5Y6q4Y_WYPnp_aW?}o_|A=U;2$oojnI!J2x z=QrCEg676amN?*C8su<<(a<)xIEB%3#Yu1GWwvdM0M!|g{HQO3FasXS{}ccqQ2iIE z>Foh2%l{XXq?eS`z7cm2o%8tc`YRotuPu;P|#Ru5Hx4Vq=tMt6+ewU+635<+Z8w$5ul(RK>*C#g_Gc%OKq6F$G zqiD1JiEEt%9ZlBU5#4X&?%+p~0a=niYJNT`Yo#bq4L+47P|%IJPEMjVYMf4eoec;$ z5`RpD06~IESQ962#V2oVNnAY>ACPk-{QZcf0;sgL+eb7~Bb?vqg@#;n&`%1;D}rjT z&`g;OGcpZqd^}Rnrw`s>-dgd{q_>EJ@ji0fI5aKHsG?cA*n*l<*BqQpSxv#|rZRim z{wquQztg`PIT4=rYMJiWeswwJKs!R2=&mP}2EHs#7@Cjb3rg0u1W(ef>A>LeQ~cqy z7mZ-0j_J@YT8-%Ud)m5I` zF3x2rdR@(&>fjM625h1bkKwV2X=XuvDPs&h?X=bd{QV#Eb!g%kZGQ6`7U=VPJt$}{ zpZ^r_{wT2>0eRbS_~(+WM%_%zhMkY-E$AXI);Qs|;8Z4O`%g{={Vp!pb|oo6)6mxY zG|^>yK)%<(cIBLdX+9FJ(x9#Wy~Hr{q81dp{o!!P_|LDl`QOtA0Ll@s1m1K0Yd$2n zC;!{Fo&M;Qg^+rzNCH`z*;<16y6}VY8R}*NN?G;TVQuO+N_Iyn$$P3lsQEADM}Qr5 z%3xu(zB$Lyl8IEk@fFtSPIe@vMHo4|<&vnx5O`(pYnGzRzb6FXE+)m6c5& zYJ}aKmVOVI5z`iMkCvO_K_AdUak_w5PN6#Ik}R-DOV`I!E3IZtyE9NEmP;F+V(jj3 z8j5HX7iwX})Ah0g$E$#C7iCl4gkRRGZ#N?NW^b>Ll)mO@?pa94Mf5x!zZel#OSW1^tLe&*ll*)7nWqO$W1bNDz59?fqx_L3^QF?SlsWyN)L zU}-@|k%(xZ&w6=XYLv(S?dCXq{e8oQ`gg(7YbPCL11UTrr`tB?PtVix$vY?vuz4tG zg)?f^O$7d%GYyt*&5Fvg$pORvHiUSqb7NvAcLi4&N~9b(VRK`fn9VJ#5$QL>`GgEs zVfNm2><#mV$tU$fD$)lV-MhpfgFhRXz=H{pDh}{$r}a_P``P^mnS`tGoXVK%>+Id=Ho1sh$+JKAI%%i#0^bP{=o@-i<=1JYb`9kf)K!4w;%!qt+j@(Dmk?s~X+H)=Z4657Kp}U7Iv8YMi z)0@aP$dw3?04{GE*AvYkcY|@6d1~JDks_NQ{`8o~6N)&23#b#$PQIs&g_e@u0l?i$ z-xm`TKAd@#XCh>FlxLsabY;b}yXtzfEYNG_nGl%NOa9I8`K?#f_RrfpP*NEx@p6FS zKf#vI&<70E8HuoX8}0!yE_6pEV1#DPJl5vU9{+hj)>&6{!}T3}D;wGtI9Z=bN=md) zH~rIIzdTyQllI0VFQ1P}*P#96Ega;{*-Jb3L$6vny#%uc%pYWSUsX)q?iXnHsj>N0 znNXw48y+ek;3@dY=vXqlHTkSmH<{29W^2@Yrq7sOOOC~VKnR+t=U&;LxD(99e3N6E zpH&JRF@6dFsd<1K2;dRlSI_aJ?az#a{(Jev9wjIOXKBZ2v<9Q<)$0YT3){?|#DrY# zvRK+e6v2q+bjF=0A3hrY?TT|q^l`kb&hRa8R(V8?*0R5PRb#ax$(Z>1U~qey zSwPQD`DhXE->%-k`^au|PKhFVxX8ZPaZd_0YP8DAn%pJoHJ)8q#RsXB5;Cy3Wsowr zbAp`XJzS@wzB(-*Hnxznd%imz%Zod(#eMO%+C%heh&Mc3)4Z(O9D0Wph??VXYoJ=wHRDO>F$!u(_y_4XbtO+5fp1++jLi;CPP$-ffx$NIGdH(&I zKt|$yjG})??5pbkph@>v$4jE8CVJ_Dq9s?OFOZ^w`q>K;6IZ~A%49PY^T&Wl;Y1+U zt-lL^$hZyU7CHCKe)jhi{$r*Y z&CW8b!oH{%ip}O9dV}j6VrVeJyWc~&%A6A9 zjnhm|TruB1uyBn3hZg-IozB!d)sE{*J9}hH-!vT4w8Ph>e8Z{RrKb%~1ZoO}{12s>jbM?SC;7lHZ z)7tuoPv;#FFH!qbqq(8O8RiX|I2$;`VGPj8wEEuAA?%faJSiz|*q=}|NlDSu>|{M^ zLg$s|b&g}yT6)mVrNCycjYcbshttq3+esEPVsTzll)##zZ7mXyLFdRuG+pPq!lUsP zwlh&MR9WcsCxZ@hh>5jl8P$<95XH>A&sT;-?18kj5{7X-mugnGHh<`=u$l=jmwzH> z=y6L)FR3;h7_eFp#3cyz7%6QgJ6`J&rJAo~yxes=hppfc@3tRB5P4}-e@bjyg98n5 zFWd65qWkpPIZq15E7}y>p>ZLbo^GG4*MDQD;=s$ntt1S=BrnPjK9OCDW|py2jB#?L z=0A?Dure_rOdkfg5mYUwvPjw-4?D>4e5;8aaAYj+EjP}G#qsfXXe2+o%_JU$Ag$13 zHd<>YXxhmeys#j-d{m|aMF)NCf2ekh>^lurDsFXi>0*ufRbph&sL+vGJ^9CkmOEN} znhpamuPF>xCmg8T(aZ;nuHNTVaSbJ+E!IGc1gL--aqs39sG`KQy5w=WfXA;9({qZ$ z!eDh~)xu4u1J4+}$*s4&_haFx!{ z&HDDGJYbjoV@N-u?g2oj0gxM1{J(6hu$3W)sE)^$vRUk1oRs)uoZp06R)!&GP;fF^(WU8Z-23#gkXlSZQ9amP(-hoJ|BHm+@vPJuHtI3U< zsV1nc&08V%&H4R_!n~73zsQRdAG=VRH59oM-mkBAA&*0a@)}i(qG+SRFdz>X*XqAE z$WJG3i=yoDMQZN92YDX`^(R_g&knskkx=&RAV>OwMk%N?s{w&X*DIemzx7=7*SktOAui20m;*?suJvo68`inzJv7* zjIjc7{9xw^4aUQ172!!J>Grs+t?7Qdrk0h%`3E!R#-=_cdZjXZI2jUDkxv%?kQsP9 zD25W!+Pj)2JOpIm--995iy<8!WXTVPzm#A{p{ZJxS)Q>{fyx*Ork{`n@s2VmCWB7L z(Bl;eh=r2b+-yMp>>$&G(!KDY9Cl$RLi@JF*k+Q|r`$FF^p|wVA{wurG4@n!F(8i! zDR5twnBE2YvtrEF(pglCrC)||qnR;+7X3ofysi`-PfINxg$4M6Xh}iS7khzFvtSFG z)Tg7eHQ2y=^WS#qNnysMZl+D6T^w<{)0}oS_cWK;rTqEvl9y{GlL$ey1B70d7b}Q& zlSOMck0$~fV^zm|FqA}}*Z^N!#|h|dYnb}&k@4|;eI?{*Bm;>BndG zuSK;<7YoS28B6%A`BKqswXfV*^I?j0&QsLcfTggC8qGaz$3XBCAov}4c4-ZOSTsX_)vAHjah0o^jPfz!Mqi@k*MiM4Kau*{f(#vp8+X3&TCB5~VQD@-&-{oL z=*)eu(Of!OB=KHQ#lY@Zg^$~koK3^d0{{*F*zldW7?K|Yk_78*uQ&XSMaht z!D*yohf9j7C?A*(pY37HngALZb*>r-ZWDSSHa8$wuEXo}%vsP%7w0C`R#N{;Lo={? zhMqo@5B_mR#L>H?j7I!E@wHhnO@lAv^D(#x0HBRxOiwfFc0D*BLvrK1XAChYT~lvf zhyNoNpyn8d{4YBI1h_+8+U~YzpZzP$7k&>xr+>x9J^=+Hd+_m&ckd8DR$27fr%uf8 z!diBdwJG1K$|Uaq5JC~4F^4nx`N;n_OWx>K9Jt?S5}&m-tpLX z2vL-X`H@OfJv$Uzn@pMACJ9afG1lt|)@6BYEa7a2QGz{9V&(8j=&lJQAJ033@t;CNvR!dR<7D##GH&4O! z9|Ep>E+kK_$BotoBv<}MZl#{t+?qZ(VcdZ`Opa|N&p)ppoG#!BChZm6%LcNZ#36#=Q@=wmOZ4|3&!3mUgaDfundNm-HXuYBgJ|VR z_c{eH)HS7wK$^I8R*K=Q9q-2=5C+j-F3Ro_N#kjc6NLv?ELiu~dxJBRy1O?H_}yK* z&U-Chg($jLOnY$hPoGBbN0`16-aZBG1iMh5Em7eoEwe%pyY4-6a{%}ku@;)iFmI|T zq@(PlCRLynlsHoq_-;k4l}(fQHDKV=zBK*~^X?_3 z2MGZh=IL1n)$y=pXp7!F3mdBKa&vCq65hAwt83I02@T_HH2CdRtjy=H%&CB{!~=uRp1UF z5y`B$cja+A!*=)Zy7xXDWzvmNpnp48nP*!shk@N5&Aq=0%n?C&IUvnFffK{tB=N$s z+;LE;7>I7V59Hbt0K8_a=HiUc2lTGTsJsLC)Xh{$tw6%=1a6!AHA;5QR;3fz*q!mt zSafKv!mbn)*7yXub{alcX|lu+JSsxd7JKiQ=!NBPerwKfA?Kd@8ee!oQ{B>&UFc#6 zEa(3E{1a`k1XCihynjCidQ;8Tp`wDXmjsR^Zcm!QX9-4Hopj9rh(xGuEgo(VHNR*3 zVVAu3-@!ZTXTy0Tx-r~>i2TwId*A+3h~z30kqHc?*s&ULh6ZxC5>y+d7PnofLx#=T zOtT}w$CJT4Kx9D_c8-5}R8pN0$IPdlTKb6GdHTMrgaa?o*oQAsmPC%?l0;+>ips}u zbeQRky^<&7VM4F4^I`^fOT2UOklhd}3-{8ueLjc`G0n&DA`Kt8c1Ki+y(h@{n zNcTZ!hIRQ%utny^?HgaRyE{dT9TYNoWMiEz`yR1xkHO2^^a>b?F>IJENF<4@vE8o7 z&K~ZQqzIL4HtP;XsA_?(2HCq4GD#pm8V(mjjI$XuVgY>`ndg>%^ zQ!RgR17L;D%c00<08pwfcJ$^S{$u!5|IxUR>fe18qJvLN=W6rDX?wp!V+VP&LB(T9 zm79zB+5I=h??(*nT3-U(w@@t?>M&Otdjgl+g!y97;rMdf+!nLllt!#bQ`la2k&-?e(re_0nt>oo-Ep5cv*II@b_--FQ$ia?@9J2AsB)HQzMbvrH&ycq7T95Z#QPgqB z${ngX&h*pgd#ALUwMX*qD;`?#{scy&8m9#cYYd%djN{(pZYMNkCh^fyPfFA<-*ebCC@pjTw1=|k@;s;Zgs1Z+4x76?(Sy-t z2THUX^@P&A2$mil?NxBn{RQFgy&{REH#0A5CUq6|ygu{Y*~UmJsl4K3z&0~s?uRea zB_ykPn33u5rIE53WoZM6ueW*P=$rWBeFXQraMw;4 znE)os4S&G@G6bS3(*LZ*+Mx1WzjwQSe76XnnnFLR{@-P)HZOkP0sKrKAgJnde^gHm zwBiUTIR0@*fZ-*h00<++c^Pk~8^MtEM zXVJYorvptDrbE2H&XGafEw}oaVTT3+*)141AvV4AQlk#eYh`6m+r%F9$eR?>#Gj$C zW?2Qg3w&_)PvMXl8&h%S$TK`z+SU_${^=VHTh;n!6Jvn>?wK8-rG;qT23!l>y@_tZ ztdz~7K9FGVUrhy@)fs`7N~1<>1_r`lw4!mo3@k+wP&0z$kFn&rkE_i~5f6ez8B;~) zz|0B%r1?SicGbctUpDkYa_XL;d_K!e=;R*F0J%6%-KXWFq8N6b_ocX?`)(hgMQu-s z)qHKOQT`aiq&LSNVl7F(@KmfNPzYxD;QtLhEXj^HaFrB4FtjX{$oh7|V1|12cicCI z>2GdG8tk{Wd|On=&%oENXgxb|*~X_3u{Oxs?)GW~$Q~RTHGa3Y26$8(5-r4lf^$Za?Cw>U&-uICa}_G#8xWc7_~!vuf^kx#{G4O9nJ5`p zt6U9l>e0dZm%V4|Z{IFGk`(<&2t4aibg}kWba*e7u@-o&BofH;L$Mg>!jLlVEU#N3~%$mEDzepl8 z!$0gJg{&=J`M-E6yJE9kS4!-7yiC;WJq3l{-t7@GGh{0T1UR?%Dsqc)Ygp`N^T^bD zjQ$5HtS>Jgwgo1K(BmFwoKa2~NV*PQarj&@x4juzP5Tc1%(KnlfsnHbHJn&e1{kZ? zh536`1vw`_M~0`jc7MG8<;%|ywj39iy9fS;{3sIH9G&F_d(Hzw-Dxzeq6^by$8f$u zf0SlSNDvjy&Mb9Fy11BtCXb)k0P(Psa|7iST+OSsjfveA6WNT4r170rK=A)>=Hq0q z&Ra}Cx*hKk1MjDsYwKKLO{r&IuIQC`#@Dw+5SR8P5n)P6;Y5<0SapAHyWF+<=?{j) zYA6K}(R$)-wo7Mc(z9&mgn_+~C@`}jRl9ft1jE_wp{{%)R0 zG-%H4UWiIA{fVZhu<)V>pF&|GlM8u94P?9#xB@ZV7MXIQO(7s5E(|J9h4Q?b!Aw0< zJ6co9IFlmG8VUY|)+NP(ob#4Zb3^Nf$~27jvMqz5+jHhZb`0V3Tbv-s{QkxOIS-$J z9B8%>@&*+9HA7*@MFV(XfPX``FtUk7Pq%=Z-21;CYeSt|Pe+5X0_=cy0wL_}J3>W5 zHVzvdYwcBxV-m{=2}i`Bg%Zr50ihFY&;EsHoVNs)$Il5IyPGU_r0x-&qR`hma z1JEo%wlC!jI9Y;egG#54`1qo>e9mmE(=Z?LR!5`+Ga-|68OOEu>1bK{pL2o^%>*>l z-Wc;Th{tcNAP0iw#wt0pv_kBIN)>4#Me0?!jlqXfzv98F4p^0KYxQ7AB_5h3*mYiI zuD{j|YcrV=y>ywdz@MMLQB+SQ#mU;Y71Q(6P#y4vr)K8>;gMiHxg4qAH7yFR)$)z# z?ZK#IG|TD{-ba^X?bc0?R{qEm?q1+w!_L@fZ0l~82A9>fsWtu*9lZg7+6w)@kA3_A zl%xTySuU1|_xd-GE4yX&Tt)3qu}F2yy84y8xY|I7-WA42X)M6&Y1i@1cJ1^1I{f$d zt;Vi3;guOlyYj(Dl=&qKtR@X_xNb4=(PIDDNqJysDo(X~zY z@|Y>2oi{41{1&33z1js{_ey)$4g0Ap@$e}3tXaES8ZbM?i04yl-qQZb*lPY#!Sfme zr}O#<+xz&9>rpKa{DG1od}(BTyu>H>vdo%`n@`&Rl1)~QoH!CK5+j0eEITz(>r=6$ItRt=K081nZ2Afe z6JiUYVYvB3%F0^doQW2VCFmjuj>nl~8qqAUtA+Mb8F zV`EVjJdmuIFTr1)CEtGss)PXRG0tP;Xggs}AfO>|(iV`(g&+aMb(q3Oq0MJf_m_V4 zwY#l0n?sP8FLKq5_Et+Pk7bVxjlU(|%6G)S@H0HlU?g)1wNxQ~_Ie%==~5{;@0p?* zXXI9M%D&$3(T@-R2$$I7S?Y{kWtc2}pMJ13XGtLf>rcGm>VMh1uiATxJ6!{}^z>~Z2GK6aXT?7<2zZZO)s%keKfX43 zM!f5$<>ZQuv-)Sp`_A(u3=lNV!$NNf4`#%PuF*~0e*n1THO~M?jHU8Y938Y)WEs+0 zMFLT|iFlxT|C8oHr0C$5r~9pbjnGEet)tO6yR&`qx&L2HQmR^;EkR#eN4>VxLyUx&xf znajJh&YrVLao5zZUs$oTT_ft6uS zEcG=%Ak480Gydj=yK|7R>}-a>TGRHS;o-k)u0Y>qXQ<^LFhXOh{Y#P1zs4j`&fpIY zj)A2g>n1%LOAA3iIjMf0@~Sfjw7?pF-LO^>%ZplC@;Q-+*D-O4@Aiz_;?rq@-Hvy1LYBYZL(x`tL*P zNg+R9N}XRoSXoZdV%wRrC3I#GMq#j zV;tLITlly_@#HNv1MG}CHeNa^8Ul19j|1+Vz{3?TXsd%kLzvWml9F!MckEts3<85+ z54{<^n@Kf+Uwuo&pp*|RRjHVMI)cxeF+gFHyM7;D7iX5@~UIVHk=zO;Bi9#O^M=V_7Bn!HWr3I~=+wQzH( zd;73!{nEy*U;dDN_pNJ1GVp!Bc!6*M{>J4=c4&4U-O6DA9WgR*)KZfr@yqxw3*m9w z7#YB{IPD@?VqrV)arFL{L>94R4jUIhp}f^k5(mix)Sl#%Dbz9r*xLPR^v*D;;+cFJ z4=(1vG_(mDnu+`K-I*niG_n6(x%nL?j?fCpY>T*5AflKZC`s>(=4t{L(RWo~NG?1m za_$fyAftD7a*$EpuWxL8SZ#L{6`jCUQ`u0w_sM`OS>|N6OVcXkb*}M@_a;b}uS=L8 zB@Q#Snh90?Y<@~P6I)Yb=_m;KN);0Yd@vxJu;w{!S{WA?+7Vj)C5o+UjYm`aeL+zl zWpqy%aM9K|4eZYGXYcN6XQ*R{h#=HYii-FmNJiRwcXoHaea1BlUyWq2k2R@$FCSW8 z?V^k=*?xj2R!KGk>$ds`ml4Gf!F%`67~mT^L-3>-LTR=8HF;|VvQwrrw_We#iRn&A zEXZx4E|mBZ_p?c56p)C^tz#a;V!7t6XnDRcK4-;5reu6ZOB%#Eo6TVFFGo{U zn2iUu>^je85t*#*A8?34Y;9Vh3(_xZkX+Iu24Ht7#9}v3&<<5Jwv-s9G?wTDLxN!X zNChjaAxF-cvo-s!c}_P&e&RRYIy8fYIbm&@8wJ0~v!UUwDFok^uIanIECz>HguXrd z1(lX}x=p0|ue7FUtk)b8#>DW7qHjLEyTH~^V?oWW28)<-OJLwUu0TznhQ6c)ke5Hd zN4x3&l3i*A>2Y?B89+&fYzd4 z{r3$AR;}Fi%*>h<5qc*e(*ES!a-S@}1vEc~tg_W~SNB$e$6UB%{i zF?5wSwDduPA>!+7DU@wO!Rpfb=WDh|`eoCXf-bojnh~8OEbJW4bsLSjA@xjSr(1rEm89YI|)I67&`-Db`G_DuJx zbW-{G2-{>}vPj$-FdPq4L-OteLCx+YBigFI<@siRSVUIF9NQ2u!og3ifWKMa707B$ zmyDDxij-?Vpk@{Wyh)v&pP0kE4keTj!tB^kizFRVOU|8YF=*bcwFIhq=Nyk}rlI|V z98jmX9r_^;@PrGnJ%y9oEU5)8SFsZDGWZJq`rPLbj+@`nJubdPc-Oy2QxJET+$a|> zAGWa_5?8wWt+wcuK+?eF*Y-4p+KXKYN~g(^M=teOI;Q(H&Xm(KNQVTVW8v9O96pjxk&@3F{vT z8^cw=I7P;tqTbtDxPOO@)B_pD2DK^0cX+Rur~$Mnh7Ihf*Df?vJKOR)EH=ji#egZS z(r9@q<4uFjoA1ND*)2TpIeyIX0e$E*fuQA{i>0(>`eliICc-S|KN0AFlG9f_H zm1_wbi}!ulPwRBPhl>d}1j5>7;d$Xi&=Rr8Jpqey-+vvmsh6HW|N9BeZ~i5-j>kjC z3S$Xw!sL|w3&WYRC=`-h%$rI{U9b}D64vXvP_KCLZZ#*DXbcb%xE%*XN~0o?%??@JM{Mn2Dfe@mR4 zc5lL>s|-a<&s{)&&Ai=05oEPBN3z={D^K3*sFv*97EZ-t?5^d`&|X7M#C@Q|Gh_%{k`6geEgnElm(MCU06Ih97{4HN}@k) zNyu~g@bz9;_#8&0%N;+rR)dO}pWz%rLX$FH7O1BIxucg*MdonnX8wrLah;u!AoZEE1mYy-5(*6_qH{c(ezjTUZXs2Vj6V`Nr?&E|1WcP2eOhb<^M8e&orCZV@Rl9XOOq`@RI zJM~ONnu0b6V6< z-jdMVZC!L{LPl))v+{@IQnkMeQkGZ|UuoX0)>OAv4Nmq-b!(aaoh4;F6D!roOHI5n z;FEXEamZdCx^C`CFp=KxdhGZJZh(={uy2%Z83yO(4Zk{V`7zT=^AfCv-a`u>tM@SI zY-u_2rM=O?^gNkKwNf+nE`AYq_{jD8CCe;3%c<2RJ z3rJ3)S?dqmg_M-lTsD9}$W#D6M*qXfh#_cY^a-7f$mQYuQ4-?#$q)968-Q^B{H%Pw z3W^56~kfE_Wrjr}_l$AEiWP{P?!!Vfk$@9?A-=Fd2e}WVM zkt3v!tV&3FGOWY2?e>#);fl&#lh5*xM1?-`(EhAM<&Nej+kIP8&DY=V-`uWRb~(6x zc*F?s^Ughriw=T!7l*vI$n!j#X}Q+q!^&os4cuya^qOP-T5=WUGNi_|zV6)pS2nQc z%@*+cU8jYd4<`75>1@?1!w3GK&&m%_svhp1{l|l1)zc=CJn6&Znzv82-etcT^Owc8w3d-EI4PTQ8_$D%>xUv=4 zSO2<>E%@GV2h4&C-h6V@_d#~h`C8sgHBj_(c#HX zWv{z`sccGW{m=ZtIMv#n_#fN^XA0Jj{5YBHz$dU z9_C;FoRYfu=6=4G$8t)hqC=`&RO#>T3o?p*K$_w*K`AQ!q@!rH!fGw~*$8xv74{={x#tkOP*veg^I0@4c3usxyel#?zn@&iWC_3_JKy)3A=gM59i`Dfk zv1j&&L3_QQQ^wQYLj^q?39pf?@o5W=C#lsx>0lPX&%{Uem_Abp;x|p1Mvb~V3%uK5 z;$VHGRMZQ8N{>`x;p+p*3?#zSX;kp;W)FY&&+c>!cT$OqV>QX_p)kKh+%vl-)Wf~E zvxP55z8%BWO~k?Xvy;WPu?6#mv$bcmd9V|Hcb=OPsMl`_t+A2vMyFr?Vgc;KTWsZf zFwTs|yXWOGSWMp;<5psH>!MCvfudjF6#B^aXIGG})w^V?+Q$MOgUe`Dt9K=m>McW> zT3Q{8Tu&Fg=|O^6ID0GexuW$8A1kc{(|L81#IHWluC)!XKU>09bQcA5;4v67u2>Zs znkE<0dc8~q#3Vq>C9UrU-WYl&qi4tG*xoOG?_?_#euep2BFzta*@QshybW za1>02+)3`HcOm|oI$(&U8AFvhfOf9@$CyU>NKukGxJQy78*3FrsBTv>XZMf&v;(l8 zu9Sl=ude=;HFy3^>;VA9XzjoR%YU4unUA&6 zw}dJv;qQB@Y)FPf-~>qk-(YBB)|gJ%HR#{CPGB;|1VHez9s$kj@M+mloC;W%?Y{mk z8rmP$=z!zsPZF&6m?1oEwzz#v4pDoq^V^$Km4xZpjFw*Q{(%^UIs$K(0Rzrr5%a3s)S`0lV&hWvCqopA1TcI-7vtXo&= zxm5t)f$hhZL;U|feX^Za?07`0!kTk^)H_rAi16%5aXo#UYd$$;`F%yQx-$38To5n* ziJw8dJ=$9)+@JrUy_F{WRWwtUV{kkYF$)lfO3W8(Uno?*2n(8({_(z%S$a298W&T^ zCEaP~ruR^_s-JmI&AU2%=;lJ)_uJs$a8_ofh|cmwR%l7yW03m+R7+NnP;L{pP*>^) zc|^6x2%+aYR3+TMo~(=~%%9s89K73MG0TiuGzqF8xX-yEIqBb;1(Utz%8m&fdz}F8 ztKBG-q#**BJMHg~@2E=D9&anjaWVeCElh(s1A|$ z!69}UpcMm7@J?9b=NNSSNAcLOMUVYUt%SYV#cR=z0_dRwH|XdM;K9I6q7%GO8RFrH za5S@Kbh9SV*_pe(t7mQZII(~?>pOIS5RWQ8zBbwto>vQu_mVH4_}o0;)^;{BA$&*u zWU`pP;Dh*d(UDf_pJ;HW`{66eyPZ#A<}?kZ7aWb}7=~uehV?gQr4UsmtxqAPMP&1S zG|9q@VL`R?7y$!m0ktKs52zbWl@%(6pS#xT)A|o5CSBRjQ<)l@FX)@A<8At~Me8mI z{>>E+R%k4Xmkr6m!;4_%qnmbTbnMBmm}8g~WJ*-BW|%0q4Vua&yuJu0qnK~$un<#o z^ejC$y1;kf1Q=$KpbCNVqJ5WpPp7Y7|K+h+hIo^UXw$YV&&X0~l&UeqS8%BwO)|@4 zeQEhjghE?nE2=81KeEDj3BFD$+wLwq9606m)y49YV$-!ArC3u~1G5c@$R8ms;vXhe zW(;iYW)%J)jnr9U;7{f+G_pMq^|A|XXJ-Bg?JIw>iv-8r=2x8oJOrSelewN!FRZI? zsX}&{Av|fBvE0WbNk}mtO9ow3Ep19-?0s@o_MT|BoWn|?ye}5;8Hv%JhL_fumYR6c zFN)dH{5)a73F4fqjifjgn)V0>(H*=g)lL-?nQ4%d0ZuzGR5avuMN#=l*KWk7!=H3?R# z|5^FjulT=M2K$VMGAjM%&o$x?)7F3ftO{m2D0F;qCUSWdlvqch+|JO_v<~)^yLv-c!cnu>f*Ooyq_FeB8TKo#umenMnxZ1 zxWneOSJsD=S*&Mp4z~PEaqCZJUS$%a2mNyCyec0?Wij8^Y1O4^bEiGnr6)lBfhqUA zz{ERK&oTLi&2K6||EC;4bP@t|>I<(i<5!Q$uovf*Ig(4DQi{5kmxh_*bZ&n?xS-K2 z!YD%!Q^TA5N0OUkeAB(}D_4O@V-<#`QpG=rXBobEp5VSSxWNi(^VhRL&e!o0VRIyH zmEdSd3J7B|!A2NzXvotZ!?ZVjEN1G8H@OtaKX97ttKCvdzU5HYl z=TF)vjOE2JTlab;A zGr1p_+0n?H#QZHU|9}Cb7~9=}s}M6RUD>z7*6Z6G1#S|k;_0Sd;DR#TlAX=%`!v-L zB}(-6YhQTV!eR!NSm~X7ZNVJA3f*7)GE}^=kvZ*5AACyQKJ}ED|Lv#7-kEaD+FIUa zB;7De3@4~@EmA1t1F!-?`UC(8a>lG~UHdcN9bE~gxtSisw=})H6x@0(UBk5VwRhSm zvvjct8(ed=P&C6hWposi5;nD8ljR9Exl7!?q3g5{f4Apeo9b^y?C@;9515s$fAzeJ zfpx~~1?52AmC+$JOz#3{Ew$;0zsc_jGA=qUvb~?C!Je?q4t&JDSc+AIrh-n=|0@+y5HEEwI^!=*AZxSolmc_ z290v4f)Iq#jn^MJ9c`3B4Qxdvn8B}@o;Z?#N(S_sx2NIMPWWa1KYYCfR8`y8KD-I(6eT59LttAc9DjNT(p7C?VY?(%t=^+x!0F9p5{?GseA&oU_kfYt1$1^E`9zH9f4CT>>$l z4p|eyl-aYhjjnewKIz z+_xBK#JJ<2pzXqL79nX!iMO`KgT&xHGnc@rkc1`j!c7U$fj;wg7D<=W^@jEYoA0%V zWvB5P%#r>Yvgvy5vE0D@Beiy2TVaGNj@wPj_L0e=|CSXN*R2OK3y-~$vk*H~rC|f@ zb7FJ7v{}xDFBy75-@ZS8Rlf0$6YbK-tA$EIzI($pBRT19^=dYct{T3?kDO2^y|s49 zeBM-mQIZTHpc6%!Zd{wjj}d&+AZcv>URv7d5qV8QBCa9#_L2NbFj)N~!FR$vbuYNJ zRgp6L0o%b{;r=Ig4Zi)nskD-3Q?2$*GEb8_d7iblO_xW2cfJ_0dw(c-H_neV1B#Cx z;n^|3u^Aob7dC_}p7k9+Q!`qz=}^-l(!TS$;d7HxpZX(Lq(2Kce)xyR&Kc7g0&U$T z#O`Nu!3%EU7R)sqzou6IhYA{Dg9@b(*6wI>v~iHH3+R$P7E8UZUwHPV49!Ynj`E%C z;1UcMI!cHAb54YLwb7>!e|?p!JfhHv)8NMGkHOMEsQ3XTO={SFDjFQul_|-F?)8;R za5X>3)U53-I_1|x1Siu=TG%EhTfV2OgW$!g_wH{-LoOO@fR0ZGt_Aw z*^GrA&fM_JEArhoR4Lb9#$0(ki=3(6xM(#)WWcYMMc$ijir_eyR9>#Vz5Hk3Tm0Os z7}Ld8&l*a@b^{BGOIM zulmXR<%ZXmxxnT8oySunucX}DQX?bOiWai2`7PBd+{G*KieBo7XSpJ?lsBqov)STp zn|tkwbgNzaDZiJ9*+U$cpU<&KTChwkHRZZ+dbh1G4{&pO>MW>=G7^>P8O+2BFcMoB z&e-wKO?U7LICc(8%*ZSdjXRQs8r9o5UDn%$p6~mM_`n{p< z$H~I3dzFASPA{$02WO9%R*F`smy&HKn?@zLFFY;K==S@3T39t; zBa>6NtlXoQ4Kc9GK+Y2T2hrh(J?rVXi7Mic<`2GRwZItNu)WQ z3{$_jAcE@{h`;SWy?eQz=*hH^yvVK35y9-DDHh_})NirQ4XZP0_kKQjHn^dpG{zJ; zUoVznOOEb`PqsqtpP!CWT>I@+EH)9~>&?~oQzm1^bK2v6TtD^4kTNytCHAD<~Mq!tQ07#nvMAa_7ep{yZmrlEsrOLG`v+gm6FmAcjv0 zyUy=0=dy4{l=^k%i&JX9=2+%l=Di&uMHUtp%)DqiRGytiN(Oz!Z1{~uDFv?L`Gs2$ zR3u+o{rRB9_t^V)?W*(<@la&|(R`PjjWgqE5^F;-4aYW?*#KQXd7P;gv1dEoV$M(-7&=+X1 z2IFRuv%L&$DLG_&WHZz^KI1^$|1w~+!}&?*#d~C@=PO+7=s8N>w&V(VR(mL^_vM~n zt;IO|e9W>bgxDokw>v}@?OdFW`@Q~xjr7r9AHKSfCZmM--+WN6Zu1*iXUo{_f=HOXtZ5o_9>*`pn z9J~q~M-qKYMvRnp`=4whP62T1!92-OE7uMWU@&Pdcsd1{w^Pnwq=qVcx=SL0x9-=R z+dYk4pp{+m%O)f*rq~`&W;Gw^QR)8jHu+07o>I%m?CooBvp#XIC`NIYY7@^OtlTIJNg*6`v@ zx(W8e=|L%@upsvnzT1=rOe_1PB69bcNVVmRRihDl!ihfJ&J5?q<1y|IXES_*>+S_X zNi+b}otB1VAPD_9hn@WeQtzA^v=PS`nAOhlIE<@EhA7A6Sim&yJtD}!lgz;V&eg$s3$UwOJ_s4+bN z@3pNF_kFYtvGH)v#+Q=lOe{IQx!ts5<9Myj#^|!<*OXtl2E~F|l&a3EBM;SID!4~e z-@vmgwq!RbX_+LlA?s zyxLAa&EQMZyifS<*@t6B@E@_$Z=Y)$SasVlw8;07vPGZGU&^kJD0|G1>c+VXA3nv+|-==SD_nDiKTVO#rS z__0-;6R{ejeuY;Ooc*JD@m=P!QdJvL2WJ7Mg>5y+* zmq^HMBc317l%ytm_sloT7#RX|#m%wpMy?@V(N59B?epALTUgu)0-FO!)JN|6Zexazmb9>p5&#j z&FYFe4|YADXR0=_m7k0B`a~FTI=f=+g(MQE(_GAR`$WY3EEMnJP{XlToP7x|={%KR z7xo?XRSpzO>f7EnWUg;ag|$cCa&R{nGEIq>jA{XgJhWhI=&{to$S};F9;|aXJd=~& zo{6PzEyG~8^!g;}FsFv))EuRR>5E&vY4@x``+bKepF0bLmYjG|T+};3`p>OsHZ)^C zCgHz4%6Dq4@L+i8mRe}DS|>@MP(k|6HCUM1!nTNi%!?_zfnSfoOwK)#q4);$%njOs4$#&U*LMj$;NLpNzbh_Q#vJy%c~jx!9t|^XAL+o<+^Pj zxw7pRx6|kah*KYWC34TiKAjE;NOE?0Gn|`x6A`{XcRJQ*O9Eke+>bo6+9w9@;2rl> zRNH30(pk1qUgSW#58kJ*NkwJ6!n4f#&smz?_MIKQ z1m`j^TAmr4kJE^4y-UfSIf;sN4b<2~KRui4qv(lf>_v6+C5Y8|?4NsjGQ^EPd6BRp zFMR#*olgvdYpVWblrt8%QmZ8qQB*?oAB516cRnf9I3r_SP-W`Cr_%DxsJ! zZVH>_J8kt{_Cm4PKHRN2yso^!`IA@lBR6o?aj-74k)(V+*ITs5>+5$h`h0 zrQo(o>`7UV(L&B0A~Ko&p7XzJVQRj*@G^^%VGPA)C#Up9e2CI#BtJ@KbYJ|M>HqfC z@R6e>ji@27%q@~U*Vkd0>R)zi6So9cJLPY&7!GPYpdnXz#uTnsJHNIicxhTRZS}@G z_s5v;1fpi8_%Q}J7* z>GcU!f1NZ>{mb=C1SLE54>`5Va%9M|I0rIy36N~82i0w<(gFfFW#R2bvc<_|LhcuE zH1>|`Wh7oq=)S~SjD!&X!-Cuii&5oeqeXUxl|ws=#lTx9EYg+{snX9#0sUiALbcFG z8*vEl;_DIzMt$GoNfUNkRlI^308S>KehJ^C%Z?9&GxxKs!xO@PeJbK}3SXjdo^nIh z8@|VT+O9wDoL7DHC zIrRX17XyiIcYY+t#2N=!_E}xCR{m= zB3%+1qcGO!{1)}rq_|0sRNI+J=Bss~b1aE+;Hd~{;ao|IbkNUSRP6;8VD{pCb` zi5PNN_l{!QOZa{Z1S)+bihXfCI>lB?p_!sv&Pj7bn%_FqDmHsvmz02KOMP_vxt;|P zF?OkgvT4jE*=xjheLe9sXvk`%F?${M&J35aTsI2OML+e`NqjMpy%3AEhIf&T@M*XI zZk0G^c3t<|ekc3q=lmHzs5Klnu(!W_D$X=QH~~c)kc^KLd(?kkNTz>U(n}fJTO1i& z4%>tOlwX8|a9OcEc13w|TEWpMXI0#Uqbp6}zsu!mq>> z8Dem}o^~)Zzfk;g*OsQEhxyvV(oJQJr4b4BnT{Tl`?14zocT)LZkf4)uL^|BQQY^` zGiObCryZeinN|wIh;(PKypMb$)&29Et~a^qV096}$Ld@3i*(JHr5gw7uFR(`E`)}V z7M_%ynqKg|HESHGTr)vVds5o^KH_lv%S<-;w#1RMJ)bPA)h2KHh7;pd4_}`%>F@%IyxxijRyEqXS3Nye zq@v4nNy~dX^AdU2WL7^=9^K%vpCgJP^l0%nGUn2_>U3%`4YBMgD^OU(u7KtmoCBjt zm$TJtT@PG(+zd(dBjuL}lQYMJlqAH;wealho(*zW7$twVx%G_r_>1%Lox-<;{1xk&EZIkmS>Tl0&B_N^p4!yJ06y=5GPO#S%#Nr{v$ zJ$B&9amMTAbTLAGe&?>gte0W^&Z$&$yo1+wR=gm3YQYjWZfis=%cu*rnLPv0JoYSAX$ovgY`h{l6=H`i#!q<^Uuzv9;0 zsqAvVQH9eu`S-R=)GF_C$DKx&UxX30eO-HL$|fAwK`H zdiLut+hb?7OIw9}wYX(&=?4AE_ubqTuIrst*@`EolO#yHR0Gnls_PF6yE5-LA0t;( z@If2OyD6seN%4!?@r-GM}u8gj@VE*#=A9J7=BJ9`Dg#KWmH>**q| zbfO#PImr{7f5Hd?1{Mo`Z(0FG@^BbYS~`BN+OowM1tIb8Cda$U!aGT(_9n*>N!)K0 z=uY|^M{cw(Jgo4u0sfqOpHRuO#7jWcSW}1A?BOIDPjy&1Hdk} zOp49f>N^ZT6d!gk_;StM$g;FMD&Fhjcb`EbZE3zuj2O$~T`AcyKGMc_A6UJHrvXen zvbuAtKYqeFPv~*K)a-#v^FW)be@a32tz@U3c7oddYXk;3ET$E`G|42(W7<5X_hS=S zy|-&-5_z(pW-qSpkvyMY_>^DOxMX8tagF(t>F+_Dx(c49rCKV9U#cGgUOQ6{+}X(b z$mu^yKjMs^*)=_O7oG=JBqW%>jL-W6II+p*FzK@wFLS~p)Tv7CY2rT||5eh(U5$)uz=5~G z#0Wp_>0SLF4`YAGTQlrb*sE1MblPzy&Ff>**p^d^EY*y7xg5vXjHp$HL|JJmsgcfW z<*b+KDKdG0Z$IF`(U8c;n|ogrt;ch>)!u71lB`uzai~%zIx>X4DJl4k-iO}WL6h%q zRljSm?`gR|ReVtReP-s*_s1V!J@{qz)@1K4y+W>hh-|m$sjc~d61*r)WPrt$0Pg1QYMhHcHQ}d?=~qkFeJ}ai%8z6knR)2D~ulVe-i1-=F~6s=(zlz z&7t)*Pi|tK-zh#!7(G>*4h4b?qKWIYv!qEaC8`y(HWm$=gU0JtG#xTwS^CAH*RloP ze<^rBhw(`r6t#GzK!^w#zgs^$UG_3yYu>FqCA|8k+Y`}}JYCM6rV#nZ>sMNZCSL1o z@gxURs6t>H*kcC?=O4pM>09Wmson_?%}oT6f@@*qfZ}(ah5= z8*<)j*m(ZLI;oue;@IKu>r#2)QL?`yr{3mWf?;x$Mn^9Y4we*J^cl0#U|3F|^CNk# z7#?L;zI0>LjUMxTT?~cS`{7{6RX@pjH(sQBuHtLSyl@Ue(OpUGH1eCpd9Lq9%H{&I zgi6i)W+K)5(&#nql5Lu|Wrk#aS44tCd$qE@R0f?hmSh1Nu~|wk4TZaXntW zn(V%(*Edq^sc=_azLT;e==!pBh@fuXJuA61;a*dj)ZX_I(SabVb2U3WlW?%<*`${? zzc@Z$OrkGTX|IM|%S4WpzP#bO7jlEe>bR3JE=S<3n31zPfZE;flXQQ(JVELV)DelR}B?0T78PM|1@)^0nc9V>I;)fo#6#wN~ zizihR^s=LNkwYtVC&v#nhHJ>{nXX%BK^nK4xV>Wnr&HvJv-sY^#}^j}*K8%!X1u)n zWSw+&uzqNYbkMU=8m?SZ{AEUQGImMnxXTutne5Nk7hF$K)8x9$%$ZO0>9Ct_n_Z`v zKFhl#G0A(wtz%EuT~CUMzw-A+u`c7uP>c)`KjEYP!-3{UWNLVn)NIB*rNW8!5E_^5 z(HYm!8dsX2=vr(!Ti^GJacuPz9(%!LtylazQ=-*Utd{=B$Ca}eXJg<1)*)K@tqQz8 z%XTlGy+!RdG8iu?1{4U-JV83z>G$oPj{yRpO^jxvH&5OyVG+c(u zZ~?1FtD;Va@gP_ycVRZWP zoi`DutN58)rN2FKj?@a};LIQn`8_)9tp`;>;O>kJMrw zk>>@wncQZaJ`j;uSz{;fI=|RgD^TnBZPaa$!HCWC&EQW5B~_tTpBOBw%-&OSW^o5=~Hnfr4 zD~3wpCkBdm& zGm(9jYkx!1`b{U=weZhXCq^m?Q7;yx96tn3+CFui1>eOw_#%gH0v_g;`=U*DPe@s{ zr?OYdea8Gjb&OQshsY?|*@FGb_~;~l!sid09xZ(0CP)Y?_`|`3xVMD<@w&kVuLsI` z2KOt;L^nVFqE*odYyPCSa9YHfOXey=ip$in#tX%4GNE6ORLpokFBuvDr2!pW{8QV! z6XT$O^^abQfP<|d^O-Lmp8k%ZBBE7lfpQmFbjlA3hH;dM4U5P_1Cv>r@2lTP9$lDq zvKa4MI;uZ!gbYR7#|*Fzsaq3tV)Og8OYGBM;V0j%pp{IsHj-*~W_HWTd;h1|Hj2Y< zbFK@&_GtS}euT6v&kHBf+mxdcXYsdYe>)u-+rGG-K+S(#I$$NQ*?BqWDeYp1v9{y$ z>k77~^30P3y!*>qJME7`3#h4u_NpzaUC+}~1!3$dE0~Yo-^qcA#QrRt~SrROZ&IQ5G_i!6U%j?EIb;H_*u8hhVH|gf*+~^OSk}UOJI-&5MajF~KOd5bbcRrE@ z#1a<6E0?G4&PZ%~#EdnlA6|n-lI;ZKzXU{MN()~%wDq!bsfCW0tyk6SVgJedMExq+ zp^x>exG+8dzcpujuN1F_cN}icmz6v}+^~?QMc82tiS!}03CU$Wng;*$z}nnM9!avb zdr86OebQ!Z4U{4qgY5bIHftjs$BWv@gS+1Z-$=E6i@Cknfkht~^o-T}eUWRi0yt?| z|9e!FA-knCdlj_YNi~iKCMz#<_%7s9e>w8-c#NShqAQ`ow^WF(5}|v=?@or%D7{e8 zwnXV*P@Bb)S&Mu9B~P-m>KF4ekyo}x&15bmWCqu8?%L_-aqExPU-OHsT|uk_!AA|R z(8pb;SyBwlkC0-jLn+Tdp%K1(Bz-XS9o2`9g*7~6FwyRJARr?)Q9ZivI_}}Kc1zln z*INlrwHI6R=^whid)$Jq2BoroSOOoJGJg}?v%()&NX`K*4GDA*!_oM5&gL#6+`@#E zXk<0r?^SocH}dP6AE(bZzZ%mSHHO2qx{3FlGvO`FaIVZav@w^KkqO9;kU=Nn@9PZj zxoemszXH=o_oPLo`dSLTmawKi;`+VZ3Hio{nggDoi;JUkN@RUJ_ zjE|2G+W6w=ddyvP*7fiZMY|lz%E`U=+*#iJ9rNIv?m^ds8wM@USfMGSEOd=rJK7n` z-jF<4t7-WRaqH{rJ1SjmKcuDg?9ut09J%UvZ}pgUeIzwB zGP2+5Q8#K&l9)e)=D^hII`*dw4GrN8OR@WjqGtyN1|kP_e~&?kJ0k^;1s2*($mr1o zf=~YE#gWW0P&~bG;#Zv9-<*cUr75z`ESi`QoPFr>lAhN_1+SnA^W&1Ea*0Wdr~+yH z!JVehoIgUNKt-ulBiB^RK1+2;@$2tzG0$JU3ORo(YCJ1D4|;tv^7$OPJ!QVZ^gv?k z%<*<w~Gf_=9S~Y)2_j4*>cLtl+a!Bm>h00=)#?{m6`)y?|mn$k&2$| zp;rmakp0GjUg5ZNb8}^@^~98PbaM-n6sU3ieVxL+%!P|6eS%oYb!|FsMzn=I z*}Hd%l04=!wep#T+6pVTpk?ypfayCqH8tuA*OjO@HWl9tjss2+qdm?wxTt4`f3jSv zZL*Ew@H;2&Mgbj5Wx#ktNaz3x{nu;+#qSj*6OyfG`+Wp#Sual>e1@LHsEH{knr^vw zq36d0JMOVeei^}Yp{UU5O_77U7XdRVKmyL^b2Yu;p)-RF&pf`u?SclUH$U;Dmf0%y zKmYh~A9{j^&V8>+6oYd+#NNDn{aSP3i1W&o0;_?)1D!|Tv$@bm?&00D+ZKpN>ag!& zDrh~38~DYqEm5pbCpuL%iO~_^n-Nz$yrzW z+R8TZCycJj?e^ar@xlBR$*U<1)XQmv^Ay1Wy4Z@VSXNvVdT`wExM{$*O3SjQmXezD zyU;N?ANkMV;<9c@)d0aO=e+kfrTg+QP@VK(96DAu!BO<9owu0ZmzB{rgp%LV)TA5r z+E5s_Z)V(uZp(!Z(|12x_K_jb=~;c^eJGQRg~b(A=Mk{%9fyi$ITaO^+-qEVHRq(I zrQ?O|Q$%w=e?Eg3_{Bg31_|d(cRkrHbLYHqC{*k6OwOS0Vf zs3C(d`)Xc$@{b4m`~RL`T|r#T@&0$tg+VMG(qR?LV^~H$n_=N9=uulXpOrm4@~9h|7Xi|6IPWzKX9jP+8n9jd2%nP=gDN6Ib_}CXN`+P)ffBnnSBn|Zf%{M z9MqmPKm$H3s*a$fP9D9J_jym8Gbth!5K4{zwoYj+Wdv%iROV^%dIDLxbL{hP^qO z&Uv9)g1}6%Z{N8?C}=aBK_>j*Kg;o(*dR5O4JuL~SR21u)S*2YByAYsxA@umuh1NrYTgARdTQqp2^g&Oa5FH+j zoyhz6_~at1q0ByE(9U_PYNO3D-ly@bI*Xtnb-TpQIVR|Co}*XG#2{qz)iS^O&n7>} zH2U2c%4HKF3ets(0R$I=> z|K3hvVOmciFsC{U=|W|##m|HJ?EH>$N7JugzmDsj?9-?`e8{I?hahzfwpISSyKd-7 ze0sh|0%%8ZXdsrA@BRDvEeZyPh$u!e^zsaXR#I+mWujvi#fEdg(#n=fhAgV{b@Oj& zY0;zYooPw%e!RQE{LXv(b%W9~aLxUnjERwPut8{c7mAkHva+$s94Y@fS zbvWe0KW_LOmYE8&?U9-we*we)cy;A$YRH|e>$x#Eoh->{{AwiINb=s+6hBxjQq(Jb z{OvTC=BE#BTgULc!B$N^1QA6=#l($+?WG79Lvh<)T3XutSOm>gmxR3q3(d=RyvX8B z2#J2f%$|=P#YW$wiU+_4HXRys>48i-@!^O!MEZCEOKQoZ%`PpB97Rv}U=%r{d|Z_CUAf8)&qw;lcZ#5&r$-`K_b9nRjKolMxKM&%~i7nE46^ zhm@5S7woDpB>GqR-u&DJzQX6Sr~!dPk0!Jw|9|d+nTc6eoGfg7s$B(5Dp8PVtk7C=?W+eVtd^ zeUGU|DqVM+?OWQ5OQr%_=$P0cWj{L9!tUZ+JS+l-{Q=%b z1soX}FN`Q#N(CQs|38~h_K|`XJ+CW|k`iKe-R~#+iEbfw{0(M}iZjqg$@y}4*jpo- z4)CSt&*O+DlF`x8ftva6SyhgReZ_9NPYuVl3|U3h5)=F1iTOPZM3?d}ka(D`=(dns z+L8J2(tih^j7C2C=^uIsMg88j@0;b0)6?N$hopZ$VLen*HWeiXM;mJY?@#RQTb2*a zR0Px#vHqTZb=5Y>fs(TPFMUfM+~rLCn&*hMV--Em$x*f%}a(MNBR1Z4EFR^{HOK+o8%> zDHYE6B4ZQ{LIHK@hzkRX%bk6R$jQ}9U#@R}cXZ#Zo@svE-KAG;(fN)O(Jo!4wQ|6&7Mq1x^|5w`jx~%MR2$uf3@SPW{aQ5wF05K1E zXW_f|?yZ5JPf^d;McE4kEcCacRVIKGX2)t#NrBh+`gfDnF&;$Ls9u42z6x45K`+q^mnRyB-=81h|8#4u+~TbIr8v?Ux^~`8#X8 zJt0&WehE00k&`2(G5$I@B{;+eR1J^K>>wr)fyhU z;^;|+u&h$GK1baDBpRp>yTsCB9s-kS98Jo|~IgUDw?>&{+A}OB#Sv(9G@! z9Cc>Cy`C%`2xpQrXP@K)!->;zAOwQ2zqJqwdp&d-mL6kC|E~>0SuFYOo0P?sWT(xH zPT^xgT0hn7f4QOGXJK|4qHi3BL7WH*4Nbil$FmD@0QKLf-2#;Q3aF6?;o#t?`x;JV z4_qV#Mvub1^mjg4dD&G}=b%S;6ZAB(U;ll_YT(l;J+HM>(4rC>aa$~G?kF;S@K(%~ zth~J34W|En*IdG*<4`6K0(4RV^eI^;QD6f-l$DXeCS#U-3b@`7*2isoz?71PCKMQ$ z;?HH(YabXsfly#IT15v$M>!p={x4YsU}!(v!FoU8I$;Dgw+t*hllP|b{kOuDFa?be z@S|b>&;YBt1>5Ro2Nkkhd*TC}kqZ8~^rn37Ium@gRe{&WOgjn<3M~707Kh8JAb2<6 zkc%UTMupR5m&Ja6bOXVtIn{Ec;64%kwzncE!o7R4@Iz?xumpwn@B z@){bnlarIHv#HTp)Ap)BpTP`4SU_3xFw8O86vS6=gaiYYn{+akO5dSEJA_niY@^ws(m=kcN6*@j+_&9A~0=Fk^?`)Q@yE@zM>2P zTxxVVFDxpm$tYSP1iFw01qTb19ip7&N1_-FY_p5k=}A!q1|`LM-dis#?mv2T=05ww zm`~0BcHA6xK|x573D%ewj#WR)Ns>Ush$PkX6C)(PD#dZ8jqJo13>WnvAh{Uu(iXTZ zX`$ASJd245gn%Q=rFV2<)Es31Y>=0hWWIgu(f^aMDP z$`VtB30ulFRow&;73gT0zP60lv-T$c^D|FuK{JLrLD~+z8CzZ_}=drv!N2}z?E9K z&8N^p`OB9tTRg7Yi<tJvbKgM&l2@so%M z3>n9NqwGCSJil+8S@<(i%r~OodE0R~gRK5Fzo`=77a+6QuZzRO!&|<8cW^s`AA4%W zoacjxuU1i@v+%&)zHsm*G>2JQ1>-)?$w{28p5IitQWF7p*n6c5;zQ5>%p$D&zfw0p zOp0#04;EX_C?!Fhh<){{cYjeq*;|59%;jsLQS-S!Fv<5BnKdYxnWOQUy$aNje$Cf9 zOULDa!eC!GxS&?}lLSy5@<&J2& z$fjbBJ>7pDfbS+eWdt^FSs>mfi3Zo)ADA?MgvHksT#@T;8yY>^#8xs|;i10tUg7$G zy9M|QH-JH`7PHu9*0N&{cb$NR{J0Y#dhdrxfLLG`fTm}5ojwOsNqysZH&yfm=uYFe zm`iH_4;tVp!6Dn)#`YU0Ic@KF4Y0v()?msS%&yl1mx2&!LGuet|12y587nUA<OJ_5vL|5CI|=#VfF*RJ(d9x z3tq{cX8OFeNOIc>yNC!KP(`!uZ8~@+Eb5#{0JnBY9ZUh37KDl<(UT~#<+>La?-dv{ z;A!NlJyKJf1W?*ATJ70mjD86?g7?ZR|A9V$Vz1I7WW46)Qig22o`TO3h^z)LoFqwT zC)Id3Z^UH+??+>v9rXBO>(Elc)mq z{Us-=vW8Bh05&_XB1=tv%er(V1UM)gC;>QlBy}GZ-ayk(8ni@%tku}WgzftE?g>)} z{B96!I*TpUH>S8MEAN?c42sy2V!LtWWmscrQ4?{`COYVgUKo`R*G19T!hSYjOk zx2oTnA_w>m7m0oO(g4m>M5+I`W_W9qLw_zym#J%tAkK) z!2c@Gz;)OjAC*$T6=!RX?Lgo{rMo20<#H2mJv~e7X8h;;C=qV@hX{MSc~Pthvt)%g z<5FH0XFOrs;lt@Cf5aT^0<$4(KZ%RfnO$c)fBxoDn~;zYjhM@#Qrt+bZ*9Vyrix)x zjwUryZ@x;CK}6L4`uysU?T`}0Fa%Duy(uprGAIG25o!;4gab?5YuB!Ilk^7!U_XBR zxXz*&8;N3)cmfeRYXzk%ZzVjb5ha)hXh@z8W-+xidHgszB?TL?17sI!T?T1T;08Fzl`B{5;G3PjMq#d4`S~AW z)aZ(+p9Q7^|K;G}Q7hd6xt+13^cq5 z-`K!HV1u``wD|or!9h@8@RJG84{jGiXPbeiHW#(CC$q4f6vhQSriFUf_p%lU1_Wee zO|Wu|P2E3#{CHIK(G!@y&(VJ7keHa*kb&n400I9$)dt!M6hng7`HWN~8DPp7i%_ zm_?m#kBkbw`8l_(wmkq$S$MGs#=Sc{+a5 zI|C4NGFzF%-IPW~ze^5j&4qJ z&THH%h%!rbmc7|WnR6byHcDw*%-FLiN}utIXn-?rKKz~ow$%q8!Cv@1`sQ(G+y#PO zc-%vF>)Nwug7w!B8?mH-#^@&Y0#mn#EkVc{B<1b2EGM4tIi4I!jd zrK29%6f$8#qZ||tVSPRCUQcG{*FbyCLJ-QZq~d>?K&LIp&#;MzXhMIv0V`_cD|le& zrS1g@Dr`TH0N~A_E|TzhY?>9{2ZehQ;^!H-0JuCXDG(#!V`W>t+Ku3~yN!(u4Zq&I zT74mi!Vtb4+Yh}l_niE^e`m=LJZd?8=;xq@!`e;EUCr*!kf^j9mpe>$L8#N zo*@8@YaKVqVNm@g)^A`?wxe7ysMn@Rl!SzY^PgZJQKM`Dt_nPd2$=-h1Gl*LoijhI zrRBEs0Ofi4FaRuYTf&Zio+2#Z>o39uMqJ0vYUQe7fIbu&0@j5)fS`T~L6J7h0dN9r zKVJGs_-8c5g{H!`ijl7eE45eQ!*6VBC=p<>N${-zf}T7-e=DmsBse%6f(Qm~e`n11 zDiQ|DWdzis*hBA&hzOpF+n5sY)sx_sXkfaGTd85RL!}Sk?Z9PNfMR6x45i(pSpz)< zMtl3g0~$ou!=nPe0z&M4Al`BqcyPLA638|5$1SuSlf;q&J|_nkfULw-K;Ef5o}F?u z;Q%4fn+T`6go~glNn+L@G$zPtXv9}6f_mNvn<$t<=J)h8A@X-9FkOH?BIbMgcGspF zo%=ACf+*_Et`i|_7cZih|76^XizsVpU4dnUsWOBqo3||1%5{TI7jU5*t>U`~1u%U| zFby~?fzR+Of%5=NKDr1n@4FDua1ndhtT3_YTG5KT6;xP3lGg3dYg4c-NZ_d=6o3!W zg@eTohY+9Lx;@)@Q~YqX0hRz3i4_ThV|gFK-9XTigT@uz#thoGP1-hAGmUz z{*52;7rn?P_PnZVdcS98V3mbkm*1jxBlt!E<_QQh`X9_M<&c0w`o^+(bOLa~ihQ6b)}houm9Gh=R*# z`T0}z#=`n^Ya@)ar@a`ssPh02fiMV;FqeRk?fXYBDZaJq9|g_h%%ulO;LViP)Y#GS zXllNOTL9Gc1c-Q6>oRn4MLoQ>iV8Y;-I)&|Isu`W-_Fa)aq1rh6$SnQa5_4#G6Z`; ziAhO$KG6_bo%=@tFFh(P?XhsKsDA0a4fp^83@md+JN20}5Trm6aqc%QwI2GoTm+Mb zj#Od-0!}zYePJtG<9Dhh5EGLipV%w;CNYsah$5w`N(WXlo5mLcDI{LH3_OKCLI@eC zhg$KVs`g_LpymUQU;;CSviie4PxG!ZKVlY?ylrJvmZ6L+_N7fs2E zf=v@w2ngT-T*%)>OhyG=m zmV;h!&)mS#K_MuMzh?YoAERV_4yQjx z2Pq}GQI7>~v?3sF%YK+JrDE-$RLuXC1evfoTu89Y`vNMa9h5Mj>&F56#fuZbR01L81=1}Zq#i-OI7OrDW{}zoE^{o?7sPH#uqw5KRD3@OAclW_yjI{A z{I?;QJ0L;7;FTTyZ~_j%(W-SV&HfF zL>L|j;Q1Z-4Opq+pRvs$q`Hu!F)`R@UWE1S8+FUbxKJboHlTKKRB5A)lt)Qo{B`pe zqP(6Dp>zN-`&FW>JJh{2qylFU8rBC9Y807}!U)Epit^q6KZK6;NG>buH}J5t;|1A^ z!OI)uCWNIo>1TXW5*ehE05xQ^zI7dSpB*me_c>S+!t+biNBYSRVQ!(;!}6CX8{2gP z@>=@oX%7O{p7OUB2!n!OQ!*Xn^yWFUV#=`G-QD|(Ov!-~5F?;x;wvVJha0!PnyB6x zZGc6iICCcG!-orK|C$bqVpMg9FddGmbde_T2VoWsC1!njj7*-3d?b)02K5T1C;Hc3 zcQ0e1+4rvW2S$(@cLTEa3<_aR;G}glK6S4{W1OqIP?oR;%nb`Eu^I@NZjGA)JHLJZ z{#TThZM2Eye|tBiH$5{m1tCw?#Dx7*QIR+1oCPbI@6@C5Z<+bO(}QeRu3p7QKo$FD zun%!<4PsI6ffi&pK>pMJ8b*l<&X=4*&5Ry2k1F(kWH8@9J_cV{&w4z4cY8%* zXE+cRdII#1HLX1@9CQQd=I^u+u2n4fbwAQy)=5rIwz#i9UHXN^U`~ZaWWZ6c^1>ZA z$P}&p;BRNSZ~+%eQR;uC-9rUXFog3UlmTY``vzDOL*TU_WB}U5Le(;$9+RN+xoEso z%MRAf4^_MrSF~T!X;BOUuSYc#s!*Y21fcUyOoTEw!3Hm|84(5HS*&AWYj?%>Bm!~@ zE2s&>M&Sc3w(59)0Yyo68$X3Str&J=Kq^A#9aY9kAhmNR9g6?%>9E!&N zC9k2y10b^umD)Cg>h)$f{HPCQa&u{MC=U7W^emJF1_n`-?TmV&6*q^l0cU%2-!vSe zvLej#LSMdm`qEe}b8|FvGepxjm1W#ego>kdn}FBy)!`H|EJIMInXHXX9zCw4%VPYX z)_FEI>=QULW(`eaqxm-nhijug2i9m)1y_w|`7XNyw1{K^bSEkBw@}Ap2ktt111htE zK(1s!7Z!Grwp?}*>T&_F$^ZoN#+>=Ly1~Ylf;R$Z+iH|p(V?Oe%0P6+W@pWULPFRe z9SHP`lgVpU8gw4ED_4l%>dYbJ%uxmnA$w(;$KiB!zwH@Co$4}_Q&#~8qbH4_qk{{E z0);{TCJZ2)*O?RnNc{f3a%LVfw8|lS~G>(|eq@{pNX#(&pJ%F1>pgOA1s2y*-GT^V5XJ@2m89;#se zfEF%>C>lC(UAGoU@he2by4E<=+UEO@GWSuV_x;P7McY?5LE2%({UsP zDW$X2R*!^P@|^34vwE&GS`&;;2v8s5z%NQOeq&H!)C5TK_OT_mdgNa2_NI{^?D#$iXm`t}%d2I?4g*w?nz zTht(70H6yw%c*8}IOb76Y-aHS@-L$3=I{eoE|yrT{{@>%qo6Kr3u1|<8zj-XPp(3$ zAryxRk&ikDFtKY(0SYl8OOpGMcosM}6mc4W5<`ab;lEXK<%Pdhuyatb1PcGkg5iI1 z`jnKw}(&gFete0cB&5n);&8`@gdO=&#S= z#B=yL&30g2ty+bWSLy%Op(X1{pgvwjS=k?89IVX$=fi&=mZ5n&3tNU6I-kl^~417R9RGX#+D2c)uB!68Y>#1sW0 zA}vV4|9f*&?jdmW2s=0F?fbYU?RY8={T1H)1`BBIQqSL>9lCh&qBIl?fO?gvrlCP_ z=LMSfimr*{hmrv>%J~yCCYhUG1`)CPc=UJ{u(;d$w@dc(-IxDU>X0F4*(gE{lhR$! zhn&0p>lav-f4$6}@0*`%t_G~U<}a$=;x|H>6Qs`8W<@jY(K;VAuL=s!#(yfLv~o<^ z3eozMbq+i~oZwD^ABmhN+(8@0v2%_y9-lK&F(DGtZfD;J*}90Hz;Gc`i~}+^3M-93 zNT06)2YmmHASrl0sGeXt-gtK+_2Po_F+{p2#5`rl^XJb|PYEyt*WlzFnlDD64g6I( zSy|j9-(z=RV`}AxjLRkicBw_dU3kVCSQ)rlWx@ju|1sN?u0-pkKPKssnKtUY}<2T!20Whhry4 z%uGJJ6IvUn4vVIRnSBrWU^}g~oR4Pte{{VEJeP0#$Nfc83P~X&iKJwP?4%-6NFjSv zGLnoCLW?r8GLxcYWHgYiWRuEDX4zzu&GWhRyYK(+|9_sx>vz9iclC9Buj{T4J|Y4Q3=aM^zVQCN1Wu14FD)%Saq?sd!e(zoYGfp$Cy@x@ z95=ynWvs8Sbt{HfBXT<6-K%-#j1U&RnK8b!_vBbGy|q$GDVg*=U8eey$oj%ABbSUL zgh_vXw{#E3{bxGJlo;*N*~X~yJy-0t3$-F{yJtOm)^S6_bB9I$%6J|Yx?jG`OK3FF zOxv_l&c)os0FYT2h+ivAVp~qs^NHf+rMElK6V8N>wdK4mx#2PQlZse)30*nH#sum< zxnhMQ{)akzFk*-;D;8raqLhz1Z{kJ0yz8k)TRNP(X&~}RzOPr}glU=xg0OP^YaEqc z6D(Kgn(b_L&6FXU-v1e~^EvwKS5Jzj_N`(Tnk}ru6T6AyBZ;-eqqly2-OPUWA~B z#cM~gm+9n%SrO0lywBaou{m%ibV~>*QtI)4cIG3%N7lo83wdvEFOEKENAUiv(UJ(v zh#D+%o*&T{iDXt{dg`lJL{Ne77@->iWsioTCz5hR(z5ljr+`-U12$(3qp@UN zgnj^fEx)UU^AMiyz<)&8LkRrnt_1a&i?R@lGB#oVZfFg=1NzUtZa8)6^h2h)B@cxQT1O(Nl6x%ckm{vR<>w&E(9TjtkmZH&-LE3uGsF_;?z$f`o$&V z>P2X}PxZ+ZQrxeEtiPApIzHB|)z-w`7f-Zm^LazI}WMN;Jd}krNqXo)h4gjBr0*D<*0%}U~DY> zh}XkqFrk!T*R0dOpciFWa09Uw4eklj%l{Zc8h)WUYhvlPF-m#lCj@fulG4RwYfsvI zIqes*1<$#I4#O?E{ekpKcaLEIUfP{9KG^+lQrJL9>!F0Qj`?6} zsdM21HyRkSwZVT6a+Lr|btfg)s_BPvZ+7!mlscFYFZ9wUlI_z-3HpjkvNLCT)w)w!G_x7VAXbW$jwSd1;BsG;*uNnguZta<$uwV9J?yNxWE38Z(NiHwD4;74n+L_l{wt!%bmr$RzeRk2 zEYFjNc-8;?i6u-7kXZ#qL}1+xjEWi(GTPv^_lYw(=2RujYGr;qZsRR2BxLZfBZQL| zkTGMHbCXz$nf^OT;(5ZE|4(#ry5Sp9T13D?NHZUQ_Q1Yjyo~i~7gpd>tW93y>;#1^zHyU^i5)LW;?ENjOz|AG=NlLyJX+E$+RWVnc&YBvC=8!Ja@xMa3l{ z@jca%UG~N{WD3f#^=z;pgmSPh{!OzC??Tp^V(!G>nkx~gLtHbTE3u6PX)`WDzkNGp zOu&dV-llHu;Z@b*;dDC1^XIp4E6Z>L8@mWg%*E=f|w}D1Ss$iK!wx*GhnCwUc)4-)QM7BXlS|G{!F-_xtJGYVzXjj_ z**K3EsvUl$uGM6#qqJe;#fwLH`B=RxLn0|o)T&i3$zJ<)=jc*(`)?ylnZF5z{*7O& zb*sfk5fT&9Eh2CFpzh?8uet$r(0ohm@-P!6&u-^gHPH5uwG$VzZM`DZ(^G8Keq`!@ zB_S<;3ICL}YC7vb-@3(rJzleSj(vgQfjHezsa^Z`Cs%F^M5%$~iQT&QW@692nME{F zd6@PBixHEjj|`zIZ8mh}$Kw8X=V^H>y=Xl(^$_jK{yTx;dWHEeRfrpjpTdyve%*1V z!0_t2SsNFhsH537?Sa_y%nUcD)Z@Jq>zDD|_)ob5ksgpp@p=-qXkx>J+|J)gMuXvb zLRD(!zm&+tb$gKhXv@>~^Pj<0WnRGDLab{DNytcqu8)XKmgcU({)WJdupu0W@c;T~ z+kHfFT*AT{?0X|D*S-$b>h2Fz9LKI-&-yz%pDNaBC%)j=v9t9(m80!^hE6fszDIk6 z*IW|N8=y8#K_WKLgcy`KM2pnLu{uYEAV-c!HWBi8BC;eLSDYOzbbKURVhFr|6dUbwN7EFWwHYg}_|O#=jC~|LRs)X&<3O9@hNRkaB5?`IDk`@U&0mIb zZ&W+HEcyhgyh{hpRhNOANBkTv`R~1I{*~Njb4wa2Mix3G<;&1#o?hEsVU{z6B9th5 z{_})FS6H?%XwK3U5G(oj9Bk)%|VxGP?v$?|fkL zLsU)%vi()Yzl+Ki`o>Shmi4u6DlZ@3QRw&H>82t*g?2sl_g*?e!us-`H9pv0yfklp zd95SzgB*!T9&rSbB19!Bfb;0Rxm?KFkM)pQH^Q*m<6>c9myrJPlKql_4liA4VATFY z6>F_*sSIZ<^)4c)K_2ri5&+m#;(2`A*Aa^IOl!sX$Mc&=3KB+&8|2ZVc6QD&NSQ%} zy0-tBoFvwgIL~+o1|1#VRU_>~UKSQ|ylljRnsY$x9CB0JS!gosUZC$1m+iUs zA1*;n^dUN^v51|phWxe6XnA?V&zG$O&Je$;Vb;@oPVASJPwo1ie%EZo*`q=%UZLB% z7KXjn1g6wuNALSo&?C5_-i3~Juf_VFR?3=@hy1~}Q^rS=ofssn!e*<9Mo;zr%4-yY z!An;2ULwaS*rHxSE;SGFdX3?K;`L<_-0g1uQ#KCz>gwknT8I{}y|m(QFXZjsq@PsA zUdnR^9{X4@H-xe$f_sRtgL2z-2BN77L&Mf{^N?e^-n=JTyt2r=F6?Ex;mGjTtOFr? z^TNs8+8qt~Y3YMbN*o{>WzFkg2T=;4{Y9+&huB<`Q|E2u##=V}N#Rk4%`pV`ESA#z z%9D1QFU8ez^1Td7w^FXBJ&CUyH6=x0q$HB59P&ytKIBC->OQxwF?LQ)yF*Fx?SHlI z{Mo)&E(I`9(q7bw%l%CGV5kIrL}R#&=&^&ywtoBe?Mu889T9HxKFx@hCq@FL-1zL1 zo(q!9mO>S)eE!R!o$DzwEYDT5pA3oYKIV0oxI|FiS|?Q4fC`Dvy(hF==!5ihHUHkl z;kn|@yfrCsk3i5~wXnPsPoQHuy!U1AdXGrS)7zZ?Hh?d|DtH6A50tysty#6iZk(Do z^~K+t5X7Unb8;5HI$wOKlf)`sQDk0g+0txZ!?u@NhAj+F-d4Ky5Z_*GA__i`s;*^o z$o78u+k~qnR4Wb4|N8g~?9Y5E>>>UY(jM%uJgykuCM6+u&c@m~uQ_uR z3KR8nLnEz^@o#)M*!RqV=&k7|e@VAB`$Ta(l(xI)PfpIkF{f$98`+(<&MQ)KRLb0O z^v=euyLW&8u-he8EsV^JM700%Tt*s4C@nmsl<pu#gN}HIu`T1`<#7F60*|rPAO;WOknr2-U#cFT0*CW1OVLdam-kRDZ z&3X1kJ|oBa&uONz<(X32x47?LO0|FV^j%!qJ^7?0yX7PQ3=cjG4@>I3PWELJn&X+G zG)bN7#TF&>iCBP8-4c3mOyDW@ISprL%P4enz7+}VcZoOCZmz%6b0H_`s=L|_KgAQV z9s$0cu5>@NjVOP-BP)9t9!ri>hJ9I&rS196(6PBK$4Pb5E4O8dOQ~)drS5g9F^7Nm z^Di$QY1lgPK0d1L$~N2i-s0uisk0m#=8B6hPB@mx?y+w>zr$Kw(!Py@rE)>Kd01cB z#wW9jsYYt?YS-`cPvaDx>|mjOcV+nXqJa3i-9?u~{4#w36 zoztUz-<~T+8 zK0o0(5uE>aUuZ&yn3DphXO8_dK3;iO=bojXDQB52 zTlCwnMtzg0Qp@Za&SEUDT;VzuK{|z+(aFBz7)3JDc(ak6)6=OjCLO7(T)}TUtgoSj zbh4X{W|nkFq};__Yi~A->4yi8R%=TSSX>EnOA|D7}%o+~6@1 zyGq59^Ao2@HR^CtdZ4}w~j~4B3-j}TUg2;X70!&0AW%7QVOSu!s zJ+D-lz?c$vfLrJ8x)hPhpGxQ58u!;Rz7S4OrB{egGEg)>%;KM)552_$YEHTNV^4(a zo-ZwisPzoiq6DYUmpvI0{LT7!NKsovL^6%`vXiRc77L5f)bz9wsGBnX91g!3+S~4a zr8cHHrfzWX%C9@Ei|a1k_+2o(6hKYgFo?6y_LxrZQMi@*p_YxI{(VVhsu>HTFlF^} zUa+O2p|qN_PW&HxIu0uZ(Vt7tF5i>#k^#DePJ1?bAx!hLE5B`#)#Np$v?TM@q|J0p zecSom3=|qGf<|K)8Z--*4KF?tO)6!l>e+KDzi29Y>P~D@Vjx}0J)4{;yX7&Be7ThH zJV%?YH?NPae zgl>@sgm1+yTv4L-?A~|#4GT49eY;BgvV5R&+r_5b5qB+my zw0c&Dw=OYdHTm7Ugl(OBYJbp}>aqkz@Xkht|63ZKng2M&{Vn;VouXOEm|o`}ErFQm zkT+AGBQ<9{464Z{?a~B>tHhJM^%mE?t5CA8?`(ZER-Wi}4s)#akr zK1bvd;sR7ES|4o_(?w6Z>m4BWl)nFA(w~h_()L!)*q=SwH*}M09iD4OP&=G4qf>0* z{S;$7{Rw5Vw4$9SRDwNTKA#);V->h*F|x;ev9hN!EtbJ@>zAjb*E+O&rK_yc$&f&) zS%?>FxKDGf|GV{oZq|;mG4h~q7c=-+T$jh_^X2UCOFO2~=;~836@KCAa4Id$$$nT` zCZ5lx5hCHDHMA{Oa*oN6E-+R&QWYuB^0iz61TAJ|ejiX|>njP))Q8T7j+oiXU^YN` z0lot7H3RRp)LzIrNhDNeGRtnz(9sd%78D{NDi{?~OK&Ess|p*o?ceSyhU~+a%c8ve z{C9DJU<4Bj%Y(qcEl|NBcOzL-Z<&c=H92V;BcnotM2ph#<0$k%%f$BR(IeU^qR`C3 zLJhqLYT({3xHnvkd;Q z-U?p?2~rehtrRn3#g=<8RBqqCJu}N>`oZ=sH)J13IjFz9`ia}2T#~K!!QCw^+}xqN zxIbNE?d!e!>^b+kpdiJiCHoy^0jW2PVorM_4^EQz3h~kpy`rO~wLYZsY`^$sNSig) zWbZ;9L6|9i<|XCObb1(le0Bb7;;RNOo&<6YjeypSccL3yTz<}V#cT~dyv$pbcm14T z4>#wQkVkvcvyW2g%-ony>h6A60yok}Gt;5AdsQn}-nKvqes=gR%jWe6xE)q$H*Gqq zs>&P}f6C|nwYDNYz8ML}{ab^%zr66xrx9a$s&~lip!utzl@V)Jsn((w{CZCf-fxK- zw`HcLCPmXw8sy6Jsu}Is2urjH4}(K#X=1}=^_CaD-Ao$Ae-B?-Qt~VmgTwEGEnfis)u8QuSoVNJRz45M?+$Pd7bMvEmh5_H^oFf#D;=|jw z?RuWLAz|D$6joBP5@XNL7ZlE(rX}I57wv|8b{{F1t#iLNg&H^+#1HvIF!MvBa*JCs zZGL+21hfB*PoF}$q;xxq#4?^qPpWJESpT#C^M^CK4{iw--C;g-+TGx`cY4+ydMOozIz2@f4b;<*d zBj@WN6;r>Umt@Y*xCu5lwmz{JPp(+9!_xbEnk~_~B&uKDx0F1(HsPk6_V9+|NBfJ* zY)Xdui{a&T7^8hG!I?B`l9LmZnE0i{IMMS%*LxbiDhD6g=&^SJ88_$mY(CV!?&(A` zJ%<}fW;#&6V~At+(?*I{S~S19Pi|qnR8}phr=fp9U4Qc(_eK8QumU#Idz!I-eX;3I z!Q-lHgVn=m8+$uF=te%?_546OrgT*M{QX4Dm*^|= z26@T-yeXCI;KCI!QfeT&qqTT+jLp%j&Ge6AJ!mx@M2%N>lI=>&XQMa&T%6n(S7BJE z#T4?0Qh7t@yQ_5ewf4q_J8zv-QHPP_O;mqzmCBu)6O`76+Ru(Tz7ZVSz&qWjw`Q1?gL5+}el|clI(2k8Z{I8ny8w_Di_EzED|+)kzuae# zS6uH<79Z&msw7|0>9*GWr(}3 zlD^})eG9Wpy!@%j-j9ZT#>Z6<=b?r993>o8I_??d^&O=ErAnl%Tbm?5T^aHvs+Jep z6m(ASh4{iNI-LdUyOyOCTJBXjN^f4jZg3`Z*vHb*)WPnJQaabR!dG0#ovJja-TjmF z(ldA~x<#4kk?Ao0KzLApZW1hBsyVnN+(@A4%Y|FelRTw*Y*hDSOzgmsBfMFiot(TU zVvGs`5?zXF`{_mEg|~_8aZlgaB;}BJzD`Brx@yP0`}a#XP`@Dsj-B`F%Lz~)bHO)> zOR?kzZkd-N4@~E>^pSJf`r{V)Huw2G`%~HviM^v)ei4wECOpd$uSmAMI2`zB`@LVk zwj5K`+AWZFNj9Z?Q1hox5VcT3^=jb5w1C#}Pa7|%YK3N5QEBQ#$b7xoxg9FN)LynNkaEOC=<3pobx2d(ZK zPaB))-FE)G&i;%oR_w46p)<58;QhSq3f)jJJHQ(+N z5Kwe*5S3dP;JUMq$up482NuKc)>*obF}|MM_Zj!(M@H%QP44XBgI3@ zeE6K4mHY5anK;|bbiGeS)yL%7&h*R#G4$*T}mW1=f+=roJj=oR!uhGj7mS`@pi}ehA9fC1&MPHN(pz z+02iFZ`q@YwtTRzVZWyP;?M1MhadiljQlRcb*RU@1MGq`g3ra{_KOpkE^Vx2ba#}yPpOkq0uT3k1b%$f7QMY{m zd|i>u^cFjT+zOM9r)qLXVl%C-nGUF1yLXX!yWE3~e1_{GiBx!6+3QrgQ-sIN$Gf~^ zU&!=OOI2*7XBBriHrBD1o~hs2WNNxTKEoW191(QCGGrDH@n@>;eNVxx`u8M;o6hqW zUk+0~_BgZ=B(I)drQe}W%&L1bA|yDGUSvC8v_ffi;R4p4*qcN5CGD?wMOpokuCdPy zz?9(|!Cb!Sb#L{e>HOr%dxv7Ow$((lF%msAaz7{`(oBNJL1ppy)!G?xC)w6eDTSBy zk_PE-XqG3~zDHa^?p1r&!MCyrr`zu)X*x;Qw7z*kv>OjkX}Z0xlJjt0&hnr8yaKeP zC3IImK0Ok!=#&kE-$dTn?#1AfZE0NOBT{im&8AsZDiN0X=51aS%u}BjNS=a4b8$^K z3LM#gj!5k`S-!!>D*VyJu)Ncw+^5;_s0*x(pd6&moQ@IOr0Yw0`0&KK&woaSg~sAm zSD0kQt&4v`Y1Yi{BvE6PXHNHdaYAWn-ea|S_Yimk#>l8&I1yZ2v|7Npabo}-+fZv! zv|YOJG?*yxmfH>_r&t;&eH#1j6(m^b)5+nwxm@u5)218CGlt#2n2bId9qROZz~WD? zD7!5BW2EJF&5nZ^PLmg24$r)liYs*Whlq0g6N4S!0!qzqnr@T>#Zl3wzjU)sw&KjK zJ7RJvhnwg>XPF#zJeJ6P$E*&6yk8S-_FP||9Ti@gNgreHi>zg7bDI(+6>kz;^0aBEj!Daw%r=4Js=L2V z=~Lvv@3;#I*OhtNDP3Lmuc5B~vmJRG(4~~le4~F^$MwWTYGYFFu=>Q{sm!Kmx7qd$ z)ph0RP?WfS7xH#F)l$Ua(zBmUmc`d)>KiD2-fVsDi&w6?Ee!6O9`j&%D3_blWM$BD z?@3|6c)yfFc*yNSNrTEWvEGK4J{M+w^;|`=*dDu4a6#3V^rP--t#v&`Jndh;+E1EqIm zQn%{3Sh8uVtE;b_^j}mY5v;l=Zj+U|_4aml@Ssvb8^0ZX3hkGxQ0EaY(s4q?aD%4t zA(%pE$ctgEIisgcvfdXzes=vh9I!$T1L}1bNu73^K4o`GT{y@8srtJQclbfim#6tl zd`t<3}kv3;8 zmFz3_15*_i>xFh@|6-Ng%DFoKuvxc$BfZ~LUG{F?#5T^USC`gjaFfx~7yrm)Tt}JH z9CiAP?iUKI&{*}(tk~d~H@?nOr)fpobD#ZclRT>>9pIIF(6cmK>hvvaW9Y(1v(=X7N|ZR(v#xO^hTvaAeok zJ#%E*TyI2;K9ib;H9{Y69)`m^-6}D_CwJCxoyQc-enh!8=?}Mm7V&I0m0>(m7;$|M zg>z-Fogc^8-1+t-E|rs~bczf=CY)l~wjGsFPG+ZZch!zX(E}rFZ=;85NINCBHZd7l zZ|Ao`#7NXG^&K0}!6^Bsb#vDPYQD0E%}FhWju%NMw|oiP@p{UdZeS)$*YOUs$U2Qb zRIUi+gd)2#(l^rk-)Hc$O55k9*!|u^spg4)2FFd?oB(K=63h4KwN-^Kw=NC76p~wh z*DZcl#8X4szI>r4#3%pfJwlUAwt!+_1oSesJ%q z#iOwctozH`@6qV8$y&-=9}se}<5YZ@byn@mlv|1$HV6~l^w+0(6;w_R=Lh&y)ZVQ% zmN&eVaJ0;L=E}g;Na-KKX6kO!ywiTocVSVz+)gL`_%N=CS^0UrpQB4o9ZvettL7xjd7l;(C5qX-s@o61aNQ zBautSCH?iqlM*(0{F}8>HeP8B`*115mHlmtXIGU-zT1$EYGC2lFzK!6yF^37Jf4UehIqF>-My78#YHLW_Joq%PkA*oT zM8nX`WBelfGrc^59`*wePCP1@qzk<#YGSz3#5CwV8^oBQfY$KmBjQ_f$7$UAW zoj2`eDV%#wboGW)BnOPoI3Cl`Wf5(>LE%-KU|1J+efZu3%SA!b9ey3pacqo^r#m@c z+9;6|uz}j{{Z8Zc8L!0T9$r>mZwsl;wO^k$I!g1!em%cF0|tG-Lc#=%0xBC>etwQT zNCl^?PNwC#)Mj;xHg?ennU})1jYC{jc|uN{I<=iAq|%;mxrgE6JIR@ThMHu_q>k9o zZFSpU=E5RICJ$SZtIZ28rQDSdB+lSqnb{7<6DJu^^5if-uHN_Jh1ev`TGsE{$dsk1 z0yj@?_EP9R$D-`K*1Q~#p&tXM<}EHqzkm9{om`9a!~SnV&j!av`kc;s8PngE;r#HU zE5ZLhJ;VXZ(H|xE&S(`J?nr*V6sY}~!SLI_a@*~4-S`~6^o8Wd{6`Mjob>LFk5foH znV=dp{9&JF&uYOLiE@E?tuy_nBX@JK zXeMl!nCKLLK)vqJ=tBJc{_3(P3sHBCn9`yc?TZ(3!faESE3{JWMve?7pF5X6QPN+q z&6$N^H5VsKe}eKjW#ww7F5zwb1dV%_|L*lN{tvtBj`7#MvyfNylL-qI*=WSIem>AR zrT^~aNmEl#mI7-RRfuPTfG+{422FnLnq9T9_GM9de*yb^PC~=<$Xo7gN7lmC+hjVK zDu!tqlap*BPlhkPCDYIt<@acJbgXkScRjRMncVUMqqFMK)=!j~e>Uo{-(*$yITvx~ z!Yhjf*SvZ5yHB^C6s95#z2XWTx-fXAxFf{ZTrw$p=zz~5zI~R#Qp1J!kny4l$W)A$ zX|bQVVAVe=x&Lrc<<)(uhBSW*h0;G0PEC%ryzL!K(LOXU``FIB$YTGf)6B_Jj$=1$ zdsWgIUxuM#o^KU)*_4H*LOYSlEnC-Wui~Lo5 zbjG`R{^{vyK7UE^>RR5dqMmhG^?6d1ouQ45kq6DTZK6xBjuJH#n#YIr_~h)z z+2iRWq_tP_(w221<($&;Wr~N%CiS2d-qqo;>VCi=cN^F(Yo-=(q)_IqYd&rjv?Np| z-_!rNt#a*c& z<=!-p)3=YTSd{sCIL6LZ+^Jm1Jn?b8s^b1LLYpK{ykg&G_1pE(FKLxBmglA-n|ar% z^UIGUDQ=>%5LSDZ$eB4*$oDGZm67kZw%=}twdWQTqv_Vkyo|isz_7B!@FPjneTr1q zxV+wWwM}a(vu$jszwSs@ncVc5_wQpj9`01rmuhSs(+o4ERZw?r6QttrJz`|#;oK5o zR(l-BUO2aCC0FF``)B?)x-JQ9LvSycNmA^T$@MT|7@`xa18iP#l!JJX+oUlsm@NU6>ISqxt9`XDjw zh0K7}2%R9Sz4gMxvcc1d*59g>XhWXa;FHD%h55i`V!0 zUM{=ct?!ErORLX^=w=GVc(*rsD>vqQoR()MR|{>%kMNga(jYA61R4dB$6~~H?gr1p zs+--_vo9f!yO=M>6NDp|_scD*K6g7ih~tPq0wydKuAV%Fn-@p$Fcj`Dp6J*I;^ z{CazbZfbVgRsH#Ovsq$ACN279S;njXmQ|w04vGcUYc5j^#_g8sm>GT)Ci2+%He(J}HqspQP=ne!nMY*dYWUDbl&RF{hec5{ZhjyBn%{mQ~@EPAhysg{=hN~hd( z$8qw4oc(3mQ#-1gS?gR~PCv6`UY(Rx-oWX`e#a)25Wm6JiR?0pr%=R^Ra%RiK?@Go zTE2PSaU1_{-+F#OK?%DwqE>50nn%%wp6x{HoK|{R-n(@@)lZ^A8STXM1X=v;HZ`Gg z8usk0ubQ7d;IYS3$9jm;3(~e(S zt6QVXy{Ux0eEBsY@su%T$7hYKAg*UE`7JX{a|>iUUBZjjw?r*`Ng*S1c``mDmUd{} zFLS$dngO*u9aq=&OdRRq*-0hlJfHvj+DcnR>fK+$Uu$GA+8F9MTn+>=_<77f`Mf6T z`9GNXCms|RyDFQ${m|I)u2TERSW{MkUfe<<*G;EmJ*R4~1w8P-8_3;!&@L80Mw zo9;LivPLfRY!{;?=yMy+GBN$RP37FeJEmCf+US*C-|q=2US!Jhj_0M)#LX zixF!Mea=TC7UAa!TI>gDzFzJbe$?b#tJqMprb0oA3#O-Mf6YE*@~Sb^_3pDrK)3T? z%s4Dt%r!QZy(=2Yl--kJ9@66X6CEv+`Y(z85!6Mw#o5Q$7+0#2YRiMqd`;5h3 zEHI!@)-WWau=CfVlj*?8SrKvAXhqLOT|4BkTycDplFPtF2xP281Bz(w^>IW)jgy#3 zT=@kj_#gjBR(^>IWNudBx)-`FhwslnOuY8iay@eA8tk9EN}lb>iLXf}X89;ey_yS*_pq?3_PzX%u#edAcXz_oHG3T`4Rqx;+>&x2`Fv zz%l;S_2Krw_t)`%Wp!i<+;0t+L2F@tN4 zERCl>DP-2vWxMSXUIeV3+SVnp9ugr*Fn8JaQ~*;b<~($`4W1TPS#tA8{4eRNsT06mAkQ;HH|umApNcp@gJi>$pwDhBle zm8#zEZ|it`OK-uEYYg@FmqBt5r^B{gq%{IRXdX)74ZvDFX`ebWx6AI{|BoS*0PcDw zOE8NaCZ;+ApC(HfY)|w(?T2#ezdzfIwbBj!H!|?x$d1&l(Ld+Dz_~&q5s-5N*vS#j zBLtNLft!ZN=2FVRIF|oyJ)Qaa7yQe!li}EN3CE#r0y#Zf#b_04A7*CI?c4hSLeO{^ zl;s3Y8H+^M5{?upoFG={PzEC>isv3sqs_UuEO|F%8lVh=f58`T2jXctV764i!jK*ona8oBkiO z7jf+hsND7fQeQ9`pA#FR_O(d@S;xs?`L2^P_X7yPR;JHlPUrg+!^lT*Y^FV2|xS5k4(O@ z0CrzEE~O64!t&G&XV6fc`)qqNTj}h{&7^Eo@Y@KCC`cB7qjUv1-h`PgLe4!`si~I+ z76?9q#R&Gf6|7CS!2zWOwrS%3+=3{qQv`_nJva)FKNo?YCUmKW*^3Vg6 z!T=hOI>3aY5ls3sdu3$uB_E81Gm~syptdZ0<%cMeS9>9aI0Safj~>S#*5ZT-3U=Zk zsVlH$6RcXK=NS*^eCd+H!7bRtVq-|q$O(RWX0zdK(01+SNramo?rUO4TTl(3&rhU5 zl)?oJFvoZS9$*SHr-W^nXML{|S`>H2LSO^Al{4QYheL1&srN4EuJLzkjxng4y)P03 z!B6GogoOt7+hZ0M7BRij_I;Z#)kJs!XA%cdg7d&LZ#fldHq zD}`(z7a7@FB)$~2v=|A1D-`K#KxL^_NI=L);OYE?Js$j}nKW?t{`*rALd>kNQ_u8+ z&vSV?myqGZD{}|TVZxqF&=w%}RgCe#o}!!ZVZxATOK|K!8Yw@#GC`;2=Er!Stcx@W zi_|YTEK9*&Qs>J%i!Sa7D3~d9Y6M6TW@Ezb@i5;5()G0bNfmDk94heP{k85bn4$kH z;IZKgz7I#SF`P=49BfwQJ?S3j&&fOMX7lPYtD^&z{wdHZ{ zJDxCPK?~nF51kM_v1SnlMVL$LWTrL~)_aHu8gxO++d;I*0U%!CTqbB0I3#2oh=8AP zvmZtMnrM1-LqfR$2kP1p0^sT06PNt&@&xg#65%CBKNzaxdMNX4z|kL*9-;S#i}PBo zShF!9z64oIYL$@kpE^j`flVaf0m^9(wRu8#LXw9Sam&`Nw}6O{bT1shJTgijkL5j)43l@N^snb z+GbYq&BVCC{3QoEiBve?b-XAmgE7%GFl${&06t){(_HNU_5_@NG7?4vf#*4R&feZ0 z-Idm{1&9cOs7jD;2sAv7ksuZ&7{_jbiwEQ;@ivGB0v<#j42F9MOAwoO!9{ljfdpAa zcRMJ8iDacH33P*^Kx%PUm7yw4wOI}zckzS7W-MVnBZNsGj7cPL z2cIS;Zot^6sH`L)f*k&g1MS*6fjAKmWn!$OO}O{& z?S?s?)MHb85DcwX1MpjWk6_{zfVqi80;`I+04Rqfc@VIUj=Lf8I^-1p`)$=+DRh+A znePw>O04k>iAO}-Msm^b9%@~Lz!IWnUJ{U~gu5GXVUj0Cr=;~5pm|BHt$;w_uR&%c zc`hxvdAt9?lhL*`07imU?`uix!?+6Ll4 zt)s2&zIUi7I^iW`W#egaDeA{7ExZI(ta6dbsz99V~qfC6a?ff;;xY1T2j2Nl#bc3p*rP!Mrx5>DqGs&d3tzn3 zEu>HIumC=Yy7wN?1*2;Ld&67-49Oc1{ob}5Ao=V$8AcHEFav=}clIm+PDBK1Iz8|e zpA{&aGlem^6kMZy_y8e@H!N9}*yknia&%54BCAD5S>cUgCQn>yKG!HM*Zfm;+d z4!YMZD%Dg4D|p_ai5@HG3(vFvT+?=NG_q&1W0B3wPxxfmf!C$)0h*ZtUOWoug6|7A zoSh>u*)%bm0pf1&$F2E7WqWsjzj<4GyT7lmZ|YST)&27F^5CozK_GA_xCYdOi+;j= zK;?+Rs9e_E-26&6v+5l}J(=k*N6VPafWN%J9f_$8QpK_eP_4Nki86D~v9^<`OOW8-x{IE5ksmSHjTQ$BrKJh%qTLx21`LSV(l!mg}+S(3LU zxzh#Q!{vT5L71;@QB+Pz*kwZ4-mLfxx^4xSSsgh64vpdn$s^HkfVkC>|?r z_da=Ukd7wFaQRiTS5wMz;iCB6es@JMHtU$pCS|!4 zjvlQAaM>FFf+$ZhxCNF3d>z~g9S!M5olV(riuVD+Bwof$+$vWk(G!`c#t!aQJ5uKZ z^aQI}&2d?-$u`>(8eA78E><(Y9YV&Q8|mn>NBAm z{pk{SBuKQ(W_~$%Pp1$oUU9#D>sD3oK~qpW6@%|Te0ZpA+)rY5N07Jqv3WN|!or-@ z$C^gH*P+Nru1JKSdt-U4H4kG1t6b~wafKj=0$ zZW`0MBZzeUX}%GU3q?J%8G=j`@FvjiJpBB%NHl%LNg(Ll_x=6F^s=ml@qROPYY|(T zvK|BcC*yq4%>vMl@NuVISAV>#Bwiq(O{>Cq>j}g=!aBzThA?p@u=#(WiNOo11$fiH z(NYXA&tvr_@xN9VoY{356f+ApB|%n=ddX-C4dh06e0Ed{WNm`YSt-z|Rw^z*GGsFTP-dJFT+lJyM^T3{1|F`9tw z)+LzJv#7?=i!Em5Te0?9G^fSPFAS%j0xPQa)S>nZc})=!%x`gqV|QQQrL7DMwV=)r zO^$29%hcSyr z%W_CF@qn29RMFLHi6a!uR7W`k5zmM}dGdruO6mvEc7IO(Mh=ZYHe^K* z-vVxrjoiwd88$SmQ&@n0$T3(oy%I)d0mIrJ-n~4dKBBu2&4?HI=X_0GC&oK^c{Fxp z7@1(^uKnYlJ*60p4i4|;!F0Le?u7U6>eKIjDI_=;Qx#Y?HGekMqF;>sxR}?8Ri5~z zETdeIuCntw5jF~glqp))v+_}H@t`Y8)U6y&_>)GEQxPOAlkH<~55J|NWy^5CG&Snf zVJ?o;&!0#!p4qoff6T9=A7|AOXxWzc*WyQ*4AHDDIrcA8$1o*biT#?t7!ws`iI!UB z_p4m4!49jMZ}ANNiT2F;Ia7~;hb24Vry1Y6x;GPmLBgmbNS&i0@5F& zP8Mr344R5k4pR+}h{$Aqolkz<@0Pj^n6`l(9l5!8@7~t-F=WpA@O`l@`0Ck6|NHk} zFV-+l`&BH~l$Dhkjvw4zhmPp$rbxUI1dPmPc8A}(cpPI1S&SqM=O$)gp^pgM$yQtg=^kAG}q><*fL-EvKHC^D(i8{GCp| zzby|V8G?yYx1ofXimGN05{LLOg_7j*PK^JK1#7(;EUZW}iuDoLYIXnoX_Bm+ZbKZT z(8{!R@-sqPSB5QHjQ5{SG$y)q*+Y)2tebj+N+aGfZY{m&2qMXxGUn$UFdsbZsoz2c>lD`35NBbE$*pt_Hj>(UBVU^X@C-D}Hg35ES4+jkMCD#2Rkh;I3 zE;)mhzBO$E`_8X8&!%^5EFDqoc~o`v3e5mGI03BiPBSDjml6Fc1<)wE({cO=q_W~UG^G4@D*43C) zfV6>>d8Gwp>%h1QL86^TuGR`H63cJT@5h%M*-@S?LRLnmzO9U^Sc3H6;~a^ZsyK(4 z!Ilwl?6=s#jSL70D66Xn;_S|A9lt(&Q=rV~eq^J}`x|>*UM{YZKXT}x!J#oR02#e9 z7$)X;C7n&<_de6!iPv))n+$9B)`bMlbmi9RZ0l_zebk|=qk+r_0FuBT3#T@wiX)#BxdFE2 zG=$DA9ZE_{DHt|GU*o+I8nQD-+Dih{Fye@r0@$rrKnDqrY_O&MS4+!lFmsT)NfJzE z$bMG252lDN84IBg>gKcbWi>q)5fmqiu(HcQ7-^- zc$IMqM>mt{K6@u8L8e(}ulYOSoS1km=z^`WAc1Z+CY* zwl;&vvGIxoAoNWE;}zI9O)Pjb0Jyef)TIwBX1_!n9D!1OJqk*VI1oV0`n$S8u0thL3E~_v98HR{g%jqsW~4VA zTCZdeg8!jaaAO9<@|S=hSs?k43-~G;Puvk0eLTxK{r>*gJ-sIPPmr+|~@mi?^5n#X26A`X>FJ*#I%Q%m!8RZP*y}`()fKyI*EEn0c0`k0MmGw6 zjv%3mIUb2@l-n{b8&#k{sK+W|@GYA{TViXmCqtyHYZhj@BoI`j|9y)H>9mL*`0Lkh zGZ^N+Jt!DEN+-*G_3Bm3nkTWxWf3;L!)<{uFxjvm7t`^jVOB=Q1oVjQ&TJ`-mf_By zTf>?UA2^_j_WX*)?NLZbJle+s8?s!SC@U~-`SbS)QumwTADJlx(pSm*XJ{JGp0e1^ z=3+Td36punf&vsqIA)qgaPhg8u_4#uXVvx+UDM10-k^z>Og2%Hsa zDS!zwIhWdAe?|8DLKE$cfqeHL9;*|3Vo^TQ$4pRaubv8Zs`--}3qKb9fvK z&+M(zOb>ASgL^J2LRW_2H~9PG87GD>$IeI>AV0(v=U$s0KbNAF`n|IAEdryK6%Kc# zxVJMf#AC~#w}{oVA?~=Z!fX*vXU;_KCPvO(msmP5vR;BJaUvL9^f~^Jf@qiMrr4v4 z*>=e>r})^$b}WULhfMq-A1o8NAp8 z)kvI1D3o^vDb^@p+zl3S7|3%ta44y$u(vp`n`8F^vviuLC&`~p5^td~YZc3DL#o~( z1Zm2rqC`>Q^HrJrR{aidZV+X;Z&*0k{?+H!;TQuoH8p;N+_ShPOvrCeu3R!V=L6s# zbl5k#sVX?m;L@c8WRpda3fZ%FZ?z>xSn|0A9M9f>xkUL49AVlgS2|+vy za>$G<)tHlrwGvqIg2^gADFB}cBE0e$^zuv`43(;%bEb^Bbsn_|gWN+KwAm6o1Z!`@7K>>83^n6QLSfeQj^OBnY^TaG4n(_aw(Bq6OhjF>_L*P8)*K1nTB z4hJm7A_@|a=!05tm~cdcyiLS)*i0E=^U(ylU}#X#Gi+#x0h5aK448FV14)h5In2S^_M@6zxfC@d@iz-9uSirMP5l`ASyM8&q% zRZvinm?+VY8?khn^PSzaapPB@9FmD-Nz*L4Wg{V1-G44Q@yrXAD4a=<8mAqMupt4m zj(s@1Ie3}?aA6ulV1qy@9MBR|-?@Rr#-DjPx zWCLEmLMwGj1Ahg!`HgYMH?iZqA)q!Ja0(AG_oE(WfbGmV45dBFAVA%bo9|&Dx+gKi z3rck0o(5362?>qv%EwR50ml`b`D3sr+s-x8w7DGLQ0t8^%RG1-(Sjk=qw#CF(eI zRu;$IN1>)p?7Q8OKN`X`YtV^4PP7k`;}d*gi=nHlE7N;^%$mX5cI-$(+7W~7OVbnF zmf%kF8N8Aqs0N5hqY-fK|A~*}BeRhO*OBlYft1E%Y-2Qt(+xlY9a%upDp}E=W&Y1Bf@o}#+q1rZ|Lz;`6443^ z@?HeiT{*`$RZu5G9(Z3SchSw1rQyvoUElY)`F#C884%H9O7=Cto0KZS8?1~W*O zFgVeo8i^JvW9^iZR$7rnyA~;JX2uxG(rH6cwC|!->)6^T(xx4y^%U(&^?QFB-MatJ z{XDPNe_qf1yv%*4^F80|x<1Q$`CP($e0;O_&eGo|pPkOcDbU8AzU|V>!hA`6bZX1s ze56B%`v8TvZq)-Pb_e*Y*5L(PkePr6l;ipiKb%9155@g68hk5Cal24IzPTB=q@toC zb<}M5#HhK;x9As{7;b#%*pq_)L zOZQ_Vl!4;047AGueme5;@qF4h827#JMW9p_7S>Ek)b2LgyA$u8T%;N~PCJ&SY-3+` z-F-g?i;qdM19f(#?YNxhT7{VwLQFZBDNp$ieoxF&gfYb!A=+i@oT;dN6hnK%n9(R} zWbubd0?e$U=A?EkA28`w6(7KQ&xVu8ggtUjshpO z9{2QM5Nak*S1!h_W)AI_8}KDbLhUGxMjdp9-hq<8!9LBbk7T$;srp$*vo_bp$&x>Oj3A!mUn7$f`0omqApYyJCyh{NRR=4Qc zox@Cz#Get|L{uZ!1l9(qZ4eAh$oQ~~wh{(?U!ERguIX^;0~e%yKJUtR>Gn(yuJyK< z>f4S)YHz<}YQyMn>=pI^B+Ab}M@`}&bCJy&pvh(M*oWh+%S@|y{$;Aem{H;}6IC1L ztB2E}MYglG7yS2c`U$^@#dv(^msyfcyXcNzieyNM4%2_;I`^`YKk1ij+qO+JbkE$q z7pA^@-Xyn)hJzi&__OaY&xyQ?U(l$>0JO)De(}8*xW9hV_8S3dDr465`@q{J52fkFV^w%{&+OTVH=MgP6R$?X{yIEISZJMQl;- zj+{Vy9=`mbP$#0LYOs7f;<;aq49#U71J)mY+GXksit$xWoZqyD%geJ8m;50p6;)N~ z01co<7+{{k(R?G60tg`yxKmIV=@?~tIY#Fybq$;9-9L5_Jn|h($-KNu!7wK$2ko&R z`elF)oNUxJIIV`l8yA_N+zy_YQ1TOQ zhyMH}LhSc)t*DoeIljPIPfnqn02KHYrc^3-ubJ8rHXd0#hZp48tYdl{Sc4ZuhXU)z z!96!@Ns}U97v6}kD43yoC{k=49RomqQ8SGN&}&3a z!Kk(?W2H11O<2U$r6gq>U8o4_-`|C1>#NiZ3uU(KQ_!G)xz-bz~ zy1M6H^8^>y*Bc-TJP0gvLXj$qkWxxXNSf|l?rk2|z!5@ykjKg~gVQ-M18 zk}EEd{^y^fH4z?v(vec`McG0nth~HD6;_*(l#cFyy$#9W#f?q*sq!2gBzu%F)Tp8l z*9AF(f+H;QwzCoj&6+jlWTWt9vTD%tQbmnoL%E@$Ax1yrKJsWdcs9e2n<0THuC3Ke zNJx0v(U|3AcX`Ri9aOsx4$50kT$LYDgowurZQ)wvOzITO>e7=SZ&QowL-i_x)IZpO z7mr^HC2CRC5JVgJgSxY`bJ7T3GfJP=h$|Matfx944Gb!PvrLvxIAjLFNSj(1IR9V1qtZTP_eGc+4mp)_k&1pqL`2Pi zjH7TXDtt4HA0GjftCe}$G6iK>o-uB(Zv*6|1NMTp8%}TxYA{*QQJnRwSO2Z8;<7s7 zVTZ8O*|W8kV)Co__(qS|bvs0ag$Y99IhcdW$Qb}1=co#c^$LimQCuIAW|`H)7DQoy zKpLn}o>w`7cs8qln1b+%O)6cIZOE$0urp1H7?}#4Asa&fSs|r;$Buj4PCPM}p)QdE3N{T>=_4MRi2&m+!f&vxRb zg;%)sK=;H%P!KpcMt@c__kConh<*ma@6s!pV8yp-Sj zQAY&SI6$zdM^XS}KP}<>{1&^_?`PO(d(8;3@tW@edgA;fJz=+TosGbyt5xal~o)TmdG4>{oChX)=uVK=cmO@O`i41bveIsZ(o1 zO=T5Af9INQ;*eDIwBxSxoPqvIBWu5C;U++Ooj6!(5P1&(laQ6=pW5MSS0HXwCK4Xi zPy~p9=da#MUq%Da0VFP*yZRh@xjn7gjITg8lyQ{DmAkfiZtyH`jCarB^gU<|C=_m@ znd#w#;(~2zIa=e5k2G(4d50QL+WmVk{4SA@b$Ncs&;RxH6T=}149LLl#b({4qvt~( zpIU}!9ix{fHs|o{qdaYs=(g4PFk&!^9T=#0acqaA#Ind!wtlg;zQ(oP!aA4jmPgv0 z55TuAep+9jt^eiKtNSL(1DskNgvAYfRi5kvhRC#lrOE)>j3`{i zF})z?pnYO%-YvH0HsP9cc>U31{dWz0WA(qcaP*5cEccW+T4`-cfEmz((o`F{snrmy zM)%2Np$t1^!`xoDhO28APwe;$jb&PSf_lI=?qV>!Iw0dy-}(&SlbUEmpoLh_N^3px2&lC5)t#y5Qj0ji^@Hhd?rK(0;)v9KmJXNu=azt*GIkNTKam$D*PWdgZaW53 zwnI@Nu}*3ZT}lb{wklw|{TH8T-bT8P0bIoM!w>e~o?W^QHBvv|Ta*s+MtX+a*Le<0 zFUN`VP!7-;>s-Tk$VATCoiC$pcXrfr``wyHbGmPD)t#7C)NclT=y z|SfJ2#K2Y-edN}J*ssg_f$8yjA|o%&);YKX6thzYxM z?AFgr%@PVJO<>5&e3%iQ_~x|C&JCxmQg&)Ol%2>p;{@bh`d?ViYtj2wRK7hb;4V-o z9DAkhF9|=P{RTBniRj-r4rt3k)(AN|4y_qF<={|(+G(>%(IN*7$UWpqs0|!Ho0xR;&J#KkKZc8!jbl9=}Qucl=t?cIJL?(#fH-`C7p9(>XiR-%9VJM4g zHJB`2q&W1X+=VARzKiG_ zi`3Fr-rAkM6PZf`tBsO-HH)}x5>?NdIkSz(cc52jI8laM;;LYz$)T2cwI@-M??n}T zbCc;Fp`5yG+U|4qaJYr5lQ210bkW z>jM#hwI~ASoln2@%n4e>o0on9=bRme1lwxf3Bqv@*{^xrp`-i&wj_#E!)0&%lyR=B z05v3{w3tTn@Qb1D92~)il%t>G)WmDYGKE_0f0J-rd2M3FXS>B{JeF-b?nRLSS3s1f z%AqZ$uR!=Rh&IATsTr$GG)e@xs>JS2e?PAx(Z~o+k{Za9oQJyO0dvOy`1)J|MN$Mb zSZXM8aM4KMq=L8pVKka5svU@2P`M$od+svHYmjpi00WrfBsw@G1FMU5;?lEGll=$* z6&1k_Sf;`kmwQ(G`ho)>gdT13w?NFeKz$l6z~zkLe!08gZEJ7lvPqrHQm^TVXK#$L zu{@abo>Z5#NL_eh#=?Ne*(( zEA#TBpFDkf60jo(NV{qAvHVR%uIosDQuaz2+c42NfdP?p6A}s>-bSya4RC&CG8t|~*`R(ZJp^FK@s>I-bAxPEWEIz-by*(N*GV$Y+ z6`Smb`%SB!>CUAubqD%6jXF2gps&8&I_3DWWPuVI4% z7a%MXt)tNg5uvSu*-uQW0ELH#g-Of)5Se`D(^2X_{|5w^ccgbg9t!CZY)Ilp>D+-) zWrISX3KbYe@siMFExqQm#yU%lk4Z?FoU-%LH?ZiO5xgIC%b!0iy$j|w8Vx#ngTLne z@I!JZAG8)}VyAxnP#T5Opa5M-J$K z&0%K>7_}{$Nla=x^pSwc;vs;Ve#nG@(*5}3&#agOp?{+CKVohTi7Hdb&dAqR^;ztW z3;yg1;m#X%Gvm!Giqtpu=3ImA~G{e=Rob$+r}2c8FkRPV4JnhNL+EYd7dG7~>w56K->^Jv=2 zh&)DksAcyMHjZL@pmAbc2PZ$=ZLY~&jqNj3!$8E)6A5cQ92OFu$`Ur;wXXB{{=KeH znp|u1(i?FWEcVkEDvJa9Ox+Q?5j6WBGK7$tUGl9 zUAh1(DJcnOG{!&y>TW{f@b3XGB_co3t7oDs1fi#f zR1pV#g*t5TJ9%Nib?Ia}G=yG+2Xb_$JWgls5^Wr(RR zDBBd5w4u9O$!H>N+p-GpI(=o(2ReqmjsPTd0e=hYBv@26BpL6$g$w2hH-UOilr;jZ z#w10z0&2y*e{|VER`A2NZDG18%z&fgt@fw9%_^VQmvTW=b%z9m#KQ?eJqU5VG;^`( zChLZ60K!jT8K>SDs1WDl$E(fF#|ZI)_Su_>iw+g> zhgUGG!s8SURLu;)$IXq#e?ow@2)r)vQyY08XXEBu7Pb+p)jd<*s z|M7#;`Pd-k4;{=?tm<{yB#(*)NI}9sQbhs|W}!dO0&q;)&e20DW`3L{P!_6TBUeBq zcK*VJPEb*=LCAGSDced%c${7=Rd;Rc-2Mm^byd~3WBLZ+TP$ryAGaq%R!}f7RW33F z#l>~!R0QPuh2{*~R zUg{3;(YRZY+mqFIg;Xg|^YdeETZ*U*q9a3$34x2KvSMGpR8zVB%dd17)y1HN=eJ@@ zf#gUakO!yA)?Rw*yh=Ym&-73^?tgzxsKC-&D@T(`zBnqif2X6g@3?mN_d4si#7gn` zK7CqT0X74Gm(KzmUP6pAOdOSH7aUNzAl<0|yw60!359qMIZBI!inLxhr+x()2kzlO zXo1tJK!yef^0v)p>ho=`V_8hQJ=qcuj(v*xIrq+3V%uhqdb0}!*~jmNKK7V_K5|`a zEVtO(4kH~MB;90~?g07gQQeFxvLCFaIY_?_*iD)3SPl(Hj0T9bL4w-gZ5Mi&SZ>^= z8v$5G`WvOj-|^dmyxJjU_O{2%qTj7`^f%Mrelm2t_D!=ESLVYSYe$C{^@hKhPoRD@ zLPb&mX$_Ga^>9JdAliZ`9zab7y!YiG9R$=LzSa1iO-+Z1^Wd5HA#kdN_UPs8Sdh20 zc8JB^7HFguvym%c#+<{ZK032px);3^&>sslh1rr0DJcX|UBV`EB<9eA2vTC=xIP>7 zfs_bwDr{Hj?CO_V#@jzHFh5%r(YoKqOoNI|dS&#MqEv zN>}$LXusypP7wri!s|w$&QCd3xB&PxG?F`!5^&vVrc(cx0&BcOdLX))u1)RRQeox} zBw(3?(_~Kv9AzT7*?nqOcCxYAC#@ zg(y8y436MJaJ{>&d)sa379jFO8NeFpZin?DF&-Q%DnBN5V% z&7ke1mDgDnpoDJ*pm7KEG(z{{(Ys;;oIPiW{FamrO!kV`MuC;fr+%eiZf}J9U~exw zGxMys>!#EE*O*TFT6&B3Usb<4SI}}F7bkAR;*(#_pyID{$37P?iU90MbOlsYj?=2& z=jY=l0v(#}F$>3HYUoX8sBv{YcOLXT-ED8bDBTNTHV%CZoyzH}BV+S(T8xym^l+Bz zgTYnaOee{x$$jwsoWpq+>B4esnY3@(i@ZC8ShCb%Q!J^KvYSxg&6{iHZ?-S5<JTxzVW>19j*=1H5b5t| zR9rlUt~Y^%J=F42$|t3*P6H6BAO8y?C8&(LGsU4(o0YN2bn!q&^15)r_1($LLUobr zr8aX4N=i=K|EuLTJP`aVb~$Z4-E|NVLacF+ZqbIwY~El0D)|5i3VSZM9H_s%#@EI1 zussPW62_-i@h(_!mjtW@IlOC(E1FW;i+YDDZ#%AhxbG*~w6FMI1pu9Ym}?EO16(dk zv*C?)?ud@G=m`xCt$>AWpzReQ4D-C6JK?*YgwT|PI1nSPSW#lK5uE~L1|qwh_*VgC z`=4^tkPU@_;~9`6k!1Y7b_E(ah(2sDdi zUQ8A=i84K{ua+%c%j!L$=2>br=ak*rv9=RpSLQKFVh=qyepA8SEt>x(9Ku%)`UO{@VYeI(l81gJ?W} zYnIRbG+zAp@lJqdsWF|~@QKL!ub^lY|4i3|q0OrhSknwH7keEh+rDlggbRC7(8kMQq;lqb>#sMt*p)YrFb+uH0;_!Y7_yApOtosrY z5mD&2r0IFeX?Lk}a zyfX?i?*v+}hX6Z!Q_um&qNve*aQrevL!ml`PP^%-1L8Q@Y4_D(0Z8N~l(yuz127$z zXNOBy+p#Y-0R+LQHIO?owx6~QiJF9l=3m7X%5A92iRi)*T|!zrV0Ad(I8{`5ym+&F zo700oml+eu%4*%u2t?%Jcw!2eWSqvb)!g%bSD@!G7ivT$YIB}<|Rzaf&##^#EN@by#ltIHJrD?D0A`)L zpk^_L!U3?c53?O#kPZ-M1RF&g`dtVsOQl2|2yh45OPYJoP91PMU*VTIYTgKMTs%-H zE9b#CrWFvXWWL`IQ3BGPGbA0jBiiUqY8ti$2>J(|m?mLFC~E0h2n`FhSEhl#k|TNoZZbWmN6hPYFA7Ub3**?k3WWxJsXH|6{LBV9DwZVxb2eI zXi(H41s&B`d)S2Xt!}*|%MOa{V#llEyRglBwK%sq=+Y}lix?6T;$le(VsPB?ga;x= zPg)%|n;jb+tVVsFeDo;~Rg~C+#Pz*4{_lF}s zsbx~0jmFp)>S`FlJ#*Z?o+82hCFAbnNN;Q=5E((VzHFW#%U+8^7w(z>Q~5N=*5h=9 zFJ5nx;mye5USfPqg_UWca9-e0sdk2~2}ys6Gt8M7KMP>_mSZp^qapx2(VbErA@HLU z6<`&$z8FaGB3Pl(O85iRtW>uWVumdP^F*@?t8^QQc!}~x4GaJ1PN?e2$dg$W3DQW` zw)roZOGJf+_#VIEjbis>VcNm+mQy(iW!(u_N601vSv0J)3e;MO=p-Z$Ou#H{kAT*y zyr%UAHdPK3XP6DK1MkimJe)v_c722WYZbyk(7cA@MXxnlvk_)4>dycAX)OU-K%Of6 zy;j0sPqIzDMl?j^zIupz*depi0#ezYHS`{o@+1Vr8wq(q87dD49Jp*uu7L#Rdb}m- zb@~GY%3(NB?KjO6k^)uNZrMUEfilRjqv%UOP3sKmWB@yT(HSGEFJVCAtJd~~Kw5+1 zAeNGH8bFHL6e$Rt(YR$ay+Y@< zrS>aea}owh9?oNA4gwb>5ec#roDR3_v04F&U%u{&rst6ICqt=MJBn=^XWt?;{8LGf+ zpie-kgJ`q^&QLq{0#-Adr!ErN#kngfpV^`s4u$WK8NAYjTr;BqThV#9${x^Wu`A3f zXx0FNG0{2{L1+y~d3ZXX+=&#;@q{%wFZ$?qbi}38T2X*im&v=N6MSC}zdecS@pihd z41mix0o1Dl_tY~d1z2Fr?i#s$-i-+_k>AZ<8E2jIc@N?VsW}01ginn1xSwx`ys*+) z5r@~$H*?QNK)$P46vAn{08Pi>7!~aKDySk-kbrA*kc%{dyuxjzih&srfT==8ln7Pv za!9RC5NvYgiuQ>UQM3~caI5S?PHHVxVL;^g&L}{yest?NI75peP9*FYwVh<91Md0~ zQBxBlZ^UI~v{7nM>@isgp25_8W{y_kHvkk@WS2wFLn(^rH|PE~@17h|`!qJ@z8uxQ z1`(P8Seis2waFO6Mbb+M;z*-o=}L`6igxd348t-jxVD-!SpbPegwl$>)LDCyphie2 zy1*DG*a&Df(XiM+ApS>_$khT&i_p3n*axAE5to??FE*!1O><~>c-=%#ke{E4)Yt=H z5WP!oWX@A$Z@cMR-y(X>^Y5yqHm?A)3_u}f4kAhx3ro}vES+uWQfCb+WZIV1)@J5e z;%QTdc!f39kgP3x(8|ZRwY9nAU!K&OXu%9e=?6&zQCbzd0B*;WPErYyW*ZX-cIR{$ zv1Fb5qX4EGr^RDJ1N{s0B(f19rLa8Q0nY?W#eSev21n8qF%crQiYlpNN05LCdk9>4 zkZo3R-{|l-ya4LJkt`p+g9TL?NDNU4_>lwvyS0_GZX=)lIe%3G=rz$p_rnejy|3%b zMus4jB+)Z?Q0$x9oQ=fvqKc^*P&hjQv#;pEdwHjG@EypvCyUzs+)((@r$$wDDyhcgcX;`*d2H?3XaKnq zu)7r?7onfg&N&V44#lDo=whLil-pnNkh~ksEenAtTV8CyzI}7)k4t?Mmo_<$X>ipw zzYAD5vuKU5MOkrJ`HB|cM;G&Zd-m+9sVwAR zi~uSQNz7evMG%KbyUi*0S53HHe|-Av8HC!k{xjvb-bUyobBjORXQCH_pwh--oIr^M zfbu2Dv@r`y5Vjm*Rmq$HR_xVcjbDe>_Be;tU25AVq8;}VDVuccF*xSbE(2(?l>La0 zL19?gEls5(AZUS>aj7N$$j&p58o1+!5T13OXKMWtz#Z|v8ZPg8+2?$O?Ggk->+ugR zS6!oDB6qBzo$2$aAG$9Xk zqhGz`Qzx7>s_)wX-X&?p!35rce6!(WI;A}1>8_ZoeLo;F0A70u9V)5bsh~rSpzR(% zDSU_WX3~j@B@^$c!Lo#4!%|H`VjN6Qpn5=W6#8>2f9UB5VZ>KY##jrgvy5B^{Fo;p zLc^f8GAeX%)C(ZJBjXO?$p8@eM%@%M{2qW_CAl5s?&L|P6H_xARU&!QJQs_qqbR5U zo-Fb8K9nWFBpg8W23DMm$q&mri+Ujf72cMC(Hl~L)bD=A(2P;yHIjc2AS;AAQs z2o9&WkET)5_}LHSyU4R6i1jPlgTGHgkQ2aNI^Z#8o`e*Eq?>pYKd?@y;!i+dc3$<) zysw*KSjUjN8nbA&_3}r_$ zOlxCk>st*pv(sV3Bn}w8PBex#At9d08E~J};cux(LgSc_JML@=WoKRvcpV+6-FYlJ zQ9NS~*v{ITC!kJmxs46zWLon;F}M$jDgeeLs)hB-Q!+9$&4D$e`OP6=CDp}16jKCN z2Akwr~>)D0e`pNW@qI8@8 zf}d&^JuXPW`>(ex7EQJ8(1%Wa12PP`WgrF@ztN;ri1~v*!-$#I-E|(QcYq7MEfYua9hHksBob6ib(gWo(BHC$rhuk58v;n4$FjdxjwY zq-S{d5f_Hnj3#}rIr>(l;w7aQRXp@^FtT*wBxpwR)Y2S<3Cvf)4I%q^>J>f(20Ofq zzS!I0lCtANmg8q`@!19LGAnuWJbvE*6(I&Sc%v#r5WfScWznH*U4FD$WiTI+es;m7 zUL$f7LV`gSHN;^(6cifRTw)_<(A}ZS-F}hjF3=9TWj(HK|L32UUBB|?@kz|Gf0inT z1GZSl&+wYZ@98qKjF2o@-~mJ?4-cOq(GbZfEoI+%0y;nSiZ`Q`rl?RkN**AjE;uw5 zXlcW3#lHS-#wGQa%ktnVxF@P|reWsC%4~KRPyDigqrM)-*BExHj3MBFcWoEPfB65U%z2!J}g{ z63X@s?(|UCs9y9E^P1V05*Q_Qu8Ql{YKV>J*v2l`9r>F(U@6||!c&fpI_G(KF`l6N z8-yvi`Me63Ws0r6AH1M)AS3hB6e%IevtOY*gxvZ(6{%(d+?3*@V)dX!lNW`^@D@Fd7_6V z_)0ErhC@dJS7L)SQo(fC)89Z}-xAzMAJMv(K1q8 zbiY7tjf;y5Prdji>yg%oMe2V$(OWFQN$Ll8L8FnUubQ0|ce?w;cxvkP>(_S-6)Q8& zUIUo5mR=*dR93J46%MxlcrSJf^RR%_k_xa;f(hFzz%4PK3_(xOpkU*p37V!I@#Qi0 z!VzJPfgldU{LM~cY7x?S>cm_3vG0ezXR=nRbo#l4c>I2io|AwbK*AW&I?bQ1v>TZb ziJ3V%^B(ev{BY9@0&8Y<2V``HFbm`NY|a=NU0gle<~t@<6uy~Ipx$6OrcpmiyBqpT z+07h|LD$&z@ue-Z`krvBh9Q1UN?rbK&hovPHS-=^KWHsHvyGk&y0R4+k3U0oICaK6 zMD`eR4|lZ(d#*L^T*+da#_kbVxlql2^5Mb1A4@t&d3pM}q+g$TudqP#L-$TLv($gC zvVd4f+|Trep#&j#%B(gu{+p;PL{onsx3qE9uRDBdtPKP;~?8q8Tx8B0Od3U z1|rDnhV=phERyVj?QMy=7o^+ZDk?sNS!;w0ur=KhmhvV3uToqYIL>jYcy_kuz>VU% zoc%@5*~%fo`xJi+ey#3*>lUZ&$09k;jnAZI|LQ#o=MXx7{TvP&>~K`^{6GE_^a47J zeso%$z)y4lAM>x6DtH(IRv3~nsq_UpK@qi;WArJ}lIK>cVxfweQ18Td27msm`2P?2 z@Vn4iWfp3|ud_4?>+9=Zz4es^kb(C=lr+s3z!Mau_imB*`0c;U4#{ijN1jk-Q~Cb! z1g|VuY0?IKB9C)nuxa;4<*r~l2)VcwUdBOS)+0@CifVKsNq)z6GKPe+Ux>)zA zT(>a-U-w=(C$jH<9j;-EA&%ZmWSG!{!D(^1U_-O?q~7*9Elr;i98c|a24hhbwhxnq zUPaE@$j2`phzyf;TXZ=Qr-y*&+N{B=WdpqgPCIRv36z+n)GWvYHni1x;<=o+#L^qK zpN9PO4E*13@FbdRl2w>9$NL|?fKzjMBN6bL+0G6qgQ8J1ku%&N7lNbpAG4R8LxT#8w3thkqCD&*v~kz7_hUr`ncCC08Wt@=GX>s(4PrVOoggPP$Zj= z75u1Yq@bVxFviILdaOOs_S+Wm6qI^d|RN$3H9bO&t}F#!-3ror6rT3BThKA9t-ej=q7 zw%d*ApVXqo;4>XFGWL=fYF_6hw=6hUK}j39H7~|mjo$d>$fH@S2uWlUE1t>0cX^P) zDl@(+7eN|pboj4O;)MV%=tShnPX0dqw~dp|)SS=9QO&8M(3`FpPyareQ6l4}RJn=8 z_Vlb<9^{^V*f$RRq_Cu9`C!BA*AL1|255YZVVcDobx6vn)`sZu4|O@~L%V613AiCL z0)8GDnVu}_&TB$kaM72UQ8m|3`FwA{OnXVZ>CdC1wQgeTehN&B=)og$QdgmlE*NkF zBA&|fKpgVE6iW3>@%fCBrX9i_n;cu#dCD#0v&MtU;k8odL08+= zreZya*#X44!9JJ#Pr%Z#*|PbM_{;3$nk(&%qHYBc3RFnb((eMofpD@}PvaTmrelqJ zm>$LVA(`Pc<~9zFV_`{kK&Crvu}KsWELB8o!b2r|b_E93kVKN|ZMLoFd(il?fSC#b zDG{lU`3TWCyDNuHwyjz`4%3e$U?hrpcoJvK zvgcIJ60=5aF!g~U&y^JwuQ6##0S28FR(c861muln+QALZIDP#4cTsR<;w{N9nB(^A((GTmtc2zhp82AerFviaDje!+@#kNba8kqZT#vZ#Lg z%Wu$os_)OE#3v?V^kjJaY2<4xA?+W9? zJ89Y@ZI$UyKxHg|?l+}NcFy{xXmf-IGCV?fGJK#8UDdCq1-HAG^tgf+E{qIX_=z1G zyX~ftgA8hdMHCL_{P2S&^j<5z>D2@h(&sewzsRV_1$JKawD>{!d+wrT^xF%FEC3;8 z4svVyHq@${dCzjBwQ}EtSMNo#iX(YOU@zm+5##AU=f`HRY3E*$7dPQ)dx>6??Q0b& z_)+VpzottXToztQ0v;mhIb?85r`DcPl=Y73@nHV$;+xktIHebdva*YLm#IZeR!)!r z2qImMLE<|71GR!?+Kg1XN4Q%xY+pQos2J5vCH=f292I1W#Obe{{+b}<1%`Tlu(0~e ze(rSM*9xIuj?Tq_20pY0;G4}i7rt-$J55Gw{6y!Qn=^kY5}ypez`{Vp?!>^iY32~$ zs6GJ?71b*esT@D1)1TgqJ)d{et^)dAjuV=Ku59|6k|#m)47arT#E~1ml83TH3PM*a z3*7xOxe)+1nZp21z|6F$yX#gWx3uefRTPt+f8I}jXqZa7kb08^ix!0enx9tgUEFHK zEp6FyoTYyLO1zlfzU_y0Q6QvAHfZWp(VtG658xYhcR?NuhoYrp?(Yq&(lX*sahc4e z0EZ!}Cy~#9iB11;jED4|(-imnUO&68Kbqer@NjhXyFYqJoTsIhK(Pd!>DF(y45dj$ zyTh+@nv!|3*?4QV_;?1ins|OM=o!VBQs6PR-|*KN6X6YFs7|cs>T+1|T4A#8?4|Y< zfrIL>>6ODeajq`dR*=Orw_wbZww3=b?j_f*bC29F!nAdm89Akjl5Qz$ghnEC~pKYJ=-{eFhvzy1qA;F}7_RXTyizcms> zmwlA6|HVJXe%t?1RZeZ??Qa~>dyO?tj0KbUCoyNFC?URVRp6ptPOy@duAcY)`tFc_ zdAEY>rWr;AkD%UqjG9oH>SH?*kFUZN!mOtw6)uq(P;y+EH(TegUI}?jQ2d|f!0jh7e%F@?#;)4+nO8-OSB0JcE61Rw z_p`{1x;jM#*_)oBGZ<>Npos2};~SLH^x%CRtOYB>oDnQ)H|ln%lv(($Q?yk3GXGD@ z)IMDMZFZ0%QtV3Sw$;A0W3bByRFJ0?Rc6icyp4m^l4!EYju*N;-9c8NH+S_~Z}Y zUA)p}4HRo|89PjiAW^{4Sc7w#x~hGOu3Yia*FQMHC;dHd-qbE(2)^ctVW>7<-#YeS z?|WI>PXl5$3L)DjKbpuNV1nN--tZqU<2PsqCzu{`iN{Awn=Gh5Q-==)b(S*pCewq` zb#4(4sg`vfBFQH^u3h)Ie~H3H8Kk}ljK$NU@fz3&z-LNhtiXQuxC$dMh~LDbL6p^- zg|KI{g~A^DpP6MMn2G%@l-d*;x(;X&sJLcr2Jjz#Yx+GFU`m)ECQM}L^DuL*rg zH2r+pFcOob;@e92Uc-`}eDud0GJ#Xqu=j$7Fi?P0>&66_Dr!?{KmyDO^tbdUSiP08 zI{VqaIUj;&+T`CWUMZqhIf)+uY?lO+J$V4{Os$Pl0i+;SXR{r93}^3AcZNvHfbd{I zvO1tty*7?Ok-}twq>Xs@?j7OCI5#Q?rDHyf!H()8?;|rz7EmBX>$#I!W6Vc-`wi3* zI1JE=)HR$jGy?ofRN86YH?y6bE$BBRG58D~`U7C8Xk07&zV?sjN}5jc4miGc>b^DUTfpM$~IzDx(RT5V-ij}4sKaFxK4 zT;qzEGTvnU!;t$k3nBHw+a~%_fHmpum$G!~9@sRtN$r;f-!{F8rXhEFRinFkblBRY zB&Ey|GpAeD`Avs~B-CXiol`eRJZmEteHi8ekP#Ds>FooLN4sCkvd#)@7B|})tK~ePRd_V1(XII}`**uO%}C$(TCr7SLLb@` z@^VgoPDf9y0INYxw%}cdZbuTA&YDRV4m1D=;nP4?fhKUxm=5aCta#X`YJg!%x{f2s zgS;s|v9aY5m$4ZJYd1-Ro#uqS&-YxFXL56oEU-La_)&0Bq&j$nf0@(dyE~T2l9$^` z3Q<2VO3-ZhI1r?&BZ{UrxwI-qPvs21`yN%le)+glMJ^(VPe5AQvcb;vLTTLTYBDlq zAK#XJcu^LilA(a<&8o8vVzs;bUp_sxG}5~ymVsGcesDAbJY2`3>9UH7f5jVVYkJ)u z+`~#p=iRPG2px)Fmgy&cMKK^w!qP{ksbSA3YQ_-OnY;TCw$mYEK;u0-0`3uNBS?9UU;tSYR zAe{jituy_-LhR^sESS*^j}_z-A)wH2IZmLLF`PyCC`g@k(bu)|W@+`_PUK0S8S5SZ z0fq5%rvTAyQe0hc-`*h)Dy%(811!Cq1AywSQeuj;kK9teGS}w#Br1r>w}e)}>hmo> zsU<*qr^h{v&6~=>6+)gcEBB-4yFIkTNn?Af7DG9s^PN&zLsL`V>;q~7J)dJdl%qy; zMx>IUiP3FYbijeM@3UBk($&?w`%C?c?}=@+5tzi9QRFT)hAs753=Pruym~cFWgtk0 zE9mxZD|5R1;Zj}W5{+ZrXN*d3@1CuuDPVm>D^K9ymV5m!{se~f-6F@0C(Aknh z31$ZC+S_UKJ{rbqjjUg)A97dN>3dib{)VuFv<2Dlf;pUXg>-5Si^j!*FgfSC!1Q?l zOV#h}318PrZoBO{P}V&ly2J-9oAYJsJ4MFc0|n7zZ>NLOpzLj8sajGV)G0m6xnrzjuyN zbHZx=;k=(C+`qeYj&d}xY?!9kRoO*yrXqvBwy6#y7$gbCP$qC66n0sLq4ux}in7R8 zXAo$~)8;yQ3=;PbC4O<*qcegc*^ZE&$}U@BX*5g!QAI8Y|I?l0i+vd-1qCkw{xMm& znnwJibfLlq?ZLOkw$Y1zZmc~UplBg@7U+NflZE@Ez~6x$EyFc+v1IT2@0j0=wPLjt zPr{(M!CO9nJo+u_`N6yjM^Iq++AH=1z1}hyUWp+ zSUMWf7#bKwMVQQ8s0m6Pe=xU=QO)kX$Q1f`XSMC8-VI5^YN>TV_jI$)B+(MkNOMAY z%W>CLZ7a>rqp6#dlnY8Snve_bms45sESJ6>259I(O@kpG-?$aEgj)t&8(LIn+|rqx zqQ*jZ#@@KDF$ZxQm8w4uw&mGpSH@%;PDSn5u#z3Nm{S}5VntdEOZT_qUtZ_0X+IN` z`K~cIp?TGWT20Z5BKe=Jw>|>~lQ=&IP1Ef-$y8+?E z)3_VT>sJ&$95K_mSm~GVfYuUKNl!H8QTy zInz`t_Ksv410n*u6}j$lN3ERp9e82=s*tZiqvQrN)4^#7CjEgfAx_Ci$|Vyl{v%eC&6L&LPn!#6Cke z{rkVGTo2p$D4r&w>G2=7ZLCLWD#(873n4KkGx)e%!~2E4D;)M&rNnl|&Mh85m}qOd zYf_VW(i0Acl#QY)dQc43O8IEDx6IahTl0%nTeXsv!wzPw)*Pdf1De&AHGP9Rsm9&) z4=X}*U)y(jX=@XXs;tTMVlgFqFlMszi@<9X7BW`2!L^1bc# z(dF-UwV$j>jt0hTp|Eh>KEZoXCkI0}7KI^pT4)oB3JYH$H>ALL3hZbfgt=_n{1K%T@kQtE1e4Myw0n=84n*di)!E)sGi4lKdEP(7w7!h2Qx(|W+CMdoZqj=IIfjz6jjVCGhxA&z_cU^ZI|7=Pu3eCFyKMg12 zxEfAK$T6k{SB_#>V4eRWd5q!2&JkeI1iHF9+t-^>){}}8m04^;83v0pjWv4)miGGF z$Ji-bUaeWX`;AUFu1(PgkQqvIjuFb=#4oq#b5ARB+#5D;f1ohuMZB#1kIUo7ekyHi z>T^^S6WDsP3tm8hmUTIN8xH>5-pEse!D@`38|B1%7!5q3@4LI2s;1H{!E5coMyj$m%yq{oIQ&G%l zt*M#X=82TMUB!Xpqeq8_hY4c<eSLAIJ^vfE*bMOV05oe%8lpkE zUA!L)<(&wP2dK^R-Ku5VAUBE(BftWxl9&IIZ=s7w+-t63tr4Mt`0Eo(~h~p~^amlE(SN4b$@U zQ^urZhU~=o-Np6&Fjdh>P>0HwoQ=Xv<`b)17GGkIb$;fO_Qmu7OlT5@to0l2+oFvi z1iE97FS>Q*b5}IGkDb=8cUr`iv!$?Jg=?t6zh~Q?J)x3H znaRpNdiyJ1mu|z@9hkiCB((?}7Z6&zRr!->XAv_}xck*73GL4F25qpaN2q*uE7Oiw zhrNg?)QtOr1|!DDQC)a5Nq>I&f|A}tLnxk$-n|!?cq?UakU#w$ilH{BD79f=-VBcc z2`6YjaEfOTpR>}n{{Wd+@&0bnz|pUK&b%vG7Lz~~gcvjzS@)rR^t7Bs)11`1Z>Bl< zTm>gy$!0Jpf z6pOceEf1NM&@W=fUZPxGEiHb_tK`Pu1yLUlQr7aPB9VD;uc2u6Q+Y1QnYM;O0m50DmQ6tNhjbfUz? z!F(KC)_RG^V)V--?gW%!fB1NmYBd%s+9ydD-T$(cb{(Dssr|w|LF?PuZc)#*=K9FGR$IK|wnuz_Z zz&gL)12;n-sp8WFfIxx{M3)Li|NI$u1S`MLfl!>qm;f{WL0k~gHLb&-3q9Fk zpwSoUauHGi$+j{ZLdo&{P%WvWo5#(*LM)|`52jF?+_nsi-f{4~OKSlpcpbRH6xu6O zqh%ftR>#u}kQP@Q>!O`c=J-I5gqdELbHgeFq0u6hoGYAcE#z}E!Y5Qguwl3EhO*d1 zrCIxyyPoE*eul!rRZA=(A$8z#A9JENVBemIy5*Jr@GNuFfbM@YgT5gTL_GQy3A7@A{>Wb3x-&CzIOvAOp&-0T@{)t>lpD*D43&&=JJp#cIq zfo`^;&i2_7*2Fpwu%HRpxhyuhc@T_$YZy@|e4!dEEoks}19$*4Zcr z>svLs_Kx>i>v30CY<7Iuw%kha|6)J$b6bDGfJ+J3+?ln-?q+Y+RoCVe2@E5~nyZ?He!aj`iSj zAORLyk=MXK1>UUp2$VdzhK0+@)6A+Lu;jFy-^#PfqWKgw%Z74!oh}p1c-!s6(ro^P zp=V2?xl7O)`}pXI>TkD|>QqZE8!w7iA6)S=w7`yAaOI>>;&sGjGKWB|`0U@v?)D5n zNW2l*w6Gmmq%e+OP(=f)$h%~Y9))z$@1AXkTg@Z;#OZfg1i>ef}^8U9&w!8 z1R-v14J0*McXrIGJ&RcsC|BwJCAM$I=(RE(3tXJB=$CgNT=K=^Myi1R-W!OEsl%;$ zWLG>rrzu4ESKHXGbxYgNw;H~LsZG-E!#=H*eIEM1ar@b=F^pEOTzm#2M1KHCrbw>C zV}AWrhgu(C!p7YZse#fIr7?%|%^zYys#b{%J2Uiwb$Tqkh?fKulb4s*VZ7w)LwhW6 zgnk36vjPC6t5>gPhrzc|Q@QfTAJv*=)6m4pyC(YRo!Fe2+NV9Cq%Jy|1{;kUsfI*# z!$<^>F{f#_Zdlj44BniJ?o1{2-Ox}IOwwqy%x1D!jlA3D+9T?R)in=zaLvGF8_=m| zJQP+|?^hTz%S>OSJ7(_nD!NME$2YSiY42m%^F|9jzMtg3$#sC_nF2H4w2YF z?cdcZ@YmRPLw?Ng4f@eR!%tiy3zQkNF<}n^9(I^Qc6N9W|8C{`O15c=^=Y~TqkCuY zB#e)_UY3|>Snrt@AS~~o^R{Y6({GakMSLl83e`#_Otpmplj5Tm)rp|iI-aISOt+1D z*9oX}gVXLDi3OMt<8DwAP$MJ46;v;&XPIENmPO+W=(MwxtODW&bj4pksSZ}ycmQ6W zUW-$H+iq3_NIdZE=ltdpDUBe`jE18GVLcF+#@yK{`_tlxD0g;)*ygbM7vTpiC)TeW z?OS5JXrfz^#h$2_Do#;EEL5oH!?kLh71Z?-`Tr|x7}U~{9K z?7B1_>BG&I?66I%+}E2s|7j4M#X}?JV&Jzhd$neWKh`SekoQE~te{uFr1dx#e>iTx>N=w*LBNZLWc5ax&)%u6IlLBXNAa zxy#+U&MM!Y7xld>^0WJ*nIqhU@GTI1R7jO5c!HQtr#`8g`O@z@P7 zuMI1^V}{$He;;u64uk17t+D;0kBN$s z_g>G~=B*$9RKE20(WJ?7huG|-(_*QEu(#msO_aH*Hzv|@{NlK8@{Y328G-Yj@h1zI zkF6Og&NiIe!oT%S`riEF>vh5nppJL$+$q39XQS(rB|fx0W#V#smv9q+&Z4l0;_P2V zwbCP=3K)oZ(5ad_N$IER*<@$tQEd*??1MJ&bpv5awpTyy(^6RfiC(9H116a0y( z^{-mY^d*Hq37O>c2b`^6*1O8t_@d!j5BJHOguVlAU8!ie;HDjMKL8twY_w6w1DAbv zQFk*6O%~{6I!bA|wg0W|8UMG|-11{*7asbs_`s>r{j=`f72wOLj`0u>I^4|2kct!S zY@hiwS8kw@r%8!-vr?$Nw4_vLV2-#!k*3w4Q2F>rnZ>c=^OVa*CSns_J`FBTx$Amf z(t`~$0O~_r&H>ppnJ%XV@ghvdV6p&$2y44To~a?epUs?AC#BXsVCJi9aid66|FQIq zqKJ>G6PgV3;A5_3F=O8kifCXymuFz0@YS=s*uEbNH>_yvhf&D7Ye9U~i2KkB5wUrG z&9^5OCCDt!?(15eF>~0kcQcn@&_C26E-{NC4;|(aXu>}=ls`3=DzD-EI*)~sV_|XG z2W+GHLoV%~EB@kTv(SDFtiAQ};*L@N@8u%KJH&5Y>%Z+gax!My>ur`CFj#_3cUCJ6 z4{yCCe@dM#nOVf2aZFiTf#t?#kGJbbHrX|&FSC5P2N7;SyJtbV1Y_1}k~aerXwPW9 ztpO|xXyrF`ukZ2;^IKJa*T?$x4ZdJ0mf;9OsD68eP!%Ir{jv(%Y`ky(5s6sSn(R`= z(t@h>C+Z&e&dD{rXs}gDrtI&*lM}~p?hxRNw>ofKGHaSu#9e>4y0&}wKGxi(yOVi} zCKKYG5W1FY`o=(jhPuh8bzBIGoMEJ;H~!dq1Lx(Xr;i^$?sm1Yu{k#;tp9q4>3v(D z$6|i^$6f>u$?SUi|0w(Ku%7onejI|?*Yo)p_xo+#v9XTTv+x|a zC*3Pj`&x-A`#8bAbfLV4ny2PJ9$!7j>cvsQ1hKnxFX?_-E6BL~oH+3_$Ak~NV9Gb) zkRsAmKT*vHAT}T8=T)1h$LF#({A`bw`|;@R!tDJQqOOeB7Dl*^Wi%T8HaL9vYN5J_ zsFE%lDcT+?-B-xZ|Ai=w$H?4(*yDf4#@j%QCP1DFk==uOrvFD$!H~o5ocia-Dv@HF z2B9WlV#G_=1pqPg`ry?DBPKi3i6J`C2enLU(xqEF))VO^>Xiy-zh5WD#i1nrGv8#B z+}P&@2vuJJiV7W!t=B5y|oUEA8)7N|0Gar6{C*wobP zUi*mDX6&8De&WEx(iOLk6I5;rObmg3V*lD~^b{p*=GuS$YKDJ&|3GDZd)A@uSDd)6 zUp8RwmD?$5uC>07zXMw2Zqzi5K3SH&cXKo`L%ussd{Qpl|EjC*ExqG=x8FN*#dKoR zvt{J%%lv})>9{xXMi?JBu$_fYN5dq0)q#uq$ZOwfZc4T{lHPM$@78-V&)Pz@9n^sm znsKrw!{gsWdpw7Pb5?up)h(E7liSF-U0CrU!;z8|pUC1^vj6@#^Q7J-4YC>C*V}3; z22i0zVsLMKY;5e07Jl{&C8w-8oo`hVPh2}|SEYLy2MZlFE#lX?LzN!H5Toj=D0D3t zo(d%;_)q`$Q?Y;JW0DCf8y`*f_Bnsa8}&3kC&-N#FSCRdIsV?EHQdWnbeYm{ZpB2d z=AdbjtbJgjp~ka=>U7RZKnl*=6^pqCv1L@BhuNFHy7=#h4XW6G_tswZ`{lFLF}C}Pk2yZ()?f1>wGy8ZP%s&CenDMY)yfYCwPI>q zFJ55obmFZYcRIhKjJ0-0tr&mPLy~yc4g|~KJX#4|(JkOFHQ^ioeX{({2R9ujPu2A% zG12b4-T%rU+MTq3FnUsaqx*T6-4oW;qH@U_m=aj^G{#Z{Z|yQ6%qO0R>@Wh@k%5ip>i~!8v*W5l1HYAb|=XbF6f!Biy2BZILXHSxJuAHR82s@ZnbT@Kl3~tbq|(2SXP!yZ`;F zK|$BWGcvAR(Hj{pE~aT;a8K}EFt7ccWjW$l*cY^`vuh7`pG`Xr7ZzOwyBYh2Ugm64%c582O&#Y#Sj6cpB z)T1-LQ)66RKr)t(KbDR^+9g;aGBMn^yNpxfn{#!xpAUPL6A7)juys;r#XSV-%{o7prtxLi&JpXdF}E!Lb0&OL197#Fz*{?~*n zU;8rPTC>yIv>KMpeQ~l(6hwU~DO|q3My_ghRb^=3Iqe}CH4PbNjj=n^8}4|ncg|U@ zB5W`FW!W-4(GBE)>Zk?BfOA{t=br#CC~8|4)!hGVXoX$&*=btRoht9EM(@-L_h-MS z$wySyJeWYS8gCDeuUn5-)&t8<;OV?~pURO1##nh`-buHgi3t&q^xUC65h#kVkc%k* zcyY75n}9F7hRpJ!Kdllu`Oh=){4l%fgEH|6F9r3TtLQa3ro-9Ny2W+CAU#8tYo5

0GQ1wFo?v# zZl{&~?IFqJ0^B5+bMM-syJrv8plO`oG+)WpqSn^Adma&J_fd$oiB1pZeU;z(D~xrbU*=C|D;m8jHxT{lo@y z{{8a=xXT)x&P#WHip|?J2Kh@vg!2PAvT2+rRiZV&4_A>#hFfpH=Wjo5#6#$~gtu&A zNp~l4G13+lEPEcb#$1#XntcVD!T0xd`M_9o3~u`GkmDCLJY!lE?Yck}PUQ&cK(f5o zLzmFc7JF49jPI^e-Z-$vYmiIuF}3`u+ICpy5y&wG2aE@TQ1M0UQhCYE5>Eq_ zZ4VB|`zQfw!vFksedl9m$?cx^yWfj+919IJKH1PGSfoBd<*1|ICqZ45W{9$`r1Y=> zS^n`%7Frkn_n_ffcBU>`Q$zqeby+qFa9F3bmQZaX5&nMv#b-fx)6A z_|<(&U-Zu(Wv1vhjUAlJVJ>sJN)|xBF9vTR&bm>K{9h~Lfu4=D-;S!yT z|J;qbV{b>Gk|3o+D)YoZ41Mg`!AS3iF8-<1MY*Qe?u7a5d_a99#RfO^pQWlHKzHKA z3DWfwb;}O+*N_km032?ed|A(@xl;;fFaE4vAa%HCedO2nvc^@Z|7`KTM86u4l_iJx z0w*^}ZvOWZxmxlui2&e#c))_doz?vOgiGn!hoKGUt1oK(_?~@ulX3P2hI4rKB2A0C z2Q@G;9PzrOdD~yRCl8lmh&w%tM*0Oo5>AftEkfl~BeQIzDYyJ*O4$M>FkrnHAOh7B?e2ahT&nxF+wM625{)zs(w$&ime8;J?BIKe>fVM|8L@dYb=KPr9-mSTY>XUa%+1YVeZe_e z{h3Lezck7ANf5&{PI}}=Q5Ryi^U`|Zx<~)V8fuFXX_Ce3lI5BfZ=wdaJuH-@8*DA4 z4Y)nBll|%wU&@PxH0{b{Vtt%wNaaCd1`Ez2m%rYKL-{lhsWESm#+-p&i^EapiAcY8 zLg8vs;n0CyS2NP5e*dN-7OuwP!UZXr==EI$Q&Ijpa5OS4yVIT*4!Y+_@YX(NkU#c0 zsj=p6r&<2$#LK5R4%EHAO@(!Om-rk_1-?okhd5w}a{uddoMs7?PjqYX>qnhpW?EFK z)|}NpUYK?&*ld37^JUMqcP}pUrW_Yx=$S2$NBP$QV%3zs*h;G2>lo+fa(<#f`d#pFCH6!S~8A4{rRK0;jhK@WS2O9>~Z@O z9Q1k7Y!sL8R64OT9HgX`)sBz#UOu?P9*Zo43lQwEva$6JZtChHhO{x#zF{*597DZc zRP=j@3&@I}#Z)IaR(hE$4An_=d{XeYRJj&r?16yTt>XLqHrpGz&*+O3TuIcN zTcppk#7|qYlgP}ju$~noGqMEO$`($>@NQ&V-NVdFj2yj$TFnJ@sPH}U zdAwdM(57dCpsU^782{Uxk*h@l7+1P*iW$tD^Pw*?c*0$ytUku>uH4!(%J=@MwsXk! zWhe&)1O*j_yuG}-zI}`7--e#N3+g(?butxBgNSlS#y7lh@!~TSO=gHp0&-hTq*@&L zuveM*W)+Z2G-lc{LpSj0_vD`|$*_`D_fD|Txn-mw-P|P8!LEa8x+iv5ai?v`pW#Ye zTQ!=WyZKDuAD4XrB z?w%c?BkfW7%p6dxm%V+L$<6wcy~t4ShBlz2`iIrDGnn#OP(H3dzTCh_>z8L*-$Ew` zh3IKScBZnjayV$((XEQ)vV&d^n>HGWzY0s2dj>&`cufrMMnx{~Ju%4EKQ2lV4xd|j z%4#)l*5T5Hg4Dpo!zDM6Uv&Yr&sL9-4*PNyW#uE!Y*s+Xeg^@`%9z!M*wQ#cN+xom z@)pr!A*b>U6lP!RA9E1w*wTZ2%_(SCi>xv%GLB3^=k*O>^2_lYHp??8P&Vn zlM{?tF1GezCvWX^mJe24I0$7#Vp&= z@}-Mx+~x+Vk%w|Zl&15#<$Y5cyV(8oSRxRluPfn*5?Wd4UEds+ zA#9E$c&%#@e|Yuuv|Z6?%&D>KG&X~cm$tl*kd|b0+jE8`a&~byfB|}gR`)nq#lId0 zA!K}Fn#)cBEjK#VJ#jZaf=8(gsfkdzcyrTO!1lpNOa0m9L_F{KHqzZB-&F@=)cY@R zpzw^#q;A=V1TVy^y0_@+=+F+%EJrGwqFB`4Dlc<~s7bkv8w0?v!^I3Z=+ghQc@z_I zu|ls$)REy`lIn0cqV{G+_~UIX#=+*S2x#M1@$#;0jP|d2_fFv0Z+>xM9c%hDN^KEu z>HLcj`OqeNH@6FMiS$Lgh$Pi8ZiTUsZk!c&aVqL)yN+iYO_X2)wgPcg<3x}lj$=1& zkqu{}rZ-&WsHTo=IpG&XbhWz{yV@S-QePcn(GIp3sx@bz^u{m{W=c{L9|`%=_wleu zs95mdbnBheI;l&xJ*xJBp*+Qq7PT{HCY&n=n=uuELz4K-G{^3 zxw-9YhMjO@PNQ0m=h?aE=Kp8+=tM-T#jjUTSQ}8RZet^mn3(wdOsit^O)y^MiF`_C zRK~Bdv96ZuG^DAsr$P<29Y4@=h*&=JyS*d6{Ocfz-?@9RH8&dhi9yiHD*ko$Ji}Q_ z!VrecZKq5LKQyVNtn6x36m26zk;r%yxx>HRG?4F*MvvlRd5jR>S`f!Z$QJu+nTw%N zL~qisD5R{+O@V_)p1z1ThW*L?8Y^)gihC99|9%IZaY^9M;r1jvPvSsX+C-G@*-l@C z4zG#6NMu6IS1GHcBlTHG&>H{6Nlnufqg^Dtzd3c??As!&GeuXi6px2D2oES8wt1WcM;)iR9Y8 zSWP29coiSt@F3@(E4lQ1wQYBz_fRKz=5T8?FV*9*1UOdQ_|c+dI8`<<_Mk?OX5H%d zIFwGlz{9@?E8UX2j^#cv@akokBqc4)A+f>c2le14Qe4Z(x5hk2Dm)>o#X}JTX-6g| zY!QLIw7~3=k&R;tE#0wi-@cdKmQYwh zyvTSPFvwrOVvWJ$8%RV1a`mk#Q<#MI;tu{7*Kc)#?E_+H8GaO)SBnO+9Mnj8zjziR zWx5#Z&F-boK*t4{5jf|UbsU+`0XsnKeVSJVue>J&?@*s9{8dJ~hDF5YDAm!DKyG>tHPjz@T`8^;e3o( zy2Ry6fftgX)JwsMH*FSOa7^xD=EAaT!CuvI^5Nc|o~DqTP%uj`zb&HuoRV$-w%)h8Q zLD~oOiT8;X#|gzPTrPjTPi@#xa6eM=qA5D)*{enm-h6wbIL)~EPKfZof7`dZy9{WO zYQi`CcarM&K+GIoYE^6_jovTNqLLXJem`!&4yP5y(f;Gi{YQJVg#EVYB9U(C83 zKfX!mnn?MUZ@Ke=r}s0WnpAE~Uj7mPH_zh1iKcGLy36|#6zl(b;D_w(#ji}x7w+bG z2zML_=d40tNBW{@SV`hYaX2bi`t>K7Hju4)QAbo<#mCL4N&D z&*{+0AcT13A{w&fnXkzK!iG#E?%MmauU0kZjAyrdF_>-UT60W>C6fOxQO6U(H>&ef z*5H=EFTF5#iKd~vtuAYFu%lWvm1M@rc#*#vFYEf^Izqr72T_O-iIGdsu{95I_2}>v z^&8p?xU^d``l(J$=4L)f#y1n$Og6o+wBRhVm%SDf^X&HCX95=aU@B_jB7k;2iO88k6B~|bCYc_=%pRGKkc5fxCQP=W2Ib!<9-`QqnZfyC< zC>vMZH@HeJ6lvc9pz6(>W?_uEy;x8R{P)iJ^~bPSkQ#&$W0o)uEu*1PsL4s%bEj{w zxpjI|qteM$-){d_HcOF8Q1-k^lsJuzjoi^T(XRpz_#McHS0qNu5OW2PDF6NcSsccz2;)t>MMnJjN*jJbL7HooJ@W2- z3Bdxsifd~Pm^P{X3gE95a?T764J9IAMM+ALQ51Q-)|r!{6xD5&Wn@{6U@lim~&Xh zvDn=S(tH&ConEI3Le`MwkiW}0tY+o$}VHL+? zWO>iGRHWIVA3?>YDo*^)E_%fFN2fr2t+E7i(7(379=DQP7&-(?DNfAFQm|-uS#t|z zQMgmoK|5{J=j%ude(vnPdMqr$ih?ZY=3r<5+l={}Gpl=$K?ho=q;i`@q=Iy?uMs>O|8zFYbn&TPU4!Zx|kWN!-;jP(3; za};n1rLyPtO{S)*rp1_SDtp53l z9B`W$G$ICk|JTqET^8^=MDPZpq_HucS2){w^4+CyOH{`G=9?G9`QG2z&VV(`+xu-;x&}t%rxIev);mjIjo><7uOMu zlFG#c0LPOhx>A&BrAyDXGeHooQ;i^k>HxwMNO-H83{$yD&@8A`MN0|`2rQ$7snG47 z@n*=5S0xW0H%Z%_ zc*cCghyL(;*@4%^uEz5_`{K~ghMZyrJ^kzE<~YddTQl0_8YjvAKVCE}U$LSX{}FER zbOa9w3rVyseh(lOw_qk}nos^i>*(tP4qAz_7WmC_X6E~d_JFoytIyO3cR4O)eOq)d z^OJ6(Zy)eGUj`0BV06%Gi62R)K$tNG;70G2>xuH4h#!f-+rN%c9_OLf=o}c>3xIa_ z-n}kXV_j7Q2-;JIZETIDf!UuQ;DoR%|MyL^u;fS}ftG4<DU!>?dw?gw7v!u=SDtKBcr41itk!{m!ztP|P}*k4n8rpMmJZVM%b zw2O_sD@{-&5WZIT_Wc;4*{w$Tv-bpzbZ9#A1a#+lNQGxkZ~5)Pc2t5T#|gB>PFNU- zrXFCI%<=aWU}j&O<`IU8-1(2UchZ#;O*RgZJ_i;I@Aw?9fDwG~5vb5c(Z7ztcSl0s!>kU4 zTBfOCfsbdoLZuF|SBMBvaDz7y_^@PC=`^S%4%bfs$;_S3ha%(=Fg}^#S5~j718vPXnV1C)shqey2<^t_~H>Sm2 z6}AEmEiKlyYrieMt_@Fv!oVtJUAOKna9+qLL@>6aV)E5T2jAdr3TzQUkEUGh7r(C> zf`>Ws-s4Ipm&=J;LF)~@X}UL)yg=ePA9T1Rx?-v zF)H4&a0>iYqdg}6I0+_8bwuF-(w;WE_R^AWw_0OXshCpV3C3wxhEVO%F$AHE<0u%1 z4Ji}A0O6x6K$bLkA6iPWMaRSYiCs^#+N_Xg06OwA^x~`6t=og&n7~zVv(BFeixvjC zujmqq?3N|HPvqm5*wYlMvvX99?`&5maxqXA7S0yu?wWfYBE%mkAT50rG8JizMuV*B z4a$H@EUtGHGDozFe`g@a6ll{bpl~|?eu#*Oh(llmG(cELvS6{WI?-OBLcB`Q4S#Vn zkE80zgw~Dfvf4~FqqN)Lnv|!f zzYoYgR#yB_>MpwlXWn$U+IXdIqke67(Wla?*f#*no*aDKOt-pQDV0<-XY0`NGfFT?FQo`6zX@Os_4Z)_BRX zL|)Zc+{8%GN5^ne&LQ!yO?(5@>ns49tgiqi`;Wo>Oq!M?C;YsYPZsK!Kl6Q_jivJ31knXU%V~$%DStir!-V_+>Z`!GI4+$0 zHD^tJhx?{De4!aSGxaM!b2)2B&~@&`y@!+P$jv-b46k^sZF05cBeTDr!)%xj) zZvwhA)ajDA!}%3H5&%vL%9=dLK~PA1{_9T@^Q_@nAQO5C$ZUQNHf?PfeK>AtMetgs zV;)(jO*BMyY3$)$Y%hQwcw*fH7W}Vf6EHU_Z5PL_UgeC@nlGg&`M0{|G<%CzyPA)(3SoT~o#eX4n7ux}i6b*gylr$uR zn4KGe(8zudR9L@c>>ID(9N*$M>p}c-5Z4}GZ(q78Wl05`U{hBKKgW;8i~z!cGNbq3 zmkY_qLIPp_0c;^$CeA!@KgWkj9$BZ(dzX&wx~i*@k^+1zn&=6MComdcZEKAYk!X3Z zfxEDlF?*8K0Dk`;P9j9~Q3V?k546D5|MdiQ(Q$krw_rG0UU_WwKjh_HE4>P_f$vj| z97gu5B{&+?IfBNcllrs)8yW_X0rnpN|4%>UY5j(t((PM6Bjzkv&CCL9JMZ}4*tX$T zVfgi{ffoWtkwIzDf{Vk`%zY@L{)kR|8RsGT2&LHLZNY0?zDU$hA0iddgY_YIVD!{k zZY8I#WrV(=#UE(_9eNy%1%1)6Bk@WFI2r?8}?gtUr{ z4H2N4sn&orYPQxYcW3i)aDebzh9g&4T>MFTa@%#_gGPBCTOgGwfgh>KiQW|CE5^*R z0(N|Uvi@z8Q_9WUroKzsI#7~1-(OUcff`tRf>mrbklNY2M_#GcD90^mt3al0Ybf8w zx3}Z#OJ?$enYXOjhH0+W0ihL492^|||ESs0cHnp;HRgNE!NNf*0xSS|CaI-m%uh+> zk8;b|h zJ4jIWaI5-o0waSzp&Wo7QQAVSVhMBFU`x(5qLKwCv`^@oi#es`6G+BxBY24Q~S$ z4dYe$vb1%37Nh2`O2SFA`Tf-OwRx!O6$&2GFj-&QP)&eafXU9?`d?gJ2+epmHBP5(J zwHcqEyXyFlP?PQ^dXbXT+;8`@vN&zSRrcp@j@&^s{qVspE85Ada(#HJXSYiRx5_yY znVXbztqe+uK|y;L!8Sr9iQ|?SL9q1l>qMJXYMbcYZ79T7mVCdv*fTv^J(VpwWOC}5HZvAvwDDJo|#K97IY7yDG3Y7)Kw-|)C zv{uZijH$K-#6nLXrK#Qawp+_D(xsx z+a4hfKE8T%jm){A)3V#N9d)E%==W3A)U54vw>7{$d8T1!ec-{Oh ziSPU)Ea;i;4bId8BngqmJFe0vFvMwWiD}sGkJmq918(E81bWEPBrbbAl9uM@B4r2f z)B9OEO7-YFZa#@$3+&!7ey?eENXoDs^(y5v^7r)Tcg614D7mqS1{1d>)auaBES0_G ztn~f;bAyo3#RCNeVcPpQPX)4x78M6{d^0-U#BF80VMDQBv%Qexf?s3a+Lpn)mo_%P zB

!4cH&YUHUC-?vldjlraRYpP7?nFEgk;hM;}1nC$B7(?kHk66m?&Y-5%KAI>&X zUS#YZv4C@Kvc~fq>n^Y2UCGPa@G}nzVAt=T&_^>PhUs#2wBb;|$B!GNSBLY_74ZbU zvag6_@W1FkLWV5<&;yEs*Va+yyfE}sY4^^qShwY8EO#J*WS$tI?71MxN8>Y)VlKOat!*PudJZDTrXveSo$U}*SQ35g!ZSe@{ z9+|RB8l@dk9+^KD!Nz=~sDR~|XV4ichIIm6W_S5-XR4MaAH933MueZ=^Wzu#|1J%F zeG60^_blIB6c7@kN{5^jPv}ymjkEK!t9ED=!0aR3P}MU=`k{+f86rzOCctnq0G8cZRi5OcWLAnuYSuv8KX zTyjU+bD28l=HEYPT^DROFA#xy5TYRdfDT)97D~D)=$lwric$43H-^?Da17d<_%y#6 zCdz*GF2RV&Qze01HzYM&12)%3WIq4&($J(;+y9JdRfw$I&P5(H|u!@_JO^n^I!^$4XlLVT<%c}$VlP8K* zPig8`pdj2DE zFg!jeEJ#1UexOE6k4Y8iTTXc(Xr$uZyPhQfd2$D|aNQ7^m0L(zRLOK_Ir7x2_%=rS zg|ij4QkbR+eg@JNrie6M2xbYp#hM`H_@neB3rl4j(Z%fzZAN z6!!yM;bLX$7-@+q;lyN1zx-Zy#UD-A=JM*_jxJ-aQTvrTR}f7{-Z`{kp6zJzK74Z{bG%%EMa_gsqGr2s&R{zsT2?GhF*4-bU0Y zq=SZOeQ8C{X8Bez9ijB{`o-ra^QiK~b{@zj*xZ`%g}^sVGmbuAH$i{vTx}&A=ZT1V zPBlMe3v<6OFaV@;P%@!K--3`?Vx)vmi;DbsuT0mF&-HgIm!zUL@9Hm}q#ogz7;5hy zCP`Cb)iqw;cXcH$&mg~O^I!0VQhkY>y~_&w7Ihtmg?W@bX1dM3u6%e< zBqG0$BcYwz=xIZ~`RUy+5lvf@q^1jz9Ab^O^;Y$_-)+X;essY=Kycd)9Xs7IvG;6W zsWpzJjF{!P?zoqyTUuCf_jQl^=*jw31dc4;r`@k5KiRKX&ilp)%JT!hcRYYQlD#<` zaoO_p8$UnZnVs-L{MYnZV}+J6vQGYQk(cA&JhXP{pQslY@){R}x~uuz=w`;*+}_uL z`5j|75+#37v9m-H(&B&A@AyT@h-O|=eMt0S;TPM>vT|~2!?e(yU2L)bYn%6p!(R%% z4LoY$MW=JVLi_6{k+cI6m~MBB;+xjmqUa|X4K};=+CI`vNp7VT@A4eI5i*Pe4j-W) z;pi&aan{#;x6H`xru8_%9;lUt-M$*f<=57RIuY1& zExMsh(|$IiOCfuOS5Im4F&4C?%#KTT^Z7?@KAW4_krD0T{XBm>+M%P}Z$VMf`Lrz8 zi8%MjsZjy5mEjigFZhMOsA$w>6`rdPF>kLq^n1pRiZ72Vpt8rK0B0kYyQF(vw*JzcPKv)~ zu=64*ecepkb3?sJNlai~FDuKAx|^6eGVC!P{E?e)R@5f;Vf|x<#|vhA(TOIQc?Fx= z)vo5?8*Y3o_c+~0B+L1(h|=%fq7HMHhvN=)^j`PP^YLIM1h1rvybf#<|yxquHrwFys`$4qSKEiVlD&^{T`Pyd+n;==g+gwlbc za?e89jhbi4p+Rd_vr!~7@zq|r59@$Q$03Ch$#jb?KuShlWkP}0`R&{8BS$!a1lZxe zzggWU#&;+s2#jMQ=6+!NEwPHoX-xULD=EEZk~>i+Kte3^cHAA1veV>B$+F9y7M*H{ z+}IHBgzE=GkIxgLeZ#aAKlFL@;A)7^J-`DG-EhounK4 z)z|-YfON!4;mvS7ZINuF-xsU&^bh{RE?Hr3d`33W@=5ySz7Vu{-+JBi+XhjG*gX{~ zTOecY`@LqZjm6qC=X#5%id2RhY)kiuXV_ec9G+Rv&u@rWKXOPMPIug< z$^(q@BJg*x0BdnP!j?{D0l|FGDynna-r{xP5mMPQ!w)wX-ztstw3xs@Z;2_59_DW`8-Zu$RdF2RP ziFKe$2ZUN}{L*Ihs^B|n37%urb^HC|O|og`)78QaKfb!oHN(yO;?bI)Y^KqOeIfoF zrcY>tXS=!W6#KosQBo3cU|vQz9Mh)8v07wyT~j`$O6qO%Uy1HDyc?o=qD}^i25fFT zqyf3%{9Rpxr?$pzW`D$j`j3gBwNk7ByC5F{vN$MYK1O_Md5eoqejADsUj z`=9P(%{yENRO&caMND7GKpA)pnlDfGW!UdOa@~#@?VzH)B|IXcwd6}9HI?q4V3-0FI>V@iuSiWp30Nnc1d zE7$I^sMw5ByJGrAoVIb+jmDP&5az|}@0{ssePnqq(=61`%rg*R3)RG#K7hjqunugC?OHAgotkl+%m= zx8VI!4<TR}~dgcg+79_$EwG`wIseMD&A zmuN$c5}F6pQ=<6a=_n{5>zxLnIYhx&@3a7xr5iKTYDa%V(hI2!&t#_GEfo6DWwUGc z#F>4b@yg6A#NNIG2oq|AfqS0S&Ogq)gb14TZxM7zNPYDM8ZHC5gBde^xlx|!7|DwR z@f=EgqBX(sO35#Z1C@Bnr4oZ(X^Q~Cc#0~foedcNN2U=_u=@F3@PRAr0{|orX1e(}JYC-e)b+?RJ)hFN8T6h~<;T z+25rVhF9AccpPwCd%j@p?xMCg0=n_r-==t`>@&VF-Lv-Xocy{sOlGm3XnjF<>ZO_} zTwKZXmZ0c>b4=Cx&+oLg6+#@V+|Ox=8-Ud?>6lc6@kxQA(hOJw#fuUW!ku^j7dC~S;^*17{ zi+9L;cqdnT|Ju`!hx2vjn%DCiy^EfoG>hLs(=o7S%^D5xZWirX8#Zp7WEvXod0=dJj-z{OJAJ9_=#nLeH2FZD`<&)>o0~7TeF6Ykj_28;zWJK~>d6V2{^s-qgmm37uxs zyhPq4-`(#@2c<~DujKkmOqsHO_3Yj!#9FnP-GG#3m{t?=ZePWZ;q>aKQ-?-+qayBK zn`rQoRrxJiK77KoV~}RFQaFk99(|p%d9rpXTw9F8utZXBP;TzPuo4Rg2XW(6V7dQN5uASYe<2J+M7el< zE{6CHcU639KQa5}Qcd`^{oDJC(YO%QGbOobs(oQTI@L6n>V3*?R@h?#5rN%(6B-}X znJs=ZKL`v5UVNh4#1S7X*eS!+Hb<({cNQl#hiTd~ty?ucRz(8?Uk6g?47ndKwEuQx z_*Qmh!%j}jFe9X$*rP7-S&2%zv&|7!FPlcbwVo^MHgk&)4G-_bMcc*Z;4nY?^WZDD zuUFhDsaK9ZTz5Z_bAQhCz=OH>3!U{(%+8IQOTc=SLgXT$ z00nMv_2$jx6eL@B&lMhk^o~HX3A+w?=6fW*fNo;L%?R%PM%M0h@@)sTUB8A782*Z1 zyLPSk(dV1WU7jX6R6no#IOfav_`}V z{)^d)m|TP*j>I0qXn@B};@o1jjDTzKtKG#}RiJ}^lDpE;r^8W{Gk_A$P*iCk zcH+d{5#yY-NfY}SW))Mvetxtv>Co>BGuaWi(&Hcq+|>Np1Gnu3!!pbH$>sO1I4>)l zVZ67u?GolAT*mPjdAPrJtK{a(W*jvb&wdGjQW(17(f2!qvh-E$CTi zvN~yw5>i$0=4vpmKeH!U1}(Vqi$wPTlt2lEbaJlNbFX zKvRXF&X?0XoZL560WZkB~I z25}|yYO=qvQl9j*&Bc`lMMj?4_-#+a;~}cgg-rZc&EMFZ0ke!1EBVkkYly9%*Kf)a zP(^R{aCf&$_4FB9L&M^{6`1h23Wo3_pQi~?P)Ug+DhYIkM7sd{;yq~pph~#}9pWYVR8}p2U7YGaRQe707!~tQRJ^@0a^ss-^gp+($Q!tMF3M!hK zM3ueR+H2*`aO04+1DIskv)rrOY2Sw43T4L&ABT0s^(Kg7fhXOa3THS21+Pq=KK<#@ zW9=k&l-v!oCJK;3_7gRg1^B)^%-fk}_pe>Zzi~ZgZ?VO#!LPz;ucjDQp(7voJkgtp z1eWbcPA03@wy6YfD`9^y#bEJI6EG8X2_6z;N77T%GIqdRc@Gji!}!V3QAn2Q!_$!N zE}SB+@QLgbgPl$=o`fSdj`)QI3-jK%V9HQ+6Y8e5vi6*S``~0Iv`nhMzivdj^Wc-O z{8Q7@EQGq~KaWYOq-<2t+>GV8ZAJ3O6XlN%lNj?R%|=EoOM+OMYP5Fk>cjvm7|t3C z{V~Xdm$-qTa{rKKt_J(tbds)MxZ2Nkq_!Wi?>inhj50H9m~K&+pk`@gC{8o?cvq|4 zVP;ITx_vI{=VtFslS3b~18MuGoeBMCBWniTM=>GsBT|-D%Qk-1xNmQI3q660^He$M zy63cIp0RAj=oYQZ>vo}oB_zr2ZJxrYf_sUI>K{R*Bgic*HK-8dyVo70@b#9dYRytO z6lO{f&3b8c)<1AdY?5@J7&IzZeU7Qs@haX?8+KlNpW|Xzeskg1w>O=ejURBYe(kL` zTa{4BYDJ55Iw;I7^oW2dDArX{*QqFqLN5rrsrj<2z2efiv5&M5vG zCj?Oc{B$YSeRMk27XN@%c#J2uexcdnoBk_aCECO$hLiZ_;Lt;`O9=rs+(-9d^ZJWY{NG*wZQW8iyos8>x+{OLW+v9{$ZN@PYnE|IOW|sU8*m9vSDvEju`SE z>}h#@nA+7NVedZa(VdzWduxmCA7t1w zH(6j}o_qhkFo7{_JIo_0 zF;AQ9UK6Md$sTGnOtx@$ZLEoti+}_hfd!?Il0p|Kiz9ciG_>yHih;HS^Kd>pjuGDU zQ{^k|afTH%It9`@j&!j3`zv6SnhjV8Qr^$Hy)@r@_W!n&U28mP@pJO-yOB%dJW0`z z8jXR3rqYA_knl{CW=DnNM+Us?;W>?rj~{GY$(Gt8x@{3H1XK_d9$qu*L}+!PtJ?=~ z12WRyQVw$)6fm*~d(0j)e z4KZY$qN6FE_%R{zaii9=%T=NjXo;iOZnY&j-q%{Cb!UF(msd|Yeezb!53;=t=f2qa zn%#8~2Z*kJYt`|Tp|l-`EcHm!qg@xof791iC_*OY^8JRcyxuRJa96(zCAxn6TV+*^ zFFsjmVXZw85tjLia=KBwJtHDpiLcb>E9aRTJC@^jGfs=2;^yS6z+ud7nhwS5JrhJ!K`WtS905Hd zjR;yWq~?v1w@Vg5M8a2%{5CPaQ~Li3hR&=HAP-bTa*i48c9fjpPv_G+(XM*Dg>&6D z0HfN4+1?JH?G!@UH}gwKtn|O8bk=`{%h-z+2i&TH?^?4ntua3`GU11MHI12F}eG!!IL}C{SplX%Em16b2jc=rmJk6%w zCc)iyqnRQ7Xs}vmS+HHZu=V6QAG6Jv#=DM!E~hVdIIY)Sx}498$@nO(>W?^@Z@_ty2LY{yX;RVs>WMOSS-vo1_ttkx z8O9e%u{t&hH=pwP0QcETC9E6<*BNrg&T>|d%-_1)7)I+eWWQ^w&SB(lCT;bB?> zv2s4ofaf>;x%=m5$910=4Hq);a?NwX$z2W-`$Mu;|C9&(P*+EKIPFiYO_3cAf->ZF zPP`(8i87k0yF6xe3l{9TrX8=h4!fNE#G$~RdKxir)bh6vQ%R0X%Q|z~WjI=WjZ1mj zdj3Ou^cC~AhPqk=*o{q2B6>=(so)<(><<1Ne)1%OszZF0Gx%)i;@_a$J@N4#6KeXi zZnIYZQ}rXdR0z)_1!eXhz)OGd?%liixXgg_OYmE$7sKAtL#u7CiW!uAdB9Ru9rq)! zwaPwsAo*_@nLphl#|O6 z3n^h?nMnMcpp-fJ9D3FyMsE2lh#D(j9k-u%K4!(h$zqfBH%-*G$Xa$WwP$^M-O5?v zJ=}dB?w&hP8QFh%9*jmP9NHrSJpd>gZQqUhy|>LX7JQDjapC1;_l4*VUGuUmtu;9M zo-vP+q&s>_u91`{8m$kd`5n82WS1B5Q|(I7WYk@fPQJK(yidcvktEC2oaXUiqEK>D zi#Ef$iv8q*{JJ!!gYt7Va`9{B)}|k@EqQN0yZ}qbsdn8a>f?<6BOx=b!{BA;8Hw0E z=d0k6ebBP*=HsCU>?}D(AY{^QDpwOtB^ns$HtvJq%KQEOaZR|vlSRP^lBKKAdv*S) zVFh199|oXi3u$4k6eSA7;6}S?UVY{X8XJG}yNrud?o3`+9@7z*PPc1M0@y>7XBvEF z*JydG?dlr};PlBS?$p^=FY+JF!swyETlk*Uya6q~%f@N@v=_W7p zoVw>bKbsXrb8Jm3hclxp+T5=ahb|GQfuh|4X39grxtiqz?$hBI6Z9KdUbFBbv70&n zqWjD}%(G6Mn`Nc7=lhatuOjL_^7(7lGgF7mBig?$R|=cYFB4~<^=jMxK2EnW+SqS= z|GJhF?dA%!>7?*dP03l`{B2$`Y55cDF!pmL)O!47`t$KV-!|5S&BVNWGrG)wmS0nC zrtY(t;nU~lTq``982T5(F%{_hcdONG_?ByAA*JW{dO0fV>BgMuC(0cF(f=HVd^ z|Bk!a&DDT;5zm1+8-$&0#$oNh@t4|(SnR#obMwMU>UZ}{sCY3{Y!#%*>QAg1Z7Eb& zp3r=+o$h{3Q*+0Cotvzy6}}Ak6ABVYSu6|v{pw5G^K3Sg^Wh=@@5)`y%&WY-2-U16 zuz?^rWR54?miqddqD)^z(hLi;&ZfK%VTCG z?#{cbW#?}3YjfaMbX%ibJQ2dQr>XqdzIPUvYens2Y-{Fn!Vhj#>vz0{2Q<3VdlVv+ z^W}wJPHC+=2@jgGxA+w)6lE0s3@l7LczN9@;>O77fWAmnms)n_FelN;vBID&kUGP9 zMCZ$-UgB(n&CIW-gZ?H*<>|EBUtKzw=0mR@!xGWeklf1TDT#_sV$twR7&E}jxXemH zF!Rq32MFX4f=#!Ojf+uoPwj32HoVqz;Hh|(wQjpfZ@TXAcLx91?{6MW$iLcsnw_DX z&oAL!{v}5S1|j>2Y_5V?2f_|MKK{mDmatWjz$8P~LVF7b*1IINBwlo8&8C^LiKlw! zvJIY;tlmqz){{AJ4=jVqm`zLaOg&@g=)Mv0(@hg)>SZas&-uI=Hc`*6n58LuIr4g9 zp8J7|T={R6@|fCt7OFms&_TY-NS$Cx{n?tY^%+hUO)|X@zIl&r8qzayRn{c_Ps<&h^se`S4c4K=7^Q zs{Whb=H1QFDMP4h=if|>&~03o)52;?3ZLqY|ESWKe3MPQRh_x&U( zvUix~BeVS*8f^n&w^_EUmYWrEuv7KM{f)4Z(T zYvq~0^Leuw8xpie&wO0oo_bp9w@2@6PlDoy2R@z#+-fzn79D~4{s%#)nGCmuTOv*r za#(_Epcr0jUXd`qR?EA2aue@dJ9gB&Rm-2}O^qPkuh7p&?Wyi`x6!b{`SN_93{Yin<&ajq^nr&^ZYPW-sXU$4T87V!Ys7!5<>WDY z)rhPV73FCWpRwnW;lY+Uk5b7WciRnqji^L?m209@2EPU2lY2HPM(3e1T0tLKR=$tUG9r$ z1tc*ni`c_^Q%%}>n~Bi_xu&qN1$N$_vFAQ)?)SZ#xrOui&yD~D08XszU}!D;z$JSn zHg*rdZupvzlcYw-nQ>6?){C*A*47&KPLw?F_kwRQ%=g;Yy{Pm$x6XXC@w`rN9^pK= z7Uict=T9+BehC3IwZOGlczAyNF;IG?OC*)v=A9+8#EPEjHvdsjw9W;WR)L?I%3 zhBC6Ve$Th=?|shqy1xJG?>hH&U+0{T5AXMDJfDyCw0kvmp0e&35Qf_UFQ)5h1jTO? zWL(|^XBEchmkQ^gxgu(Un!TucSf(CbigK6T$|mplN)->|)C%@@+PspTd?~#n3Wy-c zM?@k>xGs1nrh$q4SFKWL`|J37p|J>JvH&T+q~A6tAdenVh(`j1ZF5oWEm}3aXvehf zRL=x4_R)76F{{R>VsHSI0;v)K6Eok0Y&DuTCGYK$iZ$cmZ4uJnt46AXzYLQFC_+G) zItYa;u=o8S>pECWb3?s0t=XuJE;ckk^9Abx#Je?3)&z{0`5@fG23P>&Qd6I}iC9D( z|2}b)x;14+SBWm;^E6d-b8mA-S}^aft7hiqb}%2J9qy?^FabOJ;*(ph-+U#P2_K^o z*nU41H(^hU7*Tg4mjM2!tKzKl10e6g`}Z)Q`p3VbV%oc5^P;MccfY?es}qC!=Osvh zMgV9Gb_98+QY$uK#>J#;PfW_M}H3<8%+-b8KRf3+wTJq`ItRV-rs zG>XoLVg2<>+?Nr97>lzY14cZme?EO?%&%xE2!VO2)b|%%w{!P!Y8DCn)JR2s5o?Tci@~W z5x{^{t*dbVf@Bg5T`1xs7r~BNtV5&kk2iq}2!>hMh_VVCH~VmqC@U*NwrvJT4K7~} zfr3rL+4=1pEuEO6Ao{SW#OK)#ds5JxQJxvQpjrYMZwEle|2p)IKCYmO07S{0gYqsC zVl*9ebbNW3P$BK#R%>oGnO7E^*Q<7y=Mrpio89(tIH>DGJFh@rVHh=06!5daEOB4a z5!6hThwU{e0tDbg!B5@^QEG%uz|wq#a#sn^xwPh>^ z>LRa@)$-V6a#{^g01PKHCUPHMN4%8y%S#YrI3Ld2NxV622w(l2zr zfFcjM)k}1Y?xZUT5})(u<~i#lYfD-|ykxAAx|U)Jp3=5B`HmeKZ8R`z zm3ho527!N!`QC?B3Ucx`=yTKnY)rqvMh9=bz+iW$F$;!+qkxNQgU-tru5}t=+s7hv zu*@VJi9mRX6m0+7y&^siTBOoZmjnK}fEws9AkEtXNf5ozBo-OgMieyNTMa%_VZpF? zmOG0azIx{zPL6%z+=cHyy6xX3`we$I_}4+FP&B0}?-d-fD2~jLlMq9=uc8*lU<_9{ zxcse3jo_XU2KhTP9LcX=b2=!2%-Q2COakeEf%J((4Ex9#B?Yk_XJ1`}v2iJyos@i_ zkOG^&*;m<00H;PEs}lhpJplOYWb}VNRMUe318mH+hrnEr8YdD9>T+(P16$10Cy0za zXkIB?h@f?+k|fp8$49BnHD-&87J_+UL#>Vi*W04jj4Xe?2m>boQx#E@~m;f`@DekA#*7IL`z$#}-)@0AJ6g#` z_p(K;SwnG8`i{~bRY{v>A5rpNC;P-qN#R&eZULAQ;Vy$~zN=tUXS#=(Rc1_}Tu}M`l_~(+~7+UiE1*&(bFlF3JQR$bQ z&Lf{lfX@nT5q)H1jrXa&kkzc{+^zI&S>xACLg;T#{4=;glorTSqa}f^rJCN4dl;>=N zDl6lH^qU4+@`GM3C>`J~3?yFgjDC%xZU*T9Y$#kfnDfC=isb73 z1{@e&5QrjFAKw8TIL4^e4(3McY@+*poc4;b)QW1<#mKhaews6zY{!V9+x0_ehN7gi zkS9zj81B2P%P7q8DMCcB*PrtBIL&aAstI(D#oMx!bd(k&w-E1F%@@#f^g=ED zW3oXC_DVFHEq@jCu0TPmgQNt4sv#dC3XTI2IM#dZy}mr6teJ*Kk7R5BOY~22TbK8D z-&xMhd@YjcwU02Y)ZMGDI@=2L6KF_W9VGgo;OT^Y`(^~SVJDz8ul3%LW(DrjplIrd z+=C9Vp&Z}WDyGj8C^#H3YKqYy6vHT{v*--}D4Ne)CsSg=In<0F@5R3x=jn$2|2nGH>NIW%sWMzZ<|Bwo*Z^It#qCU&k z(?S3&%=?(|SOXRaSUT`5f_9$`P$bxf9zaDp4;Oxf2aD97D2K)rv=Fx>gKER>dxwPt z!VeBWVlAu!?vD z8n#IROVf-#RpR6@5GSK_F`7`9{GbIIp$?C_O(Mq0lET>l@&6;KN?``pD+=?^fsL0B z3&_sEhE)pb_6+ytV|hND0&5KH7bCcDksvvf+cjZ8TJq-i#qE#wqxOkbV@6#*Ts#1A zOW9yLaV)R+%GAx8yWA*?e8@bowzft+e)5DF1Zl^z5L)v8B}j_^ju^qL;AlgJRpH;g z(ReB1jxM1vri*&jD|k8AV)icrNLgyn}O=zGs|Hm;u!;X1*6?RAv?5`G6H{{Xgt zRG;DgjzBlWE(hdVCf4OQ6P^TIgV7XHpYTW||8aQ#|4FvIO4Ee@CTNXSxoH_08C}f% zQ1ib;TXp4gWg+C)P;45#N7PHZ4JvUZB@3Z28MM& zuJ53S-2c)hjrgaZdo>!0hoM-`*15;oxTW*^-)XedI;(%is-&GS?|5-=#Liybx`wZN z^Cm4SXmS$k#FQDFOi=EkS(e|F+&p^p%&7wy@gu2A;71zYNQd;;Q76sE%0YzBb@q#j zLhq45#y(gkJ4y?;z>oup0y7&ktso!<7n2lZcx!-q7NPh2_txy7<_p+trvg*nMulEEvNPZ--WS#%YTx&s#o&%ZW2XGg?YrP=i1%Mlxyp5d+)m_5+|3q9 zbQP%D`#j`seOyE!5QHQ^1Vm5*P6i#iLbaqA5Fibw8j{q2)bMa8OYzj=!cmk5?MXbp z+1Nj~T9KLo+P9IO)wjhOQ)Owouh>z<+haD>VF`^dAZY?p2Vvrl0A$FAeX{TIQil@^ zafL^+KkL#*!o1+r_55!L38Z0_q5`}xG(o^IeegVCS65rU8V~x(;8w?@x(HjoQ=&0+ zKv;5eJ|o!~5Ed8)qdq%N<)P1vrL!5xQHe&Pe@M7!M{c4t=?^cYoH8_ne`Q)L{MPak z9n;YV82E#PcmGXvwgp2SaI6oZ1^atu_P{mpqMQYJkmGvv{wRN{0K6aDuKto+2gRs( z|5Ic2Tnv1+w8vdvZ;tGFbV6#O)n9`oq=11CG7@lxf5LLRylcjgIBA5Wy5An^w#OMD zRmI!u3xa=*iEU;by}ucMFmDJMq5SVtG7`&DK)J8W=V;U|h(%_RF$ygxKJYL&?1C2j z=sDlce7&QkHaKva+Cu^NUyMhGStIpQ1VpWZ!Pp%h;^O}E^q|9AfbEKrSK-?s!834V zd;Fa*0OJW7k9X<**LZ^1)mcuI|B?kt^T?O9(ranc#WW3xbwZrmB(c^SXPp_G7>E$) zpWzZUx3PYq#297d2Xbo8L_7qFJN58MU7s}M2$8Go>`S>+_w)JbwwU11DE0c(k=8o> zRwODCz`DN#52$E}5YOWo$@5>&>j)dn(U@CESWWI_=~PLTCJGT2INuCWGb&=pk2HHW zkz)4OFAeAlHu;+-CH@D3Z#R}t43XX1WcA;3D+u?ka?#fNa<&*ne<6-)Bz_yVTl#VS)z*?6-g88BB8l z&hvz?>Uf1EZ8rmwP+Dfrn#Cad@GXt zZupqGnk8S^%~r-{mu4w$()B#=NMXbsp;Ws3eBCEZ%ge+xc!uTbcMweuldqro-Yq04nM?H^WXBV= z#U8C*h1DsMqwIyOlX%QCd*aW@hBV|*f=~IoElruhQclL9i4ugoC)9aHS#@AXzyd*K zQt9FmCF8Y70K((;1ftm)v;=M|5o-M19K^Kvy%<_S5{R|NZ<3WH4p)guyYlS|O*Dr#Dw%(9P`MWSTCq!TL_yr^ zS%d&khE4Y6LXh?FcLAuuC<6#8hNP7vuvH*Z$Y`6=(oz%*fTu56r>ci4Iy2z63P@bn zsrQDcEZor@@shXvu0H?x!SqhPrZ@!Az!!POIDS(E;|a=uNA^P6+*iRCn!hU^rg)vn zkMO^Mc?4h}3KURN*wYYVFb!iAMmu2i!65jB!Ljn-t8=cG9yu6&=SGzn!!*)Un;X7s*^Ai6!OBXUi7Zy})i)8)%m>fP~uf!><+_ho}>%%Ahz2eeeJ{vA;9l zy0E}`!w$M-Xbd1v%LufpARfg=k|U!%0PjRn^B1m;tTlRgpbBFmW&&O*ro+sS?{f^N zwBe0dl|5P76OG853RO>+hy{wBEV4cBmoMazM%Xms6eMhyow(dP9DErCMsQ}Gmq?s6 zI=e<{8$|X%_%DDSXP62^nq22MD)0DU;|9qSa7bFgM?(ccN=)1YRIUnep(ucJai;r< z%*xHO&VEg#_U*4FnGtXXh1mjxANTyly-Jlo17FnEC%iIPL8Stu!W zD!mXhi*H>Gnx(1+%Yyh}CGFB}E{pdtKLFyEsLy&rB=!Q-lrY@t?Dm`wmGR$2X@l7t zg#_&(n-}7Lple(NmofHqU$};Z=x?tUi{tPs4~{#xZ&ESXU{RfGTKs-rZ1;P(g5d0@ zNSHa;L~kAz)h${wTJ(dEl8Xcyx*tDr;bB}qf$3^M9HKxbo9j090a3H2eY)FD`dJo7 zE94WBUu<;LkdX*v()AoxcdxrB$OY`R7lA6HwX+jPTwKEqIbki=&Ha}vfkqjPc6j$~ z^Y@m(M)2^Js8$Zo4(n#zfK>~es`tljcIk5-F1$Fx0;Wmh)c$t+J|)LkUj#<$LZk%H zG2CYhiIz;{9{cFAE;I&Q&`oJFEr)(4==9hJie^o1ZSCFXrKOl_Q$%Uv*W`nWaLX|_n^{^?f@mMfprdLSBocgvy+dUu1ULh5sf!2? zrde9FK3BMUh;(M>AiIebF%baY{t^g1;40YrH{se~77`+X>0tsvMov)23jO4Ru;!|8n>XB93BiV14 zy=~#V9aVobJWRJZs2f6>?ft32z!=A-M!y&H;Z8i&bBnfcLIUhU7A0%W zAF?e5JoN|c;Oq#ggRIP_*I01gu%u+P>xjB)op!IVuXCg z;L1^#bcSOJhsI?5D;u2xv)?NSv2FO}5`9+MdUjSF?zjo)T7q2j{ zJ-kg6uSI$4Z!)DDe`@4Wi2emakYvQlX%J5Vc)4R9CE@6yM>pl|rX}AUnB;R={T92E zz%BII(o)OZ?a4=5i<27N{LqF7`1P4h$4{#iA}Of_4vaZjSs%j5Uk>X)*58%-U8OptKc?67!r6-;M*H`(b{g2UaVh03Bj7y0RL;M->g4-ILLtu z%H(qN)8WWOa=7rhl7Yr3gYONGD+b~)5&j@r>L*{dh_i805|!b05~ zow2(R3)*_*?#Q*ER-a}GY_ezB%!p{Kr0X4ZvoGekFVws_>92lai=l+L8Aif7{Xedm^xaSRh6itS*SG8WJ{>rF{4+L-`XpJRiW=nMVN9 z0q4bdRx5eXKwx7%Xd6IYPf)Ucg9^e?&3q;ns9|_h6HH<62C)bd7z{wFa;0V>9C>lI zmTdXvr}QDh#d3<%*BZ`kA4Ohn{>ard*A&&GX@Irz-R))-i~>%rkPGeRk$m2FLR1fe6PFO*w%kC@ZQd1=2H4rI?#=K>05!B>nt|{7CC<=X(?LS$+t`> zVQTD0To_z(tSt7HSgCcEz>>JqyF)$ZTY;berh&gPLu8t+1tyR+1Y^k)W6Jwtz#)?^ z>4hD3RUS_Hoy3T`psd#o9In}nj8dv3{WW$ zl?HICKF#if_Z zA^@!k%K2=b!2&~p-rnAl_wQ|C*C419pv$XyNfq3h(;F#FJx1sEiC0NZdj@LlY}wUx zwUbp!$baPJYggo)PGPDfR{I=g-X3^ok~-NG$9khsiO#e^{8jp;XR#|B=}~xJ)NiHe zRSR#3TcR(WN*14U=V8SXE-|&hQdqY@o*eOHQ>}Mu6ek>xEgwH}wO{g92c6pbbj^q_ zYL>q6hQugZs=7UMn(+zgp#}W;E|_KJMn*}Qcen?p%^Z{At}a|qKO@Wv zeEAX!tQMF+5?%&Ci4h$gT~m)0mV}F1MO+sEeM2NI1_HOjsE(%I-YB@nGJvE)kX#^y zka28C*tcnoC!CKWj-QzT6$?*D&<}D8-H0{<>omylza9s|Bow4G22c3!VjbiaYqvq1 z561M`8Y1KXP?`s2*B##s^QpqFHiNl)uy>>}IC$dLceyG-nlD98HFJnC0Hdm6*r$= zB-QQhMs3g$rxm^~)MoPcWvaUUw9vr8$sc*!@|2bu$EP`{UF?RhF|yi3OXzH8E}m^S-A+y9z4K^W6hN? zhuK(A++w_e$}M&7H55x3yWWZQC# zC)6K|!zqrgEdJ}&#+nX?C?_ZG(qhZDRIH(Q@0!~??K>2C>z!%b-QRb`iYyv6K}x{| zVuDmBBy}F}h&$_(86b;>CMl$$q2ab80V5+LVk!gcCA_d4D1_QNJ4iQs3|bc7$wz;c z7S~PmZ1VJV@jFWx#7>3+H{FF#s2A16l_8mce;!tx$f5Dazk?c=Uj zgRJ#({S#!215zZ^*21OP42P5iD3~Bmp{cw32|%exJf@4QYbhKYFq9R^i-ip|KR`(y z6vvBQs4)ZhorIJW!jzNq;UISmDEyX(-_en=t214?L{3LXhpKOAaGI>IDf$UEo*!`B zrP>8UMlCcEe4h@XtZeD)T6^^1bMuven+qcw)+SW33{p~3(D;^?m01JAi5hS4PXf!JrM-Q}v>Z

%*7o zNyigk+%|Auw{IVKRr@ZJo@0yXx1*tnkhpg4i0{@9jZ=F4QgXD3G*aCUwtcsMNGx)JC?j>VlSY z@bLt=m_a$Af~0T&dI9Cr9C(=K!OUP}Y`nRUWT8`_e$O=NSId!{9Lic%ig>7!VaA&~ zREL$H93H{L7H$cNWT4H-VNNTYJPA$*@D@D4|CuQl9G#Fr0j_Pts5nemOacBJFm)ky zHURC&%>n&c1o>wgVl4{KE5K0QkrCw4d;RQoPq^EMgK#*)R!(+7g%95qnV8_sA7?H4*dc6|W2`26#eK-@gqS;*Py1Ft!S5Zz`%6chy@IX?Ow40?LGJ zwF8*U+YU1Uk$Kp_e|`J@-Rt;|H)^cXwdYMyzIL~&UL5y?9k(6Zs#3o>0j!4c!E~OXXM6K~tCQVV{ zDwdX(PxdMvs2IN1M*D19?_8G%yKQc9F>$%<>C>mW^WsEW&Q4BnH3kuTrM!4y6+6*6 zc1aZl4`T+LTlR3u0QtVR zw;NVoE&@Zqak6a-;(luX?7EY}thC{C=omaQEBPMkJo6&1Sq6b8>O;_TYxVesB z+2HZg4z=0upZZF=iIS}D5tmw@dvcwkU4(kiC}8gr9Dn=JT7e~g4rmh?9*cr|=BUWv z!)Nm;${d?lf=8P3`p1*oRR)~3_^o?$8Wi2Xos{4LZKj%9YfF1%LZG)> zf4byzU~E}bNa3nuhfsTb3T}6((_kXneeefC=C2i;Cj0v^9%@n=#U3bhek&{uZ#)~1 zoi^U1!)cB_YTR_ESa$U6g@*p7S(x9;&UU5CIVQl@nV1v}TM*&wZX|TOChb5m$;Mou ze?nHHrz0dRj5uGou%8{5W!5r2*?(SVW2R~j>;VR>wr205MnG2UxR;=;&vVcpNJlNmY_w#!v-78z}VsNcO z)sEp_-|j(fTu=DSHsZ~bH$(3XsY3iqOYaC6LkB zc3Wuil{j3Jij3*at=Q)s-W2AyzE|?WeT~ecM8>q$`|aSPj1xyotgf9HXd)HJhOMz8 z9Ce>syKqg-La~hfxAZ1{D9(c36xLc7u{r7lxXE+z~g#ZmKWd=n@)h#0JFY__kb~&mkW`M?C)^Y=oM$ z1EA>|&jtL-%1R^=|8x3j`w1zmift9JXaIov0<76cwkk_?&=IHyp-*guaThO z5dwN(Vqf=gZ+&Fv50YsEkG>hIZeXl#ywPEU^wDM@&A+{OA_LH%cZrX9QXdj_c6qqZxT_sB3A`{)E{dc3FW)_AsgxrpqPIT5ffxC-l8$Aen z2xC|Jfuq}gJ^ByVyE!_|Q8cV?^$I6n)?{){y^%(O9bj!CUVo@)Nf;QSZSefN8EZQR z!vlTwD)~-aACVp{NWa|62u(I}zMRxivHl49<4B#;lP4<2E0UEK@K!w29Mc7GuUfIh zx#!zJC<%zmgeR6^fHyhdn+Kd?kwJfRplih^$0o%uge2Y(@<5} z!Y@WmON)>ji+veAu(^@a6D~Fuc#wOv;){QNeGec~S9g#k3-L!$USX9!#5r-o$~e!) zlcN{<2nUGBbVmEF`CYP-(AEqh7B1Ek)0!s?X!7(D{`et_B={{<@BC%_@l2xL#<%8J zY4n5b4aJX^osNK0^VBT~XhLhbcpz)b)D??HNl~ z@v7b6_w2M{KD~^o%67gW@74Q??ycGtWHJ3-=s~2-qOa*$RXu zu$)s7Q~D3|L^uIpRE{Uux8E8DPZV_iDbHk;4b=Qr{M}dRw|~6mUAG3;unfq}%cjAp zhEfplWW_!00LX%Z6V~hWB(V1GFC=5>HH@~4V}(~5SyACFJ8VjfpEcj$ji@qWL`fcw z#N~sn)~wX7hY}hr8c9#vRLfHoy=7MP|X;K8xK;@U)cry*D?OR{xnJxHPv!B_(#Oos9x?7!F{oKv$htUl42ZW zsDShfPcUI9G|I(gAUGt2nppkw$hk`kAAUrtOuW6PQ}y#1>+-wM#_VM*nOnoWNTm+2 zj?kq`Z36>w04&DAEn;bFdmZGfXF~~)fm%?)hzD=dun66nqL$>(3<)9=!o&A3_(Oho zjG>92pI_qg<-8xwX7#=v5b6*K#rRTxR=#m-ID|+*#>dALxzmR|NrR_JLyoXQM!D&Q1*|669$?p<1BMWSvm>CeVL)l& zXjI0$a273&A_yf}_A4J`{Ab z2WAw=zu+X**+Xe+B-$Z}!5=#bMNw{Rk;-6m1A!@o^?*`$1LmN>J}bBt0Lo1f6vFkv zBc+kLTX>s6x53TLTwl37BoBYWX3MZVCQ~TSNNzT`2SOw6gl3Fu6Y> z6Jlm&wvz}~mUQ`Zh7-AO6(}CIC)VCCaEJZdVUr;>1w*D-HfDw%j4Q~kBy_F@-ze-8_&)8jh;HY*s zCaG&B7H21sbMoQHdmG_Mj})wnfy`L%naD2!eN^we849rMQPC47a_X@m=Qo2D_@PX; z9U#32bvybpPROehS=FJ*=a!Bk$8izL;p=@170;jRrtZB*vwR0C*fbE(n1vWw*@w>6 zGH#qsi>PNw=O0x*@5&1NV=#wy*Lf=QkciQ9rE1Ez*nn^1u-|QJu?ouGOTuv-3EW@a znag~_G%;~^SFU67_vh4KdAb@K3o$i<0A?X<0MwH(b|L5qL(?*iunTpgR&rDO568m$ zhD{%%405zXBF|CNESN4Jr>XSj_OdR#RE#S?KYfFQ5ZK$c060=pQxlVtUWM`=YzHsa zd~_4-Uc&FRz||-+J``2}oU!e!a?)6)QRTguW$cNAsfVS!*Po9a_+OF<`4x51m*{l? z+q-c}iMRJ?aNcua;T&6;UPU=Km6-`Kiz~b^sMlnBcm3mgQn^jEhArzoc;V#Kvy!^a zU~gy!_DyeGs*x8eI6@5HA!bnoH zCD>kDsahv!VS$U^?H+g%6f_>ZPaHz=0DIHC%t<#yU!^$d=ad$wHt(x2$;&Nsot7@? z2jTXupaKHCO~AQ=R!K<-NI`1Zfah>{WVhOj7(-u5>!}Z9 zZq&t~ZRm&j84;~NRp`v4mbgWGc_+?p@wRa%Jgk)D_fZB{x=3`*#iEqLxHZh;Bc@L= zK2zy&f7;$~B60G>eXBk5R2)ZA*<@^SdJ;K4;V;inWi&oyqg{Q$F>rz_sghE?h-27s(^CoBXiP|! zv@ds7!4Lmjd5WWcwI1X6HN0tYx5+lZgu~8Jz0~GJirnfu%V*+b5YE|ywirqDKj87{WGg|6u%Ouq5n`ZGw!}E^Ger`5wfRIO<(oNl0P-o*cQ))c&ilKP2V24<*Kuk zM#INR<=^M$f2*Yen%8S@^n`7@h$k+=)NJx)7n_&COeYtVi2Xq|@r(QAl|c;Z?fmt&ddF0Rv%JygN(yF z@~wHpWw<$)0Nz13&k%NukL5&4Wd3WkPplW?k8Y7v&f&Zi{F2rD5>Nr&?-h|5J1d)f zg03%URE>kL7^=N7$o^xj(DQ*0&w{e3Dqk??Cl)WV9N{G3J-eq6C&2P}P5Gp`YD&%2 z8>>Wp6Qcatk1f7q zuF(+Vao#UdS)WjLyQrF*R|UA3@p#$KFW4cgY)|FK-X5)sYYufK|Z%Hdtw#4~HZ^p2 zLha4kz2Y(g>bhIz`E)3QH=ghI5D`$-ZKpV`TNq6M4G>UgOWp?J{JDMR4>GFFbqRF+ zD}vz(-P84MSRG%vo1$ngsf<0!zi4N{n}F{$%&U6aEaX%5iDfpc=c>H<$+knZ+jCeg z&+hZumi!?bcg^3F&Nuk)1sgsuCPsF4Q((O&73`-MgLPa-( zdi0;0RM`G5j^-@e=hVJBE4w%N>$rf;5AEFF<)?nO{2l{858!rlf4@LuL7Xdeslo!R z$O5ea6d)Y{I?51Gs+HgUbu(%^3g;Fz>3x+ZwP&n9sWg4g%y-K*sYB=Xi4vapHO=X5nc-NY(Pg&^G+MsZCdS%F z`NVa%jf6B<+%jL)K+EW92rf3Q302JnA`Q>M!C~SMtbEqc2Em*VS%rgSuaSF`hdlFL zj_R~uTMn}9s1sFbdrCFvoQK}230;!MFuNi(DyH0__)T*^o>b0B?9W0>BUzyO)Z=EX z=UsvU`Hxj`V6ef-RHT&7sIZ+j2UHT%)T;JzAtw8a2ikUqEe^z*!%N+IKk~* zpF~acBRMkjr4=-W%dXkxD;1-M{lGGP7%}B=R#K*4M;Q@6c?Jt>3)FR9a0(;U60*C` z8bq+H>p?s=fb~qvtAw-^587pdQH9~#O*uh3@9iFv11bhjmk3JubcS+!Z;zwE@S>%a zt(Xo{{{yiPYik6CoYlC6ss<-hl%L-|TJ#Q7QzMYNlkFFVk21wNU&~5SNKhp=5EVm* ziJ52a!M}SFHnNZ*0ILmX?oh{FKq zvX&XGqs({9(K?y-`pY4_WD@Se9#w&!L30n8)uhII>c-p^h$nAi)9`A({AhUt`v(SV ztv+jSGn2=9yRPiS3cyMUTFn-;rjr*7|BZmKX7sDQEoBGW~9m*4_9%Gk} ze=ZNb-fU0uoh>&j_KB5f#9tTwknjrR;V^54C(7wOWnZqAT^XF1E29X%Q@_Z4q0?`Q11^*NbUuX=&$MLGa9S zzS@IHWypCf{@mW0heGIFbcld9O}wJzG`h!!RP!d4W2e~r*Zm!4_47E3C&TtJ=l3z= z?}||yxGSh~?A$TH9yGyQ!-$oC30k!9_HQIc=y(K1G&#JvM4o8hrk( zi@2b9qV(V;qiTWm8>$pOew9)MG)t}yV)mQMth>be*VGUA7MEmL2S9_jbl zf+ki|Qv2)&Hb%VQ#R=59j ztPW%MOeS1OfjbEya-e`kjAApbgS);eAGD%m#wCxw64?J7Z%dgrRCWxln7ooZsO=@T z@8mO~WhrrUu&&bn-Axod|M{8zxI9Db1hm&H=pRzwf8=}4u5v}YP*mucBlmSAZx3g$ zhES0?$)LS=DeWH;RkcVLS1)iCK)s5Lt3b;J2@Xx7kF4L*WEQGt>QU}SqJ&{#DJP+E z*PlZdwmBz>)x}Mrb6F;tg1rMd?1LZ8upaF_Tr!{Ym~0?d5ZZEaRWqpZ^=|fQovJDO z`BG7Od#HGJtvr1ya5qCz9A6>5l4@h2CsmzL@eQ=x7SuWcqF^4&HhMx6?#hdD`ONvo*8(!{ogTRu%9Y z6NkVzaJV^Haz~|OQo1kYp&=)0ME@sMU3sgA1mhM&FkOR!9;f>TK8PQl#lA@(M|~j2 zaD;&xns2XZd|G-NxWTVR>b&=sI!KJT6+ibzB5!k$8pWp;fkC<7=T}}+2lSav|NfaP zy>rB9Rp7(K!ES#qO&q2@B9aziVI-mXl1uW*1KsvF1=VYVIZrCnjEr$|J(- zB0(}&)QmfdZw8uSFo2>$evV4}-i|!Mt2x29=J(@HdD}OumJdjeKHXwwD@4v*+^c#KzY}quedVw>N+(v-jd70pCaACs~WSvz?{Y z>E=CJ>ve*^XN-^LUP+Qsbw5qX`pmZ}d%@gn#xI1id5&uO`!*T#sqB;V__)g~9GZ@P zkufwP;mB~Q3D4;K+g1__RIC+I3jLMjtAiH@?b1?Hgx;EnqbRYkg_*djGa0TKa-@s( zqOn|iNtDhWu+yhL5=&JkeDVSplibCcKuum5-1CfvhK2xI-@o}zQ;2foe72^Jr!NGY>O3p4#pF2uR=_wIugKziYV z26#oLd}$;-$XIXZK;QKwyISJYwcg9#WhW39`zZkHnV5-UW6&|w&~gKTKdAj@u&o+h zu$ZjIJG-#m#QA^Lb@%l}!?A*10#g|YdZ5DhYX$ry6UbaEy?4??jcQ_fmUNbcwNf++ z%<2MFqzgNz+N_MU9x7!c3HS4|v4gOfT~&W{d_q0~Nl^s^aBb~;QwW{~DJh92ywFf5 zLA+r~WS2K-si(~!$YxJsv(Z$JG)rix-!N>x+bG&+!Fr% z+Spc(E(R-0Yruq8i@e-osO#pfqMQDR=~*{;~2qC%R3bzBw}cW*2ON&!X+e0Ps8 zy@pM&+TCYbuu!1Aj1Q_&I>8M1&DSL?u%dtcm$7K^TO-y$uy>tlVi8c!MDuVIly&It z&mKrS&S7L;QJNNDGL|-SMTtu@A8bwie$9cg@Oj>EE!DZX_0p+{^V{j0xnoQ!po@J3 zT?YE+Iv+RWo<+e}LX@DO;Pjf8-0+<@;hzjKw8=#{P7;aGj@d~ircLxN77q-`ff5pE z1N7;U&oL3|*A+WjTQTOQ-O+Kh7H)){ufJJ_7V=O&V{>^F^J5bePu-1t7@UT1KEU2h z7`4)r(hgt@F7CwI%;6om(0ZB%R1S0ChHexAfr89KExcTb?=zaw;Nh>LE=te@yBq0_ zk)TNs0=9Q{J_2QwnfNgPZJ+BM2g5NIddM&&Qm=*zd?w((dD^)%Yj|TSFpBs7*J+08 z^qV~e-PXMmLv35(p#sJJZfDia-H4YCYA$NEn*l@QnVL-ej}NCn!bciP^-=b3!idmEc!PO+dhhKM=zUa z8uNvavuwTJlXF!3B|r??8g~FU4TCYhz_&FMu!Q{$k_VioG7CfN4Pzox0oP`~JB)&t zn4J6Z0@8LlRzBB|7ktU1$|tqNne_GQ-=@btC$4kY$#;ECI+XsxgR+Nwdkv|tRu1pq zCg}RP0>*0;RAc?`3v;wB8*Q2KrEbl-9S{p|C5hk6XR=k2m)K)9^w=9k*JpfTiHJqu z%$#dm=cxX^%AaxJ@*HrJAah02exnDoQ)yATIv>H?^cuQrkhrvWcjJTn02xyZB91F@ z`#oPNP&GW9&q*UVNoVriGP51^W0DBDt;AQo;wudfN^8Qpk2MLm>fqKu&i$}(T-3R% zB#;542s{@+&CmuS|6JilS?N#V96jgm3MXAAU8P%ta^f%xAS{#N(_2Fl>2*;M8TAWt z&P5F_-g~Wn&RlD;@H6&h)B4(ZFO5qdj(&st2p(}w@PZpZB~jd+Gy3=?9_rz{Z&!PldE6>a zw#naTXEBl6V&%s6NpU>raMIGu@H4y3^SVV(+IJ%a*kw;BxDATUKLLOQqN{m8W{}}k zWMmju02-x9z9e=CR5LQ&B`cB&4VV7>+Z9_Qeabg@=A;=eT4e&3%J^x*dT2K z7p)_reFNhU0OEhCp;7gojCD!+>*q`Xg=OXeDJ~BW55fC4P8CQA+vBU4u;RUL;kxo8 zJG*d)p>JX63-nA7L&q2b=zC5|ksnRp)}#e#@Zm+kGmz%^{8aDlS?C z^uUl(kA{E(r-xIgcb;N&L|^Cui-gg8M-o_=9ZgLrZ!9X=M25K^#GO9(JKX1`g_Qbi z^eUw5jzr~MYf9}CxO006W0a#~N}4q%lKTcb9PSlPZ98Hpl=139MN009 zz2EDVN@Ju*OV=3917zuvY=W~(1c7zIHD(z|UcB(jr_HOUETAYNe7AfZ#Ep~7(1mYI zZ1|WPEN6HxbW>3B8C_|V@pp{v+h2}(etH8fr@zVi`SpiBtl(!XUE70h)d|MCL;~}G z3;}V6On?vjM_#=wbKe@hsGtvQc@;%x^@W6*9LHNm=O~p+kJM}Y)E0}+^OhIZMZ<_G z(HS%C&qZ8t(Ue`=Mo~UwW@Tau0rnr%c^kt$+?+CD@UI?@&n+!=LK^%5gcU%Frk0Q^ z*oP$~B(!Th?Z7@3!`qXJm$HMdIeADm$?tvVJkXsCAW_eQ8&f*)Pdunk1YN$BklT@B zT=U(X;hg24lDD#n7)(5%PUK2?wc|UY5_g@b%DMM~5O%Ik1mF@phDEkru@_7U{W{>C zqP+%PEQh+L?VCNf%Fzc_UY}gG;pALgTy)a8&#_K338@@EfBy9Sv(1I5mZl*pEL}P< z^<5Re@P|B_Jd9eVloZl?Te5or7@{KVJ+wvIYDbq&NUSK*Cok_8EX;nzQi=O91PQ7@ z=zjWLe|J#HTD$vx8%IChALq%{^(rVYNyKlDOAHs9C_yDiga1S7(9B)gZJ%LXBl?cackxum=gj}3S5C;K}?4B^rb;T z?ER-O)xt1A^Q~FJlZO{sv^zT*g9Nx7>n&bbQn|lo)2qon2*!W&pi`0+toBgdAraWn zAV!6SA^3e;_sWiuKi&s4>D5a*gIgmnB>L)tI;!7N>s+idG9iBj&K4BGh0F1)7twfY zf(*nLZx;-|yJT}}zjasP>Pvk6>MjL-kBDXeJdwcuJC*w`Gcm>f8=WIE--7SpvFI0z zB!hHhRRgQY&f5BFPh#o={WMuqy4Tp>y!I_9e}@i?RF*Ft(sp@-h;r3h6i^6P_1^Yq zT~@5D&t1TLUfd( zu-MDnpHhzootWhOVIJ~LL-O+N(>~6x_(99wXvS`wH;I44SX8Cj!8IRe&dgu9VVYJA zZd9Q9r29*%A!F&l0_UfD6F*dY{~aWDObp$>dg8gc(sKNm3VQp7xcrQGyA;^Tx@ER1 z2vZKD3Sg2f0>(j>*%t_vC*P`s?0wjWA`lD(Yn1M*sw>r!Gvx#JatywJBx zOfzK$5f?06+uCusiB_VyLUdK;u0i>d0Q#8{5V+U>@!c#>hxA98flC$oUHFwFV}10C zOtD@v<7tDPHP~cF6j6&M9w9rI1R|8i504Ba%GVS zdvjgX4elrm%a>Tg0wS0}HlPbII}ixrBH0HpRux&YKx)E}o5#jymgamFwa}i_2>N?UwuYl% z?3{c$YUe_qrTv9pOiWB_?~uGn!;v$-F! z8xPlC^$-W{(|>u?Pr^|^v;BJq<0XgJ{lw`B)vfG`U-Fk4f@P#9Yxmr)UPXs#6xPt- zIpuwVfLPhUKR-?q=g4pmg4nEj#Lz6^Qq-hdvYytPeYf%~3t!hQ3T6nFK->cuGB^ta z7q4bBqJZ?5<>4;u`u(kulyt3nizAr%q7{Hp)D99cH7`hj60n62fN&GJL2qPUQ;646 zA2NLj*e(>J=uyp$gGn7<{FU7@_3ph)X%_hAItFw1>hf}`{QarKr_Rj%z9 z?*as*6;ME0Km}1L=`Kl0K^jE5Bn9ab2|+?yTDn6z1f)w^x?4&*&$agZA7`9#KJ8EL z!CLEi?)!>4f3xjj!)y-iF+17ufllhC)nJZ68~SYXB!6qaMcn6rbIyq4Eol$jmFT6- z$7|=8Iwf$nemL5STd0S$<$r*<*$1yYLNQP636fwKN-5N5t+B$Xh~8V#o6+g@L%?yJ zI9Me7W`JO0pPs7)s=js^q48gG!#`Pc7@HJb&=)OiZG{8}7pbK{F3RRn_A6T&s^`|I|NQ!A8gP>TL4x_gU}jdqj-=L*k^Ys-FB;BYCJ6#dtXF ztIhS9ooh4Cq{l>J7R-&2_Iex~oNb*d%!CMIsfU^QijQM^mM9bsbL7!r!FyMd(@G5N98i8Djq=dr zeTKymDl!SLP`5reK_P;E%i{ty1UFF7Ei}6^Y{j&G=IC{P)wyN3^jHi@qpZYyr9y%l zN7lWvw+^@~!zHhXk6aBZU~vMn17D^;#l#?p;7c*1n1;D&enA1UtOl<@P066eNUlGe zIS?mEi(rqq*Fa&37DEwv_bmpoLbYH8%GBqkF}VrVMY28jBMkXJRnEZG-Q|8H&UI ziHkaqE?G0EE|J}tDG1GKg1;EWt)XRMeLH--_nvA2 zwdbi8bwbHy@zx|(=lCaS%roIyr+8TUPh1_5-_fg2gG1<|)J$OZVpqUe_wPwT$cn*M z)8XPt>SWjeHaGgl(>Zra{BrMO0bL{W2MXTSy#=M`(CrE1#XTJX|s^s=iR3YQ+Wj z&+Ecj>2|iSfq8SHMb`DE(y~4sXROIzbsKG3z-I-w1q3v8gOv|qI#mTzA|<$JH3_VH zLzA6^EeCPeZ+MMhS8UUIzC1#O#A0?>;V*-EW=ihp3JE3zO*{ggsE07nfcI(ttEheG z?o=sm`hMYf$aYJ&i|4M}i9;7>cDOYQoe*(Gl60qUgv7e*>w%>gn!oGLEdQPJ>yol% zyfvZr4+ucg$~-O))!`#bzI~hVRI3vLhI>H|i;Q0bfv7PgCf&fqG&C}j@W;M`h-EXv zMk**Gnb`^D(>Z>LarB01i|GCEV327jst)Z7=_C5;mo$vv-I^&{|-( zycdHD@;3Lh_1DGcH-AAU=gVkxZy9QcySqUrNuiA1pF=OJITp}Hmr3ZffRc;zYUQfPO=zfX=&H0Bz8Wxt#f84xjCs(d-j5N5686%ti z^u#gfJ^9%&Aa%T}k{qiNg9Vp_Ey?r6ET(+sVybn2n6bdqN!Vg?8LNY1*I9$SBtLTxPXzs*RsBkh`+CHIo(N=jiXop7cwG?k2vQD$Q+L5* z?_Z`LDq}Dx2K7RZ;Ni$TE3d3Hfd_r>7ca0JynGoy3j)2`GN3BLe=w2JM=*nHV!3~B ztVMm@Og*$$L=d;s&(+aeDB`ZJ<_?omYL~JYaD&Uf_KJSKr{^ZEO8+LCvuA+{IbFOV zBCDN+BdUpy?O{K;F+b4XBlFJ7 zdw?kDYZeoiM%B{Fzr5IO@PxHA=_B+WglA`RI)(hPx6#&DK0lAfh}cDv=fQ03Kh56} zV=M=i2Z1>xYNMmk`4VdlW0pwmua;b`@3?_GHRkG8U{Qytzw8?eRYe zoExL9IyLeq9|goM1*E1bTw8T&U#uP6Ays=CtXEA~_1x-{(KmBa?upd$G7L0^_TtesG(m&%~* zL_kd{4ufh$uh>=7p!WdIxYx{{XXKFJQrJTi^1tv*gu+;t)xL*2bJ(VnI`F?l4X{$d z9OW~>!jN%dFf>X0aO5}ml>E&HAXOI95w{8@`QUsz4GR|Eg;tP5sG(`XeOrJx& z(+oOKuoPG11UL+K?M^Yjff6O0ll!lx1Wq9{+F#-G~x(1TXINacx%Wc2)z6|da4u9tuB z^ZGD*v)z91_`z?<@O^lO{K@MsT+n`>zcia+;b|U5jex@=rAyET(QxX(f;4pi4G8EmDDgCV;PlwV zKS)>ju32*mKlG<5_vl^o?N{r9P zsV6vMld zb;&ok`NH>K^jTz%dCI9!lYRLVDtm z&1+@lDzpcg(0n3O<=~H)gF&vgHU&5=<{^sfJ3z-?YiX?>8{d>r+{aW~b;VbRH2(uT zQLx%9Y$bZc_gv6uo?!VXzD7FJKv)<6Qf}24UY1Fe*A<#7S5L@&kzz_1ZyK7I9P^IA z`sT}UIww1me(mjB1p5KfJ7iv5G29&@6WN-#D~{=lqOAtMe~^qQKFNLp@-F??HB01U zIytJP*3-N&=u&_*s&K7t2So=djckqqTyFf0J8U!Qb?dB+m?iHG!|4NI10Bb9S*!o2 zh}}N3SHH7-5y7w2zOOXy$d6Z$ZKxPB+t2Uo>czk!TxKe9zbF6fp{GE8VDmU>S#(nD zd&`d+lgEmhnss|l%Xh*xYxI>L5xap}?n74foKJ8hj+Lj!bnTT|_KNGWH)f@%jS|BT z?2^_PTwh#jtEcyimEUvEy=2>*D{q+k^ zC(Cr8u^eE2b3aXy{E^FGD%BJ9t4|qOxlG zj4Sr<-|z^Gwu$1pw#_L(p!40|PnCP8AD) z_(lo@%5!s;-+iH(w6q5?%MKBj-kPbxN?D-~^v~}iad61dSVhHicv>C;YGshzPjHw} z^4Z5<>8T_0QQh2Fbs?DfUdMWkMNxO$h<3@o@{Wleo>Z^M(}@MS4`Xc3*R$rnUMbip zT!t?vE9)T}Tat6;)@9xZH8=hRqQ}2cwWz2-TSw;D8N|;OQ5N%;%8!ug=au*w@+9(R)ZqxB43b(_ie_-YN=uuh}kC6?N@tcwd<{e^WAqGV;^_N-&+d2&^ zBq+O6-<5M{pprf+?!m!E13^Hv%y>d}!#i@Q%d#FfJrU<1QZFv%BeY z6OnbBnz|o03MY`$;IP9;j15}bU(kZ*07@4i_{d&#+9)IDiU+2PU~ih91*JIxnJ@h1 z%NH>%_&-h;NmyM2+c<@DVCo__^04(LF76Ucb2)5gD73UD9ah!JA1TppMyHDQIn*3E z?z`u>KRa~m+{{Uc&QHn_3WFZqH2IZC;p8M!?rhlb0cEYfyyR@M4^!T`K>fN+&9|I> zEe#N73L`*4x(G&n#Q6C5?%HoUBqs|z3dq%+Ns(?MF23>e-DkVx`e`OE*cI`uIV#~q zM6=mf2=D?K!ZV2gvtSSa+f;H@89zAe^o3DTk?Pid%ot3xYWGBYPpH4ZY`QKT)O1j% z>_t6*7x7+EN!q-STVTah!+wU~@n?y~m&D`)cfQvbSSK%K_zsHH;SFL@9Adh8p$p^A zVF|<^=}%5sSx(n{1q=i-jUAu`P!b9tbF^WrwvK=L?5b~RI1}Y>kHon9BC0DRc_Ah9nNnw2$ROxA!GP{G-a+#BfzmH#>>uxO4 zJrv5ye=1hFU70PmVX-vDJ%hWDrgU-4Oh{OJiY!USzyR~J7f$blSuND! z4ewVEA0y5L`KE1?f9}P8XsEnQR2h4GTB=+mHe3B#3kHT22iwzp-J5bAA)~Mafwn2r z(?h}JdTHcR@}(Zh>dK|~z7ZAoJ1;n5*vtm$|Ifp(l%qQS=Z{jFc%Z`=_5ME$U3o2h zFA*1#{D-*B3)3W^D5e{i=imx)r zmlk58AUN+QPj?wezn(xiD4OvmYSBsD+T4b?85lctFtGBNY{ z8(a0ZXbih5?xg3$HxYIEoAztAs%2X@ntJXL>Y-qIsZvJVVG6{)VmRHKLS^ZzKk#Q` z(|dl2O>IH_meE(XPnbi%W!85;br~!7mbmllD(ii)00A7^DM+I*s;aqM(yS;?IpKpb zQ-!a&iRQ~&Gk3s@X9OlPWG(`<_UTd^C|P0mIg<#l6I+f>o_o03`tsO5Q$!Sby;<+E zH{MY7F%RC+)>WpbANa7VF9#mJyycFF*1Y}YvJ1WkH(da@`w`YKw<##(0tp#jSKBdw zeAN(&1~|a@r-v^%+l%Jwj`R>dT4S`uT10Qfeq)OM*M`v+L9>sXCPJu$Y>u*7nF3a| zg7)Q#7l;JbKH$B|R-~Pd#+!BfhX-}k$mQRi9R;970kzD?o4l-oMRsNrDb4%;unzj4 zySjF2t?F(GMPvTm+|-Oi3nAwUgzFSGu0n&{45LlwzF76S>ql`DP?WSkcl+HaeUg#+l zH;d06KRk6sPpxPWjQe}Mv|4tcYw}|MAK{nnV<%9Dfo$_x?*%;F%g_#teI`=}Fd=-b zR=5itj6AkSsq-RN*A_i}KMNb_%aj^D8aDTlli8c`OnoFfVK`?RFxZLzT_uo%@srV8 z<3}cQS-XbnzB z&mhr9JIF&&B2@GXG3j+BBkxs9Ok93f>zcAZY){GHv0AE>RsR;wy>OH3W`0_d37lm^eQL^>-D#GsAZ08 z!!K&1YUK9&H{sS}3?;Dovo!mY>yOYM0o`Y~XF+q@y(N<#Q2_;;bt9|a1-9+ZoF~g| z=>oCo-b#yp2tJyQU{LOU+(&=AC~|Y?R(M!$XW@D<-Odnm#w$N75FLF)mi=RfY(!)B^!efO)5F68CrTb$ zov5Mm<9N+e9crobI_Ae?sT0S+8)Y*-lCHfEmZ<-K#0n4|*g805z)ysjg0=&2G6;Q3 z%aDWwt;}v97qoF}JWJSpC*OY;4bAsHrCX;(ka(}}+|v2*z(BFoUqdl5v1z9VI~DU= zTluo&@wX+?uo)t($+}btejUn>Rq9pjd{0t%eERv-{)fyf=7^#q8uypb61_k{FSX{$ z$#xe~9(uoZm-DPaXyO=q!^z08F-uT=)AjPfru>d;t#R)?1OyGd0Ivk>@Y{ibgS2CU z_(rE1>a-HeHfD@4>K9Lf7u=X8e=iJBetB}LVbE-{@!A+I9YHRPu@H6lQS!rEoF>n) zO5?xTKC4P1mA38tLZJP4;deRfgTq{d*IC#@HrGGD--!`MkI~dln`ky~m9Y322+%fS zu+g@^R=#z5tn{YxTDFW`UBgt(+xGS`4>5H+?Z6GsS`<33nOpy;4;b+#lbiSxGVs<# zYSdk2qU6|P+c4dBM}Pi4AbkTHWJ2-L_T=)IEtjQ3DH22yzl&Xb{~iLfs`a~E%=ZXY z?TDwgs+#(kySHoDYn-|)^`ajs`3QbB-|OzhVXk$;7?_F`GTW5W zkR?a5Mj-}I8gfvOtQt7!k-P;zzku~<+n{n#2N$#znF|o-j+u>@Pez{^xbF9hr79}g z9&0?^5ybg+FEjSpsnblAtuJhN_Y6euN6;Icxp!~H_V?|@FI?N~xvXFHtuM+)?B;2P zbv-<;J7tTK+1+iL^Ci%quHjg%T~eM!d+We&(XG3kzWzPV4fn@EL%PPaP)_@lyiUzD7(6W1{3 z(;?0HE$*Ht2_GLZU`5IF%oGJkgpIo8h8UYw7ETFAVtk;FR~;ZZzY62-B($jTNt#sO zW7+?19oIPZZ}D+sK>4h3J6HI%Ez|tSW>C`5K~#ZGF76Zak?(pfD;?~fi+fip*9c2iG7ahxpfAP+1D|Gv44H96cwEn0;zx?yF(CdTrT#+ z;NZ<`{(G8~eflU&cY0#OEpn182;SRIBv7bNZ2AWA=#tZB!M$$>t8j4ngF671lm!8c z9smpff<+Hxy|#{wd8RCJ2Zu^}NwQJq{eFF$sA8*_)OQSN2Ho$QEydq=ycvpyY-m2}q9d&L>@_xid zh69tgQRByhlw!QjjhlU=zU?#t!{hXngY(#=z5@lE52&*|I60 zWQDEXh`+48bLIo?am1B}bCwjQm&&oZJUI7(!qx)iE2+Q-4m!z@0l6>q_v_A-+|DYC zx>0A{2;R&5Y}FVTB)T;D;E&3rj={%QynLCaBQAd}1%B;Z^n?F`{m^h>|ce*jIDpGj#gM_#~5M z&sIR&>mN!(jhRWZ5CaXb4`>97VJr(xsPt@u`;hz|w*Ss+nWEcK%-w(o`3U{oe*kQJ ztJ%Ie$YgUR^Q(#FE0T$B-9NP_F74TlerLvgpR+n@qcjVnU=Wqdz=>#!K zYeKBup>NbV^F!DD25G~h3*37o^e(n?tB$^j(6_L;pE>C4R)W3)iH`ttw}G|wOCT8` zb&5#wGlaGwN0<3JwReNtz4=Wi2+})9qZll0wfTaFDxYn#JziSoT*_#6njr*F^0I?i zezQy>HBP`%yM@68VNlbbh_sEWM8O|kFSR5TeQuN%f4H(Fs7kK!;+7ssL zLNX#4%*BF_q-qJ^rvSjj@Y3q5RBX)pDDcjNS1u2IR_CkB!ta|crYceWz9kI@UL7)h z@hJ=BU&7-`?Xgh|(Ma{IsJql(ag$_YA;`(dU@{pt=G`m4qmh-c3KQ9U$Vd70dRt>< z6Gvp7>k%t~yZ6^Hf|b-~#qJlRz7Y&%jiC$wUn21d;9q@TV5_}aJ#RP`w zpkP=mPJ=Is)x@g%u79BM*2*()=U%N0u8lZm>DB~Inup}-PlVQRM1wZ}HZzvBmBKN^ z{~@C@Y9GW6Y#weC(U#zeSb^#UA|8nm-I)FF^r{Jr(t@%he&v)Nli(&&&iz<9k($v@ zEjGHm-R^S5XxSdLYu#Bud&jRii)K13rhy>eB*oH z_tmk=*>T>ZHJCyxy6W8>Z0z5>tnZh8wd5fe%AoMwxcb4t_JCgyAIN&hKuE}b!ZyA4 zzOz(rD=v>;t13FyaK>wew$f!RnwWZwIz7m!^oO$ao8g1?3syI7Pli@|hhJ~N0&){) zDCE!iFA}|s_0JFJ$_C76WumgB5(-2D*;*WWYGxYOdkDOqJRP|p{B1cd9}%@5b#{!hIRul0f`3UubS0IyLa7}yZG`_UlVRNX zE5$K(aI>)LocWmj&&p=#7*^~(gz#3cxa8D@5*MuOZF`ag64qL8fZq#Ho;<+MeFJ+; zgfvBbZ#rn`h&TU8)cS&!~FgV*C?zxx?7Uj&vH zD7&t4Y`D&6#GV!LzD>FVH@tplxF>PrY$u~WMTu^b(WlMs7olWmeQ@d5Q-}iFZEEV* z5k?oeBmEVu-t3VJuF5xz@>uheB(Z;lQCsM))wY#Z1}J}@sk5tol)l*vS7*9%4lK^v zJ3FOq$N)yGt<8bgv`{#mzQ2R1_#jvDd3M|9r-#||TVE_3`>oR6*MfXm)BpL9uI?jK zJpcU~!JWa&5}GOB29|(g-5OGSu>IbElXDxi1t{9C9ZJXx2 zx%uhQfw(9e7ek#fnOt&R(=Zq5;;!lI+8AC887hr?ySe*}J$fJ0Kgmi}Qn9g-FK{-| zal{c~pagRaC4Tz`I&*?P6YDqGiVGDMPww8mi_H1FzTELdCJ6$k6#n|?Lp&}vRCRUv zcTaExqK%~Q|NMzkA<{Q3X);{(6I68|$N*UWW?e6+K#YV>_Xi3oDZPA~sPwf54}7hf zCehZu9kf}dkSLO8qmAh{TOAbRcK<9Id!rF%8pl0uvE#S7;P(hwYVr!X+%pecTrxl=zBIXfgt$uBndWryXHJWYNb5m41q z8XVdCH{!LhCtBQSckYbHnMsUHaw;;*;8EB|a&tkgQdfP^yGjp&kNty#B^U|7Qg-D( z9HX5C?9>4DY7C*hHN*YDOmFV!_ym#TLA`&k+OL^Lmtu+@DE;ik%R9f~zjj6qo96rX zW*m3n>5M2FXS1EKx^}-+%1Luk;QMm-#j}H4MX_VJer6zWCK1l|46Fwacc6l@dZtgN zv2zi`tXspVxN8v;Y!*$oRCEsAu<5S`c+u}qF1G*5ll4%a|4cm6Psa`$j~Yoa!92BO z06T$>u_s$89mH&8u*oj!7um?L|HAXdp}M*-WM|Xo3N6jU5!sik+DIIsWc1K0+0vfi-{~R|GaIk> z4iAms=zvYM#LfX|H(+ri0$(IDD-ni2$Y=<1E^8LIlXs>=7#kz$V#*&@B85rc5v-lv zGX41AlQpJWMEO8a6NNB}j`nk#dS0};0gijT<12?}L?h-t-J_B+&fl!=r>BVPy3Gpk z^Jm8r2>ATF#22bxL#YSPPwby zC_<2&svY)&LSzv01g7* zZ3&GhNZbesIZ*tdAA=exv_1|!dCc@vWOICs(BG!!XR&J;r=N49+v{`;nK7MOnskW{ zM*6NZvka%j0cz;~;TU{~&4>Ns10u4edX!ygcm5N}hMCFF za(vbl*&fk~QfYzFmx+Vb*OA%h(h(=E_4rA%?(OiPgEfnYNPc65{3RF1YVi_lc1;tf z^B#B5zvu3@@(nEhKJCl0ilqty<-AUh{k@qKkJLzj%6Ap|Gz79y1#jjCn@jGtT({8CI@geym&zci(T2y&kaFMCe$1&_^I8xwu=N`>F~uAQt%_tX1JVLooXSA~SD z?w}%w{LkuF3Wi4{rx?aAFOmi0rU!9ESAzD%4nsZ>i=EPeSpp1{U{`tp3m7B~5PVXg z^t1)53@Fo~|F{9HI|vxF-CK~Dt^*OWI2lnu=MartvVX+8tp|6#x;hXEVSI+qtN0|X zLGW^cM+Op%)jx!wE~R*B;&!l9|Gtc{=~app``u#JHs?k8TOx5imlK`!4_Q@Bo)uK= zT00NfYkTm&?%Ci@f$SOams*zN zi{&F(eK+QuMB$2Bgdmx7@8t(v&N&q=e~pWeBptq?-T7?9YnhMj!JtNgU4wO)| z)%)86kLo|WU@zNHtcsq81^zSrWc#X;8FQRoW5xVTuOA~(fXB${Q@2p39jI!iQNH#CnbO3N|wEjeG} zW$p8QN*KZ(Zkb@_R2EM4>iYV#5C5s2F=(ecIzlKIFWM2l? zl`b;D1_7ikD!6Na*M$^jdb^(=p(v(`qUY!55B3q=_CN2ce|>$7OCPu}^wIE8|P@Ge8d@@p=#?f?N>5)Rz?ij_~Pv8w6alcc}f_^W|Tk+(-!t#I#p&n{f(CgJ#;}Q~sAvj}0XD*6H5yRNh7li%(HZp>%O~#hAR078r3G ze|3BQ_zH1R>+y2k&%oOEODVcoBs``0LW#z9_R>eh z*?||QPl(4oOeLkzv*I(cGP);01^x0~u3F3ANyW;i!#QFBj4CYr&%a(r_3MXZO3lj1 z#7~Y#BINqJa%ttm7V>4DxgWvNTIF`i22m8S{PqXId@zVTQQ|S&b2_mCZ{VKX-Mmgp zW#eqM{cD*Ya47j9xQ(>>iBMQFs^b-(-rY^Sy{^K~bF>p=VtHnmmI4AQ!5eN6V_8K0MEfpCG; z$fsWz@5Calxy=R}9v+)5sm7DjqA&)5u^|#dL~O5Lu|Px84lYBdm9~rH#+BjETuVLS zf2O|NpTmvk8&*&$l=+VKxxR`w>@OWl2_%UfuPA zqGZ|4+bcwG6m%ZU4I2?^Q;b`h_uYN={C#c{aUzVq(3112n*S9S^NMD0L#zO%{XGAhm-HG>oA=_(c_bd=!t&+;rY>s5{0cVd zwH15lW$jnWCixUi-n=M=z(*E*%oF9(S*;1bsaBzUg{40`KGn@p=4F@d1!*arzFN_@Z!QgPhU;tRIyxs8n= zpztEqX%GtoOBPjw+v1iJ3MbTj(#|RCR?(*BtwT(G#CWiOE)o%}PO|;*d$}ifCUMvn)pxzBr$y}v=%MKR^h~r# zn?K_byC5;{xFj;!-QT|t5(j8~$_!dC5TX_w;x2#u&Y?|9*vGv~|0IKaF4pN4c13G5 z?U;sRrgWFEy0U%`c)suDswSd4rI1~5@>sESXZ<|~(v#WmkHxc2w;G&Cgr)`hyGVtq z5Pn|AujP4{eqcWTSI?xE#L`|KM_>BS)o%an4leUDQ(h>3!y?x{9%|%?3 zS2cK+5#O0S(d$g`!ZOVs==`}MSfdK3H@bKHfAJ2qYr`H4Yxx71C&OGm*Z@lXj4v45`1cbSlr%ta_ zIm@ron~B~2bt(h>&orv%N23|n2&jWLT6_R8i$@IOO^UDcb?%?pmU8nwt#?UblZHOE8CuhX{@n;a%>v`aa9_pI#H5*oag7>|RzzSE zx8kr*Cwoe-NUz)bvjdSD>WIvj8kdRBRF4f8z6<^5Jc8i@LbXsk?$wi8w*3=pSTvz~ zfsqjg%PU8x!FAfDNijHA;-MiJVrXs&V@*Y`tjx`Q8@;A7pUYBy{!-XVhl%o;y`axx z**mbQQJ6aAdB=C7uKY(W$Y+T%*X(ABKx4;8nUIg~mzT@$#GVD1`ZTS#V&E9kP3Ct6 z?j41m3AFAtYfP1~t0)@=d?$Hkcm5UkuIZqgkWc^fJ!i?ZQ>h=OtBfdqXzbo_-%ICj zI7IBM#w^mHY#}luI4R2kRCcEUO_#%IP+Q?JPhH3KSbC z*;xO3axvm zXK>kheSe?h2a(2h!h`Pql5q6Yl-q{z6yY=8T;zAKo{F-k#!Cmi_^D>t)+6SEJ^u>^ zc)YyAZ&%g$+z;>={Evyl%oPLav&g*;l8Ms_tpWt-3~F&6Ej+o<#J~S`pKy3SoK%g; zcRH~os=As80Cw!(@waEB*SoOr)@#rCxy!Zx~FGr+HTc6cG zrHRaaDeYY{D&6Sc?(LT$&F+2d^+N3zmi;^0`}cj2*luK$4HD_HGk#mwuMyRiLqt)y z9=mR{#hde%kw#*QX2oEU>Vvm$qsw{3mS#v1@%71eXx*9c(5-AVk!Xcm0q_0%5S-V|Q_CR4}iSmogZ!0{JUK!9sj;UVlbG;^d6U6 z&Z$a4RJ8_O;ukfn9yVK4eT;ZSapHjucDzBAUTl^A26d3gwtcNO}xV1a4R8FLOy48b-6zZ(~&Gteb=ZbJ8Z>2Yg(VP z+#Z`ZvG@F!jqGS0&KTFuhV2)(x<6YUZ4)~R5QRiQ5XMXim1)2*c5_wTsY_qi#*xW# zC3oWwTCP#8TcN?t;vovmH}9ok79+RB#B4Ce2f4EOmDK1z#uwQm@ypBlHI2j8em8a} zOO5!eJ%T~i4Ev}~z@XUL*)4#gm@$v&wnRtISHGeel+uvq(V&G{{O_@2m{KxEycW0o z(&*CnK1u{1Oob2CzsH&IoyiyEW|L7ZJw72kdYCDPq67MiGwc0JsNaD6D#e zOt?4(5$y%x28CZ)l z@Vv>Q>Yp)3`OUspN_)@lvvKFwRRa$lGc)Y+jCWz+w6OSGL{%eN!}FRca)VPr1#03( z6Hs%2D}DexMgZOT37Mv!Ovk+vZcF=5q^+aWQD$J#^n2TQ^EVC#r@Lz*;%CS7L+TGZS-PSY<*`5ib zndytnMfqGse+>J3$bgof-riG~`7B z_EUeC=@5PFuyXKi(cYf9b*XVgf|k#3_b5mPqb7eK24zLQNU!Ydva@%m>;xZ2vGS+t2WkLFSS%K9vm@{QKb9g3YX_q~QTkSlrGA8xivLPeW1?YQ zwkh0Zmpv=&?2x;egphr1Ba6lW7>SqHO;_=kw{Cy_(}LLWs0{u1+ZMONN|@CjB{#F8 zTBV+NewiZYcNSWPz0UuX56g2lYSN|R4rQiQn2&9AQ(P_clSCPPo2(N;4Q^3lR#>c> z>I4OWxOH#g*Cyr05_ z?CvY#%VXOhu$I=FIBz=Ne1bcW!ES@MMwX@lN2Cs`pS@!;dtDpJYlZ9Res3Y=uYC6? z#s5xx&MAM3@tzmAjeG8np9Ep`B1vHejaQ&>V)`hG3B+}yjH*@4qQ!_UTT!N-mH_W7f)2|pQ9^@)xsKQ{gvEW#F5WWCSu zh;4*JNC+AT67!f^kc>kl6zrAmATuODLX##DjLfVQ`-uB{66ZC>gFYX=R~*+i>v7V? zQeTKmVOgf5eYviW;s9|pD|@66!hMYD#&`T(EXENgr3ka60&eo%s1Ju5MrKLjmoFBM z`!(+Ie9g4eHu^MlBhFCFFy~~g`e{dgwwff78@@oUr-*dDmsW*E`(2Ko`B~DDxL;*1 z?zfz73=6^^hFp9Bn_~GOZb**cI><{VJp1uO^b!m-IJaVXdN+0^s z$L+n(nkvHyNXe;#{0F}%$W#+KZ_pYGqP(uOX>Q4WP1q|>TH<&^Jxj;G-HWJ0mn|$v zV4)}7GrQ&&=6UdSsucG9?jOW=~yB6C%@$K!XIwFAfuL%3!xN>&MUiZ4XVAAB#~ z4BX_m(nRwTm$;8Zel6u(QpN24pp+iAqXy?$j07!u`-l4yZf1H|5*wSo88pQbze=-1 zb<(zGO{7&B!{gOtB6H7le$<@?fYbP%bi`|TI3cWsgZG>|-I}8PeB0_l@_EcMrPf;E zZ)A`-Fv$T{aRbm!82VsPce^|siydYgCYG62>n9~H6Pd=jPlQ6G?{?;>oXxR5>^epI z6Ollu>Q2_GI!8Rv(d@$>9-jE&D)yOqeSo)^ZCW=Eq0XrHJw1Fn^I7TUv90@8ZJswg z_n$0xaT6MKnJM55PU`)(07&)9V8>=?O>%9fyQYmxz#ajyFl*UoG{#zTz)5o2Nx> z5)Jd$y0fC(*YP7e3w#%K4%y9%lH+wPe`~;h_l1x8`h2|=zF`M9qMgmLg8tD{9 zq8FVotNh$w6W^WFO>KF4dO~LTz4bFHqcg{r)rk>Hn^K&oQCLsXaiSZg&g2VD)_8)< zjU1LoLw5pg`_F2krbj$4BzN|Yw*H_A(^X1N{nPHrUaURcY*kw5=3j-NQw-B+dfe+V zd}>)SnH|A^pF&yLcI^S@mzu_|T0yx&JLY{~kw6+avE_N+U$wV3psfoSp{n~P51IF{ zG~|rLW-@fMneEf=!fe^J9BTqy3eO@XIm5lM}GeXFoI4y{ro_ zel^MJN+GP6j3r*-P5_`$#k-ZpKNWDs*|qGMmF{Hp5n}lg(eN4x$m!NC{EDS6t~q+G zQiT0<>ZFPc>sL={Wn^S$Z+U`$^$P=$x`rpFV)VlE)%e{{{MTJx?=QZ%QDZ0Rfr*bJ zYdD_9T+d7b^0Dw;>rX*JX<+jKWbhYgIoF>IffWR7lLhCKRks9YdkOvnT}nAvG9T+< zC<*Z1V=v=sG-izs+9RhP55Y)(umT^A?u(nd7Y<#6K;(t`x&OAQqfJbWO*@d26W{@hP6 zL6bH?1JvBc^y<^mk@3CwRZr@KG?z7IltTl3Iw zWNi7yZ8TjWRW7whfhu`7!@^o#r)Izp`|cvzy2d~p_oLpm9FL7WlTwANM&bKxvE!nE z21oaO<$bFA=<6s6ip6(YF;l7;im0fFmpMK!pvYm+W3|NNnYq{zka!h&O(c5+Rertm zP~ltiM2BC0Tj9oSYw;Ap-5GvCEC_POHjRtyGnjQfK4^hT{}kBzK{L*MQ^l&sP$ zZ(m;#6NS?vgzYbB;}`o?%z#_L#Ei89y94C6YVPEoS~AU~HZR>q zndhSw>z#5tblN!hbCdSh%6)?vjk_@*xEd%Z=NqiUyMbQ!w#KqI$5xX6nvSZ+TkV4y zed_wpLica~4^3woRn-@*eY!iOK?FgR?nXr=B$Vz>>23}P64KouD)2|TyGyz`bVwY! z;gE;BxbJ-(gD>aP9^1XvTx-tf`90Wj_>cI&Z_+LRxNCI68}<*#VqhcHR^wm6yyYZi zl%w&TOhKBawat6L-ZGY~r-AkkcOG83fu>k*oi!x!*F#^OYTGo~9Zo8KrOFnzvhdjz zUVbHZ4?Vg`y`M;pvZ1t34dvK>I5VnJOlvd4?EBMS-)E+*WLkYEnXDMZ5`o#Zy zUSoZXGYe=w_%??)v!ryhqWMn8Fah#SGmCXPV!thCTMLUmX@8$-d+A>J>c6XyyjeYuQXLnXm`nx%80R;YmLC*1<|6oR2JZb(<1wDXo%hJ;fF8lCy0C^$cvfcgI>2l3Cs(>s7Sog*l zOAXpWnB^j=g_41uy2`AdWCmUG>A+%`m5lD?a?1xjUzH#BT#c(`$!|-H)}S%h_Bp6Z zbrXfs@pqC^)m-|-FgOjb?IC>M&pGEvqs*+lFk!i}>`y&Oo2xkX3TIEJ6q>(Q(6=Cg zxTMUp`WbW?D_ef9brT>FvxHUOcJy?9&l_$m57)eF_TwY$5@2h-oog~asj)cTey7T0 zKT_6n7BkWwW95C7?_rY=rPWj%V444hnR4Jt!y&+D3^i2%mpL3rda8h?z4m%>Ll2Oo zK(MLLWHmlZlDi<<`Il(Js0lSaAG9ipTy_Srz|?KZ;rCmFuT>T>zR8<}d%v`y5d4vP zv^O>4ghVCSIq8t_Ge~7YR#c8msn4WXU$Pyo@ngg5Cg{PkG|Z;Y-+CTH@g`gng5T2 ztDQ$3^k?dkn{ch4v}kOWShAe`f^7BQ&onMv0;jO?NQ;vQ2kT8uZ6WvK+)+q6bVt9L zl_ei5b6(Ov(_h=O$)LYKs2&;l_|&|2)6NbEoc^unsSC~_$+ON)y+}>;sp%IGF~Lf0|ZNGSs7PHN5^AR9qG}K`Doa%7@`FHNd-Ap z)@%vL2(5O=3x0iHAyo5#`*cWhZpbWy;wthd!eQ=E(!l!48b&-4`Wxa}Up~o?P?N7H zHky`^dulzu?a39y{}`$LdWMs5PNVksFJ6`qnLUc&)8Y8p<5TJqmd5e_J~M4K7g+bh z4c|WNMdk|6X#M`(Km7yUF0az!)waaXEL*lTCFK`yUPR&y;@jJc({jkS{5<{V!Y)h5 ziQDKJqbb)}_Cb1)-e7Y;hGEA$N28VvxgD3kO+Dg(f~lXRlKGb=u93tsaXIA^JMr+H z^M`sL80TZSZ+hL|AnMKFOH+gllm|l6( zUA+pW(681M1ZN9UVqR?*GHT^BE3Xweb>nGF8&yvKs_PNz^)ermV-WNFr)#mU^B>j; zHZFSm^0MU8xhn<^I;kl9=fyf!vmXQL!^7pFnB;fShxIEP4^>7Y9V&l0^yLnkA8t1ACA@hLJ1iL7i{)7h( zGLfw8vND7C;=ab5!TB=+`liizwQx!6+R zu?jKK*>rKQP>F^sseAlV$3K?8cW#`bDEcX?>*npfQ!3aN1}iK20!7lZ8a)jc?NE8O1jNnkz zYjUD0S6V=Z^hD&%2xbPd-m#K<3hDS~j)p?0(R`f)L?s#WvN+AN2#z_*LaO$&hE*`b z&%4eZChjI=Vswl|7%Te>evme_yEbEL+Q)gF`63`N$HyRMPJtm~m`eBn@A$ZDc~X5^ zqhH+``C!1L!U4ByFi1(r*vm`r{AxYmV>XJMk3j7dCmS2cLtFmw`*$!nVa2DV$+^1= zg6=X4s8`G)B54mz>jbd#&;Y~24jw2EF|o%3{uI(DjYVptdC7YY3cCX_XFgs z4!sSVKitQo3IM1trLxg}HM}u7!<#vmGj89?3eLA6$xIsku@aBP$=-`p%=l)XK_WoI zLm}7bj6qUpv~a)Ca=2R;RkSXmUInhwCq~C$C93mpY9{&ZKV79FceBM4!inZcQ!NWl zCJyFdpJV76*KD7{6%iuSnM^*Kgr0sRjF>6YR3%M;<*)%pAHQ-JrY{pi#P=TqgJDCW zGzCLvxu;?4oP~w|!?j+=tUT=K-6)^Bb(GtiQ2V=Th|nv7!_AZ+pB9V&WW0zpR9N5S z%~uz!#@pv#alW%5;IwZW>+*iTUw@f*?V6yjCwsUou|Fb-@>)S5vTx^WB`(%ViqiP$ z!^EJ)ScC-;fwqLHmE-L+Glj+HFP!EKx8=m`xaG6Dmlm~^pQd0h|9$s~OKHY)Inw&~ z{omh@(SNw@7S=xh_S6cQv)yW>N3|j&8JOHlsoHO+w?y&;7Ie_GCIM*#4Y2G%poi+9 zacJ%UjYAPp?(E{PDz`+;nm$^k!`+jk=BL|rlRG|#b6N~O0zbsF*nxFxBkMIazk&II z=JZSfxlWHdr1E$437jOa?RDn5has2J%+$xP>QvuNmJ+GBt@-!zhm5Xd9*Rz#l~^o` ze3p)&ItBk)=bcKSEw}v?n#;HeT}(0Joxfrvb#^xOyf%|YMnNAx*I}jA^>8r_h`$bBI`F&c^F|$OU6?VG1beH?%kd{E}l5>F?(l~mKP`fjE`4Mt^C4o5h?Mb))-Z* zWVxV9>#5|jWDDjY;jbfYXF}{>q(-d8ZHw}CShH!c2WD%e{BrKduV34}_0FI#=QM3T zcLi(>GfGITKD9@0t<`+0z~U2Ol5*lA@yAwF!Zrc47~WSzJ5kNmGw}8*9ooOLOEoKOZuOhl&xqG;oG0 zQucE4CzN|1c}c!jrw$$czU5q|qMQYG)3y$oa!ZZq%6N>=1g z8cVeJDqk$8%AWMT1422>r}ZCwI!CvaRrW%}AKK3@$%l~!LXQMeIu_Pb_zs&3`JF{n zigP=H4ID9SFx`F>8&j5iwb86$-rB`x_QIwQn|iM97jS@B-B1(9@+ixgt__uQ_QtA3 z=W~FIYaHn)-jYMcz=y7-8@qXzS!>ncG9UT(?I9r|uri)^$bzq|<#OK1Atf|4)Ww?h zRyt~_PUdWdPx3qiL*~`0z`e?U`vEl3m_4i$|N3k4WPZTKE$gD(FajLHXf~YET*4>sGJv^vY#@UT{e^`S3=pocoHbeWO5qshDqzoS~0y`5e) zoe%vBhT~>k_An1~Vq-Fy_woEEv^cr~jIEY3v$5~XIa1L`{;q1>gC5K`@?-$^uE&AY zMSkfYm4L8ZqMh;nv|}H&)p}#1fl+wfa0l#Kc+~u16B8;(z|Y+c%#HnngX=Bu<@JQ? zoLNg>te7RWg&_<%I+eLGKOw)utQHOROZ0YC2?KM*|H4nGi&WL&agE0%K1!h!0yYZ~ z2?di*pVBZyRit*7E4Bb^w4~GVg}U|qo*c+01pz4NAn{uTX*Od1;>7srdBw6OWi<5E#u3gk(54IFH#Eb&JlpK%j(Q zOkO^{TX9jwih*%KY(Jb7-v%aq??rg%M?}sxc#Gy z0fz>?_wk$W8V^c`mQrI4pT+3=m;0nDF#YIa>%?D-eJZKMnT1OdK7{Q6nHhN@=^_KsbA9pV`6lHeJHj5NJXMj9<(>a3 zm!j&}Y@}^1*q7o}!}|~Az3m&%ToN|yMs^y}wXgOJ5d+OJQd{#jW#%B|*MK3Ino@k> z%x^{iV-q(Oi-n@jpkEQ|JhaBhEz0#5#kP~%hYW&L1s0Mj-oGz~SYI|9e_JWhc=Z5> zJoJ4he}yz#X^u-e(iFMuCpIyF)!S&oMBJpZbJZh%X~4Vxdn1n}ub|-U2=b5t*qVz} zPZdSKF!=Y>pgT@-_*gf(v(Cix;{B*sR0VNE;ayT?Xg|u;6V{XIR1rB{Geafh{xN+% z@S&tN|ClBAVr0u4KfzZT#j7w>AJ5BV-4`4jdEm}!W?}J2Mnn1<6vPI8d0K#Uv*wFE zMk=!hXA8|&`CQfZNQH)1i)wV_^m%` zN&)>QmFx7hoPgTQVRJ9M$Aoag3oKlFo(MStCBU<8uShxe`m*Hkf>2i|CDWlY^2Z6Uoqi)NI6ySoj$NL;;y3BqGH)CIa>)>BZ_%Jyw_Tt_@=|Q8B zk&(UOS*7!Ws1Vd;nT<C|QD}htFQ{ zrKrpBDmQK!<8QA_OMW>Sn38&RXHhlh2{sVz3KMj2Exk+;47}LE?67@yH6QW!XpuTV z@Kqi0!xXDl>pi-y`u24Glb7u58x?)@>%ileUtOKpI;^XC)dJ{4mlRisdjbg+5T>Cr>8893O*_9vJd`9@$AN{De_82*rqR;_BH2&A)Wk1&J8f%v17PB8`Z?*PTSS;@Hyr zkQjYi(@Ano?s;1a$PwfDRi25aZT3VDsj^Y3W3{j-?4+a znq$wAlr?05g&XwGBstSYqV#=L(f1Nne9u+nKA*nW zPsN6$WPbeB7P)r&t8l2rQ``a7F8~_QWBzFZCExYye|e7d$IZq>r`Ms?Ljnoja2G9{ zk1uZjv8MCmiU34Dg0BW6fe*`z)Gmm}N8`z3SqH6$A`%J5VE+?J*!my9kL#w7B z_A7>$8toBv9473)8cL2FVY>IyTn*hKOU2q%^&o6>4)6_yR($y$L+YZa1xx^y3<&_j z(g4*wa7sE<7TsqI{`|+m$zHWK-b_Wbz`YL7K71fb)nGyANqb>iMbc!%9?j{+aG_P8 z<4g5R4yPzO|J|(bLf48cq{NJfCN^BQs^g{8hl>B$sRHOFyaAW}5@$)F$)9ix(xDWc zO{LW`m!RsG8lb<#+aQ<8<9ZtZ7%*)bGJ1l<3T9kU_qJw>=!}Pu$$&mN6fc!QxVKWU3fCMMyp)Ez3M}=A~jW zu)pT55?SzPU@mBx*D!?7m^3t&QWgB^v9?<%4g90nlKfxK3Qu4%EB-e%ftNPVSiv;M zEs|Db;u;RbGXKj82b--Z_~?me&G!5`-%o%>$bkI6t*EG~di@J$McTHmjkT((MDy$%<)u5?z;xEN zN1A!^dG>2`md?!O+~_35N}qHny-AP9tH&crZP1Q5&$+L^L3J$VvM>5C-^|(njzi4I z$sZ#CkU&!*P0~+Pv6Gs6jSDn&5WrKj4j&p^8qF?N=tZJHkurviIC41BaW9Z{jvD&* z`r$(-XPoy@j8YZBe^j^?tp z3-4@aI|;hS1D(5_)f=VBe7wOyQ^Uy@#XLN&3vD?@gzL-HPjK^3dBU^aGz!EXo1%t_q}nby5p$?KF#Hcw0y9(ntF5BECbEA>{FmKG>h;ZI9bgDG4Ri7_Igt zvyc}bgqd4WC|J7=6w}8fdEVaklSo-r5$$V+kgGp8stE4T;cJcxx8#qPt*-_Fw%{vz;ci{n+c{8Vk)a-zD;Q znSg7}?fG0WL*Em0C#Op%w5We1KW7e~ZX|s>pLc0TWMLCT?kYz#6~xuK@!2k`w%P}! z4RuFS(IEP01Whei_^5*5$)})NMpE*8C1&~n=IBz~!2LoG_DdxD`ZbJY|64nGdHE~< zarmNnON4|U+-Ps#Z|Mp9PAUUm&RwD2sYd16s8r={Z(|Y~=-fM30e3C+MqJmY51CiP_CxeZT zziIezLjm;bCZMZ?bmuP|MN%{^0+CZQtu+w(K2t;zu3t;_(VbpjQa|uyouyc@6Z@mo z7Y29c*KZ07_xU)?XJ(I58yYaX1Z$lUGqy(t!0=w41lIw@>Vw=HgQU|IF8GUwrSn%B zU8~8z^%rN^gYOQ+Qpeb$JO7zH;m|>AUwJ@yn3$MwA7~F(JCUYlS7%A)M(x~>#30R@ z=u~W08donhhi-MS9yuwvWivhMXoW823ASJpyB%#Vy;PRM5WX}8E%qk^L*}$QI!KBr zy7|Vu!eqW-;1I)TUgIJAOazhFCqU|Oab^2ca>hsLeQdF$y=MFR;OzA9y}0&54qLWD zbaO-|9>RM_Sl`e!E@6GqWz?+~Tl^7Ft7QCT7Xv+Dvl^zu7#$PCI-0lH54btLmt2r% zLcP&m%I=%opc%kEtVsAD?-OcTg`m~d^<{54Ma9j$6oY46Trr^Cf41_$uHI;gmn49; zU6b&x^vxRx2aV$E!|8;qrABJXX8&mi+G=x0Xm!&IE$!7z_pNk>xhj5|F7EBcdMeGx zw$zjNxn$ad!bB8Z4u)JCy}F3#i$QaKMTNCba#VJKO>gIUT1+($*=C15tbH68aY{HI zJTQ#}>bQ|IdXMx7L1@SXK9Cj+!LV@ZBeW;yjnu+`|6V{BEw*Z>QhHBPFhI z9hu5;Bwq#_1Q{=B{kZdryU?3$rp~8e2*G672*hM?-6}%8tO(LK^yNYo)Go1A>|Y;@ zc48m;SXr0Ie#CJrc_?PDOVGFMeet30s14cPHbCN30!txlHBOCt3H<}+Q|$Q8fY#V! z=yzm!OQIXZt+wyBA4y0eCU1tcFW+_+cEV^-KkRkWb@`#35hEG$s56;;6MlJ2Srd`f zM&-eZ66eFZyAdW@3EyYe-(hK(1m$R2@;%wB@qtyHcoWN)i<@ib#oS+WyjJFLmaK?A zSQKakCnrw$4&>2ZIiW8hT%ad>$#p*k4IPo!USDy)&_@4_T0ta$#M>I&L_oV*!(<%^ zBHdLaZ_@t>Duy?DJ<}d-`)D=)d8qA(ndF5XnbPI{^*cRDYL}|s#T+-Ot>+fDG(_0dON9&v{oLVeYY*oQ88oRsIW@ZnKc#Zk0& zYLf2UTnVgK9Of(UrLBl{Dr!Di$42?>$%$=B(R9bz^*yPZld5bu#)RLo5Df2f6pYjW&En4D0SU=R10yYu`ZhTp(y?rwiD8u&`iR z;3XWNGpEw^U^y8|KiXMjN^YaGdUv?Su0y9(pszuBq73>ic8cv^ zD8b#GHv-q|@)sOQ>)ev0C3>HQl{FM>3y$OODJlTGk=^T?o-23egTT)FOg6kOG|bVR zk7u_I%no}`V7R{1n`V)(b_UFNiRs2ub1k!XPT)qm+((NK6mMAxoN8S?9PLgHZ>}Rb zEs0bFAAaXGv=$cfbfbQr3%xCcF-_;~NgBHSmoU8-U&i_6Y**HAMBsmt8PJ6ybj=J&jY2<=P}pgdjmS?toZqSH`ES@Z|7oR2&pjpxovFP3_?L^B zb1*>W$Ep!BBmUb|ZhL@gI(fdpd*Cnt?v@E6EhCIu-?4wU-m^vVoozewr&SSzntI>S z!A^tb>lpvVyI6akGz1fD_X`QqJRqQLvVIrprQ*)PQnrEy$ngPx|H>+`kkSw$`g?;e zPx=wlokK#(t?frHTg0k(#3A1dn+{iFBxIfv`;aXP%-?9P=6q^qIOOQ0zr*jOAJ(_X zVXpp#ty&rWEF}Oi2W9v1!@2^B0zw0%kS0i8*{>QIksae|;jI3PeKCS>-Rsdq#m?Ek zVevzNo51Jp6n#}YplkqUsJ6U2KZsaIuU`jaa>}2`3DX0IsDcJN!U1(+`yJ<>yl{`8 z#;Po~C>q_;^S@#(5?MvD6yVZbn{V(I$a>P7@%$^2oFp$_!wHOBi74~hpSMQ@U=QF0 zWrWtPchwZK3l)o_W~#SRxdbc(bfM2OZE2bk1}jzfIf#|uTQ2HO;MVZ=b}RO$hL|BM>1Wr&yNX> zM!dNdF-$SEyt{^2_mThM1RC=(3uj;7V^W$uSYh)zJtW&~OExNhD?R?sL}SwGj7Kvs z)JsjjD?mi7V!;@Q#*5`kdzf6!oY>wd7ake8aSh9Xfxoh2KXYCB3|nrS37tb-37%Eg zZ1&xsa_|1A`q|~F(oEHq_SrQ3jpa5F^${N=U_Nu2IKrbA4Cdo(3I-boj2|55fv@Qd z96FANLde;D@?vonqSBiDm_AA^;J1UGP9~R&ARhjDlOW&*nHh}?F_K{^j$#;X_ezXG zp651*q(l~RRt=pMC=DmH-JDhexfY*V9-7xmqPM6@CO@8mq+eOvzC?6n>xQfFkN7Oq~8o)Hi&$y)xapncAnZ2mcMXmjLM1k zMPAzzOV_?RU@^MHnx6WfX-PqyhRm~<)&IAi8{D*Q{>;!fAx_9%mmIeDE`ISIJ4!Dl z#a^CC_V%`GXjNk&+7&(6S^jzWZdaq#AnZSm%{?_|h`+XepRb(;1Kh>#^AeZCe@W%C z(`-oW7aDf-lRy8g_a!AJI=+xfsjlXy=C^wN<;zQd zWr(|j?5g5E@`tL>%{06q?Kg4FF2_W=$jPYE;vRlBwR5v8K3GwMs4i`#cS#=fzL+Wl ztlM~>kKXb4A9?Dq9Ij7u*kJKyG_$UR7J`Hjw}#m}z8nf{hO3Hdwm5Xidf3hAGhLgIBa~>ABczj0cbY+chRt6y7M9wV zwHYcd_Jy-EE^ro92~W+hO(Z!VAis_sMSEP09?FBv6bCzID6KH7kzBIF4MIh^E&KVj zs0EF_lz$ULToAd`+OD3S`l;?W8rq}%k~(H`#1ba`+qc~2B=iIA3TqZET|XuKAT zMNdRYL7t2$fqvncUE~Ti92qq~4@3lC9?5k@jBE`CiBWNzanB&x>zNEZh$YFtC{!CX z?ZOL9hkdrVT)ffUeX{glfBz?4UE%O4R^;s=r-XGFR%QC~v;+kD~&Ia1* zwAeFUMnoRl$beIhbQ%%iDIuKT#P<+$HO7+Ia)sO>bA~;_(XC?f%`KcC1w-nRu{U*T zzuKbQ_xjZIl^EL4w+A0IPJ>;qE9wN}@-{fp3Kt0q$OmaYi@tw91#Z1guq+Q0$IqdM z-90@{I{~(!9oU{;w{_aS+rw|a6psyywAg2`4jzFdf7*A`8Ens{<>37B+Y7CMPFK_7 zOhfKlXo5_hkS`H7Xb!w0&0MasB;;y2ClP77blz@) z_xF#63Njc~Xgw-4|NActxN%&-b5G>AQ z361hGz3xS-$F)*Nj4q#XSY)Jmlj?HPDRh<_;(6X7%F7^l9@yDMZ&8@ zJ26)w(Ve&3MBx;+7pTPwl6rPoS?j`VN`>1_lM-d(5b@+LF#~s&!K4N!w0h1+PhWCf zO8ocSn*FMU5q>N_W{D#a4W-~)lOVR1JUr7PV~2cN!u(t#yp7o(qg4TneNQZF(>yQe zNZSstgY$gcUDn7`9NTs1+new_8GK@!GpB9KE2im1+a!}es=$vypfXXo#FifxRyy^& z8yi7e<33D$4y`NKze0LGe_K%Z+wVPFJ9-g$mr{D(v$YrwBcSPcxnZ znqr@hw+hI&tdr?R#`%III7)k`Lxpl-GnJed&FJBKDtq7N2Nr_V`)Xqzj`PxGlf$Nn zfd`g#|27GH?`C-%F*!4=V=u+Owk=5n0kRLbQ9IJ5)Rp+hM#0Cr3>#e1rSj#+HQgt| z5v%=4G@Is@8cM3k*R1YiVG&HMr}gz9gM3J;vA;EbA)qgSHQ?dx>CL*K8oH0e`}aV9 zvNUiT;ao&hy0vyfIQhl-6%H=0_4FU|w6wIu(Ytj{`Ef zaj?kVN=xsI<)VT&VhO@&Br*RatFlT;wrX$=W~3IeUfs167e|6XQ=H8r(AIyrZF?{U zc^Lack|uNq7ui)z2TgrOu{^JRvF!WwjkNNLjjMpB~tyjn{4`)9mh@nPD zq+S?AI9t4)_xZzU848Qb)qE-4gq!Vu{Wp4hh;Fu5gq_{FoNqjsJ%_l9@w;9&XC1lS zrYan7B#c!R+&^%hnMvL8-XgBiU?v-o8>R=xAr&=Ma)W z3$wGJ>F0>o9;#qfP)rvz|B}OZEwvvpindH68B%-jGp%2N-P6AROGl@Ig-N1}QIPao zEg)bh#<(qaFGFRYKmr=r<+Jwydtfl+oBf$ zaV6q^g$+kOFMSbB-~X8$Q8RS@$>>YCs#9x9`*oAxK=@g8RL#=+-=d(0Gh#a#=u{z* zdOJqyD{S$MAu8)#3g@N!FHj-#bJrdZV*d9xpKYt0!RF8Ff9F|iX0Hu$Vq6oExX)Oq1#b1g!E+tYV= z{WpQ4`D9%N(qo_A3rHCNf0h8=9rJY7mQlDMpd3}^1!7b$y<}18-NYMPF+{gn`x+wa z#r3L_yP+3BEk+=I1*1xa^_@c8F2(k}#Y9h6nwUpvbQjW&B;s6C*N2@*WT_Cn9P=@P z7-%(Df#%EzBq}#w{fl@k6M!N($3qLld;1o?P@hV=GC9&S%hPq9wT_fUH8 zu&PnX4B+9Nauw`;BsMGE3UwHGZITPx&b~I2rG(`_=lzd8*qq^c1>inW3)v6-@*912 zIDyM{?Zsib)z{0 z%XXVt-PGhN^p347@zz@zrV#r**`aCDD?Xtm$x<6vvQ$5hzOCu)@p8M2z8rA4Kw|J4 z9_nBUr<@Aqn~X@SaAvfL*{{Rgp-1@uObFPSe$!sYwP|VA+5LlfuKp=YFGHI1Kfg0G zCz|5_o;h=%J!C>6d)!F-N`pk!h$kYeB%rG|rodzJ1vS0I(7!W$7-eOWIrdksWxIBV zI8B~NW36(d3x4P0kF%(29$wl?Ua{VIrrW@mmDzA&ot>JwA*4JgoibUX3n^x6;;H0K zy?%?z{((m$0XiPRvoO@WcxryQmW{K%c2i~XujFpVfuWy}#V4!xOKn99%$PpQoxZHO zAy8sYd%wT`Ys-Q)uP5_ID2Gd{)p&)IYHyoxwouoyxc{4u*{1Q4pr6S`weu@+KhVp` zd_E>RR1mh`kzbx-Tne%HIxdYQ^*4EHF6cDNFS&|(sJ?jS{L(er_VC0fp}$+-W2q-g zXyvW9vE*YW_k0e-grh9x{f7_nSy{ul85+EmZfGlZl^*xD8R7R}ffA07lgb81VZN+I z5ezW-h&EHOHCg@Ug%c((wtZb-h#Y45w-BOgU(~XFM0BG0rYV#^_ymS;w2yceIpsS4 zB>3~GB?e`vwDvQO$Cw4locUu#xkl!ouzJ-G=*pPo={*u)=8w&(AG8wtu~C2OPO!^4Z_>+{`+$O7yaSE5h~`pcQMtkU zHJGjV+jTd_xO46XYPwpp=oBcG5DrAAWA`cFhI~6E{Yz?aEbVNFnBTFSkSSl|y`4n% z8Cza(*84hTs$hyDpTMNdm4OjIVM%%0X!k5v^E;esU~WjTR&aJ;OE6<6V;)|=LMPO6 zDAbIBakSV-S~VOwyzi%=Q#IYqD&(-W^q-8^Zrj82qW@y;w0Fdt)+q40egMg#LWHey zUH-6_@ILm@ZRwk9srIe;`XCLc3pB*(sX&U+^ zfy99zblfLML{8>t*LXi;p zC0X1%{?UChbK!l`>~&e!r~LlYjIPmGP182%fvC=x(8=rPlll|{#wm?oDY$4yFMOwk z^m4GLXHJUVe-T3uSV~MxEcd_nK5TpNhk003r2$&&W7zB?Mmmm3rXH5<)6Chmk*CX6 zNT+mVA^04fmpAi`{<+*N+6N3ZRc3!Pf@()EjY072sw;2b`{Co0{iTlTUu*n$qBA{T3>3&h zL)=-t=MCkQ7v)J)G6FCTnw;)0FPf7Q6kS$%62hC9GR~HhG%L3H@@)O@iJoLo70p>V zoXob}typo}1ys5O^~*XbM>n);c>L@ zeZ3f3b@}Q@G|6NPoXPT+={#%ut5R)^(8fNu_G47Blx((6_uW{ISWibsiXq;N$QV}T zuSl*0LY=cwAaf-qS2y2fNkYstIeu*prFzA)-ect6J01KHWt{NYGsKk1o;kPaA6qd^ zz1E<%ATa9kah&NeOHEyYNcySVqGh%MN#s>a;e+cOJ4U!Z?_Wv27#Jz1iRLA7ss0^X z&*nPy!zLHRcza9DAJ=i^TJ77%uT)iM<^hxAg;pFt>Te#qg;}sam{W3Y<=wNuX+g8wccOhv%{+YZE|FfOSDkLjX>U}4_hvt)`-)+bInyC2rK~lGbus;

^PcY%(N5LHT z*^iT_OeIV_#+}r*##>!1LxRV=zwKVz&c68ZV;A=Y3~PJYela?&{fvKa0PW@=Y)yH6 zG++yvTLB{tpD$~HJX*?KAD$D~QT&P&XbU%KF##}Axgu#Br7GDH1V~h zBqW{S1{fo75+r}nv}@MYD{0DbZGP$0@+xywJo89z&`Z6PHIUwPFMk&E4gL8tZfgq6 zozq<+TcQN&CaFB==qP2dc9o1vKf1{|cv_9;U=7!pk^lJdKHG3{QZ)hU1@&!&b&aba zuMWH_D@M3s#zGt>)h-qdclbq1PmqhdbmuNLMvq-1yZayWdYwxziLfrnit-JPaql-cxUu(QlOzZ0uZ}BoP|IomDWqxy>9o9 znh&h~0!zDABpsE53appTp8Tynt=3cCyG+a(pqI+dzo?FOC+(|vnEZyE*QY5dK2zW~ zCA|neSS^vHmt7jTaQSh;ZMe`U!O*&kbU5krGUC$-qI+HNEH-;!CS`H247|R&&6{}* z#0aXvUWUQp^_|_|fF86(U(9cF#ZOXsMSV+r#{qJ!6WTZGpSF8gQUJ<*oLST+Ha0dS*Ms?_ zN9fW=(1@!ym%7>h^(c<&^OFJ)N}XyeCud&f=|OHvC-@ToTnmjVIbjy<>VZwEv5gib zCIRh_`ubFGtDGz|lmguYSJ|ej zQ!Mmi>sP#o!%Ri=#;&*OUHs$YmAggFILoF}h^ocQ;x+6TX= zOa<5Z`$ib)Iwozw|HSJP-|9s7lp6_PF2~Qt75rk9DKc;JcK*5G4WewsZ}+Pn+w66T6pa9R%w3zPLL=lSyM;Wp~Q*kL%sW4{Pct$9JchZwpH3*23l zK`xq_=Y89rJ^oY4pp*1X1=fa zhk-(D=#yoFj~_Y?xVi@G79QMv>1)Wg(iIl1d7WklbqhYP;WxBGjh1I?lNZ0DP=^Lj z)GE^4xF7YqMa@q-4N7)KZ-^Gug|}tWvF7B(;~dop|=TfsC8Jm7`c8bwcSFI3S_QMn|-=z zj*iM11=p95##rfLXY1P)-B%ls1*Xx-)4M9UhZBl_^i5Tr4xitRN4t;Q)sI5Lq|M^q zv*it8rN4=0I}Z5bW^G)(I#|ht&DedtL>K}20VuT0&!6+SEA&*@s2+J{C8rVl>qd)u z&NGynLo1{fS2}e)`xJxqc)~8wwUJ!+W}-ShUPeO?XAhB_n0ih9R$7%86lwd?MHu3I z=463M;@z^UgY$pdoEcpEc#eA6@-K|_#;u&G$z7f)goJxCWvkDqZ>|q{EkDT+v_pBB zow7JcedUm~7k*pu&yEVAlP$a)eeTZQa0=?k#-yKQpVv@_pAPf@)l;HREZPHl4cY(- zN=hS6linXQ_C%Yr3>QbKlGtuPNjRi7!Y1#}k~9spbA8p#vz7;f*L^Szui-U#@G~3r z$(^WzyQV`_=#z=n2HU0-7q|`T>V@cpDRy)+o(lkGRn zcc-{lqEPSf%Hejz4dOYUoW1LCIEcUD@?&9o(*H7v2gOa2@Moo@%h3B@rsap2Mr%Zk+C&pxEGv zRlNu{nh(k{Z*@Wo*5_7gI{X;w?H69xChdvdO|$B!=uWTqEw~L%iuxvLLampeYuOme z3%&OqhPO!K&_0RHF4d)hd%Xit$oB4bvq2SmrVJ&69xWcRqBIC$o9SK;RN355e|B(h z^Y;;@XgGwu9;~f9*gaYvUTCo~k7jVV&~+Ha_NCJ#2uu`%`Vq;_5uE!A#QLJC)apa` zY@}}fSbB;UcrW-PvU`M!GkAY>N(8t0t?peHGeJtN;YlN}4=e7#$C9!Ms*WfeJstLX zx32XvrSAGpUyRP}`|F&Drqh({KT{E?+A>dJ$PNp$s%gg__imYnbQPGPf5aV%jsRNr zHSm3sBbC0{MVVIwK7Le80y7XnKJv75*y1sZTp>p?i^sHg44C_~y|$sKs-(swqBPP{4F6-J$U77pQ7f*G%T-IZXcEqlJ%{$sj_=Z8R*JV_^+WG>URaO+rXGWT}cfarBC*+I}FRYgaq!m&9``C zc226>hRkPh`o0$&(Vd}VV*2Qn7Tk%!++ImNmU({9^ie&FJVkHR5HyCO{{RCgCA%q| zl<)Vek3JtNO_vGE))hR{SEea@V*^_{E3cOeW`%xoNqC9^4HwC8+lsx`X2Bi&u>Qk=xJ6ea@04>E2k0rzWH;W9`~as9bn76bnz_du z(i8kXmW*se&m-d;W5c2s#d8tU#UV#_yPL6?gHRYXF>TOuvs3dgGv5ziYL+0>d{jz{ zUvFP8`RNKv-M+BNu9bV*Oh-x(&6&}d^w7GN4ng6bGJj|)fU1hN{QuK1-BAzN%gj*> zMo-9r`ej|&(ICc;Ywy_I-zlfI@^${_gqwe!BC4>~0cvXLd3>^F04z!RAy|meOEU zDe2ZWvs9K{ny{Wf&{jaF&6r$ciSMe|DE_MQabcUW%#ySIQo%F~VovKTYPP;pW$Dk# zPB%YI9j-=u;p3}vyG57rp0T8ELW_(2>`YnFFlEun(&htMm6=Kk5PE(^N;HdXeryy~ zdoZ9A6Iji^{S`}Vf61`!(uMOb0F$5n7*gcCg*OF2dd<^oK3bD;bUd$OUdRaFhmELZ z!Oe}hVe0&J=JC~1(Rn<#TYq11cJ{jk;>78M!i;R+6;+v%v0D6oCm2KR{J!E0XdLds zTT1~x`^$yb6QV{P&|czV$wKFnj5~d;}421?sQtOMibPZlt!kG zu4UX`?M2ePct&FUeY``_CWq;I8#qZzuk8}*Y_sm0ORysAYZ~;bb|8?OPbF62%wlMz zMGmRi8)c-g<7G{8M>nTrENL?<6q4)aR3PMvawL_g%ftm2SV=St6eg}O570lTM+G7# z>aqscC3c6-8zjwptx>yI>oz_77SCEX+^tey&sbjRvkbU)k@~gIxm81Mc=PJQmBfYT zBFn21ZafnX!U1t?zOANd`98{3s`Up=;WSD#+t{xv~@P9(Cjp{2 zo265hdi2b0?)Xm0eHg~h%{+5MOLBjT-F1ZGqnJs@_8Xj&+IfWg!6lB&uS5wULyA!~ zW`y;5Sm=Gk)lBSe@&i;L%g{IsFAnmJ*yy^+GMSg{du!usa{kO{-g%0cGTmT0ogKa# zm478`_ZlO_R>*dsPZfFcGFiN0-U({oxfNEOYy0q^8 z)R<@Kd2sN`K117~x6>jAOa1cm97o4R4t{AoU_RaRe%i0(F@2vd$fzK#rUh)ho^rSL_LS$X&URz(GwBHtKFTu5qyxn}a*gbu+17{|#e#}Jb>$yyN*xcCgu z^dnMIA)rH@2RgIhR?1p!^BhwT&WN64F?P}FUh+AuFK@j^()_+PM?sa%r^)JBDnX^^mLj0P;{tn4ub^V?O-FqX!)Z`h)H7w2 z@8_Ryj!zV38d#FtvKkDoM4XVu>gukAve)Dk|E4_G4;=wGl}tC))E{a}>`OwGdMay$ zb_E}O)=Z9Y$mvBtDnEU9SJOmpr*FZW(gH8K}pLM9Wbtg}$C%D@lj7I{C@vrOsy@ z;cI$}E-=1@8=Ygal1VX0Y+D#7S8O5Swjg2AWfU!*=1B86H21Aa^srJlGR2Yoyn6ZA zMWpv_rE!NTrGpO+Dnyg<+=5+BpDPk8M{YjY9C}Bdbd|Q-E4$tEz_wglmb|y3W;Xt5 z8x1$De&#g0C5~Nn{8~N+oT#M(F*xh0p z5F#u#%RBnanu!R@KaADCHNO+Xe@{w<-9LIV>x9<8*v90JncF)0b^U5f+q#XtvM~Db z(&-8_mockh2ZGut@$uC5GPX&o#=4;(`f~G!QBQ$k_n*cdI8piD*oNpNZ4WaCC zdWpfopNQMHL#Hk=tfl@A@o$LRc>jR0v8D9DAgHO3RWG=|DvNz^MqC|CV=X)_r2Wz))a5np0Yjd5^6v89hqze!he7dYw&vTDgVWe*^jX~&q z8-`-Ct8Wk4i_-=W`k@>cfzWH5zL@Xn-Z;(^#gmmh3kW^UhbE< z%Oq=(lvr|$p~6pmyu4}mEPPlq+U#N>6hL6`i#j3TNi|#l!wvJF{R4-Rgvd zWh1BTAosnpbJ6ZLqTC6T*ywP(r|YvyhxC*qR+v~kecq$m*4JdCJbj)#zdib0UAC{K zWm+QYK&Z)*zG8PGPTmjS;W-!RLs5wD)Y719Aurxe)Y}RS#EuFgA{gNfRd7VQcX5|L< zXcw1?(52Epuo{s?51rp-#Q8aOIT_r5$2zB={6p)`%7xyH%CPh1kxEj+nIo`N_B~5m z+ABM&IQ5}eB@?UjzLc(6+KYFZJ)UZ!=Mmvs%5h`ei~ZX~9S00oKS~4;Nt z>v@Zn@^Q<%8kxxE--#U!KdEEgYWPD|9V9RS0Q>UdJAFtr*qJtjMi(YuxtahmWi1Ce zv|i8gdKa34pzR;Lb`hmP4nKo>Lz96uB?N%Mo}(*UPW1;qNDo=0wXO`=S%=_sHe}El z_>$DXbayoiH0#=SC*1fisq##_mrvs`obp|-a$i@krM;A{%26|U z@m?AGv&7{TYiZMp5h0Kex;0Q16Tr#oi41F&|1qS;_T5Tx!VYS;(hOj+2SnF{?=3WV zrq+6>x=CKQx!%Mz@;~qFtT47Q=S~d8rXNp8r{`eOUSSt!_vCZBuP1O1-(*WiCNx7T zm>o#L zrppquuOlP4INe4&aPpJQ6A`_st_o|jeO;~nvxBLtripnIoBY+O2c4u48Io7c`|e0! zfAw%(!4{y=<{{mtS$!HGvuKh&ai6*f7J~JH@N50!PRmFL6z)pf6hHTF2RH5wO(jINKp1yutc=^57V-rHQtp4|Q~oNl5(m9-G-U+Vr6l zSA(rO6ARwHM$cZnh;W~s@g{T8)7rj*5kNfcaf$bxd7o~Qt7~Uh^&2Jn_~P>|#!OBn zr0E6Y7JfR9skB6swRXZ~&7!3IUtLp>Wn{&U)ZVq86Gm+JX{Iu|%dNH}J$x!P`&y1|z|<3Yf|qr{VD-pe3Nmcb>r}=5|y?UVFaNGu_QE}~~oM)THx^LuGtYPa&8^cwknUyD(bu-4_qcQ=XJE}!>Q)T5aPzpt? ze>AXkBc@(o_uOyFn0Eds@Aa=kCA-U$RDgZAfC~NXqU#<)ZrQF_(A>2>{yX#uza;{@ zwA`+f@i(%)@sll24xIbedm=q0LR@5%gM4=U=!+_wKO>GC-gghNC&5f5K!OvrjQnXJN9Z?qOl`2s5NRud|7JQ=1VCykcFuB6fx{%q=G2 zg(=O_P=tavc;vYyk z_irEg>)$ap@OOWFMX4&wYHsAiaV^RfveutfXS{~*PeSCNggc~;1Oe8Jx9>+Y|Mxjj zVcfzcAk{Fwi&Flh+JB$q>g@rX}K{H0j-zrKH?b8K+++sm-4i7q++{((=` z2l{=cE8^Ny2>(_qJnDw#HZXtu%>{M!U*5k~zBZBZ9;^lV`07D86BHA0_Xa`ArxDgk zH_0hn;I7V4>;NyyJgXXJ&f3?%8tV{>4%n;lAXmiDp+f15oBnq}aa}_61R5Y$?=sv5 z8V`o$fXNUel>;(aS_TGepJ~}uwmmu4Bcr3U!1D-?j&1}s^Ww?eW(Gs5v8^p@NC-v1 zuiWIbx3|Bsci$&QH~hOKZ{ODG&WwEtGI0U1j-?O4$CP=dUeGDWdFU*|*dA9zt%s=^ zzmlU6P;bxQTlHR=`~U|&F<-^DL?5X20;Q?(LM!}#HH7((1dBDmQ9-k^zH%yyAeI2!zC1hc>&Mu>R4^ zvPAGQ`jk~>Q z_9pjtd`{4BSfG2|9+n?Gb_NzYRXjJ!& z24Rcr)n((hipVp|`6?@F7pTooA#Pt33E_2_Qv*mJwZc=cewA-{O_Nujb>Hw*v-9jD zRd&!bbv@PS<&i%v<0hr162{y{rz|ER|0?OQ)h3fLH(gl?)W6|S7AJCPcI}{-TI;z1 z77B@*Nt7hgwEE!L;bof@HGO6kdOvxXD1AG=Ymm52eXO?cWH(u*Ww4-$AZna~{5sFYD#v~W_ojoK5pAc&09Hoi=i((TdS z<_QjFbEY278}tM_zlMx#`wGT|j^YMO=sX5}9b}buLP=z%0b6cn`75fW8T&{n{RK~h ziO{X|5UG8!H+6*q+{AW~2zFh_&d7o<$EoJi>4FHI~}cH$9L=3WXq_!Aj}( zS$E5+>E6#%NTnxhhDm)5-EO-K`kK(H1e~d5Ltg3>1jj;GnWa1u3KLV;bi}&bPq#&E zEx{FH4MuDGTsI?ePNTI1!F5$`Na~!*<)q z&=Bzre61~stB0Ro^B#9;CN8vJ^qPFzps$7ed)$C6Y!e8i3aEQJ>m7Z0&5*-N31nZZ ze|hT+FkALPQC0U~FgGF>IG7^9ZMX(TEyNBku2*zbav-7p9&r-CgZjM8r*I)*sTr^EFX zR&oC*69-xSPesGW1q1}tH)d)X*!?O$Kj7qQ0&W1o7}2j5VE2-Mh6XMNM-&tw>c&WE zz6WSBzXs9w-~L}kGzeOdQw^5a)&X_2GMPuxw|^&mp@LVoCpenDd6Kp8emE pzgpyft?^e=FlKuHuYKdoccyL5EMd$l)LaA8{2%%Cu1o*` literal 0 HcmV?d00001 diff --git a/script/nvda_backtesting.py b/script/nvda_backtesting.py new file mode 100644 index 0000000..6b9730c --- /dev/null +++ b/script/nvda_backtesting.py @@ -0,0 +1,103 @@ +import backtrader as bt +import yfinance as yf +import matplotlib.pyplot as plt +from datetime import datetime + +# Download NVDA stock data from Yahoo Finance +df = yf.download('NVDA', start='2020-06-22', end='2024-06-18') + +# Define the strategy with the SMA indicator +class SMAStrategy(bt.Strategy): + params = (('sma_period', 15),) + + def __init__(self): + self.sma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.sma_period) + self.order = None + + def next(self): + if self.order: + return + + if not self.position: + if self.data.close[0] > self.sma[0]: + self.order = self.buy() + else: + if self.data.close[0] < self.sma[0]: + self.order = self.sell() + + def notify_order(self, order): + if order.status in [order.Submitted, order.Accepted]: + return + + if order.status in [order.Completed]: + if order.isbuy(): + self.log(f'BUY EXECUTED, {order.executed.price}') + elif order.issell(): + self.log(f'SELL EXECUTED, {order.executed.price}') + + self.order = None + + def notify_trade(self, trade): + if trade.isclosed: + self.log(f'TRADE PROFIT, GROSS {trade.pnl}, NET {trade.pnlcomm}') + + def log(self, txt, dt=None): + dt = dt or self.datas[0].datetime.date(0) + print(f'{dt.isoformat()} {txt}') + + +# Custom Analyzer for metrics +class MetricsAnalyzer(bt.Analyzer): + def __init__(self): + self.init_cash = self.strategy.broker.get_cash() + self.end_cash = self.init_cash + self.trades = [] + + def notify_cashvalue(self, cash, value): + self.end_cash = cash + + def notify_trade(self, trade): + if trade.isclosed: + self.trades.append(trade) + + def get_analysis(self): + return { + 'return': (self.end_cash - self.init_cash) / self.init_cash, + 'trades': len(self.trades), + 'winning_trades': len([trade for trade in self.trades if trade.pnl > 0]), + 'losing_trades': len([trade for trade in self.trades if trade.pnl <= 0]) + } + +# Create a Cerebro instance +cerebro = bt.Cerebro() + +# Add the strategy +cerebro.addstrategy(SMAStrategy) + +# Convert the DataFrame to Backtrader format and add it to Cerebro +data = bt.feeds.PandasData(dataname=df) +cerebro.adddata(data) + +# Set initial cash +cerebro.broker.set_cash(100000) + +# Add analyzers for metrics +cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown') +cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe') +cerebro.addanalyzer(MetricsAnalyzer, _name='metrics') + +# Run the backtest +results = cerebro.run() +strat = results[0] + +# Extract metrics +metrics = strat.analyzers.metrics.get_analysis() +print(f"Return: {metrics['return']:.2f}") +print(f"Number of trades: {metrics['trades']}") +print(f"Winning trades: {metrics['winning_trades']}") +print(f"Losing trades: {metrics['losing_trades']}") +print(f"Max drawdown: {strat.analyzers.drawdown.get_analysis()['max']['drawdown']:.2f}%") +print(f"Sharpe ratio: {strat.analyzers.sharpe.get_analysis()['sharperatio']:.2f}") + +# Plot the results +cerebro.plot() \ No newline at end of file From c7177577f78f472c8cf80263a2b8f96bd0ff5c23 Mon Sep 17 00:00:00 2001 From: mikiiiss Date: Fri, 21 Jun 2024 04:10:29 +0300 Subject: [PATCH 4/5] stock backtests --- backtesting /backtest.ipynb | 25 ++- script/backtest_results.csv | 2 + script/config.json | 6 + ...esults_MC.PA_2023-10-12_to_2024-03-12.json | 15 ++ ...results_NVDA_2020-07-16_to_2020-11-30.json | 14 ++ ...results_NVDA_2023-05-16_to_2024-05-30.json | 14 ++ ...results_NVDA_2023-07-16_to_2024-05-30.json | 14 ++ script/stocks.py | 188 ++++++++++++++++++ script/user.py | 115 +++++++++++ script/user_json.py | 131 ++++++++++++ script/user_save.py | 170 ++++++++++++++++ 11 files changed, 692 insertions(+), 2 deletions(-) create mode 100644 script/backtest_results.csv create mode 100644 script/config.json create mode 100644 script/results/backtest_results_MC.PA_2023-10-12_to_2024-03-12.json create mode 100644 script/results/backtest_results_NVDA_2020-07-16_to_2020-11-30.json create mode 100644 script/results/backtest_results_NVDA_2023-05-16_to_2024-05-30.json create mode 100644 script/results/backtest_results_NVDA_2023-07-16_to_2024-05-30.json create mode 100644 script/stocks.py create mode 100644 script/user.py create mode 100644 script/user_json.py create mode 100644 script/user_save.py diff --git a/backtesting /backtest.ipynb b/backtesting /backtest.ipynb index 09d24e4..c135849 100644 --- a/backtesting /backtest.ipynb +++ b/backtesting /backtest.ipynb @@ -320,9 +320,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABZgAAAR0CAYAAAD8XHOJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADts0lEQVR4nOzdeZjNdf/H8dcsZ/adwQxDSnYastwkO1nTgrKTLOlOKtndVLZMuLWISsiSbCFNtyV7ZCljuZOohsEwjNnNcmbm/P7wm3M7ZoaZY84Z5fm4rnPpfPbv97znmOvt0+frYDKZTAIAAAAAAAAAoJAci3sBAAAAAAAAAIC/JhLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVnAvSKDs7WxcvXpS3t7ccHBxsvSYAAAAAAAAAKHYmk0lJSUkKDg6WoyN7dfNSoATzxYsXFRISYuu1AAAAAAAAAMA9JyoqSuXKlSvuZdyTCpRg9vb2lnTjRvr4+Nh0QX8VRqNRW7ZsUdu2bWUwGIp7OfibI95gS8QX7Il4g60QW7An4g22QmzBHogzoHASExMVEhJizo8itwIlmHOOxfDx8SHB/P+MRqM8PDzk4+PDFzJsjniDLRFfsCfiDbZCbMGeiDfYCrEFeyDOAOsU5tjg5ORkhYWF6cCBAzp48KDi4uK0aNEi9e/fP1fbkydP6rXXXtPevXvl4uKijh07avbs2QoMDDS3iYyMVMWKFfOc68svv9Tzzz9f6DGlG8civ/fee/r4448VHR2typUra+zYserRo0eBr1UqYIIZAAAAAAAAAHBnV69e1dtvv63y5cvrkUce0c6dO/Nsd/78eTVt2lS+vr6aNm2akpOT9d577+n48eM6ePCgXFxcLNr36NFDHTp0sChr1KiR1WOOHz9eM2bM0KBBg1S/fn1t2LBBPXv2lIODQ66k9e2QYAYAAAAAAACAIhIUFKTo6GiVKVNGhw8fVv369fNsN23aNKWkpOinn35S+fLlJUkNGjRQmzZttHjxYg0ePNiifd26ddW7d+/bzl3QMS9cuKBZs2bp5Zdf1ocffihJevHFF9WsWTO9+eab6tatm5ycnAp0vTz6EAAAAAAAAACKiKurq8qUKXPHdmvXrlWnTp3MiWBJat26tSpXrqxVq1bl2SclJUUZGRl3PeaGDRtkNBo1bNgwc5mDg4NeeuklnT9/Xvv377/j+nMUagez0WiU0WgsTJe/rZz7wP2APRBvsCXiC/ZEvMFWiC3YE/EGWyG2YA/EGVA4OT8riYmJFuWurq5ydXW1etwLFy4oJiZG9erVy1XXoEEDhYeH5yp/66239Oabb8rBwUGPPvqopk6dqrZt21o15pEjR+Tp6alq1arlapdT36RJkwJdS6ESzFu2bJGHh0dhuvztbd26tbiXgPsI8QZbIr5gT8QbbIXYgj0Rb7AVYgv2QJwBBXP9+nVJUkhIiEX5pEmTNHnyZKvHjY6OlnTjOI1bBQUF6dq1a0pPT5erq6scHR3Vtm1bPf300ypbtqz++OMPzZ49W+3bt9fGjRvVsWPHQo8ZHR2t0qVL53p4YU7fixcvFvhaCpVgbtu2rXx8fArT5W/LaDRq69atatOmDU9dhc0Rb7Al4gv2RLzBVogt2BPxBlshtmAPxBlQODk7l6Oioizyoneze1mSUlNT8x3Hzc3N3MbV1VXly5fX5s2bLdr06dNH1atX1xtvvGFOMBdmzJw/b9euoAqVYDYYDHz53IJ7Ansi3mBLxBfsiXiDrRBbsCfiDbZCbMEeiDOgYHJ+Tnx8fIp04627u7skKT09PVddWlqaRZu8BAQEaMCAAZoxY4bOnz+vcuXKFWpMd3d3q+e+FQ/5AwAAAAAAAAA7yjmKIudYi5tFR0crICDgjrukc47tuHbtWqHHDAoK0qVLl2QymXK1k6Tg4OACXwsJZgAAAAAAAACwo7JlyyowMFCHDx/OVXfw4EGFhobecYw//vhDkhQYGFjoMUNDQ3X9+nWdPHnSot2BAwfM9QVFgtlKrVu31saNG206x9ChQzVv3jybzlEYU6dO1fjx44t7GQAAAAAAAMBf3rPPPqtNmzYpKirKXPb999/rt99+U7du3cxlV65cydX3woUL+vzzz1W7dm2Lh/oVdMwuXbrIYDBY5B5NJpPmz5+vsmXLqnHjxgW+jkKdwfxX1bx5c+3fv18Gg0EODg4qX768Jk+ebHFT7zVnzpzRt99+q/fff1+SFBkZqYoVK6pevXo6ePCg+QmP//73v7V+/Xrt3LnT5mt69dVX9dBDD+mVV15RmTJlbD4fAAAAAAAA8Ff04YcfKj4+XhcvXpQkffPNNzp//rwk6ZVXXpGvr6/GjRun1atXq0WLFnr11VeVnJyssLAw1apVSwMGDDCPNWrUKP3+++9q1aqVgoODFRkZqQULFiglJUVz5861mLegY5YrV04jRoxQWFiYjEaj6tevr/Xr12vPnj1avny5nJycCnyt90WCWZLeffddjRgxQiaTSeHh4Xr66afVoEEDVahQIVdbo9Fot4Pu85tr/vz5eu655+Ti4mJR/ueff2rNmjXFkhz38vJS+/bttXDhQnYyAwAAAAAAAPl47733dPbsWfP7devWad26dZKk3r17y9fXVyEhIdq1a5def/11jRkzRi4uLurYsaNmzZplcf5y27ZtNX/+fH300UeKi4uTn5+fmjZtqgkTJqhu3boW8xZ0TEmaMWOG/P39tWDBAi1evFgPP/ywli1bpp49exbqWu+7IzIcHBzUsWNH+fn56dSpU5KknTt3ys/PTx9//LHKly9v3gK+bNkyVatWTX5+fmrSpIl+/vnnPMdMTk7WE088oV69esloNComJka9evVSUFCQgoODNWLECPNTGfOb61YbN25Uy5Ytc5WPGzdOEyZMUGZmZp79Ll++rO7duyswMFDly5fX+PHjzW1z5v7ss88UEhKiEiVKaNSoURb9t23bpgYNGsjPz081atTIdQxIq1atbH40CAAAAAAAAPBXFhkZKZPJlOfrgQceMLerUaOGNm/erJSUFMXFxWnZsmUqXbq0xVg9evTQrl27FBMTI6PRqCtXrmjdunW5ksuFGVOSHB0dNXbsWEVGRio9PV0nTpxQr169Cn2t912COTs7Wxs2bFBqaqrFYdVJSUk6evSofv31V+3atUu7d+/WSy+9pAULFujKlSvq2rWr2rVrp4SEBIvxrly5ohYtWqhGjRpatmyZnJ2d9eSTT6pMmTL6/fffdfz4cR09elRTpkzJd65bXb9+XadPn1bVqlVz1fXr10/Ozs5auHBhntfXs2dPGQwG/fnnn9qzZ4/Wr1+vmTNnWsz9yy+/6PTp09q7d68++ugj8/Eax44dU7du3TRjxgxdu3ZNCxYsUJ8+fcyJeEmqXr26IiIiCnKrAQAAAAAAAPzN3TcJ5rFjx8rPz0+enp565plnNGHCBJUqVcpcn52drRkzZsjDw0MeHh5aunSpevfuraZNm8pgMGjEiBHy9/fXt99+a+5z+fJlNWvWTN26ddPs2bPl4OCgw4cP6/Tp0woLC5OHh4dKlCihcePGacWKFfnOdau4uDhJko+PT646JycnTZs2TW+99ZauX79uUXfhwgVt375ds2fPlpeXlypUqKDx48dr8eLF5jYmk0lTpkyRm5ubqlWrpsaNG+unn36SJC1YsED9+/dXy5Yt5ejoqCZNmqhTp05atWqVub+Pj48yMjJyzQ0AAAAAAADg/nPfJJinT5+u+Ph4paam6tSpU1qyZIkWLFhgrvf29pafn5/5/fnz5y22q0tSxYoVzYdxS9IPP/wgR0dHvfTSS+ayyMhIxcfHKyAgQH5+fvLz81PXrl11+fLlfOe6lb+/vyQpMTExz/ouXbqoYsWKuQ7xPn/+vNzc3Cy2vD/44IMWa/bx8bFIant6eiopKcm89vnz55vX7efnpw0bNpgPI89Zk4uLS56JcQAAAAAAAAD3l/smwXyzSpUqqUOHDtq0aZO5zNHR8laUK1dOkZGRFmWRkZEqV66c+f3TTz+tf/zjH3riiSfMyeCQkBCVKlVK8fHx5ldCQoKSk5PznetWHh4eevjhh/Xrr7/m2+bdd9/VzJkzde3aNYs1p6WlWSSzb13z7YSEhOjVV1+1WHtycrI+/vhjc5tffvnF4mgRAAAAAAAAAPev+zLBHBkZqfDwcNWqVSvfNr1799by5cv1ww8/KDMzUx988IFiY2PVoUMHcxsHBwd98sknql69utq2bauEhATVr19fISEhmjBhgpKSkmQymXT27Fl99913hVpj586dtWPHjnzrmzRpoiZNmmjevHnmsrJly6pFixYaOXKkUlJSdO7cOU2dOlX9+vUr0JxDhgzRokWLtGPHDmVlZSk9PV379+/XyZMnzW22b9+uTp06FepaAAAAAAAAAPw93TcJ5tGjR8vLy0teXl5q0qSJWrdurX/961/5tm/WrJk++OADDRw4UCVKlNDKlSv13Xff5TrawtHRUZ9++qlCQ0PVunVrJSYmatOmTbpw4YKqVasmX19fdezYUWfOnCnUeocMGaKVK1fKaDTm22b69Onm85pzrFixQqmpqapQoYIee+wxdezYUaNGjSrQnHXq1NGXX36pCRMmKDAwUGXLltXEiROVnp4uSUpJSVF4eLhefPHFQl0LAAAAAAAAgL8n5+JegD3s3LnztvXNmzdXfHx8rvJ+/frlu/t327ZtCg8Pl3RjJ/P8+fMt6hctWlSouW5VuXJldejQQZ999pleeuklPfDAAzKZTBZtatasqaysLIuyMmXKaM2aNQWee/369RbvW7ZsqZYtW+bZf+7cuXrxxRcVFBR0x/UDAAAAAAAA+Pu7LxLMf1U3P4TwXjBu3LjiXgIAAAAAAACAe0iRJphNJpNM19OKcsjbcvBwk4ODg93mAwAAAAAAAAD8T9EmmK+n6c8H2hblkLdVMXKLHDzd7TYfAAAAAAAAAOB/7puH/AEAAAAAAAAAilaR7mB28HBTxcgtRTnkHecrLgMHDlRcXJw6dOhQbGsAAAAAAAAAgOJUpDuYHRwc5OjpbrfXX+n85VWrVqlx48by8PBQaGhornqj0ah//vOf8vf3V0BAgF555RVlZmbarb6o1wMAAAAAAADg748jMuwkICBAI0aM0Pjx4/OsnzJlivbu3atffvlF//3vf7Vnzx5NmzbNbvVFvR4AAAAAAAAAf3/3RYI5MTFR//znP1WhQgX5+Piofv36ioqKkiTNnj1bDz/8sLy9vfXQQw/pww8/NPdLT0/XCy+8oJIlS8rX11c1a9bUoUOHLOp79eolb29vValSRTt37sx3Da1bt1b37t1VtmzZPOs///xzTZgwQUFBQQoKCtL48eO1cOFCu9UX9XoAAAAAAAAA/P0V6RnM96r+/fvr+vXr2r9/v8qUKaOjR4/K3d1dklShQgVt375d5cqV086dO9WhQwfVqVNHjz32mJYsWaKjR4/qzJkz8vX11enTp839JGnv3r3auHGjvvzyS02fPl39+/dXZGRkodcXFxen8+fPWxydERoaqnPnzikhIUHZ2dk2rff19S3S9dw6HgAAAAAAAIC/p7/9DubLly/r66+/1ieffKLg4GA5OjqqTp06KlmypCTp2WefVUhIiBwcHNSiRQs98cQT5p3IBoNBSUlJOnnypEwmkypXrqyQkBDz2I8++qiaNWsmJycnDRgwQGfPnlVsbGyh15icnCxJ8vPzM5fl/HdSUpLN64t6PQAAAAAAAADuD3/7BPPZs2fl6uqq8uXL51m/fPly1a1bVwEBAfLz81N4eLiuXr0qSerTp4/69++voUOHqmTJkurfv7+5TrJMsHp6ekqyLsHq5eUlSUpISDCX5fy3t7e3zeuLej0AAAAAAAAA7g9/+wRzhQoVlJ6ebj5z+Wbnzp1Tv379NHPmTMXExCg+Pl4dOnSQyWSSJDk7O2vcuHE6evSoTp48qXPnzumtt94q8jX6+/urXLlyioiIMJdFREQoJCREvr6+Nq8v6vUAAAAAAAAAuD/87RPMpUuXVpcuXTR06FBFR0crOztbR44cUWxsrJKTk2UymVSqVCk5OjoqPDxcW7ZsMffdvn27IiIilJmZKU9PT7m5ucnZ2bpjq7OyspSWliaj0SiTyaS0tDSlp6eb6wcMGKCpU6fq0qVLunTpkqZNm6YXX3zRbvW3KurxAAAAAAAAAPz93BcP+VuyZIlGjx6tevXqKSkpSdWqVdPatWtVvXp1jR8/Xi1btlRWVpaefPJJPfnkk+Z+ly9f1ssvv6yoqCi5u7urdevWmjRpklVrWLp0qQYMGGB+7+7urgoVKpgfCjhx4kTFxsaqWrVqkqTevXtr3Lhx5va2rh86dKgkaf78+UUyHgAAAAAAAIC/PwdTznkQt5GYmChfX18lJCTIx8fHHuu65xmNRoWHh6tDhw4yGAzFvRz8zRFvsCXiC/ZEvMFWiC3YE/EGWyG2YA/EGVA45EXv7G9/RAYAAAAAAAAAwDZIMAMAAAAAAAAArEKCGQAAAAAAAABgFRLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCgnmO2jevLn+/e9/F/cyAAAAAAAAAPwFJCcna9KkSWrXrp0CAgLk4OCgxYsX59n25MmTateunby8vBQQEKA+ffroypUrFm1+/fVXjRo1SqGhofL29lZQUJA6duyow4cP5znmhQsX1L17d/n5+cnHx0ddunTRH3/8kWfbhQsXqlq1anJzc9PDDz+sDz74oNDXS4K5GO3YsUMtWrSQr6+v/Pz88mzz1ltvqXTp0vLx8VGvXr2UnJxs1/qiXg8AAAAAAADwd3b16lW9/fbbOnnypB555JF8250/f15NmzbVmTNnNG3aNI0cOVLffvut2rRpo4yMDHO7zz77TJ9++qnq1aunWbNm6fXXX9epU6f0j3/8Q9u2bbMYMzk5WS1atNCuXbs0btw4vfXWWzpy5IiaNWum2NhYi7YLFizQiy++qBo1auiDDz5Qo0aNNHz4cL377ruFul4SzMXI09NTL7zwgmbPnp1n/aJFi7Rw4ULt2bNH586dU2xsrIYPH263+qJeDwAAAAAAAPB3FxQUpOjoaJ09e1ZhYWH5tps2bZpSUlK0fft2DR8+XOPGjdOqVat09OhRix3PPXr0UFRUlD777DMNHjxYb775pg4cOKCAgABNnjzZYsx58+bp9OnT2rRpk0aNGqXXXntNW7ZsUXR0tGbNmmVul5qaqvHjx6tjx45as2aNBg0apC+++EK9evXSO++8o7i4uAJfb5EmmE0mKSXFfi+T6c5rmjNnjlq2bGlR9tVXX6lq1aqSpCNHjqhJkyYKCAhQYGCgevTokSubn2Px4sUKDQ21KKtXr57FB75t2zY1aNBAfn5+qlGjhjZu3Jjv2ho0aKA+ffrooYceyrP+888/1/Dhw1W5cmX5+fnpnXfe0ZdffqnU1FS71Bf1egAAAAAAAIC/O1dXV5UpU+aO7dauXatOnTqpfPny5rLWrVurcuXKWrVqlbns0UcflZeXl0XfEiVK6PHHH9fJkyctytesWaP69eurfv365rKqVauqVatWFmPu2LFDsbGxGjZsmEX/l19+WSkpKfr2228LdrGSnAvcUpLRaJTRaMy3PiVF8vc3FGbIuxIXZ5Sn5+3bdOvWTaNHj9Yff/yhkJAQSdIXX3yhnj17ymg0KisrS1OmTFGDBg107do19ejRQ6NGjdL8+fMlSSaTSVlZWea2JpPJ4j7cXH/s2DF169ZNX331lZo1a6b9+/erS5cu+uGHH1SlSpV815iZmSlJue7tsWPHNH78eHN5jRo1lJaWpv/+97965JFHbF5/q6IeDwWXc09v9/MHWIv4gj0Rb7AVYgv2RLzBVogt2ANxBhROzs9KYmKiRbmrq6tcXV2tHvfChQuKiYlRvXr1ctU1aNBA4eHhdxzj0qVLKlmypPl9dna2jh07phdeeCHPMbds2aKkpCR5e3vryJEjkpRr/kcffVSOjo46cuSIevfuXaBrKVSCecuWLfLw8Mi3Pi3NSVKnwgx5VzZv3iw3t6w7tqtVq5YmT56sZ599VvHx8dqyZYuefvppiw9q69atkqQmTZpoyZIl5rrY2Fj98ssvCg8P19GjR5WYmGjRLykpSUePHlV4eLgWLFigxx9/XKmpqfrPf/4jSQoNDdW0adP03HPP5bu+48ePy2g05gqc5ORk/fe//1V6erq5zNXVVVu3btWFCxdsXn+roh4PhZcTp4AtEF+wJ+INtkJswZ6IN9gKsQV7IM6Agrl+/bokmTeu5pg0aVKu4ykKIzo6WtKN4zRuFRQUpGvXrik9PT3fJPaePXu0f/9+TZgwwVyW0ye/MSXp4sWLqlKliqKjo+Xk5KRSpUpZtHNxcVGJEiV08eLFAl9LoRLMbdu2lY+PT771JtONXcX24uHxhBwc7twuKSlJ06ZN08KFC/XBBx/oscceU79+/SRJZ86c0ahRo/TTTz8pOTlZ2dnZMhgM6tChgyRp9uzZql69ujp06KCrV69q165d6tChg4xGo7Zu3Spvb2898sgj6tChgxYsWKCtW7dq9+7d5rkzMzNVtWpV83h58fT0tJgzh5eXl2rWrGk+4iMzM1Pp6elq06aNHnnkEZvX36qox0PB5cRbmzZtZDDY7/8SwP2B+II9EW+wFWIL9kS8wVaILdgDcQYUTs7O5aioKIu86N3sXpZkPlI2r3Hc3NzMbfKqj4mJUc+ePVWxYkWNGjWq0GPm/Oni4pLn2tzc3Ap15G2hEswGg+GOXz75rKtYPfvss3r55Zd17NgxrVixQsOGDTNfxyuvvKLKlStr6dKl8vPz0/r169W/f39zvYODg5ycnGQwGOTr66vU1FSLexATE2OuL1++vF599VXNmDGjUOtzdr7xMdx6b2vXrq0TJ07oiSeekCQdPXpUrq6uqlGjhgwGg83rb1XU46HwCvIzCFiL+II9EW+wFWIL9kS8wVaILdgDcQYUTM7PiY+Pz2033haWu7u7JFmcBJAjLS3Nos3NUlJS1KlTJyUlJWnv3r0WZzMXZkx3d3dlZGTkuba0tLQ8585PkT7k717l7u6url27avz48frll1/UrVs3c11iYqK8vb3l4+OjqKio2z7ZMTQ0VH/88Yf27NmjzMxMrVu3zuKBgEOGDNGiRYu0Y8cOZWVlKT09Xfv378912HaO7OxspaWlmT/MtLQ084ctSQMGDND777+v06dPKyEhQf/617/Us2dP8wds6/pbFfV4AAAAAAAAwP0o58iKnKMybhYdHa2AgIBcO5EzMjL0zDPP6NixY9qwYYNq1qxpUZ/TJ78xJSk4ONg8f1ZWlmJiYnLNERsba25XEPdFglmS+vbtq82bN+upp56St7e3uXz27NnatGmTfHx81KVLFz377LP5jlGpUiXNnDlTXbt2Vfny5WU0GlW9enVzfZ06dfTll19qwoQJCgwMVNmyZTVx4sQ8/9VAknbv3i13d3c98cQTSkhIkLu7u0Uy9oUXXtCAAQP02GOPqVy5cvLz89PcuXPtVj9t2jS1b9++yMYDAAAAAAAAIJUtW1aBgYE6fPhwrrqDBw8qNDTUoiw7O1t9+/bV999/rxUrVqhZs2a5+jk6OqpWrVp5jnngwAE9+OCD5rxozvi3tj18+LCys7NzzX87DiaTyXSnRomJifL19VVCQkKRbgX/K8t5KF+HDh34X0pgc8QbbIn4gj0Rb7AVYgv2RLzBVogt2ANxBhTO3eZFDx8+rPr162vRokXq37+/Rd1LL72kJUuW6NSpU+aHCH7//fdq3bq1Pv74Yw0dOtTc9uWXX9a8efO0YMECDR48ON/53n33XY0ZM0aHDh1SvXr1JEmnTp1SjRo1NHLkSPPRvqmpqSpXrpwaN26sb775xty/T58+WrdunaKiohQQEFCgayzUGcwAAAAAAAAAgNv78MMPFR8fr4sXL0qSvvnmG50/f17SjWfC+fr6aty4cVq9erVatGihV199VcnJyQoLC1OtWrU0YMAA81j//ve/NW/ePDVq1EgeHh5atmyZxVxPP/20PD09JUnDhg3Tp59+qo4dO2rkyJEyGAyaPXu2SpcurTfeeMPcx93dXe+8845efvlldevWTU888YT27NmjZcuWaerUqQVOLkskmAEAAAAAAACgSL333ns6e/as+f26deu0bt06SVLv3r3l6+urkJAQ7dq1S6+//rrGjBkjFxcXdezYUbNmzbI4fzkiIkKStH//fu3fvz/XXH/++ac5wezt7a2dO3fqtdde05QpU5Sdna3mzZtrzpw5CgwMtOg3bNgwGQwGzZo1Sxs3blRISIjmzJmjV199tVDXSoIZAAAAAAAAAIpQZGRkgdrVqFFDmzdvvm2bxYsXa/HixQWeu1y5clq9enWB2g4aNEiDBg0q8Nh5uW8e8gcAAAAAAAAAKFokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAq5BgBgAAAAAAAABYhQQzAAAAAAAAAMAqJJgBAAAAAAAAAFZxLu4FAAAAAAAAALg3fTt0k1y2/UcOxb2QYmPS+jL9tHfKj+ows21xL+aeRIIZAAAAAAAAQJ5Mu37Qw1Wd5NYotLiXUmzSdh7QT9/tl0gw54kEMwAAAAAAAIBc4i+kKDj5N3k9P1glez9R3MspFiaTSefPRUuXjMW9lHsWZzADAAAAAAAAyCVi8VG5GrLk3axOcS8F9zASzAAAAAAAAAByid16RC4PlJVrSKniXgruYSSYAQAAAAAAAFjIzjapxNkIeTXNvXt51qxZCg0Nlaurqzp06GBRFx8fr65du8rb21uBgYGaMGGCXetvVdTjITfOYAYAAAAAAABg4Y9dFxSQdUUeeSSYg4ODNXbsWH3//fc6f/68Rd1LL72kuLg4nT17VpcuXVLbtm1VoUIFDRo0yC71tyrq8ZAbO5gBAAAAAAAAWDi18ogMHgZ5/aNmrroePXroueeeU4kSJSzKk5OTtW7dOk2ZMkUBAQGqXr26hg4dqkWLFtml/lZFPR7yxg7mfGRnm5QSm5ZvfabRqIyELCVfSZWzIdOOK8P9iHiDLRFfsCfiDbZCbMGeiDfYCrEFeyDOUFDpP/wk93rV5OjuIpPJZC53cHDIt88vv/yijIwM1atXz1xWp04dvffee3apL+r1oGBIMOcjJTZNMdXb3rZNXUnXNMc+C8J9j3iDLRFfsCfiDbZCbMGeiDfYCrEFeyDOcCdGk6PKuQbKo3EPKTv7fxWOtz8MISkpSR4eHjIYDOYyf39/JScn26W+qNeDguGIDAAAAAAAAABmTspWmslV2fFJhern7e2t1NRUGY1Gc1l8fLy8vLzsUl/U60HBsIM5H54l3FTqly351mcajdq2bZtat24t55v+lQOwBeINtkR8wZ6IN9gKsQV7It5gK8QW7IE4Q0Ed6fSxgvdEqPTYfgXuU716dRkMBv3000/6xz/+cWOcI0dUrVo1u9QX9XpQMCSY8+Ho6CDvQPd8641GZ7n4Oskr0N1iGz1gC8QbbIn4gj0Rb7AVYgv2RLzBVogt2ANxhoIq8UQ9ZSzbLePleLmU8beoMxqNyszMVGZmprKzs5WamipHR0d5eXnp6aef1sSJE7Vq1SpdunRJH3/8sSZNmiRJNq+/VVGPh7xxRAYAAAAAAAAAC7X7PqIMo4OS90TkqvvXv/4lDw8Pvffee9q8ebM8PDzUsmVLSdL8+fPl4+OjkJAQPf744+rXr58GDRpk7mvr+tatW1skiO92PNwZO5gBAAAAAAAAWAis5KtD7g+q5N6fFdCthUXd9OnTNX369Dz7+fn5ae3atfmOa+v6bdu2Fel4uDN2MAMAAAAAAADIJb1GHSXvOarsrOziXgruYSSYAQAAAAAAAOQS0qWOMq8lKvX4H8W9FNzDSDADAAAAAAAAyKV29ypKznZXyp4jxb0U3MM4gxkAAAAAAABALi4ezroYWFv+n61T/Ne7ins5xcQkXb0qk0ON4l7IPYsEMwAAAAAAAIA8lR3SUf/dWKa4l1FssjIztfvMbg1c9VyB+/z0008aP3689u3bJ5PJpEaNGmnmzJkKDQ21aGc0GjVt2jQtWbJEFy5cUNmyZfXCCy9ozJgxcna2TNump6frX//6l5YuXaq4uDjVrl1bU6ZMUZs2bXLNv2/fPo0aNUo///yzfHx81L17d02bNk1eXl5W3YM7IcEMAAAAAAAAIE8NB9eWBtcu7mUUm8TERHX3HaypTT8qUPuff/5ZTZo0UUhIiCZNmqTs7GzNmzdPzZo108GDB1WlShVz2969e2v16tV64YUXVK9ePf3444+aOHGizp07p08++cRi3P79+2vNmjUaMWKEHn74YS1evFgdOnTQjh071KRJE3O7iIgItWrVStWqVdPs2bN1/vx5vffeezp9+rS+++67orkptyDBDAAAAAAAAABFYOLEiXJ3d9f+/ftVokQJSTcSyZUrV9a4ceO0du1aSdKhQ4e0atUqTZw4UW+//bYkaejQoSpZsqRmz56tf/7zn6pd+0Zi/+DBg1q5cqXCwsI0cuRISVLfvn1Vs2ZNjRo1Svv27TPPP27cOPn7+2vnzp3y8fGRJD3wwAMaNGiQtmzZorZt2xb5NfOQPwAAAAAAAAAoAnv27FHr1q3NyWVJCgoKUrNmzbRp0yYlJyeb20nS888/b9H/+eefl8lk0ldffWUuW7NmjZycnDR48GBzmZubmwYOHKj9+/crKipK0o3d1lu3blXv3r3NyWXpRjLay8tLq1atKvoLViF3MBuNRhmNRpss5K8m5z5wP2APxBtsifiCPRFvsBViC/ZEvMFWiC3YA3EGFE7Oz0piYqJFuaurq1xdXXO1T09Pl7u7e65yDw8PZWRk6MSJE/rHP/6h9PR0ScrV1sPDQ9KNc5xzHDlyRJUrV7ZIGktSgwYNJN04FiMkJETHjx9XZmam6tWrZ9HOxcVFoaGhOnLkSIGuubAKlWDesmWL+SJxw9atW4t7CbiPEG+wJeIL9kS8wVaILdgT8QZbIbZgD8QZUDDXr1+XJIWEhFiUT5o0SZMnT87VvkqVKvrxxx+VlZUlJycnSVJGRoYOHDggSbpw4YK5nST98MMPqlixorl/zs7mnHaSFB0draCgoFxz5ZRdvHjR3O7m8lvb5oxd1AqVYG7btm2uTPn9ymg0auvWrWrTpo0MBkNxLwd/c8QbbIn4gj0Rb7AVYgv2RLzBVogt2ANxBhROzs7lqKgoi7xoXruXJWnYsGF66aWXNHDgQI0aNUrZ2dmaMmWKOfmbmpoqSerQoYMqVKigkSNHysPDQ48++qgOHDig8ePHy9nZ2dwup09e87m5uVmMmfNnfm1vHrMoFSrBbDAY+PK5BfcE9kS8wZaIL9gT8QZbIbZgT8QbbIXYgj0QZ0DB5Pyc+Pj4FGjj7dChQxUVFaWwsDAtWbJEklSvXj2NGjVKU6dOlZeXl6QbCd9vv/1W3bt317PPPivpRmJ45syZFu2kG8do5BypcbO0tDRz/c1/5tc2r6M7igIP+QMAAAAAAACAIjJ16lRdvnxZe/bs0bFjx3To0CFlZ2dLkipXrmxuV6NGDZ04cUInTpzQnj17dPHiRQ0aNEhXr161aBcUFGTeAX2znLLg4GBzu5vLb22b066okWAGAAAAAAAAgCLk7++vJk2aqFatWpKkbdu2qVy5cqpatapFOwcHB9WoUUNNmjRRQECAduzYoezsbLVu3drcJjQ0VL/99luuBw3mnOscGhoqSapZs6acnZ11+PBhi3YZGRmKiIgwtytqJJgBAAAAAAAAwEa++uorHTp0SCNGjJCjY/7p2NTUVE2cOFFBQUHq0aOHubxr167KysrSJ598Yi5LT0/XokWL1LBhQ/MDCH19fdW6dWstW7ZMSUlJ5rZLly5VcnKyunXrZoOrK+QZzAAAAAAAAACAvO3evVtvv/222rZtqxIlSujHH3/UokWL1K5dO7366qsWbbt3767g4GBVr15diYmJ+vzzz/XHH3/o22+/lbe3t7ldw4YN1a1bN40dO1YxMTGqVKmSlixZosjISC1cuNBizKlTp6px48Zq1qyZBg8erPPnz2vWrFlq27at2rVrZ5NrJsEMAAAAAAAAAEWgbNmycnJyUlhYmJKSklSxYkVNmTJFr7/+upydLVOx9erV06JFi7RgwQK5u7vr8ccf14oVK/I8yuKLL77QxIkTtXTpUsXFxal27dratGmTmjZtatGubt262rZtm0aPHq3XXntN3t7eGjhwoKZPn26zaybBDAAAAAAAAABF4KGHHtLmzZsL1HbUqFEaNWpUgdq6ubkpLCxMYWFhd2zbpEkT/fDDDwUatyhwBjMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAq5BgBgAAAAAAAABYhQQzAAAAAAAAAMAqJJgBAAAAAAAAAFYhwQwAAAAAAAAAsAoJZgAAAAAAAACAVUgwAwAAAAAAAACsQoIZAAAAAAAAAGAVEswAAAAAAAAAAKuQYAYAAAAAAAAAWIUEMwAAAAAAAADAKiSYAQAAAAAAAABWIcEMAAAAAAAAALAKCWYAAAAAAAAAgFVIMAMAAAAAAAAArEKCGQAAAAAAAABgFRLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAABQRH766Se1a9dOPj4+8vb2Vtu2bRUREZFn24yMDE2bNk1Vq1aVm5ubSpcurY4dO+r8+fMW7dLT0zV69GgFBwfL3d1dDRs21NatW/Mcc9++fWrSpIk8PDxUpkwZDR8+XMnJyUV9mWbONhsZAAAAAAAAAO4jP//8s5o0aaKQkBBNmjRJ2dnZmjdvnpo1a6aDBw+qSpUq5rZGo1EdO3bUvn37NGjQINWuXVtxcXE6cOCAEhISVK5cOXPb/v37a82aNRoxYoQefvhhLV68WB06dNCOHTvUpEkTc7uIiAi1atVK1apV0+zZs3X+/Hm99957On36tL777jubXDMJZgAAAAAAAAAoAhMnTpS7u7v279+vEiVKSJJ69+6typUra9y4cVq7dq257Zw5c7Rr1y7t3btXDRo0yHfMgwcPauXKlQoLC9PIkSMlSX379lXNmjU1atQo7du3z9x23Lhx8vf3186dO+Xj4yNJeuCBBzRo0CBt2bJFbdu2LfJr5ogMAAAAAAAAACgCe/bsUevWrc3JZUkKCgpSs2bNtGnTJvNRFdnZ2Zo7d66efvppNWjQQJmZmbp+/XqeY65Zs0ZOTk4aPHiwuczNzU0DBw7U/v37FRUVJUlKTEzU1q1b1bt3b3NyWbqRjPby8tKqVatsccmF28FsNBplNBptspC/mpz7wP2APRBvsCXiC/ZEvMFWiC3YE/EGWyG2YA/EGVA4OT8riYmJFuWurq5ydXXN1T49PV3u7u65yj08PJSRkaETJ07oH//4h3755RddvHhRtWvX1uDBg7VkyRJlZGSoVq1amjt3rlq0aGHue+TIEVWuXNkiaSzJvOs5IiJCISEhOn78uDIzM1WvXj2Ldi4uLgoNDdWRI0esuwl3UKgE85YtW+Th4WGThfxV5XeYNmALxBtsifiCPRFvsBViC/ZEvMFWiC3YA3EGFEzOruKQkBCL8kmTJmny5Mm52lepUkU//vijsrKy5OTkJOnGg/wOHDggSbpw4YIk6fTp05JuHJMREBCgBQsWSJKmTZumdu3a6dChQ6pdu7YkKTo6WkFBQbnmyim7ePGiud3N5be23bNnTyGuvOAKlWBu27Ztrkz5/cpoNGrr1q1q06aNDAZDcS8Hf3PEG2yJ+II9EW+wFWIL9kS8wVaILdgDcQYUTs7O5aioKIu8aF67lyVp2LBheumllzRw4ECNGjVK2dnZmjJlijn5m5qaKknmozKSkpJ05MgRcwK7ZcuWqlSpkmbOnKlly5aZ++Q1n5ubm8WYOX/m1zanvqgVKsFsMBj48rkF9wT2RLzBlogv2BPxBlshtmBPxBtshdiCPRBnQMHk/Jz4+PgUaOPt0KFDFRUVpbCwMC1ZskSSVK9ePY0aNUpTp06Vl5eXJJmP0XjssccsdkeXL19eTZo0sXhwn7u7u9LT03PNlZaWZjFWzp/5tc3r6I6iwEP+AAAAAAAAAKCITJ06VZcvX9aePXt07NgxHTp0SNnZ2ZKkypUrS5KCg4MlSaVLl87Vv1SpUoqLizO/DwoKMu+AvllOWc5YOUdj5Nc2p11RI8EMAAAAAAAAAEXI399fTZo0Ua1atSRJ27ZtU7ly5VS1alVJUq1atWQwGMxnMt/s4sWLCgwMNL8PDQ3Vb7/9lutBgznnOoeGhkqSatasKWdnZx0+fNiiXUZGhiIiIsztihoJZgAAAAAAAACwka+++kqHDh3SiBEj5Oh4Ix3r7e2tDh06aN++ffr111/NbU+ePKl9+/apTZs25rKuXbsqKytLn3zyibksPT1dixYtUsOGDc1HbPj6+qp169ZatmyZkpKSzG2XLl2q5ORkdevWzSbXV6gzmAEAAAAAAAAAedu9e7fefvtttW3bViVKlNCPP/6oRYsWqV27dnr11Vct2k6bNk3ff/+9WrZsqeHDh0uS3n//fQUEBGjcuHHmdg0bNlS3bt00duxYxcTEqFKlSlqyZIkiIyO1cOFCizGnTp2qxo0bq1mzZho8eLDOnz+vWbNmqW3btmrXrp1NrpkEMwAAAAAAAAAUgbJly8rJyUlhYWFKSkpSxYoVNWXKFL3++utydrZMxVavXl27du3S6NGjNWXKFDk6Oqply5YKCwtT2bJlLdp+8cUXmjhxopYuXaq4uDjVrl1bmzZtUtOmTS3a1a1bV9u2bdPo0aP12muvydvbWwMHDtT06dNtds0kmAEAAAAAAACgCDz00EPavHlzgdvXrVtXW7duvWM7Nzc3hYWFKSws7I5tmzRpoh9++KHAa7hbnMEMAAAAAAAAALAKCWYAAAAAAAAAgFVIMAMAAAAAAAAArEKCGQAAAAAAAABgFRLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBXngjTKysqSJJ0/f14+Pj42XdBfRWZmpq5evaoLFy7I2blAtxGwGvEGWyK+YE/EG2yF2II9EW+wFWIL9kCcAYWTmJgo6X/5UeRWoG+SM2fOSJJq1Khh08UAAAAAAAAAwL3mzJkzql+/fnEv457kYDKZTHdqFBcXp4CAAEVFRbGD+f8ZjUZt2bJFbdu2lcFgKO7l4G+OeIMtEV+wJ+INtkJswZ6IN9gKsQV7IM6AwklMTFRISIiuXbsmf3//4l7OPalAO5idnJwkST4+PiSY/5/RaJSHh4d8fHz4QobNEW+wJeIL9kS8wVaILdgT8QZbIbZgD8QZYJ2c/Chy4yF/AAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAq5BgvktvvPGG+vfvX9zL+EsZPHiwAgICVKZMGZ07d05eXl5KSEgo7mUVytChQzVv3jy7zzt9+nSNHz/e7vMCAAAAAAAAefnbJ5i9vLzMLycnJ7m6uprft2/fvriXZ7WdO3fKwcFBXbt2tSgfMWJEgRPeO3fulJ+fX4Hm8fLykre3typUqKAJEyYoOzvbqnXv3btXa9as0Z9//qlLly6pfPnySk5Olq+vrySpf//+GjFiRJ59K1eurCNHjmjx4sUKDQ21av6icObMGX377bd68cUXtXz5cnM8eXp6mu9Vzmv58uVFOvcrr7yizz77TJcuXSrScQEAAAAAAABr/O0TzMnJyebX448/rnfffdf8/rvvvjO3y8zMlMlkKsaVFp6rq6s2b96sgwcP2nQeX19fJScnKykpSZs2bdKnn36qhQsX5mpnNBrvONaff/6p8uXLmxPKBfXrr78qLS1NderUKVQ/W5g/f76ee+45ubi4qFevXuZ4+u9//ytJOn/+vLmsV69e5n4FuT93kvMPI3ndfwAAAAAAAMDe/vYJ5ttxcHDQhx9+qJo1a8rT01PJycmaPXu2Hn74YXl7e+uhhx7Shx9+aNFn9+7dqlWrlvz9/TVjxgwlJSVZ1P/+++/q3LmzAgMDVaFCBU2ZMsW82/fPP/9U69at5evrq4CAAD322GO6fv261et3c3PTa6+9pjFjxuTbJiYmRr169VJQUJCCg4M1YsQIpaenKzY2Vu3bt1dCQoJ5t+2ePXvuOGetWrX0+OOP69ixY4qMjJSDg4MWLVqkSpUqqVy5cpKkLVu2qE6dOvL19VXdunW1bds2SdL777+vQYMG6fjx4/Ly8lL//v3NY8THx+v999/X8uXLNW/ePHl5ealGjRrmeb/55ht17tz5jutLSkrS4MGDFRQUpKCgIA0dOlQpKSmSpPT0dL3wwgsqWbKkfH19VbNmTR06dEiStHXrVtWuXVve3t4qXbq0XnrppXzn2Lhxo1q2bHnHteTstJ40aZLKlCmj559/Ps/d16GhoVq8eLH5/bZt29SgQQP5+fmpRo0a2rhxo0X7Vq1a5SoDAAAAAAAAisN9nWCWpBUrVmjLli1KTEyUp6enKlSooO3btysxMVGfffaZ3nzzTf3www+SpLi4OD355JP65z//qStXrqhly5ZasWKFeazr16+rVatWatWqlS5cuKA9e/Zo5cqVWrRokSRp/PjxqlSpkq5evarLly8rLCxMzs7Od7X+kSNH6vjx49q8eXOuOpPJpCeffFJlypTR77//ruPHj+vo0aOaMmWKSpQooe+++868Ozlnh/edHD16VLt371bdunXNZRs3btThw4f1559/6syZM+rSpYsmTpyo2NhYjRs3Tk8++aT+/PNPDR8+XPPnz1etWrWUnJxskVSVpOHDh6tXr14aNmyYxY7gnDmefPLJO67v1Vdf1ZkzZ3TixAkdP35cv/76q1577TVJ0pIlS3T06FGdOXNG8fHxWrduncqUKSNJ6tevn958800lJSXpjz/+UJ8+ffIc//r16zp9+rSqVq16x7VI0okTJ+Ts7Kxz585p6dKld2x/7NgxdevWTTNmzNC1a9e0YMEC9enTR6dOnTK3qV69uiIiIgo0PwAAAAAAAGBL932CedSoUQoODparq6scHR317LPPKiQkRA4ODmrRooWeeOIJ7dy5U5K0adMmBQcHa8iQIXJ2dlaDBg3UokUL81jffvut/P39NWLECLm4uKh8+fJ69dVXzUlog8Gg6OhoRUZGymAwqHHjxnJxcbmr9fv4+GjChAkaO3ZsriM+Dh8+rNOnTyssLEweHh4qUaKExo0bZ5EUL4iEhAT5+fnJ399f3bt31yuvvGJxzvOkSZPk5+cnDw8PffXVV2revLmeeeYZOTs7q2vXrmrSpIm+/PJLq68xNjZWJ06cUPPmzW/bLjs7W8uXL9f06dNVokQJlSxZUtOmTdMXX3yh7OxsGQwGJSUl6eTJkzKZTKpcubJCQkIk3fhszpw5oytXrsjT01ONGzfOc464uDhJN+57Qfj6+mr8+PFycXGRh4fHHdsvWLBA/fv3V8uWLeXo6KgmTZqoU6dOWrNmjbmNj4+PMjIy7mr3OwAAAAAAAFAU7vsEc/ny5S3eL1++XHXr1lVAQID8/PwUHh6uq1evSpIuXryoChUq5Ns/MjJSJ06ckJ+fn/n1xhtvmB/IFhYWprJly6p169Z64IEHNHny5Dwflnfzg+NuPiYiPy+99JLi4uK0cuVKi/LIyEjFx8ebr8XPz09du3bV5cuXC3Zz/p+vr6/i4+MVFxenU6dOaeLEiXJwcMjzHpw/f14PPPCARf8HH3xQ58+fL9ScNwsPD1erVq3k6up623ZXrlxRRkaGxfwPPvig0tPTdfXqVfXp00f9+/fX0KFDVbJkSfXv39/82X799dc6ceKEqlSpojp16mjVqlV5zuHv7y9JSkxMLNDay5YtK0fHgv+YRUZGav78+RYxtGHDBkVHR5vbJCYmFjhhDQAAAAAAANhSsSaY09KkpUulZ5+Vmje/8efSpTfK7eXm5N+5c+fUr18/zZw5UzExMYqPj1eHDh3MO4ODg4N19uxZi/5RUVHm/w4JCdGjjz6q+Ph48ysxMdF81EOpUqU0b948nT17Vt98843mz5+vr7/+Otea8npw3O24uLjonXfe0cSJEy0eJBcSEqJSpUpZrCchIUHJycm5rv1u3DxOuXLlFBkZaVEfGRlpPp+5MGPlKOjxGIGBgXJxcbGYPzIyUq6uripZsqScnZ01btw4HT16VCdPntS5c+f01ltvSZLq1q2rtWvX6urVq5o4caJ69uyZZyLew8NDDz/8sH799VerrsfLyyvXzuOcf4CQbnxmr776qsVnlpycbHEW+C+//JLrHGcAAAAAAACgOBRbgnnjRik4WOrbV1q/Xtq168afffveKP/mG/uvKTk5WSaTSaVKlZKjo6PCw8O1ZcsWc33Hjh114cIFffrpp8rMzNThw4e1Y8cOc32nTp10+fJlzZs3T2lpacrKytKpU6fMR2ysWrVK586dk8lkkp+fn5ycnO76DOYcPXv2lKenp7766itzWf369RUSEqIJEyYoKSlJJpNJZ8+e1XfffSdJKl26tJKSkhQTE1Mka5Ck5557Tjt37tSGDRuUmZmpdevWaffu3Xr++ecL1L906dL6448/zEn9jIwMbdu2TR06dLBoZzKZlJaWZvGSbtyH8ePH69q1a+YzoPv06SNHR0dt375dERERyszMlKenp9zc3OTs7KyMjAwtXbpUcXFxcnR0lJ+fnyTl+9l07tzZ4nMvjNDQUP3xxx/as2ePMjMzNXPmTMXGxprrhwwZokWLFmnHjh3KyspSenq69u/fr5MnT5rbbN++XZ06dbJqfgAAAAAAAKAoFUuCeeNG6amnpPj4G+9zTonI+TM+XurS5UY7e6pevbrGjx+vli1bqkSJEvrqq68sds4GBARow4YNmjt3rgIDA7V161b16NHDXO/l5aVt27bp+++/1wMPPKASJUqoZ8+e5h2qP/30kxo3biwvLy81atRIAwcOLNDO3IJwdHTUjBkzLJKVTk5O2rRpky5cuKBq1arJ19dXHTt21JkzZyRJVapU0cCBA1W9enX5+flp7969d72OSpUqad26dZo0aZICAgL09ttv6+uvv9aDDz5YoP4vvviiLly4oICAANWuXVu7du1SzZo1VbJkSYt2x44dk7u7u8Vr9+7dmjt3rh544AFVr15dNWrUUKVKlTR79mxJ0uXLl9WjRw/5+fmpYsWK8vX11aRJkyTdeNhjpUqV5O3trVdeeUUrVqxQiRIl8lzjkCFDtHLlSovd4oW5PzNnzlTXrl0VFBSk9PR0i2NQ6tSpoy+//FITJkxQYGCgypYtq4kTJyo9PV2SlJKSovDwcL344ouFnhsAAAAAAAC2l56ertGjRys4OFju7u5q2LChtm7dWqC+Fy5cUPfu3eXn5ycfHx916dJFf/zxx2377N27Vw4ODnJwcDAfB2tPDqZbnwyXh8TERPn6+iohIaHADzfLT1rajR3K8fHS7WZ2cJD8/KSLFyU3t7ua0iaMRqPCw8PVoUMHGQyG4l7O39Yrr7yi8uXL68033yzupVgYMmSIQkND9dJLL9llvpx4O3bsmNLS0jR16lS7zIv7A99nsCfiDbZCbMGeiDfYCrEFeyDOgMKxJi/ao0cPrVmzRiNGjNDDDz+sxYsX69ChQ9qxY4eaNGmSb7/k5GTVrVtXCQkJeuONN2QwGDRnzhyZTCZFRETkuRkyOztbjz76qE6fPq2UlBRduXIl10ZNWyua8xkKYfVqKS7uzu1Mphvt1qyReve2/bpwb6pVq5bat29f3MvIZcGCBcUy75gxY/gFAAAAAAAA4B518OBBrVy5UmFhYRo5cqQkqW/fvqpZs6ZGjRqlffv25dt33rx5On36tA4ePKj69etLktq3b6+aNWtq1qxZmjZtWq4+n3zyiaKiovTiiy9q7ty5trmoO7D7ERnr10sFfbaco6OUxzPwcB8ZPHiwQkJCinsZAAAAAAAAwB2tWbNGTk5OGjx4sLnMzc1NAwcO1P79+xUVFXXbvvXr1zcnlyWpatWqatWqlVatWpWr/bVr1zRhwgS9/fbb5meKFYdC7WA2Go1WnTt7s6tXnZSdXbAMc3a2dPVqtozGrLua0xZy7sPd3g+gIIg32BLxBXsi3mArxBbsiXiDrRBbsAfiDCicnJ+VxMREi3JXV1e5urrman/kyBFVrlw513EaDRo0kCRFRETkuZkyOztbx44d0wsvvJCrrkGDBtqyZYuSkpLk7e1tLp84caLKlCmjIUOG6J133in8xRWRQiWYt2zZIg8Pj7uaMCOjvhwcgmQyOdyxrYODSRkZlxQefuiu5rSlgh7QDRQF4g22RHzBnog32AqxBXsi3mArxBbsgTgDCub69euSlCspPGnSJE2ePDlX++joaAUFBeUqzym7ePFinvNcu3ZN6enpd+xbpUoVSdKxY8e0YMEChYeHy8nJqeAXZAOFSjC3bdv2rh/yd+2ag3788c7JZUkymRw0ZEgpdejQ4a7mtIWOHTuqYsWKmjNnTp5n4q5YsULz58/X7t27i2F1+LsxGo3aunWr2rRpwxnMKHLEF+yJeIOtEFuwJ+INtkJswR6IM6BwcnYuR0VFWeRF89q9LEmpqal51rm5uZnr8+uX37h59R0+fLjat2+vtm3bFuQybKpQCWaDwXDXXz49ekhvvCHFx994kF9+HBwkPz/p+eedVRTfd82bN9f+/ftlMBjk4uKi2rVra9asWXr00UetGu/bb79VeHi4DAaDfvjhBz311FOKj4831/fr10/9+vW7+4UDNymKn0EgP8QX7Il4g60QW7An4g22QmzBHogzoGByfk58fHwKtPHW3d1d6enpucrT0tLM9fn1k1Sgvl999ZX27dunEydOFOAKbM/uD/lzc5OWLLnx3w75bGTOKV+y5Eb7ovLuu+8qOTlZFy9eVJ06ddSlS5eiGxwAAAAAAADAfS0oKEjR0dG5ynPKgoOD8+wXEBAgV1fXAvV988031a1bN7m4uCgyMlKRkZHmja9RUVH5HsNhK3ZPMEtS587S+vU3dihLkqOj5Z9+ftKGDTfa2ULOkxsvXLigy5cvq3v37goMDFT58uU1fvx4ZWZmSrpx9snTTz8tf39/+fn56dFHH9XZs2clSa1bt9bGjRsVGxur9u3bKyEhQV5eXvLy8tKePXu0ePFihYaGSpLmzJmjli1bWqzhq6++UtWqVc3vV65cqdq1a8vPz0/169fXvn37bHPxAAAAAAAAAGwiNDRUv/32W66HAh44cMBcnxdHR0fVqlVLhw8fzlV34MABPfjgg+YH/EVFRWnFihWqWLGi+TV37lxJUt26de1+3HCxJJgl6cknpYsXpaVLpaeekpo3v/Hn0qU3ym2VXJZuHM792WefqUKFCurZs6cMBoP+/PNP7dmzR+vXr9fMmTMlSe+9954yMzN14cIFxcbGauHChRZPapSkEiVK6LvvvpOvr6+Sk5OVnJysxx9/3KJNz549tXfvXkVFRZnLli5dqj59+kiSwsPDNXLkSC1evFjXrl3T2LFj1blzZ8XGxtruJgAAAAAAAAAoUl27dlVWVpY++eQTc1l6eroWLVqkhg0bmh8WeO7cOf3666+5+h46dMgiyXzq1Clt375d3bp1M5d9/fXXuV7PPfecJOmLL77QnDlzbHmJuRTqDOai5uYm9e5942UPY8eO1eTJk+Xm5qbQ0FAtWbJEzZs316VLl8y7j8ePH6/Jkydr3LhxMhgMio2N1enTp/XII4/k+y8Md1K6dGm1bt1ay5cv15gxYxQTE6OtW7dq3rx5kqSPPvpIb775purWrStJeuaZZzRr1iyFh4ebk9AAAAAAAAAA7m0NGzZUt27dNHbsWMXExKhSpUpasmSJIiMjtXDhQnO7vn37ateuXTLd9JC6YcOG6dNPP1XHjh01cuRIGQwGzZ49W6VLl9Ybb7xhbvfUU0/lmjciIkKS1L59e5UsWdJm15eXYtvBXBymT5+u+Ph4Xbp0Sf/5z3/k5uYmNzc3lS5d2tzmwQcf1Pnz5yXdOM/k8ccfV/fu3VWmTBm9+uqr+T7p8U769u2rpUuXSpK+/PJLNW7cWOXLl5ckRUZGaty4cfLz8zO/IiIidOHChbu8YgAAAAAAAAD29MUXX2jEiBFaunSphg8fLqPRqE2bNqlp06a37eft7a2dO3eqadOmmjJliiZOnKhHHnlEu3btUmBgoJ1WX3j3VYL5VuXKlVNaWpouX75sLouMjFS5cuUkSV5eXnr33Xd16tQp7d+/X99//7151/HNHB3vfBu7dOmi8+fP66effrI4HkOSQkJCNGvWLMXHx5tfKSkpGjNmTBFcJQAAAAAAAAB7cXNzU1hYmKKjo5WWlqaDBw/qiSeesGizc+dOi93LOcqVK6fVq1crISFBSUlJ+uabb1SpUqU7zjl58mSZTCa7716W7vMEc9myZdWiRQuNHDlSKSkpOnfunKZOnap+/fpJkjZt2qTffvtN2dnZ8vHxkcFgkLNz7lNFSpcuraSkJMXExOQ7l7u7u7p27arx48frl19+sTg35eWXX1ZYWJh++uknmUwmXb9+Xdu2bTPvpAYAAAAAAACAe9F9nWCWpBUrVig1NVUVKlTQY489po4dO2rUqFGSpDNnzqhdu3by9vZW9erV1ahRI7300ku5xqhSpYoGDhyo6tWry8/PT3v37s1zrr59+2rz5s166qmnLB4W2LlzZ82YMUODBg2Sv7+/+cmP2dnZtrloAAAAAAAAACgCxfqQP3vauXNnnuVlypTRmjVr8qwbMWKERowYkWfdtm3bFB4ebn7/ySefWDwdskmTJurfv79Fn2bNmuW59V2SunXrZrGrGQAAAAAAAADudff9DmYAAAAAAAAAgHVIMAMAAAAAAAAArEKCGQAAAAAAAABgFRLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAVnEu1tnT0qTVq6X166XYWKlECempp6Ru3SQ3t2JdGgAAAAAAAADg9opvB/PGjVJwsNS3740E865dN/7s2/dG+TffFNvS7OHcuXPy8vJSQkJCcS8FAAAAAAAAAKxSPAnmjRtv7FSOj7/xPjvb8s/4eKlLlxvtikjz5s3l5OSkY8eOmcvi4+Pl4OCgyMjIIpsnPw4ODoqIiDC/L1++vJKTk+Xr62vzuQEAAAAAAADAFuyfYE5Lk/r3v/HfJlPebXLK+/e/0b6I+Pv7a+zYsUU2HgAAAAAAAADcz+yfYF69WoqLyz+5nMNkutFuzZoim3rYsGH64YcftHv37jzrV65cqdq1a8vPz0/169fXvn37zHXx8fHq1q2b/Pz8VLVqVX300Ud66qmnzPXLli1TzZo15e3trfLly2vixIky/f81NmjQQJLUuHFjeXl5adq0aYqMjJSDg4Pi4+N15MgReXt76/r16+bxoqOj5eLiogsXLkiSfv75Z7Vo0UIBAQGqVKmSPv300yK7LwAAAAAAAABgDfsnmNevlxwLOK2jo/T110U2dUBAgEaPHq0xY8bkqgsPD9fIkSO1ePFiXbt2TWPHjlXnzp0VGxsrSXrllVeUkpKis2fPaseOHVq+fLlF/xIlSmjdunVKTEzUxo0b9cknn2jFihWSpIMHD0qS9u3bp+TkZI0bN86ib506dVShQgV9fdO1Ll++XM2aNVPZsmV16dIltWnTRi+99JKuXLmi9evXa9KkSfr++++L7N4AAAAAAAAAQGHZP8EcG/u/s5bvJDtbunatSKcfMWKEzp49q/Xr11uUf/TRR3rzzTdVt25dOTo66plnnlHVqlUVHh6urKwsffXVV3r77bfl6+uroKAgvf766xb927dvr8qVK8vBwUGhoaHq0aOHdu7cWeB19e3bV0uXLjW/X7p0qfr27Wv+76ZNm6p79+5ycnJSzZo1NWDAAHMCGwAAAAAAAACKg/0TzCVKFG4Hc0BAkU7v7u6uSZMmady4ccrKyjKXR0ZGaty4cfLz8zO/IiIidOHCBV29elVGo1EhISHm9uXLl7cYd/PmzWrcuLFKliwpX19fzZ8/X1evXi3wunr16qXt27crOjpaR48e1e+//65nnnnGvLbw8HCLtb3//vuKjo6+y7sBAAAAAAAAANazf4L5qacKt4P56aeLfAkDBw5Udna2lixZYi4LCQnRrFmzFB8fb36lpKRozJgxKlmypAwGg6Kiosztz507Z/7vjIwMPfPMMxoyZIguXLighIQEDR061HwGsyQ5ODjcdk1ly5ZVs2bNtGLFCi1dulTPPPOMPD09zWt7+umnLdaWlJSk8PDworolAAAAAAAAAFBo9k8wd+sm+ftLd0i4ysHhRruuXYt8CU5OTpo6daqmTZtmLnv55ZcVFhamn376SSaTSdevX9e2bdt0/vx5OTk5qXv37po8ebISEhJ06dIl/fvf/zb3TU9PV1pamkqUKCFXV1cdOHAg1/EVpUuX1u+//37bdfXt21dLlizRihUrzMdjSFKfPn20fft2rV27VkajUUajURERETp06FDR3BAAAAAAAAAAsIL9E8xublLOzuH8ksw55UuW3GhvA88++6wqVapkft+5c2fNmDFDgwYNkr+/vypWrKi5c+cq+/93W3/wwQdydXVV+fLl1bx5c3Xt2lXOzs6SJG9vb3300UcaPHiwfHx8NHXqVD333HMW873zzjsaPny4/P39NWPGjDzX9Mwzz+jPP/+Uo6OjWrZsaS4vW7asNm/erAULFigoKEilS5fWyy+/rMTExKK+LQAAAAAAAABQYM7FMmvnztL69VL//lJc3I2zlrOz//enn9+N5HLnzkU2ZV4P3Pvxxx8t3nfr1k3dunXLs7+/v7/Wrl1rfr906VIFBgaa3w8dOlRDhw7Nd/4XX3xRL774okXZzUdoSJKnp6eSkpLy7F+nTh1t2bIl3/EBAAAAAAAAwN6KJ8EsSU8+KV28KK1ZI339tXTt2o0H+j399I1jMWy0c9lap0+fVkJCgh599FGdOXNG06dPV+PGjYt7WQAAAAAAAABQbIovwSzdSCL37n3jdY9LSUlR7969FRUVJV9fXz311FNq3rx5cS8LAAAAAAAAAIpN8SaY/0JCQ0P166+/mt8bjUaFh4cX44oAAAAAAAAAoHjZ/yF/AAAAAAAAAIC/BRLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAq5BgBgAAAAAAAABYhQQzAAAAAAAAAMAqJJgBAAAAAAAAAFYhwQwAAAAAAAAAsAoJZgAAAAAAAAAoIunp6Ro9erSCg4Pl7u6uhg0bauvWrQXqe+HCBXXv3l1+fn7y8fFRly5d9Mcff+TZduHChapWrZrc3Nz08MMP64MPPijKyygwEswAAAAAAAAAUET69++v2bNnq1evXpo7d66cnJzUoUMH7d2797b9kpOT1aJFC+3atUvjxo3TW2+9pSNHjqhZs2aKjY21aLtgwQK9+OKLqlGjhj744AM1atRIw4cP17vvvmvLS8uTs91nBAAAAAAAAIC/oYMHD2rlypUKCwvTyJEjJUl9+/ZVzZo1NWrUKO3bty/fvvPmzdPp06d18OBB1a9fX5LUvn171axZU7NmzdK0adMkSampqRo/frw6duyoNWvWSJIGDRqk7OxsvfPOOxo8eLD8/f1tfKX/ww5mAAAAAAAAACgCa9askZOTkwYPHmwuc3Nz08CBA7V//35FRUXdtm/9+vXNyWVJqlq1qlq1aqVVq1aZy3bs2KHY2FgNGzbMov/LL7+slJQUffvtt0V4RXdWqB3MV65cUVpamvm9i4uLPD09lZWVpcTExFztczLlSUlJyszMtKjz9PSUi4uL0tPTdf36dYs6g8EgLy8vmUwmxcfH5xrX19dXjo6OSk5OltFotKhzd3eXm5ubMjIylJKSYlHn5OQkHx8fSVJ8fLxMJpNFvY+Pj5ycnHT9+nWlp6db1Lm5ucnd3V1Go1HJycnKzMxUdna2rly5IhcXF/n6+kqSEhISlJ2dbdHXy8tLBoNBqampFvdPklxdXeXh4ZHnPXRwcJCfn58kKTExUVlZWXnew7S0NKWmpuZ5D7Ozs5WQkJDrHvr5+cnBwSHPe+jh4SFXV9c876Gzs7O8vb0lSXFxcbnGzbmHKSkpysjIuO09vNnNn01e99Db21vOzs55fjY59zAzM1NJSUkWdXdzD3Pi+073MK/4zrmHecV3zj28U3zffA9z4i0pKUne3t5Wxbe199DR0dEc33ndw9vF9/38HXGzm+/hvfgdERsba/4+c3a+8dcC3xF3vof30ndEjruJb3t9R9z896eHhwffEbr3vyP+Kr9HuLu7S5JiY2Pl6Gi5h4LviBv+Ct8RN7uXf49ISUnJ9Xcn3xH/cy9+R/xVfo/I+Xsy5/r4jvhrfkfc679H5MRZQkKCfH19+Y74C31H5OD3iBvs9R2Rs65bx3F1dZWrq2uusY8cOaLKlSub70mOBg0aSJIiIiIUEhKSq192draOHTumF154IVddgwYNtGXLFnNe6MiRI5KkevXqWbR79NFH5ejoqCNHjqh37965xrGVQiWYd+/eLQ8PD/N7R0dHubi4WPwFeDM3NzdJNw62vjW4DAaDnJyclJmZmeuDzBnXZDLlCjzpxgfo4OCgjIyMXD/4zs7OcnZ2VlZWVq4vKgcHB/MHf2vgSTeCz9HRUUajMVfQOjk5yWAw5Bp3z549Ftea17g513q7cf9u9zCvcfO7h4UZ9168h3mNm3MP8xo351qt+Wx27Nhh0/i+m3uY17h8R+S+1nv5OyLn+0ziOyLHX+07wtbxXZTfEXv27OE7Io9rvZe/I252L39H7Nq1K99x78V7yHfEX/v3iJv/7uQ74n/u5e+Iv8rvEVu3buU7Qn/974ib3YvfETt37uQ7ohDj3kvfEfwecYO9viNyEvW3JoUnTZqkyZMn5xo7OjpaQUFBucpzyi5evJirTpKuXbum9PT0O/atUqWKoqOj5eTkpFKlSlm0c3FxUYkSJfKdw1YKlWBu2rSp+V+LpPv7XwwzMzN14MABNWzYkB3MedxD/sWw6HcwHzhwQM2aNWMHs/4a3xE3u9d3HsXGxpq/z9jB/Nf8jsjxV9hVcPPfn+xgzn0P78XviL/K7xHu7u7aunWrmjVrxg7mv/B3xM3u5d8jUlJStGPHDou/O/mO+J978Tvir/J7RM7fk23atJGLiwvfEX/R74h7/feInDh7/PHH2cGsv9Z3RA5+j7jB3juYo6KiLHYl57V7WbpxPnJedTlJ7Vs/75v75TfurX1TU1Pl4uKS5zhubm75zmErDqZbP/U8JCYmytfXVwkJCbm2d9+vjEajwsPD1aFDBxkMhuJeDv7miDfYEvEFeyLeYCvEFuyJeIOtEFuwB+IMKJzC5kVr1qyp0qVL6/vvv7co/+WXX1SjRg3Nnz9fQ4YMydXv6tWrCgwM1Ntvv62JEyda1M2bN08vv/yyfv31V1WpUkX//Oc/NX/+/FzJcUkqVaqUWrVqpS+//LKQV2o9HvIHAAAAAAAAAEUgKChI0dHRucpzyoKDg/PsFxAQIFdX1wL1DQoKUlZWlmJiYizaZWRkKDY2Nt85bIUEMwAAAAAAAAAUgdDQUP3222+5juY4cOCAuT4vjo6OqlWrlg4fPpyr7sCBA3rwwQfNx8TkjHFr28OHDys7OzvfOWyFBDMAAAAAAAAAFIGuXbsqKytLn3zyibksPT1dixYtUsOGDc0PCzx37px+/fXXXH0PHTpkkTg+deqUtm/frm7dupnLWrZsqYCAAH388ccW/T/++GN5eHioY8eOtri0fBXqIX8AAAAAAAAAgLw1bNhQ3bp109ixYxUTE6NKlSppyZIlioyM1MKFC83t+vbtq127dlk8FHHYsGH69NNP1bFjR40cOVIGg0GzZ89W6dKl9cYbb5jbubu765133tHLL7+sbt266YknntCePXu0bNkyTZ06VQEBAXa9ZhLMAAAAAAAAAFBEvvjiC02cOFFLly5VXFycateurU2bNqlp06a37eft7a2dO3fqtdde05QpU5Sdna3mzZtrzpw5CgwMtGg7bNgwGQwGzZo1Sxs3blRISIjmzJmjV1991ZaXlicSzAAAAAAAAABQRNzc3BQWFqawsLB82+zcuTPP8nLlymn16tUFmmfQoEEaNGiQNUssUpzBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAq5BgBgAAAAAAAABYhQQzAAAAAAAAAMAqJJgBAAAAAAAAAFYhwQwAAAAAAAAAsAoJZgAAAAAAAACAVUgwAwAAAAAAAACsQoIZAAAAAAAAAGAVEswAAAAAAAAAAKuQYAYAAAAAAAAAWIUEMwAAAAAAAADAKiSYAQAAAAAAAABWIcEMAAAAAAAAALAKCWYAAAAAAAAAgFVIMAMAAAAAAAAArEKCGQAAAAAAAABgFRLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAq5BgBgAAAAAAAABYhQQzAAAAAAAAAMAqJJgBAAAAAAAAAFYhwQwAAAAAAAAAsAoJZgAAAAAAAACAVUgwAwAAAAAAAACsQoIZAAAAAAAAAGAVEswAAAAAAAAAAKuQYAYAAAAAAAAAWIUEMwAAAAAAAADAKiSYAQAAAAAAAKAYxcfHa/DgwQoMDJSnp6datGihn3/+ucD9T548qXbt2snLy0sBAQHq06ePrly5cts+y5cvl4ODg7y8vO5q7c531RsAAAAAAAAAYLXs7Gx17NhRR48e1ZtvvqmSJUtq3rx5at68uX766Sc9/PDDt+1//vx5NW3aVL6+vpo2bZqSk5P13nvv6fjx4zp48KBcXFxy9UlOTtaoUaPk6el51+snwQwAAAAAAAAAxWTNmjXat2+fVq9era5du0qSunfvrsqVK2vSpElasWLFbftPmzZNKSkp+umnn1S+fHlJUoMGDdSmTRstXrxYgwcPztVnypQp8vb2VosWLbR+/fq7Wj9HZAAAAAAAAABAMVmzZo1Kly6tZ555xlwWGBio7t27a8OGDUpPT79t/7Vr16pTp07m5LIktW7dWpUrV9aqVatytT99+rTmzJmj2bNny9n57vcfF2oEo9Eoo9F415P+HeTcB+4H7IF4gy0RX7An4g22QmzBnog32AqxBXsgzoDCyflZSUxMtCh3dXWVq6trkcxx5MgR1a1bV46OlnuBGzRooE8++US//fabatWqlWffCxcuKCYmRvXq1ctV16BBA4WHh+cqHzFihFq0aKEOHTrkmYAurEIlmLds2SIPD4+7nvTvZOvWrcW9BNxHiDfYEvEFeyLeYCvEFuyJeIOtEFuwB+IMKJjr169LkkJCQizKJ02apMmTJxfJHNHR0WratGmu8qCgIEnSxYsX800wR0dHW7S9tf+1a9eUnp5uToZ/++232rJli44ePVoka5cKmWBu27atfHx8imzyvzKj0aitW7eqTZs2MhgMxb0c/M0Rb7Al4gv2RLzBVogt2BPxBlshtmAPxBlQODk7l6OioizyovntXs7OzlZGRkaBxnZ1dZWDg4NSU1PzHM/NzU2SlJqamu8YOXV36u/q6qqMjAy99tprGjp0qKpXr16gNRZEoRLMBoOBL59bcE9gT8QbbIn4gj0Rb7AVYgv2RLzBVogt2ANxBhRMzs+Jj49PgTbe7t69Wy1atCjQ2CdPnlTVqlXl7u6e5znLaWlpkiR3d/d8x8ipK0j/OXPm6OrVq3rrrbcKtL6CuvtTnAEAAAAAAAAAqlq1qhYtWlSgtjnHWgQFBZmPurhZTllwcPAdx8ivf0BAgFxdXZWQkKApU6Zo2LBhSkxMNO/MTk5OlslkUmRkpDw8PFSqVKkCrf1mJJgBAAAAAAAAoAiUKVNG/fv3L1Sf0NBQ7dmzR9nZ2RYP+jtw4IA8PDxUuXLlfPuWLVtWgYGBOnz4cK66gwcPKjQ0VJIUFxen5ORkzZw5UzNnzszVtmLFiurSpYvWr19fqLVLJJgBAAAAAAAAoNh07dpVa9as0bp169S1a1dJ0tWrV7V69Wp17tzZ4nzl33//XZL00EMPmcueffZZLVmyRFFRUeaHEX7//ff67bff9Nprr0mSSpUqpa+//jrX3O+//77279+vL7/8Ms8HBRYECWYAAAAAAAAAKCZdu3bVP/7xDw0YMEC//PKLSpYsqXnz5ikrKyvXecmtWrWSJEVGRprLxo0bp9WrV6tFixZ69dVXlZycrLCwMNWqVUsDBgyQJHl4eOipp57KNff69et18ODBPOsKigQzAAAAAAAAABQTJycnhYeH680339T777+v1NRU1a9fX4sXL1aVKlXu2D8kJES7du3S66+/rjFjxsjFxUUdO3bUrFmzLHY/2woJZgAAAAAAAAAoRv7+/vrss8/02Wef3bbdzTuXb1ajRg1t3ry50PMuXrxYixcvLnS/mzneuQkAAAAAAAAAALmRYAYAAAAAAAAAWIUEMwAAAAAAAADAKiSYAQAAAAAAAABWIcEMAAAAAAAAALAKCWYAAAAAAAAAgFVIMAMAAAAAAAAArEKCGQAAAAAAAABgFRLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAqzgXpFFWVpYk6fz58/Lx8bHpgv4qMjMzdfXqVV24cEHOzgW6jYDViDfYEvEFeyLeYCvEFuyJeIOtEFuwB+IMKJzExERJ/8uPIrcCfZOcOXNGklSjRg2bLgYAAAAAAAAA7jVnzpxR/fr1i3sZ9yQHk8lkulOjuLg4BQQEKCoqih3M/89oNGrLli1q27atDAZDcS8Hf3PEG2yJ+II9EW+wFWIL9kS8wVaILdgDcQYUTmJiokJCQnTt2jX5+/sX93LuSQXawezk5CRJ8vHxIcH8/4xGozw8POTj48MXMmyOeIMtEV+wJ+INtkJswZ6IN9gKsQV7IM4A6+TkR5EbD/kDAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAq5BgBgAAAAAAAABYxdnWE6xdu9b8388++2yebaIdHMz/HWQy5eqXn/zGK4iVK1dq3bp1WrVqldVj2NIPP/yg0aNHa+/evcW9FAAAAAAAAADI0z29g7lEiRL5vu5Gdna2xo0bp4kTJ5rLJk6cqFq1asnZ2VkjRoy44xguLi7q3r27SpQooYCAADVq1Ej//ve/ZTQa72ptOR577DEZDAZt2LDhtu0uX76sF154QaVLl5aHh4dq1KihDz/88LZ9duzYoRYtWsjX11d+fn656qdPn64HH3xQPj4+KlOmjPr376/4+Hhz/e+//6727dvL399fZcuW1cyZM2873y+//KJWrVrJ399fZcqU0eDBg3X9+nVzffPmzeXq6iovLy/z6+LFi/mO98ADD2j9+vUWZZGRkXJwcLBY582io6P15JNPKjg4WA4ODoqIiMh3/HHjxsnBwSHXHAsWLFD58uXl6empjh07Kjo6Ot8x2rdvb3E9bm5ucnR01NWrVy3uyxNPPCFvb28FBARo4MCB+Y43cOBAffbZZ/nW3+zEiRN64oknVLJkyTzvyXvvvafatWvLx8dH5cqV08iRI5WRkWGuj4mJ0fPPP6/AwEAFBgZq5MiRysrKyne+/v37y8XFxeJ69+/fb65/5ZVXFBISIh8fH5UtW1YjRoywmC8v33zzjZo2bSpvb2+VKFFCDRo00Pz58/Ntf7uf3/T0dDVv3lylSpWSj4+Pqlatqk8++cSizcmTJ/XYY4/Jw8NDlStX1saNG/Oda/ny5RbX6uXlJQcHB82ePdvcZsOGDeZ7XLFiRc2ZM+e21wsAAAAAAPBXZZME89q1a82v/MoLskPZVsLDwxUQEKBatWqZyypVqqSZM2fqySefLPA4M2bMUGxsrC5fvqwZM2ZoyZIl6ty5s0z/vwv7bvXr1++2yeL4+Hg99thjSkpK0sGDB5WQkKAPP/xQYWFhevPNN/Pt5+npqRdeeMEiIXazrl276siRI0pMTNRvv/2mjIwMjRw5UpKUlZWlJ598UnXr1lVMTIy2b9+uDz/8UCtWrMh3vp49e6pKlSq6fPmyjh8/rqNHj+qdd96xaPPuu+8qOTnZ/AoODr7drSk0R0dHtWvXLlfS+FZHjx7VN998o6CgIIvy7du3a/To0Vq9erViYmJUunRp9erVK99xvvvuO4vrGTRokFq3bq2SJUtKki5evKiWLVuqe/fuiomJUXR0tF5++eW7vk5JMhgM6t69uxYvXpxnfVZWlhYuXKjY2Fj9+OOP2rlzpyZPnmyu79Onj1xdXXX27FkdPXpU33//vd59993bzjls2DCL623UqJFF3a+//qrExEQdPXpUR48eve0/Snz88cfq16+fBg0apPPnz+vq1av6+OOPtWnTpnz73O7n19nZWR988IEuXryoxMRErVu3ThMnTtSePXskSUajUZ07d1arVq107do1zZ49Wz179tSZM2fynKtXr14W17pr1y45OjqqW7dukm4k6Lt3767Ro0crISFB69ev11tvvaXNmzff9h4CAAAAAAD8FdlsB/Ptdh/f7Q7ku7Vx40a1bNnSoqxfv35q3769fHx8Cj2ewWBQs2bNtG7dOu3atUvfffedJOnIkSNq0qSJAgICFBgYqB49eig2NlbSjR2ODz74oEUy+scff1RAQIDS0tIkSa1atdLOnTuVlJSU57z//ve/5ezsrJUrV6pChQoyGAxq0aKFli1bptmzZ+uPP/7Is1+DBg3Up08fPfTQQ3nWP/zww/L19TW/d3R01OnTpyVJp06d0qlTpzRp0iQZDAZVqVJFAwcOzLUj9GZ//PGHevfuLRcXFwUGBurJJ5/U8ePH821vC6VLl9awYcPUoEGDfNtkZWXpxRdf1IcffigXFxeLukWLFql3795q2LChPD09NX36dO3atSvfe3yztLQ0LV++3GKH8pw5c9SyZUsNHDhQ7u7ucnV1Vd26da2/wJvkfCY1a9bMs3706NGqX7++DAaDypUrp759+5qPYklJSdHWrVs1adIkeXh4KDg4WCNGjLjt53sn1apVk6enpyTJZDJZxNOtkpKSNHr0aL3//vvq06ePfH195eDgoEcfffS2Cebb/fw6OTmZdzdLkoODgxwcHMwJ5N27dys2NlYTJ06Um5ubOnXqpGbNmmnp0qUFur6FCxeqbdu2CgkJkSSdP39eJpNJvXr1koODgx555BHVr1/f7jEPAAAAAABgD/f0ERm2EhERoapVqxb5uBUrVtSjjz6qXbt2SbqRmJ0xY4YuX76sEydO6MKFCxozZowkqWPHjrp+/bq5rXQjidmjRw+5ublJkkJCQuTm5qYTJ07kOd/mzZvVvXt3OTk5WZQ//vjjCg4O1rZt2yTd2GndqVOnQl3LihUr5OPjI19fX3399dfmHdHZ2dmSZJEYz87O1rFjx/Ida+TIkfriiy+UmpqqS5cu6euvv1bnzp0t2kyZMkUBAQGqU6eOvvjii0KtNS979+7N8/iP25kzZ45q166tZs2a5ao7duyYQkNDze9Lly6tMmXKFChp+PXXX8vR0VFPP/20uWzXrl3y8vLSY489phIlSujxxx/XgQMHCrXeHCtWrFDt2rWt6puzlpz+JpPJ/MqRnZ2ts2fPKjExMd8xvvjiCwUEBKhGjRqaNWuWOU5yzJgxQ15eXipVqpSOHj2qV155Jc9x9u/fr+vXr6t79+63XXPt2rVvu2s+L506dZKbm5uqV6+u0qVLmz+PY8eOqUaNGjIYDOa2oaGht43pHKmpqVqxYoVefPFFi77NmjXTkiVLlJWVpZ9//llHjx5V27ZtC7VeAAAAAACAvwKbPeQvZ6dufhp37aq8TrA1P/BvzZo7jmGtuLg4q3YqF0TZsmV17do1SdIjjzxiLi9durRef/11c6LW2dlZ/fr10+LFi9W8eXOlpaXpq6++MieFc/j4+CguLi7Pua5evZrvURLBwcG6cuWKJJmT2oXRs2dP9ezZU+fOndPChQv14IMPSrqxO/aBBx7Qv/71L7399ts6c+aMPv/889smH9u3b68BAwbI29tbWVlZeuqpp/TCCy+Y66dPn67q1avLw8ND27dvV/fu3eXt7W2RkL1Vr169LBKCtyY0mzRpku95zHn5448/9OGHH+rnn3/Osz45OTlXwtrPzy/f3eU3++yzz9SnTx+LXdHXrl3Tl19+qf/85z+qX7++PvnkE3Xq1Em//fab/P39C7xu6X+flTU+/fRT/fDDDzpy5IgkycvLS02bNtWkSZM0f/58Xbt2TXPnzpUkJSYm5vlzM3z4cIWFhSkgIECHDh1S9+7d5ejoqNdee83cZsyYMRozZoxOnjyp5cuXq0yZMnmu58qVKypZsmSuHeS3Kkjy91abNm1SVlaW9u7dq127dsnd3V3S3X22a9askYuLi8XRHI6Ojurfv79eeeUVDRw4UNnZ2ZoxY8Zd/SMAAAAAAADAvcomO5ifffZZ8+t25UG3eTXu2rVAY1jD39//tgnRu3HhwgUFBARIks6cOaMuXbooODhYPj4+6t27t8VD3l544QWtXbtWycnJ+vrrr1W+fHnVq1fPYrzExMR8E44lS5bM92F4Fy9eVGBg4F1fT/ny5dWpUydzAi3nwYNHjhxR2bJl1atXLw0YMCDfY0/i4uLUunVrDRo0SNevX9e1a9fk6emp3r17m9s0atRIvr6+MhgMeuKJJzRkyBB99dVXt13X8uXLFR8fb35Zk3C82eDBg827qPPi5eWlhIQEi7KEhAR5e3vfdtw///xTO3bsyPUAPy8vLz311FN67LHH5OLion/+859yc3OzeDierS1fvlwTJkzQli1bLM6cXr58uVJTU1WpUiW1bt1aPXv2lIODQ75xWLduXQUGBsrJyUn/+Mc/NGbMmHw/v2rVqumRRx5R//7986wvWbKkrl69eseHAFrLyclJzZo10+XLlxUWFibJ+s9WunE8Rt++fS3+sWP79u0aOnSo1q1bp4yMDJ0+fVrLly/Xxx9/XLQXAwAAAAAAcA+4L4/ICA0N1a+//lrk40ZGRuqnn35S8+bNJUlDhw5V2bJl9csvvygxMVHLli2zOHqgSpUqeuSRR7RmzRotXrxYAwYMsBgvKipKaWlp+Z6l26ZNG61evVpZWVkW5Xv37tXFixfVqlWrIrkuo9GoyMhIGY1GSVKNGjW0ZcsWXb16VREREUpPT8/zWAlJ+v3335Wamqrhw4fLxcVF/v7+GjJkiL799tt853N0tH9Yfv/99xoxYoRKliypkiVLKioqSn379jXvwq1du7YiIiLM7XMezHfzgyLzsnDhQjVo0CDXZ3jz7vbisHz5co0YMUL/+c9/cu2sLVeunNauXatLly7pt99+k7e3t+rVq2c+R/lO7vT5GY3GfM9gbty4sTw8PLR69eqCXYiVbl5D7dq19d///tcc39KNY3Tu9NmeOXNGu3fvtjgeQ5J+/vlnNWzYUM2bN5ejo6Meeughde3a9bYxDwAAAAAA8Fd1XyaYO3furB07dliUGY1GpaWlKSsrS1lZWUpLS7NION2O0WjUnj179Oyzz6pZs2Zq166dpBu7j729veXj46OoqCjzjsmbDRw4ULNmzdLu3bstdvVKN3ZCNm3aNN+dlK+99prS09PVq1cvRUVFyWg0ateuXerdu7eGDx+e70P8srOzlZaWZt4lmpaWZn6woCTNnz9fMTExkm4cHTFmzBi1bNnSvEvz2LFjSklJUUZGhtatW6fPP/9cEyZMyHOuqlWrysvLS/PmzVNmZqaSkpL06aefqk6dOpKk+Ph4hYeH6/r168rKytL333+v+fPn39UO9fzcfJ0ZGRlKS0szH60RFRWliIgI8ys4OFhz5szRv/71L0nSgAEDtGzZMh08eFDXr1/XuHHj1KxZM/PRIXnJysrS4sWLc+1elqRBgwZpw4YNOnDggLKysjR//nylp6ercePG+Y6X87nd/MqLyWRSWlqa0tPTJUnp6elKS0sz/+PGl19+qeHDh+u7774zfw43+/XXXxUfH6+srCzt3LlTU6ZM0dtvv53vulatWqXExESZTCYdPnxYM2bMMH9+ycnJWrRokeLj42UymXT8+HFNmTJFTzzxRJ5jeXt7691339Xw4cO1fPly87gREREWx1Dc6nY/vxEREdq6datSU1OVmZmpb7/9VsuXLzevoWnTpgoICNDUqVOVnp6u8PBw7dy5U3379s13PunGPx40atQo13nujRo10qFDh/TDDz/IZDLp7NmzWrt2bZ73GgAAAAAA4C/PVAAJCQkmSaaEhISCNLewZs0a8+tmF6U7vu40hrUyMzNNDzzwgOn48ePmsn79+pkkWbz69euX7xiSTC4uLiYvLy+Tn5+fqWHDhqbZs2ebMjIyzG327Nljql69usnT09NUp04d06xZs0y+vr4W4yQnJ5u8vb1NTz/9dK45WrZsaVq3bt1tr+XixYum/v37mwIDA01ubm6mqlWrmubOnWvKzs42t5k6daqpXbt25vc7duzIda03h0LXrl1NgYGBJg8PD1O5cuVMgwcPNsXExJjrx48fbwoICDB5eHiYGjVqZNq7d6/Fmtq1a2eaOnWq+f3evXtNjz32mMnX19cUEBBg6ty5s+n33383mUwmU0xMjKlBgwYmb29vk7e3t6lWrVqmhQsX3vaaK1SoYPr6668tyv7880+TJFNcXJzJZDKZdu/ebfL09LRok9c179ixo8BzfPzxx6ayZcuaPDw8TO3btzddvHjRXLds2TJT9erVLdp/++23Jk9PT1NiYmKecyxevNj0wAMPmLy8vEyNGjUyHTx4MN9r7tOnT76f2a1z59yLW19//vmnyWQymR544AGTs7OzydPT0/y6uf+8efNMpUqVMrm7u5tq165tWr9+vcVahgwZYhoyZIj5/eOPP27y9fU1eXp6mipXrmx69913TVlZWSaT6UZ8t27d2hQQEGDy9PQ0VaxY0TRy5EhTSkpKvtdqMplMGzZsMDVp0sTk6elpCggIMNWvX9+0YMECc3316tVNy5YtM7+/3c/voUOHTPXq1TN5e3ubfHx8TLVr1zbNnz/fYr7//ve/psaNG5vc3NxMlSpVynXNnp6ept27d5vfZ2ZmmoKCgkyff/55nuv/7LPPTFWrVjV5eXmZgoODTcOGDTOlpqbe9pqLU0ZGhmn9+vUW31+ArRBvsBViC/ZEvMFWiC3YA3EGFM7d5EXvFw4m001nNuQjMTFRvr6+SkhIsNnD8eztyy+/1Pr16+941m9+jEajwsPD1aFDB4vzV63x0EMPae7cuerUqZO5bN++fRo1apT27t17V2Pj76Eo4w24FfEFeyLeYCvEFuyJeIOtEFuwB+IMKJy/Y160qN2XR2RIUo8ePaxOLhellStXKisrS+3bt7cob9y4McllAAAAAAAAAPc05+JewP2sWrVqunbtmpYsWSInJ6fiXg4AAAAAAAAAFAoJ5mJ08uTJ4l4CAAAAAAAAAFjtvj0iAwAAAAAAAABwd0gwAwAAAAAAAACsQoIZAAAAAAAAAGAVEswAAAAAAAAAAKuQYAYAAAAAAAAAWIUEczHbuXOn/Pz8zO+bN2+uf//737ft065dO4WHh9t2YX8Dbdu21bZt24p7GQAAAAAAAMDf1n2RYG7evLlcXV3l5eUlb29v1ahRQ6tXry6y8Q8cOKAWLVrI399ffn5+ql27thYvXlxk499sx44dunLlijp06KBp06bJy8tLXl5ecnd3l4ODg/m9l5eX9uzZY5M13M5bb72l0qVLy8fHR7169VJycrLV7VetWqXGjRvLw8NDoaGhufr2799fLi4uFte8f/9+c/348eP15ptvFtm1AQAAAAAAALB0XySYJendd99VcnKyEhMTNXPmTPXq1Utnz56963GTkpLUrl07Pffcc4qJidGVK1e0cOFClSpVqghWndtHH32kAQMGSJLGjRun5ORkJScn67vvvpOvr6/5fXJysh5//HFzP6PRaJP13GzRokVauHCh9uzZo3Pnzik2NlbDhw+3un1AQIBGjBih8ePH5zvGsGHDLK65UaNG5rqmTZsqPj5eP/zwQ9FcIAAAAAAAAAAL902COYeDg4M6duwoPz8/nTp1SpK0ePHiXDtkQ0NDtXjxYhmNRpUuXVo7d+60qK9Vq5b27t2r3377TSkpKRo8eLAMBoMMBoPq16+vDh06mNvGxMSoV69eCgoKUnBwsEaMGKH09PRCr91oNOo///mPWrZsece2kydPVqdOnfTSSy8pICBAY8aM0eTJk/XUU09ZtPPz87O4tpUrV6p27dry8/NT/fr1tW/fvgKv7/PPP9fw4cNVuXJl+fn56Z133tGXX36p1NRUq9q3bt1a3bt3V9myZQu8hps5ODioZcuW2rhxo1X9AQAAAAAAANzefZdgzs7O1oYNG5SamprnsQu3MhgM6tOnj8WRF/v371dMTIwaNmyohx9+WL6+vnr++ee1YcMGXbp0yaK/yWTSk08+qTJlyuj333/X8ePHdfToUU2ZMqXQaz99+rSuX7+uKlWqFKj9f/7zHzVs2FAxMTF655137tg+PDxcI0eO1OLFi3Xt2jWNHTtWnTt3VmxsbIHmO3bsmMU9DQ0NVVpamn777bciaZ+XL774QgEBAapRo4ZmzZql7Oxsi/rq1asrIiKiwOMBAAAAAAAAKLj7JsE8duxY+fn5ydPTU88884wmTJhQ4GMsBg4cqLVr15rPB168eLGef/55GQwG+fj4aP/+/QoICNDrr7+u4OBgNWzYUD///LMk6fDhwzp9+rTCwsLk4eGhEiVKaNy4cVqxYkWhryEuLk4eHh5ycnIqUPuaNWuqf//+cnZ2loeHxx3bf/TRR3rzzTdVt25dOTo66plnnlHVqlUL/EDB5ORkiwcWGgwGeXh4KCkpqUja32r48OE6deqU+ViSuXPnau7cuRZtfHx8FBcXV6DxAAAAAAAAkFu0g4OiHRyKexm4R903Cebp06crPj5eqampOnXqlJYsWaIFCxYUqG+1atVUs2ZNrVmzRmlpafrqq6/Uv39/c32lSpU0f/58/f777zp//rwqVaqkJ598UiaTSZGRkYqPj1dAQID8/Pzk5+enrl3/r717j4+zLvPGf00PhJbSQssphSI8KoKCIAcPEQGFlgpadSeoRUAOgkfUXQ+LCFseBDyBusoqeEC0iooz4BYWHyy+QNG4IiorqygefsUWIkKBhp5oaOf3R3vHmWSSzNyZY/J+8+qLZOaee66ZfDOT+cw1190dDz/8cNW3Yeedd47169fH5s2bK9p+7733rmr/K1asiPPPP3+gzp122inuueeeePDBByu6/IwZM2LNmjUD3z/99NOxfv362HHHHWuy/WCHHnpo7LrrrjF58uR48YtfHOedd1585zvfKdmmr68vdt5554r2BwAAAABUZ8IEzMWe9axnxQknnBA333xzRGwNOtevX1+yzeBRF2eddVZce+21ceONN8YznvGMeMELXlB233Pnzo3zzjsvHnzwwXjsscdi3rx5sdtuu8UTTzwx8G/NmjUD3dDVePaznx3Tp08fmB09mkmTSn+8g2/nunXroq+vb+D7efPmxRVXXFFS67p16+K8886r6Pqe//znl4yjuOeee6KjoyP222+/mmw/msG3NyLid7/7XUWjUAAAAACA6rVEwHxb3BbPjefGbXFbQ65vxYoVccstt8RBBx0UEVtn//7lL3+JO++8M55++un4xCc+MWTu8Bve8Ib45S9/GR/72MfizDPPHDj997//fXz84x+PFStWxJYtW+KJJ56IK6+8Mvbbb7+YM2dOHHHEETFv3ry44IIL4sknn4xCoRAPPPBAfP/736+67qlTp8bxxx8ft99+e6rbfeihh8bPfvaz+P3vfx8bN26M888/PzJFH2945zvfGZ/85Cfjl7/8ZRQKhVi/fn3cdtttsWrVqojYOhpkn332GXb/Z5xxRnz2s5+NP/7xj7FmzZr4t3/7tzj55JNj2rRpqbbfvHlzbNy4Mfr7+6NQKMTGjRtLDo54/fXXR19fXxQKhbj77rvjYx/7WGSz2ZLruP322+NVr3pVqvsLAAAAABhZ0wPmQhTi/Dg/7ov74vw4PwpRqMv1/Ou//mvMmDEjZsyYEUceeWQcd9xx8W//9m8RsbWj+ROf+ER0d3dHZ2dnPPXUU/G85z2v5PI77rhjnHTSSfH73/8+3vSmN5Wc/utf/zpe9rKXxcyZM+M5z3lOPPLII3HTTTdFRMTkyZPj5ptvjgcffDAOOOCAmDVrVpx44onxpz/9KdXteOc731lywMFqvOIVr4i3vvWt0dXVFc961rPioIMOKhlH8epXvzo+9rGPxdlnnx0777xz7LvvvvHv//7vAwfO++tf/xovfelLh93/mWeeGWeccUa89KUvjb322it22mmnkpnIl112Wbzyla+sePulS5fGtGnT4pxzzonf/OY3MW3atJIDHF555ZWx9957x4477hhvetOb4h3veEe8733vGzj/zjvvjJkzZ8bLXvayVPcXAAAAADCyTKFQGDXR7evri1mzZsWaNWti5syZNS3g1rg1FsbCge//X/y/OD6Or+l11MrFF18cv/nNbyKXy0V/f3/ccsstccIJJ8TUqVMbWsfxxx8f733ve0vC2kY49thj48orr4wDDjigodeb1vHHHx/vf//7Y/78+c0uZcyaud4Y/6wvGsl6o16sLRrJeqNerC0awTojreQgf52jR4njSj1z0fFiSjOvvBCFuDAujMkxOTbH5pgck+PCuDAWxILIRGsdmfKRRx6JL33pS6m7h2vp1ltvbcr1/vCHP2zK9abVrPsJAAAAACaKpo7I+EH8IH4Rv4jNsTkiIjbH5vhF/CJ+ED9oZllDXHrppbHPPvvEiSeeGMcee2yzywEAAAAAaAlNC5iLu5eLJV3M9ZrFnMaHP/zhWLduXVx11VXNLgUAAAAAoGU0LWAe3L2caNUuZgAAAAAASjUlYB6uezlR6y7mffbZJ773ve/VZF8AAAAAAGzVlIB5uO7lhC5mAAAAAIDW1/CAebTu5UQrzmIGAAAAAOAfGh4wj9a9nKh1F/Nvf/vbOPTQQ2PmzJlx/PHHx0MPPRQrVqyITCYTTzzxxMB2733ve+P000+PiIjXve51cdFFF5Xs521ve1u8/e1vr0lNAAAAAADtrKEBc9K9PKnCq50Uk2rWxfzlL385rrvuuvjb3/4We+yxR5xyyimjXuass86Kr3/961EobL3+jRs3xre//e0488wzx1wPAAAAAEC7a2jAvCk2xV/jr7EltlS0/ZbYEitjZWyKTWO+7re//e2x//77x/Tp0+MTn/hE3H777bFq1aoRL/PKV74ynnrqqfjRj34UERE33nhj7LXXXnHEEUeMuR4AAAAAgHY3pZFX1hEd8Yv4RTwSj1R8md1it+iIjjFf9zOe8YyBr3fffffo6OiIqVOnjniZyZMnx2mnnRbXXnttHHPMMXHttdfqXgYAAAAA2KahAXNExLxt/zXaAw88MPD13//+93jqqadizz33jIiI9evXx0477RQREb29vTFt2rSBbc8888w49NBD40Mf+lD86Ec/iqVLlza0bgAAAACAVtXwg/w1y9VXXx1/+MMfYsOGDfGv//qvcdRRR8Vee+0Ve++9d3zta1+LLVu2xO233x633HJLyeWe/exnx6GHHhpveMMb4pWvfGXstttuTboFAAAAAACtZcIEzGeeeWYsXrw4dt9993jwwQfjm9/8ZkREXHPNNfHVr341Zs2aFVdffXW88Y1vHHLZs846K/7nf/4nzjjjjEaXDQAAAADQsho+IqMZVqxYERERH/7wh4ecd+yxx8b9998/4uX32Wef2H333eOEE06oR3kAAAAAAG1pwnQwp7Vp06a44oor4uyzz44pUyZEHg8AAAAAUBEB8wh+9KMfxc477xyPPvpofOADH2h2OQAAAAAALUVL7giOPvroWLduXbPLAAAAAABoSTqYAQAAAABIRQczAAAAAFBWPp+PiIiuJtdB69LBDAAAAABAKo0PmFeujPjVryr/t2pVw0sEAAAAAEhj7dq1sWTJkli4cGHMnj07MplMXHvttUO2+9KXvhRHH3107L777tHR0RH77rtvnHHGGbFixYoh22YymbL/Pvaxj9X/Bo2isSMynnoq4ogjIh5+uPLL7LFHxIoVER0ddSsLAAAAAKAWHn300bj44otj7733joMPPjjuuOOOstv9+te/jn333TcWLVoUO++8c/x//9//F1/60pfi5ptvjv/5n/+JuXPnlmw/f/78OO2000pOe8ELXlCvm1GxxgbM220XsffeEY88ErFly+jbT5oUMW/e1ssBAAAAAA2VzWYH5jBTmc7Ozujt7Y099tgj7r777jjiiCPKbvf5z39+yGmvfe1r4/DDD4+vf/3rcd5555Wct99++8Upp5xSl5rHorEjMjKZiI98pLJwOWLrdh/5yNbLNcHpp58e733veyMiYsWKFZHJZOKJJ55oSi0AAAAAQOvr6OiIPfbYI9Vl99lnn4iIYTPIDRs2xMaNG1NWVh9VdTD39/dHf3//2K7x5S+PyYcdFpl77onM5s3DblaYPDkKhxwSm1/+8oixXmdKW7ZsiS1btpTc7uTr4u+h3qw36sn6opGsN+rF2qKRrDfqxdqiEawz0to8bVpETLy1k9zevr6+ktM7Ojqio0YjfVevXh2bN2+Ov/71r3HxxRdHRMSxxx47ZLtrr702Pv/5z0ehUIgDDjggLrjggjj55JNrUsNYVBUw/+AHP4jp06eP+Up3fdWrouuXvxxxm8zmzfGzV70qHvn+98d8fWmtWrUqHn/88bjlllvi4W1zo3/wgx/EjBkzBrZZvnx5s8pjArLeqCfri0ay3qgXa4tGst6oF2uLRrDOqMaUKVPil9/61tZvbrmlucU02Pr16yMiYt68eSWnL1myJC666KKaXMeee+4ZTz31VEREzJkzJz772c/G/PnzS7bp6uqK17/+9bHvvvvGQw89FP/xH/8Rb3rTm2LNmjXx9re/vSZ1pFVVwLxgwYKYOXPm2K/1la+MLTffPGwXc9K9fMT559dsPMZnPvOZ+NznPhePP/54zJkzJz70oQ/FmWeeGT/84Q/jwgsvjD/+8Y8xd+7cuOSSS+LVr351RETk8/nYaaed4oQTThg4euOCBQtip512iv7+/li+fHnMnz8/pk6dWpMaYTjWG/VkfdFI1hv1Ym3RSNYb9WJt0QjWGWksW7YsXnTqqRERsfuaNU2uprGSzuWVK1eW5KK16l6OiPj+978fGzdujPvuuy++8Y1vxLp164Zs89Of/rTk+zPPPDMOO+ywOP/88+P000+Pads6zJuhqoB56tSptXvwufTSiIULy56V2bw5MpdeGpNqdHC/+++/P5YsWRK/+tWvYv/994+HH344Hn744bjvvvti8eLFkc/n45hjjomenp448cQT46677ornPOc5MWnSpJg0aVLJ7R58H9T0PoFRWG/Uk/VFI1lv1Iu1RSNZb9SLtUUjWGdUa/KGDRERE27dJLd35syZtWm8LePlL395RES88pWvjNe85jVx4IEHxowZM+Jd73rXsJfZbrvt4l3vele87W1vi1/+8pdx5JFH1qW2SjT2IH/FFiyIOOKIiMmTS0+fPHnr6QsW1OyqJk+eHIVCIX7729/Ghg0bYvfdd4/nP//5cfXVV8fpp58er3jFK2LSpElx5JFHxqte9aq4/vrra3bdAAAAAACVeOYznxkveMEL4pvf/Oao2yZjOx577LF6lzWi5gXMmUzERz4SMXhExubNW0+v0WiMiK0/mK997Wtx5ZVXxu677x4LFiyIe+65J1asWBFXXXVV7LTTTgP//vM//zMeeuihml03AAAAAEClNmzYEGsqGEXyl7/8JSIidt1113qXNKLmBcwRQ7uY69C9nHj9618ft99+ezz88MNx8MEHx6mnnhrz5s2L97znPfHEE08M/Fu7dm184QtfqPn1AwAAAABERDz99NPx+OOPDzn9rrvuinvvvTcOP/zwgdMeeeSRIds9+eST8ZnPfCZ22WWXOOyww+pa62iqmsFcc0kXczKLuQ7dyxERf/jDH+Kvf/1rHHnkkbHddtvFjBkzYsqUKfHWt741Fi5cGMcff3wcddRR8fTTT8evfvWr2GmnneKAAw6oaQ0AAAAAwMRw5ZVXxhNPPDEwKeGmm26KVatWRUTEueeeG4VCIebNmxdveMMb4nnPe17ssMMOce+998ZXv/rVmDVrVlx44YUD+/qP//iP+N73vhevfvWrY++9947e3t645ppr4q9//WssXbo0tqvRcezSam7AHPGPLuZf/KJu3cubNm2KCy+8MH73u9/FpEmT4uCDD45rr702Dj744PjWt74VF1xwQdx3330xadKkOOSQQ+Lyyy+veQ0AAAAA0E56kybQXK65hbShyy+/PB544IGB72+44Ya44YYbIiLilFNOiblz58Zb3vKWuP322yOXy8WGDRti7ty5sXjx4rjgggtin332GbjsS1/60ujp6Ykvf/nLsXr16thhhx3ihS98YVxzzTXxile8otE3bYjmB8yZTMRll0W8+91b/1/j7uWIiIMOOij++7//u+x5r3jFK4b9QVx77bUDX++zzz5RKBRqXhsAAAAAML6sWLFi1G0+85nPVLSv+fPnx/z588dWUB01P2COiDjuuIjf/a7ZVQAAAAAAUIXmHuQPAAAAAIC2JWAGAAAAACAVATMAAAAAUCKfz0dERGeT66D1tcYMZgAAAACg5SyPiK9+9atx67bvd/jnf25mOalkMpl473vfG3vvvXezSxmXBMwAAAAAQFlLM5n485//HIWjj46IiEl/+lOTK6re7373u9h+++3jsssua3Yp45KAGQAAAAAYYlNE/LSjI85961vj3Ne/PiIiJs+d29yiUpg/f36zSxjXzGAGAAAAAIb4dURsmDIljjrqqGaXQgsTMAMAAAAAQ/wsInbbbbfYf//9m10KLUzADAAAAAAM0TN1ahx9zDGRyWRKTr/yyivj8MMPj46Ojnjta19bcl53d3d0dnbGzJkzY999941LLrmk5PyHHnooTjjhhNhhhx1i7733ji996UvDXv+dd94ZM2bMKPk3adKkePe73z2wzU9+8pN48YtfHLNmzYo999wzPvShD8WWLVvGfuOpmIAZAAAAACjxxBNPxJ8mT45jurqGnDd37ty44IIL4uyzzx5y3pIlS2LFihXR19cXP/rRj+K6666Lb3zjGwPnL168OPbYY4/4+9//Ht/97nfjAx/4QPzoRz8qW8PLXvayWLt27cC/P//5zzF58uR44xvfGBERmzdvjte85jXxmte8Jh577LH46U9/Gt/+9rdHDK2pPQf5AwAAAABK/O53v4tMR0cc9aIXDTnvn/7pnyIi4p577olVq1aVnHfQQQcNfJ3JZGLSpEnxxz/+MSIi/vznP8dPfvKTuP7662OHHXaIF73oRfGmN70prrnmmjj66KNHrelrX/taPPvZz46ubaH3mjVr4rHHHos3v/nNMXny5Nhnn33iuOOOi3vvvTf17aZ6OpgBAAAAgBL/+7//G88/8MCYM3t21Zd9xzveEdOnT4+999471q5dG6effnpERPzmN7+Jzs7O2H333Qe2PeSQQ+I3v/lNRfu95ppr4qyzzhr4fvbs2XHmmWfGV77ylejv748///nPcdttt8WJJ55Ydc2kJ2AGAAAAAAZs3rw5/vCHP8TRRx8dmyNiu8cfr+ryn//852Pt2rXxi1/8Ik477bTYeeedIyJi7dq1sdNOO5Vsu9NOO8WTTz456j7vvPPO+Mtf/hKnnXZayemvf/3r44tf/GJMmzYtnvWsZ8WrXvWqWLhwYVX1MjYCZgAAAABgwJYtW+Lpp5+O7WbPjk3bwuFqTZo0KQ4//PDYcccd4/3vf39ERMyYMSPWrFlTst2aNWtixx13HHV/X/nKV2LRokWx6667Dpz2hz/8IV7zmtfEpz/96di4cWM89NBDcd9998V5552XqmbSETADAAAAAAOmTp0az372s+PHP/5xSffy5Llzq95Xf3//wAzm5z//+fHQQw/F3//+94Hz77nnnpK5zeX09fXFd7/73XjLW95Scvq9994be+21V3R3d8eUKVOis7Mz3vzmN8d//dd/VV0n6QmYAQAAAIASz33uc+Puu++OtevWDTnv6aefjo0bN8bTTz8dW7ZsiY0bN8amTZvigQceiHw+H2vXro0tW7ZET09PfPazn43jjz8+IiKe+cxnxktf+tI4//zzY/369XHXXXfFN7/5zZK5yuV861vfijlz5sSCBQtKTj/ssMPioYceiu9973uxZcuWeOSRR2Lp0qXxghe8oHZ3BKMSMAMAAAAAJQ488MDYtGlT9Nx995DzLrnkkpg2bVpceumlcdNNN8W0adMGwt/PfOYzsddee8VOO+0UZ555Zpx77rklIyu+9a1vxYMPPhi77rprZLPZ+MQnPhFHH330wPnPe97z4pvf/GbJ9X3lK1+JM844IyZNKo0y99133/j2t78dF198cey8885x4IEHxm677Raf/vSna3lXMIopzS4AAAAAAGgtu+22W+y6665xR09PLCgKgCMiLrroorjooovKXu7OO+8ccb977rlnfP/73x/2/N/+9rdDTrvrrruG3X7RokWxaNGiEa+T+tLBDAAAAAAMyOfzERGx//77x49uv73J1dDqBMwAAAAAwBAn3XhjPPDXv8aKlSubXQotTMAMAAAAAAyxeenSmLrTTvHj3/0uJs+d2+xyaFFmMAMAAAAAQ0ybNi2OOOKI+PKXvxy/+c1vml1OaqtWrYojjjii2WWMWwJmAAAAAKCs7u7uuO666+JPf/pTs0tJ7dnPfnZks9lmlzFuCZgBAAAAgLIWL14cixcvbnYZtDAzmAEAAAAASEXADAAAAABAKgJmAAAAAABSETADAAAAAEM4MB6VEDADAAAAAJCKgBkAAAAAgFQEzAAAAAAApCJgBgAAAAAgFQEzAAAAAACpTGl2AQAAAABA68hms80ugTaigxkAAAAAgFQEzAAAAABA5PP5yOfzzS6DNiNgBgAAAAAgFQEzAAAAAACpCJgBAAAAAEhFwAwAAAAAQCoCZgAAAAAAUhEwAwAAAACQioAZAAAAACaY3kwmejOZZpfBOCBgBgAAAAAgFQEzAAAAABDZbDYiIvL5fJMroZ0ImAEAAAAASEXADAAAAABAKgJmAAAAAABSETADAAAAAJCKgBkAAAAAgFQEzAAAAAAwwXQWChER0ZvJNLkS2p2AGQAAAACAVATMAAAAAACkImAGAAAAACAVATMAAAAAAKkImAEAAABgAsvn85HP55tdBm1KwAwAAAAACJlJRcAMAAAAABNcV3f3wNfZbLaJldBupjS7AAAAAACg+bq6u6OzUGh2GbQZHcwAAAAAMMEYh0GtCJgBAAAAAEhFwAwAAAAAQCoCZgAAAACY4HpyuWaXQJsSMAMAAAAAERHRm8k0uwTajIAZAAAAAIBUBMwAAAAAAKQiYAYAAAAAIBUBMwAAAABMUA7uV3tr166NJUuWxMKFC2P27NmRyWTi2muvLdlmy5Ytce2118aiRYti3rx5scMOO8SBBx4Yl1xySWzcuLHsfr/yla/EAQccENtvv308+9nPjs997nMNuDWjEzADAAAAwARULlzuLBSaUMn48uijj8bFF18c9913Xxx88MFlt1m/fn2cccYZ8cgjj8Tb3va2+MxnPhMvfOELY8mSJfHKV74yCoN+DldffXW85S1viec973nxuc99Ll7ykpfEu9/97vj4xz/eiJs0oinNLgAAAAAAYLzo7OyM3t7e2GOPPeLuu++OI444Ysg22223Xfz0pz+Nrq6ugdPOPvvs2GeffWLJkiXxwx/+MI477riIiNiwYUN8+MMfjhNPPDFy294UOPvss2PLli3xkY98JM4555zYeeedG3PjytDBDAAAAABQIx0dHbHHHnuMuM12221XEi4nXve610VExH333Tdw2u233x6rV6+Od7zjHSXbvvOd74x169bFf/3Xf9Wg6vSq6mDu7++P/v7+etXSVpL7wf1BI1hv1JP1RSNZb9SLtUUjWW/Ui7VFI1hnDOdFp54am6dNszYGSe6Pvr6+ktM7Ojqio6Oj5tf3t7/9LSIidtlll4HTfv3rX0dExOGHH16y7WGHHRaTJk2KX//613HKKafUvJZKZQqDB3qU0dfXF7NmzYrrrrsupk+f3oi6AAAAAACaav369XHyyScPOX3JkiVx0UUXjXr5ZETGV7/61Tj99NNH3X7+/Plx1113xQMPPBA77bRTRES8613viquuuiqefvrpIdvvtttuceyxx8a3vvWtUfddL1V1MC9YsCBmzpxZr1raSn9/fyxfvjzmz58fU6dObXY5jHPWG/VkfdFI1hv1Ym3RSNYb9WJt0QjWGYlly5aVfP+iU0+NiIjd16xpRjktK+lcXrlyZUkuWo/u5csuuyxuu+22+PznPz8QLkdsncG83Xbblb3M9ttvHxs2bKh5LdWoKmCeOnWqB59B3Cc0kvVGPVlfNJL1Rr1YWzSS9Ua9WFs0gnXGYJO3hZTWRank/pg5c2ZdG2+/853vxAUXXBBnnXVWvP3tby85b9q0abFp06ayl9u4cWNMmzatbnVVwkH+AAAAAACaZPny5XHaaafFiSeeGFddddWQ8zs7O2Pz5s3x97//veT0TZs2xerVq2Pu3LmNKrUsATMAAAAAQBP8/Oc/j9e97nVx+OGHx/XXXx9TpgwdOHHIIYdExNZ5zsXuvvvu2LJly8D5zSJgBgAAAABosPvuuy9OPPHE2GeffeLmm28edtTFK17xipg9e3Z84QtfKDn9C1/4QkyfPj1OPPHERpQ7rKpmMAMAAAAAMLIrr7wynnjiiXjooYciIuKmm26KVatWRUTEueeeG5MmTYrjjz8+Hn/88fjABz4Q//Vf/1Vy+Wc+85nxkpe8JCK2zmD+yEc+Eu985zvjpJNOiuOPPz7uvPPO+MY3vhGXXnppzJ49u7E3bhABMwAAAABMcD25XGSz2WaXMW5cfvnl8cADDwx8f8MNN8QNN9wQERGnnHJKRESsXLkyIiLOO++8IZd/85vfPBAwR0S84x3viKlTp8YVV1wRy5Yti3nz5sWnP/3peM973lPPm1ERATMAAAAAQA2tWLFi1G0KhUJV+zz77LPj7LPPTllR/ZjBDAAAAAATSD6fb3YJjCMCZgAAAACYgIzEoBYEzAAAAAAwQQmZGSsBMwAAAAAAqQiYAQAAAABIZUqzCwAAAAAAGsdYDGpJBzMAAAAAAKkImAEAAAAASMWIDAAAAACYwIzMYCx0MAMAAAAAkIqAGQAAAAAmiHw+H/l8vtllMI4ImAEAAABgghEyUysCZgAAAACYQObMmdPsEhhHBMwAAAAAAKQiYAYAAACAcao3k4neTKbZZTCOCZgBAAAAYAJZvXp1s0tgHBEwAwAAAMA4NNKB/LLZbAMrYTwTMAMAAAAAkIqAGQAAAACAVATMAAAAADDOlBuPMdLIDEhrSrMLAAAAAADqoyeXi4gIE5epFx3MAAAAADCOdXV3R28m0+wyGKcEzAAAAAAApCJgBgAAAAAgFQEzAAAAAEwg2ayJzNSOgBkAAAAAgFQEzAAAAAAApCJgBgAAAAAgFQEzAAAAAACpCJgBAAAAAEhFwAwAAAAAQCoCZgAAAAAAUhEwAwAAAMAE0NXd3ewSGIcEzAAAAAAApCJgBgAAAAAgFQEzAAAAAEwQ2Wy22SUwzgiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVATMAAAAADBOZbPZZpfAOCdgBgAAAAAgFQEzAAAAAACpCJgBAAAAYJzqzWSaXQLjnIAZAAAAAIBUBMwAAAAAAKQypdkFAAAAAAC1lc1mIyKit8l1MP7pYAYAAACAcaqzUIjOQqHZZTCOCZgBAAAAAEhFwAwAAAAAQCoCZgAAAAAAUhEwAwAAAACQioAZAAAAAIBUBMwAAAAAAKQiYAYAAAAAIBUBMwAAAAAAqQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVATMAAAAAACkMqXZBQAAAAAA9dVZKDS7BMYpHcwAAAAAAKQiYAYAAAAAIBUBMwAAAACMI/l8PvL5fLPLYIIwgxkAAAAAxgGhMs2ggxkAAAAAgFQEzAAAAAAANbJ27dpYsmRJLFy4MGbPnh2ZTCauvfbastved999sXDhwpgxY0bMnj07Tj311HjkkUdKtlmxYkVkMpmy/7797W834BaNzIgMAAAAAIAaefTRR+Piiy+OvffeOw4++OC44447ym63atWqOOqoo2LWrFlx2WWXxdq1a+Pyyy+Pe++9N+66667YbrvtSrZfvHhxnHDCCSWnveQlL6nXzaiYgBkAAAAAoEY6Ozujt7c39thjj7j77rvjiCOOKLvdZZddFuvWrYtf/vKXsffee0dExAtf+MKYP39+XHvttXHOOeeUbH/ooYfGKaecUvf6q2VEBgAAAABAjXR0dMQee+wx6nb5fD5e9apXDYTLERHHHXdc7LfffnH99deXvcy6deti06ZNNau1FqrqYO7v74/+/v561dJWkvvB/UEjWG/Uk/VFI1lv1Iu1RSNZb9SLtUUjWGcTi5/z2CX3YV9fX8npHR0d0dHRkXq/Dz74YPz973+Pww8/fMh5L3zhC+OWW24Zcvr//b//Nz7wgQ9EJpOJww47LC699NJYsGBB6hpqpaqA+Qc/+EFMnz69XrW0peXLlze7BCYQ6416sr5oJOuNerG2aCTrjXqxtmgE62x8mjKlNOorF1JSnfXr10dExLx580pOX7JkSVx00UWp99vb2xsRW8dpDNbZ2RmPPfZYPPXUU9HR0RGTJk2KBQsWxOte97rYc8894y9/+Ut86lOfile+8pWxbNmyOPHEE1PXUQtVBcwLFiyImTNn1quWttLf3x/Lly+P+fPnx9SpU5tdDuOc9UY9WV80kvVGvVhbNJL1Rr1YWzSCdTa+LVu2rOT7RYsWNamS8SPpXF65cmVJLjqW7uWIiA0bNgy7n+23335gm46Ojth7773j1ltvLdnm1FNPjec+97nxvve9r70C5qlTp3rwGcR9QiNZb9ST9UUjWW/Ui7VFI1lv1Iu1RSNYZxODn/HYJffhzJkza9p4O23atIiIeOqpp4act3HjxpJtypk9e3acccYZ8bGPfSxWrVoVe+21V81qq5aD/AEAAAAANFAyGiMZlVGst7c3Zs+ePWqXdDK247HHHqt9gVUQMAMAAAAANNCee+4Zu+66a9x9991DzrvrrrvikEMOGXUff/nLXyIiYtddd611eVURMAMAAAAANFg2m42bb745Vq5cOXDaD3/4w7j//vvjpJNOGjjtkUceGXLZBx98MK655pp4/vOfX/ZAgY1U1QxmAAAAAKA1ZbPZyOfzzS6DiLjyyivjiSeeiIceeigiIm666aZYtWpVRESce+65MWvWrDj//PPju9/9brz85S+P97znPbF27dr45Cc/GQcddFCcccYZA/v64Ac/GH/+85/j2GOPjblz58aKFSvi6quvjnXr1sW///u/N+X2FRMwAwAAAADU0OWXXx4PPPDAwPc33HBD3HDDDRERccopp8SsWbNi3rx58aMf/Sj+5V/+Jc4777zYbrvt4sQTT4wrrriiZP7yggUL4qqrror/+I//iMcffzx22mmnOOqoo+KCCy6IQw89tOG3bTABMwAAAABADa1YsaKi7Z73vOfFrbfeOuI2ixcvjsWLF9egqvowgxkAAAAAgFQEzAAAAAAApCJgBgAAAIBxJpvNNrsEJggBMwAAAAAAqQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAADAOJDP55tdAhOQgBkAAAAAxpFsNtvsEphABMwAAAAAAKQypdkFAAAAAABjp3OZZtDBDAAAAABAKgJmAAAAAABSETADAAAAAJCKgBkAAAAAgFQEzAAAAAAApCJgBgAAAAAgFQEzAAAAAACpCJgBAAAAAEhFwAwAAAAAQCoCZgAAAAAAUhEwAwAAAACQioAZAAAAAIBUBMwAAAAAAKQiYAYAAAAAIBUBMwAAAAAAqQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVATMAAAAAACkImAGAAAAACAVATMAAAAA40JvJhO9mUyzy4AJRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAwYeXz+cjn880uA9qWgBkAAAAAgFQEzAAAAABMaF3d3Q4OCCkJmAEAAAAASEXADAAAAABtrjeT0YVNUwiYAQAAAJjQenK5iIi2CWiFybQSATMAAAAAAKkImAEAAACgzXUWChHRPl3YjB9Tml0AAAAAAJBePp+PiIiuJtfBxKSDGQAAAADaVBIuz5kzp8mVMFEJmAEAAACYsLLZbLNLqEo+n2+7gxIyvhmRAQAAAMCElHT/jhc9uVzbBea0Px3MAAAAANAmBMi0GgEzAAAAAACpCJgBAAAAoM0kc5ih2QTMAAAAAExYc+bMaXYJ0NYEzAAAAAAApCJgBgAAAIA2t3r16maXwAQlYAYAAACANtXV3T3w/+RraCQBMwAAAABs05vJNLuEVHpyuegsFJpdBhPQlGYXAAAAAACkl81mm10CE5gOZgAAAAAAUhEwAwAAAND28vl8s0uACUnADAAAAMCE066zlqHVCJgBAAAAGPd6M5kRQ+V2OUCeTm1ajYAZAAAAAIrk8/mmBbmVXrcD+9EqBMwAAAAAjCvNDIhhohEwAwAAADCuJN297RwyVzIjurNQaJvRHoxfAmYAAAAAaANJYG48Bq1EwAwAAAAALWq0gxNCswmYAQAAAABIRcAMAAAAwLjU1d09avfv6tWrG1RN5bq6uyOisjnM0GwCZgAAAAAmtHaYaSxsbh+//OUvY+HChTFz5szYcccdY8GCBXHPPfeU3banpyeOPPLImD59euyxxx7x7ne/O9auXdvYgsdoSrMLAAAAAIB66MnlRgyPu7q7o7NQSL1/B91jsF/96ldx5JFHxrx582LJkiWxZcuW+PznPx9HH3103HXXXfGc5zxnYNt77rknjj322DjggAPiU5/6VKxatSouv/zy+OMf/xjf//73m3grqiNgBgAAAGDcKu787cnlIvL5qgPhZB/DhdGjnZ9WTy43MC6D9nDhhRfGtGnT4mc/+1nMmTMnIiJOOeWU2G+//eL8888feFMiIuL888+PnXfeOe64446YOXNmRETss88+cfbZZ8cPfvCDWLBgQVNuQ7WMyAAAAABg3OssFKKruzu6ursjn89HTy5XNhDuyeUGvs7n8yWBYKMU10B7ufPOO+O4444bCJcjIjo7O+Poo4+Om2++eWD8RV9fXyxfvjxOOeWUgXA5IuK0006LGTNmxPXXX9/w2tOqqoO5v78/+vv761VLW0nuB/cHjWC9UU/WF41kvVEv1haNZL1RL9YWjTDe19nmadMiovT2FZ+WfJ0YfD8MPn+k/VZzfhrJPsvVNF5/fq0oua/7+vpKTu/o6IiOjo4h2z/11FMxrczPbPr06bFp06b43//933jxi18c9957bzz99NNx+OGHl2y33XbbxSGHHBK//vWva3gr6itTKIzeu9/X1xezZs2K6667LqZPn96IugAAAAAAmmr9+vVx8sknDzl9yZIlcdFFFw05/fnPf3489dRT8bvf/S4mT54cERGbNm2KZz/72fHXv/41ctvmgudyuTjppJPixz/+cbzsZS8r2cfrX//6uPPOO6O3t7cut6nWqupgXrBgQUnL9kTW398fy5cvj/nz58fUqVObXQ7jnPVGPVlfNJL1Rr1YWzSS9Ua9WFs0wnheZ8uWLYsXnXpqRETsvmZNLFu2LCKi5LSHZ82KiIifL10aERGLFi0q2cfDs2YNnFeseB+Dr3Ok89PejmSfP1+6dGDfI9VN/SSdyytXrizJRct1L0dEvOMd74i3v/3tcdZZZ8UHP/jB2LJlS1xyySUDYfGGDRtK/l9uP9tvv/3A+e2gqoB56tSp4+7BZ6zcJzSS9UY9WV80kvVGvVhbNJL1Rr1YWzTCeFpnyYzkbDYbvdsOiFd82yZvC+qmTp068HVi8H0w+Pxy+0hzfhrJPsvVNF5+du0gua9nzpxZUePt2972tli5cmV88pOfjK997WsREXH44YfHBz/4wbj00ktjxowZEREDYzSeeuqpIfvYuHFj2TEbrcpB/gAAAAAY95pxsD4mpksvvTQefvjhuPPOO+M3v/lN/OIXv4gtW7ZERMR+++0XEVsP/BcRZcdg9Pb2xty5cxtX8BgJmAEAAACYMHpyuWaXUFY+nx8Sgmez2SZVw1jtvPPOceSRR8ZBBx0UERG33XZb7LXXXrH//vtHRMSBBx4YU6ZMibvvvrvkcps2bYp77rknDjnkkEaXnFpVIzIAAAAAYLzqLBSiONKttuu5N5OJzkJhTDVks9nozWTGtA9ay3e+8534xS9+EZdffnlMmrS133fWrFlx3HHHxTe+8Y248MILY8cdd4yIiKVLl8batWvjpJNOambJVREwAwAAAEALGS6k7uruHnOATX39+Mc/josvvjgWLFgQc+bMif/+7/+Or371q7Fw4cJ4z3veU7LtpZdeGl1dXXH00UfHOeecE6tWrYorrrgiFixYEAsXLmzSLaieERkAAAAAtK1kjERxt3E9O4B7M5kR9z/a+cNt2+jbQX3sueeeMXny5PjkJz8Z73znO+MnP/lJXHLJJfGf//mfMWVKaa/voYceGrfddltMmzYt/vmf/zm++MUvxllnnRW5Fh3jMhwdzAAAAADQwnQtt49nPvOZceutt1a8/ZFHHhk//elP61hR/elgBgAAAGDc6+rurmr7cvOXq53JPNx+a7EfaBU6mAEAAACYcJKRFJVs11vnWoajc5l2oIMZAAAAgLZVrhu4pw4zbGu9T13MjBcCZgAAAADaXrmO5OS0nlyuJgHxnDlzxryP4QicaVdGZAAAAADQduodyFY6QiPNfpPae3K5IbOh63W9UC86mAEAAACgSr2ZzMDXyazkeozmgFYnYAYAAACAJhjcvQztyIgMAAAAACaEzkIhokajNWrdrWw0Bu1KwAwAAABA22pkMLt69eohc5MFw0x0RmQAAAAAMCGM5cCASagsUIZSAmYAAAAAxoXkYHujnSYkhtoxIgMAAACAcaOzUIiuTGbrN2XCZaC2dDADAAAAMK5ls9mGdC0Xz2buTULuEfTkctFZKEQ+nx/T+A5oJgEzAAAAAG2rFcLZSsLkelwWWoGAGQAAAIBxo56B7XBd0J2FwsC/NJLO52YH5ZCGGcwAAAAAjDtpw9567wvGGx3MAAAAAACkImAGAAAAgArVcgRHIw48CPUmYAYAAACgLc2ZMyciBLXQTGYwAwAAADAhNDqI7s1kKprf3NmAWqBedDADAAAAAJCKgBkAAAAA6qCS7mVodwJmAAAAAKiDWh4QEFqVGcwAAAAAtKXVq1cPOa1du4a7urvbtnYmNh3MAAAAAFBnvZmMjmbGJQEzAAAAANTIaF3I+Xy+QZVAYwiYAQAAAGg72Wy26dc/lhqaXT/UihnMAAAAALQlIS00nw5mAAAAAGggwTjjiYAZAAAAAOqkkgP79TagDqgXIzIAAAAAoEKjHcSv1fYL9aaDGQAAAADqKJ/PN7sEqBsBMwAAAAA0kMCZ8UTADAAAAEBL6s1kKpph3Go6CwUjL5gwBMwAAAAAtJV8Pq8LGFqEgBkAAAAAgFQEzAAAAAAApCJgBgAAAAAgFQEzAAAAAACpTGl2AQAAAAAwUXUWCs0uAcZEBzMAAAAAAKkImAEAAAAASEXADAAAAABAKgJmAAAAAFpabybT7BKAYQiYAQAAAABIRcAMAAAAAHWUzWabXQLUjYAZAAAAgLaRz+ebXQJQRMAMAAAAAEAqAmYAAAAAAFIRMAMAAADQ8nozmZLv22WucU8uZ6wH45qAGQAAAIC2MDhkBppPwAwAAAAAddZZKERnodDsMqDmBMwAAAAA0ABGZTAeCZgBAAAAoIHaZX40VELADAAAAEDLyefz0ZPLlZw2+Hug+aY0uwAAAAAAqJTuX2gtAmYAAAAAaADhOOORERkAAAAAAKSigxkAAAAA6qSruzs6C4VmlwF1o4MZAAAAgJaXHOAvn883uRKgmIAZAAAAgJY1uPvXHGNoLQJmAAAAAABSMYMZAAAAgJbWWSiEvmVoTTqYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAABqrDeTaXYJ0BACZgAAAACok85Codkl0ECnn356ZDKZYf89+OCDERFxzDHHlD1/4cKFTb4F1ZvS7AIAAAAAAMaDt771rXHccceVnFYoFOJtb3tb7LPPPrHnnnsOnL7XXnvFRz/60ZJt586d25A6a0nADAAAAAA1pnN5YnrJS14SL3nJS0pO+8lPfhLr16+PN73pTSWnz5o1K0455ZRGllcXRmQAAAAAANTJddddF5lMJk4++eQh5z399NOxdu3aJlRVOwJmAAAAAIA66O/vj+uvvz66urpin332KTnv/vvvjx122CF23HHH2GOPPeLCCy+M/v7+5hQ6BlWNyOjv72/LG1kPyf3g/qARrDfqyfqikaw36sXaopGsN+rF2qIR2mWdLVu2bODrVq+V8S1Zf319fSWnd3R0REdHx6iXv/XWW2P16tVDxmM885nPjJe//OVx0EEHxbp16yKXy8Ull1wS999/f3znO9+p3Q1ogEyhMPpAmL6+vpg1a1Zcd911MX369EbUBQAAAADQVOvXry872mLJkiVx0UUXjXr5k08+OXK5XPT29sacOXNG3Pacc86JL33pS/Gzn/0sXvziF6ctueGqCpgfffTRmDlzZiPqann9/f2xfPnymD9/fkydOrXZ5TDOWW/Uk/VFI1lv1Iu1RSNZb9SLtUUjtMs6SzqYFy1a1ORKmOj6+vpil112iZUrV5bkopV0MK9duzZ23333eMUrXhE33XTTqNf1hz/8Ifbff//4yEc+EhdccMGYa2+UqkZkTJ06taUffJrBfUIjWW/Uk/VFI1lv1Iu1RSNZb9SLtUUjNHud9WYyERHROUrfo98Fmi1ZgzNnzqy68fZ73/terF+/fsh4jOHMmzcvIiIee+yx6opsMgf5AwAAAKDpejOZgeAZxoNvfvObMWPGjIo78f/yl79ERMSuu+5az7JqrqoOZgAAAAColXw+HxER2Wy25PTB30O7eeSRR+K2226LxYsXDzmmXV9f35ARG4VCIS655JKIiDj++OMbWutYCZgBAAAAaCqdy4w33/nOd+Lpp58uOx7jV7/6VSxevDgWL14cz3rWs2LDhg1x4403xk9/+tM455xz4tBDD21CxekJmAEAAABoimw2O9DFDOPJN7/5zdhtt93iuOOOG3LeM57xjHjZy14WN954Y/ztb3+LSZMmxQEHHBBXXXVVnHPOOU2odmwEzAAAAAAANfSzn/1s2PP23XffuP766xtYTX0JmAEAAABouJ5cLkL3MrS9Sc0uAAAAAACA9iRgBgAAAAAgFQEzAAAAAACpCJgBAAAAAEhFwAwAAABAw3V1dze7BKAGpjS7AAAAAAAmts5CodklACnpYAYAAACgYfL5fLNLAGpIwAwAAABAQ/XkcmVP781kBv4B7UHADAAAAEDL6Gx2AUBVBMwAAAAAAKQiYAYAAAAAIBUBMwAAAAAN11koNLsEoAYEzAAAAAAApCJgBgAAAAAgFQEzAAAAAHXXm8lEbybT7DKAGhMwAwAAAACQioAZAAAAgIbL5/PNLgGoAQEzAAAAAHVVHCZns9nIZrMl3wPtS8AMAAAAQF1ls9noyeUiIsxhhnFGwAwAAABA3Ti4H4xvU5pdAAAAAAATj9EYMD7oYAYAAACgLpLZy53bvu/J5aKzUBjxMr11rgmoLQEzAAAAAC1ltBAaaB0CZgAAAAAAUhEwAwAAANBSHBQQ2oeAGQAAAACAVATMAAAAAACkImAGAAAAACCVKc0uAAAAAIDxrTciurq7o7NQaHYpQI0JmAEAAACoq55cLiIislVcpjeTEUhDGzAiAwAAAACAVHQwAwAAAFBXlY7HSLbpzWTqXRJQIzqYAQAAAGgZwmVoLwJmAAAAAOoim61m6nIp85ehPQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFKZ0uwCAAAAABh/8vl8RER0NbkOoL4EzAAAAADUjYP1wfgmYAYAAACgZQikob2YwQwAAAAAQCoCZgAAAAAAUhEwAwAAAACQioAZAAAAAIBUBMwAAAAAAKQiYAYAAAAAIBUBMwAAAAAAqQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVATMAAAAAACkMqXZBQAAAAAw/mSz2WaXADSADmYAAAAAxqw3k4neTKbZZQANJmAGAAAAACAVATMAAAAANZXP5yOfzze7DKABBMwAAAAAVEWADCQEzAAAAABUrau728xlQMAMAAAAwNjoZoaJS8AMAAAAQNV6crmIiIEu5uR7YGKZ0uwCAAAAABgfenK5CN3MMKHoYAYAAAAAIBUBMwAAAAA1l81mm10C0AACZgAAAACq1tXdPex5wmWYOATMAAAAAKRW7uB+eXOYYcJwkD8AAAAAqlYuWE7oYIaJQwczAAAAAFWbM2dOs0sAWoCAGQAAAIAx07UM//CrX/0qFi1aFLNnz47p06fHgQceGJ/97GdLtunp6Ykjjzwypk+fHnvssUe8+93vjrVr1zap4vSMyAAAAABgTJJwWcgMET/4wQ/i1a9+dbzgBS+ICy+8MGbMmBF//vOfY9WqVQPb3HPPPXHsscfGAQccEJ/61Kdi1apVcfnll8cf//jH+P73v9/E6qsnYAYAAAAgNaEy/ENfX1+cdtppceKJJ0Yul4tJk8oPkDj//PNj5513jjvuuCNmzpwZERH77LNPnH322fGDH/wgFixY0Miyx8SIDAAAAAAq0pvJRG8mExERq1evbnI10Hquu+66ePjhh+PSSy+NSZMmxbp162LLli0l2/T19cXy5cvjlFNOGQiXIyJOO+20mDFjRlx//fWNLntMqupg7u/vj/7+/nrV0laS+8H9QSNYb9ST9UUjWW/Ui7VFI1lv1Iu1RSOMdZ1tnjat5PtFixZZs4xryfru6+srOb2joyM6OjqGbH/bbbfFzJkz48EHH4zXvva1cf/998cOO+wQp556anz605+O7bffPu699954+umn4/DDDy+57HbbbReHHHJI/PrXv67fDaqDTKFQKIy2UV9fX8yaNSuuu+66mD59eiPqAgAAAABoqvXr18fJJ5885PQlS5bERRddNOT0gw8+OP70pz9FRMRZZ50VxxxzTNxxxx3xuc99Lt74xjfGt771rcjlcnHSSSfFj3/843jZy15WcvnXv/71ceedd0Zvb29dbk89VNXBvGDBgpK27Ymsv78/li9fHvPnz4+pU6c2uxzGOeuNerK+aCTrjXqxtmgk6416sbZohLGus4dnzYqfL10aEVu7l2G8SzqXV65cWZKLlutejohYu3ZtrF+/Pt72trfFZz/72YiI+Kd/+qfYtGlTXH311XHxxRfHhg0bht3H9ttvP3B+u6gqYJ46daonuUHcJzSS9UY9WV80kvVGvVhbNJL1Rr1YWzRC2nU2uSj4sk6ZCJJ1PnPmzIoab6dtGyOzePHiktNPPvnkuPrqq+NnP/vZwISIp556asjlN27cOLCPduEgfwAAAACMKp/PR08u1+wyoKXNnTs3IiJ23333ktN32223iIh4/PHHo7OzMyKi7BiM3t7egX20CwEzAAAAAEANHHbYYRER8eCDD5ac/tBDD0VExK677hoHHnhgTJkyJe6+++6SbTZt2hT33HNPHHLIIQ2ptVYEzAAAAAAANfD6178+IiK+8pWvlJz+5S9/OaZMmRLHHHNMzJo1K4477rj4xje+EU8++eTANkuXLo21a9fGSSed1NCax6qqGcwAAAAAAJT3ghe8IM4888y45ppr4umnn46jjz467rjjjvjud78bH/rQhwbGX1x66aXR1dUVRx99dJxzzjmxatWquOKKK2LBggWxcOHCJt+K6giYAQAAAABq5Kqrroq99947vvrVr8aNN94Yz3jGM+LTn/50vPe97x3Y5tBDD43bbrst/vVf/zX++Z//OXbcccc466yz4qMf/WjzCk9JwAwAAABAxbLZbLNLgJY2derUWLJkSSxZsmTE7Y488sj46U9/2qCq6scMZgAAAAAAUhEwAwAAAACQioAZAAAAgBHl8/lmlwC0KAEzAAAAABUxfxkYTMAMAAAAwLB6M5lmlwC0MAEzAAAAAACpTGl2AQAAAAC0rs5CIbqSLuZCobnFAC1HBzMAAAAAwzIiAxiJDmYAAAAAhsjn8xER0bXt+07dy0AZOpgBAAAAAEhFwAwAAABAWV3d3c0uAWhxAmYAAAAAAFIRMAMAAAAwIvOXgeEImAEAAAAASEXADAAAAEBZPblcs0sAWpyAGQAAAACAVATMAAAAAACkImAGAAAAICIiejOZ6M1kml0G0EYEzAAAAAAApCJgBgAAACAiIjoLhYiIgS7mru7uZpYDtIEpzS4AAAAAgNaQBMs9uVxE/CNwBhiODmYAAAAAIp/PN7sEoA3pYAYAAACY4JJwOelczmazzSwHaCM6mAEAAAAASEXADAAAAABAKgJmAAAAAABSETADAAAAAJCKg/wBAAAAEBEO7gdUTwczAAAAAACpCJgBAAAAAEhFwAwAAAAAQCoCZgAAAAAAUhEwAwAAAACQioAZAAAAAIBUBMwAAAAAE1g+n292CUAbEzADAAAAAJCKgBkAAAAAgFQEzAAAAABENpttdglAGxIwAwAAAACQioAZAAAAAIBUBMwAAAAAAKQiYAYAAAAAIBUBMwAAAAAAqQiYAQAAAOosn89HbyYTvZlMs0sBqCkBMwAAAEAD9ORyERE1D5nz+Xzk8/ma7hOgUgJmAAAAIDVduZXr6u5udgkANSdgBgAAAGpGN+1WzQjeR7vO3kwmHp41q4EVAROBgBkAAACoqa7u7oGwcyJ2Nw93m5MRGSNtUw8T9ecANIaAGQAAAKBOyoW7nXW6rsEznpMDCwLUk4AZAAAAqKniTt2Jrt73xXDjSCoJlo0zAWpBwAwAAADUTDabbXYJFEkC7s5CYdhtstmsnxuQmoAZAAAAqInijtiJ2sWcz+eH3PaeXK6pIe5w4XJSjy5mYCwEzAAAAEDNFYepAsz6Kw6wJ2q4DzTHlGYXAAAAADAeDRf09g7+ftu85JHGWAzZRzJjeZjr6Mnloqu7u2SfnYVCrJo+veLrAKiEgBkAAAComyRk7c1kqgpQ281IXdrDjcZIe5/k8/noGuH8gWB5hH0vW7as6usFKEfADAAAANTU4EC1q7s7IsZ3yJzNZoeEzIM7iMsZ6ERuEgf3A8bKDGYAAACgKr2ZTEXBaMl4hnoW1GSD749sNhudhcKo4fLgERrNDpsB0tDBDAAAAG0kzbxe2kclXd7ZbDby28LpwR3I1a6LfD6vixkYEx3MAAAA0Iby+Xzk8/mKu4mbRXhZmZGC4eRnDdCKdDADAAAA41oSzrZC2F0cJGcjorfKy481aN59zZqIW275Rw0tcJ8A7U0HMwAAALShSoLBVu9uHi/GMq5kpFnNyc8v+VkPnvMsHAZagQ5mAAAAIJV8Ph9dzS6ihXR1d9dlNnZvJhMx6ICAY7Vo0aKYOnVqTfcJTEw6mAEAAGAcGK5TuSeXq2knczKioWdQ4Dna/qsdBVFrXd3dbdnN3dnsAgBGIWAGAACANjY46B1pu1ofKG7OnDkD119JHfXo7h1JIw6OlxxoEWCiEjADAABAG6omOO3J5aKruzu6urvrWFHradSM4p5cbsRZypVIQup6vBEAUE8CZgAAAGhjo4WoSajck8s1LbxMwlcHHRxZcRd48c+p0i51gGYQMAMAAMA4VxxC16urNwmyh9u/rtyRFXc/N6rzGqAWpjS7AAAAAKAy+Xw+uirYJqL1QspsNhv5bZ24Xdu6mOs5k3m4QLuW90+tQ/NW+5kBVEIHMwAAAIxDg0dRZLPZlggwi+dAJwfhq+fojHrc7sEHD6z1/o0RgfHj0ksvjUwmEwceeGDJ6cccc0xkMpkh/xYuXNikStPTwQwAAABtanCw2ZvJRFeMPLO3t4bdw6tXrx74ulXmBBd3KCdBcK0D4GTfjdZZKETz3yIAKrVq1aq47LLLYocddih7/l577RUf/ehHS06bO3duI0qrKQEzAAAAjBOdEdE7+LRhguSxBs1d3d3Rk8uVdCSn3U9xTbUam2HmM9Bs73//++PFL35xbN68OR599NEh58+aNStOOeWUJlRWWwJmAAAAmMDSzCRO062cXM/gUDrZ11iD6vGqN7beN/WcVw3U3o9//OPI5XLx61//Os4999xht3v66adj48aNMWPGjAZWV1tmMAMAAEAbSQLZ0QLhakPgcnN/R5qNnHa2cbPmQHcWCjUJaQfPX66XJFSuVd1A42zevDnOPffceMtb3hIHHXTQsNvdf//9scMOO8SOO+4Ye+yxR1x44YXR39/fwEpro6oO5v7+/ra8kfWQ3A/uDxrBeqOerC8ayXqjXqwtGsl6o16qWVu7bNpUst0umzbFw7NmRX9EbC7abvO0aUP2t3natIGvf750aUXblqspOW2XTZu2nrBs2Yj1L1q0aOD84hoqua7hLFu2LF506qkREbH7mjUl582ePTsee+yxWLRo0cA+l22rsdrrKbZo0aKB/RTfplpK7tN6PM54DIPqJL8rfX19Jad3dHRER0dH2ctcddVV8cADD8Rtt9027H6f+cxnxstf/vI46KCDYt26dZHL5eKSSy6J+++/P77zne/U7gY0QKZQGP1tsL6+vpg1a1Zcd911MX369EbUBQAAAADQVOvXr4+TTz55yOlLliyJiy66aMjpq1evjv322y/OP//8eN/73hcREcccc0w8+uij8b//+78jXtc555wTX/rSl+JnP/tZvPjFL65J/Y1QVQfzggULYubMmfWqpa309/fH8uXLY/78+TF16tRml8M4Z71RT9YXjWS9US/WFo1kvVEvlaytwZ2zxR6eNSt2j4iHB50+uLP34Vmzhq1hpG2T80aqoVIPz5pV0j0dEcN2Io8kqSW57OB9Dnc/VXs9w13vWO6DZvEYBtVJOpdXrlxZkosO1718wQUXxOzZs0ecuzyc973vffGlL30pbrvttvEbME+dOtWDzyDuExrJeqOerC8ayXqjXqwtGsl6o14qWVvlzp+8YUNMjYjJ274fbm7v5A0bSg6s11koDMxZHrzfyRs2DHudY1n/kzdsGLjuZJ5xcl1p9ltc52g1juV6Ktl/u/AYBpVJfk9mzpw5auPtH//4x/jiF78Yn/nMZ+Khhx4aOH3jxo3R398fK1asiJkzZ8bs2bPLXn7evHkREfHYY4/VqPrGqCpgBgAAAJpntAPk9W77f6UHhRu8XW8m05ADyhVfR3KbeofbOKVmHUwQmLgefPDB2LJlS7z73e+Od7/73UPO33fffeM973lPfOYznyl7+b/85S8REbHrrrvWs8yaEzADAADAOFDciVxP9Q5u8/l8RdfRm8lEbOvEBmgFBx54YNx4441DTr/gggviySefjH//93+PZz7zmdHX1zfkIIGFQiEuueSSiIg4/vjjG1ZzLQiYAQAAoE6S8Q9jDWUr3U/a7uNKwunk/Hp2OCejO9J0UvcUhc2VBtRpbkvyswAYbJdddonXvva1Q05POpaT8+64445YvHhxLF68OJ71rGfFhg0b4sYbb4yf/vSncc4558Shhx7auKJrYFKzCwAAAIDxKgk6xxpK1mo/1cjn8yWhbaN0dXdHRFTUjd3V3T0kTK40zB9ruGwEB5DWM57xjHjZy14WN954Y7zvfe+Lf/u3f4uNGzfGVVddFVdddVWzy6uaDmYAAACog4GAtAXHOCQH2Cun0hEVtdZZKEQMCtCr6TIe6TZVKgmQR9uXcBmoxh133FHy/b777hvXX399c4qpAx3MAAAAUGdd3d3Rm8m0xHiFzkKhIQfyq5d8Pl9yP9Z67nTSQT1aDQBsJWAGAACAGqtFADk4SG2W4jC6J5ere02VjuVIgvLif9XozWQG/rXKfQ3QjgTMAAAAUCMjBZWVBqfLli0ru99manTXcyXjKZp5nxiRAfAPAmYAAACokeGCx0rC5YdnzUq9/4mgnp3Gld6v2Wx2Qv8MAMpxkD8AAACoo2SmbxIyJzODK+kI7urujt6I6KpwewBoNB3MAAAAUAc9udyQULj4AHLFB6fL5/Px86VLIyLiRaeeWnKZzjLbN0MzR1Ik113JAfhGU27cR7PvW4B2poMZAAAAGqwzInqHOe/nS5fGz5sU5iZd1iOFyc0cEVE8aqTRdST3iREZAKV0MAMAAEAd1CqITILoeo/IaNURHEmw2+hwWVczQGV0MAMAAEAZ1cxKHkly+WxERKEwanC5aNGiWLZsWdl9NEpXd3dFByastZGC45LxGC0ahgNMRAJmAAAAaIKeXC4in2+pkQtJLcON72imkg7mGuwvCe1HCvyNxQAYnYAZAAAAmqg3k4kYplu4lcZWNDpk7SzT7V2vGjqLv66gyxyAfzCDGQAAAJqsq7s7Fi1a1OwyWlLJaIw6acWObYB2oYMZAAAAWoyRDI3VjHnTAOOFDmYAAACokWRmL2NXPKYim83WbzxG0RiSwdeRdE/7uQIMTwczAAAAMKBV5g83cv70SOF1V3e3DmeAEehgBgAAgBqrptu21cLLzkKhpQ4u2EqMLgEYSgczAAAAlNFZKERvJhO9mczA18npY9UbWztjB/ZVKER/f/+Y91srRkIAUCkBMwAAADRBK3cJ69T9h85CIULgDjAsATMAAACUUe0s4kq7fls5WAaAapnBDAAAAGUkQXBPLlfVyAjdv+OHNwMARqeDGQAAAEbQ1d1d0YH4BMvjh2AZoHI6mAEAAKAKg7uZkwMBAsBEpIMZAAAAiiRhcWehEJ2FQtnwuHibiK1jNJIDwelkBmAiETADAAAAjMCbBgDDMyIDAAAABil3YL+eXG7YWcxd3d0RIYgEYOIRMAMAAEBKZi8DMNEZkQEAAAAVymazQmUAKCJgBgAAgJSSkRnZbDYMxwBgIhIwAwAAwCi6urujs1BodhkA0HLMYAYAAIAqdBYKwmYA2EbADAAAAABAKgJmAAAAAABSMYMZAAAABimeuTzSOIyu7u6BA/0BwESkgxkAAACq1JvJDHydzWabWAkANJcOZgAAAKiSg/wBwFY6mAEAAAAASEXADAAAAABAKkZkAAAAQBHjLwCgcjqYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVATMAAAAAACkImAGAAAAACAVATMAAAAAAKkImAEAAAAASEXADAAAAABAKgJmAJggejOZ6M1kml0GAAAA44iAGQAAAACAVATMAAAAAACkImAGAAAAACAVATMAAAAAAKkImAEAAAAASEXADAAAAABAKgJmAJjA8vl85PP5ZpcBAABAm5rS7AIAgObrzWQGvu4sFJpYCQAAAO1EwAwA41zSodw1zPld3d0REdEZEb2NKQkAAIBxwogMABjnstlsyffGYgAAAFArAmYAGMd6M5mS8RcR/wichcwAAACMlYAZACaoZDRGTy5X9nydzgAAAIxGwAwAbaxch3KxcgfsqzY0Hmn/AAAATGwO8gcAE1jSxZzoyeUi8vkhc5t7M5myYTUAAAATmw5mAJgABgfJo22raxkAAIBKCJgBYILoLBTKzluutDNZ6AzAeON4AwAwdgJmABjHhMIAMDrPlwCQnoAZANpIPp8f9cB+5VTSpdw7hssCQLtKxkjpZAaAdATMADCOdRYKwwbExecNNz5jsGqD7TRhOAA0WvIcKGQGgOpNaXYBAED1enK5iHw+umq4z2w2GxHDdzKXk4TH5ULsfI3rA4B6SMLlOXPmxHNe/vLoDZ/eAYBq6GAGgHGg0o6rbDY78A8A+IfVq1c3uwQAxoHf/va3cdJJJ8X/+T//J6ZPnx677LJLHHXUUXHTTTcN2fa+++6LhQsXxowZM2L27Nlx6qmnxiOPPNKEqsdGBzMAtKGu7u4hIy2SkDmZJZmm+6p4nEU9Q+hly5YJuQFoGWk+xQMA5TzwwAPx5JNPxpvf/OaYO3durF+/PvL5fCxatCiuvvrqOOeccyIiYtWqVXHUUUfFrFmz4rLLLou1a9fG5ZdfHvfee2/cddddsd122zX5llROwAwAbawnlxsIlJP/J0YaXzGa4ssMN0O5mhEYyT522bQpIiJedOqp0dvd7SPIALSUzkJh6xu2+bw3QgFI5YQTTogTTjih5LR3vetdcdhhh8WnPvWpgYD5sssui3Xr1sUvf/nL2HvvvSMi4oUvfGHMnz8/rr322oHt2oERGQAwDiThcrkD9Y31IHuDDxRYy4P2OQAgAAAw3k2ePDnmzZsXTzzxxMBp+Xw+XvWqVw2EyxERxx13XOy3335x/fXXN6HK9KrqYO7v74/+/v561dJWkvvB/UEjWG/Uk/XVfnpyuXjRqacOfL952rSS8zdPmxY/X7o0XnTqqbF7RDwclf98kw7jZNzGokWLyl5Psr/ktOH2P7jW4stVWxuMxGMZjWS9jQ/Lli2LiK3PdcnPMjktojk/X2uLRrDOoDrJ70pfX1/J6R0dHdHR0THs5datWxcbNmyINWvWxLJly+L73/9+vOENb4iIiAcffDD+/ve/x+GHHz7kci984QvjlltuqeEtqL9MoTD6Z1P7+vpi1qxZcd1118X06dMbURcAAAAAQFOtX78+Tj755CGnL1myJC666KJhL/e2t70trr766oiImDRpUvzTP/1TfPGLX4ydd9457r777jjiiCPi61//epxa1JATEfHBD34wPvnJT8bGjRtHDLBbSVUdzAsWLIiZM2fWq5a20t/fH8uXL4/58+fH1KlTm10O45z1Rj1ZX+0l6axKuoJ33/ZueLEXnXrqkA7m3desSXU9xR3MEREPz5pVcr3FdQze7udLl5bUGrG1c/mea66JQ848M+Zu2JCqNijHYxmNZL21t8HPm4Of65rJ2qIRrDOoTtK5vHLlypJcdLTw973vfW90d3fHQw89FNdff31s3rw5Nm37xOiGDRuG3cf2228/sM24DJinTp3qwWcQ9wmNZL1RT9ZX+5gzZ078fOnSIQcfSr7v7e4emMk8NSImR6T+2Q6+3ORtfwglpw/+Phmt0bXt9OJtBu9n6oYNY6oNyvFYRiNZb+NDK/4MrS0awTqDyiS/JzNnzqyq8Xb//feP/fffPyIiTjvttFiwYEG8+tWvjp///OcxbduowaeeemrI5TZu3BgRMbBNO6gqYAYAGEk2m418Ph89udw/AvCiaVyrjNoCoEUMfqMWAOqpu7s73vrWt8b9998fnZ2dERHR29s7ZLve3t6YPXt223QvR0RManYBAEBtdRYK0bkt1B3650pzFY/DaLXaABg/8vn8wKdqBkuC5eHOB4B6SMZirFmzJvbcc8/Ydddd4+677x6y3V133RWHHHJIg6sbGwEzAIxznaMfz7dmvFgHoJFGCpITvZlM9GYyDaoIgInu73//+5DT+vv74+tf/3pMmzYtnvvc50bE1jc8b7755li5cuXAdj/84Q/j/vvvj5NOOqlh9daCERkAwJj1ZjKpg+yxXHY8SkIQ9wlA5co9l3R1d5d8WqY3k4meXK6xhQEw4bz1rW+Nvr6+OOqoo2LPPfeMv/3tb/HNb34zfv/738cVV1wRM2bMiIiI888/P7773e/Gy1/+8njPe94Ta9eujU9+8pNx0EEHxRlnnNHkW1EdATMAtLnhZkjWM6AcrVvMXEsAGiU5sG2i+DmqM8qPZPI8BUC9vOENb4ivfOUr8YUvfCFWr14dO+64Yxx22GHx8Y9/PBYtWjSw3bx58+JHP/pR/Mu//Eucd955sd1228WJJ54YV1xxRVvNX44QMAMALWbwx5gnaievzm6AsTPvH4BGe+Mb3xhvfOMbK9r2ec97Xtx66611rqj+zGAGAKoy3MeLq5m/vPuaNSXh6USej5nP54e9/RP1PgFIo9wblOXGZgAAtSVgBgCqNmfOnIj4R3dxcehc7ceOJ/o8zGw2Gz25XPTkcpHP5wfuj84m1wXQLJUcuK8ag4Nm4zEAoLYEzADAENlstuwL8OFGNtSqI6yWgQIArWGkT2pUcrnRVPpGZbmOZgBg7ATMAMCY1aoLubibd6IZLqQ3JgNoZyO9cTjW8Ujl9u0xEwAaT8AMAFRt9erVA1+n7QYTAgxVHDIXH5iq1h8XB6iFsTw2VXO50Z4vBn/ipqu72xgMAGggATMAkEq5F+/VvKDvLBRKOpWTGcQTVXHnto9xA+1kuMfuSh/TK3nDcXCYXe6AfuW+BgDqb0qzCwAAqlPcPdwMje4Ky+fz47ITLQlHKj3wVFd3d/SG4ARoTYMfqweHy9U8dhXvp/jTHMnj4HA8PgJAcwiYAaCNtGrQmraugcsVChFFYUQ2mx0xRGhnSejSVcG2nYWCUSJAWyh+Eyx5nMtmsyVBcyUdzcWXTQw3l79VnxMBYKIRMAMALaWSUGGsynUPAzB2vZlMRNFj90ghcE8uNzB7frjweSIe9BUA2o0ZzADQBvL5fPRmMhO2m7WWtzufzzc1sKim426i/ryB9lJ8gNJqFD8eDrePbDY78C9hTj0AtBYdzABAW+jNZOoWKOQHjeeop8FdeoO7/coZzyNDgPGnq7tbAAwAE4iAGQDaRPFHiSeCzm1zmSfSbR5MQAO0kuLxQsVvlhU/Vo30yYtyb+Ally03exkAaA8CZgBoIxMtcEw6dzsjojdq38Vcz65ogImgVoGwYBkA2peAGQBoebUeD1HcFV3JiIp66CwUBjr9BCtAO0get4Y7IF8jrh8AaD0CZgBocc16Id8qkkCh2gPeFX+Ue9h9x9DwulW7mluxJmBiqeRx2GMVAEw8AmYAaGGNPPhcszXy9g03z3oiz3sGGEk+n2/Kpz0AgNYnYAaANjDew+VGSu7LWo/dSEOnH9CuPC8BAAkBMwC0kKRj2Qv34VUywmLwx7jHSyd4JWM/AAAAGmlSswsAAEp1dXdXPW+Y4Y0UNld6GQC2ymazbf1GHQBQezqYAaAF9eRyEfm8F/FFOguFgeC3VQ/EN5JaHKwxuQ/a8fYDAADjk4AZAFpMj4Mojcng7uNK7s9yc5kHh7jGlwAAAAwlYAaAFtPV3R0R5uymkc/nI7YFytlsNnozmejq7m56aJ+E03PmzInVq1fXJKTWxQzUg1nvAEC1zGAGgBbTk8t5YT8Gc+bMKfl+tHC5J5eraHzFQJfzthEVyb9GMhsaaIZajPgBAMYvHcwAwIQyUvdwEuwXz3qOGBpS9+RyA53m1Vi9enXVlwGop+I3rnpyuegqOk+wDABUQsAMALSN4gP9RZTp6B2hW7lcsNxbZrt6GutojHK3X7c7kFY+ny8JlAfLZrNCZgBgVAJmAGghDiBXW52FQsQw4UgSzI52jzd7fjPAWCQBcfGnLorfmKrmExmeowCAcgTMAMC4Vm0gMtKc42w2G71RGtToIgbGI49tAEClHOQPAFpAPp/3MeQqVHpgvrFeR7FsNlsSPhcHL408+F5noSD0AcakN5MpeQwd7jGl+LFN9zIAMBwBMwDQVoqDkHKhSCMOpFdSQ9Hpw71RkM1mhTNAU/XkcqO+OdXV3T2wTfLY5vELABiNgBmAcaM3kxnSSdoOncG9mczAyIVWr7XVJUHIWMKQkTqEq+keTtZjO6xBoL0UP9+N9hgz+PFw8GNYcr5PRwAAaQmYARj3urq7hwTP5cLoZvGCPr3in2Gtx2ZUGlL3lqmlEYRBMPGUe+5KHqtGC5mrnkcfjRlHBAC0Pwf5A2BcyOfz0bXt6+TFd7nwLXmh3DXknOYorqf4o8m0t+L1WG+Dw6ZkDY30ewCMT/l8ftQguZI3wzoLBcEyAFAxHcwAtK3BHwtODsqWzI1MXkQncyeLR1GkvY560Y3anlrx5zY4WG6VTn2gMUb7na/2ccv8ZQBgNDqYAWhrXd3dW0cUbAuXI/4xsqDYcC+4ezOZgWA6CZ/rGRgWh9Vd3d0ldUO1BsLkKF33rdapD4xdPp+PyOVGfKO0mjdRRwuOBcsAQKV0MAPQtrLZ7EA4nEg6s5J/5eZOVvoCvDgMrlUXsxfstdOINwSq3Xfy8622U74WBv8uAONLuecPn1AAAFqBDmYA2k65sHe0+cWDzyseI5C8ZC/X+VxLg+suvm6q15PLtWxg3zNKlyFAJZLnjeLHuuSxb+ATOGYlAwBNpoMZgLaXzFiuRrkZlMPNpcxms1tHcYyhU8zBkiaOpGu+WbOZdTLD+FPpc4jZ6wBAM+hgBqBttWr36kjaseZ20FkoTMguvuTglREjj+XozWRa7mCEQHW8UQkAtCodzABQpDeTGfg33PlQLFkTPblc0wKgcuNdjOiA8S/5PS93vAHPVwBAo+hgBoBhFM91Lv7Y8UjdoMUv6HWMNlazusM7C4WywXJxZ3EjDkQ4OEzyUXloXyO9WeWTMABAqxEwA8AwRgoFiw8SONo2yUxcocD4V/wzbvQbDMn1WWUwfg1+Hhlt5rrxOABAIwiYARgwXAdkK2nUCIJKb/vgF+/FM3F7cjljCuqkkWG9NwaARstms6M+33UWCmXfUPLpBQCg0QTMADRF8QvnNAFevUK/NKH64BAgm+xj2+n1HpFA8wmhgbFKnksGP56keXwp+QRNPu8xCgCoKwf5AyAiIpYtWxY9uVzZj9vm8/m6dQ53dXePeFC9RtRQjXJB8Uhdyj25nHAZgIbqLBSMZwIAGkYHMwADkhehvWXO6+ruHjh9rIFpvqizt9jgcROVzDluhsEfP+4cZjsv6mkllcxiHa6DEmg/fo8BgEYRMANMQIM7gadMKX066CwUtm5Th47h4usuFyYXb9dV82uvreJ5y9CKRlufrfomDkwkg5+THZgPAGg3AmaACajcwYMWLVo04vYxxjC10vEWvZlM2TEd7ULHGK2kuNu+eBbrwKcIirZthRE0MNE5MCwA0I7MYAZgROUC03JB83BzlJPZyaMdtGikbq3eTKZk+1YLcXtjayjQanXBYMnM82StJm/mFIfLyTZAY3juAADanQ5mgAlu0aJFccsttww5vdwL3kpGQhSfX9yJXE13ZLlZ0L2ZTEQLdjb7GDPtrpGfGDDjGYYq9/zoEwUAQDvRwQwwTpXrKE5Oq/UL13w+X5OQqrNQKAlshbdQXyN9HF8XM9RX8gmfkXgzBgBoBzqYASagru7ugfC2v7+/ZvsdrsN5LC+Qk312RmndQOU6C4WSg3Y28hMB5Q4kWHxaux9ocLSubF3blFMuWM5msyWf3AEAaBc6mAEmgKRLqpYfha+kEzqbzdYsVPGiG8am2QFnEiQXd02Ppy7p0R4Px9NtpXbmzJkz7HnN/p0FAKiUDmaAcSifz0dXmdOz2WxEDbsEu7q7twa/RcF1JXOaq9VZKPyjC7Cme4aJabg3m0YamZFGPp+PyOWG3W9SR3JgwVbvYk47Xii5/bqZGWz16tUl3ye/A1YIANBOBMwAVKU4QO7ZFhwNHl1Rj5BIIAP1Va+P54/UoRlR+1C70co9NhU/Rib/Tx4re3K5yOfzHtOarNVGs1gPAEA7MyIDYJxKgg1HogcSyYE0k7BzuPNrrbhjuieXi85CoSR8bRdpQ8BsNtsyQSalmj26pJajpAAAmkUHM8A4l4RI9Qo3enI5L46hTXUWCiN+FH+4sRW1HPUwUQ5sVhxkJuOFhM7N1Rnm+wMA1IKAGWACEGIAxap5TBhpNvJIox6SEDqZMTs4zG7FN6aGC84r+SRIyTZl5k4Xz9YVarYGPwcAgNoQMAO0ueJQYyDQqPNHzosPugeMP8MdrHPw731Xd/eoBw5txSC5nOLbVjyft9xj3Wi3KZk7PXg+fSXXX81lqI12OMAkAEArM4MZoI3k8/lRg93ieab1mqca8Y+5ke0SHgHpDR7vUGv1fKxqlmTWdDXa/YCH7aSRay6fz0dvJjPwe1TLETMAAK1ABzNAmyjubks+1lv84jibzUaMMk8VYKx6to1/6CwUoje2hs+1mMVeHGI3M2weaSZ0pbcxGQsynKRDXOds4yXrNaKxgX7ye9ObydT9U0YAAI0mYAZoY8ZUAI2SBGNJKFePg9a18kHXqg3QK93e43jzCPcBAGpDwAzQ4gaHDyVdy40uBqCFFM9KrvU+q5XNZquup0cna82NNH4in88P6R6uxxoCAJhozGAGAGBYg4O3ZLZwcnq5kLTWXbmD589XMo++2v0nOguF6MnloieX013cZMVzi6s1eO5xYvBYjGQdj+W6KiXEBgDGKx3MAC1scLjhgEBAKxtrIFs8HqOaA6H1ZjKxy6ZN1V9fEigO00mchJH1CAY7B83MF2bXXk/RSJfi04rVO1Qu93NNZpgDAIwXAmaAFpbNZoUOQFMUd3aOtE02ajM3uZLALZ/PlwTOycHyaiXZd/L/am/XWELDkQ4uSDrDHcRv8BqKKF3n1by5MRxvEAMAE4kRGQBtwotToBmKx2F0dXeP+lg0XKhXK7XuODUHuTVV8ubqSKNSitdpNWumN5MZuOxY3uAd7vek+PcJAGC80MEM0ILy+fw/QhrhB9AGahHUDnfAtcGBX61GDHQWCtE1wkHemhUE9mYyEzqETH7OyYiLkQ7E19XdPdD5Pfj84g730cLiarYFAKCUDmZgQku6n+o9gzGNJKzJZrO6l4GW19XdXffu5Vprtcf+iRwqD2e4+6Q4hK7GSM+ng7uLi8PtahWH1J7DAYDxTgczwDat2DHWavUA1FPSRdqbyUR229f5QW+2VTOneLSQr5UfY0fq2p0ostlsScCbfF0cKhevid5MZsyf+hlL93K5ywqXAWBiWrt2bXzyk5+Mn//853HXXXfF448/Hl/96lfj9NNPL9nu9NNPj6997WtDLv+c5zwnfv/73zeo2rETMAMTVi1eiNZCyTiMRAvUBVCpISMtxri/nlwuIp+PrtjaRdqTyw0c4G+4MQgPz5oV8a1vVXwdrd5h2hm1OXhiuxkc0g53sMk5c+bE6tWrR91fZ6FQVWhcMru54kuVqrQ2AGD8evTRR+Piiy+OvffeOw4++OC44447ht22o6MjvvzlL5ecNmvWrDpXWFsCZmBCym8LLhLFXXPlusWKX9hO5G4yYOJq5GNfMmO5lgFru3QEF88CnsiqCf1Hu89a8Q0EAGB86+zsjN7e3thjjz3i7rvvjiOOOGLYbadMmRKnnHJKA6urPQEzkErSDdRuL9oGdzENhBhFL0wHdxT35HIlYXQ9QoqeXG7gvhQsABNZ8WNrcfdprZ5vWr1zOVE89qHVQ/FGGC1ETu6jVviJJt3Lrby+AID66ujoiD322KPi7Tdv3hzr1q2LmTNn1rGq+qkqYO7v74/+/v561dJWkvvB/UEjtNJ6W7ZsWcn3q6ZPL/l+9zVrGllO1RYtWjRwGzZPmxYRW+/XXTZtiojY+hHrbeftHhHLli6NiK0B8ItOPbVkX8ltH8ttfnjWrIht15H8fHfZtCkWbTu/ET/zVlpfjH/WG9VatGjrI+JIa2aXTZvioW1/wPf39w88zieXjYh4eNtjfrFWXYeDn5Natc56KnebN0+bFj/f9pyZhLj1vG8Gri+fL1lLxddb7vorWbMwHM+TNIJ1BtVJflf6+vpKTu/o6IiOjo4x73/9+vUxc+bMWL9+fey8886xePHi+PjHPx4zZswY874bJVMojN4S0dfXF7NmzYrrrrsupg8KkwAAAAAAxqP169fHySefPOT0JUuWxEUXXTTq5ZMRGeUO8vehD30oCoVCHHroobFly5b4f//v/8XXvva1eOlLXxp33HFHTJnSHsMnqqpywYIFbduqXWv9/f2xfPnymD9/fkydOrXZ5TDOtcJ6K+4Ge3jQsPmfL11a0t3b6l3M5TrbBktuY9IpVW7bcvdD4kWnntry90OiFdYXE4f1Rr0ka+uQM8+Mu7/4xYgo/9hd/EmckZ4HaJzBz7kRrfWzeXjWrNg9Ih6Of/yN89Aee8Q911wTTz/9dMmno1qpbtqT50kawTqD6iSdyytXrizJRWvRvfzRj3605Ps3vvGNsd9++8WHP/zhyOVy8cY3vnHM19EIVQXMU6dO9eAzyHi9T9rlQDhptevta+Z6y2azkc/nY9myZZFdv37g9GSW5c+XLh2YW9wuvxMj1bnXttu41wiX32v9+pJ5kIPnOY+0/1acYT1eH89oTdYb9TJ3w4aBr0daY630+DvRTS76mUW03s9m8oYNMTUiJsc/3qB4UVHNxW9aeFyjVjxP0gjWGVQm+T2ZOXNmQxpv//mf/zkuvPDCuO2228ZnwAzjRU8uF13d3Q6cU4HBB8UbrPhFYG/R6a0WoDainp5cLiKfLzkg4HCSwD6fz7fMfQQwHjzc7AIapF0OVliNdr0dXd3dW/8GAACogWnTpsWcOXPisccea3YpFRMwM8RIR+hulORFU9IRG1GbbuOB2+ZFQFVq/XNoptEC87SSF5bZbDZ6oyhsLnrRmc1m27Z7HqBd7L5mTcSgA9IWa6cQcyI8Z+Tz+Yhtb/y3o2REmJAZAKiVJ598Mh599NHYddddm11KxSY1uwBaV6NezPRmMkP+jbQdjdeTy0VnoTDqmugsFKInl6tbiJtWuXpqHTBks9mBfQ6+n5IXzcV1JJ3L7RR0ALSDZSOEy+0meT4Z6W+gdnseKb4tg5+fW/lvveRTWslzdzKLefc1awb+/gEAqMbGjRvjySefHHL6Rz7ykSgUCrFw4cImVJWODmZKJF0krfJipWdbLfltnaARY+vmSS6TjdJxDu1utPEP1YyHqGW3VFd3d9n7uVFvXgysm6IO4loby20xHgOg9hYtWjRu5kkOF7YWP6+P9LzdauOqim/P4BEfvRHRGa3591lnofCPeod57m6V+xgAaB1XXnllPPHEE/HQQw9FRMRNN90Uq1atioiIc889Nx5//PF4wQteEIsXL479998/IiJuvfXWuOWWW2LhwoXxmte8pmm1V0vAzLDq+bHM0fadHCxtLPsYbKQXWbW+rc14QZeEueVuQxLSF7+wq+S29mYyqceJJC8Wm6HVOqgjitZ0cr+3YI0AtLbeTGbYTtlWPK5E8ndHzwgjMIY7lkOrESADANW6/PLL44EHHhj4/oYbbogbbrghIiJOOeWU2GmnneJVr3pVLF++PL72ta/F5s2b41nPelZcdtll8f73vz8mTWqfwRMCZgY0KpTLFx0ErdKO6Ww2OxDMJS+uyo0dSPPHf3HoWq5TqJKgO3mxVzx/b6TAN63kY78j3c7ibu/B1118v5V7IVo8BzH5OVUS9leis1Bo+Mdek3XTjJeEyc+olV8sAzA+1Lrzt1Gzn4v/nmm1cBwAYKxWrFgx6jZLly6tfyEN0D5ROG0vn88PhMFjnVNXLvRMQtFKg/Lk8j25XEk9g2tLOn8HzwXszWQquq7BHwctN3O60n0V76d4f6NtW+2bB8l9UMnc5cHKzRUevI9Kg+bkfhl8e0e6fKt9HDi5DwffB+YvA1Cp4ueQSp470jz311py/Z0VbAMAQHvTwcwQg1+4lOt0rXbUQrLfWryQKL6+zqLu1KRzJ+kc7hnUGV1NmFc8+3mw5LSuQdtGRGm3bFHHbvF9mGxffB8mncXF3UfJ9sn1TZnyj1/XgW2LuqXLzZcuHnFRXGNy3uAaSrarg2q6mIs73SO21pstFCKf3FcN6q4CgGYZ/DdPYrjn6sEjNJJPVlU683/w3zhpFf/9lPxNUu7vHwAAxgcdzETE0K7P4f74L9c9WskLheG6Tru6u2saaCbjH8p1IY8WbiddpsWdpSN1mVYayCadO4Ovf3Bna08uV/LicbRO3WS/gy+X7Lu4xpH2Uc+jnlfaAV3cxV18PxWPGxlJK3RqAUCzDDceI/m7pviN2UYa7m+Uev7tAQBA4+lgnkAGulLKhXWD/tDvLOpyLbnsoIslHakjHVimeK5vonimcq0Mrrnk6xFeyFQyY7h439XOJE66qROjHXm8+LqSyy1atChuueWWWLRoUUydOrXiOYuj1dpbtE2jhzUUr5nBnc3ljizfk8sNHBhvuBncrTYeAwDqrdzfPxGjH69hpG0GfwpsrAbvy/M0AMD4ImCeQIpHPox0NO9KlAsti48UXnydxZdp1MuJJDSt9QHWqh3HUDy2Is11JZfr7+8fcn5xODzSdY9WW6MNFyYnBxQcrTO83MHz5syZE6tXr/aCFYAJa+B5fYRP9CTPv10RA6MzihU/j1Yzimq4TxF5XgYAmBgEzONcuRcHA10pxbP8KtjXnDlzSvY7eJ/F4WDE0DnBjVKuk2e4ILZd5/e2a92D9WYyAy9yE+VejJZ7c6KzUBh4Qbt69eo6VgkA7WOkruTBzQWDR4tVOqs5YvQAWrgMADBxCJjHseKDpA0+6Esaw4V4nYXCsN0yzZyxN15C2PGueJZ0tS9GvXgFgNEV/63WGcPPbK52nwPHixj0957nZwCAicVB/sa5Wga8w71YKPexSLP2GInwHwAaa/CIqeT74tFU5f5eGzzWarSDEAMAMPHoYJ4AikcJRFQf9haH1OWCwYH9DepkbsaB42hP1R44EQCo3uDn2pH+ViseOVbuYM7JJ+VGO3YCAADjn4B5nBluFEbaP/pHGn9RjhcXAADjT/EojOLxVgAAIGAeh4oPtleLwFdoTD0MzG5sdiEAQFnJKIxyBwhM+DsRAAABcxvK5/ND/shPxmAkB/UzcoB2YI0CQOsaPGYNAADKcZC/NjPcH/nFHSadhYLgDgCAMUsO/lf8t2VvbG1m0L0MAECEgLmt5AcdQE+IDABAI2lmAABgMCMy2lBxt0jxEb6NxQAAAAAAGknAXEfJ2IqI9LNmK517J1gGAKCejMQAAKAcIzLqZHAw3JvJlATOyTa9mczA/5Ovk8uWC5f9YQ8AAAAAtAoBcx315HIREdFZ9HVxkDySwWF0coAVAAAAAIBWYURGDSWhcBImZ7PZ6B20TU8uF13d3f+Yl1woRDa2Ho07uVzCTGUAAAAAoJXpYK6RfD4/JCBO9EZpWJwcfbtY8v2cOXMGvhcuAwAAAACtTAdzDfRmMhFF4XJxmDw4JB5tzMXq1atrXyAAAAAAQB0ImEeQzEnu6u6OiNKweNmyZTFlypRYtmxZdEWUjLxIy4xlAAAAAKCdGJFRhXw+P3CQvkWLFg2cbpwFAAAAADAR6WCuQtLJ3JPLRWzrYAYAAAAAmKgkpCMYGFlR1J3cm8lEV3f3wAH9ijuZAQAAAAAmEiMyqpSMwxAsAwAAAAATnYAZAAAAAIBUBMwAAAAAAKQiYAYAAAAAIBUBMwAAAAAAqQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVATMAAAAAACkImAGAAAAACAVATMAAAAAAKkImAEAAAAASEXADAAAAABAKgJmAAAAAABSETADAAAAAJCKgBkAAAAAgFQEzAAAAAAApCJgBgAAAAAgFQEzAAAAAACpCJgBAAAAAEhFwAwAAAAAQCoCZgAAAAAAUhEwAwAAAACQioAZAAAAAIBUBMwAAAAAAKQiYAYAAAAAIBUBMwAAAAAAqQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVATMAAAAAACkMqWSjQqFQkRE9PX11bWYdtLf3x/r16+Pvr6+mDp1arPLYZyz3qgn64tGst6oF2uLRrLeqBdri0awzqA6SR6a5KMMVVHA/OSTT0ZExLx58+paDAAAAABAq3nyySdj1qxZzS6jJWUKFcTvW7ZsiYceeih23HHHyGQyjair5fX19cW8efNi5cqVMXPmzGaXwzhnvVFP1heNZL1RL9YWjWS9US/WFo1gnUF1CoVCPPnkkzF37tyYNMm04XIq6mCeNGlS7LXXXvWupS3NnDnTAzINY71RT9YXjWS9US/WFo1kvVEv1haNYJ1B5XQuj0zsDgAAAABAKgJmAAAAAABSETCn1NHREUuWLImOjo5ml8IEYL1RT9YXjWS9US/WFo1kvVEv1haNYJ0BtVbRQf4AAAAAAGAwHcwAAAAAAKQiYAYAAAAAIBUBMwAAAAAAqQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVP5/sXfMxK+qCFoAAAAASUVORK5CYII=", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[[
]]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "cerebro.plot(iplot=False, volume=False, style='candlestick')" ] diff --git a/script/backtest_results.csv b/script/backtest_results.csv new file mode 100644 index 0000000..d760738 --- /dev/null +++ b/script/backtest_results.csv @@ -0,0 +1,2 @@ +key,ticker,initial_cash,start_date,end_date,metrics +NVDA_2024-01-15_2024-06-10,NVDA,2500.0,2024-01-15,2024-06-10,"{'return': -0.03151280212402344, 'number_of_trades': 5, 'winning_trades': 2, 'losing_trades': 3, 'max_drawdown': 0.47658238860666036, 'sharpe_ratio': 'N/A'}" diff --git a/script/config.json b/script/config.json new file mode 100644 index 0000000..0747697 --- /dev/null +++ b/script/config.json @@ -0,0 +1,6 @@ +{ + "initial_cash": 20000000, + "start_date": "2023-05-16", + "end_date": "2024-05-30", + "ticker": "NVDA" + } \ No newline at end of file diff --git a/script/results/backtest_results_MC.PA_2023-10-12_to_2024-03-12.json b/script/results/backtest_results_MC.PA_2023-10-12_to_2024-03-12.json new file mode 100644 index 0000000..126e3ce --- /dev/null +++ b/script/results/backtest_results_MC.PA_2023-10-12_to_2024-03-12.json @@ -0,0 +1,15 @@ +{ + "key": "MC.PA_2023-10-12_2024-03-12", + "ticker": "MC.PA", + "initial_cash": 10000.0, + "start_date": "2023-10-12", + "end_date": "2024-03-12", + "metrics": { + "return": -0.06772999267578125, + "number_of_trades": 3, + "winning_trades": 2, + "losing_trades": 1, + "max_drawdown": 0.3588194830248242, + "sharpe_ratio": -0.20911894002292608 + } +} \ No newline at end of file diff --git a/script/results/backtest_results_NVDA_2020-07-16_to_2020-11-30.json b/script/results/backtest_results_NVDA_2020-07-16_to_2020-11-30.json new file mode 100644 index 0000000..231a328 --- /dev/null +++ b/script/results/backtest_results_NVDA_2020-07-16_to_2020-11-30.json @@ -0,0 +1,14 @@ +{ + "initial_cash": 10000, + "start_date": "2020-07-16", + "end_date": "2020-11-30", + "ticker": "NVDA", + "metrics": { + "return": -0.00013134994506835938, + "number_of_trades": 5, + "winning_trades": 2, + "losing_trades": 3, + "max_drawdown": 0.04392433887744277, + "sharpe_ratio": "N/A" + } +} \ No newline at end of file diff --git a/script/results/backtest_results_NVDA_2023-05-16_to_2024-05-30.json b/script/results/backtest_results_NVDA_2023-05-16_to_2024-05-30.json new file mode 100644 index 0000000..68484ea --- /dev/null +++ b/script/results/backtest_results_NVDA_2023-05-16_to_2024-05-30.json @@ -0,0 +1,14 @@ +{ + "initial_cash": 20000000, + "start_date": "2023-05-16", + "end_date": "2024-05-30", + "ticker": "NVDA", + "metrics": { + "return": -2.774100685119629e-06, + "number_of_trades": 14, + "winning_trades": 6, + "losing_trades": 8, + "max_drawdown": 6.003988736776245e-05, + "sharpe_ratio": -8177.912558984574 + } +} \ No newline at end of file diff --git a/script/results/backtest_results_NVDA_2023-07-16_to_2024-05-30.json b/script/results/backtest_results_NVDA_2023-07-16_to_2024-05-30.json new file mode 100644 index 0000000..f1b69e4 --- /dev/null +++ b/script/results/backtest_results_NVDA_2023-07-16_to_2024-05-30.json @@ -0,0 +1,14 @@ +{ + "initial_cash": 1000, + "start_date": "2023-07-16", + "end_date": "2024-05-30", + "ticker": "NVDA", + "metrics": { + "return": -0.05866000747680664, + "number_of_trades": 9, + "winning_trades": 3, + "losing_trades": 6, + "max_drawdown": 1.154916640182771, + "sharpe_ratio": 0.6937241094599604 + } +} \ No newline at end of file diff --git a/script/stocks.py b/script/stocks.py new file mode 100644 index 0000000..4b5f3f3 --- /dev/null +++ b/script/stocks.py @@ -0,0 +1,188 @@ +import json +import backtrader as bt +import yfinance as yf +import os +import pandas as pd +from datetime import datetime + +class SMAStrategy(bt.Strategy): + params = (('sma_period', 15),) + + def __init__(self): + self.sma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.sma_period) + self.order = None + + def next(self): + if self.order: + return + + if not self.position: + if self.data.close[0] > self.sma[0]: + self.order = self.buy() + else: + if self.data.close[0] < self.sma[0]: + self.order = self.sell() + + def notify_order(self, order): + if order.status in [order.Submitted, order.Accepted]: + return + + if order.status in [order.Completed]: + if order.isbuy(): + self.log(f'BUY EXECUTED, {order.executed.price}') + elif order.issell(): + self.log(f'SELL EXECUTED, {order.executed.price}') + + self.order = None + + def notify_trade(self, trade): + if trade.isclosed: + self.log(f'TRADE PROFIT, GROSS {trade.pnl}, NET {trade.pnlcomm}') + + def log(self, txt, dt=None): + dt = dt or self.datas[0].datetime.date(0) + print(f'{dt.isoformat()} {txt}') + +class MetricsAnalyzer(bt.Analyzer): + def __init__(self): + self.init_cash = self.strategy.broker.get_cash() + self.end_cash = self.init_cash + self.trades = [] + + def notify_cashvalue(self, cash, value): + self.end_cash = cash + + def notify_trade(self, trade): + if trade.isclosed: + self.trades.append(trade) + + def get_analysis(self): + return { + 'return': (self.end_cash - self.init_cash) / self.init_cash, + 'trades': len(self.trades), + 'winning_trades': len([trade for trade in self.trades if trade.pnl > 0]), + 'losing_trades': len([trade for trade in self.trades if trade.pnl <= 0]) + } + +def get_user_input(): + initial_cash = float(input("Enter initial cash: ")) + start_date = input("Enter start date (YYYY-MM-DD): ") + end_date = input("Enter end date (YYYY-MM-DD): ") + + # User chooses a stock + stocks = { + '1': 'NVDA', # Nvidia + '2': 'TSLA', # Tesla + '3': 'MC.PA', # LVMH + '4': 'WMT' , # Walmart + '5': 'AMZN' # Amazon + } + + print("Choose a stock:") + for key, value in stocks.items(): + print(f"{key}: {value}") + + stock_choice = input("Enter the number corresponding to your choice: ") + ticker = stocks.get(stock_choice, 'NVDA') # Default to Nvidia if invalid choice + + return initial_cash, start_date, end_date, ticker + +def generate_unique_key(ticker, start_date, end_date): + return f"{ticker}_{start_date}_{end_date}" + +def save_results_to_csv(results, csv_file): + df = pd.DataFrame([results]) + if not os.path.isfile(csv_file): + df.to_csv(csv_file, index=False) + else: + df.to_csv(csv_file, mode='a', header=False, index=False) + +def load_results_from_csv(key, csv_file): + if os.path.isfile(csv_file): + df = pd.read_csv(csv_file) + result = df[df['key'] == key] + if not result.empty: + return result.to_dict('records')[0] + return None + +def run_backtest(config): + initial_cash = config['initial_cash'] + start_date = config['start_date'] + end_date = config['end_date'] + ticker = config['ticker'] + + # Generate unique key + key = generate_unique_key(ticker, start_date, end_date) + + # Check if results already exist + csv_file = 'backtest_results.csv' + existing_result = load_results_from_csv(key, csv_file) + if existing_result: + print("Results already exist. Loading from file.") + print(json.dumps(existing_result, indent=4)) + return + + # Download stock data from Yahoo Finance + df = yf.download(ticker, start=start_date, end=end_date) + + # Create a Cerebro instance + cerebro = bt.Cerebro() + + # Add the strategy + cerebro.addstrategy(SMAStrategy) + + # Convert the DataFrame to Backtrader format and add it to Cerebro + data = bt.feeds.PandasData(dataname=df) + cerebro.adddata(data) + + # Set initial cash + cerebro.broker.set_cash(initial_cash) + + # Add analyzers for metrics + cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown') + cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe') + cerebro.addanalyzer(MetricsAnalyzer, _name='metrics') + + # Run the backtest + results = cerebro.run() + strat = results[0] + + # Extract metrics + metrics = strat.analyzers.metrics.get_analysis() + sharpe_ratio = strat.analyzers.sharpe.get_analysis().get('sharperatio', None) + drawdown = strat.analyzers.drawdown.get_analysis()['max']['drawdown'] + + # Prepare results + backtest_results = { + "key": key, + "ticker": ticker, + "initial_cash": initial_cash, + "start_date": start_date, + "end_date": end_date, + "metrics": { + "return": metrics['return'], + "number_of_trades": metrics['trades'], + "winning_trades": metrics['winning_trades'], + "losing_trades": metrics['losing_trades'], + "max_drawdown": drawdown, + "sharpe_ratio": sharpe_ratio if sharpe_ratio is not None else "N/A" + } + } + + with open(f'results/backtest_results_{ticker}_{start_date}_to_{end_date}.json', 'w') as f: + json.dump(backtest_results, f, indent=4) + + # Print results + print(json.dumps(backtest_results, indent=4)) + +if __name__ == '__main__': + with open('config.json', 'r') as f: + config = json.load(f) + + initial_cash, start_date, end_date, ticker = get_user_input() + config['initial_cash'] = initial_cash + config['start_date'] = start_date + config['end_date'] = end_date + config['ticker'] = ticker + + run_backtest(config) diff --git a/script/user.py b/script/user.py new file mode 100644 index 0000000..597fd72 --- /dev/null +++ b/script/user.py @@ -0,0 +1,115 @@ +import backtrader as bt +import yfinance as yf +from datetime import datetime + +def get_user_input(): + initial_cash = float(input("Enter initial cash: ")) + start_date = input("Enter start date (YYYY-MM-DD): ") + end_date = input("Enter end date (YYYY-MM-DD): ") + return initial_cash, start_date, end_date + +class SMAStrategy(bt.Strategy): + params = (('sma_period', 15),) + + def __init__(self): + self.sma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.sma_period) + self.order = None + + def next(self): + if self.order: + return + + if not self.position: + if self.data.close[0] > self.sma[0]: + self.order = self.buy() + else: + if self.data.close[0] < self.sma[0]: + self.order = self.sell() + + def notify_order(self, order): + if order.status in [order.Submitted, order.Accepted]: + return + + if order.status in [order.Completed]: + if order.isbuy(): + self.log(f'BUY EXECUTED, {order.executed.price}') + elif order.issell(): + self.log(f'SELL EXECUTED, {order.executed.price}') + + self.order = None + + def notify_trade(self, trade): + if trade.isclosed: + self.log(f'TRADE PROFIT, GROSS {trade.pnl}, NET {trade.pnlcomm}') + + def log(self, txt, dt=None): + dt = dt or self.datas[0].datetime.date(0) + print(f'{dt.isoformat()} {txt}') + +class MetricsAnalyzer(bt.Analyzer): + def __init__(self): + self.init_cash = self.strategy.broker.get_cash() + self.end_cash = self.init_cash + self.trades = [] + + def notify_cashvalue(self, cash, value): + self.end_cash = cash + + def notify_trade(self, trade): + if trade.isclosed: + self.trades.append(trade) + + def get_analysis(self): + return { + 'return': (self.end_cash - self.init_cash) / self.init_cash, + 'trades': len(self.trades), + 'winning_trades': len([trade for trade in self.trades if trade.pnl > 0]), + 'losing_trades': len([trade for trade in self.trades if trade.pnl <= 0]) + } + +def run_backtest(initial_cash, start_date, end_date): + # Download NVDA stock data from Yahoo Finance + df = yf.download('NVDA', start=start_date, end=end_date) + + # Create a Cerebro instance + cerebro = bt.Cerebro() + + # Add the strategy + cerebro.addstrategy(SMAStrategy) + + # Convert the DataFrame to Backtrader format and add it to Cerebro + data = bt.feeds.PandasData(dataname=df) + cerebro.adddata(data) + + # Set initial cash + cerebro.broker.set_cash(initial_cash) + + # Add analyzers for metrics + cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown') + cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe') + cerebro.addanalyzer(MetricsAnalyzer, _name='metrics') + + # Run the backtest + results = cerebro.run() + strat = results[0] + + # Extract metrics + metrics = strat.analyzers.metrics.get_analysis() + print(f"Return: {metrics['return']:.2f}") + print(f"Number of trades: {metrics['trades']}") + print(f"Winning trades: {metrics['winning_trades']}") + print(f"Losing trades: {metrics['losing_trades']}") + print(f"Max drawdown: {strat.analyzers.drawdown.get_analysis()['max']['drawdown']:.2f}%") + + sharpe_ratio = strat.analyzers.sharpe.get_analysis().get('sharperatio', None) + if sharpe_ratio is not None: + print(f"Sharpe ratio: {sharpe_ratio:.2f}") + else: + print("Sharpe ratio: N/A") + + # Plot the results + cerebro.plot() + +if __name__ == '__main__': + initial_cash, start_date, end_date = get_user_input() + run_backtest(initial_cash, start_date, end_date) \ No newline at end of file diff --git a/script/user_json.py b/script/user_json.py new file mode 100644 index 0000000..5f22b52 --- /dev/null +++ b/script/user_json.py @@ -0,0 +1,131 @@ +import json +import backtrader as bt +import yfinance as yf +import os + +class SMAStrategy(bt.Strategy): + params = (('sma_period', 15),) + + def __init__(self): + self.sma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.sma_period) + self.order = None + + def next(self): + if self.order: + return + + if not self.position: + if self.data.close[0] > self.sma[0]: + self.order = self.buy() + else: + if self.data.close[0] < self.sma[0]: + self.order = self.sell() + + def notify_order(self, order): + if order.status in [order.Submitted, order.Accepted]: + return + + if order.status in [order.Completed]: + if order.isbuy(): + self.log(f'BUY EXECUTED, {order.executed.price}') + elif order.issell(): + self.log(f'SELL EXECUTED, {order.executed.price}') + + self.order = None + + def notify_trade(self, trade): + if trade.isclosed: + self.log(f'TRADE PROFIT, GROSS {trade.pnl}, NET {trade.pnlcomm}') + + def log(self, txt, dt=None): + dt = dt or self.datas[0].datetime.date(0) + print(f'{dt.isoformat()} {txt}') + +class MetricsAnalyzer(bt.Analyzer): + def __init__(self): + self.init_cash = self.strategy.broker.get_cash() + self.end_cash = self.init_cash + self.trades = [] + + def notify_cashvalue(self, cash, value): + self.end_cash = cash + + def notify_trade(self, trade): + if trade.isclosed: + self.trades.append(trade) + + def get_analysis(self): + return { + 'return': (self.end_cash - self.init_cash) / self.init_cash, + 'trades': len(self.trades), + 'winning_trades': len([trade for trade in self.trades if trade.pnl > 0]), + 'losing_trades': len([trade for trade in self.trades if trade.pnl <= 0]) + } + +def run_backtest(config): + initial_cash = config['initial_cash'] + start_date = config['start_date'] + end_date = config['end_date'] + ticker = config['ticker'] + + # Download stock data from Yahoo Finance + df = yf.download(ticker, start=start_date, end=end_date) + + # Create a Cerebro instance + cerebro = bt.Cerebro() + + # Add the strategy + cerebro.addstrategy(SMAStrategy) + + # Convert the DataFrame to Backtrader format and add it to Cerebro + data = bt.feeds.PandasData(dataname=df) + cerebro.adddata(data) + + # Set initial cash + cerebro.broker.set_cash(initial_cash) + + # Add analyzers for metrics + cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown') + cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe') + cerebro.addanalyzer(MetricsAnalyzer, _name='metrics') + + # Run the backtest + results = cerebro.run() + strat = results[0] + + # Extract metrics + metrics = strat.analyzers.metrics.get_analysis() + sharpe_ratio = strat.analyzers.sharpe.get_analysis().get('sharperatio', None) + drawdown = strat.analyzers.drawdown.get_analysis()['max']['drawdown'] + + # Save results to a JSON file + backtest_results = { + "initial_cash": initial_cash, + "start_date": start_date, + "end_date": end_date, + "ticker": ticker, + "metrics": { + "return": metrics['return'], + "number_of_trades": metrics['trades'], + "winning_trades": metrics['winning_trades'], + "losing_trades": metrics['losing_trades'], + "max_drawdown": drawdown, + "sharpe_ratio": sharpe_ratio if sharpe_ratio is not None else "N/A" + } + } + + # Create the results directory if it does not exist + if not os.path.exists('results'): + os.makedirs('results') + + # Save the results to a JSON file + with open(f'results/backtest_results_{ticker}_{start_date}_to_{end_date}.json', 'w') as f: + json.dump(backtest_results, f, indent=4) + + # Print results + print(json.dumps(backtest_results, indent=4)) + +if __name__ == '__main__': + with open('config.json', 'r') as f: + config = json.load(f) + run_backtest(config) \ No newline at end of file diff --git a/script/user_save.py b/script/user_save.py new file mode 100644 index 0000000..5cde68c --- /dev/null +++ b/script/user_save.py @@ -0,0 +1,170 @@ +import json +import backtrader as bt +import yfinance as yf +import os +import pandas as pd +from datetime import datetime + +class SMAStrategy(bt.Strategy): + params = (('sma_period', 15),) + + def __init__(self): + self.sma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.sma_period) + self.order = None + + def next(self): + if self.order: + return + + if not self.position: + if self.data.close[0] > self.sma[0]: + self.order = self.buy() + else: + if self.data.close[0] < self.sma[0]: + self.order = self.sell() + + def notify_order(self, order): + if order.status in [order.Submitted, order.Accepted]: + return + + if order.status in [order.Completed]: + if order.isbuy(): + self.log(f'BUY EXECUTED, {order.executed.price}') + elif order.issell(): + self.log(f'SELL EXECUTED, {order.executed.price}') + + self.order = None + + def notify_trade(self, trade): + if trade.isclosed: + self.log(f'TRADE PROFIT, GROSS {trade.pnl}, NET {trade.pnlcomm}') + + def log(self, txt, dt=None): + dt = dt or self.datas[0].datetime.date(0) + print(f'{dt.isoformat()} {txt}') + +class MetricsAnalyzer(bt.Analyzer): + def __init__(self): + self.init_cash = self.strategy.broker.get_cash() + self.end_cash = self.init_cash + self.trades = [] + + def notify_cashvalue(self, cash, value): + self.end_cash = cash + + def notify_trade(self, trade): + if trade.isclosed: + self.trades.append(trade) + + def get_analysis(self): + return { + 'return': (self.end_cash - self.init_cash) / self.init_cash, + 'trades': len(self.trades), + 'winning_trades': len([trade for trade in self.trades if trade.pnl > 0]), + 'losing_trades': len([trade for trade in self.trades if trade.pnl <= 0]) + } + +def get_user_input(): + initial_cash = float(input("Enter initial cash: ")) + start_date = input("Enter start date (YYYY-MM-DD): ") + end_date = input("Enter end date (YYYY-MM-DD): ") + return initial_cash, start_date, end_date + +def generate_unique_key(ticker, start_date, end_date): + return f"{ticker}_{start_date}_{end_date}" + +def save_results_to_csv(results, csv_file): + df = pd.DataFrame([results]) + if not os.path.isfile(csv_file): + df.to_csv(csv_file, index=False) + else: + df.to_csv(csv_file, mode='a', header=False, index=False) + +def load_results_from_csv(key, csv_file): + if os.path.isfile(csv_file): + df = pd.read_csv(csv_file) + result = df[df['key'] == key] + if not result.empty: + return result.to_dict('records')[0] + return None + +def run_backtest(config): + initial_cash = config['initial_cash'] + start_date = config['start_date'] + end_date = config['end_date'] + ticker = config['ticker'] + + # Generate unique key + key = generate_unique_key(ticker, start_date, end_date) + + # Check if results already exist + csv_file = 'backtest_results.csv' + existing_result = load_results_from_csv(key, csv_file) + if existing_result: + print("Results already exist. Loading from file.") + print(json.dumps(existing_result, indent=4)) + return + + # Download stock data from Yahoo Finance + df = yf.download(ticker, start=start_date, end=end_date) + + # Create a Cerebro instance + cerebro = bt.Cerebro() + + # Add the strategy + cerebro.addstrategy(SMAStrategy) + + # Convert the DataFrame to Backtrader format and add it to Cerebro + data = bt.feeds.PandasData(dataname=df) + cerebro.adddata(data) + + # Set initial cash + cerebro.broker.set_cash(initial_cash) + + # Add analyzers for metrics + cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown') + cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe') + cerebro.addanalyzer(MetricsAnalyzer, _name='metrics') + + # Run the backtest + results = cerebro.run() + strat = results[0] + + # Extract metrics + metrics = strat.analyzers.metrics.get_analysis() + sharpe_ratio = strat.analyzers.sharpe.get_analysis().get('sharperatio', None) + drawdown = strat.analyzers.drawdown.get_analysis()['max']['drawdown'] + + # Prepare results + backtest_results = { + "key": key, + "ticker": ticker, + "initial_cash": initial_cash, + "start_date": start_date, + "end_date": end_date, + "metrics": { + "return": metrics['return'], + "number_of_trades": metrics['trades'], + "winning_trades": metrics['winning_trades'], + "losing_trades": metrics['losing_trades'], + "max_drawdown": drawdown, + "sharpe_ratio": sharpe_ratio if sharpe_ratio is not None else "N/A" + } + } + + # Save the results to CSV + save_results_to_csv(backtest_results, csv_file) + + # Print results + print(json.dumps(backtest_results, indent=4)) + +if __name__ == '__main__': + with open('config.json', 'r') as f: + config = json.load(f) + + initial_cash, start_date, end_date = get_user_input() + config['initial_cash'] = initial_cash + config['start_date'] = start_date + config['end_date'] = end_date + + run_backtest(config) \ No newline at end of file From 81abacd8ad49af48d4273cfb4fa91a6804c39235 Mon Sep 17 00:00:00 2001 From: mikiiiss Date: Fri, 21 Jun 2024 04:44:13 +0300 Subject: [PATCH 5/5] indicators backtests --- explain_stocs_py.txt | 40 ++++ script/indicators.py | 205 ++++++++++++++++++ ...s_MC.PA_2023-05-05_to_2024-05-05_MACD.json | 16 ++ script/stocks.py | 2 +- 4 files changed, 262 insertions(+), 1 deletion(-) create mode 100644 explain_stocs_py.txt create mode 100644 script/indicators.py create mode 100644 script/results/backtest_results_MC.PA_2023-05-05_to_2024-05-05_MACD.json diff --git a/explain_stocs_py.txt b/explain_stocs_py.txt new file mode 100644 index 0000000..fd94401 --- /dev/null +++ b/explain_stocs_py.txt @@ -0,0 +1,40 @@ +This code is a Python script for backtesting a simple moving average (SMA) trading strategy using the backtrader library. It includes the following components: + +1. Importing necessary libraries: + - The `backtrader` library for backtesting trading strategies. + - The `yf` library (yahoo finance) to download stock data from Yahoo Finance. + - The `pandas` library for data manipulation. + - The `datetime` module for working with dates and times. + +2. The `SMAStrategy` class: + - This class defines a simple trading strategy that uses a simple moving average (SMA) indicator. + - The strategy buys when the stock's closing price is above the SMA and sells when it's below. + - The strategy uses the `bt.indicators.SimpleMovingAverage` indicator to calculate the SMA. + +3. The `MetricsAnalyzer` class: + - This class is an analyzer that calculates and stores various metrics during the backtest, such as the initial and end cash, total number of trades, winning and losing trades, and return on investment. + - The analyzer uses the `notify_cashvalue`, `notify_trade`, and `get_analysis` methods to track and compute these metrics. + +4. The `get_user_input` function: + - This function prompts the user for input, including the initial cash, start and end dates for the backtest, and the stock ticker to analyze. + - The function also allows the user to select a stock from a predefined list of stocks. + +5. The `generate_unique_key` function: + - This function generates a unique key for each backtest run using the stock ticker, start date, and end date. + +6. The `save_results_to_csv` function: + - This function saves the backtest results to a CSV file. + +7. The `load_results_from_csv` function: + - This function loads the backtest results from the CSV file using the generated unique key. + +8. The `run_backtest` function: + - This function orchestrates the backtest process by calling other functions and classes. + - It first checks if the results for the given unique key already exist in the CSV file. + - If not, it downloads the stock data from Yahoo Finance, sets up the backtrader environment, and runs the backtest using the SMAStrategy and MetricsAnalyzer. + - The function then saves the results to a JSON file and prints the results to the console. + +9. The `if __name__ == '__main__'` block: + - This block loads the user input from a JSON configuration file and calls the `run_backtest` function to execute the backtest with the user-provided inputs. + +Overall, this script demonstrates a simple backtesting framework for evaluating the performance of a trading strategy over a specified period using historical stock data. \ No newline at end of file diff --git a/script/indicators.py b/script/indicators.py new file mode 100644 index 0000000..3b70ec0 --- /dev/null +++ b/script/indicators.py @@ -0,0 +1,205 @@ +import json +import backtrader as bt +import yfinance as yf +import os +import pandas as pd +from datetime import datetime + +class SMAStrategy(bt.Strategy): + params = (('sma_period', 15),) + + def __init__(self): + self.sma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.sma_period) + self.order = None + + def next(self): + if self.order: + return + + if not self.position: + if self.data.close[0] > self.sma[0]: + self.order = self.buy() + else: + if self.data.close[0] < self.sma[0]: + self.order = self.sell() + + def notify_order(self, order): + if order.status in [order.Submitted, order.Accepted]: + return + + if order.status in [order.Completed]: + if order.isbuy(): + self.log(f'BUY EXECUTED, {order.executed.price}') + elif order.issell(): + self.log(f'SELL EXECUTED, {order.executed.price}') + + self.order = None + + def notify_trade(self, trade): + if trade.isclosed: + self.log(f'TRADE PROFIT, GROSS {trade.pnl}, NET {trade.pnlcomm}') + + def log(self, txt, dt=None): + dt = dt or self.datas[0].datetime.date(0) + print(f'{dt.isoformat()} {txt}') + +class MetricsAnalyzer(bt.Analyzer): + def __init__(self): + self.init_cash = self.strategy.broker.get_cash() + self.end_cash = self.init_cash + self.trades = [] + + def notify_cashvalue(self, cash, value): + self.end_cash = cash + + def notify_trade(self, trade): + if trade.isclosed: + self.trades.append(trade) + + def get_analysis(self): + return { + 'return': (self.end_cash - self.init_cash) / self.init_cash, + 'trades': len(self.trades), + 'winning_trades': len([trade for trade in self.trades if trade.pnl > 0]), + 'losing_trades': len([trade for trade in self.trades if trade.pnl <= 0]) + } + +def get_user_input(): + initial_cash = float(input("Enter initial cash: ")) + start_date = input("Enter start date (YYYY-MM-DD): ") + end_date = input("Enter end date (YYYY-MM-DD): ") + + # User chooses a stock + stocks = { + '1': 'NVDA', # Nvidia + '2': 'TSLA', # Tesla + '3': 'MC.PA', # LVMH + '4': 'WMT' , # Walmart + '5': 'AMZN' # Amazon + } + + print("Choose a stock:") + for key, value in stocks.items(): + print(f"{key}: {value}") + + stock_choice = input("Enter the number corresponding to your choice: ") + ticker = stocks.get(stock_choice, 'NVDA') # Default to Nvidia if invalid choice + + # User chooses an indicator + indicators = { + '1': 'SMA', # Simple Moving Average + '2': 'LSTM', # LSTM time-series forecasting model + '3': 'MACD', # Moving Average Convergence Divergence + '4': 'RSI', # Relative Strength Index + '5': 'Bollinger Bands' # Bollinger Bands + } + + print("Choose an indicator:") + for key, value in indicators.items(): + print(f"{key}: {value}") + + indicator_choice = input("Enter the number corresponding to your choice: ") + indicator = indicators.get(indicator_choice, 'SMA') # Default to SMA if invalid choice + + return initial_cash, start_date, end_date, ticker, indicator +def generate_unique_key(ticker, start_date, end_date): + return f"{ticker}_{start_date}_{end_date}" + +def save_results_to_csv(results, csv_file): + df = pd.DataFrame([results]) + if not os.path.isfile(csv_file): + df.to_csv(csv_file, index=False) + else: + df.to_csv(csv_file, mode='a', header=False, index=False) + +def load_results_from_csv(key, csv_file): + if os.path.isfile(csv_file): + df = pd.read_csv(csv_file) + result = df[df['key'] == key] + if not result.empty: + return result.to_dict('records')[0] + return None + +def run_backtest(config): + initial_cash = config['initial_cash'] + start_date = config['start_date'] + end_date = config['end_date'] + ticker = config['ticker'] + indicator = config['indicator'] + + # Generate unique key + key = f"{ticker}_{start_date}_{end_date}_{ticker}_{indicator}" + + # Check if results already exist + csv_file = 'backtest_results.csv' + existing_result = load_results_from_csv(key, csv_file) + if existing_result: + print("Results already exist. Loading from file.") + print(json.dumps(existing_result, indent=4)) + return + + # Download stock data from Yahoo Finance + df = yf.download(ticker, start=start_date, end=end_date) + # Create a Cerebro instance + cerebro = bt.Cerebro() + + # Add the strategy + cerebro.addstrategy(SMAStrategy) + + # Convert the DataFrame to Backtrader format and add it to Cerebro + data = bt.feeds.PandasData(dataname=df) + cerebro.adddata(data) + + # Set initial cash + cerebro.broker.set_cash(initial_cash) + + # Add analyzers for metrics + cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown') + cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe') + cerebro.addanalyzer(MetricsAnalyzer, _name='metrics') + + # Run the backtest + results = cerebro.run() + strat = results[0] + + # Extract metrics + metrics = strat.analyzers.metrics.get_analysis() + sharpe_ratio = strat.analyzers.sharpe.get_analysis().get('sharperatio', None) + drawdown = strat.analyzers.drawdown.get_analysis()['max']['drawdown'] + + # Prepare results + backtest_results = { + "key": key, + "_SYMBOL": ticker, + "initial_cash": initial_cash, + "start_date": start_date, + "end_date": end_date, + "indicator": indicator, + "metrics": { + "return": metrics['return'], + "number_of_trades": metrics['trades'], + "winning_trades": metrics['winning_trades'], + "losing_trades": metrics['losing_trades'], + "max_drawdown": drawdown, + "sharpe_ratio": sharpe_ratio if sharpe_ratio is not None else "N/A" + } + } + # Save the results to a JSON file + with open(f'results/backtest_results_{ticker}_{start_date}_to_{end_date}_{indicator}.json', 'w') as f: + json.dump(backtest_results, f, indent=4) + + # Print results + print(json.dumps(backtest_results, indent=4)) + +if __name__ == '__main__': + with open('config.json', 'r') as f: + config = json.load(f) + + initial_cash, start_date, end_date, ticker, indicator = get_user_input() + config['initial_cash'] = initial_cash + config['start_date'] = start_date + config['end_date'] = end_date + config['ticker'] = ticker + config['indicator'] = indicator + + run_backtest(config) \ No newline at end of file diff --git a/script/results/backtest_results_MC.PA_2023-05-05_to_2024-05-05_MACD.json b/script/results/backtest_results_MC.PA_2023-05-05_to_2024-05-05_MACD.json new file mode 100644 index 0000000..a79c018 --- /dev/null +++ b/script/results/backtest_results_MC.PA_2023-05-05_to_2024-05-05_MACD.json @@ -0,0 +1,16 @@ +{ + "key": "MC.PA_2023-05-05_2024-05-05_MC.PA_MACD", + "_SYMBOL": "MC.PA", + "initial_cash": 12000.0, + "start_date": "2023-05-05", + "end_date": "2024-05-05", + "indicator": "MACD", + "metrics": { + "return": 0.005124994913736979, + "number_of_trades": 14, + "winning_trades": 4, + "losing_trades": 10, + "max_drawdown": 1.3054504701848728, + "sharpe_ratio": -0.7278526552857935 + } +} \ No newline at end of file diff --git a/script/stocks.py b/script/stocks.py index 4b5f3f3..a28aa1e 100644 --- a/script/stocks.py +++ b/script/stocks.py @@ -168,7 +168,7 @@ def run_backtest(config): "sharpe_ratio": sharpe_ratio if sharpe_ratio is not None else "N/A" } } - + # Save the results to a JSON file with open(f'results/backtest_results_{ticker}_{start_date}_to_{end_date}.json', 'w') as f: json.dump(backtest_results, f, indent=4)