diff --git a/.gitignore b/.gitignore index 383560f..e69de29 100644 --- a/.gitignore +++ b/.gitignore @@ -1,165 +0,0 @@ -# Byte-compiled / optimized / DLL files -__pycache__/ -*.py[cod] -*$py.class - -# C extensions -*.so - -# Distribution / packaging -.Python -build/ -develop-eggs/ -dist/ -downloads/ -eggs/ -.eggs/ -lib/ -lib64/ -parts/ -sdist/ -var/ -wheels/ -share/python-wheels/ -*.egg-info/ -.installed.cfg -*.egg -MANIFEST - -# PyInstaller -# Usually these files are written by a python script from a template -# before PyInstaller builds the exe, so as to inject date/other infos into it. -*.manifest -*.spec - -# Installer logs -pip-log.txt -pip-delete-this-directory.txt - -# Unit test / coverage reports -htmlcov/ -.tox/ -.nox/ -.coverage -.coverage.* -.cache -nosetests.xml -coverage.xml -*.cover -*.py,cover -.hypothesis/ -.pytest_cache/ -cover/ - -# Translations -*.mo -*.pot - -# Django stuff: -*.log -local_settings.py -db.sqlite3 -db.sqlite3-journal - -# Flask stuff: -instance/ -.webassets-cache - -# Scrapy stuff: -.scrapy - -# Sphinx documentation -docs/_build/ - -# PyBuilder -.pybuilder/ -target/ - -# Jupyter Notebook -.ipynb_checkpoints - -# IPython -profile_default/ -ipython_config.py - -# pyenv -# For a library or package, you might want to ignore these files since the code is -# intended to run in multiple environments; otherwise, check them in: -# .python-version - -# pipenv -# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. -# However, in case of collaboration, if having platform-specific dependencies or dependencies -# having no cross-platform support, pipenv may install dependencies that don't work, or not -# install all needed dependencies. -#Pipfile.lock - -# poetry -# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. -# This is especially recommended for binary packages to ensure reproducibility, and is more -# commonly ignored for libraries. -# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control -#poetry.lock - -# pdm -# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. -#pdm.lock -# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it -# in version control. -# https://pdm.fming.dev/latest/usage/project/#working-with-version-control -.pdm.toml -.pdm-python -.pdm-build/ - -# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm -__pypackages__/ - -# Celery stuff -celerybeat-schedule -celerybeat.pid - -# SageMath parsed files -*.sage.py - -# Environments -.env -.venv -env/ -backtesting/** -venv/ -backtesting/** -backtest/** -ENV/ -env.bak/ -venv.bak/ - -# Spyder project settings -.spyderproject -.spyproject - -# Rope project settings -.ropeproject - -# mkdocs documentation -/site - -# mypy -.mypy_cache/ -.dmypy.json -dmypy.json - -# Pyre type checker -.pyre/ - -# pytype static type analyzer -.pytype/ - -# Cython debug symbols -cython_debug/ - -# PyCharm -# JetBrains specific template is maintained in a separate JetBrains.gitignore that can -# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore -# and can be added to the global gitignore or merged into this file. For a more nuclear -# option (not recommended) you can uncomment the following to ignore the entire idea folder. -#.idea/ diff --git a/backtesting /backtest.ipynb b/backtesting /backtest.ipynb new file mode 100644 index 0000000..c135849 --- /dev/null +++ b/backtesting /backtest.ipynb @@ -0,0 +1,373 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import backtrader as bt\n", + "import datetime\n", + "import yfinance as yf\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt \n", + "import plotly.graph_objects as go" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "cerebro = bt.Cerebro() " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[*********************100%%**********************] 1 of 1 completed\n" + ] + } + ], + "source": [ + "df=yf.download('NVDA', start='2020-06-22')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OpenHighLowCloseAdj CloseVolume
Date
2020-06-229.3000009.5312509.2732509.5267509.498451398468000
2020-06-239.5510009.6425009.4075009.4500009.421928375108000
2020-06-249.4762509.5565009.1445009.2355009.208068449372000
2020-06-259.3557509.5050009.1822509.4900009.461808376072000
2020-06-269.5000009.5000009.1250009.1550009.127806592084000
.....................
2024-06-13129.389999129.800003127.160004129.610001129.610001260704500
2024-06-14129.960007132.839996128.320007131.880005131.880005309320400
2024-06-17132.990005133.729996129.580002130.979996130.979996288504400
2024-06-18131.139999136.330002130.690002135.580002135.580002294335100
2024-06-20139.850006140.759995129.529999130.779999130.779999504887012
\n", + "

1006 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " Open High Low Close Adj Close \\\n", + "Date \n", + "2020-06-22 9.300000 9.531250 9.273250 9.526750 9.498451 \n", + "2020-06-23 9.551000 9.642500 9.407500 9.450000 9.421928 \n", + "2020-06-24 9.476250 9.556500 9.144500 9.235500 9.208068 \n", + "2020-06-25 9.355750 9.505000 9.182250 9.490000 9.461808 \n", + "2020-06-26 9.500000 9.500000 9.125000 9.155000 9.127806 \n", + "... ... ... ... ... ... \n", + "2024-06-13 129.389999 129.800003 127.160004 129.610001 129.610001 \n", + "2024-06-14 129.960007 132.839996 128.320007 131.880005 131.880005 \n", + "2024-06-17 132.990005 133.729996 129.580002 130.979996 130.979996 \n", + "2024-06-18 131.139999 136.330002 130.690002 135.580002 135.580002 \n", + "2024-06-20 139.850006 140.759995 129.529999 130.779999 130.779999 \n", + "\n", + " Volume \n", + "Date \n", + "2020-06-22 398468000 \n", + "2020-06-23 375108000 \n", + "2020-06-24 449372000 \n", + "2020-06-25 376072000 \n", + "2020-06-26 592084000 \n", + "... ... \n", + "2024-06-13 260704500 \n", + "2024-06-14 309320400 \n", + "2024-06-17 288504400 \n", + "2024-06-18 294335100 \n", + "2024-06-20 504887012 \n", + "\n", + "[1006 rows x 6 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "feed=bt.feeds.PandasData(dataname=df)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cerebro.adddata(feed)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + ">" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cerebro.run" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbkAAAR6CAYAAABmyXoXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3zO9f/H8ecO1052dhxGSs40cvgmORNDUijns1Chkhy/VEgWnUUlk0MISczXIYfmkFNGvlRUY5s5jZ3Y5tp2/f7w2/V12camXdd28bjfbrvpep8/n7324fbau/fHwWQymQQAAAAAAAAAgB1yLOwFAAAAAAAAAABwt0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJDcAAAAAAAAAwG6R5AYAAAAAAAAA2C3nwl5AXmVmZurs2bPy8vKSg4NDYS8HAAAAAAAAAKzOZDIpKSlJZcuWlaMje5ZzYjdJ7rNnzyowMLCwlwEAAAAAAAAANhcVFaXy5csX9jKKJLtJcnt5eUm68c309vYu5NUUDUajUZs3b1bbtm1lMBgKezm4DxBzsBZiC7ZEvMFaiC3YEvEGayG2YAvEGZA/iYmJCgwMNOdHkZ3dJLmzjijx9vYmyf3/jEajPDw85O3tzV8KsAliDtZCbMGWiDdYC7EFWyLeYC3EFmyBOAPuTn6OcE5OTlZISIj27dun/fv368qVK1q4cKH69++fre2JEyf0yiuvaNeuXXJxcVGHDh00Z84clSxZ0twmMjJSlSpVynGub775Rs8//3y+x5RuHFH93nvv6bPPPlNsbKyqVKmi8ePHq0ePHnm+VsmOktwAAAAAAAAAgDu7dOmS3nrrLVWoUEGPPPKIduzYkWO76OhoNW3aVD4+PpoxY4aSk5P13nvv6ddff9X+/fvl4uJi0b5Hjx4KDg62KHvsscfuesyJEydq5syZGjJkiBo0aKDvv/9ePXv2lIODQ7bE+e2Q5AYAAAAAAACAe0hAQIBiY2NVpkwZHTx4UA0aNMix3YwZM3T16lUdOnRIFSpUkCQ1bNhQbdq0UWhoqIYOHWrRvl69eurdu/dt587rmDExMZo9e7ZefPFFffLJJ5KkwYMHq1mzZnr99dfVrVs3OTk55el6eR0nAAAAAAAAANxDXF1dVaZMmTu2W716tTp27GhORktS69atVaVKFa1cuTLHPlevXtX169f/8Zjff/+9jEajRowYYS5zcHDQ8OHDFR0drb17995x/Vnsbie30WiU0Wgs7GUUCVn3gfsBWyHmYC3EFmyJeIO1EFuwJeIN1kJswRaIMyB/sn5WEhMTLcpdXV3l6up61+PGxMTowoULql+/fra6hg0bKiwsLFv5m2++qddff10ODg569NFHNX36dLVt2/auxjx8+LCKFSum6tWrZ2uXVd+kSZM8XYvdJbk3b94sDw+Pwl5GkbJly5bCXgLuM8QcrIXYgi0Rb7AWYgu2RLzBWogt2AJxBuTNtWvXJEmBgYEW5VOmTNHUqVPvetzY2FhJN442uVVAQIAuX76stLQ0ubq6ytHRUW3btlWXLl1Urlw5/fXXX5ozZ47at2+vdevWqUOHDvkeMzY2VqVLl872Qs2svmfPns3ztdhdkrtt27by9vYu7GUUCUajUVu2bFGbNm14GzFsgpiDtRBbsCXiDdZCbMGWiDdYC7EFWyDOgPzJ2sEdFRVlkRf9J7u4JSklJSXXcdzc3MxtXF1dVaFCBW3atMmiTZ8+fVSjRg299tpr5iR3fsbM+vN27fLK7pLcBoOBB+AtuCewNWIO1kJswZaIN1gLsQVbIt5gLcQWbIE4A/Im6+fE29u7QDf/uru7S5LS0tKy1aWmplq0yYm/v78GDBigmTNnKjo6WuXLl8/XmO7u7nc996148SQAAAAAAAAA3GeyjgXJOmLkZrGxsfL397/jbvGsI1QuX76c7zEDAgJ07tw5mUymbO0kqWzZsnm+FpLcAAAAAAAAAHCfKVeunEqWLKmDBw9mq9u/f7+CgoLuOMZff/0lSSpZsmS+xwwKCtK1a9d04sQJi3b79u0z1+cVSW471rp1a61bt86qcwwbNkxz58616hz5MX36dE2cOLGwlwEAAAAAAADYvWeffVbr169XVFSUuezHH3/UH3/8oW7dupnLLl68mK1vTEyMvvrqK9WpU8fiRZN5HbNz584yGAwWuUeTyaR58+apXLlyaty4cZ6vw+7O5LZXzZs31969e2UwGOTg4KAKFSpo6tSpFt/YoubUqVPasGGDPvroI0lSZGSkKlWqpPr162v//v3mN59+8MEHWrt2rXbs2GH1NY0aNUoPPfSQXn75ZZUpU8bq8wEAAAAAAAD26JNPPlF8fLzOnj0rSfrhhx8UHR0tSXr55Zfl4+OjCRMm6Ntvv1WLFi00atQoJScnKyQkRLVr19aAAQPMY40dO1Z//vmnWrVqpbJlyyoyMlLz58/X1atX9eGHH1rMm9cxy5cvr9GjRyskJERGo1ENGjTQ2rVrFR4erqVLl8rJySnP10qS24beffddjR49WiaTSWFhYerSpYsaNmyoihUrZmtrNBpt9vKF3OaaN2+ennvuObm4uFiU//3331q1alWhJOg9PT3Vvn17LViwgB3dAAAAAAAAQC7ee+89nT592vx5zZo1WrNmjSSpd+/e8vHxUWBgoHbu3KlXX31V48aNk4uLizp06KDZs2dbnMfdtm1bzZs3T59++qmuXLkiX19fNW3aVJMmTVK9evUs5s3rmJI0c+ZM+fn5af78+QoNDdXDDz+sJUuWqGfPnvm6Vo4rKQQODg7q0KGDfH199fvvv0uSduzYIV9fX3322WeqUKGCeTv+kiVLVL16dfn6+qpJkyb65ZdfchwzOTlZTz75pHr16iWj0agLFy6oV69eCggIUNmyZTV69Gjz20pzm+tW69atU8uWLbOVT5gwQZMmTVJ6enqO/c6fP6/u3burZMmSqlChgiZOnGhumzX3l19+qcDAQBUvXlxjx4616L9161Y1bNhQvr6+qlmzZrYjWVq1amX1Y1oAAAAAAAAAexYZGSmTyZTj1wMPPGBuV7NmTW3atElXr17VlStXtGTJEpUuXdpirB49emjnzp26cOGCjEajLl68qDVr1mRLcOdnTElydHTU+PHjFRkZqbS0NB07dky9evXK97WS5C4EmZmZ+v7775WSkmJxgHpSUpKOHDmi3377TTt37tRPP/2k4cOHa/78+bp48aK6du2qdu3aKSEhwWK8ixcvqkWLFqpZs6aWLFkiZ2dnPfXUUypTpoz+/PNP/frrrzpy5IimTZuW61y3unbtmk6ePKlq1aplq+vXr5+cnZ21YMGCHK+vZ8+eMhgM+vvvvxUeHq61a9dq1qxZFnMfP35cJ0+e1K5du/Tpp5+ajzo5evSounXrppkzZ+ry5cuaP3+++vTpY/5lgCTVqFFDERERebnVAAAAAAAAAO5xJLltaPz48fL19VWxYsX0zDPPaNKkSSpVqpS5PjMzUzNnzpSHh4c8PDy0ePFi9e7dW02bNpXBYNDo0aPl5+enDRs2mPucP39ezZo1U7du3TRnzhw5ODjo4MGDOnnypEJCQuTh4aHixYtrwoQJWrZsWa5z3erKlSuSJG9v72x1Tk5OmjFjht58801du3bNoi4mJkbbtm3TnDlz5OnpqYoVK2rixIkKDQ01tzGZTJo2bZrc3NxUvXp1NW7cWIcOHZIkzZ8/X/3791fLli3l6OioJk2aqGPHjlq5cqW5v7e3t65fv55tbgAAAAAAAAD3H5LcNvTOO+8oPj5eKSkp+v3337Vo0SLNnz/fXO/l5SVfX1/z5+joaIv/dUCSKlWqZD4gXpJ2794tR0dHDR8+3FwWGRmp+Ph4+fv7y9fXV76+vuratavOnz+f61y38vPzkyQlJibmWN+5c2dVqlQp28Hy0dHRcnNzs/jfDx588EGLNXt7e1sk1osVK6akpCTz2ufNm2det6+vr77//nvzAflZa3JxcckxOQ8AAAAAAADg/kKSu5BUrlxZwcHBWr9+vbnM0dHy21G+fHlFRkZalEVGRqp8+fLmz126dNG//vUvPfnkk+aEdGBgoEqVKqX4+HjzV0JCgpKTk3Od61YeHh56+OGH9dtvv+Xa5t1339WsWbN0+fJlizWnpqZaJNRvXfPtBAYGatSoURZrT05O1meffWZuc/z4cYtjXgAAAAAAAADcv0hyF5LIyEiFhYWpdu3aubbp3bu3li5dqt27dys9PV0ff/yx4uLiFBwcbG7j4OCgzz//XDVq1FDbtm2VkJCgBg0aKDAwUJMmTVJSUpJMJpNOnz6tjRs35muNnTp10vbt23Otb9KkiZo0aaK5c+eay8qVK6cWLVpozJgxunr1qs6cOaPp06erX79+eZrzhRde0MKFC7V9+3ZlZGQoLS1Ne/fu1YkTJ8xttm3bpo4dO+brWgAAAAAAAADcm0hy29Abb7whT09PeXp6qkmTJmrdurX+/e9/59q+WbNm+vjjjzVo0CAVL15cy5cv18aNG7MdM+Lo6KgvvvhCQUFBat26tRITE7V+/XrFxMSoevXq8vHxUYcOHXTq1Kl8rfeFF17Q8uXLZTQac23zzjvvmM/vzrJs2TKlpKSoYsWKevzxx9WhQweNHTs2T3PWrVtX33zzjSZNmqSSJUuqXLlymjx5stLS0iRJV69eVVhYmAYPHpyvawEAAAAAAABwb3Iu7AXcL3bs2HHb+ubNmys+Pj5beb9+/XLdBb1161aFhYVJurGje968eRb1CxcuzNdct6pSpYqCg4P15Zdfavjw4XrggQdkMpks2tSqVUsZGRkWZWXKlNGqVavyPPfatWstPrds2VItW7bMsf+HH36owYMHKyAg4I7rBwAAAAAAAHDvI8mN27r5xZhFwYQJEwp7CQAAAAAAAACKkHsuyW0ymWS6lmqz+Rw83OTg4GCz+QAAAAAAAAAA/3PvJbmvpervB9rabL5KkZvlUMzdZvMBAAAAAAAAAP6HF08CAAAAAAAAAOzWPbeT28HDTZUiN9t0vsIyaNAgXblyRcHBwYW2BgAAAAAAAAAoTPfcTm4HBwc5FnO32Zc9nce9cuVKNW7cWB4eHgoKCspWbzQa9dJLL8nPz0/+/v56+eWXlZ6ebrP6gl4PAAAAAAAAgHvfPZfkRu78/f01evRoTZw4Mcf6adOmadeuXTp+/Lj++9//Kjw8XDNmzLBZfUGvBwAAAAAAAMC9jyS3jSQmJuqll15SxYoV5e3trQYNGigqKkqSNGfOHD388MPy8vLSQw89pE8++cTcLy0tTQMHDlSJEiXk4+OjWrVq6cCBAxb1vXr1kpeXl6pWraodO3bkuobWrVure/fuKleuXI71X331lSZNmqSAgAAFBARo4sSJWrBggc3qC3o9AAAAAAAAAO5999yZ3EVV//79de3aNe3du1dlypTRkSNH5O7uLkmqWLGitm3bpvLly2vHjh0KDg5W3bp19fjjj2vRokU6cuSITp06JR8fH508edLcT5J27dqldevW6ZtvvtE777yj/v37KzIyMt/ru3LliqKjoy2OMQkKCtKZM2eUkJCgzMxMq9b7+PgU6HpuHQ8AAAAAAADAvYmd3DZw/vx5fffdd/r8889VtmxZOTo6qm7duipRooQk6dlnn1VgYKAcHBzUokULPfnkk+Yd2QaDQUlJSTpx4oRMJpOqVKmiwMBA89iPPvqomjVrJicnJw0YMECnT59WXFxcvteYnJwsSfL19TWXZf13UlKS1esLej0AAAAAAAAA7g8kuW3g9OnTcnV1VYUKFXKsX7p0qerVqyd/f3/5+voqLCxMly5dkiT16dNH/fv317Bhw1SiRAn179/fXCdZJnmLFSsm6e6SvJ6enpKkhIQEc1nWf3t5eVm9vqDXAwAAAAAAAOD+QJLbBipWrKi0tDTzGdw3O3PmjPr166dZs2bpwoULio+PV3BwsEwmkyTJ2dlZEyZM0JEjR3TixAmdOXNGb775ZoGv0c/PT+XLl1dERIS5LCIiQoGBgfLx8bF6fUGvBwAAAAAAAMD9gSS3DZQuXVqdO3fWsGHDFBsbq8zMTB0+fFhxcXFKTk6WyWRSqVKl5OjoqLCwMG3evNncd9u2bYqIiFB6erqKFSsmNzc3OTvf3VHqGRkZSk1NldFolMlkUmpqqtLS0sz1AwYM0PTp03Xu3DmdO3dOM2bM0ODBg21Wf6uCHg8AAAAAAADAvYcXT9rIokWL9MYbb6h+/fpKSkpS9erVtXr1atWoUUMTJ05Uy5YtlZGRoaeeekpPPfWUud/58+f14osvKioqSu7u7mrdurWmTJlyV2tYvHixBgwYYP7s7u6uihUrml9UOXnyZMXFxal69eqSpN69e2vChAnm9tauHzZsmCRp3rx5BTIeAAAAAAAAgHufgynrXIwiLjExUT4+PkpISJC3t3dhL6dIMBqNCgsLU3BwsAwGQ2EvB/cBYg7WQmzBlog3WAuxBVsi3mAtxBZsgTgD8oe86J1xXAkAAAAAAAAAwG6R5AYAAAAAAAAA2C2S3AAAAAAAAAAAu0WSGwAAAAAAAABgt0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJLcdaN68uT744IPCXgYAAAAAAAAAO5CcnKwpU6aoXbt28vf3l4ODg0JDQ3Nse+LECbVr106enp7y9/dXnz59dPHiRYs2v/32m8aOHaugoCB5eXkpICBAHTp00MGDB3McMyYmRt27d5evr6+8vb3VuXNn/fXXXzm2XbBggapXry43Nzc9/PDD+vjjj/N9vSS573Pbt29XixYt5OPjI19f3xzbvPnmmypdurS8vb3Vq1cvJScn27S+oNcDAAAAAAAA3MsuXbqkt956SydOnNAjjzySa7vo6Gg1bdpUp06d0owZMzRmzBht2LBBbdq00fXr183tvvzyS33xxReqX7++Zs+erVdffVW///67/vWvf2nr1q0WYyYnJ6tFixbauXOnJkyYoDfffFOHDx9Ws2bNFBcXZ9F2/vz5Gjx4sGrWrKmPP/5Yjz32mEaOHKl33303X9dLkvs+V6xYMQ0cOFBz5szJsX7hwoVasGCBwsPDdebMGcXFxWnkyJE2qy/o9QAAAAAAAAD3uoCAAMXGxur06dMKCQnJtd2MGTN09epVbdu2TSNHjtSECRO0cuVKHTlyxGLnd48ePRQVFaUvv/xSQ4cO1euvv659+/bJ399fU6dOtRhz7ty5OnnypNavX6+xY8fqlVde0ebNmxUbG6vZs2eb26WkpGjixInq0KGDVq1apSFDhujrr79Wr1699Pbbb+vKlSt5vt57LsltMklXr9ruy2S685ref/99tWzZ0qJsxYoVqlatmiTp8OHDatKkifz9/VWyZEn16NEj2281soSGhiooKMiirH79+hZBt3XrVjVs2FC+vr6qWbOm1q1bl+vaGjZsqD59+uihhx7Ksf6rr77SyJEjVaVKFfn6+urtt9/WN998o5SUFJvUF/R6AAAAAAAAgHudq6urypQpc8d2q1evVseOHVWhQgVzWevWrVWlShWtXLnSXPboo4/K09PTom/x4sX1xBNP6MSJExblq1atUoMGDdSgQQNzWbVq1dSqVSuLMbdv3664uDiNGDHCov+LL76oq1evasOGDXm7WEnOeW5ZRBiNRhmNxlzrr16V/PwMNlvPlStGFSt2+zbdunXTG2+8ob/++kuBgYGSpK+//lo9e/aU0WhURkaGpk2bpoYNG+ry5cvq0aOHxo4dq3nz5kmSTCaTMjIyzG1NJpPFfbi5/ujRo+rWrZtWrFihZs2aae/evercubN2796tqlWr5rrG9PR0Scp2b48ePaqJEyeay2vWrKnU1FT997//1SOPPGL1+lsV9HjIn6z7erufQeBuEFuwJeIN1kJswZaIN1gLsQVbIM6A/Mn6WUlMTLQod3V1laur612PGxMTowsXLqh+/frZ6ho2bKiwsLA7jnHu3DmVKFHC/DkzM1NHjx7VwIEDcxxz8+bNSkpKkpeXlw4fPixJ2eZ/9NFH5ejoqMOHD6t37955uha7S3Jv3rxZHh4eudanpjpJ6miz9WzatElubhl3bFe7dm1NnTpVzz77rOLj47V582Z16dLFIli2bNkiSWrSpIkWLVpkrouLi9Px48cVFhamI0eOKDEx0aJfUlKSjhw5orCwMM2fP19PPPGEUlJS9J///EeSFBQUpBkzZui5557LdX2//vqrjEZjtuBNTk7Wf//7X6WlpZnLXF1dtWXLFsXExFi9/lYFPR7uTlasAgWN2IItEW+wFmILtkS8wVqILdgCcQbkzbVr1yTJvHk2y5QpU7IdFZIfsbGxkm4cbXKrgIAAXb58WWlpabkm0sPDw7V3715NmjTJXJbVJ7cxJens2bOqWrWqYmNj5eTkpFKlSlm0c3FxUfHixXX27Nk8X4vdJbnbtm0rb2/vXOtNphu7q23Fw+NJOTjcuV1SUpJmzJihBQsW6OOPP9bjjz+ufv36SZJOnTqlsWPH6tChQ0pOTlZmZqYMBoOCg4MlSXPmzFGNGjUUHBysS5cuaefOnQoODpbRaNSWLVvk5eWlRx55RMHBwZo/f762bNmin376yTx3enq6qlWrZh4vJ8WKFbOYM4unp6dq1aplPm4lPT1daWlpatOmjR555BGr19+qoMdD/mTFXJs2bWQw2O7/mMC9j9iCLRFvsBZiC7ZEvMFaiC3YAnEG5E/WDu6oqCiLvOg/2cUtyXy8b07juLm5mdvkVH/hwgX17NlTlSpV0tixY/M9ZtafLi4uOa7Nzc0tX8cP212S22Aw3PEBmMu9KVTPPvusXnzxRR09elTLli3TiBEjzNfx8ssvq0qVKlq8eLF8fX21du1a9e/f31zv4OAgJycnGQwG+fj4KCUlxeIeXLhwwVxfoUIFjRo1SjNnzszX+pydb4TCrfe2Tp06OnbsmJ588klJ0pEjR+Tq6qqaNWvKYDBYvf5WBT0e7k5efg6Bu0FswZaIN1gLsQVbIt5gLcQWbIE4A/Im6+fE29v7tpt/88vd3V2SLE5EyJKammrR5mZXr15Vx44dlZSUpF27dlmc1Z2fMd3d3XX9+vUc15aamprj3Lm55148WVS5u7ura9eumjhxoo4fP65u3bqZ6xITE+Xl5SVvb29FRUXd9o2nQUFB+uuvvxQeHq709HStWbPG4iWVL7zwghYuXKjt27crIyNDaWlp2rt3b7YD4LNkZmYqNTXVHFCpqanmgJOkAQMG6KOPPtLJkyeVkJCgf//73+rZs6c5yKxdf6uCHg8AAAAAAAC4H2UdH5J1bMnNYmNj5e/vn21H9vXr1/XMM8/o6NGj+v7771WrVi2L+qw+uY0pSWXLljXPn5GRoQsXLmSbIy4uztwuL0hy21Dfvn21adMmPf300/Ly8jKXz5kzR+vXr5e3t7c6d+6sZ599NtcxKleurFmzZqlr166qUKGCjEajatSoYa6vW7euvvnmG02aNEklS5ZUuXLlNHny5Bx/eyJJP/30k9zd3fXkk08qISFB7u7uFgnhgQMHasCAAXr88cdVvnx5+fr66sMPP7RZ/YwZM9S+ffsCGw8AAAAAAACAVK5cOZUsWVIHDx7MVrd//34FBQVZlGVmZqpv37768ccftWzZMjVr1ixbP0dHR9WuXTvHMfft26cHH3zQnBfNGv/WtgcPHlRmZma2+W/HwWQymfLcuhAlJibKx8dHCQkJBbot355lvSgyODiY/70HNkHMwVqILdgS8QZrIbZgS8QbrIXYgi0QZ0D+/NO86MGDB9WgQQMtXLhQ/fv3t6gbPny4Fi1apN9//938Yssff/xRrVu31meffaZhw4aZ27744ouaO3eu5s+fr6FDh+Y637vvvqtx48bpwIEDql+/viTp999/V82aNTVmzBjzMcspKSkqX768GjdurB9++MHcv0+fPlqzZo2ioqLk7++fp2u0uzO5AQAAAAAAAAC398knnyg+Pl5nz56VJP3www+Kjo6WdOMdgT4+PpowYYK+/fZbtWjRQqNGjVJycrJCQkJUu3ZtDRgwwDzWBx98oLlz5+qxxx6Th4eHlixZYjFXly5dVKxYMUnSiBEj9MUXX6hDhw4aM2aMDAaD5syZo9KlS+u1114z93F3d9fbb7+tF198Ud26ddOTTz6p8PBwLVmyRNOnT89zglsiyQ0AAAAAAAAA95z33ntPp0+fNn9es2aN1qxZI0nq3bu3fHx8FBgYqJ07d+rVV1/VuHHj5OLiog4dOmj27NkW53FHRERIkvbu3au9e/dmm+vvv/82J7m9vLy0Y8cOvfLKK5o2bZoyMzPVvHlzvf/++ypZsqRFvxEjRshgMGj27Nlat26dAgMD9f7772vUqFH5ulaS3AAAAAAAAABwj4mMjMxTu5o1a2rTpk23bRMaGqrQ0NA8z12+fHl9++23eWo7ZMgQDRkyJM9j54QXTwIAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3XIu7AUAAAAAAAAAQG52zTkg1/dmyvE+3q67P+BpbW31qZ45ML6wl1IkkeQGAAAAAAAAUGSd3/iLaj/gK/9hXQt7KYXEpJTdEUr/z7HCXkiRRZIbAAAAAAAAQJHl+2eEPHs3VIm+7Qt7KYXCZDLpQnKK9J//FvZSiqz7eJM/AAAAAAAAgKLs7z2xKpEeK4/H6xb2UlCEkeQGAAAAAAAAUCSdWPKLXNyc5Nm4VmEvBUUYSW4AAAAAAAAARVLa3gi51asuZy8Pi/LZs2crKChIrq6uCg4OtqiLj49X165d5eXlpZIlS2rSpEk2rb9VQY+H7DiTGwAAAAAAAECRc/1ausrGHVOxJs9mqytbtqzGjx+vH3/8UdHR0RZ1w4cP15UrV3T69GmdO3dObdu2VcWKFTVkyBCb1N+qoMdDduzkBgAAAAAAAFDkHPnmhIo5pqhY0+zncffo0UPPPfecihcvblGenJysNWvWaNq0afL391eNGjU0bNgwLVy40Cb1tyro8ZAzdnIXYZmZJl2NS821Pt1o1PWEDCVfTJGzId2GK8P9ipiDtRBbsCXiDdZCbMGWiDdYC7EFWyDOkFeRqw+pdgkfudd8QCaTyaLOwcEhxz7Hjx/X9evXVb9+fXNZ3bp19d5779mkvqDXg7whyV2EXY1L1YUabW/bpp6ky3rfNgsCRMzBeogt2BLxBmshtmBLxBushdiCLRBnyAtXVZfnc7XkIEmZmf+rcMz9cIqkpCR5eHjIYDCYy/z8/JScnGyT+oJeD/KG40oAAAAAAAAAFDlXjS5KO30uX328vLyUkpIio9FoLouPj5enp6dN6gt6PcgbdnIXYcWKu6nU8c251qcbjdq6datat24t55t+2wNYCzEHayG2YEvEG6yF2IItEW+wFmILtkCcIa+83w5X2obPZLycJEMJnzz1qVGjhgwGgw4dOqR//etfkqTDhw+revXqNqkv6PUgb0hyF2GOjg7yKumea73R6CwXHyd5lnS3+F8aAGsh5mAtxBZsiXiDtRBbsCXiDdZCbMEWiDPkVb0X6uv8dyYl7zoq/y5NLeqMRqPS09OVnp6uzMxMpaSkyNHRUZ6enurSpYsmT56slStX6ty5c/rss880ZcoUSbJ6/a0KejzkjONKAAAAAAAAABQ5ATX9dc6tolJ2Hc5W9+9//1seHh567733tGnTJnl4eKhly5aSpHnz5snb21uBgYF64okn1K9fPw0ZMsTc19r1rVu3tkhS/9PxcGfs5AYAAAAAAABQJKVUr6fkn7YrMyNTjk7/26/7zjvv6J133smxj6+vr1avXp3rmNau37p1a4GOhztjJzcAAAAAAACAIqlsx7oyXoxXyonThb0UFGEkuQEAAAAAAAAUSUE9q+tahquuhmc/sgTIQpIbAAAAAAAAQJHk6mlQTPHaukaSG7fBmdwAAAAAAAAAiizXx+oqeeMXOlHl2cJeSuHJzNR1B7/CXkWRRZIbAAAAAAAAQJFVb2RjHXa6fw+kuG68rkWLFmniktfy3OfQoUOaOHGi9uzZI5PJpMcee0yzZs1SUFCQRTuj0agZM2Zo0aJFiomJUbly5TRw4ECNGzdOzs6WqeO0tDT9+9//1uLFi3XlyhXVqVNH06ZNU5s2bbLNv2fPHo0dO1a//PKLvL291b17d82YMUOenp53dQ/uhCQ3AAAAAAAAgCKrTHU/tf+kfWEvo9AkJibq6c+fVmjb0Dy1/+WXX9SkSRMFBgZqypQpyszM1Ny5c9WsWTPt379fVatWNbft3bu3vv32Ww0cOFD169fXzz//rMmTJ+vMmTP6/PPPLcbt37+/Vq1apdGjR+vhhx9WaGiogoODtX37djVp0sTcLiIiQq1atVL16tU1Z84cRUdH67333tPJkye1cePGArkntyLJDQAAAAAAAAD3iMmTJ8vd3V179+5V8eLFJd1IZlepUkUTJkzQ6tWrJUkHDhzQypUrNXnyZL311luSpGHDhqlEiRKaM2eOXnrpJdWpU0eStH//fi1fvlwhISEaM2aMJKlv376qVauWxo4dqz179pjnnzBhgvz8/LRjxw55e3tLkh544AENGTJEmzdvVtu2bQv8mu/fff4AAAAAAAAAcI8JDw9X69atzQluSQoICFCzZs20fv16JScnm9tJ0vPPP2/R//nnn5fJZNKKFSvMZatWrZKTk5OGDh1qLnNzc9OgQYO0d+9eRUVFSbqx63zLli3q3bu3OcEt3UiIe3p6auXKlQV/wbLDndxGo1FGo7Gwl1EkZN0H7gdshZiDtRBbsCXiDdZCbMGWiDdYC7EFWyDOgPzJ+llJTEy0KHd1dZWrq2u29mlpaXJ3d89W7uHhoevXr+vYsWP617/+pbS0NEnK1tbDw0PSjXO9sxw+fFhVqlSxSFxLUsOGDSXdOKIkMDBQv/76q9LT01W/fn2Ldi4uLgoKCtLhw4fzdM35ZXdJ7s2bN5tvNG7YsmVLYS8B9xliDtZCbMGWiDdYC7EFWyLeYC3EFmyBOAPy5tq1a5KkwMBAi/IpU6Zo6tSp2dpXrVpVP//8szIyMuTk5CRJun79uvbt2ydJiomJMbeTpN27d6tSpUrm/lk7vLPaSVJsbKwCAgKyzZVVdvbsWXO7m8tvbZs1dkGzuyR327Zts/3G4H5lNBq1ZcsWtWnTRgaDobCXg/sAMQdrIbZgS8QbrIXYgi0Rb7AWYgu2QJwB+ZO1gzsqKsoiL5rTLm5JGjFihIYPH65BgwZp7NixyszM1LRp08wJ6JSUFElScHCwKlasqDFjxsjDw0OPPvqo9u3bp4kTJ8rZ2dncLqtPTvO5ublZjJn1Z25tbx6zINldkttgMPAAvAX3BLZGzMFaiC3YEvEGayG2YEvEG6yF2IItEGdA3mT9nHh7e+dp8++wYcMUFRWlkJAQLVq0SJJUv359jR07VtOnT5enp6ekG0nnDRs2qHv37nr22Wcl3UhOz5o1y6KddONIk6zjTW6Wmppqrr/5z9za5nSMSkHgxZMAAAAAAAAAcA+ZPn26zp8/r/DwcB09elQHDhxQZmamJKlKlSrmdjVr1tSxY8d07NgxhYeH6+zZsxoyZIguXbpk0S4gIMC8E/xmWWVly5Y1t7u5/Na2We0KGkluAAAAAAAAALjH+Pn5qUmTJqpdu7YkaevWrSpfvryqVatm0c7BwUE1a9ZUkyZN5O/vr+3btyszM1OtW7c2twkKCtIff/yR7eWXWed8BwUFSZJq1aolZ2dnHTx40KLd9evXFRERYW5X0EhyAwAAAAAAAMA9bMWKFTpw4IBGjx4tR8fcU8IpKSmaPHmyAgIC1KNHD3N5165dlZGRoc8//9xclpaWpoULF6pRo0bml2L6+PiodevWWrJkiZKSksxtFy9erOTkZHXr1s0KV2eHZ3IDAAAAAAAAAHL2008/6a233lLbtm1VvHhx/fzzz1q4cKHatWunUaNGWbTt3r27ypYtqxo1aigxMVFfffWV/vrrL23YsEFeXl7mdo0aNVK3bt00fvx4XbhwQZUrV9aiRYsUGRmpBQsWWIw5ffp0NW7cWM2aNdPQoUMVHR2t2bNnq23btmrXrp1VrpkkNwAAAAAAAADcI8qVKycnJyeFhIQoKSlJlSpV0rRp0/Tqq6/K2dkyHVy/fn0tXLhQ8+fPl7u7u5544gktW7Ysx2NFvv76a02ePFmLFy/WlStXVKdOHa1fv15Nmza1aFevXj1t3bpVb7zxhl555RV5eXlp0KBBeuedd6x2zSS5AQAAAAAAAOAe8dBDD2nTpk15ajt27FiNHTs2T23d3NwUEhKikJCQO7Zt0qSJdu/enadxCwJncgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAcA85dOiQ2rVrJ29vb3l5ealt27aKiIjIse3169c1Y8YMVatWTW5ubipdurQ6dOig6Ohoi3ZpaWl64403VLZsWbm7u6tRo0basmVLjmPu2bNHTZo0kYeHh8qUKaORI0cqOTm5oC/TzNlqIwMAAAAAAAAAbOqXX35RkyZNFBgYqClTpigzM1Nz585Vs2bNtH//flWtWtXc1mg0qkOHDtqzZ4+GDBmiOnXq6MqVK9q3b58SEhJUvnx5c9v+/ftr1apVGj16tB5++GGFhoYqODhY27dvV5MmTcztIiIi1KpVK1WvXl1z5sxRdHS03nvvPZ08eVIbN260yjWT5AYAAAAAAACAe8TkyZPl7u6uvXv3qnjx4pKk3r17q0qVKpowYYJWr15tbvv+++9r586d2rVrlxo2bJjrmPv379fy5csVEhKiMWPGSJL69u2rWrVqaezYsdqzZ4+57YQJE+Tn56cdO3bI29tbkvTAAw9oyJAh2rx5s9q2bVvg18xxJQAAAAAAAABwjwgPD1fr1q3NCW5JCggIULNmzbR+/XrzsSGZmZn68MMP1aVLFzVs2FDp6em6du1ajmOuWrVKTk5OGjp0qLnMzc1NgwYN0t69exUVFSVJSkxM1JYtW9S7d29zglu6kRD39PTUypUrrXHJ9reT22g0ymg0FvYyioSs+8D9gK0Qc7AWYgu2RLzBWogt2BLxBmshtmALxBmQP1k/K4mJiRblrq6ucnV1zdY+LS1N7u7u2co9PDx0/fp1HTt2TP/61790/PhxnT17VnXq1NHQoUO1aNEiXb9+XbVr19aHH36oFi1amPsePnxYVapUsUhcSzLv/o6IiFBgYKB+/fVXpaenq379+hbtXFxcFBQUpMOHD9/dTbgDu0tyb968WR4eHoW9jCIltwPeAWsh5mAtxBZsiXiDtRBbsCXiDdZCbMEWiDMgb7J2VwcGBlqUT5kyRVOnTs3WvmrVqvr555+VkZEhJycnSTdeLrlv3z5JUkxMjCTp5MmTkm4cWeLv76/58+dLkmbMmKF27drpwIEDqlOnjiQpNjZWAQEB2ebKKjt79qy53c3lt7YNDw/Px5Xnnd0ludu2bZvtNwb3K6PRqC1btqhNmzYyGAyFvRzcB4g5WAuxBVsi3mAtxBZsiXiDtRBbsAXiDMifrB3cUVFRFnnRnHZxS9KIESM0fPhwDRo0SGPHjlVmZqamTZtmTkCnpKRIkvnYkqSkJB0+fNicRG/ZsqUqV66sWbNmacmSJeY+Oc3n5uZmMWbWn7m1zaovaHaX5DYYDDwAb8E9ga0Rc7AWYgu2RLzBWogt2BLxBmshtmALxBmQN1k/J97e3nna/Dts2DBFRUUpJCREixYtkiTVr19fY8eO1fTp0+Xp6SlJ5iNNHn/8cYtd4hUqVFCTJk0sXibp7u6utLS0bHOlpqZajJX1Z25tczpGpSDw4kkAAAAAAAAAuIdMnz5d58+fV3h4uI4ePaoDBw4oMzNTklSlShVJUtmyZSVJpUuXzta/VKlSunLlivlzQECAeSf4zbLKssbKOqYkt7ZZ7QoaSW4AAAAAAAAAuMf4+fmpSZMmql27tiRp69atKl++vKpVqyZJql27tgwGg/mM7pudPXtWJUuWNH8OCgrSH3/8ke3ll1nnfAcFBUmSatWqJWdnZx08eNCi3fXr1xUREWFuV9BIcgMAAAAAAADAPWzFihU6cOCARo8eLUfHGylhLy8vBQcHa8+ePfrtt9/MbU+cOKE9e/aoTZs25rKuXbsqIyNDn3/+ubksLS1NCxcuVKNGjczHnfj4+Kh169ZasmSJkpKSzG0XL16s5ORkdevWzSrXZ3dncgMAAAAAAAAAcvbTTz/prbfeUtu2bVW8eHH9/PPPWrhwodq1a6dRo0ZZtJ0xY4Z+/PFHtWzZUiNHjpQkffTRR/L399eECRPM7Ro1aqRu3bpp/PjxunDhgipXrqxFixYpMjJSCxYssBhz+vTpaty4sZo1a6ahQ4cqOjpas2fPVtu2bdWuXTurXDNJbgAAAAAAAAC4R5QrV05OTk4KCQlRUlKSKlWqpGnTpunVV1+Vs7NlOrhGjRrauXOn3njjDU2bNk2Ojo5q2bKlQkJCVK5cOYu2X3/9tSZPnqzFixfrypUrqlOnjtavX6+mTZtatKtXr562bt2qN954Q6+88oq8vLw0aNAgvfPOO1a7ZpLcAAAAAAAAAHCPeOihh7Rp06Y8t69Xr562bNlyx3Zubm4KCQlRSEjIHds2adJEu3fvzvMa/inO5AYAAAAAAAAA2C2S3AAAAAAAAAAAu0WSGwAAAAAAAABgt0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJDcAAAAAAAAAwG6R5AYAAAAAAAAA2C2S3AAAAAAAAAAAu0WSGwAAAAAAAABgt5wLewF5lZGRIUmKjo6Wt7d3Ia+maEhPT9elS5cUExMjZ2e7+VbCjhFzsBZiC7ZEvMFaiC3YEvEGayG2YAvEGZA/iYmJkv6XH0V2dvMkOXXqlCSpZs2ahbwSAAAAAAAAALCtU6dOqUGDBoW9jCLJwWQymQp7EXlx5coV+fv7Kyoqip3c/89oNGrz5s1q27atDAZDYS8H9wFiDtZCbMGWiDdYC7EFWyLeYC3EFmyBOAPyJzExUYGBgbp8+bL8/PwKezlFkt3s5HZycpIkeXt7k+T+f0ajUR4eHvL29uYvBdgEMQdrIbZgS8QbrIXYgi0Rb7AWYgu2QJwBdycrP4rsePEkAAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktz3gNdee039+/cv7GXYlaFDh8rf319lypTRmTNn5OnpqYSEhMJeVr4MGzZMc+fOtfm83377rSZPnmzzeQEAAAAAAICckOS2AU9PT/OXk5OTXF1dzZ/bt29f2Mu7azt27JCDg4O6du1qUT569Og8J9137NghX1/fPM3j6ekpLy8vVaxYUZMmTVJmZuZdrXvXrl1atWqV/v77b507d04VKlRQcnKyfHx8JEn9+/fX6NGjc+xbpUoVHT58WKGhoQoKCrqr+QvCqVOntGHDBg0ePFhLly41x1OxYsXM9yrra+nSpQU6d8eOHbVw4UKdO3euQMcFAAAAAAAA7gZJbhtITk42fz3xxBN69913zZ83btxobpeeni6TyVSIK80/V1dXbdq0Sfv377fqPD4+PkpOTlZSUpLWr1+vL774QgsWLMjWzmg03nGsv//+WxUqVDAntfPqt99+U2pqqurWrZuvftYwb948Pffcc3JxcVGvXr3M8fTf//5XkhQdHW0u69Wrl7lfXu7Pnbi7u+vJJ5/M8f4DAAAAAAAAtkaSu5A5ODjok08+Ua1atVSsWDElJydrzpw5evjhh+Xl5aWHHnpIn3zyiUWfn376SbVr15afn59mzpyppKQki/o///xTnTp1UsmSJVWxYkVNmzbNvOv577//VuvWreXj4yN/f389/vjjunbt2l2v383NTa+88orGjRuXa5sLFy6oV69eCggIUNmyZTV69GilpaUpLi5O7du3V0JCgnnXcXh4+B3nrF27tp544gkdPXpUkZGRcnBw0MKFC1W5cmWVL19ekrR582bVrVtXPj4+qlevnrZu3SpJ+uijjzRkyBD9+uuv8vT0VP/+/c1jxMfH66OPPtLSpUs1d+5ceXp6qmbNmuZ5f/jhB3Xq1OmO60tKStLQoUMVEBCggIAADRs2TFevXpUkpaWlaeDAgSpRooR8fHxUq1YtHThwQJK0ZcsW1alTR15eXipdurSGDx+e6xzr1q1Ty5Yt77iWrB3nU6ZMUZkyZfT888/nuAs9KChIoaGh5s9bt25Vw4YN5evrq5o1a2rdunUW7Vu0aJGtDAAAAAAAACgMJLmLgGXLlmnz5s1KTExUsWLFVLFiRW3btk2JiYn68ssv9frrr2v37t2SpCtXruipp57SSy+9pIsXL6ply5ZatmyZeaxr166pVatWatWqlWJiYhQeHq7ly5dr4cKFkqSJEyeqcuXKunTpks6fP6+QkBA5Ozv/o/WPGTNGv/76qzZt2pStzmQy6amnnlKZMmX0559/6tdff9WRI0c0bdo0FS9eXBs3bjTv0s7a6X4nR44c0U8//aR69eqZy9atW6eDBw/q77//1qlTp9S5c2dNnjxZcXFxmjBhgp566in9/fffGjlypObNm6fatWsrOTnZIrErSSNHjlSvXr00YsQIi53RWXM89dRTd1zfqFGjdOrUKR07dky//vqrfvvtN73yyiuSpEWLFunIkSM6deqU4uPjtWbNGpUpU0aS1K9fP73++utKSkrSX3/9pT59+uQ4/rVr13Ty5ElVq1btjmuRpGPHjsnZ2VlnzpzR4sWL79j+6NGj6tatm2bOnKnLly9r/vz56tOnj37//Xdzmxo1aigiIiJP8wMAAAAAAADWRJK7CBg7dqzKli0rV1dXOTo66tlnn1VgYKAcHBzUokULPfnkk9qxY4ckaf369SpbtqxeeOEFOTs7q2HDhmrRooV5rA0bNsjPz0+jR4+Wi4uLKlSooFGjRpkT4QaDQbGxsYqMjJTBYFDjxo3l4uLyj9bv7e2tSZMmafz48dmOWzl48KBOnjypkJAQeXh4qHjx4powYYJFYj4vEhIS5OvrKz8/P3Xv3l0vv/yyxbnfU6ZMka+vrzw8PLRixQo1b95czzzzjJydndW1a1c1adJE33zzzV1fY1xcnI4dO6bmzZvftl1mZqaWLl2qd955R8WLF1eJEiU0Y8YMff3118rMzJTBYFBSUpJOnDghk8mkKlWqKDAwUNKN782pU6d08eJFFStWTI0bN85xjitXrki6cd/zwsfHRxMnTpSLi4s8PDzu2H7+/Pnq37+/WrZsKUdHRzVp0kQdO3bUypUrzW28vLx0/fr1f/R/AQAAAAAAAAAFgSR3EVChQgWLz0uXLlW9evXk7+8vX19fhYWF6dKlS5Kks2fPqmLFirn2j4yM1LFjx+Tr62v+eu2118wvCQwJCVG5cuXUunVrPfDAA5o6dWqOL3C8+WWGNx/ZkZvhw4frypUrWr58uUV5ZGSk4uPjzdfi6+urrl276vz583m7Of/Px8dH8fHxunLlin7//XdNnjxZDg4OOd6D6OhoPfDAAxb9H3zwQUVHR+drzpuFhYWpVatWcnV1vW27ixcv6vr16xbzP/jgg0pLS9OlS5fUp08f9e/fX8OGDVOJEiXUv39/8/f2u+++07Fjx1S1alXVrVvXIql8Mz8/P0lSYmJintZerlw5OTrm/Uc9MjJS8+bNs4ih77//XmfPnjW3SUpKynPSHAAAAAAAALCm+z7JnZoqLV4sPfus1Lz5jT8XL75Rbis3JyDPnDmjfv36adasWbpw4YLi4+MVHBxs3iFdtmxZnT592qJ/VFSU+b8DAwP16KOPKj4+3vyVmJhoPnajVKlSmjt3rk6fPq0ffvhB8+bN03fffZdtTTm9zPB2XFxc9Pbbb2vy5MkWLzcMDAxUqVKlLNaTkJCg5OTkbNf+T9w8Tvny5RUZGWlRHxkZaT6vOz9jZcnrUSUlS5aUi4uLxfyRkZFydXVViRIl5OzsrAkTJujIkSM6ceKEzpw5ozfffFOSVK9ePa1evVqXLl3S5MmT1bNnzxx/GeDh4aGHH35Yv/32211dj6enZ7Yd2Fm/BJFufM9GjRpl8T1LTk7WZ599Zm5z/PjxbOd6AwAAAAAAAIXhvk5yr1snlS0r9e0rrV0r7dx548++fW+U//CD7deUnJwsk8mkUqVKydHRUWFhYdq8ebO5vkOHDoqJidEXX3yh9PR0HTx4UNu3bzfXd+zYUefPn9fcuXOVmpqqjIwM/f777+bjTlauXKkzZ87IZDLJ19dXTk5O//hM7iw9e/ZUsWLFtGLFCnNZgwYNFBgYqEmTJikpKUkmk0mnT5/Wxo0bJUmlS5dWUlKSLly4UCBrkKTnnntOO3bs0Pfff6/09HStWbNGP/30k55//vk89S9durT++usv8y8Wrl+/rq1btyo4ONiinclkUmpqqsWXdOM+TJw4UZcvXzafCd6nTx85Ojpq27ZtioiIUHp6uooVKyY3Nzc5Ozvr+vXrWrx4sa5cuSJHR0f5+vpKUq7fm06dOll83/MjKChIf/31l8LDw5Wenq5Zs2YpLi7OXP/CCy9o4cKF2r59uzIyMpSWlqa9e/fqxIkT5jY7duxQx44d72p+AAAAAAAAoCDdt0nudeukp5+W4uNvfM46sSPrz/h4qXPnG+1sqUaNGpo4caJatmyp4sWLa8WKFRY7iP39/fX999/rww8/VMmSJbVlyxb16NHDXO/p6amtW7fqxx9/1AMPPKDixYurZ8+e5p26hw4dUuPGjeXp6anHHntMgwYNytMO5bxwdHTUzJkzLRKmTk5OWr9+vWJiYlS9enX5+PioQ4cOOnXqlCSpatWqGjRokGrUqCFfX1/t2rXrH6+jcuXKWrNmjaZMmSJ/f3+99dZb+u677/Tggw/mqf/gwYMVExMjf39/1alTRzt37lStWrVUokQJi3ZHjx6Vu7u7xddPP/2kDz/8UA888IBq1KihmjVrqnLlypozZ44k6fz58+rRo4d8fX1VqVIl+fj4aMqUKZJuvIC0cuXK8vLy0ssvv6xly5apePHiOa7xhRde0PLlyy12zefn/syaNUtdu3ZVQECA0tLSLI6kqVu3rr755htNmjRJJUuWVLly5TR58mSlpaVJklJTU/Wf//xHgwcPzvfcAAAAAAAAsL60tDS98cYbKlu2rNzd3dWoUSNt2bIlT31jYmLUvXt3+fr6ytvbW507d9Zff/112z67du2Sg4ODHBwczEfz2pKD6dY3BRZRiYmJ8vHxUUJCQp5fuJeb1NQbO7Xj46XbXb2Dg+TrK509K7m5/aMprcJoNCosLEzBwcEyGAyFvZx71ssvv6wKFSro9ddfL+ylWHjhhRcUFBSk4cOH22xOo9GoAQMGqHz58po5c6bN5sW9j+cZbIl4g7UQW7Al4g3WQmzBFogzIH/uJi/ao0cPrVq1SqNHj9bDDz+s0NBQHThwQNu3b1eTJk1y7ZecnKx69eopISFBr732mgwGg95//32ZTCZFRETkuCEzMzNTjz76qE6ePKmrV6/q4sWL2TaLWlvBnFNhZ779Vrpy5c7tTKYb7Vatknr3tv66UDTVrl1b7du3L+xlZDN//vxCmbdbt27Zjm4BAAAAAABA0bB//34tX75cISEhGjNmjCSpb9++qlWrlsaOHas9e/bk2nfu3Lk6efKk9u/frwYNGkiS2rdvr1q1amn27NmaMWNGtj6ff/65oqKiNHjwYH344YfWuag7uC+PK1m7Vsrr+w4dHaUc3suI+8jQoUMVGBhY2MsAAAAAAAAA7mjVqlVycnLS0KFDzWVubm4aNGiQ9u7dq6ioqNv2bdCggTnBLUnVqlVTq1attHLlymztL1++rEmTJumtt94yv2OuMNjdTm6j0XhX5xDf7NIlJ2Vm5i3LnZkpXbqUKaMx4x/NaQ1Z9+Gf3g8gr4g5WAuxBVsi3mAtxBZsiXiDtRBbsAXiDMifrJ+VxMREi3JXV1e5urpma3/48GFVqVIl29EmDRs2lCRFRETkuKEzMzNTR48e1cCBA7PVNWzYUJs3b1ZSUpK8vLzM5ZMnT1aZMmX0wgsv6O23387/xRUQu0tyb968WR4eHv9ojOvXG8jBIUAmk8Md2zo4mHT9+jmFhR34R3NaU14PjQcKCjEHayG2YEvEG6yF2IItEW+wFmILtkCcAXlz7do1ScqWmJ4yZYqmTp2arX1sbKwCAgKylWeVnT17Nsd5Ll++rLS0tDv2rVq1qiTp6NGjmj9/vsLCwuTk5JT3C7ICu0tyt23b9h+/ePLyZQf9/POdE9ySZDI56IUXShXJM4g7dOigSpUq6f3338/xRQ3Lli3TvHnz9NNPPxXC6nAvMhqN2rJli9q0acPLQVCgiC3YEvEGayG2YEvEG6yF2IItEGdA/mTt4I6KirLIi+a0i1uSUlJScqxzc3Mz1+fWL7dxc+o7cuRItW/fXm3bts3LZViV3SW5DQbDP34A9ughvfaaFB9/4+WSuXFwkHx9peefd1ZBPHObN2+uvXv3ymAwyMXFRXXq1NHs2bP16KOP3tV4GzZsUFhYmAwGg3bv3q2nn35a8fHx5vp+/fqpX79+/3zhwC0K4ucQyAmxBVsi3mAtxBZsiXiDtRBbsAXiDMibrJ8Tb2/vPG3+dXd3V1paWrby1NRUc31u/STlqe+KFSu0Z88eHTt2LA9XYH335Ysn3dykRYtu/LdDLhu6s8oXLbrRvqC8++67Sk5O1tmzZ1W3bl117ty54AYHAAAAAAAAcF8LCAhQbGxstvKssrJly+bYz9/fX66urnnq+/rrr6tbt25ycXFRZGSkIiMjzZtvo6Kicj0SxVruyyS3JHXqJK1de2OntiQ5Olr+6esrff/9jXbWkPVG05iYGJ0/f17du3dXyZIlVaFCBU2cOFHp6emSbpyF06VLF/n5+cnX11ePPvqoTp8+LUlq3bq11q1bp7i4OLVv314JCQny9PSUp6enwsPDFRoaqqCgIEnS+++/r5YtW1qsYcWKFapWrZr58/Lly1WnTh35+vqqQYMG2rNnj3UuHgAAAAAAAIBVBAUF6Y8//sj2osp9+/aZ63Pi6Oio2rVr6+DBg9nq9u3bpwcffND80smoqCgtW7ZMlSpVMn99+OGHkqR69erZ/Ojn+zbJLUlPPSWdPSstXiw9/bTUvPmNPxcvvlFurQS3dOPA+C+//FIVK1ZUz549ZTAY9Pfffys8PFxr167VrFmzJEnvvfee0tPTFRMTo7i4OC1YsMDiDaaSVLx4cW3cuFE+Pj5KTk5WcnKynnjiCYs2PXv21K5duxQVFWUuW7x4sfr06SNJCgsL05gxYxQaGqrLly9r/Pjx6tSpk+Li4qx3EwAAAAAAAAAUqK5duyojI0Off/65uSwtLU0LFy5Uo0aNzC+wPHPmjH777bdsfQ8cOGCR6P7999+1bds2devWzVz23XffZft67rnnJElff/213n//fWteYjZ2dyZ3QXNzk3r3vvFlC+PHj9fUqVPl5uamoKAgLVq0SM2bN9e5c+fMu7AnTpyoqVOnasKECTIYDIqLi9PJkyf1yCOP5PqbljspXbq0WrduraVLl2rcuHG6cOGCtmzZorlz50qSPv30U73++uuqV6+eJOmZZ57R7NmzFRYWZk6EAwAAAAAAACjaGjVqpG7dumn8+PG6cOGCKleurEWLFikyMlILFiwwt+vbt6927twp000vLRwxYoS++OILdejQQWPGjJHBYNCcOXNUunRpvfbaa+Z2Tz/9dLZ5IyIiJEnt27dXiRIlrHZ9Obmvd3IXhnfeeUfx8fE6d+6c/vOf/8jNzU1ubm4qXbq0uc2DDz6o6OhoSTfOt3niiSfUvXt3lSlTRqNGjcr1Dah30rdvXy1evFiS9M0336hx48aqUKGCJCkyMlITJkyQr6+v+SsiIkIxMTH/8IoBAAAAAAAA2NLXX3+t0aNHa/HixRo5cqSMRqPWr1+vpk2b3rafl5eXduzYoaZNm2ratGmaPHmyHnnkEe3cuVMlS5a00erzjyR3IStfvrxSU1N1/vx5c1lkZKTKly8vSfL09NS7776r33//XXv37tWPP/5o3n19M0fHO38rO3furOjoaB06dMjiqBJJCgwM1OzZsxUfH2/+unr1qsaNG1cAVwkAAAAAAADAVtzc3BQSEqLY2FilpqZq//79evLJJy3a7Nixw2IXd5by5cvr22+/VUJCgpKSkvTDDz+ocuXKd5xz6tSpMplMNt/FLZHkLnTlypVTixYtNGbMGF29elVnzpzR9OnT1a9fP0nS+vXr9ccffygzM1Pe3t4yGAxyds5+ykzp0qWVlJSkCxcu5DqXu7u7unbtqokTJ+r48eMW5+i8+OKLCgkJ0aFDh2QymXTt2jVt3brVvKMcAAAAAAAAAIoiktxFwLJly5SSkqKKFSvq8ccfV4cOHTR27FhJ0qlTp9SuXTt5eXmpRo0aeuyxxzR8+PBsY1StWlWDBg1SjRo15Ovrq127duU4V9++fbVp0yY9/fTTFi+w7NSpk2bOnKkhQ4bIz8/P/EbUzMxM61w0AAAAAAAAABSA+/7Fk7a0Y8eOHMvLlCmjVatW5Vg3evRojR49Ose6rVu3KiwszPz5888/t3hrapMmTdS/f3+LPs2aNcvxf0OQpG7dulns7gYAAAAAAACAoo6d3AAAAAAAAAAAu0WSGwAAAAAAAABgt0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJDcAAAAAAAAAwG45F/YCCl1qqvTtt9LatVJcnFS8uPT001K3bpKbW2GvDgAAAAAAAABwG/f3Tu5166SyZaW+fW8kuXfuvPFn3743yn/4obBXaFVnzpyRp6enEhISCnspAAAAAAAAAHBX7t8k97p1N3Zsx8ff+JyZaflnfLzUufONdgWkefPmcnJy0tGjR81l8fHxcnBwUGRkZIHNkxsHBwdFRESYP1eoUEHJycny8fGx+twAAAAAAAAAYA33Z5I7NVXq3//Gf5tMObfJKu/f/0b7AuLn56fx48cX2HgAAAAAAAAAcD+7P5Pc334rXbmSe4I7i8l0o92qVQU29YgRI7R792799NNPOdYvX75cderUka+vrxo0aKA9e/aY6+Lj49WtWzf5+vqqWrVq+vTTT/X000+b65csWaJatWrJy8tLFSpU0OTJk2X6/2ts2LChJKlx48by9PTUjBkzFBkZKQcHB8XHx+vw4cPy8vLStWvXzOPFxsbKxcVFMTExkqRffvlFLVq0kL+/vypXrqwvvviiwO4LAAAAAAAAANyN+zPJvXat5JjHS3d0lL77rsCm9vf31xtvvKFx48ZlqwsLC9OYMWMUGhqqy5cva/z48erUqZPi4uIkSS+//LKuXr2q06dPa/v27Vq6dKlF/+LFi2vNmjVKTEzUunXr9Pnnn2vZsmWSpP3790uS9uzZo+TkZE2YMMGib926dVWxYkV9d9O1Ll26VM2aNVO5cuV07tw5tWnTRsOHD9fFixe1du1aTZkyRT/++GOB3RsAAAAAAAAAyK/7M8kdF/e/s7fvJDNTuny5QKcfPXq0Tp8+rbVr11qUf/rpp3r99ddVr149OTo66plnnlG1atUUFhamjIwMrVixQm+99ZZ8fHwUEBCgV1991aJ/+/btVaVKFTk4OCgoKEg9evTQjh078ryuvn37avHixebPixcvVt++fc3/3bRpU3Xv3l1OTk6qVauWBgwYYE6iAwAAAAAAAEBhuD+T3MWL528nt79/gU7v7u6uKVOmaMKECcrIyDCXR0ZGasKECfL19TV/RUREKCYmRpcuXZLRaFRgYKC5fYUKFSzG3bRpkxo3bqwSJUrIx8dH8+bN06VLl/K8rl69emnbtm2KjY3VkSNH9Oeff+qZZ54xry0sLMxibR999JFiY2P/4d0AAAAAAAAAgLt3fya5n346fzu5u3Qp8CUMGjRImZmZWrRokbksMDBQs2fPVnx8vPnr6tWrGjdunEqUKCGDwaCoqChz+zNnzpj/+/r163rmmWf0wgsvKCYmRgkJCRo2bJj5TG5JcnBwuO2aypUrp2bNmmnZsmVavHixnnnmGRUrVsy8ti5dulisLSkpSWFhYQV1SwAAAAAAAAAg3+7PJHe3bpKfn3SHpK8cHG6069q1wJfg5OSk6dOna8aMGeayF198USEhITp06JBMJpOuXbumrVu3Kjo6Wk5OTurevbumTp2qhIQEnTt3Th988IG5b1pamlJTU1W8eHG5urpq37592Y4SKV26tP7888/brqtv375atGiRli1bZj6qRJL69Omjbdu2afXq1TIajTIajYqIiNCBAwcK5oYAAAAAAAAAwF24P5Pcbm5S1g7q3BLdWeWLFt1obwXPPvusKleubP7cqVMnzZw5U0OGDJGfn58qVaqkDz/8UJn/v+v8448/lqurqypUqKDmzZura9eucnZ2liR5eXnp008/1dChQ+Xt7a3p06frueees5jv7bff1siRI+Xn56eZM2fmuKZnnnlGf//9txwdHdWyZUtzebly5bRp0ybNnz9fAQEBKl26tF588UUlJiYW9G0BAAAAAAAAgDxzLuwFFJpOnaS1a6X+/aUrV26cvZ2Z+b8/fX1vJLg7dSqwKXN6CeTPP/9s8blbt27q1q1bjv39/Py0evVq8+fFixerZMmS5s/Dhg3TsGHDcp1/8ODBGjx4sEXZzceZSFKxYsWUlJSUY/+6detq8+bNuY4PAAAAAAAAALZ2/ya5Jempp6SzZ6VVq6TvvpMuX77xkskuXW4cUWKlHdx36+TJk0pISNCjjz6qU6dO6Z133lHjxo0Le1kAAAAAAAAAUGju7yS3dCOR3bv3ja8i7urVq+rdu7eioqLk4+Ojp59+Ws2bNy/sZQEAAAAAAABAoSHJbUeCgoL022+/mT8bjUaFhYUV4ooAAAAAAAAAoHDdny+eBAAAAAAAAADcE0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJDcAAAAAAAAAwG6R5AYAAAAAAAAA2C2S3AAAAAAAAAAAu0WSGwAAAAAAAABgt0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJDcAAAAAAAAAwG6R5AYAAAAAAACAe0haWpreeOMNlS1bVu7u7mrUqJG2bNmSp74xMTHq3r27fH195e3trc6dO+uvv/7Kse2CBQtUvXp1ubm56eGHH9bHH39ckJeRZyS5AQAAAAAAAOAe0r9/f82ZM0e9evXShx9+KCcnJwUHB2vXrl237ZecnKwWLVpo586dmjBhgt58800dPnxYzZo1U1xcnEXb+fPna/DgwapZs6Y+/vhjPfbYYxo5cqTeffdda15ajpxtPiMAAAAAAAAAwCr279+v5cuXKyQkRGPGjJEk9e3bV7Vq1dLYsWO1Z8+eXPvOnTtXJ0+e1P79+9WgQQNJUvv27VWrVi3Nnj1bM2bMkCSlpKRo4sSJ6tChg1atWiVJGjJkiDIzM/X2229r6NCh8vPzs/KV/g87uQEAAAAAAADgHrFq1So5OTlp6NCh5jI3NzcNGjRIe/fuVVRU1G37NmjQwJzglqRq1aqpVatWWrlypbls+/btiouL04gRIyz6v/jii7p69ao2bNhQgFd0Z3a3k/vixYtKTU01f3ZxcVGxYsWUkZGhxMTEbO2zfmOQlJSk9PR0i7pixYrJxcVFaWlpunbtmkWdwWCQp6enTCaT4uPjs43r4+MjR0dHJScny2g0WtS5u7vLzc1N169f19WrVy3qnJyc5O3tLUmKj4+XyWSyqPf29paTk5OuXbumtLQ0izo3Nze5u7vLaDQqOTlZ6enpyszM1MWLF+Xi4iIfHx9JUkJCgjIzMy36enp6ymAwKCUlxeL+SZKrq6s8PDxyvIcODg7y9fWVJCUmJiojIyPHe5iamqqUlJQc72FmZqYSEhKy3UNfX185ODjkeA89PDzk6uqa4z10dnaWl5eXJOnKlSvZxs26h1evXtX169dvew9vdvP3Jqd76OXlJWdn5xy/N1n3MD09XUlJSRZ1/+QeZsX3ne5hTvGddQ9ziu+se3in+L71Hqanp8tkMsloNN5VfN/tPXR0dDTHd0738HbxfT8/I2528z0sis+IuLg48/PM2fnGX008I+58D4vaM0L6Z/Ftq2fEzX9/enh48IxQ0X9G2Mu/I9zd3SVJcXFxcnS03EvCM+IGe3hG3Kwo/zvi6tWr2f7u5BnxP0XxGWEv/47I+nsy6/p4RtjnM6Ko/zsiK84SEhLk4+PDM8KOnhFZ+HfEDbZ6RmSt69ZxXF1d5erqmm3sw4cPq0qVKuZ7kqVhw4aSpIiICAUGBmbrl5mZqaNHj2rgwIHZ6ho2bKjNmzcrKSlJXl5eOnz4sCSpfv36Fu0effRROTo66vDhw+rdu3e2cazF7pLcP/30kzw8PMyfHR0d5eLiYvGX8M3c3Nwk3Ths/dYANxgMcnJyUnp6erZgyhrXZDJlC37pRhA5ODjo+vXr2R4+zs7OcnZ2VkZGRraHpYODgzn4bg1+6cYPgKOjo4xGY7YfHCcnJxkMhmzjhoeHW1xrTuNmXevtxr3X7mFO4+Z2D/MzblG8hzmNm3UPcxo361rv9nuzZcuWInkPcxqXZ0T2ay3Kz4is55nEMyKLPT4jrBnfBfmMCA8P5xmRw7UW5WfEzYryM2Lnzp25jlsU7yHPCPv+d8TNf3fyjPifovyMsJd/R2zZsoVnhOz/GXGzoviM2LFjB8+IfIxblJ4R/DviBls9I7J+WXBrYnrKlCmaOnVqtrFjY2MVEBCQrTyr7OzZs9nqJOny5ctKS0u7Y9+qVasqNjZWTk5OKlWqlEU7FxcXFS9ePNc5rMXuktxNmzY1/9ZMur9/c5qenq59+/apUaNG7OTO4R7ym1Pr7OTev3+/2rRpI5PJdN/95vRm9vCMuFlR34EVFxdnfp6xk9t+nxGSfeyuuPnvT3ZyZ7+HRfEZYS//jnB3d9eWLVvUrFkzdnLb8TPiZkX53xFXr17V9u3bLf7u5BnxP0XxGWEv/47I+nuyTZs2cnFx4Rlhp8+Iov7viKw4e+KJJ9jJLft6RmTh3xE32Hond1RUlMXu7Jx2cUs3zsvOqS4rsX7r9/vmfrmNe2vflJQUubi45DiOm5tbrnNYi4Pp1u96EZWYmCgfHx8lJCRk22p/vzIajQoLC1NwcLAMBkNhLwf3AWIO1kJswZaIN1gLsQVbIt5gLcQWbIE4A/Inv3nRWrVqqXTp0vrxxx8tyo8fP66aNWtq3rx5euGFF7L1u3TpkkqWLKm33npLkydPtqibO3euXnzxRf3222+qWrWqXnrpJc2bNy9bgl6SSpUqpVatWumbb77J55XePV48CQAAAAAAAAD3iICAAMXGxmYrzyorW7Zsjv38/f3l6uqap74BAQHKyMjQhQsXLNpdv35dcXFxuc5hLSS5AQAAAAAAAOAeERQUpD/++CPbMSn79u0z1+fE0dFRtWvX1sGDB7PV7du3Tw8++KD5yJ6sMW5te/DgQWVmZuY6h7WQ5AYAAAAAAACAe0TXrl2VkZGhzz//3FyWlpamhQsXqlGjRuYXWJ45c0a//fZbtr4HDhywSF7//vvv2rZtm7p162Yua9mypfz9/fXZZ59Z9P/ss8/k4eGhDh06WOPScmV3L54EAAAAAAAAAOSsUaNG6tatm8aPH68LFy6ocuXKWrRokSIjI7VgwQJzu759+2rnzp0WL+ocMWKEvvjiC3Xo0EFjxoyRwWDQnDlzVLp0ab322mvmdu7u7nr77bf14osvqlu3bnryyScVHh6uJUuWaPr06fL397fpNZPkBgAAAAAAAIB7yNdff63Jkydr8eLFunLliurUqaP169eradOmt+3n5eWlHTt26JVXXtG0adOUmZmp5s2b6/3331fJkiUt2o4YMUIGg0GzZ8/WunXrFBgYqPfff1+jRo2y5qXliCQ3AAAAAAAAANxD3NzcFBISopCQkFzb7NixI8fy8uXL69tvv83TPEOGDNGQIUPuZokFijO5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAACwWyS5AQAAAAAAAAB2iyQ3AAAAAAAAAMBukeQGAAAAAAAAANgtktwAAAAAAAAAALtFkhsAAAAAAAAAYLdIcgMAAAAAAAAA7BZJbgAAAAAAAACA3SLJDQAAAAAAAABQfHy8hg4dqpIlS6pYsWJq0aKFfvnllzz3P3HihNq1aydPT0/5+/urT58+unjx4m37LF26VA4ODvL09LzrdTvfdU8AAAAAAAAAwD0hMzNTHTp00JEjR/T666+rRIkSmjt3rpo3b65Dhw7p4Ycfvm3/6OhoNW3aVD4+PpoxY4aSk5P13nvv6ddff9X+/fvl4uKSrU9ycrLGjh2rYsWK/aO1k+QGAAAAAAAAgPvcqlWrtGfPHn377bfq2rWrJKl79+6qUqWKpkyZomXLlt22/4wZM3T16lUdOnRIFSpUkCQ1bNhQbdq0UWhoqIYOHZqtz7Rp0+Tl5aUWLVpo7dq1d712jisBAAAAAAAAgPvcqlWrVLp0aT3zzDPmspIlS6p79+76/vvvlZaWdtv+q1evVseOHc0Jbklq3bq1qlSpopUrV2Zrf/LkSb3//vuaM2eOnJ3/2V5su9vJbTQaZTQaC3sZRULWfeB+wFaIOVgLsQVbIt5gLcQWbIl4g7UQW7AF4gzIn6yflcTERItyV1dXubq6Ftg8hw8fVr169eToaLkvumHDhvr888/1xx9/qHbt2jn2jYmJ0YULF1S/fv1sdQ0bNlRYWFi28tGjR6tFixYKDg7OMQmeH3aX5N68ebM8PDwKexlFypYtWwp7CbjPEHOwFmILtkS8wVqILdgS8QZrIbZgC8QZkDfXrl2TJAUGBlqUT5kyRVOnTi2weWJjY9W0adNs5QEBAZKks2fP5prkjo2NtWh7a//Lly8rLS3NnJTfsGGDNm/erCNHjhTI2u0uyd22bVt5e3sX9jKKBKPRqC1btqhNmzYyGAyFvRzcB4g5WAuxBVsi3mAtxBZsiXiDtRBbsAXiDMifrB3cUVFRFnnR2+3izszM1PXr1/M0vqurqxwcHJSSkpLjmG5ubpKklJSUXMfIqrtTf1dXV12/fl2vvPKKhg0bpho1auRpjXdid0lug8HAA/AW3BPYGjEHayG2YEvEG6yF2IItEW+wFmILtkCcAXmT9XPi7e2d582/P/30k1q0aJGntidOnFC1atXk7u6e47nbqampkiR3d/dcx8iqy0v/999/X5cuXdKbb76Zp/Xlhd0luQEAAAAAAAAAuatWrZoWLlyYp7ZZR4wEBASYjx25WVZZ2bJl7zhGbv39/f3l6uqqhIQETZs2TSNGjFBiYqJ5l3pycrJMJpMiIyPl4eGhUqVK5WntWUhyAwAAAAAAAMA9pEyZMurfv3+++gQFBSk8PFyZmZkWL5/ct2+fPDw8VKVKlVz7litXTiVLltTBgwez1e3fv19BQUGSpCtXrig5OVmzZs3SrFmzsrWtVKmSOnfurLVr1+Zr7SS5AQAAAAAAAOA+17VrV61atUpr1qxR165dJUmXLl3St99+q06dOlmct/3nn39Kkh566CFz2bPPPqtFixYpKirK/JLMH3/8UX/88YdeeeUVSVKpUqX03XffZZv7o48+0t69e/XNN9/k+PLKOyHJDQAAAAAAAAD3ua5du+pf//qXBgwYoOPHj6tEiRKaO3euMjIysp2f3apVK0lSZGSkuWzChAn69ttv1aJFC40aNUrJyckKCQlR7dq1NWDAAEmSh4eHnn766Wxzr127Vvv378+xLi9IcgMAAAAAAADAfc7JyUlhYWF6/fXX9dFHHyklJUUNGjRQaGioqlatesf+gYGB2rlzp1599VWNGzdOLi4u6tChg2bPnm2xC9waSHIDAAAAAAAAAOTn56cvv/xSX3755W3b3byD+2Y1a9bUpk2b8j1vaGioQkND890vi+OdmwAAAAAAAAAAUDSR5AYAAAAAAAAA2C2S3AAAAAAAAAAAu0WSGwAAAAAAAABgt0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJDcAAAAAAAAAwG6R5AYAAAAAAAAA2C2S3AAAAAAAAAAAu0WSGwAAAAAAAABgt0hyAwAAAAAAAADsFkluAAAAAAAAAIDdIskNAAAAAAAAALBbJLkBAAAAAAAAAHaLJDcAAAAAAAAAwG45F/YC8spoNEqSTpw4IW9v70JeTdGQnp6uqKgo/fbbb3J2tptvJewYMQdrIbZgS8QbrIXYgi0Rb7AWYgu2QJwB+ZOYmCjpf/lRZGc3T5K9e/dKkv71r38V8koAAAAAAAAAwLb27t2rjh07FvYyiiS7SXLXqlVLkrR//34FBAQU8mqKhvT0dP34449q1aoVv/mETRBzsBZiC7ZEvMFaiC3YEvEGayG2YAvEGZA/sbGxatiwoTk/iuzs5kmS9dALCAhQ+fLlC3k1RYPRaFSJEiVUrlw5GQyGwl4O7gPEHKyF2IItEW+wFmILtkS8wVqILdgCcQbcHX4plDtePAkAAAAAAAAAsFskuQEAAAAAAAAAdoskNwAAAAAAAADAbpHkBgAAAAAAAADYLZLcAAAAAAAAAAC7RZIbAAAAAAAAAGC3SHIDAAAAAAAAAOwWSe58Sk9PL+wlAAAAAAAAAAD+H0nufPjhhx9Up04dxcTEFPZSAAAAAAAAAAAiyZ1ny5YtU5cuXXTixAnNnj27QMZcvny5unfvXiBjWcPu3bvVpEmTwl4GAAAAAAAAAOSKJHcefPbZZ+rdu7cyMjLUp08fzZo16x+PmZmZqQkTJmjy5MnmssmTJ6t27dpydnbW6NGj7ziGi4uLunfvruLFi8vf31+PPfaYPvjgAxmNxn+8Pkl6/PHHZTAY9P3339+2XVxcnEaOHKmKFSvK09NTDzzwgPr3768//vgjx/bHjh3Tk08+qRIlSsjBwUHx8fEW9QsXLlTVqlXl4+OjEiVK6JlnntGZM2cs2rz55psqXbq0vL291atXLyUnJ+e6vpo1a8rT09P85erqKm9vb3N9YmKi+vXrp1KlSsnf31/t2rXTn3/+eYe7AwAAAAAAAKAouG+T3ElJSXr55Zc1ZcoUnT9/Ptd2M2fO1IgRI2QymfTiiy8qNDRUzs7O/3j+sLAw+fv7q3bt2uayypUra9asWXrqqafyPM7MmTMVFxen8+fPa+bMmVq0aJE6deokk8n0j9coSf369dMnn3ySa31CQoIaN26s06dPa9OmTUpMTFRERIQaNWqkjRs35tjHYDCoe/fuCg0NzbG+ZcuW2r17txISEhQdHa2HHnpIAwcONNcvXLhQCxYsUHh4uM6cOWNOsufmv//9r5KTk81fbdu21fPPP2+u//e//63ff/9dx48fV2xsrB544AH17t37DncGAAAAAAAAQFFwXya5L168qBYtWuiTTz7RW2+9pYoVK2r48OE6deqUuY3JZNL48eM1fvx4SdLEiRP18ccfy9GxYG7ZunXr1LJlS4uyfv36qX379ha7jPPKYDCoWbNmWrNmjXbu3GlOMB8+fFhNmjSRv7+/SpYsqR49eiguLk6S9P333+vBBx+0SIj//PPP8vf3V2pqqiSpVatW2rFjh5KSknKc94MPPpCjo6NWr16tatWqydHRUb6+vho+fLhGjRqVY5+qVatq0KBBqlWrVo71FStWVIkSJSTd+D44Ojrq5MmT5vqvvvpKI0eOVJUqVeTr66u3335b33zzjVJSUu54n86ePauNGzdq0KBB5rK//vpLTz31lEqUKCFXV1f16dNHv/766x3HAgAAAAAAAFD47rsk95kzZ/TEE0/o0KFDKlGihBo2bKi0tDTNmzdPVapUUbdu3bRv3z69+OKLmjlzpiRp1qxZmjZtmhwcHApsHREREapWrVqBjZelUqVKevTRR7Vz505JkqOjo2bOnKnz58/r2LFjiomJ0bhx4yRJHTp00LVr18xtpRu7pHv06CE3NzdJUmBgoNzc3HTs2LEc59u0aZO6du16293ty5YtU506dfJ1Hbt27ZKvr688PDw0Z84cTZw40Vx39OhRBQUFmT8HBQUpNTU11+NRbrZo0SLVqFFDjRo1Mpe99NJL2rRpk86dO6eUlBSFhoaqU6dO+VovAAAAAAAAgMLxz8/dsCO//fab2rRpo+joaAUGBmrLli2qUqWKwsPDNWvWLG3YsEGrVq3SqlWrJEkODg6aP3++hgwZUuBruXLlyl3t2M6LcuXK6fLly5KkRx55xFxeunRpvfrqq3r99dclSc7OzurXr59CQ0PVvHlzpaamasWKFdq6davFeN7e3rpy5UqOc128eFHlypW77Xp69uypnj175usamjRpovj4eF26dElffvmlatSoYa5LTk6Wr6+v+bPBYJCHh0euu82zmEwmffXVV3rppZcsyh955BH5+PgoICBATk5Oevjhh7Vly5Z8rRcAAAAAAABA4bhvdnIfPHhQTzzxhKKjo1WtWjXt3r1bVatWlYODg5o2bar169fr119/Vd++feXs7CxnZ2d98803VklwS5Kfn58SExOtMnZMTIz8/f0lSadOnVLnzp1VtmxZeXt7q3fv3rp06ZK57cCBA7V69WolJyfru+++U4UKFVS/fn2L8RITE+Xn55fjXCVKlFBMTIxVriNr/EGDBqljx466evWqJMnT01MJCQnmNunp6bp27Zq8vLxuO9bOnTsVFRWV7bztrl27ytvbW5cvX9a1a9c0bNgwPfHEE7p27VrBXxAAAAAAAACAAnVfJLm3b9+uFi1a6NKlS6pfv77Cw8MVGBiYrV2tWrW0aNEiRUVF6eTJk3ruueestqagoCD99ttvBT5uZGSkDh06pObNm0uShg0bpnLlyun48eNKTEzUkiVLLM7grlq1qh555BGtWrVKoaGhGjBggMV4UVFRSk1NzfX87CeffFKrV69Wenp6gV9LFqPRqISEBF24cEGSVKdOHUVERJjrIyIi5OrqqipVqtx2nC+//FJPP/20ihcvblF++PBhDRs2TH5+fnJxcdHIkSMVHR2t48ePF/i1AAAAAAAAAChY93ySe+3atWrXrp2Sk5PVsmVLbdu2zfxSw9yUKVNGDzzwgFXX1alTJ23fvt2izGg0KjU1VRkZGcrIyFBqaqqMRmOexjMajQoPD9ezzz6rZs2aqV27dpJu7ML28vKSt7e3oqKiFBISkq3voEGDNHv2bP3000/Zdjlv27ZNTZs2zXWX9CuvvKKMjAx1795df/zxhzIzM5WQkKAvvvhCH374YY59TCaTUlNTlZaWJklKS0tTamqqOfm+cOFCRUdHy2Qy6dy5c+aXTGZ9TwYMGKCPPvpIJ0+eVEJCgv7973+rZ8+ecnd3z/X+xMfHa/Xq1RYvnMzy2GOP6YsvvlBSUpLS09M1d+5cubm5qXLlyrmOBwAAAAAAAKBouOeT3H/88YeuX7+uLl26aMOGDXc80sJWgoODdenSJYsXOg4ZMkTu7u5asmSJPvnkE7m7u9/xuJRx48bJ399fpUqV0uuvv67evXvrhx9+ML8kc86cOVq/fr28vb3VuXNnPfvss9nG6N69u06fPq327durZMmSFnVff/11tjOsb+bj46M9e/aoXLlyat26tby8vFSnTh3t3r1bHTp0kCQtXbpUNWvWNPc5ffq03N3dzS/eLFOmjNzd3XX69GlJN3ZmN2rUSJ6enqpXr54MBoM2btxovqaBAwdqwIABevzxx1W+fHn5+vpaJNRnzJih9u3bW6xz2bJlKlOmjFq3bp3tGhYuXKirV6/qwQcfVIkSJfT1119r7dq1Fud+AwAAAAAAACiaHEw3n11RhGW9LDIqKkrly5fPV9/Vq1erc+fOcnYuWu/Z/Oabb7R27VqtWLHirvobjUaFhYUpODhYBoPhH63loYce0ocffqiOHTuay/bs2aOxY8dq165d/2hs3DsKMuaAmxFbsCXiDdZCbMGWiDdYC7EFWyDOgPz5J3nR+0XRyvpaSU67l4uCHj16qEePHoW9DC1fvlwZGRnZdj83btyYBDcAAAAAAACAIu2+SHIjd9WrV9fly5e1aNEiOTk5FfZyAAAAAAAAACBfSHLf506cOFHYSwAAAAAAAACAu3bPv3gSAAAAAAAAAHDvIskNAAAAAAAAALBbJLkBAAAAAAAAAHaryJ7JnZaWprS0NPPnpKQkSVJ6erqMRmNhLatIyboP3A/YCjEHayG2YEvEG6yF2IItEW+wFmILtkCcAfmTnp5e2Eso8hxMJpOpsBeRk6lTp+rNN9/MVv7ll1+qRIkShbAiAAAAAAAAALCtS5cuafDgwYqKilL58uULezlFUpFNct+6kzsmJkY1atTQ33//rXLlyhXiymyvdevWeuqppzRy5EiLcqPRqC1btqhNmzYyGAyFtDrcT4g5WAuxBVsi3mAtxBZsiXiDtRBbsAXiDMifmJgYVapUiST3bRTZ40pcXV3l6upq/pyYmChJcnZ2LrAH4L7uI+7YptHKuQUyV3BwsB588EF98sknFuWJiYkqU6aM1q9fr5YtW+bY18HBQU5OTrlet8Fg4C8F2BQxB2shtmBLxBushdiCLRFvsBZiC7ZAnAF54+xcZFO4RcZ9f4cCe3bOtS5q2fcFNs+gQYM0ZMgQzZ492yJ5/8033yggIEAtWrQosLkAAAAAAAAA4H7hWNgLKMr+6PSYFi9efNuvvHrqqafk7OystWvXWpQvXLhQAwcO1NKlS1W9enX5+vqqSZMm+uWXX3IcJzQ0VEFBQRZl9evXV2hoqEX9v//9b5UoUUJlypTRihUrtHv3btWqVUs+Pj4aNGiQMjMzzf1/+eUXtWjRQv7+/qpcubK++OKLPF8XAAAAAAAAgKIlOTlZU6ZMUbt27eTv7y8HBwdz/vBmX3zxhZo1a6bSpUvL1dVVlSpV0oABAxQZGZmtrYODQ45fM2fOtP4F3cF9v5P7TurVq5drXW6J6JwYDAb16dNHX331lZ577jlJ0vHjx3Xw4EG9++676tixozZs2KDHHntMn376qdq1a6eTJ0/Kx8cn32s+duyYBg4cqHPnzmnRokUaOnSonnzySe3cuVNpaWmqW7eu1q5dq2eeeUbnzp1TmzZt9Nlnn+nZZ5/ViRMn1LZtWz344INq1apVvucGAAAAAAAACtKaNWs0btw4LV++/La5OvzPpUuX9NZbb6lChQp65JFHtGPHjhzbHT58WJUqVdJTTz0lPz8//f333/riiy+0fv16HTlyRGXLlrVo36ZNG/Xt29eirG7duta6jDy7Z5PcedllXcUG67jZoEGDVLt2bUVFRSkwMFBfffWVnnzySS1ZskS9e/dW06ZNJUmjR4/WZ599pg0bNqhnz575nqdkyZLml1T26NFDgwcP1qBBg1S8eHFJUrNmzfTLL7/omWee0eLFi9W0aVN1795dklSrVi0NGDBAy5YtI8kNAAAAAACAQrd69WqdPHlSGzduJMmdRwEBAYqNjVWZMmV08OBBNWjQIMd2c+dmfx/h008/rfr16+vrr7/WuHHjLOqqVKmi3r17W2XN/8Q9m+SWbr8LW5KSf9hro5XcUKNGDTVs2FCLFi3SuHHjtGTJEs2dO1dffPGFmjdvbtG2UqVKio6Ovqt5Spcubf5vDw+PHMuSk5MlSZGRkQoLC5Ovr6+5PiMjQ0888cRdzQ0AAAAAAAAUpKw81tWrVwt5JfbD1dVVZcqUuau+DzzwgCQpPj4+x/qUlBQ5ODjIzc3tLldX8DiT28YGDRqk0NBQrV+/XpmZmerUqZPKly+f7ZybyMhIlS9fPlt/T09PXbt2zaLs/Pnzd72ewMBAdenSRfHx8eavpKQkhYWF3fWYAAAAAAAAQEHJSnJn/Xm/SkpKUmJiovkrLS2twMaOi4vThQsXdPDgQQ0YMECScjzlITQ0VMWKFZO7u7tq1KihZcuWFdga/gmS3Db23HPP6dy5c3rllVfUt29fGQwG9e7dW0uXLtXu3buVnp6ujz/+WHFxcQoODs7WPygoSH/99ZfCw8OVnp6uNWvWKC4u7q7X06dPH23btk2rV6+W0WiU0WhURESEDhw48E8uEwAAAAAAACgQWTu47/ed3DVq1JCPj4/565133imwscuVK6fSpUurQYMG2rNnjz766CO1adPGok3jxo01ffp0rV27Vp999pmcnJzUq1cvffbZZwW2jrt1Tx9XcqcXQ1aRFLXs+9wbdHosXy+XzAsvLy91795dCxcu1KBBgyTdOCP7448/1qBBgxQbG6tatWpp48aNFkeIZKlcubJmzZqlrl27KjMzU23atFGNGjXuej3lypXTpk2b9MYbb+iFF15QZmamqlevrrfeeuuuxwQAAAAAAAAKCseV3HD8+HGVK1fO/NnV1bXAxt64caNSU1N14sQJLVmyJMd7vXv3bovPAwcO1KOPPqoJEyaof//+cnd3L7D15Nc9m+Tu06dPXhrdtrpRAa3lVl999ZW++uori7J+/fqpX79+Oba/9e2nr776ql599VUZjUaFhYUpODhYBoNBktS/f3/179/for3JZLL4HBoaavG5bt262rx5c/4vBAAAAAAAALAyjiu5wcvLS97e3lYZu0WLFpKk9u3bq3PnzqpVq5Y8PT310ksv5drHxcVFL730koYNG6ZDhw6pSZMmVllbXnBcCQAAAAAAAIAii53ctvXQQw+pbt26Wrp06R3bBgYGSpIuX75s7WXd1j27kxsAAAAAAACA/SPJbXspKSl5erHlX3/9JUkqWbKktZd0W+zkBgAAAAAAAFAkpaenm5Ot9/txJQUtPT1dV65cyVa+f/9+/frrr6pfv7657OLFi9naJSUl6YMPPlCJEiX06KOPWnWtd8JObgAAAAAAAABF0s27t9nJnT+ffPKJ4uPjdfbsWUnSDz/8oOjoaEnSyy+/LJPJpMDAQD333HOqWbOmihUrpl9//VULFy6Uj4+PJk+ebB7r008/1dq1a9WpUydVqFBBsbGx+uqrr3TmzBktXrxYLi4uhXKNWUhyAwAAAAAAACiSbt69TZI7f9577z2dPn3a/HnNmjVas2aNJKl3794qW7asBg8erO3bt2vVqlVKSUlR2bJl1aNHD02aNEkPPPCAue/jjz+uPXv26Msvv1RcXJyKFSumhg0b6quvvlLLli1tfWnZkOQGAAAAAAAAUCTdnOTmuJL8iYyMvGObDz74IE9jtWnTRm3atPlnC7IizuQGAAAAAAAAUCTdnNhOS0tTenp6Ia4GRRVJbgAAAAAAAABF0q27tzmyBDkhyQ0AAAAAAACgSCLJjbwgyQ3t2LFDvr6+5s/Nmze/43k87dq1U1hYmHUXdg9o27attm7dWtjLAAAAAAAAsEu3JrVJciMnJLltpHnz5nJ1dZWnp6e8vLxUs2ZNffvttwU2/r59+9SiRQv5+fnJ19dXderUUWhoaIGNf7Pt27fr4sWLCg4O1owZM+Tp6SlPT0+5u7vLwcHB/NnT01Ph4eFWWcPtvPnmmypdurS8vb3Vq1evO76U4HbtV65cqcaNG8vDw0NBQUHZ+vbv318uLi4W17x3715z/cSJE/X6668X2LUBAAAAAADcT27N6/DySeTEubAXcD959913NXr0aJlMJoWFhalLly5q2LChKlas+I/GTUpKUrt27fTOO+9o8+bNkqSIiAhdvHixIJadzaeffqoBAwZIkiZMmKAJEyZIurEj/Omnn1Z8fHyO/YxGowwGg1XWlGXhwoVasGCBwsPDVapUKT3//PMaOXKkvvrqq7tq7+/vr9GjR+vkyZO5/lJixIgRue58b9q0qeLj47V79249/vjjBXKNAAAAAAAA94tbk9rR0dEqX758Ia3mn/Hz85OzM+lYa+CuFgIHBwd16NBBvr6++v3331WxYkWFhobqgw8+UEREhLldUFCQRo8erV69eql8+fJasWKFmjdvbq6vXbu2OnXqpNKlS+vq1asaOnSoHB1vbM5v0KCBxZwXLlzQK6+8om3btsnBwUHdu3fXu+++K1dX13yt3Wg06j//+Y/eeuutO7adOnWqDh48qMDAQK1YsUIDBgyQl5eXIiIitHbtWnM7X19frV271nxty5cv14wZM3TmzBk9/PDD+vDDD9W4ceM8re+rr77SyJEjVaVKFUnS22+/raZNm+rTTz+Vu7t7vtu3bt1aku56V7yDg4NatmypdevWkeQGAAAAAADIp6wkt4uLi5ycnDRo0CC7TRR37979jkcE4+7YZ0TYuczMTP3www9KSUnJ8QiMWxkMBvXp00ehoaHmRPDevXt14cIFNWrUSA8//LB8fHz0/PPPq1evXmrUqJHKlClj7m8ymfTUU0/p8ccf159//qmUlBR17dpV06ZN09tvv52vtZ88eVLXrl1T1apV89T+P//5j7788kt9/PHHun79umbNmnXb9mFhYRozZoz+j737jo+qzvc//p70hHRqCIQgRTqIoIg06WKvKxYUUWwrdgQslBXZFVx15WdHEdcCYm+LoICKqICiNAFBIIQQCCSkTzLJ/P7gnmMmBVJm5swkr+d95HFnTv3M8JX7uO98+JyPP/5YvXr10ocffqgLLrhAO3bsUOPGjU96v99++03Tp0833/fq1UuFhYXasWOHevbsWefjK7No0SItWrRICQkJuvHGG3XPPfeYv2yQpC5dupgd9gAAAAAAAKg+I+Tu1KmTpk6dqsjIyBo3bfqC119/XVu3brW6jHqLkNuLpk6dqhkzZshut6uoqEiPP/64mjVrVq1zJ0yYoDPOOEPz589XZGSkFi5cqKuuukrBwcGKjo7W2rVrNW/ePN177736888/1bdvXz3//PPq3bu31q9fr507d+r7779XQECAIiIiNG3aNN166601DrkzMzMVERGhwMDAah3frVs33XDDDZJUrd+y/b//9//0wAMPqHfv3pKkSy+9VE8++aQ+//xzXXfddSc9Pzc31+UhmsHBwYqIiFBOTo5bji9v0qRJmjt3ruLj47Vu3TpdeeWVCggI0D333GMeEx0drczMzGpdDwAAAAAAAMdNnz5dc+bMUWhoqIYPH65BgwYpNjZWERERVpdWY19//bUOHTpkdRn1Fg+e9KI5c+YoKytLBQUF2r59u15//XW9+OKL1Tq3c+fO6tatm5YuXarCwkItXrzYDI8lqX379nrhhRe0a9cu7d+/X+3bt9eFF14op9OpPXv2KCsrS/Hx8YqNjVVsbKwuv/xypaen1/gzxMXFKT8/XyUlJdU6PikpqUbX37Nnj6ZNm2bWGRsbq40bNyo1NbVa50dGRurYsWPme4fDofz8fEVFRbnl+PJ69+6tpk2bKjAwUP369dOUKVO0ePFil2Oys7MVFxdXresBAAAAAABAOnz4sDkuNzAw0Bxl63Q6rSwLPoqQ+/+s0Ap1URet0Aqv3K99+/YaM2aMPv30U0nHw9b8/HyXYw4ePOjyfsKECVq4cKE++OADtWnTRqeddlql127ZsqWmTJmi1NRUHT16VK1bt1azZs2UlZVl/hw7dqxWT6Pt0KGDIiIitH379modX3Zsh1Txc+bl5Sk7O9t837p1az355JMutebl5WnKlCnVul+PHj1c5ppv3LhRoaGh5sztuh5/MuU/ryRt3bq1WmNpAAAAAAAAcFxaWpr5ulGjRmYORsiNyhByS3LKqWmapm3apmmaJqc8/x/Lnj179Pnnn6t79+6Sjs+C3r17t7799ls5HA498cQTOnLkiMs5f/vb37Rhwwb985//1I033mhu//333/Wvf/1Le/bsUWlpqbKysjR//nx17NhRjRs3Vt++fdW6dWs9/PDDysnJkdPp1N69e/XFF1/UuO7g4GCNGjVKK1eurNXn7t27t9auXavff/9dhYWFmjZtmmw2m7n/jjvu0Ny5c7VhwwY5nU7l5+drxYoV2r9/v6TjD4BMTk6u8vrjx4/Xf/7zH+3cuVPHjh3To48+qquvvrrSh05W5/iSkhIVFhaquLhYTqdThYWFstvt5vlLlixRdna2nE6n1q9fr3/+85+67LLLXO6xcuVKnX/++bX6vgAAAAAAABoio/kzICBA/fr1U1hYmKS/Qu758+erT58+Cg0N1cUXX+xy7uWXX66EhARFR0erbdu2euyxx1z2HzhwQGPGjFGjRo2UlJSkl19+uco6vv32W0VGRrr8BAQEaNKkSeYx3333nfr166eYmBglJiZq6tSpKi0tdcfXgGoi5Jb0pb7UOq2TJK3TOn0pzzwk8MEHHzT/YxgwYICGDx+uRx99VNLxzu4nnnjC/I/Qbrera9euLudHRUXpiiuu0O+//65rrrnGZfsvv/yigQMHKjo6WqeeeqoOHz6sTz75RNLxf9Lx6aefKjU1VZ07d1ZMTIzOO+88/fHHH7X6HHfccYcWLlxYq3OHDh2qW265Rf3791f79u3VvXt3l9EgF1xwgf75z3/q5ptvVlxcnNq2batnnnnG/Ith3759Ovvss6u8/o033qjx48fr7LPPVqtWrRQbG6tnnnnG3P/444/r3HPPrfbxb7zxhsLDwzVx4kT99ttvCg8Pd3no5vz585WUlKSoqChdc801uv3223XfffeZ+7/99ltFR0dr4MCBtfq+AAAAAAAAGiIj5A4ODtaAAQPM58MZGVHLli318MMP6+abb65w7vTp07Vnzx5lZ2dr9erVeuutt/Tf//7X3D927Fi1aNFChw4d0rvvvqsHHnhAq1evrrSOgQMHKjc31/zZtWuXAgMDddVVV0k63iB50UUX6aKLLtLRo0e1Zs0avfPOOycMzuF+Df7Bk0459YgeUaACVaISBSpQj+gRjdRI2WQ7+QWqadWqVSc95t5779W9995rvn/kkUcqHJOcnKwLLrhATZo0UXFxsSQpMTFR77zzzgmv3axZM7322muV7hsyZIiysrKqXevQoUMVHx+vL774wiUwLn+dGTNmVHr+vHnzNG/ePPP9TTfd5LL/iiuu0BVXXFHpuatXr9b8+fNPWN+MGTOqvPe0adNqdPwNN9zgMvu8vG+++eaEtTz22GOaO3fuCY8BAAAAAACAq7Ih91lnnWVOAjA6uS+99FJJx0fPGhMADMbkBEmy2WwKCAjQzp07JUm7du3Sd999pyVLlqhRo0Y688wzdc011+jVV1/V4MGDT1rX66+/rg4dOpgzwo8dO6ajR4/q+uuvV2BgoJKTkzV8+HBt2rSpjt8AaqLBd3IbXdwlOv4gxRKVeLSbuy4OHz6sl19+WbfddpvVpWjZsmUuAbe3fPXVV+rcubPX71tby5Yt04gRI6wuAwAAAAAAwK8YIXdCQoJOOeUUs5O7ujO5b7/9dkVERCgpKUm5ublmE+Nvv/2mhIQENW/e3Dy2V69e+u2336p13VdffVUTJkww38fHx+vGG2/UggULVFxcrF27dmnFihU677zzqnU9uEeDDrnLdnGXZXRze2M2d3XNnj1bycnJOu+88zRs2DCrywEAAAAAAAA85uDBgwoMDNSAAQMUFxdXYSb3yTz33HPKzc3VunXrNG7cOMXFxUmScnNzFRsb63JsbGyscnJyTnrNb7/9Vrt379a4ceNctl955ZV66aWXFB4ervbt2+v888/X6NGjq1Un3KNBh9zlu7gNvtjN/dBDDykvL08vvPCC1aUAAAAAAAAAHnXw4EGVlJRo586dioiIUFBQkMLDwxUSElLtawQEBKhPnz6KiorS/fffL0mKjIzUsWPHXI47duyYyzPjqrJgwQJdeOGFatq0qblt+/btuuiii/TUU0+psLBQBw4c0LZt2zRlypRq14m6a7Ahd1Vd3AZf7OYGAAAAAAAAGgJjXMmOHTuUlpam0NBQxcXFKTIyssbXKi4uNmdy9+jRQwcOHNChQ4fM/Rs3bnSZ412Z7OxsvfvuuxWeLbdp0ya1atVKl19+uYKCgpSQkKDrr79en332WY3rRO012JC7qi5ugye6uZOTk/Xhhx+67XoAAAAAAABAfWSE3DabTatXr66w3+FwqLCwUA6HQ6WlpSosLFRRUZH27t2r9957T7m5uSotLdX333+v//znPxo1apQkqV27djr77LM1bdo05efn66efftKbb77pMme7Mm+//bYaN26skSNHumw//fTTdeDAAX344YcqLS3V4cOH9cYbb+i0005z0zeB6miQIffJurgNdHMDAAAAAAAA3mW325WZmSnpeOf1qlWrKhzz2GOPKTw8XLNnz9Ynn3yi8PBwM4B++umn1apVK8XGxurGG2/UnXfe6TI+5O2331ZqaqqaNm2qyy67TE888YQGDx5s7u/atavefPNNl/stWLBA48ePV0CAa5zatm1bvfPOO5o1a5bi4uLUrVs3NWvWTE899ZS7vg5UQ5DVBVjB6OI+mbLd3KM0yguVAQAAAAAAAA1benq6JCk4OFjDhw/Xa6+9ppKSEgUG/tWwOmPGDM2YMaPS87/99tsTXj8xMVFffPFFlfu3bNlSYdtPP/1U5fEXXnihLrzwwhPeE57V4Dq5jS7ugGp+9AAFuLWbe8uWLerdu7eio6M1atQoHThwQHv27JHNZlNWVpZ53N13360bbrhBknTJJZdU+I/21ltv1d///ne31AQAAAAAAAD4CmNUSYsWLTR06FAdO3ZMv/76q8VVwZc1uJC7SEXap30qVWm1ji9VqVKUoiIVueX+r7zyit566y0dPHhQLVq00LXXXnvScyZMmKBFixbJ6TwetBcWFuqdd94xQ3AAAAAAAACgvjh8+LAkqWnTpurVq5eio6O1cuVKi6uCL2tw40pCFap1WqfDOlztc5qpmUIV6pb733bbberUqZMk6YknnlCLFi20f//+E55z7rnnym63a/Xq1RoyZIg++OADtWrVSn369NHnn3/ulroAAAAAAAAAX5CTkyNJio6OVlBQkAYOHKivv/5a48aNs7iy2isoKLC6hHqtwYXcktT6//7HCm3atDFfN2/eXKGhoQoODj7hOYGBgRo3bpwWLlyoIUOGaOHChbrxxhs9XSoAAAAAAADgdbm5uZKkqKgoSdKQIUP0wAMPqGfPnlaWVWcDBw60uoR6q0GG3Fbau3ev+frQoUOy2+1KTEyUJOXn5ys2NlaSlJaWpvDwcPPYG2+8Ub1799bUqVO1evVqvfHGG16tGwAAAAAAAPAGo5M7MjJSknT++eerWbNmVpbkFr1797a6hHqLkNvLXnzxRV100UVKSkrSgw8+qEGDBqlVq1ZKSkrS66+/rgcffFCrV6/W559/rssuu8w8r0OHDurdu7f+9re/6dxzz1WzZs1UXFxs4ScBAAAAAAAA3K98J3dMTIxGjBhhZUnwcQ3uwZNWu/HGGzV27Fg1b95cqampevPNNyVJr776ql577TXFxMToxRdf1FVXXVXh3AkTJujXX3/V+PHjvV02AAAAAAAA4BXlO7mBk6GT24v27NkjSXrooYcq7Bs2bJh27NhxwvOTk5PVvHlzjRkzxhPlAQAAAAAAAJYr38kNnAyd3H6iqKhITz75pG6++WYFBfG7CQAAAAAAANRPdHKjpgi5/cDq1asVFxenjIwMPfDAA1aXAwAAAAAAAHgMndyoKVqC/cDgwYOVl5dndRkAAAAAAACAx9HJjZry2ZDbbrfLbreb743F7XA4VFxcbFVZPsX4Hvg+4C2sOXgKawvexHqDp7C24E2sN3gKawvewDrDyRg5YHh4OOtEx/NQnJjN6XQ6rS6iMjNmzNDMmTMrbH/llVfUpEkTCyoCAAAAAAAA4Gl33nmnUlJSNGvWLPXo0cPqciyXkZGhm266SSkpKWrVqpXV5fgknw25y3dyp6amqkuXLvrzzz+VmJhYt4unpEgZGdU/vmlTyQcXUHFxsZYvX64RI0YoODjY6nLQALDm4CmsLXgT6w2ewtqCN7He4CmsLXgD6wwn0759e+3bt0/ff/+9+vTpY3U5lktNTVXbtm0JuU/AZ8eVhIaGKjQ01HyfnZ0tSQoKCqrbX4B2u9S/v5SeXv1zWrSQ9uyRytTjS4KDg/k/CvAq1hw8hbUFb2K9wVNYW/Am1hs8hbUFb2CdoSrGuJLY2FjWiI7noTixAKsL8LqQECkpSQqo5kcPCJBatz5+HgAAAAAAAACPys3NlSRFRUVZXAn8RcMLuW026R//kEpLq3d8aenx4202z9ZVhRtuuEF33323JGnPnj2y2WzKysqypBYAAAAAAADAk+x2u/mwycjISIurgb9oeCG3JI0cKfXtKwUGnvi4wMDjx40c6Z26AAAAAAAAgAbM6OKWCLlRfQ0z5Da6uUtKTnxcSYmlXdwAAAAAAABAQ2LM4w4LC2MWNaqtYYbc0sm7uT3Qxf3vf/9bSUlJioqKUnJysl555RVJ0ooVK3TGGWcoNjZWXbt21ccff+y2ewIAAAAAAAD+wgi5mceNmmi4vw4xurlHj658v5u7uHfs2KGHH35YP//8szp16qT09HSlp6frt99+0xVXXKH33ntPQ4YM0ffff6/zzjtPP/30k0499VS33BsAAAAAAADwBzx0ErXRcDu5paq7uT3QxR0YGCin06ktW7aooKBAzZs3V48ePfTiiy/qhhtu0NChQxUQEKABAwbo/PPP15IlS9x2bwAAAAAAAMAfGJ3czONGTTTskLuq2dwemMXdrl07vf7665o/f76aN2+ukSNHauPGjdqzZ49eeOEFxcbGmj8fffSRDhw44LZ7AwAAAAAAAP6ATm7URsMOuaWK3dwe6OI2XHnllVq5cqXS09PVs2dPXXfddWrdurXuuusuZWVlmT+5ubl6/vnn3X5/AAAAAAAAwJfRyY3aIOQu383tgS5uSdq+fbuWL1+ugoIChYSEKDIyUkFBQbrlllv02muvaeXKlSopKZHdbtfatWu1bds2t94fAAAAAAAA8HV0cqM2CLmlv7q5JY91cRcVFemRRx5R8+bN1bhxY3399ddauHChTjvtNL399tt6+OGH1bRpUyUmJuqRRx6R3W53ew0AAAAAAACAL6OTG7URZHUBPsFmkx5/XJo06fj/dnMXtyR1795dP/zwQ6X7hg4dqqFDh1a6b+HChebr5ORkOZ1Ot9cGAAAAAAAA+AI6uVEbhNyG4cOlrVutrgIAAAAAAABosOjkRm0wrgQAAAAAAACAT6CTG7VByA0AAAAAAADAJ9DJjdog5AYAAAAAAADgE+jkRm0QcgMAAAAAAADwCXRyozYIuQEAAAAAAAD4BDq5URuE3AAAAAAAAAB8Ap3cqA1CbgAAAAAAAAA+gU5u1AYhNwAAAAAAAACfQCc3aoOQGwAAAAAAAIDlSkpKlJ+fL4lObtQMITcAAAAAAAAAy+Xl5Zmv6eRGTRByAwAAAAAAALCcMaokMDBQYWFhFlcDf0LIDQAAAAAAAMByxkMnIyMjZbPZLK4G/oSQGwAAAAAAAIDljE5u5nGjpgi5AQAAAAAAAHjVH3/8ocmTJys9Pd3cVraTG6iJIKsLAAAAAAAAANCwXHTRRdq6dat+/PFHrV69WhKd3Kg9OrkBAAAAAAAAeNXWrVslSd988425jU5u1BYhNwAAAAAAAACvCg4OrrCNTm7UFiE3AAAAAAAAAK9q3bq1+drpdGry5Mm65ZZbJNHJjZoj5AYAAAAAAADgVS1atDBfb9u2TfPmzTPf08mNmiLkBgAAAAAAAOBVJSUl5uvXX39dTqfTfE/IjZoi5AYAAAAAAADgVQUFBebrBQsWuOxjXAlqipAbAAAAAAAAgFeVDbmPHDnisi8kJMTb5cDPEXIDAAAAAAAA8Kr8/Pwq9/3xxx9erAT1ASE3AAAAAAAAAK8yOrnj4+MlSR06dNBll10mSRo/frxlddUXubm5mj59ukaPHq34+HjZbDYtXLjQ5ZjS0lItXLhQF154oVq3bq1GjRqpW7dueuyxx1RYWFjpdRcsWKDOnTsrLCxMHTp00LPPPuuFT3NyQVYXAAAAAAAAAKBhMULu9evXKysrS02bNlXz5s2VlpampKQki6vzfxkZGZo1a5aSkpLUs2dPrVq1qsIx+fn5Gj9+vPr166dbb71VzZo109q1azV9+nR99dVX+vrrr2Wz2czjX3zxRd1666267LLLdO+99+rbb7/VpEmTlJ+frwcffNCLn64iQm4AAAAAAAAAXuN0Os2QOzw8XG3btjX3EXC7R0JCgtLS0tSiRQutX79effv2rXBMSEiI1qxZo/79+5vbbr75ZiUnJ5tB9/DhwyUd/6XEQw89pPPOO09Lly41jy0tLdU//vEPTZw4UXFxcd75cJVgXAkAAAAAAAAAr7Hb7ebr8PBwCyupv0JDQ9WiRYsTHhMSEuIScBsuueQSSdK2bdvMbStXrtSRI0d0++23uxx7xx13KC8vT5999pkbqq49Qm4AAAAAAAAAXmN0cUuE3DWRk5Oj7Oxs86fsLwvc6eDBg5KkJk2amNt++eUXSVKfPn1cjj399NMVEBBg7rcKITcAAAAAAAAArzFC7oCAAAUHB1tcjf/o0qWLYmJizJ85c+Z45D5PPPGEoqOjde6555rb0tLSFBgYqGbNmrkcGxISosaNG+vAgQMeqaW6mMkNAAAAAAAAwGuMkDsiIsLlwYY4sa1btyoxMdF8Hxoa6vZ7PP7441qxYoWee+45xcbGmtsLCgoUEhJS6TlhYWEu3flWIOQGAAAAAAAA4DVlHzqJ6ouKilJ0dLTHrr948WI9/PDDmjBhgm677TaXfeHh4SoqKqr0vMLCQsv/LBlXAgAAAAAAAMBrCLl9z/LlyzVu3Didd955euGFFyrsT0hIUElJiQ4dOuSyvaioSEeOHFHLli29VWqlCLkBAAAAAAAAeA0ht2/58ccfdckll6hPnz5asmSJgoIqDv/o1auXJGn9+vUu29evX6/S0lJzv1UIuQEAAAAAAAB4DSG379i2bZvOO+88JScn69NPP63yz2To0KGKj4/X888/77L9+eefV0REhM477zxvlFslZnIDAAAAAAAA8BpCbu+YP3++srKydODAAUnSJ598ov3790uS7rzzTgUEBGjUqFHKzMzUAw88oM8++8zl/Hbt2umss86SdPzP6h//+IfuuOMOXXHFFRo1apS+/fZb/fe//9Xs2bMVHx/v3Q9Xjs+G3Ha7XXa73Xyfk5MjSXI4HCouLraqLJ9ifA98H/AW1hw8hbUFb2K9wVNYW/Am1hs8hbUFb2Cdwcj5wsLCWAfV4HA4anXevHnztHfvXvP9+++/r/fff1+SdO2110qSUlJSJElTpkypcP71119vhtySdPvttys4OFhPPvmkPv74Y7Vu3VpPPfWU7rrrrlrV5042p9PptLqIysyYMUMzZ86ssP2VV15RkyZNLKgIAAAAAAAAQF2tWLFC8+fPV58+ffTwww9bXY7Py8jI0E033aSUlBS1atXK6nJ8ks92ck+dOlX33nuv+T41NVVdunTRsGHDlJiYaGFlvqO4uFjLly/XiBEjFBwcbHU5aABYc/AU1ha8ifUGT2FtwZtYb/AU1ha8gXUGo7s4KSlJY8aMsbga35eammp1CT7PZ0Pu0NBQhYaGmu+zs7MlSUFBQfwFWE5wcDDfCbyKNQdPYW3Bm1hv8BTWFryJ9QZPYW3BG1hnDVdRUZEkqVGjRqyBaggK8tkI12cEWF0AAAAAAAAAgIaDB0/C3Qi5AQAAAAAAAHgNITfcjZAbAAAAAAAAgNfk5+dLIuSG+xByAwAAAAAAAPAaOrnhboTcAAAAAAAAALyGkBvuRsgNAAAAAAAAwGuMkDsiIsLiSlBfEHIDAAAAAAAA8Bo6ueFuhNwAAAAAAAAAvIaQG+5GyA0AAAAAAADAawi54W6E3AAAAAAAAAC8Jj8/XxIhN9yHkBsAAAAAAACAVzidTu3du1eS1LJlS4urQX1ByA0AAAAAAADAK44cOaKsrCxJUvv27a0tBvUGITcAAAAAAAAAr9ixY4ckKSkpiXElcBtCbgAAAAAAAABeYYTcHTt2tLgS1CeE3AAAAAAAAAC8gpAbnkDIDQAAAAAAAMArdu7cKYmQG+5FyA0AAAAAAADAK+jkhicQcgMAAAAAAADwuNLSUjq54RGE3AAAAAAAAAA84rnnnlObNm20detW5ebmqqCgQJKUmJhocWWoTwi5AQAAAAAAAHjEHXfcoX379mnevHnKy8uTJAUEBCg0NNTiylCfEHIDAAAAAAAAcLvMzEzzdXx8vPLz8yVJERERstlsVpWFeoiQGwAAAAAAAIDbrV271nwdERHhEnID7kTIDQAAAAAAAMDtvv/+e/N1Tk4OITc8hpAbAAAAAAAAgNutWbPGfJ2bm2uG3I0aNbKqJNRThNwAAAAAAAAA3G7Lli3mazq54UmE3AAAAAAAAADcrqCgwHxNyA1PIuQGAAAAAAAA4HaFhYXm69zcXOXl5Uki5Ib7EXIDAAAAAAAAcKvS0lI5HA7zPZ3c8CRCbgAAAAAAAABuZbfbXd6XffAkITfcjZAbAAAAAAAAgFuVHVUi0ckNzyLkBgAAAAAAAOBW5Tu5CbnhSYTcAAAAAAAAANyqfMidl5en3NxcSVKjRo2sKAn1GCE3AAAAAAAAALcyxpWEhISY2w4fPiyJTm64HyE3AAAAAAAAALcyOrljY2MVEHA8gkxPT5dEyA33I+QGAAAAAAAA4FZGyB0WFqaoqChJhNzwHEJuAAAAAAAAAG5ljCsJDQ1VZGSkJEJueE6Q1QUAAAAAAAAAqF+MTu7Q0FAFBgZKkjIzMyURcsP9CLkBAAAAAAAAuFXZcSU2m81lHyE33I2QGwAAAAAAAIBblR1XEhIS4rKPkBvuRsgNAAAAAAAAwK3KjisxZnIbGjVqZEVJqMd48CQAAAAAAAAAtyo7rqR8yE0nN9yNkBsAAAAAAACAW5UdVxIVFeWyj5Ab7kbIDQAAAAAAAMCtyo4rIeSGpxFyAwAAAAAAAHArxpXAmwi5AQAAAAAAALhV2XElHTt2dNkXFhZmRUmoxwi5AQAAAAAAALhV2XElgwYNctkXEEAkCfdiRQEAAAAAAABwq7LjShITEy2uBvVdkNUFVMVut5v/MUhSTk6OJMnhcKi4uNiqsnyK8T3wfcBbWHPwFNYWvIn1Bk9hbcGbWG/wFNYWvIF11jDk5+dLkoKCglRcXKxu3bpp8+bNkvizrymHw2F1CT7P5nQ6nVYXUZkZM2Zo5syZFba/8soratKkiQUVAQAAAAAAAKiO+fPna8WKFbrmmmt0xRVX6NVXX9XHH38sSfrwww+tLc7PZGRk6KabblJKSopatWpldTk+yWc7uadOnap7773XfJ+amqouXbpo2LBh/BOH/1NcXKzly5drxIgRCg4OtrocNACsOXgKawvexHqDp7C24E2sN3gKawvewDprGJYsWSJJ6tGjh8aMGaMBAwbob3/7m84//3yNGTPG4ur8S2pqqtUl+DyfDblDQ0MVGhpqvs/OzpZ0/J848Begq+DgYL4TeBVrDp7C2oI3sd7gKawteBPrDZ7C2oI3sM7qt6KiIklSRESEgoOD1bhxY61YscLiqvxTUJDPRrg+gwdPAgAAAAAAAHAr41l7ZZtYAU8h5AYAAAAAAADgVkbIHRYWZnElaAgIuQEAAAAAAAC4VWFhoSQ6ueEdhNwAAAAAAAAA3IpxJfAmQm4AAAAAAAAAbsW4EngTITcAAAAAAAAAt2JcCbyJkBsAAAAAAACAWzGuBN5EyA0AAAAAAADArRhXAm8i5AYAAAAAAADgVowrgTcRcgMAAAAAAABwK8aVwJsIuQEAAAAAAAC4FeNK4E2E3AAAAAAAAADcpqSkRA6HQxKd3PAOQm4AAAAAAAAAbmN0cUuE3PAOQm4AAAAAAAAAblM25GZcCbyBkBsAAAAAAACA2xQWFkqSbDabgoKCLK4GDQEhNwAAAAAAAAC3MTq5Q0NDZbPZLK4GDQEhNwAAAAAAAAC3OXbsmCQpOjra4krQUBByAwAAAAAAAHCbjIwMSVLTpk0trgQNBSE3AAAAAAAAALc5fPiwJKlJkyYWV4KGgpAbAAAAAAAAgNsYndyE3NbJzc3V9OnTNXr0aMXHx8tms2nhwoWVHrtt2zaNHj1akZGRio+P13XXXWf+osKwZ88e2Wy2Sn/eeecdL3yiE+PxpgAAAAAAAADchnEl1svIyNCsWbOUlJSknj17atWqVZUet3//fg0aNEgxMTF6/PHHlZubq3nz5mnTpk366aefFBIS4nL82LFjNWbMGJdtZ511lqc+RrURcgMAAAAAAABwG8aVWC8hIUFpaWlq0aKF1q9fr759+1Z63OOPP668vDxt2LBBSUlJkqQzzjhDI0aM0MKFCzVx4kSX43v37q1rr73W4/XXFONKAAAAAAAAALgNndzWCw0NVYsWLU563Hvvvafzzz/fDLglafjw4erYsaOWLFlS6Tl5eXkqKipyW63uQMgNAAAAAAAAwG3o5PaMnJwcZWdnmz92u71O10tNTdWhQ4fUp0+fCvvOOOMM/fLLLxW2z5w5U5GRkQoLC1Pfvn315Zdf1qkGdyHkBgAAAAAAAOA2PHjSM7p06aKYmBjzZ86cOXW6XlpamqTjo03KS0hI0NGjR80gPSAgQCNHjtTcuXP18ccf66mnntKhQ4d07rnn6rPPPqtTHe7ATG4AAAAAAAAAbsO4Es/YunWrEhMTzfehoaF1ul5BQUGV1wkLCzOPCQ0NVVJSkpYtW+ZyzHXXXacuXbrovvvu03nnnVenWuqKTm4AAAAAAAAAbuF0Ounk9pCoqChFR0ebP3UNucPDwyWp0rEnhYWFLsdUJj4+XuPHj9f27du1f//+OtVSV4TcAAAAAAAAANwiOztbxcXFkgi5fZ0xpsQYW1JWWlqa4uPjTxqkt27dWpJ09OhR9xdYA4TcAAAAAAAAANzCeOhko0aNTtgFDOslJiaqadOmWr9+fYV9P/30k3r16nXSa+zevVuS9aNpCLkBAAAAAAAAuAWjSvzLZZddpk8//VQpKSnmtq+++ko7duzQFVdcYW4zfnlRVmpqql599VX16NGj0odXehMPngQAAAAAAADgFjx00nfMnz9fWVlZOnDggCTpk08+MWdn33nnnYqJidG0adP07rvv6pxzztFdd92l3NxczZ07V927d9f48ePNa02ePFm7du3SsGHD1LJlS+3Zs0cvvvii8vLy9Mwzz1jy+coi5AYAAAAAAADgFllZWZKk2NhYS+uANG/ePO3du9d8//777+v999+XJF177bWKiYlR69attXr1at17772aMmWKQkJCdN555+nJJ590mcc9cuRIvfDCC/p//+//KTMzU7GxsRo0aJAefvhh9e7d2+ufrTxCbgAAAAAAAABuYbfbJUlhYWEWV4I9e/ZU67iuXbtq2bJlJzxm7NixGjt2rBuq8gxmcgMAAAAAAABwi6KiIklSSEiIxZWgISHkBgAAAAAAAOAWhNywAiE3AAAAAAAAALcg5IYVCLkBAAAAAAAAuAUhN6xAyA0AAAAAAADALQi5YQVCbgAAAAAAAABuYYTcoaGhFleChoSQGwAAAAAAAIBb2O12SXRyw7sIuQEAAAAAAAC4BeNKYAVCbgAAAAAAAABuQcgNKxByAwAAAAAAAHALQm5YgZAbAAAAAAAAgFsQcsMKhNwAAAAAAAAA3MIIuUNDQy2uBA0JITcAAAAAAAAAt6CTG1Yg5AYAAAAAAADgFna7XRIhN7wryOoCqmK3283/KCQpJydHkuRwOFRcXGxVWT7F+B74PuAtrDl4CmsL3sR6g6ewtuBNrDd4CmsL3sA6q9+MPC8gIIA/YzdxOBxWl+DzbE6n02l1EZWZMWOGZs6cWWH7K6+8oiZNmlhQEQAAAAAAAIATmTJlin7//XdNmTJF/fr1s7qceiEjI0M33XSTUlJS1KpVK6vL8Uk+G3KX7+ROTU1Vly5d9OeffyoxMdHCynxHcXGxli9frhEjRig4ONjqctAAsObgKawteBPrDZ7C2oI3sd7gKawteAPrrH4766yztGHDBn344YcaM2aM1eXUC6mpqWrbti0h9wn47LiS0NBQl6ewZmdnS5KCgoL4C7Cc4OBgvhN4FWsOnsLagjex3uAprC14E+sNnsLagjewzuonY0RJREQEf75uEhTksxGuz+DBkwAAAAAAAADcoqioSJJcmlcBTyPkBgAAAAAAAOAWRsgdEhJicSVoSAi5AQAAAAAAALiF8Yw9Qm54EyE3AAAAAAAAALegkxtWIOQGAAAAAAAA4BaE3LACITcAAAAAAAAAtyDkhhUIuQEAAAAAAAC4hRFyh4aGWlwJGhJCbgAAAAAAAAB1VlJSopKSEkl0csO7CLkBAAAAAAAA1FlxcbH5mpAb3kTIDQAAAAAAAKDO7Ha7+ZqQG95EyA0AAAAAAACgzox53JIUHBxsYSVoaAi5AQAAAAAAANSZEXIHBQUpIIDYEd7DagMAAAAAAABQZ0bIHRoaanElaGgIuQEAAAAAAADUmRFyM48b3kbIDQAAAAAAAKDOCLlhFUJuAAAAAAAAAHVmt9slEXLD+wi5AQAAAAAAANQZndywCiE3AAAAAAAAgDoj5IZVCLkBAAAAAAAA1BkhN6xCyA0AAAAAAACgzoyQOzQ01OJK0NAQcgMAAAAAAACoMzq5YRVCbgAAAAAAAAB1RsgNqxByAwAAAAAAAKgzu90uiZAb3kfIDQAAAAAAAKDO6OSGVQi5AQAAAAAAANQZITesQsgNAAAAAAAAoM6MkDs0NNTiStDQEHIDAAAAAAAAqDM6uWEVQm4AAAAAAAAAdbJx40Y99dRTkgi54X2E3AAAAAAAAABqzel06sorr1R6erokQm54HyE3AAAAAAAAYCGHw6HVq1eruLjY6lJqZd26ddq5c6fVZaABI+QGAAAAAAAALHTzzTdryJAhev75560upVbeeustl/f79u2zqBI0VITcAAAAAAAAgEWcTqcWLlwoSZo9e7a1xVRTSUmJUlJSJB2vf/HixZKk66+/Xk2bNtWkSZOsLA8NECE3AAAAAAAAYJHt27ebr3v06GFhJdX30EMPKSkpSXPnzlVWVpYOHjwoSXr++ed16NAhDR061OIK0dAEWV0AAAAAAAAA0FB9+umn5uu8vDwLK6m+t99+W5I0efJkxcTESJJiY2MVHh5uZVlowOjkBgAAAAAAACyybNky8/WhQ4csrKT6WrRoYb6eMWOGJKl58+YWVQMQcgMAAAAAAACWKfuQxvT0dAsrqb6srCzzdVpamiTX4BvwNkJuAAAAAAAAwCJHjhwxX+fm5io/P9/CaqonMzOzwjZCbliJkBsAAAAAAACwQElJSYXA2Ne7uZ1OJyE3fA4hNwAAAAAAAGCBrKwslZaWSpISEhIk+X7InZ+fL4fDUWE7M7lhJUJuAAAAAAAAwALGqJKoqCi1bt1aku+H3EYXd2BgoJKSksztdHLDSoTcAAAAAAAAgAWMkLtx48ZmJ7Svh9zGQyfj4uLMYF4i5Ia1CLkBAAAAAAAAC/hjyG10csfGxrqE3IwrgZUIuQEAAAAAAAAL+HPITSc3fAkhNwAAAAAAAFBHeXl56t69u+66665qn1M25G7WrJkk3w+5KxtXYrPZ1LRpUwurQkNHyA0AAAAAAADU0a+//qrNmzdryZIl1T7Hnzu5y44radKkiYKDg60sCw0cITcAAAAAAABQR9nZ2ZKOd3RXV2Uh96FDh9xfnBuV7eQ+/fTTFRISojPOOMPaotDgEXIDAAAAAAAAdWSE3Pn5+XI6ndU6xxc7ufPy8tSnTx9Nnjy50v3lZ3Knpqbqgw8+8GaJQAVBVhdQFbvdLrvdbr7PycmRJDkcDhUXF1tVlk8xvge+D3gLaw6ewtqCN7He4CmsLXgT6w2ewtqCN9TXdWaEvyUlJcrLy9PBgwf17LPP6s4771SbNm0qPScjI0OSFBMTo/j4eEnHO6Vzc3MVGhrqncLLef/997VhwwZt2LBBjz32mGw2m8v+o0ePSpKioqJUXFysmJgYSfXvz9OXOBwOq0vweT4bcs+ZM0czZ86ssP2rr75SkyZNLKjIdy1fvtzqEtDAsObgKawteBPrDZ7C2oI3sd7gKawteEN9W2c//fST+fqjjz7SvHnztHHjRr3zzjt66aWXKj1nz549kqTdu3dr7dq1CgoKksPh0DvvvGPZgxw3bdpkvl68eLGio6Nd9m/fvl2StH//fn3++edera2hMn4Zgqr5bMg9depU3Xvvveb71NRUdenSRcOGDVNiYqKFlfmO4uJiLV++XCNGjGC4P7yCNQdPYW3Bm1hv8BTWFryJ9QZPYW3BG+rrOtuwYYP5un///tq/f7+k4zO2x4wZU+k5d9xxhyRp9OjROv3009W8eXOlpqaqW7duOv300z1fdCWMTm1Jateunfr27euyf968eZKkAQMGVPm54F6pqalWl+DzfDbkDg0NdflnGcZco6CgoHr1F6A7BAcH853Aq1hz8BTWFryJ9QZPYW3Bm1hv8BTWFryhvq2zsg+cLCoqUrdu3bRq1SpJUmlpaYXxI06n0+zQbd68uYKDg82Q+8iRI5Z9N7m5uebrffv2qX///i77jx07Jklq2rRpvfrz82VBQT4b4foMHjwJAAAAAAAA1JHxPDnp+MMnW7RoYb7/7bffKhx/4MAB2e12BQQEmMf6wsMns7KyzNe7du1y2ed0Os3ajBnigC8g5AYAAAAAAADqyJhCIB3v6i4oKDDfr1u3rsLxxniTLl26KDw8XJJvhNzGAzSl47PCy0pJSdGhQ4cUFBSkzp07e7s0oEqE3AAAAAAAAEAdlQ258/Pzqx1yl5297Qshd9lO7vIh99q1ayVJPXv2VEREhDfLAk6IkBsAAAAAAACooxN1cv/+++8Vjq8s5G7WrJmkmoXc+fn5Onz4cI3rrcqJxpUYIfdZZ53ltvvBMzZs2KDRo0crOjpaUVFRGjlypDZu3Fjpsd9//70GDBigiIgItWjRQpMmTXKZze4PCLkBAAAAAACAOio7kzsvL0+FhYXm+yNHjrgc63Q6tX79eklSnz59zO216eTu3LmzmjVrZj7Esq7Khtz79+/Xjh07zPeE3P7h559/1oABA7R7925Nnz5djz76qHbu3KnBgwdr+/btLsdu3LhRw4YNU35+vv7973/rpptu0ksvvaQrrrjCouprh0dzAgAAAAAAAHV0onElR48edTn2wIEDSk9PV0BAgHr27GluN0LulStXatiwYYqMjNRLL71kbi/P6XRq3759kqRvvvlGl156aZ0/R9mZ3E6nU71799aWLVvUtGlT/fLLL5IIuX3dI488ovDwcK1du1aNGzeWJF177bXq2LGjpk2bpvfee888dtq0aYqLi9OqVasUHR0tSUpOTtbNN9+sL7/8UiNHjrTkM9QUndwAAAAAAABAHZ1oXElmZqZKS0vN9z/99JMkqWvXri6zrcuG2V9//bU+/vhjLViwoMp7lr2H3W6v2wf4P0Yn9+LFi9WpUyfl5eVp+fLlWrp0qYqLi5WcnKzk5GS33Aue8e2332r48OFmwC1JCQkJGjx4sD799FNzFEl2draWL1+ua6+91gy4JWncuHGKjIzUkiVLvF57bRFyAwAAAAAAAHXgdDpP2MldWlqqY8eOme9/+OEHSVK/fv1crnPqqafqzDPPVP/+/dW9e3dJ0po1a6q8b9lr5uXl1e1D/B8j5O7Ro4eGDh0qSdqzZ4+ef/55SdLNN98sm83mlnuhZnJycpSdnW3+VPWLDbvdrvDw8ArbIyIiVFRUpM2bN0uSNm3aJIfD4TIyR5JCQkLUq1cvs3PfHxByAwAAAAAAAHVgt9vlcDjM9+U7uSXXudxVzbYOCQnRDz/8oDVr1ui1116TdDzkLtsFXlbZ+dnuePhk2TA+NjbW7Nj++OOP9cMPPygoKEgTJkyo831QO126dFFMTIz5M2fOnEqPO/XUU/XDDz+opKTE3FZUVKQff/xRkpSamipJSktLk3S8y7u8hIQEHThwwN0fwWMIuQEAAAAAAIA6KNvFLVUechtzuYuLi82HTp5otnXPnj3VqFEjHTt2TFu2bKn0mLKd3IcOHapV7WVlZ2fL6XRKOh5yt23bVtLxjl9JGjlyZJXzweF5W7du1bFjx8yfqVOnVnrc7bffrh07dmjChAnaunWrNm/erHHjxpmhtrE2jf8dGhpa4RphYWEV1rAvI+QGAAAAAAAA6qCykLuwsFCS1LJlS0l/dXL/+uuvKigoUFxcnDp27FjlNYOCgswQvKqRJWVD7vT09Np/gP9jdIaHhYUpLCyswuztvn371vkeqL2oqChFR0ebP5WF05J06623atq0aXrrrbfUtWtXde/eXbt27dLkyZMlSZGRkZJkjjSpbOxJYWFhpSNPfBUhNwAAAAAAAFAHOTk5Lu+Nrm1JSkxMdNlmjCrp16+fAgJOHM0NGDBAkvTRRx9Vut/dndxGyB0bGytJZie3oVevXnW+B7xj9uzZSk9P17fffqvffvtN69atM8feGL9cMcaUGB3eZaWlpZm/oPEHhNwAAAAAAABAHZTv5M7IyDBft2rVStJfndxVPXSyMtdcc41sNpv+97//afv27RX2e6qTOy4uTpIUHx/v0i1MyO1f4uLiNGDAAPMhpitWrFCrVq3UqVMnSVK3bt0UFBRkjs8xFBUVaePGjX71503IDQAAAAAAANRB+ZDbCLQDAwPNGdblO7lPNI/b0L59e51//vmSpGeffbbC/rIPnnRHJ3dmZqakvzq5bTabyyiLNm3a1PkesMbixYu1bt063X333ea/IIiJidHw4cP13//+1+VfI7zxxhvKzc3VFVdcYVW5NRZkdQEAAAAAAACAP6uqkzs8PFzx8fGSjgff6enp+vPPP2Wz2XTmmWdW69oTJ07UJ598ouXLl1fYV7aTOyMjQyUlJQoMDKztx6gwrqQ8m81W62vDe7755hvNmjVLI0eOVOPGjfXDDz/otdde0+jRo3XXXXe5HDt79mz1799fgwcP1sSJE7V//349+eSTGjlypEaPHm3RJ6g5OrkBAAAAAACAOjBC7oiICEl/dXKHh4ercePGko53chtd3F27dlV0dHS1rm08/LHsnG9D2ZC7tLTUvG9tle/klqRRo0ZJkgYPHlyna8N7EhMTFRgYqLlz5+qOO+7Qd999p8cee0wfffSRgoJce5579+6tFStWKDw8XPfcc49eeuklTZgwQUuXLrWo+tqhkxsAAAAAAACoAyOAbt26tbZv366SkhJJFTu5azKqxGCcf/ToUZWWlro8rLJsyC0dH1nSrFmzWn8OIyQ3gnlJeu211/Tyyy9r4sSJtb4uvKtdu3ZatmxZtY8fMGCA1qxZ48GKPI9ObgAAAAAAAKAOjPEk5WdWl+/k/vzzzyUdDxWry3gIZGlpqcvcZKliyF3Xh09WFnInJCTo0UcfVYsWLep0bcCT6OQGAAAAAAAA6sAIh5OSkly2h4WFmZ3Y69atkyQFBwfrwgsvrPa1w8PDFR4eroKCAu3bt0/R0dFmmF72wZOSZ0JuwB/QyQ0AAAAAAADUQXU6uQ3nnntulQ92rIoRlF9wwQVKTk7W+vXrJf3VyW3sP3jwYI1rL4uQG/6KkBsAAAAAAACoAyPkLt/JHR4erqSkJHPkiCRdddVVNb6+cf7evXslSY8//rikv0LuTp06SZLS0tKqdb3du3fr8ssv15lnnqn//ve/5nZCbvgrQm4AAAAAAACgDk4UckdEROjXX3/VnXfeqQkTJujSSy+t8fWNTm3DH3/8Ian2Iferr76q9957Tz/99JNmz55tbifkhr9iJjcAAAAAAABQB0bI3bJlSwUHB6u4uFjS8ZBbklq3bq3//Oc/tb5+ZSF3cXFxhZD7999/19ChQ3XFFVfotttuq/J6ZR9YaVwrODiYkBt+i05uAAAAAAAAoJbsdrtycnIkSU2bNlViYqK5zwi566p8yF1QUKDvvvtOpaWlkqTOnTtLkjZs2KCVK1fq9ttvP+H18vPzzdcOh0O7d+9WQUGBCgsLJRFyw/8QcgMAAAAAAAC1ZHQ/BwYGKiYmxuXhk54KuSXps88+kyQFBQXplFNOqdH18vLyXN7//vvv5ucICgpSVFRULSsFrEHIDQAAAAAAANSSMaqkcePGCggI8EjIXfbBlYa1a9dKOh6AJyQk1Oh6Jwq5GzduLJvNVstKAWsQcgMAAAAAAAC1ZITcTZo0kSSPd3IbAfS6devM+8XGxio0NNTlHGMueGWMcSXGmJPyITfgbwi5AQAAAAAAgFoq28kteT7k7tevn6S/Quzk5GTZbDa1aNHC5ZyyD5csz+jk7t27tyRp27ZthNzwa4TcAAAAAAAAQC2dqJM7LCzMLfcoG3KfddZZLvvatm0rSQoIcI35srKyqryeEXL36dNHEp3c8H+E3AAAAAAAAEAteXtcyZlnnumyLzk5WZKUnZ3tsv1EIXf5cSXHjh3T/v37JRFywz8RcgMAAAAAAAC1VD7kbt26tbnPCJPrquyDJzt06OASRBshd05Ojss5mZmZVV7P6ORu3ry52QG+a9cuSYTc8E+E3AAAAAAAAEAt/fnnn5KkZs2aSXIdUXLo0CG33KNsyN20aVOXbnEj5J45c6bLOdUZVxIZGamYmBhJf4XcZbvGAX9ByA0AAAAAAADUgt1u19dffy1JGjx4cIX9RgBdV7GxsZo4caJuvPFGJSYmKikpqcI97r//fq1Zs0ajRo2SVHXI7XQ6zQ7zRo0amQH6H3/8IYlObvinIKsLAAAAAAAAAPzR6tWrlZ+fr4SEBPXq1cvc/sMPP+jzzz/XLbfc4rZ7vfjii+Zro5O7efPm5tzvoKAg9e/fX82bN5dUdchtt9tVWloqSYqIiFBsbKykv8abEHLDHxFyAwAAAAAAALXw2WefSZLGjBkjm81mbj/zzDMrPCDSnYxO7so6xY3QuqqQ2xhVIh3v5DaONxBywx8xrgQAAAAAAACoBWNUyZgxY7x635EjR6px48a67LLLKuw7WchtjCoJCQlRUFAQITfqBTq5AQAAAAAAgFpIS0uTJJ166qlevW+3bt10+PBhl+5xQ3U7uSMiIiS5PtRSIuSGf6KTGwAAAAAAAKih0tJSc451fHy81+9fWcAt/RVyZ2RkyOFwVNhvhNyNGjVyOd5gxWcB6oqQGwAAAAAAAKihnJwc8wGO5buhrWSE1l9++aXi4+OVnp7ust8YV1JZyB0VFaWQkBCv1Am4EyE3AAAAAAAAUENHjx6VJIWHhyssLMziav5SNrTOycnRmjVrXPaXH1dS9nhGlcBfEXIDAAAAAAAANWSE3L423qP8+JHw8HCX9+XHlZTtQifkhr8i5AYAAAAAAABqyFdD7vKjU+x2u8v7E40rIeSGvyLkBgAAAAAAAGrIV0Pu8kF1UVGRy3vGlaA+IuQGAAAAAAAAaigzM1OS74XcUVFReu+998z3VYXcdHKjPiHkBgAAAAAAAGrI6OQuPx7EF1x66aU6//zzJTGuBA0DITcAAAAAAABQQ746rsQQGhoq6eTjSnjwJOoDQm4AAAAAAACghnw95A4JCZFUsZO7/LiS8PBwBQcHS/LdzwKcTJDVBVTFbre7/EeYk5MjSXI4HCouLraqLJ9ifA98H/AW1hw8hbUFb2K9wVNYW/Am1hs8hbUFb6gv6ywjI0OSFBMT45OfJSjoeOxXUFDgUl9ubq4kKSwszNweGxurw4cP++xnaegcDofVJfg8nw2558yZo5kzZ1bY/tVXX6lJkyYWVOS7li9fbnUJaGBYc/AU1ha8ifUGT2FtwZtYb/AU1ha8wd/X2e7duyVJf/75pz7//HOLq6koPT1dkrRp0yaX+v744w9J0p49e8ztzZo105EjR3TgwAGf/CwNnfELFVTNZ0PuqVOn6t577zXfp6amqkuXLho2bJgSExMtrMx3FBcXa/ny5RoxYoT5z0oAT2LNwVNYW/Am1hs8hbUFb2K9wVNYW/CG+rLOHnroIUnSsGHDNGzYMIurqejLL7/Ul19+qeTkZI0ZM8bc/tJLL0mS+vbta27v37+/0tPTdeqpp1pSK04sNTXV6hJ8ns+G3KGhoeaAfEnKzs6WdPyfWvjzX4CeEBwczHcCr2LNwVNYW/Am1hs8hbUFb2K9wVNYW/AGf19nmZmZko53Qfvi5wgPD5cklZSUKDg4WCkpKYqNjVVBQYEkKTo62qy7adOmatq0qWW14sSM0TOoGt8QAAAAAAAAUEP+9ODJ9PR0tW/fXr169TKfgRcXF2dleYBbBVhdAAAAAAAAAOBPCgoKVFhYKMn3Q+6ioiLt2LFDRUVF2rRpk8+H80BtEHIDAAAAAAAANWCMKgkMDFRUVJTF1VTOGANst9vNYLugoEBpaWmSpMaNG1tWG+BuhNwAAAAAAABADRihcVxcnGw2m8XVVK5sJ/eRI0fM7Q6HQxKd3KhfCLkBAAAAAACAGvCHkR9lO7nLhtySFBAQoJiYGCvKAjyCkBsAAAAAAACoAX8Iuct2chv1GuLi4hQQQCyI+oPVDAAAAAAAANRA2XElvsro5C4/rkRiHjfqH0JuAAAAAAAAoAaMB0/6Qyd3ZeNKfLluoDYIuQEAAAAAAIAa8LdxJXRyo74LsroAAAAAAAAAwJ/4Q8hd9sGThYWFLvt8uW6gNujkBgAAAAAAAGrAH0JuOrnRkBByAwAAAAAAADVgzOT2hwdPMpMbDQEhNwAAAAAAAFAD/tTJnZWVJbvd7rLPl+sGaoOQGwAAAAAAAKgBfwi5jU7ugwcPVtjHuBLUN4TcAAAAAAAAQA34Q8htdHIbbDab+dqX6wZqg5AbAAAAAAAAqKaSkhIdO3ZMkm+HxeVD7qSkJPM1ndyobwi5AQAAAAAAgGrKysoyX8fGxlpWx8kY40oMSUlJiomJkSQlJCRYURLgMUFWFwAAAAAAAAD4C2NUSVRUlIKDgy2upmrlO7nj4+P19ttvKz09XS1btrSoKsAzCLkBAAAAAACAEygoKJDD4VBUVJRfzOOWKnZyx8fH69xzz7WoGsCzGFcCAAAAAAAAVCEzM1OnnXaaTjnlFKWmpurIkSOSpLi4OIsrO7Hyndy+PFoFqCs6uQEAAAAAAIBKlJaWaty4cdq+fbskacaMGerVq5ckqU2bNhZWdnLlO7kJuVGfEXIDAAAAAAAAlfjXv/6lTz/9VMHBwSouLtarr76qESNGSJI6dOhgcXUnFhTkGvv5euc5UBeMKwEAAAAAAADK+fXXX/Xwww9Lkp577jmNHDlSpaWlWrZsmSSpY8eOVpZ3UjabzWVkCZ3cqM8IuQEAAAAAAIBy1q5dq9LSUg0ePFgTJkzQ4MGDXfb7esgtuY4soZMb9RkhNwAAAAAAAFBOcXGxJKlZs2ay2Wzq06ePy35fH1ciiU5uNBiE3AAAAAAAAEA5RsgdHBwsSTr99NPNfY0aNVJCQoIlddVE2U5uQm7UZ4TcAAAAAAAAQDnlQ+7GjRvrlFNOkXS8i9tms1lWW3WV7eRmXAnqM0JuAAAAAAAAoJzyIbckc2SJP8zjlv76DBKd3KjfCLkBAAAAAACAcioLua+++mpJ0kUXXWRJTTWVl5dnvo6IiLCwEsCzgqwuAAAAAAAAAPA1lYXcF110kUpKShQQ4B99o/n5+eZrfxivAtSWf/wXCQAAAAAAAHhRZSG3JL8JuCWpqKjI6hIAr/Cf/yoBAAAAAAAAL6kq5Abgewi5AQAAAAAAgHIcDockQm7AHxByAwAAAAAAAOXQyQ34D0JuAAAAAAAAoBxCbsB/EHIDAAAAAAAA5dSnkDs0NNTqEgCPIuQGAAAAAAAAyqkPIXevXr0kSVdffbW1hQAeFmR1AQAAAAAAAICvMULuoCD/jc+++OILffTRR7rmmmusLgXwKDq5AQAAAAAAgHLqQyd3ixYtdMsttygyMtLqUuBFN9xwg2w2W5U/qampkqQhQ4ZUun/06NEWf4Ka899fRQEAAAAAAAAeUh9CbjRMt9xyi4YPH+6yzel06tZbb1VycrISExPN7a1atdKcOXNcjm3ZsqVX6nQnQm4AAAAAAACgHEJu+KuzzjpLZ511lsu27777Tvn5+RVG18TExOjaa6/1ZnkewbgSAAAAAAAAoBxCbtQnb731lmw2W6UPIXU4HMrNzbWgKvch5AYAAAAAAADKIeSGr8nJyVF2drb5Y7fbq3VecXGxlixZov79+ys5Odll344dO9SoUSNFRUWpRYsWeuSRR8y1708YVwIAAAAAAACUQ8gNX9OlSxeX99OnT9eMGTNOet6yZct05MiRCqNK2rVrp3POOUfdu3dXXl6eli5dqscee0w7duzQ4sWL3Vm6xxFyAwAAAAAAAOUQcsPXbN261eWhkaGhodU676233lJwcLCuvPJKl+0LFixweX/ddddp4sSJevnll3XPPfeoX79+dS/aSxhXAgAAAAAAAJTjcDgkEXLDd0RFRSk6Otr8qU7InZubq48++kijRo1S48aNT3r8fffdJ0lasWJFnev1JkJuAAAAAAAAoBw6uVEffPjhh8rPz68wqqQqrVu3liQdPXrUk2W5nc+OK7Hb7S7D03NyciQd/y2aPw4/9wTje+D7gLew5uAprC14E+sNnsLagjex3uAprC14g7+sM6M+m83m87WifjP+VUFtvPnmm4qMjNSFF15YreN3794tSWratGmt72kFm9PpdFpdRGVmzJihmTNnVtj+yiuvqEmTJhZUBAAAAAAAgPqmuLhYv/zyi7p3767w8HBz+4QJE3TkyBHNmzdP7du3t7BCNHQZGRm66aablJKSolatWlX7vMOHD6tly5YaO3asFi1a5LIvOztboaGhLiNPnE6nxo4dq8WLF2vDhg3q3bu32z6Dp/lsJ/fUqVN17733mu9TU1PVpUsXDRs2zGXAekNWXFys5cuXa8SIEfzTGXgFaw6ewtqCN7He4CmsLXgT6w2ewtqCN/jaOnv00Uf1z3/+U5deeqneeecdc3tQ0PHYbMiQIerRo4dV5QFKTU2t1XmLFy+Ww+GodFTJzz//rLFjx2rs2LFq3769CgoK9MEHH2jNmjWaOHGiXwXckg+H3OV/k5CdnS3p+F8wvvAXoC8JDg7mO4FXsebgKawteBPrDZ7C2oI3sd7gKawteIOvrLOnnnpKkvT++++71GOMKImIiPCJOtFwGb9wqak333xTzZo10/Dhwyvsa9OmjQYOHKgPPvhABw8eVEBAgDp37qwXXnhBEydOrGvJXuezITcAAAAAAADgaVFRUeZz4ZxOp2w2m6S/Qu7aBoyA1dauXVvlvrZt22rJkiVerMazAqwuAAAAAAAAALBKRESE+To9Pd18bYTcdHEDvo+QGwAAAAAAAA2S0+nU4cOHzfebN282XxNyA/6DkBsAAAAAAAAN0uHDh1VQUGC+N0Jup9OpkpISSYTcgD8g5AYAAAAAAECDtHfvXpf3n376qUpLS80ubomQG/AHhNwAAAAAAABokPbt2+fy/quvvtLAgQNVVFRkbiPkBnwfITcAAAAAAAAaJKOTe8yYMRo6dKgk6fvvv9eRI0fMYwi5Ad9HyA0AAAAAAIAGZcOGDRo1apTuu+8+SVLXrl311VdfKSwsTJJ06NAh81hCbsD3BVldAAAAAAAAAOAthw8f1llnneUyd7tNmzaSpMaNGys1NdUMuQMCAhQQQI8o4OsIuQEAAAAAANBg7N69W8XFxWratKkmTJigH3/8URdddJEkKS4uziXkposb8A+E3AAAAAAAAGgwjAA7OTlZc+bMcdkXFxcnSUpPT5dEyA34C/69BQAAAAAAABoMI+Ru1qxZhX1GyE0nN+BfCLkBAAAAAADQYJwo5I6Pj3c5hpAb8A+E3AAAAAAAAGgw6OQG6h9CbgAAAAAAADQYRoDdtGnTCvvKh9xBQTzODvAHhNwAAAAAAABoMA4fPizpxJ3cPHgS8C+E3AAAAAAAAGgwmMkN1D+E3AAAAAAAAGgwqjOTu7S0VBIhN+AvCLkBAAAAAADQIJSWllZrXImBkBvwD4TcAAAAAAAAqPf27dunu+++Ww6HQ1LlD540xpUYCLkB/8AjYgEAAAAAAFDvPfDAA1qyZIkkKTY2ViEhIRWOoZMb8E90cgMAAAAAAKDe++qrr8zXBQUFlR4TGxvr8p6QG/APhNwAAAAAAACo95o3b26+ttvtlR4THBysyMhIl/cAfB/jSgAAAAAAAFBvZWVlyel0KiUlxdw2a9asKo+Pj49Xbm6uJEJuwF8QcgMAAAAAAKBeKikpUdeuXXXgwAFz27FjxxQdHV3lOU2aNNG+ffskEXID/oJxJQAAAAAAAKiXMjMzXQLu+Pj4EwbckpSYmGi+JuQG/AMhNwAAAAAAAOqlzMxMl/etW7c+6TmtWrUyXxNyA/6BkBsAAAAAAAD1Um1Cbjq5Af9DyA0AAAAAAIB66ejRoy7va9rJHRTE4+wAf0DIDQAAAAAAgHqpfCd3y5YtT3oOndyA/yHkBgAAAAAAQL1UPuQuKCg46TnM5Ab8DyE3AAAAAAAA6qXyIfe111570nPKdnLb7Xa31wTA/Qi5AQAAAAAAUC8ZM7nvvPNO7du3T507dz7pOVFRUebrQ4cOeaw2AO5DyA0AAAAAAIB6yejkTkhIqNZDJ8tLT093d0kAPICQGwAAAAAAAPWSEXLHxcXV6nw6uQH/QMgNAAAAAACAeskYV1LTkPuUU06RJA0bNsztNQFwvyCrCwAAAAAAAAA8wejkjo+Pr9F533zzjZYuXaobbrjBA1UBcDdCbgAAAAAAANRLtR1XkpiYqLvuussTJQHwAMaVAAAAAAAAoF6q60xuAP6BkBsAAAAAAAD1TlFRkfLy8iQRcgP1HSE3AAAAAAAA6h2ji9tmsykmJsbiagB4EiE3AAAAAAAA6h0j5I6JiVFgYKDF1QDwJEJuAAAAAAAA1DtHjx6VxKgSoCEg5AYAAAAAAEC9w0MngYaDkBsAAAAAAAD1jhFyx8fHW1wJAE8j5AYAAAAAAEC9Qyc30HAQcgMAAAAAAKDeYSY30HAEWV1AVex2u+x2u/k+JydHkuRwOFRcXGxVWT7F+B74PuAtrDl4CmsL3sR6g6ewtuBNrDd4CmsL3uCtdXbkyBFJUkxMDGsafs3hcFhdgs+zOZ1Op9VFVGbGjBmaOXNmhe2vvPKKmjRpYkFFAAAAAAAA8BfPPPOMVq5cqXHjxunSSy+1uhyg1jIyMnTTTTcpJSVFrVq1srocn+SzIXf5Tu7U1FR16dJFf/75pxITEy2szHcUFxdr+fLlGjFihIKDg60uBw0Aaw6ewtqCN7He4CmsLXgT6w2ewtqCN3hrnV188cX6/PPP9fzzz2vChAkeuw/gaampqWrbti0h9wn47LiS0NBQhYaGmu+zs7MlSUFBQfwf2nKCg4P5TuBVrDl4CmsL3sR6g6ewtuBNrDd4CmsL3uDpdXbs2DFJUpMmTVjP8GtBQT4b4foMHjwJAAAAAACAeiczM1OSFB8fb3ElADyNkBsAAAAAAAD1jhFyx8XFWVwJAE8j5AYAAAAAAEC9c/ToUUmE3EBDQMgNAAAAAACAeqWgoEB2u10S40qAhoCQGwAAAAAAAPWKMaokMDBQUVFRFlcDwNMIuQEAAAAAAFCvGKNKYmNjZbPZLK4GgKcRcgMAAAAAAKBe4aGTQMNCyA0AAAAAAIB6xQi5mccNNAyE3AAAAAAAAKhX6OQGGhZCbgAAAAAAANQrxkxuQm6gYQiyugAAAAAAAADAHT7++GPt2rVL+/btkyQlJCRYXBEAbyDkBgAAAAAAgN9bt26dLrroIklSq1atJEkdOnSwsiQAXsK4EgAAAAAAAPg1h8OhcePGme/3798vSWrfvr1VJQHwIkJuAAAAAAAA+LUtW7bo999/r7CdTm6gYSDkBgAAAAAAgF/bsWNHhW3BwcFq3bq1BdUA8DZCbgAAAAAAAPg1I+QuO57klFNOUWBgoFUlAfAiQm4AAAAAAAD4NSPkvvjii81tjCoBGg5CbgAAAAAAAPilV155RS1atNCiRYskSWeccYZatWoliYdOAg0JITcAAAAAAAD8zooVK3TzzTcrPT3d3NaxY0f17NlTktSpUyerSgPgZUFWFwAAAAAAAADU1KOPPlphW/v27fXPf/5TvXv31tVXX21BVQCsQMgNAAAAAAAAv+J0OrV169YK2xs1aqRu3bqpW7duFlQFwCqMKwEAAAAAAIBfycjI0LFjxyRJjz/+uCRp8ODBVpYEwEKE3AAAAAAAAPArf/zxhySpVatWmjJlij788EO9+eabFlcF+Jaff/5ZF154oeLj4xUREaFu3brpP//5j8sx33//vQYMGKCIiAi1aNFCkyZNUm5urkUV1x7jSgAAAAAAAOBXjJC7Q4cOstlsuuiiiyyuCPAtX375pS644AKddtppeuSRRxQZGaldu3Zp//795jEbN27UsGHD1LlzZ/373//W/v37NW/ePO3cuVNffPGFhdXXHCE3AAAAAAAA/MrOnTslHQ+5AbjKzs7WuHHjdN5552np0qUKCKh8mMe0adMUFxenVatWKTo6WpKUnJysm2++WV9++aVGjhzpzbLrhHElAAAAAAAA8CtGJ3f79u0trgTwPW+99ZbS09M1e/ZsBQQEKC8vT6WlpS7HZGdna/ny5br22mvNgFuSxo0bp8jISC1ZssTbZdcJITcAAAAAAAD8Cp3caIhycnKUnZ1t/tjt9kqPW7FihaKjo5WamqpTTz1VkZGRio6O1m233abCwkJJ0qZNm+RwONSnTx+Xc0NCQtSrVy/98ssvHv887kTIDQAAAAAAAL9x9OhRbd++XRIhNxqWLl26KCYmxvyZM2dOpcft3LlTDodDF110kUaNGqX33ntPN954o1544QWNHz9ekpSWliZJSkhIqHB+QkKCDhw44LkP4gHM5AYAAAAAAIBfSEtL0wUXXKCcnBy1bt2akBsNytatW5WYmGi+Dw0NrfS43Nxc5efn69Zbb9V//vMfSdKll16qoqIivfjii5o1a5YKCgqqvEZYWJi531/QyQ0AAAAAAACft2/fPp122mnasGGDmjZtqv/9738KCQmxuizAa6KiohQdHW3+VBVyh4eHS5LGjh3rsv3qq6+WJK1du9Y8prKRJ4WFheZ+f0HIDQAAAAAAAJ9nPEyvQ4cO+u6779SlSxerSwJ8UsuWLSVJzZs3d9nerFkzSVJmZqY5psQYW1JWWlqaeQ1/QcgNAAAAAAAAn3fw4EFJ0iWXXKKOHTtaXA3gu04//XRJUmpqqst2Y85206ZN1a1bNwUFBWn9+vUuxxQVFWnjxo3q1auXV2p1F0JuAAAAAAAA+Lz09HRJFbtTAbi68sorJUkLFixw2f7KK68oKChIQ4YMUUxMjIYPH67//ve/ysnJMY954403lJubqyuuuMKrNdcVD54EAAAAAACAzyPkBqrntNNO04033qhXX31VDodDgwcP1qpVq/Tuu+9q6tSp5iiS2bNnq3///ho8eLAmTpyo/fv368knn9TIkSM1evRoiz9FzRByAwAAAAAAwOcdOnRIEiE3UB0vvPCCkpKS9Nprr+mDDz5QmzZt9NRTT+nuu+82j+ndu7dWrFihBx98UPfcc4+ioqI0YcIEzZkzx7rCa4mQGwAAAAAAAD6PTm6g+oKDgzV9+nRNnz79hMcNGDBAa9as8VJVnsNMbgAAAAAAAPg0h8OhI0eOSCLkBlARITcAAAAAAAB82uHDh+V0OhUQEKDGjRtbXQ4AH0PIDQAAAAAAAJ9mjCpp0qSJAgMDLa4GgK8h5AYAAAAAAIBPYx43gBMh5AYAAAAAAIBPI+QGcCKE3AAAAAAAAPBphw4dkkTIDaByhNwAAAAAAADwaXRyAziRGofcubm5mj59ukaPHq34+HjZbDYtXLiwyuM/+eQTXXDBBWrevLlCQkIUHx+vQYMG6cknn1R2dnZdagcAAAAAAEADcPDgQUmE3AAqF1TTEzIyMjRr1iwlJSWpZ8+eWrVqVaXHlZaWasKECVq4cKG6d++u22+/Xa1bt1ZOTo7Wrl2rhx9+WJ9//rm++uqrun4GAAAAAAAA1GNbtmyRJLVr187iSgD4ohqH3AkJCUpLS1OLFi20fv169e3bt9LjnnjiCS1cuFD33HOPnnzySdlsNnPfXXfdpbS0NC1atKj2lQMAAAAAAKDeKyws1KZNmyRJffr0sbgaAL6oxuNKQkND1aJFixMek5+fr3/961/q2rWr5s6d6xJwGxISEvTggw/W9PYAAAAAAABoQDZt2iSHw6EmTZooKSnJ6nIA+KAad3JXx3fffaesrCzdf//9CgwMrNU17Ha77Ha7+T4nJ0eS5HA4VFxc7JY6/Z3xPfB9wFtYc/AU1ha8ifUGT2FtwZtYb/AU1ha8obrrzOFw6Nxzz9Xq1aslSaeffrocDofH6wN8Dev+5DwScv/++++SpG7durlsLykpUWZmpsu2xo0bV9rpPWfOHM2cObPC9q+++kpNmjRxY7X+b/ny5VaXgAaGNQdPYW3Bm1hv8BTWFryJ9QZPYW3BG062zlJSUsyAW5Kio6P1+eefe7oswOdkZGRYXYLP80jInZ2dLUmKjIx02b5p0yaddtppLtsOHz5caWg9depU3Xvvveb71NRUdenSRcOGDVNiYqIHqvY/xcXFWr58uUaMGKHg4GCry0EDwJqDp7C24E2sN3gKawvexHqDp7C24A3VXWflA+0rrrhCY8aM8XR5gM9JTU21ugSf55GQOyoqSpKUm5vrsr19+/bmb+kWLVqkN954o8prhIaGKjQ01HxvBOdBQUH8H9pygoOD+U7gVaw5eAprC97EeoOnsLbgTaw3eAprC95wsnWWkpJivu7Zs6dGjRrFukSDFBTkkQi3Xqnxgyero1OnTpKkzZs3u2yPjIzU8OHDNXz4cJ1yyimeuDUAAAAAAADqgT179kiS7rnnHm3cuFHR0dHWFgTAZ3kk5B44cKBiYmL0zjvvqLS01BO3AAAAAAAAQD32559/SpLatm1rcSUAfJ1HQu6IiAhNnjxZmzdv1pQpU+R0OiscU9k2AAAAAAAAQPqrkzs5OdnSOgD4vloNdJk/f76ysrJ04MABSdInn3yi/fv3S5LuvPNOxcTEaMqUKdq2bZvmzp2rL7/8UpdddplatWqlzMxM/fzzz3r33XfVrFkzhYWFue/TAAAAAAAAoF6gkxtAddUq5J43b5727t1rvn///ff1/vvvS5KuvfZaxcTEKCAgQG+88YYuu+wyvfzyy3r22WeVmZmpyMhIdevWTbNnz9bNN9+syMhI93wSAAAAAAAA1AvHjh1TZmamJDq5AZxcrUJu45+LVMfFF1+siy++uDa3AQAAAAAAQAPz3nvv6fLLL5ckRUVF0SAJ4KQ8MpMbAAAAAAAAqKmSkhI9+OCD5vvOnTtbWA0Af1GrTm4AAAAAAADA3T7++GPt2rVL0vGRuNdff73FFQHwB4TcAAAAAAAA8AkvvfSSJGnatGmaPXu2xdUA8BeMKwEAAAAAAIDlnE6n1q9fL0m65JJLLK4GgD8h5AYAAAAAAIDl0tPTlZGRIZvNpi5dulhdDgA/QsgNAAAAAAAAy23evFmS1L59e0VERFhcDQB/QsgNAAAAAAAAy23atEmS1L17d4srAeBvCLkBAAAAAABgOUJuALVFyA0AAAAAAADLEXIDqC1CbgAAAAAAAFiquLhYW7ZskUTIDaDmCLkBAAAAAABgqZ9//lkFBQWKj49X+/btrS4HgJ8h5AYAAAAAAIClvv32W0nSgAEDFBBAXAWgZvhbAwAAAAAAAJb65ptvJEmDBg2yuBIA/oiQGwAAAAAAAJYpLS3Vd999J0kaOHCgxdUA8EeE3AAAAAAAALDMjh07lJmZqYiICJ122mlWlwPADxFyAwAAAAAAwDIHDx6UJLVp00bBwcEWVwPAHxFyAwAAAAAAwDJHjx6VJMXFxVlcCQB/RcgNAAAAAAAAy2RmZkoi5AZQe4TcAAAAAAAAsAwhN4C6IuQGAAAAAACAZYxxJfHx8RZXAsBfEXIDAAAAAADAMnRyA6grQm4AAAAAAABYhpAbQF0RcgMAAAAAAMAyxrgSQm4AtUXIDQAAAAAAAMvQyQ2grgi5AQAAAAAA6jmHw6FJkyZp0aJFVpdSgRFy8+BJALUVZHUBAAAAAAAA8Kxly5bp2WeflSSNGDFCCQkJFlf0F8aVAKgrOrkBAAAAAADqud9++818bYTd7uJ0OnX33XfrzjvvlNPprNG5paWlysrKkkTIDaD2CLkBAAAAAADquV9++cV8/fzzz8tut7vt2vv27dMzzzyj+fPna/ny5TU6Nzs72wzGCbkB1BYhNwAAAAAAQD3z008/adOmTeb7siF3VlaWtm7d6rZ7le0Sf/LJJ2t0rjGPOzw8XGFhYW6rCUDDQsgNAAAAAABQjxw6dEiDBg3SoEGDlJKSogULFuiPP/6QJHXt2lWSXALwuiobcn/55Zfavn27y36n06lly5bp+uuv19ixY7Vy5UpzH/O4AbgDD54EAAAAAAD1isPh0JIlS/T111/rwQcfVIcOHawuyat+/PFH2e122e12nX322UpJSZEkxcTE6JxzztGWLVu0efNmt92vbMgtSRs2bNCpp54qSfrzzz81ceJErVixwty/detWzZo1S9JfndyE3ADqgpAbAAAAAADUK7feeqsWLFggScrLy9Pbb79tcUXetW7dOvO1EXBL0qBBg9StWzdJ8kjI3bJlSx04cMDsGi8sLNTgwYOVkpKisLAwDRs2TJ999pm2b9+ukpISSYTcANyDkBsAAAAAANQbe/bs0WuvvWa+X7VqlZxOp2w2m4VVedf69etd3oeEhOjaa6/VbbfdpqKiIknuG1dSUFCgHTt2SJIuvfRSzZ8/X7/88oseeugh7d27VykpKWrVqpVWrlyptm3bqlGjRrLb7Tp06JAk6ciRI5IIuQHUDTO5AQAAAABAvfHss8+qtLRUAwYMUGhoqA4ePFhhRnR95nQ6XTq5Jemxxx7TggUL1KdPH3Mm9/79+5WVlVXn+23evFmlpaVq3LixBg0aJEn68MMP9fjjj+vNN9+UJE2ePFnt27dXYGCgOnbsKElKTU2VJPMBmO3bt69zLQAaLkJuAAAAAABQbyxatEiSNHXqVJ111lmSpOXLl8vpdFpZltfs3btXGRkZCgoK0pVXXqk2bdpo3Lhx5v6YmBi1bt1akntGlixevFiSNGDAgEpnnyckJGjChAnm+06dOkk6HrJL0s8//yxJ6t27d51rAdBwEXIDAAAAAOBjfrzydv145e1Wl+F3srOzlZGRIUkaOHCgzjnnHEnSpEmTdNZZZzWIoPu5556TJPXs2VOLFy/Wnj171Lx5c5djTjvtNEmq0PFdU0VFRXr99dclSRMmTKjQjf3UU09p7dq1ioiIMLd17txZ0vGQu7S0VBs3bnSpCQBqg5AbAAAAAADUC8YIjJiYGEVFRemiiy4y9/344486cOCAVaV5xcqVKzV37lxJ0kMPPVTlcf3795ckff/991q3bp2ys7Nrdb+3335bGRkZatmypc4991xFRka67L/99tvVpk0bl21GJ3dqaqp27typvLw8hYeH69RTT61VDQAg1SLkzs3N1fTp0zV69GjFx8fLZrNp4cKFVR7/ySef6IILLlDz5s0VEhKi+Ph4DRo0SE8++WSt/xIFAAAAAAAozwi5W7VqJel4N/PevXsVFhYmSfrjjz8sq80bjNEhN9xwgy655JIqjzNC7qVLl+qMM87QxRdfrBdffFH33HOPSktLq3WvLVu26O9//7sk6bbbblNQUFCFY0JCQipsKzuu5JdffpEk9ejRo9LzAaC6ahxyZ2RkaNasWdq2bZt69uxZ5XGlpaUaP368LrzwQu3du1e33367XnjhBU2fPl0tW7bUww8/fMK/cAEAAAAAAGrCmPNshNySlJSUpCFDhkiSdu7caUVZXvP7779LkoYNG3bC4/r06eMSKq9cuVK33nqrnn76af3www8nvY/T6dRNN92k3NxcnXPOOXrwwQfNfWPGjJEklzncZXXq1Enh4eHKycnRq6++Kol53ADqrsa/JktISFBaWppatGih9evXq2/fvpUe98QTT2jhwoW655579OSTT8pms5n77rrrLqWlpZkPgwAAAAAAAKirykJuSeas6Poecm/fvl2STjr6Izw8XA6Ho9J9v//+u9npXZUVK1bohx9+UFhYmN58800FBweb+15//XV9+OGHuu6666q89/nnn693331Xq1atknR8fjoA1EWNO7lDQ0PVokWLEx6Tn5+vf/3rX+ratavmzp3rEnAbEhISXH7TBwAAAAAAUBdVhdwdOnSQVL/HlRw7dkwHDx6UdPKQW5KmTp0qSRo1apQaN25sbjeC8so4nU45nU7Nnj1bknTrrbcqISHB5ZgmTZropptuUmhoaJXXGTt2rPm6bdu2uvzyy09aLwCciEcGHn333XfKysrS/fffr8DAwFpdw263y263m+9zcnIkSQ6HQ8XFxW6p098Z3wPfB7yFNQdPYW3Bm1hv8BTWFryJ9Vb/lQYd//+lvf1nXNO19cUXX+i6667T/PnzddVVV3mytGpJSUmRdLyxruxnaNu2rSRpx44d9fa/my1btkg6/tnDw8NP+jknT56sHj166IILLlBhYaFefvllTZ06VVu3bq303F9//VVnn322brvtNn3zzTeSpL///e+1+j7POeccRUVFKScnR1OmTJHE32fAiVT1Ly/wF4+E3MYMqG7durlsLykpUWZmpsu2xo0bV9rpPWfOHM2cObPC9q+++kpNmjRxY7X+b/ny5VaXgAaGNQdPYW3Bm1hv8BTWFryJ9VaP/W24JOnzzz+35PbVXVt33323srOzNW7cOIWGhp6we9dTSkpKZLfbFRERoa1bt0qSDhw44PLdHThwQNLxkPvTTz9VQECN/2G7z1u5cqWk4zlLdddNeHi4VqxYIUkqKiqSJP3888+Vnv/GG2+oqKhI//nPf+R0OtWkSRNt3rxZmzdvrlW9DzzwgHbv3q0mTZpYts4Bf5GRkWF1CT7PIyF3dna2JCkyMtJl+6ZNm3Taaae5bDt8+HClofXUqVN17733mu9TU1PVpUsXDRs2TImJiR6o2v8UFxdr+fLlGjFihMv8K8BTWHPwFNYWvIn1Bk9hbcGbWG/13/rrj///w31e/7dX71vTtfX3v//dfL1nzx7dc889nizP5HQ6ZbPZ9PTTT2vWrFnKzc3Ve++9Z/4r8Isvvtil8a64uFh33nmnioqKdNppp9XLXGHt2rWSpLPOOst8+GNN9OjRQ9OnT1d6erqGDx+ukJAQl/1z586VdPy7l6Szzz67VveR/uravu+++/g7DKiG1NRUq0vweR4JuaOioiRJubm5Ltvbt29v/jZ40aJFeuONN6q8RvnfABvBeVBQEH8BlhMcHMx3Aq9izcFTWFvwJtYbPIW1BW9ivdVfAY4SSbLsz7c6aysjI8OcgS1Jixcv1uTJkz1dmg4dOqTTTz9dV1xxhZYuXWpmD++9956OHDkiSUpOTnapPzg4WKeccop27typ33//XcnJyR6vs6yff/5Z999/v3r27KmnnnrKI/cwZml37ty5VusmOTlZjRo1Ul5enlJSUtSpUydzX2FhodatW+dy/Jlnnlnn9cnfYUD1BAV5JMKtVzzy73OMvwjL/5OVyMhIDR8+XMOHD9cpp5ziiVsDAAAAAAAvKB96/vHHH2aXb3nvvfeeRowYoeuvv147duyo033ffPNN7d+/X0899ZQ5g1uS/ve//0mSIiIiFBsbW+G8s88+W9JfYz285bffftPpp5+ulStX6umnnzbHgriTMYZFkvr161era9hsNjPP6dy5s5YtW2bu27BhQ4W6+/btW8tqAcD9PBJyDxw4UDExMXrnnXdUWlrqiVsAAAAAAAAL/fTTT5Kkyy67TNLxf4F99OjRSo+dPHmyVqxYoUWLFmnw4MH6448/an3f8qNRDca9e/XqVemzv4YNGyZJ+vrrr2t979p4//33Xd7v2bPH7fd48MEH5XA4NGbMGJ111lm1vs4555xjvn7uuef03HPP6emnn9aaNWskSfHx8eb+Pn361L5gAHAzj4TcERERmjx5sjZv3qwpU6ZU+pvcqn67CwAAAAAAfJ8Rcg8ePFgtW7aUJO3atavCcfv27dPu3bslHR+JcfDgQd1///21vq/D4XB536dPH5fg2wizyzMC3A0bNigzM7PW968p43sy1CXgr8y+ffv04Ycfymazad68eXW61r/+9S89/fTTkqQ1a9bojjvu0D333KOlS5dKkiZNmqQ+ffrommuuqbRbHgCsUquBLvPnz1dWVpb5dOJPPvnEnMN15513KiYmRlOmTNG2bds0d+5cffnll7rsssvUqlUrZWZm6ueff9a7776rZs2aKSwszH2fBgAAAAAAeJzT6TTHlZxxxhlq166dDhw4oF27dumMM85wOXb16tXmcbNnz9aIESPqNLLEeGaXoVOnTgoNDTW7jasKuRMTE3Xqqadq+/btWrVqlS655JJa11BdTqfTDLmTkpK0b98+7dy50633WLJkiSRp0KBB6ty5c52uFRAQoLFjx+ruu+8255tLf42mGTRokKZPn16newCAJ9Sqk3vevHl65JFH9Pzzz0s6/k9vHnnkET3yyCPmb0MDAgL0xhtv6IMPPlBiYqKeffZZTZw4Uf/4xz+0d+9ezZ49Wzt27KjynxkBhh+vvF0/Xnm71WUAAAAAACRt2bJFP/zwgw4fPqzg4GD17NlT7dq1k1R5J/eqVaskSUOGDDE7vtPS0mp9/2PHjrm879ixo3r27ClJCg8PP+FM6hEjRkiSPvvss1rfvyb+/PNPHTlyRCEhIeZYl7vvvluJiYluC7vfeecdSdJVV13llus1a9ZMTZo0qXRfr1693HIPAHC3WoXce/bskdPprPSn/BOKL774Yn322Wc6dOiQiouLlZmZqW+//Vb333+/YmJi3PEZAAAAAACAF+zfv189evRQ//79JUk9evRQWFhYlSG30+k0H/Q4ZMgQtWjRQpKUlZWlwsLCWtVQPuTu0KGDGWyfc845Cg0NrfLciy++WJL08ccfq6SkpFb3rw6n06ni4mL9+OOPko6Hw127djX3HzhwQM8880yd77N48WJt2LBBgYGBZojuDt26dauwrW3btoqLi3PbPQDAnTwykxsAAAAAANQ/mzZtUmlpqfneGE1SPuTOysrS5MmT9cQTT+jPP/9URESEBgwYoLi4OIWEhEiS0tPTa1VDZZ3cV199tV599VW9+OKLJzx30KBBiouL0+HDh83xJobys75rq7S0VKeffrq6d++uL774QtLx76lDhw4ux50ojK+O7777TldffbUk6ZZbblHTpk3rdL2yygbyht69e7vt+gC8b/bs2bLZbBV+iTVkyBDZbLYKP6NHj7ao0tqp1UxuAAAAAADQ8JQPpqsKuV966SXNnTvXPG7ixImKioqSJLVo0UL79u1TWlqa2rRpI0kqKChQWFiYbDbbSWsoG3KHhISoQ4cOCgwM1Pjx4096bnBwsC688EK9/vrrWrJkiQYNGqQdO3Zo0qRJWr58ud544w0zOK6tHTt26JdffpEkbd++XZJ04YUXqn379i7HZWRk1Ok+ixYtUmlpqS699FI9++yzdbpWeUYIZrPZFBgYKIfDQcgN+LH9+/fr8ccfV6NGjSrd36pVK82ZM8dlmzFeyl/QyQ0AAAAAAKrlwIEDLu+NkNsIcA8cOKCcnBytXbvW5bj77rvPfG2MLDl48KAkadmyZWrUqJGefvrpatVghNzjx4/Xhx9+aIbn1XXNNddIkl555RWlpKTo6quv1rJly1RaWqply5bV6FqV2bBhg8v7du3aadiwYUpISHDZXpe55E6n0+wSv+mmmxQQ4N54xxj/0qdPH/PPeMCAAW69BwDvuf/++9WvXz/16dOn0v0xMTG69tprXX6GDh3q5SrrhpAbAAAAAABUixFyt2vXTs8++6y6dOkiSYqPjzdD3C1btujXX3+VJCUnJ+ull15Sq1atzGsYxxkh9yuvvCKn06mXX365WjVkZ2dLkv72t7/p3HPPrfFnGD58uAYNGiS73a4rr7zSJZTes2dPja9X3s8//+zyfuLEiQoICJDNZtM777yjgQMHSqr4C4Oa2LJli/bv36+wsDANGTKkLuVWqlevXlq9erWWLl2qN998U5988okGDRrk9vsA8LxvvvlGS5cuPekvEh0Oh3Jzc71TlAcwrgQAAAAAAFRLamqqpOOd2bfddpvLvu7duystLU2rV6/Wn3/+Kel44Fv+YYVGJ3daWpqKi4v15ZdfSpK2bdumvXv3miNMqmJ0csfExNTqM9hsNj3xxBPq16+ffvjhB0lSXFycMjMzzbrrwgjNR4wYoebNm+vWW2819/3tb39Tt27d1K1btzp1chtd3EOGDFF4eHjdCq5C2VA7OTnZI/cAUDM5OTnmL/qk47P9TzTfv6SkRHfeeaduuukmde/evcrjduzYoUaNGqmoqEjNmzfXzTffrEcffVTBwcFurd+T6OQGAAAAAADVYnQfVzar1QhQXn/9dUnSKaecUiHgllw7ub///nuXwOZ///vfSWuoa8gtSWeeeabuvPNO8/3UqVMlHQ/xi4qKanStDRs2aMmSJZKOP3TS6OSeN2+e3njjDUVHR7scb3z+o0ePym6316p+I5wfPnx4rc4H4J+6dOmimJgY86f8HO3yXnjhBe3du1f/+Mc/qjymXbt2euihh/T2229r0aJFOvPMM/XYY4/p2muvdXf5HkUnNwAAAAAAqJbqhNzbtm2TJJ1++umVXsPo5E5NTTVHlAQHB6u4uFhffPGFbrnllirv73Q6zVC8LiG3JP3zn//U2rVrlZGRoVtuuUWPPvqoCgsLlZKSYj5Iszouu+wy7d27V127dlVwcLBycnIUFhZmjnIpLy4uTqGhobLb7Tp48OBJO9crs3PnTklS586da3wuAP+1detWJSYmmu9P1MV95MgRPfroo3rkkUfUtGnTKo9bsGCBy/vrrrtOEydO1Msvv6x77rnHnNHv6+jkBgAAAAAAJ1VaWmqO2DhRyG3o27dvpdcxQu7PPvtMb775piRp8uTJkirOsy4vLy9PJSUlkuoeckdEROiHH37Qrl27FB0dbY7kqMlc7iNHjmjv3r2SpF9++cXsRO/bt6+CgirvK7TZbOZ3UJu53E6nU3/88Yekvx74CaBhiIqKUnR0tPlzopD74YcfVnx8vMu/Wqku42HBK1asqHWt3kbIDQAAAAAATurQoUMqKSlRQECAmjdvXmF/+a7i8ePHV3odY1yHJIWFhenNN980u7cPHjyo0tLSKmswRpUEBgYqIiKixp+hvMDAQAUEHI9GahNyb9261Xy9ZcsWvfvuu5KOd3efiPEd1GYud1pamgoKChQYGMisbACV2rlzp1566SVNmjRJBw4c0J49e7Rnzx4VFhaquLhYe/bs0dGjR6s8v3Xr1pJ0wmN8DSE3AAAAAAA4KaPruHnz5pV2KYeHh6t///6y2Wz65JNP1KRJk0qvk5SUZL5+5513dPXVV5udzcXFxTpy5EiVNZQdVWKz2Wr9WSrTtm1bSarRwyfLhtwrVqzQmjVrJEmXXnrpCc8zOuFrE3IbXdxt2rRRSEhIjc8HUP+lpqaqtLRUkyZNUtu2bc2fH3/8UTt27FDbtm01a9asKs/fvXu3JJ1wzImvYSY3AAAAAAA4qRPN4zZ8/PHHOnz4sDp16lTlMS1atNDSpUsVHR2tESNGSDo+k7tZs2Y6dOiQDhw4YAYrdrtdTz31lE455RRdeeWVZid3+Yc5uoPRFT179mwVFxfrX//610nPKRtyr1+/XpLUr18/swuyKnXp5DbmcTOqBEBVunXrpg8++KDC9ocfflg5OTl65pln1K5dO2VnZys0NNRl7InT6dRjjz0mSRo1apTXaq4rQm4AAAAAAOqxxYsX66mnntLbb79tdivXxv79+yXJ5aFn5TVu3FiNGzc+6bUqG+fRsmVLM+Tu2bOnCgsLNXr0aK1evVqBgYHq27evGXLXdR53ZTp06GC+fuKJJ3T++edr4MCBJzxny5YtFbZdc801J72X8YsC4zsty+l0nrBL3ejkLlsvAJTVpEkTXXzxxRW2P/3005Jk7lu1apXGjh2rsWPHqn379iooKNAHH3ygNWvWaOLEierdu7f3iq4jxpUAAAAAAFCPXXXVVfrxxx9188031+k6u3btkiSdcsop7iirAiP4NTrGP/74Y61evVqSVFJSonnz5nk05L7gggv0yCOPmO/nzJlz0nPKdnIbrrvuupOeZ4xs2bdvn8v2DRs2KCYmRvPmzavyXB46CcBd2rRpo4EDB+qDDz7Qfffdp0cffVSFhYV64YUX9MILL1hdXo3QyQ0AAAAAQD3lcDjM12vXrq3TtTw9JqP8CA8j7DbGmCxYsEC//fabJM+E3EFBQZo1a5auv/56dezYUV988YV27Nihjh07Vnp8WlpahXEjPXv2rFZtVT3k8oILLlBOTo4eeOAB3X///ZWey7gSALW1atUql/dt27bVkiVLrCnGzejkBgAAAACgntq+fbv5Oj8/XwcPHqz1tTzdQVy+k9t4AOXll1+uc889V3a7Xd99950kz4Tchnbt2qlfv36SjndWV8WY2d2vXz999tlnGjVqlD788MNq3aNNmzaSpJSUFJWUlEiSSktLTzqj2+Fw6Pfff5ekE849B4CGhpAbAAAAAIB6ZseOHSouLtYvv/zisv3iiy82x47URGlpqXmet0Puxo0b66OPPtLs2bOVmJiogIAADR061CM1GLp16yZJ2rx5c6X79+/fr+eff16SNHPmTI0ZM0b/+9//zA7tk2nZsqWCgoLkcDjMYPvHH390OcYIv8vasWOH7Ha7IiMjPTY2BgD8ESE3AAAAAAD1yPfff69TTz1Vo0aNqhBy//jjj7r88strfM3U1FQVFhYqKCjI7EJ2txOF3MHBwZo2bZr279+vgoICjR8/3iM1GIyQu7IHS0rS66+/rqKiIp199tkaMWJEja8fGBio1q1bS5L27t0rSfr0009djqms694Y19K9e3cFBBDpAICBvxEBAAAAAKhHjIc1rly5Uv/+978lSfPmzdMdd9whSdq4ceNJx2KUZ8yBbtu2rYKCPPN4rxOF3GWFhIR45P5lde3aVVLVndyLFy+WJE2YMEE2m61W9zB+WWDM5d60aZPL/pSUlArnGCF3jx49anVPAKivCLkBAAAAAKhHjh49WmHb8OHDNX/+fPXu3VuS9PXXX1frWj/88IPWrVvn8Xnc0l8h98GDB5WXl2d+jvIhtzcYndy7d+9Wfn6+y74tW7Zo06ZNCg4O1sUXX1zrexght9HJvXv3bpf9hNwAUH2E3AAAAAAA1CP79+83X5933nl65plnzFB02LBhkioPuVNSUjRx4kTde++9evzxx7V+/XoNHDhQ/fv31/vvvy9J6tChg8fqbtasmZo2baqSkhINGDDA/BxWhNzNmjVTkyZN5HQ6tW3bNpd9b7/9tiRp9OjRiouLq/U9jPnde/fuldPpNEPuPn36SHL9czQQcgNA5Qi5AQAAAACoR1JTUyUdH6nx6aefatKkSeZIDeOBjV999ZWcTqfLecOGDdPChQu1e/duzZgxQ3379pXD4ZDD4dCyZcskSf369fNY3UFBQVq6dKni4+O1ceNGHT58WJIUH///2bvv8KbKt4Hj33RPSgu0lLIpLVsomzJlb1BAFBmKgoKICALqT4aiKEtQXlREQYpYQVCmDNmy96ZA2aVAC6WbruT9I+bQdIcmTdren+viojl5cs6T5OSM+9znfjxMtsycZKzL/eGHH/Laa6/x008/AfDKK6/ka/66TO6TJ08SEhJCYmIiVlZWBAYGApkzuaOjo5VpdevWzdeyhRCiqJEgtxBCCCGEEEIIUYToMoB9fHwyPdeqVStUKhU3b95UgsigDaDq6m6/8cYbuLi4KM+VKFECgBEjRjBw4EBTdp3WrVvTrVs3vWnmyOQG/brcly5d4ssvv2TZsmXcu3cPd3f3fJUqAahRowYAR48epWbNmgBUrFiRqlWrApmD3LqSMWXLlsXNzS1fyxZCiKJGgtxCCCGEEEIIIUQRodFolEzu8uXLZ3re2dlZmb5y5Uo6d+7M5cuXlQCql5cXPXr0YMeOHdSqVYuPPvqIQ4cO8euvv7Jo0aJnHmTRENWqVVP+trKyMltAN30m98qVK/Wee+mll3BwcMjX/Js1a8Yvv/yi9/6qVq1KhQoVgMxB7tDQUED/8xFCCKFlmiGRhRBCCCGEEEIIUeAiIyNJTk5GpVLh7e2dZZuqVaty+/Ztxo0bB0DXrl35/PPPgacDSzZo0EAp0wEomcYFIf3glh4eHlhZmSc/T5fJffbsWUJCQgBtVru1tTXvvfdevuevUqkYMmQIu3btYtmyZYA2gK0Lct+6dUuvve5ChAS5hRAiM8nkFkIIIYQQQgghighdqRJPT0/s7OyybJMxSHrt2jWlVEn6ALO5pO+fuUqVwNMg9+3btwkNDcXJyYm7d+/y8OFD/P39jbacHj16KH9XrVpVKVcSHh5OfHy88pxkcgshRPYkyC2EEEIIIYQQQhQROZUq0dEFUdP766+/AMsIcqfvg5OTk9n64eHhoZcN36dPH5ydnY1esqVTp07K366urnh4eCiDbeqyt+FpkNsSviMhhLA0EuQWQgghhBBCCCGKCF0md05B7qwygU+cOJHtcwWtdOnSyt8xMTFm7MnTutwAgwYNMskyXF1deeedd6hQoQL9+/cHwM/PD4ArV65w7do1Bg0axJ49ewDL+I6EEMLSSJBbCCGEEEIIIYQoInRBbh8fn2zbZJXJrWMJWcLpM6WjoqLM2JOnJUtKlSpFx44dTbacb7/9llu3buHp6QlA9erVAbh8+TLjxo3TG/hSgtxCCJGZBLmFEEIIIYQQQogi4ubNmwBUrFgx2zbpg6QDBgzA1dVVeWwJQe70kpKSzLp8Xb3sd955B1tb2wJbri6T++LFi6xfv17vOXPWKRdCCEslQW4hhBBCCCGEEKKI0NVwzinb18PDAzc3NwBatmzJhg0bsLKyom7duri4uBRIP3Pz888/Y2Njw4oVK8zaj/bt2/Po0SOmTp1aoMvVZXJnfP8BAQFGrwkuhBBFgY25OyCEEEIIIYQQQgjj0A1OmFOQW6VSUb9+ffbs2UPTpk1p0qQJV65coUSJEgXVzVy99tprvPLKK9jb25u7K7i7uxf4MnWZ3DrDhw+nRYsWNG3atMD7IoQQhYEEuYUQQgghhBBCiCIgJiaGiIgIIPe6zStXriQkJIQmTZoAT+t0p6SkmLaTBrCEALe5ZCwbM3z4cJo3b26m3gghhOWTciVCCCGEEEIIIYSF2rp1KyNGjCA+Pj7Xtros7jJlyuSalV2uXDnatWtnlD4K43N1daVFixa4ubmxYcMGCXALIUQuJJNbCCGEEEIIIYSwUF26dAG0NZo/+OCDHNvmpVSJKDz27NlDSkoKjo6O5u6KEEJYPMnkFkIIIYQQQgghLFCKOk35OzQ0lCFDhrBhw4Zs2+dl0ElReNjY2EiAWwgh8kgyuYUQQgghhBBCCAt0IyZK+Xv16tU8evSIoKAgYmJicHV1zdRel8mdsZ6zEEIIUdRJJrcQQgghhBBCCGGBrkY/VP5+9OiR8vf333+fZfsrV64AkskthBCi+JEgtxBCCCGEEEIIYYGuPH6Y5fTPPvuMNWvW6E2Lj4/n0KFDAAQEBJi8b0IIIYQlMTjIHRcXx9SpU+nSpQseHh6oVCqWLVuWbfsNGzbQs2dPvLy8sLOzw8PDg9atWzN37lxiYmLy03chhBBCCCGEEKLIyi7IHRsbS//+/Tl16pQy7Z9//iEpKYkqVapQq1atAuqhEEIIYRkMDnJHRkby6aefcvHiRZ577rls26nVal577TV69erFzZs3GTVqFN9//z1Tp06lXLly/O9//6Nv37756rwQQgghhBBCCFEUaTQarkZHZpq+du1aunfvjkajYdGiRcr0jRs3AtCjRw9UKlWB9VMIIYSwBAYPPOnt7U14eDhly5bl2LFjNG7cOMt2s2bNYtmyZYwbN465c+fq7WTHjh1LeHg4y5cvf/aeCyGEEEIIIYQQRdS9hDiikp5kml6lShUmTpzIpk2b+PXXX5k9ezYA69evB7RBbiGEEKK4MTiT297enrJly+bYJiEhga+++oratWsze/bsLK8ie3t7M2nSJEMXL4QQQgghhBBCFHnnHt4DoH79+nrn1OXLl6dVq1bUrl2bhIQE/vjjD1555RUePHhAxYoVadOmjbm6LIQQQpiNwZncefHvv//y+PFjJkyYgLW19TPNIykpiaSkJOVxbGwsAKmpqaSkpBiln4Wd7nMo6p+H2ka7DmV8n8eGvg9Ao1/mFXifiqviss6JgifrlihIsr4JU5F1SxQkWd+KvrNREQAEBgYSFhZGREQE9vb2lChRgtTUVDp37sz58+eZP38+586dw8HBgVWrVmFlZZWv9ULWLVEQZD0TwjCpqanm7oLFM0mQ+9KlSwDUqVNHb3paWhpRUVF600qVKpVlpvfMmTOZPn16puk7duygdOnSRuxt4bd9+3Zzd8G0XuoAwObNm/M2XZhckV/nhNnIuiUKkqxvwlRk3RIFSda3ousUiQDY2dnh5OQEgLu7O3///TegHQcL4Ny5cwAEBARw7949o50fybolCoKsZ0LkTWRk5jEahD6TBLljYmIAcHFx0Zt+9uxZGjRooDctIiIiy6D1hx9+yPvvv688DgsLo1atWrRv3x4fHx8T9LrwSUlJYfv27XTs2BFbW1tzd8dkssvYlkzugldc1jlR8GTdEgVJ1jdhKrJuiYIk61vR9uTJE65dvQrAyJEjOXv2LDdv3sTPz49u3boB2rIl8+fPV17TvXt35bn8kHVLFARZz4QwTFhYmLm7YPFMEuR2dXUFIC4uTm+6r6+vcpVu+fLlBAUFZTsPe3t77O3tlce6wLmNjY1sADOwtbUt0p+JVWoaQKb3mN10YXpFfZ0T5iPrlihIsr4JU5F1SxQkWd+KpvPnz5OqVuNm54Cfnx/e3t4AVKxYUfm+69ati62trVLuoVmzZkZdF2TdEgVB1jMh8sbGxiQh3CLF4IEn86JGjRrA09umdFxcXOjQoQMdOnSgatWqpli0EEIIIYQQwogODxjF4QGjzN0NIYoVXcJYCTt7VCoVfn5+ANSsWVNpY2dnp/c4ICCgYDsphBBCWBCTBLlbtWqFm5sbwcHBSp0wIYQQQgghhBBC5C4pKQkAO2trAN577z3WrFnD2LFj9drVq1cPAD8/P0qWLFmgfRRCCCEsiUmC3E5OTkycOJFz584xefJkNBpNpjZZTRNCCCGEEEIIIYq7J0+eAGBnpQ1yu7i48MILL+Ds7KzXrlmzZgC0bt26YDsohBBCWJhnKuiycOFCHj9+zN27dwHYsGEDd+7cAWDMmDG4ubkxefJkLl68yOzZs9m2bRsvvvgi5cuXJyoqihMnTrB69Wo8PT1xcHAw3rsRQgghhBBCCCEKOV0mt+1/Qe7sjBw5Ejc3N6MMOCmEEEIUZs8U5J4zZw43b95UHq9du5a1a9cC8Oqrr+Lm5oaVlRVBQUG8+OKL/Pjjj3z77bdERUXh4uJCnTp1+Pzzz3nzzTdxcXExzjsRQgghRIHRDR49ePBgM/dECCGEKHoylivJjo2NDa+++mpBdMni6cYOaLpqkZl7IoQQwhyeKch948aNPLft06cPffr0eZbFCCGEEEIIIYQQxU7GciVCCCGEyJlJanILIYQQQgghhBDi2SjlSnLJ5BZCWK7DA0YpdxgIIUxPgtxCCCGEEEIIIYQFUcqVSCa3EEIIkScS5BZCCCGEEEIIISyIUq5EMrmFEEKIPJEgtxBCCCGEEEIIYUEkk1sIIYQwjAS5hRBCCCGEEEIIC6LU5JYgtxBCCJEnEuQWQgghhBBCCGEyQUFBBAUFmbsbhYqUKxFCCCEMI0FuIYQQQgghhBDCgki5EiGEEMIwEuQWQgghhBBCCCEsiFKuRDK5hRBCiDyRILcQQgghhBBCCGFBJJNbCCGEMIwEuYUQQgghhBBCCAsiNbmFEEIIw0iQWwghhBBCCCGEsCBKuRLJ5BZCCCHyRILcQgghhBBCCCGEBZFyJUIIIYRhJMgthBBCCCGEEEJYEClXIoQQQhhGgtxCCCGEEEIIIYQFkUxuIYQQwjAS5BZCCCGEEEIINaQQjwAAl49JREFUISyIUpNbMrmFEEKIPJEgtxBCCCGEEEIIYUGUciWSyS2EEELkiQS5hRBCCCGEEEIIC6KUK5FMbiGEECJPJMgthBBCCCGEEEJYEKVciWRyCyGEEHkiQW4hhBBCmJVarUatVpu7G0IIIYTF0JUrsZdMbiGEECJPJMgthBBCCLO5e/cu7u7uvPHGG+buihBCCGExJJNbCCGEMIwEuYUQQghhNn/++ScxMTEsXbqUx48fm7s7QgghhEVQanJLkFsIIYTIEwlyCyGEEMLkIiIi6NChA6tXr9abrrsdG2DLli0F3S0hhBDC4qjValJSUgAZeFIIIYTIKwlyCyGEEMLkgoOD2bFjBzNmzNCbfvv2beXv9evXF3S3hBBCCIujy+IGKVcihBBC5JUEuYUQQghhchcuXADg/PnzJCQk8MUXX+Ds7MzGjRuVNps3byY1NdVcXRRCCCEsQvogt2RyCyGEEHkjQW4hhBBCmJwuyJ2WlsapU6dYunQpCQkJhIaGKm2io6P1HgOsXr2aefPmodFoCrS/QgghhLmkD3LbqJ6esh8eMIrDA0aZo0tCCCGExbMxdwdE8RMUFATA4MGDzdwTIYQQBeXixYvK35s2beLq1at6z1tZWaFWqzl37hz+/v4AaDQaBgwYAICvry+9evUquA6LIkF3zAFy3CGEKDx041XYW1mjUqnM3BshhBCicJBMbiGEEEKYVGRkJBEREcrjBQsWZGrTtWtXAL766itq1qzJyZMniY2NVZ7POGClEHkVEBBg7i4IIYRBdJnctlKqRAghhMgzCXILIYQQwqTSZ3EDxMfHZ2rTtm1bAI4ePcqlS5d49913uX//vvL8pk2bSE5ONmk/hRBCCEugBLll0EkhhBAizyTILYQQQgiT0tXjbtmyJR4eHlm2qVu3rt7jhIQEHjx4oDyOiorin3/+MV0nhSgCgoKC9Eq0CCEKh7179xIZGak8VsqVSCa3EEIIkWcS5BZCCCGESV26dAmApk2bsnXrVtzc3LC1tdVrU6dOHb3HcXFxepncAKdOnTJpP4UQQoiCduDAAdq0aUOdOnVQq9WAZHILIYQQz0KC3EIIIUzm8IBRyj9RfIWHhwNQoUIFGjVqxKVLlzh58iQtWrRQppcrV07vNdeuXSMsLExvWsayJ0IIIURht3fvXgDu37+vjD+hC3LbSZBbCCGEyDMJcgshhDCpCq/0NncXhJnpMrI9PT0BKFu2LLVr1+a3337jtddeY9OmTahUKkaMGIG7uzsAqampHDp0SO91EuQWQghR1KS/oPvuu+/y/fffK+VK7ApxuRJJchBCCFHQJMgthBBCCJPS1db28vLSm16xYkV+/vlnpR73Dz/8QGRkJPXq1QPg33//BZ4OSnnp0iXlVu68SkhIICEhIT/dF0IIIUzm6tWryt8PHjzg7bff5s8//wSkXIkQQghhCAlyCyGEEOKZaDQa/vnnH+7du5dju4yZ3DmxsrLCz88PgFu3bgHQokULbGxsiI+Pz1TCJCcJCQn4+/vTtGlTUlNT8/w6IYQQoqDogtybNm3itddeA+Cnn34CCncmtxBCCFHQJMgtLJrc4iaEEJbr7NmzdOzYEV9fX9atW5dlm9TUVB4+fAhkzuTOji7IrePj40P16tUBw0qWnD17ljt37nDu3Dl2796d59cJIYQQBSElJYXr168D8NxzzzF16lSsrJ6eoktNbiGEEM/q/Pnz9O/fn6pVq+Lk5ETp0qVp3bo1GzZsyNT24sWLdOnSBRcXFzw8PBg8eDARERFm6HX+SJBbCCGEEM8kJCQEgPj4eAYPHpxltrTu4MjKygoPD488zbd27dp6j728vKhZsyagH+SOiYlh06ZNJCcnZzmf9G1///33PC1bCCGEKCg3b94kLS0NR0dHvL29qVSpEv379zd3t4QQQhQBN2/eJDY2lqFDh7JgwQI++eQTAHr16sXixYuVdnfu3KF169ZcvXqVL774ggkTJrBp0yY6duyY7XmWpZIgtxBCCCGeiS77DCA2NpZx48ZhZ2eHnZ0dixYtAp6WKilTpgzWebztunPnznptvby8lLrdP//8szIg15QpU+jRowdBQUFZzufChQvK32vWrCl0B2lCCCGKNl2pEl9fXyWD+7vvvqNr164AVHXL28VhIYQQIqNu3bqxZcsWpk6dyptvvsnYsWPZtWsXzz33HPPmzVPaffHFF8THx7Nz507effddPvroI1atWsXp06dZtmyZ+d7AMzA4yJ2UlMSkSZMoV64cjo6ONG3alO3bt2dqp1arWb58OR07dqR06dLY2tri6elJp06dWLx4MUlJSUZ5A0IIIYQoeBqNRgly29jYALBw4UJSUlJISUlh9OjRNGjQgObNmwN5L1UCUKpUKeV1oK3l/dZbb1GmTBnOnDnD1KlTgaeZ2tmVMEkf5I6KimLBggXK49DQUA4ePJjnPgkhhBDGduXKFUAb5NZxd3dn06ZNhISE8HbdpubqWqEmJS+FECJr1tbWVKhQgcePHyvT1qxZQ48ePahYsaIyrUOHDvj5+bFq1Soz9PLZGRzkHjZsGPPmzWPQoEEsWLAAa2trunXrxr///qu0SUxMpFu3bgwdOpSEhAQmTJjA4sWLmTRpEg4ODowaNYpRo2THUxxll20nhBCicImMjCQ+Ph47OzteeeUVvecqV64MwKlTp5Ss67wMOple69atlb/d3NwoW7asEqTW1ZG7e/eu3v8Z6YLfQ4cOBeCTTz4hJCSE2NhYPv74Yzp27Eh4eLhB/RJCCCGM5ezZswD4+/vrTVepVPj5+WGtenq6LoFbIYQQoL2DNiYmRvmXWxJxfHw8kZGRhIaG8vXXX/P333/Tvn17AMLCwnjw4AGNGjXK9LomTZpw8uRJk7wHUzEoyH3kyBGCg4OZOXMms2fPZsSIEezcuZNKlSoxceJEpd24cePYunUr8+fPZ//+/UyePJnXXnuN8ePHs379ei5evEjDhg2N/maEEEIIYXpHjx5l5syZANSrV0/voKhSpUqsWbMGFxcXvdcYkskN2mOJ8uXL06tXL1QqFQANGjQAtAdjgBKgzirInZCQoGSaz5o1iy5dupCUlMTHH3/MP//8w5MnT0hOTmbXrl0G9SujoKAguYArhBDimRw6dAiApk0lY1sIIUTe1KpVCzc3N+Wf7rwsO+PHj6dMmTL4+voyYcIE+vbty8KFC4Gn51Pe3t6ZXuft7c2jR48KVSUOG0Ma//HHH1hbWzNixAhlmoODA8OHD+ejjz7i9u3bACxZsoQuXbowduzYLOdTvXp1qlevno9uCyGEEMJcJkyYQGRkJACNGjVS6mUDBAYGEhAQwO3bt5kzZw6ff/45YHgmd+nSpbl+/bpSCgXAx8cH0A44+fDhQx4+fAg8DXqnd+nSJTQaDaVKlaJMmTLMmTOHrVu3smbNGqUGKsDOnTszZaILIYQQphYbG8u5c+cAaNasmZl7I4QQorC4cOGCcl4EYG9vn2P79957j379+nH37l1WrVpFWlqaMlZRYmJitvNwcHBQ2uS2DEthUJD75MmT+Pn5UaJECb3pTZo0AbS3JYeHh5OWlsarr76ar44lJSXpXS2IjY0FIDU1lZSUlHzNu6jQfQ6F9fPIS7/VNk8HHsvYXvdcYX3/hVFhX+dEwVPbWJOGBrWNdY7rjaxbhYsuc9rNzY0xY8bg4fF0YKymTZuSkpKCs7Oz3kl76dKln+n7Tf8aBwcHXFxciIuL4/Dhw3r9SU5OVjK+ExMTeeeddwAICAggNTUVPz8/XnrpJYKDgzl9+rTy2l27dhllvZN113Kp1WqgYL4jS9mWGXv5csxlmSxlfTNEYeqrqR04cACNRkPlypUpVapUlp9N+t9eTudFxmaMdcsc242C/IxE/hXGbZihZP8pjCk1NRUAV1fXTHHZnNSoUYMaNWoAMGTIEDp16kTPnj05fPgwjo6OAFlma+vKTuraFAYqjUajyWvjOnXq4OXlxY4dO/SmX7hwgdq1a/P9998TEhLC119/zalTp3juueeUNsnJycTExDxdsEpFqVKlsl3WtGnTmD59eqbpS5YsoXTp0nntshBCCCGMbMiQIcTExDB//nyl/vY777zD3bt3WbBgARUqVAAgLi5Oueg9ZMgQXnjhhXwve/To0YSFhTFo0CB+/fVXZfqvv/6Ks7MzAN999x1bt27F2dmZL7/8UulPZGQkkyZN4uHDhzg6OpKUlIRarWbx4sUGZ5oLIYQQ+bF69Wp+/fVXWrVqxfjx483dHSGEEBYuMjKSN954g9u3b1O+fPlnns/ixYsZOXIkly5dwsXFhfLly/PVV1/plaEGGDx4MJs3b1buni0MDMrkzi5FPX0Kuy6QnbEW5+bNm+nbt6/y2NnZmbi4uGyX9eGHH/L+++8rj8PCwqhVqxbt27fXS8svzlJSUti+fTsdO3bE1tbW3N3Jk+DgYOXvgQMH5tr+2NCn60CjX+Zl+VzG6cJ0CuM6J8zr2ND3KT+gO3dWbcrxtyrrVuGh0WhISEhQHnfr1g2Abdu28eDBA1q0aKHXXhfk7tq1q9I2P/z8/AgLC1Pu8NKpXbs2tWrVYteuXWzduhXQllnTDaqi07NnT6ZNm4azszO7du3i+PHjuLi4PHPfdPu1vOzTRMELDg6mfv36nDp1qkC+I3Nvy0y1Psoxl2Uy9/pmiOK4rUxLS2PYsGHY29vz448/KncbgTY7bsqUKQD06dMn231Q+t9eTudFxmaMdcsc242C/IyKCnNu3wvTNuxZyf5TGFNWJRqfha5ESXR0NP7+/pQpU4Zjx45lanfkyBHq169vlGUWFIOC3Lqsp4zSp7C7uroCZApgBwYGsn37dgBmz57N/v37c1yWvb29XkBdFzy3sbEpshvAZ2Vra1soP5O89NkqNS3b9rrnCuN7L+wK6zonCp5VahrWqLBKTcvTOiPrluWLi4tTbpVzdnZWvq+aNWtSs2bNTO2PHz/O3r176d+/P9bW1pmeN5Qua+HEiRN60yMiIrC1tWXWrFkAvPXWW3Tp0iXT6z09PVmwYAGbN2/mzp07HD9+nDt37uR7vZP11nJZWWnHWS/I78jc2zJjL1uOuSybudc3QxSWfhpqw4YNlC1blsaNG+tN+/333wFtNlxycjKdO3fG2tqaUaNGcebMGdzd3RkwYEC2n0v6315O50Wmkp91yxzbDXN8RoWdJWzfC9M2zFCW8PmKoiP9WEV58eDBg0x3q6akpLB8+XIcHR2pVasWAC+++CK//PILt2/fVu6A3bFjB5cvX2bcuHHG6XwBMegT8vb2zvLKgW40znLlyinTzp07p1eupEyZMnTo0AGAFStWPFNnhRBCCGFeUVFRAFhbW2NnZ5dr+4CAAAICAoy2fN3dXHfu3NGbrqsTfvbsWQDeeOONXOdVqVIlAG7cuGG0/hUVGo1GL+tQCCFE1i5evEivXr0AbfKXLlFrzpw5SpuOHTsC2tJekyZN4qeffgLg999/z9ct50IIIUR2Ro4cSUxMDK1bt8bHx4d79+7x66+/cunSJebOnatU4Pjoo49YvXo17dq1Y+zYscTFxTF79mzq1q3La6+9ZuZ3YRgrQxrXr1+fy5cv69XWBpTBn+rXr0/Xrl2xtrbWq5MpxLM4PGCUubsghBAiA12Q29nZ2SxB0PQX1NO7e/cujx494sGDBwD4+/vnOq8qVaoAcP36deN1sBALCgoiKCiIxMREGjZsSGBgIGlpabm/UAghirH0dxbt2bMHgJMnT3Lw4MFMbRcuXMjw4cPRaDQEBgYqwW8hhDC1wwNGSYylmHnppZewsrLiu+++4+2332bevHmUL1+edevW6ZWHrlChAnv27KFatWpMnjyZWbNm0a1bN7Zv355lyWpLZlCQu1+/fqSlpbF48WJlWlJSEkuXLqVp06ZUqFCBihUr8vrrr/P333+zcOHCLOdjwFiXQghRJOmCSUIUNumD3OaQcVwOXdA7LCyMkJAQQFvSJOPYIFmRTO6s/fTTT5w8eZIDBw5w6dIlc3dHCCEs2pkzZ5S/169fD6CU5uzSpYty67evry+gHcMC4OWXXy7IbgohhChmBg4cyPbt27l37x4pKSk8evSI7du3K3cfpVe7dm22bt1KfHw8UVFRrFixAi8vLzP0On8MKlfStGlT+vfvz4cffsiDBw/w9fXll19+4caNG8otVwDz58/n+vXrjBkzhuDgYHr27ImnpyeRkZHs37+fDRs25CnDSgghhBCWRRfkdnJyMsvyMwa5mzRpwl9//cX58+eVgGyNGjXyNK/0Qe5Tp05RtWpVSpQoYdwOFxIajYbExERsbW356quvlOkHDx6kdu3aZuyZEEJYttOnTyt/b9iwgW+//ZaTJ08C0KhRI2bOnMmZM2d48cUXadeuHUePHgWgf//+ZumvEMJwuuSkwYMHm7knQoicGJTJDbB8+XLee+89goKCePfdd0lJSWHjxo20bt1aaePk5MSWLVtYunQp9vb2zJo1ixEjRjBr1izi4uJYtGhRpgGjhBBCCGH5LCmTu0aNGnz++ecA7N69mx07dijT86JixYqoVCoSExNp0KABI0aMUJ5Tq9UcP36c5ORkI/becn388ceMGjWKZcuW6dU7P3TokBl7JYQQxpOUlGSSO4rTB7lv3brFjh07OHXqFAANGjSgfv36DBkyBGdnZ7Zs2UKfPn2YMWNGpsHAhBBCCJE/Bge5HRwcmD17NuHh4Tx58oQjR47QuXPnTO2sra0ZNmwYO3bs4OHDh6SkpBAREcE///zDyJEjcXBwMMobEEIIIUTBSR/k9ttwsMBr+/n4+DB06FAGDRrEgQMHqFWrFoGBgWg0GmU8kLwGue3s7PSC5r///jtpaWnEx8fTu3dvGjVqxNSpU03yPizNzJkzSUtLY+/evQA0btwYkCC3sExS8ksYWlv2l19+oWTJkrz99tt5fo1arWb06NF06tSJxMTELNs8ePCAe/fuoVKplMG5Jk2apAyC3KBBA732Hh4e/Pnnn3z88cd57ocQQggh8sbgILcQQgghii9zZ3KrVCqWLVvGihUrcHd3BzLfOlqzZs08zy9j2ZULFy4wYsQINm7cCKBkhxd16b9Pa2trZfyVCxcuEB0dba5uCSFEvq1YsYJhw4bx5MkTfvjhB+7evZun13322WcsWrSI7du3Z7sv0GVxV6tWjS+++AJHR0dOnDhBSkoKbm5uVK5c2VhvQwghhBC5kCC3EEIIIfLM3DW5s/LKK6/QqFEjABwdHalbt26eXxsfH6/3+LvvvmPlypXK47CwMON00sLZ2DwdpqV3797Ur1+fatWqodFoWLt2rRl7JoQQzy4+Pp4PPvhAb9qSJUsAOH/+PI0bN+bPP//M9Lpr164xffp05fHOnTuznL/utU2bNqVs2bL873//U56rUKECKpUq3+9BCCGEEHkjQW4hhBBC5Jm5M7mz4urqyuHDh/n33385cOAAZcqUyfNrv/32W1xdXXnuuecAbZAboGPHjgDcvXuX2NhY43fagiQlJSnZ2t27d2fRokUAjBw5EoBp06aRlJTEwoUL2bJli9n6KYQQhlqwYAH37t2jSpUqLF26FIAffviB1NRUPvvsM44dO8Zbb72V6YLn2rVr9ep3ZxXkjo2NVcrmvP766wB8+OGHyt1F/fr1M8l7EkKIwkLKi4mCJkFuIYQQQuSZJQa5AaysrAgMDKR+/foGva5v377ExMTw1VdfKdPs7OxYsGCBEiy/cuWKMbtqcSIjIwHtZ9i/f3+8vLwAeOeddyhXrhy3bt2iT58+jBkzhq5du5pk4DYhhMiPzZs3M336dFJSUpRpDx8+VLbtM2bM4OWXX6ZUqVLcvXuX4OBgJQv7wYMHfPvtt3rz093BMmXKFEBblmTTpk16tbl/+eUX4uLi8PPzo127dsDTklrHjh3jww8/NN0bFkIUOHOMRSOEMIwEuYUQRZqhAxMJIXJmqUHu/AoMDKR8+fJUrVqVXbt2UbNmTfz8/ADt4IsPHz40cw9N58GDB4A2I97K6umhoaOjI+PHjwfQy+B+9OhRwXZQCCFykJqaSvfu3Zk2bRrz589Xpn/xxRfExMRQv359Bg4ciL29PS+//DKgHcshOTlZ2Zd98803qNVqQHsHz8GDBwEYMWIEderUAaBHjx54eXmxcOFCzp49y6RJkwDtBcH0ZUmsrKxo2LAhdnZ2Jn/vQgghhHhKgtxCCCGEyLOiGuR2cXEhNDSUK1eu0KJFCwAlyD169Gjq1q2rl8FXFOgysnVB7hIlSmRqM2jQIKytrfWmFfXMdiFE4XLo0CHl7zlz5pCYmMjjx4+V0kszZ85ULuANGzZM77Vz5syhRIkShIeHc/jwYVJTU3nzzTcBaN68OT4+PowfP57y5ctTpkwZYmNjmTJlCiNGjCAhIYEOHTowapQkUwghhBCWQILcQgghTELqrxVNljjwpLHY2dnpZTLrgtwA4eHhnDp1yijLiY2NpWvXrvz000/ZtjH1XSi7du2ibNmyjBw5knv37gHaTO6MvLy86Nq1q940CXILQ0lNTmFKmzZtUv5+8OABkyZNYtWqVTx58oTatWvTuXNn5fmAgADatGmDtbU1M2fOZOTIkXTr1g3QDiI5efJkNm/ejKOjo5IVPmzYMG7fvs3du3cpUaIEUVFRSmB92bJlmS4ECmEIuetUCCGMR4LcQgghhMiTvXv3KvWbXVxczNwb0/P19dV7fOzYMaPM97vvvmPLli288cYbSjb1w4cPeeONN+jYsSM///yzUZaTnbt37/LSSy/x4MEDFi9erGQ2ZpXJDTB27Fi94L8EuYUQlkQX5B4wYACgHVBYN3Du0KFD9UqJqFQq/v77b6Kiopg8eTIqlYq+ffsC8OOPPzJ37lxAe2GmSZMmesuxsbFRam8DNG7cGB8fH9O9MSGEEEIYRILcolC43LO5ZAEJIYQZ3bx5ky5duqBWq+ncuTPu7u7m7pLJdezYkYYNGyqPjx49apT5xsbGKn+HhoYC8Ntvv/HTTz/xzz//MHnyZKMsJztz584lIiKCypUr603PLsjdoUMHIiMj+fLLLwEJcgshLMfatWs5e/YsVlZWtGnTRm8QYdCWXMrI0dFR786Vrl274uzszOPHjwFtiaoXX3wxy+V16NBB+btHjx5GeAdCCCGEMBYJcotCIyAgIMfnJQguhBCm8/PPP5OYmEjTpk35888/9TLjiio3NzeOHTvGxo0bAeNlct+9e1f5e+/evQDcuXNHmRYREUFyWppRlpWVS5cuAfDRRx/pBbqzC3IDuLu74+/vD0iQWwhhGcLiYnj99dcBbUkRV1dXJk6cyMaNG2ndujWffPIJ5cqVy3U+rq6u7Nq1i2nTpjFt2jTmzJmTbdv0Qe6ePXvm/00IIYQQwmhszN0BISyFrhZa01WLzNwTIYSwLGq1muXLlwPw7rvv4ujoaOYeFaxGjRoB2uBwbGxslrWrDXHt2jXl77179/L6668rdbF1Ip/EU845+6Bzfly/fh2AKlWq0KpVK27cuAFkXZM7verVqwPaILdGoykWFzqEEJYpOS2N/x3aRnR0NNWrV2fMmDGcPXsWgO7du9O9e3eD5te4cWMaN26cazt/f39GjRpFamoq9evXf5auCyGEEMJEJJNbCCGEEDnauXMnN27cwNXVlT59+jzTPArzwEpeXl5UqFABjUZjlGzujEFu0A5smd6DxPh8LycrGo1GCWpXrlyZVq1aKc/llMkNUK1aNVQqFTExMURERJikf8Ykd3cJUTTFxMQw+cAWLkZF4OHhwahRo7C1tS2QZatUKv7v//6PH374QS70WRjZ5gshhJAgtxBCCCGyde/ePWVgwkGDBuHk5GTeDplJYGAgAHv27MnXfJKTk7l9+7by+Pr168TGxmbK5I4wUZA7IiKCxMREVCoVFStW1Aty55ah7+DgQIUKFQApWSKEMI8bN24QGBjIgXu3sLe24bfffqNUqVLm7laxVpgvYgvLJaVIhRDPQoLcQgghhAGK20H3xIkTCQsLo0aNGsrAg8VRu3btANi1a1e+5nPjxg00Gg3Ozs64ubkBcPv2bSWTu3bt2gA8SIjL13KyoytV4uPjg52dnVJnG8Db2zvX1+tKlly9etUk/RPmFRQUJAErYdF69uzJuXPnKOXgxHdte9OpUydzd0kIIYQQFkKC3EIIIYTIUkJCAmvXrgVgyZIlSlC2ONIFuQ8ePEhCQkKeXpOWlsaKFSsICwtTpulKlVStWlXJir5+/TqRkZEANGzYEHiayW3sYGP6UiWgvfX+5s2bnDhxAnd391xfn74ud0EqLoHX4nYRTQhDREZGcu7cOQCWPP8CtTw8zdwjIYQQQlgSCXILIYQQIkubN28mPj6eSpUq0aJFC6PMs7AGK319ffHx8SElJYUDBw5kej6r9zVt2jQGDx7MkCFDlGlZBbmPHz+ORqPB2tqa5557DjBduZKMQW6AihUr0qBBgzy93lxBblH4+W04WCh/+8JyXLx4EdBuv7yd8zcAsCg6CutxhRBCCOOTILcQQohCTTIfTef3338HYMCAAcV+gC2VSqVkc+/evTtPr5kxYwagHbgTtIM+rly5EoCaNWsqQe4jR44A4OnpqUwzdZC7SpUqz/R6CXILIczlwoULgHb7WdTIsUz+VHilt7m7IIQQwgJIkFsIIYQQCo1Gw4oVKzh48CDr168H4OWXXzZzryxD69atAdi/f3+ubTMGgRMSElizZg379+/HycmJd955RwloHz16FNDWxPbx8QFMF+TWZZKnz+Q2RPogt0ajMVa3RCEh2ZLCnHSZ3LVq1TJzT4QQQghhiSTILYQQQgjF9u3bGTx4MC1atCA5OZlmzZrluZRFURcYGAjA4cOHSUlJybZdfHw8H330kd60s2fPMnnyZAAmTJiAj4+PEuR+8OABAGXLlqV8+fIARD6JR23kIPK2bdvYvn07AHXq1HmmeVStWhUrKyvi4uK4f/++MbtnFDndti5ZkkIUbkU5k9tUJENcCCFEcSJBblHoGHqgJgd3QgiRd6dPn9Z7PHbsWDP1xPLUqFEDd3d3EhMTOXnyZLbthg8fzh9//KFX4mX8+PGEhobi5eXFBx98AKAEuXW8vb3ZsWMHKpWKFLWaR0+eDnCp25ddunSJGTNmEBcXZ1DfU1NTGTJkCBqNhjfffJOQkJBn2jfa2dlRqVIlAC5dumTw64UQ4llJJrd4FnIuKIQQxYcEuUWhJ4ONCCGE8ejKWQDUrl2bF1980Yy9sSxWVlZKNndOJUv++ecfAFatWsXIkSP12k+bNg0XFxcgc5C7bNmy2NjYUK5cOQDOPdLPlA4LC6NmzZp88sknfPfdd8yePVvJzM7N7du3uX//PnZ2dnzzzTd5ek12dJn9r7/+Ordu3crXvIQQIqM9e/YQFhamN+3hw4fcuXMHkExuIYQQQmRNgtyiyNFdrZcr9kIIYbjQ0FAA/u///o+TJ09ia2tr5h5ZFl2Qe9++fVk+Hxsby8OHDwHo1KmTXsahv78/w4cPVx7rSpPo1KtXT2kHcDLirvJcamoqCxYsUB5//vnnTJw4kX79+uUpq1t38aJKlSo4ODjk2j4n8+bNo1q1aly/fp3Zs2fna15CCJHe/v37adu2rd4F1sjISGXb6+vrS8mSJc3Uu4Il5zJCCCGEYSTILYqkgIAAc3dBCCEKJV2Qu3bt2oUqwF1Qd/W0a9cOgH82bmJ/v7cyPX/9+nUAPDw8KFGiBLVr11aemzlzpt5n6ujoqPxdvnx5+vXrB2jLogCcjAhXnt+3bx/37t1THkdHRwMQExPDihUrcu23LshdrVq1XNvmplKlSnzxxRcAHDlyJN/zE0VDQd9Z57fhoNzJV0T88MMPvP/++6SkpLB161ZAO/aBLpv7l19+ISQkhHLlyrFy5UpzdtVsJOAthBBC5E6C3EIIIYQAICUlhZs3bwLGCYYWlIIMdDVq1IiSJUsSm5LMpagHmZ7XBbmrVKkCQLNmzahXrx79+/enT58+mdqPGzcOPz8/9uzZg5WV9rBMF+S+8jiSmOQkUlNTWbduHQCzZs3SC44DLFy4EE0ug1TqLl5UrVrVgHebPd3F5NOnT+c4CKexSYkyYU6y/j2706dPExERkWn6gwcPeOutt/j666+ZNWuW3l0yW7ZsAeDEiRMAjBo1isaNGxdMh4UQQghR6EiQWwghhBAA3Lp1i7S0NOzt7ZW60EKftbU1HTp0AODw/TuZns8Y5HZ2dub06dOsWrVKbyBKnXnz5hESEqIXfC5ZsiQVXdzQAH+GnufSpUs8evQIBwcHxowZQ7NmzQCwtbXFwcGB8+fPc+7cuRz7bcxMboCID+fibGNHUlKSDEBpJJKpKYqqM2fOMHfuXMaPH8+RI0dYsWIFaWlpgHbsAp0pU6awe/du5fHff/8NPA1yy52awlCyXRX5JRc3hShcJMgtCp2cbk/123CwgHsjhBBFR/psX11WsaUzxwlsp06dAPjx/FF+/vln1Gq18lzGILch0r+Xl/2eA+D7c4dZuHAhAD4+Pjg4ONCyZUsAWrduTdu2bQFyHYDS2JncVioVfu6lgacBKCFMpaCDDDK2i3FdvnxZ+btp06YMHjyYadOmAeiVW0q/LQXtdi0yMpKQkBBAgtxCCCGEyFnhOIMVQgghhMnpAqG+vr5m7oll69atG7b/XQTYvXu38rlB/oLc6fWpWotulfzRoK1XC+Dt7Q3A2LFjefPNN5kzZ44ScN+2bVuO89NlchsryA3gX1KC3EKI3D1+/DjTtM8//5yff/6Zw4cPY2VlxcmTJ5Xnnn/+eSpVqkRMTAwTJkxAo9Hg7e2Nl5dXAfZaWJLsLjzJxSghhBDpSZBbFEuSoSNE0SC3DxrXjh07APDz8zNzTyybj48PyzsOwEalPYzSBbbT/53fILdKpaJjRf2LDbogd6lSpVi8eDH169dXgtx79uzhyZMnaDQaPv30U7777jvldY8ePVKCTEYNcruXASTInd6xoe/r/S9EcREVFcXSpUuzDGg/fPhQ+XvMmDEMHjwYjUbDyJEjAejQoQP169fn+PHj9OjRg88//5z33nsP0A46CZLFLQxzuWdzOdcTQohiSILcQgghhAklJSUxYcKEPA0OaE4XL15k7dq1AAwbNsy8nSkEqpRwZ1hNbdDl+vXrnI4MJykt1WhBboBa7p56j7Oqk16rVi3KlSvHkydPOHjwIJcvX2bq1KmMGjVKGcBNl8VdtmxZnJyc8t0vneolSwFw9uxZi163hRCmN3PmTF5//XVq167Ngwf6g/I+evQIgM6dO/PNN98wdepUAFJTUwF49dVXAW0ge8OGDTRr1ozhw4fj5uamzKNhw4YF8TaEEEWYLtHNHHW2JTFHiIIhQW4hhDAjS8gyKagDvaJ2cJfxu0tJSeGzzz6jTZs2jBw5Uqkt+tNPPzF37lzGjBnD0KFDM9UctQSjRo2icePGaDQa+vbtS506dczdpUKhpoc2CL1//35G7vqLz4/tJj4+HhsbGypVqpTv+bvZO1De5WmQR5fJnZ5KpVKCPyEhIUrtWoDRo0eTmpqqlFMx1qCTOpVcS2JjY0N0dDS3b9826ryF0DHVvkMGEzOuXbt2AXD37l3efvttved0mdwuLi6AdlvUpUsXABwdHenTp0+m+bm6uvLrr78yaNAgRo0axahR8l0VdzmNyyREXlnaXSFyh7kQxiVBbiGEEMIIVqxYwZQpU9i7dy+LFy+mf//+fP/994wePVppExQUxOLFi4mNjWXSpEns2bMn1/nGxcXx/vvvs3//fpP0+9KlS3z33XfEx8fj5ubG9OnTTbIcUzD3SUGN/8p16Gy7dQXQnkA5ODgYZRm1/gukW1tb4+npmWUbXfA6NDSUq1evKtPPnj3L5s2blUxuMO7JlK2VNTVq1FCWVVB0t6Gb+/s3JmMGbnSBIHMGg0zx/Uj5Acul0Wj0xib4+++/efLkifI4Y5AbYOLEiVhbW/P666/j6uqa5Xy7d+/OihUr+L//+z+pxy2EKNSy2ofJRRshjE+C3EIIIUQ+aDQakpKSWLZsGQC2trYArF27Vslm8/T0ZObMmQB88MEHDBgwgFmzZtGnTx/279/PmDFjaN26NfPmzSMpKUlv/vPnz+frr79mwIABJCYmGq3Pu3btYsqUKUycOBGALl26EBERQd26dY2yjOKglEPWpT9atWpltGXU/i/I7enpiY2NTZZtdHW2r127phfkBli6dKkS5Pb09DR6BpNufTlz5kyBBlaf5X0UpyzACq/0NncXslQUL1AUdVl9X0FBQUybNo0uXbowb948wsLCiIqKwsrKCmdnZxITE/n333+V9lkFudu1a8f9+/eZP39+gbwPIYQQls3cF+hF0SBBbiGEECIfRo8ejYODA3v37gW0gcZhw4ZRrlw5nn/+efz8/Jg3bx4ffPABLVu2JC4uji1btgDw+PFjWrZsycKFC9m3bx/jx4/Xq4etVqv56aefAO0t4N9//71R+jxx4kSef/55PvvsMzZs2ABo63DrAvSWojAEw7IKaBszyN2+fDXq16/P888/n20bXZA7NDSUK1e02eQTJkwAYOPGjRw8eBAg20zw/NAFuc+ePcua0HO0Wfsj+/fvJy0tjeeff5769euTmJgoJy5CYewLLaZctwpi+2PO34ZuG2vI+1y1ahWjR49m+vTpbN26lWnTpnH69GlAW1JJ9/3q9nPwtCZ3+iA3aAfRze7inTA+2Q4LIYQo6iTILYQQQhhIo9Gwdu1axo4dy3fffadM79y5M+XLl2fp0qWEhYWxY8cOQkJCGDRoENbW1mzcuJEXX3wRgOHDh2NnZwdAt27d+PLLL7GysiI4OJi///4bgB07dnDjxg1l/jNnziQuLi5ffT99+jTz5s0DwN/fH9DWPu3Zs2e+5ltcvfrqqyzr0I+X/Z5TpgUGBhpt/qUdnTl58iSdO3fOto2uXMm1a9eUIHfv3r1p0qQJqampnD9/HoAyZcpkO49nlT6T+/fLZ0hKS2XFihX8+uuv7Nq1i9OnT7Njx45Mr8sp2GLqixsFdfGkMFykKWpM+ZkX1eCgoRcdFi1aRGxsrPI4NjaWP//8E4AKFSoo24T0QW5dJrezs3N+uyuEEKKQkuMiURAkyC2KtMJwQiJZFcJSyYFI9kJDQ/nrr7/45ptvALCxsaFv377Mnj07x9e5ubnxxx9/8OjRI5YsWcL58+e5evUqmzZtYtKkSYwdOxaAyZMnA9o63wAjRozA19eXiIgIZZnPYsuWLfTu3Ru1Ws2AAQM4e/Ysc+fO5Y8//sDJKevSG3lRnLdjjo6O1HAvQ7OyFQB47rnnKF26dIH2oXLlyqhUKmJjY7l58yYAvr6+9O3bV6+dKTK5n3tOG9w/f/48t+KiAdi7d69ebfeNGzfmaxnFdd0q7orzdsXSPHz4kCdPnqBWqzlx4gQAU6dOpXHjxoC2LBJog9y1a9fG2tqa8+fPExISgkajybJciRBCCCGEsUmQWwghhDCQLpAI2hrcp06dYu3atXmuZ+3u7g5oA5G6LFyAjz/+GJVKxZkzZ7h586YSHBw0aBDTpk0DYPbs2XpZdHkVERFBnz59uHnzJuXLl2fu3LnY2try/vvv06lTJ4PnJ/Q19arAjGYdCQ4OLvBlOzg44OPjozx2cXHBy8tLL/vbxsYGNzc3oy+7QoUKtG7dWm/ahQsX9Aa73LhxIxqNBiiYi2cyQGHRYam1xYuT0NBQ3n//fYYNG0ZoaCixsbHY2tpSuXJlGjZsCGhLawFUqlQJV1dXOnbsCEBwcDDx8fGkpKQAZDvApBBC6BSXJJvi8B6FMAcJcgshhBAGunXrFgAvvfQSJ06coHbt2kaZb6lSpWjUqBEA06dP59GjR3h4eNCiRQsGDhxIpUqVePz4sd6AXnm1Y8cOkpKSqFGjBhcvXqR8+fJG6XN6xeXEJDsdKvhSo0YNo84zrwHbypUrK3/7+vqiUqmULGuA1NRUVCqVUfum89lnn2U5fcKECTg5OREWFsaV6IcGz1cyeYUwv0OHDqHRaPjjjz+UEiQVKlTA2tpaCXIDlC1bllq1agHw8ssvA9ogty6L28bGRinRJfJHLuQJUTgVpwGwhTAXg4PcSUlJTJo0iXLlyuHo6EjTpk3Zvn17pnZqtZrly5fTsWNHSpcuja2tLZ6ennTq1InFixeTlJRklDcghBBCFDRdJvcLL7xAnTp1jDpvXQac7vbvHj16YGNjg7W1tZIxe+jQIYPnq6uL3K1bN7llvAjSDT4J8MorrwBgZWWFg4ODyZfdunVrhg0bRnnnEpR1epqpOWbMGGUQzguPHhg0T78NB43aR2Mo7hdxRPF07tw5ANLS0vjwww+BpxfV0ge5hw8frgwi2adPHxwcHLh06RJ79uwBtHeYmOpCmxBFgQQ/hRAi/wwOcg8bNox58+YxaNAgFixYgLW1Nd26ddPLKktMTKRbt24MHTqUhIQEJkyYwOLFi5k0aRIODg6MGjWKUaNkI14cpD8htJQdt5ygCiHyQ61Wc+fOHQC9TFlj0QW5ddLXVW7evDkABw9mHwDUaDQsWLCAtWvX6k3XBbnbt29vrK4alS5r11L2FYXNa6+9RoMGDfj555/54IMPlOm7du3C29ub3377zaTLX7p0KX90G8RrNbWD2DVv3pyKFSsqF4Guxzwy6fIlAF3w5DMv+m7fvk1YWJjyOD4+Hnga5K5duzYlS5YE4I033lDalShRQtnXLF++HJB63EIIIYQwPRtDGh85coTg4GBmz57NhAkTABgyZAh16tRh4sSJHDhwAIBx48axdetW5s+frwyipTN+/HiuXLmSZfa3EEIIy6YLaAwePNjMPTGfe/fukZycjJ2dHb6+vkaff4sWLahUqRJhYWFMnDiR3r2f1qRt1qwZAIcPH0atVmNllfla9W+//cZ7772HSqVi9erVvPjii1y+fJnr169jY2OTqX6yJanwSm9ur1xn7m4USm3btlUGhEuvWbNm3L17FyiYi7w9qtQgYPI7dOjQAUApX3A9JsrkyxZCGNe2bdsA8PLy4vHjx8qduNWrVwfAzs6OgwcPkpycTOXKldm3b5/y2u7du7Np0yblAquzs3MB914IIfJOl2TRdNWiZ56HnCcJYX4GBbn/+OMPrK2tGTFihDLNwcGB4cOH89FHH3H79m0AlixZQpcuXTIFuHWqV6+uHBwJIYQQ6UVGRrJ371569eql3PpsKhqNhuTkZOzt7fP8Gl09bl1NUmOzs7Pj2LFjqNVqPD099Z6rW7cuzs7OxMTEcObMGXbt2sWJEydo1KgRY8eOJSEhgUmTJgHa9/byyy8zbtw49u7dC2gDoZJNJ0zJWmVFv379lMcS5BbmEBQUlOcggwQlsnfkyBEAmjRpwowZMzh16hTly5fXy+7ObhyCrl276j2WfU/BkzsthDAf3e/Pz8z9sFTGuKggRFYMih6cPHkSPz8/SpQooTe9SZMmAJw6dYrw8HDS0tJ49dVX89WxpKQkvbrdsbGxgHbgJN0I3cWd7nMoDJ9HSkoKahvrTNNykrG9buT2jNOzek1WbbNaXvppurYF/Xmaa7nPojCtczqF4fM1d99y+4xy++3kNu80NHleRmhoKN26deP69eu8/fbbLFiwAID79+9z7tw5nn/+eb2anrn9xnOiCwJv376dTZs2KVnSubl+/ToAlSpVMtl35+bmBmT9npo0acKuXbto27Yt0dHRAKxYsYI+ffrw0UcfcefOHSpWrEizZs1YtWoVs2bNAqBkyZJ88803Ru1zdtvjrJaR2z4g/bqS8TlD9hd5eX/G2JalX2Z+1kOAY0Pf1/7RtUmW80wvv9+fbv+Y0/zysoysftNZTdPd7RCRGE+MOjXHtlnNP9vl//c+slqPsmtryHGI7jtp9Mu8TM/l9DrlOMTAdcLQY6Tc5pXdbymvr8/Yh5zej+5xVq/Lah7ZfXc5vY+clpdbv3Kaf17aZ7U8U2xHn2WeRtmW5fB9hISEAFCuXDlq1qxJzZo1Ae2AkjktNyUlBR8fH2rWrMnFixcBlIu2xvrsMn5ueV2vDKF7nwMHDjTaPHOT0zYtP9uJ9Odixt5PZjdfYx+D57ScNDR6bbJi7uPt7Jhq22Lo8s2x7LysZ8bul1qtznY/d7VrEy4HBen95rP6DebWp+z2n7q/D74yBro2KfDv3hK+a93feT2OFPpSU1Nzb1TMqTQajSavjevUqYOXl5dy25nOhQsXqF27Nt9//z0hISF8/fXXnDp1Sq9WaXJyMjExMU8XrFJRqlSpbJc1bdo0pk+fnmn6kiVLKF26dF67LIQQopDQjeGgK60A8Pnnn1OrVi0mTZrE5cuXeeWVVxgwYIBRlnfkyBG++OILADw8PBg3bhx16tTJdWCsjz76iAsXLjBmzBiz1Le+dOkSn376KQkJCdjZ2ZGcnAxAgwYNOHnyJFZWVkydOpV69epx8OBB9u7dS0xMDC+//DJ169Yt8P4K8frrr/Po0SO++uor/P39c2yblpbGxYsXqVmzpknulBBC5Gzfvn2ULVuW6tWr89prrxEVFcXs2bOf6S7c/fv389dff9G8eXO6d+9u0F1TQgghhNAXGRnJG2+8we3btylfvry5u2ORDApyV6tWDX9/fzZv3qw3/dq1a1SrVo2vv/6ac+fO8dNPP3H16lWqVaumtPnrr7/0Bs9ydnYmLi4u22VlzOQOCwujVq1aXL9+HR8fn7x2uUjSZRepbayJfLEdHTt2xNbW1sy9ylr6DIhjQ9/narostdyyIpTMNuBq1ybUr1+fU6dO4fv3kSzbX+3aBN+/j2Rqq1umbnm6PmXsQ05ZW6ZkruU+i5SUFLZv327R61xGlvr5ZlwPzZEtpJPdZ5S+T+n7q5uWm+DgYHz/PkL5Ad25s2pTlsvQefLkCZ06deLQoUOUL1+eJk2asHbtWpo2bcpnn31Gp06dlLYbNmygc+fOSt8z/sbzIiUlhXr16hEaGqoXKB4xYgQLFy4EIDo6mtWrV9OzZ0+8vLwAbQCuZMmSJCUl8cUXXyjjUxS0ixcvsmjRIoYMGcKSJUtYunSp8tznn3+uN/Cgqei+3/Ry+i7Sb9Mh87pwbOj7yrqiey679U7XdndsBIBeP/LyW89tW5aX36Pu/ej2PYYsP6d56ejmmX5abn3KTXBwsLJ/zGqehmyHstpuZLct6dq1Kzt27OCjJs9T451hwNP3l7HtmDFj+OGHHxjTIJCXazTIctnp9/MZ+55+v6+T8fhB93x2fcjuveTl8zky/AMiX2xH6TW7uNaxYa7t0y/PkGOk7KTf7up+H4bMK/3vOqvvNv30jJ9H+s8s43O6+Wb13WUn/TYB9LcvWW1/0i83L+874+8u/fyy+i6y+gyMIT/HKfk9Lku/TRg4cCDr169Xyg1FRkYqiUXff/89r7/+ut7rIPNnnNNvxNjHORnXt7yuV4YoyGOzrJaVfj1Pv6/J63FPxt9DdutaVtMNWbcMme+zym7blHGbl92+E8xzjJ0Xptq2GLp8cyw7q/Us47FfTvtqQ+m2FXEzF2eaZ3bnFFkd72XXl6zOnbL6Dad//CznMc/qWc+b8iOrzyS77ZGlnrdbkrCwMKpUqSJB7hwYVK7E0dFRL/Cs8+TJE+V5V1dXgEwB7MDAQGWwydmzZ7N///4cl2Vvb693tV+XBW5jY1NogmumYpWaRoVXenNz1UYAbG1tLf4zsbW1xSo1LdO0nGRsrxtgLeP0rF6TVdvg4OBM9RbT90HXtqA/S3MtNz8KwzqnUxg+3/R9M0c/c/uMspqe135apaZhjSrLZTx8+JDff/+dkJAQrl69yqFDh7C1teWPP/6gcuXKbNy4kcOHD9OtWze9eU6cOJGuXbtibW2t9xs35LP7/fffCQ0NxdPTk927dzNr1ix++eUXFi9ezODBg2nevDkvvfQSO3fuZMGCBezfv59SpUoREhJCUlISDg4OlCtXzmzrVb169fj+++8BOHfunF6Q+/XXXy+wfmW3Pc5q+bntA9KvK7mti7q2Wc3bkPee27Ysp+fSL/NZl5/V63Oa9qzz15tvFoOVZpxnXpaR1W86u21JnTp12LFjB5ce3qdGLm1/+OEHABafPsQg33q5vo+MJ8O6+fptOMjlns312mY6rshh25fTc3lZLwxdJww9RsptXul/H4bOK6fvNqv5pf9dApwYNBb+++yzmofu+8iuX0od0wz7j+yWl1u/spPV+pDV4LdZLc+Y21hjHKfk57gs/fexfPlyZfrRo0cBbfksJycng34LOfVF95vNbw30jJ9bbutVfhTkvj6rfWNWf2fVNrf5Zreu5ba9y+tvyZD55kZXrxee1uzNaTm6bV5O54mWei5gqm2Locs35+eT03pm7P5ZWVkZtJ/L6jeYW19ye31Oy0w/ToSx61abc13LeL5ryHGkeMrU41UVBZnPdHLg7e1NeHh4pum6aeXKlVMGHzl37pxemzJlytChQwc6dOiAt7f3s/ZXiCIl/QFcYXR4wKhC/x5E1kzxvV7u2VxvEKTXX3+d0aNH880337B582asrKz45ZdfaNq0KV5eXgwZMgTQ1h6ztbXlxIkTuLu7c/HiRVauXPnM/YiOjlbqVL/33nvUrFmTpUuXMnz4cABGjhzJ+PHj2blzJ6CtSTp06FDg6SBcVapUyTJYaA66cTEAGjVqRNmyZc3YG1HY+W04aPTff8eOHQHYdSeUhQsX6v1+w8PD0d1UePXqVWV6WWdXo/ZBFE26Cxm5keOV3D1+/Jht27Ypj9esWQNg9H1KQEBAvuchAyqaRlBQkEV9thVe6Z3j85bUVyHSk3VTCPMx6Ay9fv36XL58Wa+2NsDhw4eV53XZdb/++qvxeimEkcgJjtCRE978ye+JkFqtZvfu3YC2lMGoUaOYPn26cps0wIQJE3B1dcXb25uNGzfSoEEDJk2aBKCUFMlIo9EQHx+fafqePXsICgoiODiYsmXLcvbsWVxcXHjrrbeUNl988QVeXl5cuHBBGfDyk08+wcrKik2bNnHhwgVlf1elShXlczC32rVr4+joCECPHj3M3BtRHLcruW1P27dvj5ONLVFJTzhy5AhbtmwhJjmJvXevU65cOWUMlvTl8KKeJJqsvxqNBgOq9RV7xXGdLo5Wrlyp3J0L8McffwDGD3ILIYQQQpiKQUHufv36kZaWxuLFi5VpSUlJLF26lKZNm1KhQgUqVqzI66+/zt9//51jEEIIIUThld9MrAsXLhATE4OzszPr169n/vz5mQZF9Pf35/r169y4cUOpyT1o0CAAjh07RnR0tF7706dP4+vri4uLC/Xr1+fKlStoNBomTZpE27ZtGTJkCC+//DJPnjzB39+foKAg3N3dldeXKVOGzZs34+LiAsA333zDp59+Sp8+fZTHuiy33AbPK0i2trb07t0bJycni603KfLHb8NBc3chV+kz7jIGvR0cHGjoqT+eypXHkZx4oB1kduXKlfTu3Vu5iAUQk5JEdPITjC02OYn33ntPuZBVWOguLFrChTVDFMY+F0dqtZr58+cD2vIkoM3sBuQO3Dyy9HW9IPpm6Z+BEEKIos+ggi5Nmzalf//+fPjhhzx48ABfX19++eUXbty4wU8//aS0mz9/PtevX2fMmDEEBwfTs2dPPD09iYyMZP/+/WzYsMGiAgRCWLr0tbksQVb1zYUwxMGD2qBdkyZNsLGxISUlJct2pUqV0ntcvnx5fH19uXr1Kvv27aPMf9MfP35M69atlTuNTp8+Te/evenfv79SmkQ3wGSfPn1Ys2ZNluVGAgICOHfuHA8fPlQC+e+++y5r165VagXb2NhQq1atfH8GxrR8+XISEhKU4IQwP0vbbptb98r+7Lt7Q3kc8jiSG7FRANy8eZMrV64A2otNERHaARNvx0bjVsrBqP04fP82UVFRREVF8bh8PUraO+bY3pK+x4CAAE6cOGHubphMUQqOGXO9MXZNVh1dH+Pi4ti6dStXrlzBzc2Nr7/+Wm+QyYoVKyrtLeF3kJvC0k8hzE3u0hFCFEUGFxRdvnw57733HkFBQbz77rukpKSwceNGWrdurbRxcnJiy5YtLF26FHt7e2bNmsWIESOYNWsWcXFxLFq0qEgfpAshRGGjq5dt6iDDnTt3aNeuHSNGjACgefO81VNNr127dgBKuROAEydOEBMTQ61atTh9+jTlypXj4sWLfPrppwDMmTOH06dP8/333/Prr7/mWE+7UqVKepnqrVu31qt77e/vrzcwsiWwtbWVALcACj6TLq8nyW3KVWF2YFfat28PwOWoSG7GPAYgOTkZgMqVKzN79mxlfJc7cdFZzis/7iXEKn+fjrxn9PkbiyHf49dff02DBg2UckpC5IVGo+HHH3+kZcuW/Pbbb4B2TIr0++WmTZtSu3btLF9vivr9QoiClVvd88JE7iQwHlOX9ZTvSZiSwUFuBwcHZs+eTXh4OE+eaGsrdu7cOVM7a2trhg0bxo4dO3j48CEpKSlERETwzz//MHLkSBwcjJuZI8SzkLrMQjxljMGgsqPRaNi7dy/Tpk3TC04/S5C7bdu2AGz86Rdl2vnz5wEYOHAg9erVY/PmzTRt2hSAXr168f7771OjRg1GjhyJk5OTQctTqVRKsBywuCxuIQoDlUpFq3KVqVevHgBnH97TCzgDPPfcc1hZWeHl5QXAbRMEua9FRyl/n4y4S6o6jZMnT6JWq42+rIKwf/9+xo8fz6lTp+jatSt3797N1CYyMpLOnTvz5ptvKiUoLIEcgxWM7AI/kZGR7Nu3j9TUVLy8vPjwww+ZPn06vr6+SimvuXPnolKpcpy/7nuU77LwkO9LCMtXkIFguUAgihKDg9xCCFHUyMG+6f125QxLliwhOTmZtm3b4unpiZubG4GBgQbPS5fJfflxJDdiovj33385deoUAB07dgS0wbJDhw5x584d1qxZk+tJem46depEt27dcHFxoVmzZvmal8ibwvqb1N0VoWPp25eCzsasVKkSAGHxMWQcoUUXANcFuS9FReRpHJfcapYfPHiQP/74g+ikJ1yPeaRMD75yhtd3rCUgIIDXXnstx2VZ4neYnJzM8OHD0Wg0ODg4EBUVpYwbkN7YsWPZtm0bS5YsoVmzZkRHR7Nu3Tq9QQYLWmGoM5+eJX7/+aW7IOLr68vs2bP54osvcHBwwMbGhp07d7J3794876PNmQ0qgRkhiicJzFq+orjvFJZPgtzFiKXvCCy9f6Jokp2vaSQmJrJ48WIm7d/Cd3+uZtnF4wD07NmTHTt2cO3aNUJDQ/UGfswrb29vKrmWRAO8vfsvFi9eTEpKCnZ2djRq1EivrY+PDzY2Bg0/kSWVSsVff/3F/fv3KVOmTO4vEEXGswSpTXlXRGHn7u6ebWkdXZC7evXqAOwPv8nck//me5lTp05l/fr19Ny4nItREXrPXX4cCWjL8S1ZsiTfyypICxcuJCQkBE9PT+bNmwfA7du39dqcO3eOlStXKo9DQkLw8/OjT58+zJ49u0D7m5WMF4VEwdEFuatWrao3PSgoiLNnz9KqVStzdEsUAZZ+cbcwMvQzle9ACFFcSZBbCFGsFaVadJZkzZo1/Pvvv+y5e50Zy38iJjkJT09PXnzxRaysrHB2ds40qKQhAsqUAyAq6WkmYrdu3YwS0M6Ora2twaVOhL7LPZ+Wp5ELm8WTSqVS7sYAlPJ1dnZ2SnDb39+fCQ20Aba1oedJVac98/IePXqkBPOS/5uPlZUVzZo1o5yzK/186zB58mQApk+fTlrasy/L2LLLsk9MTOTjjz9mypQpAMycOVMZG+f27duo02Wk6+p0jxw5kunTpwPw4MED5XXPwtjBE1PeTSDbmeyFh4cDmYPcQhiDMY+vJVgrhBAiryTILYQQwujS193W6dq1a44DPhoiwNNH+dvZ2ZlevXrx1VdfGWXeongpbNlOhSVol1OGbvfu3ZW/27RpQ9WqVenUqZPeRaoXqtXG1soKNRoeJMY/cz+uXr0KQMmSJZVparWaUaNGsbbbq0xo0Ipp06ZRsmRJwsLC2Lt37zMvKzvG/L40Gg3Dhw/niy++ID4+nrZt2zJs2DD8/PywtbXlyZMnSq1zjUbD2bNnAejTpw+vvfaa3jZYrVYrg35mpzD9NrKT3zsrCsPv7VnogtxVqlQxc09EcfYs++BneY0MlGq4wnZ8JAq3orqvFQVPgtyi2Cps9SCFackt0/mn0WhISUkBnga557XsxuKJ/2OwfwPatGljtGXpMrlBGzzv168ffn5+Rpu/KNwKQyC4MPRRx9gnuvb29ixu15dulfzo1asX06ZNY8CAAXptrFQqyjq5AnAvIS7L+dz/4Tfee+89zj28l+2yQkNDAW2gc1KANttZV7s/fX/69esHoFfaw5Ry+v7j4uKIjIzMNF2j0bBx40Z+++03rK2tWbFiBdu2bcPKygpbW1tlUNyr0Q85HnKRFStW8OjRI+zt7WndujUVKlRg4MCBysWEpKQkTpw4odcnUyiI46287MMtcT9/7949jj24Y5Zl6+5wKExB7sK03RRCCCFEwZMgtxDCKOTEo3i7c+cODRs2pHLlymzevJnQ0FCsrKx4rrQ33Zu3ZHS9ZkYtJVLKwYlGnj642NrRokULo81XCGMqahdT8xLoTl+SJif1SpdlSpP2uLq6ZttGF+QOj4/J8vk/rp7j0aNH/H3zcrbz0GVy+/r60rdabYI7D+Sll17K1G7QoEHaef7xh1lLlkRERPDhhx8yefJkItJlsKvVambOnMnq1asBmDVrFoMGDcLW1lZpU7duXQCuPn7E6Hlfsn37dgBat26tlFpatmwZ4eHh9OrVC4D9+/crr09LS2P//v08Tko07ZssIJZ6TJL+eKlv3768s2cDW3JYh00hMjKS2Fhtxn/lypULdNm5OTxgVIEcU8pxqyisZN0tHoraMaQQBcV0xUuFyIegoCAkJ1Pr8IBRkMeggRDm8PjxY1q2bMnNmzeBp6UIKleujLOtncmWO7dlN5LT0ggvXdpkyxDClPw2HORwET+J0Z2IP8s+3dtZF+SO1Zv++PFj7t69y9n/MrivRT/K8vUpKSncuHED0Aa5OXqdyiXcuWyXebvUqlUrnJ2defz4MSEhIc/Q2/xLSUlhzpw5REdHA9qBN/tU1WZn//DDDxw8qF1X5s2bx7hx4zK9Xjdw5+H7t7gdeV+ZXjfiadDa1taW0qVLExgYyPr16/n3338ZP348ACtWrGDHjh1cKV+VL5p3zrGveb2YIbJ3/PhxDh06BMD3544wOSkJe3t7ky0vMjKSFStWUKpUKSV7u1SpUgUy1oQE5ExPdxGy6apFZlm+bBOKH3OvcyL/lOQF+f2KIkQyuYXJSQ00IYoGtVrNxo0bmTt3LjNmzCA+XptlOGvWLG7evEmVKlWoU6eO0r5hw4b5XmZO2Sr21ja42pkuICDyRk5s88dSBr+1xP20LpP73/CbfHvmIImpKaSq05gyZQqdOnUiIVVbHik05hGadIMt6ly7do2UlBQ8PDzw8vLKcVnW1tbUr18f0AYfzSEkJESpkwxwIFx74fDWrVscPHgQKysr3nnnnSwD3AANGjQA4HSkNvjv4uLCtCbtlUB5erqBKvfs2YNarQZgx44dAOy8c81I70jk5Mcff1T+vpcQy9KlS40yX91+M/2+U61WExgYyMSJE7l16xanT58GwMfHJ7vZCFGsST3q4i23C3Pp1w9LyKwvjutrcXzPIm8kyF3E6X78hWkDYO6dhCiaCtNvwFKdOHGCVatWcfr0aYKDg/nkk0/44osvmD9/PgDz58/n6NGjbN++nZMnT9KjRw/zdlgIA8g2wnyyuyVXl8l9KSqCX0NOsfTice7Gx/L48WO9djHJSUr2c3qXLl0CoHHjxqhUqlz7obswl75OdUG6ePEiABUqVADg6P07JKelce7cOQCqVq1KkyZNsn19y5Yt9TKBGzZsSJdKfthZW2dq26hRI1xdXYmKiuLUqVOEhYUpz9motKcHxeE3Ya6LdE+ePOHXX38FoKV3JQB+mjrDaPPPONjmnTt3uHz5MikpKSxevJjDhw8D+qVKsjr+NucxuS5Jpjish5YoODjY3F0wO10d/4L8Hcg6L4QQ+SNB7iJMt0O2lCyx9CS7W4jCR3erfIMGDShfvjyRkZF8/PHHJCYmEhgYSM+ePXFwcKBDhw7Ur18/T0ElS8h+EKIoyvi7Koy/M12QW+dM5D3uxGUOZoM2iJeRLmjcuHHjPC1PFxg0RSZ3Xj5/XVC+U6dOlCxZksS0VP4Nv8H58+cBqFatWo6vd3Bw0LubpmrVqtm2tbGxUQYDXrlyJbNmzVKeS9OoSU5Lk+PHHOSlD1ndXQDasiEHDx4kLi4OX19f3n1OO67EyYhwYmKyrj+fX7p1CLR3BujWR0sfdNIS10FRsMx9t1jGC0amJut83hhjP5DbYMRF5YJDYUx6FCI/JMgthChUJChqHomJiZw6dQrQDpS1Zs0aBg4cSNeuXfnkk09Yv359noLaonAw9+8suwNxSzhIt4Q+FARLOCnydtIPct+Nj+FO3NMgoAqUMiSzZs3i559/VgKLyWlpXLlyBch7kFuXyX3y5EnU2QQo03v33XepX7++Mh5BfiSmpnDtmrZMSK1atQgMDARgzol97Nq1C4Dq1avrvSar36muZAnkHOQGaN++PQBz587lm2++UaZr0JbPyKvCtE8uqCD5tm3bGDNmDEuWLNGb/ueff/L+++8rpUlGjBhBRdeSVHBxI02jVgYLNTZdkNvR0VFvesZBJ9N/l8VhOyeEEDkpKhcdLO19yKCawpQkyC0EhesETYiCptFo2LRpEykpKXh7e1OpUiWcnZ3p1q0bmzdv5tNPP8XDw8MoywoODpbfoxAWwtwnRaUd9QfEe5AYz8mIuwC88MIL/NKxP82bP83y2717Nz+eP8qKFSs49uAOKSkplChRItdgr06NGjVwdHQkLi6OW7GPs20XFBREfHw83377LadPn6Zt27bEx8fnKyh45uE90tLSKFWqFKVLl6Zv375ULeHOo6RE/v77byD3TG6A+vXr42Rji6e7e671ljt06KD8XbduXbp3706pUqWAzIN95ka220/99NNPrFixgpiYGN566y3lIgXAli1b9NoOHToUgEBdyZLxHxm9P6mpqcpgqsOHD1emq1Qqo+27RcEz910N5r4Ybi7GeN95mUdh/XzN3W9z/i7y+77NnVggRFEhQW6Ribl3TkIIy/Ju/RasX78egM6dO5s0Y1s38Jso3rK6PVmyPvQVh/20tcqKQO9KlHZwooyDMwC7wrTZznXq1MGvZGlq166t95qfLx5n27ZtzDy2B9AGrvO6zbKxsVHKfVyLeZRj2yNHjih/37hxI9+DBp54oA3e6/prZ2fHxIDWem18fX2BnI/TSpQowbIO/Vj/5dfY2NgA2d+SXadOHWbPns23337LiRMneOmll5R64HfjDSubUdC39BekR48ecT0mKsvnsvouvv32WwDKlClDWloa/fv358aNG4B+KZxvv/0WT09PANpX0F7A2HbrCr93edmo/d+/fz9JSUl4eXnRqFEjZbpGozHq/tyUZSUODxhVLLZ5hbEOeWH/Xsx511JBL7ewrVvZedb3YOp11Rj7QXMnFwhRFEiQWwghRLaSk5NZfukkAP379+f55583c4+EEIVNfi5QzAnsyp/dX6VluUp60ytWrAiAv78/G3sMYd68eUpQFyDiSTwANWvWNGh5uvY3Yh5zuWdzDh06pJQRuX37Nt9++y1Xrlxh3759eq/bvXt3rvPOKTh94r8M9fT9fa60N87OzspjXQA6NxVdS1LBs2ye2k6YMIF33nlH+ezKlCkDwF0DM7mLqvj4eKZMmcKw7at5kBCX6fnHjx+za9cu4uK0z6WlpSm11ceNG0flypV5+PAh/fr1IykpiTNnzgDaEjHvvPOOMp+6pcrS0rsSaRoN3545iEajQa1Ws3XrVuJTkvPV/7Vr1wIwceJErKysePPNN4GnWeTCskiQq2CYMuBbVILJQghRGEmQWxiV7gSusF/VF3mX26AdonA7fPgwMclJlCpViu7du5u7O0LkSrZHRYtKpcLWypoW3vpB7vQB39KOzpQuXZoxY8bwQjX9zO4aNWoYtDwlyB0bRUhICIsWLeKbb75Bo9Hw119/cfToUT777DOmTp0KoJRL2blxU7YDDeYmPj6ei48e6C0ftO+9b9++AHh6euoF8U3laZDbNAMgFhYajYYTJ07w1VdfERMTQ5I6jQP3bmVq9/PPP7N06VJefPFFUlNTuXbtGklJSdjZ2VGuXDnee+89nJycOH78OD///DMpKSm4uLjQ4uCVTEGwMc81x1plxf7wm6xatYoPPviALl268OP5o0obQ4NnS5YsISoqitKlSzN69GgAWrVqxYMHDwrkorUE+woPcw/wWFBkfSw4EhMQQpiDBLmF0RXlW1aFMIX79+8THh5u7m7oSVGnMXPmTH7++WcAnn/+eaysZJchTENOgkRuAr0r4Wj9NMhbtmzmTOUGDRrwQYNWSqDWzc2NcuXKGbScp5ncURw7dgzQlqu4ERvFiRMnMrXv3Lkztra2RCU94Vbc4zwtI32QJSgoiE8//ZRUjVqpx51ex44dGTlyJOPGjTPofWQlL78z3Wd3Jy4638srzPbt28f8+fOVMiMABzMEuS9duqQMyLxt2zamTJnChQsXAPD29sbKygoPDw969uwJwAcffABAlSpVUKlUmZIEKrm6M6ym9hh64MCBzJs3D4DgK2ee6T2o1Wr+7//+D4AePXpgb2+vPFemTBmzDxZtqjIR5q5VLXImFz6EEEKYkkQsChE5KBDiqaISFNNoNLRq1YrJkyfr1Xg1txMP7nLx4kXS0tIo7eBEmzZtzN0lIUyqKNyVUpSPEaxUKt6o3RgAFxcXrK2ts2ynUql47rnnAMPqcevogtw3Yx/r1U9eeuE4aWlpuLi40LFjR1SAp6MzlStXVgaEPBlh+MXKgIAATp8+nW1/VSoVgYGBuQ4imVe5HUtWqlQJK1SEPI7k4s3rRllmYbRnzx7lbz8/PwCO3r9DqjpNmb5gwQK91yxYsIC9e/cC6H1fL730EqDN2AdtkFsnY2LIsJoB1HQvozfNzsqaVLXa4Pdw5MgRrly5gqOjIy1atNB7Lj/bCmNsJ2WMhacKOtu1uGRsm0JR3scWBln9VvJyUauoZJQXlfchhKmZ/r5HIYQwk6CgIPzM3Ylc3Lt3jytXrgCwcOFChg0bRsOGDc3cq6cZa/Xq1WNR9WZcK1GiQJevHLDKyZgQ4j8v+z2Hk40tjr1yLrPQq1cvSlwPp9mLLxq8jKpVq2JrZUVSWipJkZHK9G23rwLQpEkTBg8ezEibMthb2xBlZYW/vz+XLl1i390b9PKrqzc/jUbD2rVruX//PlWrVqVz5856z1+7do1//vkHgMaNGxvc32d1eMAomq5alGl66dKlaVe+KjvuhLLoz9VM9PQvsD5Zittx0Vy5cgWVSsX8+fNxc3PjvRFv8Tj5CfvDb9HGpwqp6jSCg1cBMHnyZLZv387x48eV7Ov0Qe6uXbtSokQJYmJicHV1pVWrVnDkWpbLtrWyZmGbXnxnE83ff/9NfHw8yeo0bhuQWa/RaPj4449Zt24dAC1btsTBwUGCI7lIHyjL6rchRFZ0v6vBgwebuSfmJdsXIYSlkExuIYQwg4SEBFasWMGGDRv0pn/zzTdm6U9kZCTBwcEsWbKE9u3bK7dHt27dGhurrDMmhRDGI9l1ubNSqehbrTZVq1bNsV3JkiWZGNA6y5ImubGxscHD3kl57OTkpPd8kyZNACjv4kYZR+2gkM2bN0cF7A+/SejjSL32V69eZd26dRw6dIiVK1fyZNmfynMajYYZM2aQlpZGoHclGjRoYHB/8yO7rO5X/esDsG7fbq48fligfbIE225pLzzXqVMHd3d3rKys6FixOgDTj+wgJCqCMw/v8/jxY1xdXalRowYfffSR3jzSl8lxcHBg1apVTJ8+nWvXruHl5ZXj8p1t7Vi9ejXR0dE0a9YMgKsZ1qsc+79tG+vWrcPa2pqhQ4fSr18/vectOYva3JmyMuijKEwKKrNX7iYvnHL73gxdd0yxHujuopSLJKYVFxfH1KlT6dKlCx4eHqhUKpYtW5ap3bBhw1CpVJn+GTq+jblJJrcQOZCr85ahKO74NmzYwLZt25THderU4dy5c6xevZpvvvkGNzc35bm4uDh+/vlnGjVqlOmWY2N4kpbK1KlTiY2NzfRc7dq14f6z1QMtSH4bDnJ4w0HJviqEiuLv2xwK8gS0qJ/s1itdlu3/ZW6PHz+ezz77DNAO2FerVq1M7cuVK8fz5aux404oy84fYwwDled0pUh09oZd57nS3spzR44cwdbWlvENWhJn5hrJOjU9PGnjU4U9YdeZeXw3Pz7fF2tV0cqLyWkdvvpfYL9evXrKtHfqNeNa9EOOR9xl0oEtNPT0UdpYWVnRt29fRowYweLFiwH9gVFBW7s9YxZ/bqytrXnuuec4dOgQV6LzdrEhOjqaVau0GeavvPIKy5YtK9LbWEMuDsoxvcjocs/mRr/ok/Eu0vS/P2OvewEBAVmOFSEMo/uOLPnu3/TrUVBQkN56qzv3udyzOZfTtbPk95OerMemFxkZyaeffkrFihV57rnn2L17d7Zt7e3tWbJkid609HGJwkCC3MIopLSAMLX0O8CIiAg8PDxYsWIF165d4+OPP862Pqslio2NZdeuXXrTevToQVRUFGFhYcyZM4fQ0FBcXV2ZM2cO3bp1499//wW0QZZ27doRFxfHlClTjLLTORB+k9jYWNzd3elTtirHHoRx9uE9/P39cXZ2zvf8hSjqQVFLJUGdZ/Nm7cZUci1JvbeGULJkSbp27UrKuSsMHDo0y/Z+Gw4yrGYAO+6EsuPWVbpevYrnf8/pBiZs0KABJ0+eZO/dG7xTrznx8fH89ttvAHTq1IlyTiW4XADvLa8mNGjFiaj7XHj0gPXXLtK3Wm1zd6nARCRqa2d7eHgo0+ytbfgqsAuv/bOG23HRbLoRAkD9+vUBWLFiBd9//z2NGzcmLi6OUqVKGaUvuvrypyPDSU5OzrZdcHAwAM7OzqSkpFC5cmU6dOhglD6kV5QD5rnR7ccs/WK63v7WDOdllnyngLlIEE+YQoVXenN75bosn7PE32Fx3n+Ym7e3N+Hh4ZQtW5Zjx47lWB7PxsaGV199tQB7Z3xFKy1DCFHknTlzhvHjxzNjxgyGDh3K1KlTlaylwmLp0qUkJCToTatWrRrt27cHYMaMGfz2228sXryYdu3a8e+//+Ls7IytrS379u3j008/Zd68eYwZM8Yo/dlxOxSAPn36MLJOExa26cnkhm144403jDJ/ISyBMW6zLC7B+uJWOiXj91rRtSRv1G5MyZIlAXj55ZeZ0awjdnZ22c6jesnSdKmozZtaunQpGo2GR48ecevWLVQqFYMGDcLGxobbcdGsvHyamTNnEh4ejoeHBz169DDZe3tWZRyd+eDlIQAsPn+EuJQkM/eo4DxIjAP0g9wALrb2fNWiC6UdtCVsHBwcqFOnjvK8SqXijTfe4L333jNaX1q2bIkKOB15j06dOqHWaHJsv3XrVgACAwMNHnTVmIwdzChu26T8krIrBc+cAbzsyj0UhQG1zcUSg8SmItvXos/e3t6gEn5paWnExMSYsEemJUFuITIwdhDjWQIrUpsqe7qBlEJDQ1Gr1QB8+umnJCUlsXfvXh48eGDO7uWJ7j28/PLL9OrVi6VLl2Jvb8/zzz/PhAkT9NoeP34cgE2bNnH9+nUmT56s1G0NCgpi6dKl+epLbGws/4bfBLSDY4E2Y61P1Vq51g1NT9ZZIURx91bdJthaWXH+/Hn2373B7NmzAe1glp6entStqx2U8tszB7l16xaurq78+OOP+b5j5lm2v3k5qR3SpQeVXEsSlfSEv65deNbuFSppaWk8fKK9CO3u7p7p+apuHqzpNogZzTryzz//mPxup7p16zK9aQfsrKzZs2cPN2Ojsm2r0Wj0gtyi+DEkWCUB0Pwx13Hvs5ynZnUuaqnffUH3qzgFs01JzgMLXmxsLDExMcq/pCTjJCMkJCRQokQJ3Nzc8PDwYPTo0cTFxRll3gVFgtxCkZdgrGzA8kf3+cln+Gxu3brFlStXlMf29vaULFmSS5cu4ebmRps2bejZs6cZe5i7xMRE9u/fD2hvQ+7Xrx/Dhg0DwMrKitmzZ3Ps2DG9ciY9evSgTZs2+Pj4MHPmTE6cOMHkyZMBeP3115k3b57SNiwsjDfffJNDhw7lqT8LFiwgKS2VsmXLUrNmTSO9S1HcFdbtnN+GgybL1k4/X2N8Nqbsq3g2ZZ1caV6uMgAf7vubsLAwSpYsydD/ypwMGzaMV/3rU69UWbp06cL06dPx9/c32vKfdb3Kbj2ytbGhVxXtfuHCI8u/gGwMEdGPSdNosLKyUjL5M7K3tqFDBd8CCyR3qlidGu5lALgUlXkAysTERC5fvsy9e/e4efMmNjY2NGrUqED6lp1n2T4Vxn2GEIYoTut4Xt/rsaHv6/1vbHKcVPjIBbi8qVWrFm5ubsq/mTNn5nue3t7eTJw4kaVLl/Lbb7/Rq1cvFi1aRJcuXUhNTTVCrwuG1OQuZnIbnK3CK725HFs8TmTMJSAggGPHjnH27Fk0Go1yO6nUTs3d9u3bAWjSpAkBAQG89NJLPHjwgBEjRhAdHQ3AkSNHOHXqlFIn09Ls37+fpKQk3N3d8fb2zvS87mCs7apF9OjRg507dzJjxoxM7WbMmIFarWbWrFn8b+Ik6u09j6ONDa+d2cWVK1fYv38/Fy7knHkXHh7Ol19+CcALL7xg1lubhTCV/AwolHEAKSFy83wFX/beuUaaRo1KpeLDDz9UtvXu7u68U0+baVlYbg/2LamtLX3lcd4GPizMDt+/zf3dOwAoWbIkVlbZ5wJlHODLFNJvu/zdy3Dm4T1CoiLoWKEa8+fP586dOwQGBjJnzhyOHz9OpUqVAKhRowZOTk4m7ZvQyqpOd2Gp3S3yz2/DwUKzLS9oUodcCNO6cOECPj4+ymN7e/t8zzNjoHzgwIH4+fnx8ccf88cffzBw4MBsXmlZJJO7ECisGXEie7/88gv16tVj2+0ruTc2AmPUojWnY8eOsWzZMg4cOABoB+lq0aIFbdu2ZcCAAdy7d4+jR48qdU2XLVvGX3/9xf/+9z8uP86c9WROukB9rVq1cg0qr127lrt37yoDT6VnbW3Nl19+Sd26dUlMS2XQ3j8ZvH21kul+8eLFXA8uv/nmG+Lj46nt4UnTpk2f8R0JIYoLya7JXaBPZWxtbQFo2rRplhczDWXO26mru2mD3HfioklMTcn0/IULF/jss88YPXo0mlzqRVuyCxcuMHbvRr4I+hnIulRJRgEBAabulsLfvTQAIY8j+evaRcaNG8fcuXPp16+fUtbs5k1t6bEWLVoUWL8Ko4zbMNmmifSe9bzbVHdXGXIOZ4x12djnjHLXmWmZ+rhM4lCWy9XVlRIlSij/jBHkzsq4ceOwsrLin3/+Mcn8TUGC3MIibdiwga7rl+ZYe9DU7t+/z759+9i5cycPHxovg+nSpUvs3r0bgL1hN4w236Lq0aNHLFy4kDlz5pCSkkLlypWpXr26XhsHBwcaNWrE22+/DWh3yH379uXWrVusCDllhl5n9vDhQ/r06cOsWbMAqF27dq6vsbW1xc3NLdvnVSqVMsDVg6gorsdEYW9vj4ODAwANGzbkrbfeIi0tDY1Gw59//smBAwfQaDSkpKSwbNkyAF71byBZ3KJIyu3APDg4OE/zkeBu8WCMk3tnWzu6detGaUdn+vbta6SemY+HgxOlHJzQAKHR+sdCly5d4quvvuLKlSvs2bOH+4mFq2ajTlhYGD/88IPetIyDTpqbf0ltuZLLUZGsv35Rma4bm0THzs6Ohg0bFmjfLF1egjRZBb4Lyza/MPW1uCls30t++2sp9a0L8pitsH3HQhjK0dGRUqVK8ejRI3N3Jc8kyC3yrKA24omJiaxevZqopCesDT1fIMvMSKPR0L17d3788UeWLVtGvXr12Lx5s1HmO2fOHCXb6UzkvUKd+VQQ9u7dq3cS17lz52wDsp06daJOnTp6G+GIxHiT9zE34eHhNGnShHXr1qFSqejZs6dSLzO/GQ6vvPIKtT08qV6+IpMbtuHu3bts3LhRef6HH35g+/btrFq1ihdeeIHAwEAaNWrErFmzuHfvHmXKlKFluUr5fo9CZFQYsncMKWtUkFmbeZXXEzlL/x7MLf3nWOGV3vme32uvvcb6Pq8ZJYvbEuiyuS+nK1mi0WgIDg7WO4a5Gfu4oLuWb1euXGHKlClEReknVeQlk7sgVSlREnt7e+JTk7n8OBJbW1uuXLlC1apVcXBwUAakbtiwIY6OjmburWHkImL+ZRVclDIaRVNR+l7l2MTyyLZYZBQbG0tkZCRlypQxd1fyTILcwuIcPPj0QC0uJbnAlnvu4T3e3vUXv1w8wbxW3Tl+/Dh2dnZ4eXlx9+5dunfvTr9+/fJ1FevMmTMcOnQIGxsbrK2tiXgSz934WCO+C8uVmprK2bNnM2Ud5UaX9V6vXj1GjhyZ4224NjY2bNu2TW8AxevRj9BoNKRp1CQmJua4LGMG5VJSUnjvvfcoV64c7du359q1a1SuXJmTJ0+yfv16Jds6vxwcHPip/Yvs/nYxfarWwsPDg/bt27NixQplGUuWLOHnn39WXnPixAn+97//ATBkyBBsrayfefnmKIUjB8WioFhKVpIQ5vS0LvfT8l8HDhzg2rVr2Nvb4+vrC8DNmMfm6F6eZTVo0o4dO0hJScHf358JDVop0y0tyG1jZa1XVqxnz574+vpy+PBhFi1axKhRoxjfoCWvvvqq3uskYGE+hfVYxRQXqC3ps5CLKnmT3XdW2EtgCiGy9uTJE2JjM8elPvvsMzQaDV26dDFDr56NBLkLCd2JdmG5evusB0gajYadO3cqjwvihEmj0XD27Fne27eJk5HhfHfuMBP2/w1A27ZtmTFjBuPHj8fGxoY1a9bQsGFDIiIicszAzuoAQK1WK7fGd+rUiSpVqgBwKvKuid6ZZXnnnXeoV68e3bp14+TJk3kKdiclJSnrw5AhQwgMDFSyuLNbx7y9vTlz5gxz585FpVLxOPkJq66epeeG5fj6+nLv3r0COTgbNGgQCxYsIDw8nIsXL+Li4sLWrVuzrK9tquUfPnwYgDVr1rBt2zYA/v33X/r160e1atUYNGgQEydOLJD+CCG05ORaFDa1PDwB2HrrCrfjorn8OJKlS5cC0L17d2rUqAFg1hJzuVl37QJvvPEGm25cUqaladScOXMGgH79+tGxoq/ynLX1s1/8NZXg4GCG1GhAwzLlmD59OgBubm54eHhgb29Pf9+6uLq6mrmXxUPG43wJ+hUuht6ZZczAf8ZjgMJybi+Kn/TrZvr1Vi50FE4LFy5kxowZSuLbhg0bmDFjBjNmzCA6Opp79+5RsWJFRo0axTfffMM333xD9+7dmT17Nl26dKF37/zf6VhQJMhdBOS1pmhOLOWk++zZs9y6dUt5fCM2yujlPFJSUtiyZQujd6/j75uX+ezoLmbPnk1cSjJ+JUvj6egMaOsadu7cGXt7e+bMmcORI0eoUqUKN27coG3btpQsWZJXX32VO3fuEBwczJgxY3LMFD516hRhYWE4OjrSs2dP/P39tdMjwzO1DQsLIz7esDIbp06dYt26dURGRjJlyhQ6derEvHnzDJrHs4qPj2fu3Ln8+OOP7N69m3/++Ufve7t//75S73Lr1q0EBATQoUMH4uLiMu0oDxw4wFdffcWrr76Kg4MDZ8+eBVDKe+SFjY0NZcqUwcvLC4CvT+3nUVIid+/eZe7cucZ4yzk6duwYq1evxsbGhk8++YR27drx+++/4+fnZ/Jlp1evXj2aN396gNKyZUsCAwNZvXo1V69eZcWKFXh6ehZon7JjjO2YZOcIkZlko4u8yGnb2bpcFRqU9iYhNYXJ+7cwcf8WkpOTqVOnDr169VLKslhyuZKvT+1HrVbz2dFd/BpyiiuPI7nw6AFxcXE4OTnh6+uLm50DVcv5AFC3bl2jLTv9Z5uffZS3tzej6jbj/9r2pk6dOsboWrFkrIDls5Q2ymtwSI5nzEv2m0/pAp05rZOyrlouuYgidObMmcMnn3zCd999B8DatWv55JNP+OSTT4iKiqJkyZL06NGD7du38+GHHzJx4kRu3rzJF198wfr167GyKjyhYxtzd0AYh+6AqemqRYBl7GyeZaO6YcMGADp06MDOf3YQl5LMwycJRu3XkiVLlJIol6IiiU9NRqVS8ULVWrxdtymONracigin+dfTOHfunPK6Bg0asGbNGpo0acKFCxcA+PXXX9m4cSPR0dGAdqAiOzs7qkY/oqqb/qBFukzaZs2a4ezsjJ+fH5s2beJM5D1+v3KGNf/bhG10HGumzmTd9YvY2dkRFBRE5IXLpJ3YxvDhwzN9z+Hh4SxYsICwsDBWrlyJWq3GwcGBJ0+eALB9+3ZKlSpFjXT9SEhI4ODBg9ja2tK8eXPOnj2Lr68v0dHRaDQaKlasmOPnp9FolNF1K6elce3aNXbs2MHp06cBaNeuHQCLFi1SBoL88ccfAe0owO3bt2fr1q3s2rWL3r17M8PDD6v/srOvXbtGx44dSUjQ/86rVKlC6dKl9S6A5EWFChW4d+8eAM42dsSnJvPdd9/RoX1/StrnrWZlQkICFy9exN/fHxcXl2zb6X5zgwcPVgLpL7/8Mp9++qlBfTa21atXM3XqVHbt2sXUqVPN2hchhPH5bTjIYTkhzzcJamTPxsqK6U07MOyfPwiN0ZZs8/LyYvTo0VhZWWUb5L506RLR0dFUN/PYI7du3eJJ2tNSJd+eOYijtQ2tfbR31NWtW1fJ3F7/5XzO/voHKT4+ZumrMJ7DA0Ypx8vmkv7YsLjLS3A/43lOYVYUg4sBAQHEyb6ySJNjyqLrxo0bubaxhBiiMUiQuwg6PGAUFMId64YNGwgJCcHGxoYePXpw6dBR7sRFczP2Mca6+fLvmyEcPPJ0wx2fqq35Xbt2bT6o+bQWY0NPHxo0aKAX5AZtoHvRokUsXLiQ119/naCgII4fP648rwtoNihTju/a6md46ILcuprSfn5+qNCeFM4/tR/dKWBotPYEMjk5mQMHDmgnPo7kp59+onGdNjja2LJz507mz5/P3r17lQA7aG+vffLkCdWrV6dZs2YEBQUxcuRIVnUYgJeTCzdv3iQwMJCwsDBAG3SOjY3F2tqatLQ0QHuyt379eipXrqzMV61W8+jRI9zc3Pjnn39Yvnw5y5cvp1slPzavvZzlZz158mR69eqFo6Mj33zzDQDfffcdgwYN4ujRo7Rr146dO3dyuJUjzctWJC0tjddff52EhAT8/f0JCAjgrbfeIjExkUuXLmW5jNykr6n5W+eXmHr3HCdPnmTTjRAG+dfP8bW3b9/mk08+4bfffiM5OZnevXvz119/ERsby549e2jfvn2WgzvduHGD1atXAzB+/Phn6rcx+fj4sGTJEnN3QwhhQhVe6c3tlevM3Q1RhHk6ubCk/QtM2r+Fh08SGDt2LM7O2jvfdEHuiMR4opOe4GbvwKZNm/j9998BOFOuMlGX/uV9L/9cTzzUajXnzp3j9u3b3L8bQ/8s6mjnRVJSEj/++CP+/v7KYEnu7u64p8G1mCgS01LZeusKoB2sUcfd1ZUqJTzI+shGFDbGOicKCgqiYO/F0wabTB0oNSSglT74IUF7YY7fhCgY+TmmLEoXqkThJUFuYRG2bt2qBAYHDBiAh4cHlV1LcicumusxUdTL5nWPniSQqlHj6Zh9hq3O7t27+eXoLgD69u1LiYs3+eXSCQACAwMhj+NJvvnmm7z55psAvPXWW3z11Veo1Wq+/PJLkpKSADgZcZdTEXeJ27EDFyAxNYV///0X0Aa5Hz58iLOzM1XdPAiNfoQGqFixIs3t3fjr2kW69+5FnTp1qFevHqHzljD1xG5CQ0PpGBpK1RLuhG9erpRGadiwIV27dqVJkyb4+fmxc+dOBg0ahIuLCzdu3GDfvn38fOEY/XzrMH7QIMLCwvD09CQ2NpbY2Fjs7e1JSkrC2toalUrF2bNneeGFF5gxYwaBgYFYW1vTp08fduzYQcOGDZX6lQCbbz49DWzTpg3Dhw/nlVdeoUWLFhw5coR3330Xd3d3IiIiqFWrFv379wegcePGvPHGGyxYsICZx3bTtZI/TwYNYs+ePTg5ObF582aqVq2qzPvBgwd5+3IyaNeuHSf2/ssr/vXxdHKho8qVk2jrimYX5L4bH8O9e/fo1KmTXnB9w4YN3Lt3j1deeYVdu3bh4+PD77//rl130lmwYAFpaWl06NChwOpvi6InfcaTHCgWHUUlQ0IUT+WcS7C8Y39SNWquly+vTHd2dsbDw4NHjx7Ref1Sni9flZ13rinP77t7A+7CksgY3iLnEg+bN29m1apVAPwO/Ho/lO/qP6+Mx5FXBw8e5MiRIxw5ckQpXda7d2/einfkVuxjBm9bRZI6jXbt2tGkSROD5m0ovUBiHoOWGYOzl3s25/J/QSXd3wADBw40dndFMWNIQCsgIIC46f+nXZ9NGIA3V71f2UfnjTmy1ItiZrwQwjQkyF0M6Q6OLeUqvEajYf78+YA2KKkbubVKCQ/+Db/J8QdhmYLcGo2Gny8eZ9nF49haWfNb5+wP8tVqNb/88gu7dmkD3C1btqRXr164PNnOipBTONvYaus9bzuh9zrdCYbu5CSrQJO9vT1TpkwBoEaNGkyePJmbN28C8NbudbB7Hcs69ONmbBQpKSmUKVOGihUr8vDhQwCeK+2tZG43b96ccWoP3n2uBaG9tIHTF198kcO/76Bf1dKsWLEC0GYgATTy9OGr35bTunVrbGye/pR1tb5BOxpu27ZtWXf9IuuuXwS02dsHDx7EwcGBI0eO0LlzZ+7fv0/JkiWJiYmhUaNGnDx5ku7du+Pi4oKTk5MSZE6fta5jZ2fHjBkzlNrO1tbW/PjjjzRs2JC1a9cq7X744Qfs7OyUx2+99RYLFizgQWK89mLDfxccli1bphfgzg8fHx829hyqPH6+fFXmnvyXy48juR4TRZUS7nrtr8c8Ytj2P0jy/hXQ3o69bt06xowZw9GjR5VBM0FbN3348OGcP3+esLAwFi1axOHDh5Va5BMmTDDKezAl3cG8ZGLknyluSTY0k0KyJ4QQpqZSqbBVZR6UsWfPnvzyyy8ASoC7V69e2v1w0Epux0Vz7EGYUk4tO7pycjVq1OBKSAinrl7mvn8TyjoZdk/fiRNPj+nu37+Pl6MLTZs2hZ1nqOhakkXtehMeH0uFYa8aHEA3FykVYH7pLzYYorgfb13+73xKFAzJstaSz0GI4qnwVA8XmVztatrMk7wy5Gp7YmIi69ev5+OD2xi07XdKlCiBlZUVW7ZsAaBbt25K204Vq6MCdoVd49q1a+zZs4dVq1aRnJbG6Yf3+PH8UVLUahJSU1h19azecuLj44mK0gaDT548ya5du1CpVIyo3Zg333wTa2trKri4sfj5PvzwfB/s7e0z9dXQAWUGDhzIjRs3GD16tN704MtnWH5RGxht1aqV3slU/dLeyt+NGzcGwFqV+WfZqVMnlnfsT1DH/jxXuiw13MvwebNOPP/883oB7ozatGlDz549AXCxtaNdu3asX7+eqlWrUq5cOfr06YOjoyP3J84iZMRHVKxYkc2bN9OrVy+qVatGXFwcDx48oEyZMqxbt44ffviBL7/8Ui+AW6tWLcqWLas3GEG9evWUNlZWVsydO5eWLVsSFBSkHOjXqFGDPn36ANC8bEVatmzJ999/r2R7m0JJe0eala0AwKYbmUugrLl6niR1mvL422+/pWnTprz88ssASoD7448/xsPDg5CQEJYsWUK7du04dOiQEuCuW7cunTp1Mtn7EEJGNs+brE6q5XMTwvg++OAD/n1xBG/VaYIK7THNCy+8QPPmzVnV5WU8PT1JVqfplYG7ExfN3LlzORCuTQ4IDw/n9u3bWFtbM3bsWKq5lQLg4qMIg/qSmJiotxwbGxs+b95RKa8CUNvDiw4VfAtNgFsUbgEBAebugigmcstGl0FNhRBFnWRyiwK1fv16Nm3alOVzdevWVW4pBaheshRdKvnx983LrF27VimT4VmzIUn/DSDkZGNLQmoK665dwOfcOaprNOzYsYPRo0eTlJTEsrZ92RWizWDu2rUrrztX4nK6E5raHtrlGav24uEBo6h894betC23tHMvUaIEHTt21HuuadkKlHF0ppa753+Z0KHZztuvZGkAfmjXF41Gk+cTszVr1rD1hTco7eBEs9Xf5dq+UaNGrFu3Do1Gw6FDh0hLSyMgIAAnJydSUlLYvHkzERER2NnZkZycTP369bOcz7Rp0yhbtiyNGjXKVNJD57fffmNrvzcp6+RaYNmnvavUZH/4TdaGnqdnlRqUiI8jPD6W33//nU2h2pPiwYMH06ZNG/r16wfASy+9xP/+9z8SEhJ48803mTp1Ko6Ojvzvf//jrbfeAqBUqVIMHz6cSpUq0blz52c6cU4fkLOEAZNMJciC7iQRxlcQdUSFEJbHxsqaYTUb0rdabe690FbZD6pUKho0aMDWrVv5888/8fX1paFGzbt7N3A3PpaPrM+zs+8bHDt2DICaNWvi7OxMDfcyXH4cyaWoB7Qrn7c7vJKTk1m1ahWpqamULVuWsWPH4u/vT7nftkudbSGEEMJIivK5qijcDA5yJyUlMWXKFIKCgoiKiqJevXrMmDEjU/BOrVazYsUKgoKCOHnyJNHR0bi7u1O/fn369evH0KFDs8yeFUWHWq1mz549RITfp6lXeTTAvn37ABhYvR5NvMrT9ce5/PXXX/z555/06NEj0zyG1Qzg75uX9epAB185g6ONLQAfNmrLkvNHuRn7mFmzZrGttDenIsOVtgtOH+DsgzuAthQKR65hak28ytOibEXKu7gR5lWC/fv3A/DJJ5/oZREBuNk5sKHHEDQaDVcMWIYhAVRbW1vKODrn3jCLZTRvnnWgyt7envfee4+/Fv+sZKBn1Wbs2LE5LsPBwcHgW5Bzo2RpZhNka1muMr5upbga/ZCXtgRT6eQeqtk6KrdXl3cuwbJly/Qy08uVK8exY8ewsrJSysGMHTuW7du3s2fPHlQqFSNHjqRGjRoSvBVCCFGsudk5cD/DcUqTJk3YunUrt2/f5t1336WNTxXuxscC8CQtlX13b7D7irYkmu64oqZ7GdZfv8ilqMg8LVetVjN//nwli7tDhw74+Pjg5+dHHNuN9faEEPlkaaUzhRDGJ+VihLkYHOQeNmwYf/zxB++99x7Vq1dn2bJldOvWjV27dtGyZUtAe5tg37592bp1Ky1atGDChAl4eXnx6NEj9uzZw6hRozh8+DA//fST0d+QsBwHDhxg6dKlAHg7uVLexY2YmBjc3Nx4p14zbKysqVGjBu1O3KJdpYZcrlw50zwqubpTybUkN2MfK9MSUlNISE0BoHnZCtRwL8NP54+x9fYVJcDt6+vL1atXOXz/NgB16tT5L0vc9EFue2sb5rXqDsDhljVol2xHdbdSDJkwIdvbwwrj7bJ16tThhY79uexq3CC1obKqhVzhld5cjs16sEorlYo3ajdi8oGtANy8H86d/z5/K1SMa9BSL8CtU7NmTb3HLi4u7Nq1iz179mBra8u1a6ZftyxNVqUg8lKbOqc69znJS03L9AN8SXaBEEJYhurVq/NT+xf4IfYOR44cYU/YdUB7sfvJkydMOqAtW+fu7k6LFi0AqOmhHevjYtQDpRxYdtLS0vjtt984d+4cdnZ2vP322zRs2NCE70iIZ1eYMiCDg4MLZDlB6QZWlfrdpmWJd9xd7dqEq1JGxeLl9PuU362wFAbV5D5y5AjBwcHMnDmT2bNnM2LECHbu3EmlSpWYOHGi0m7cuHFs3bqV+fPns3//fiZPnsxrr73G+PHjWb9+PRcvXpQDTxOxpBpbp06dUv4OT4jl6H8Z1a1atcLGKvOgRdkJ9K6k/N2kSRPsrbXXZpp4lcfF1p4KLm5Ma9qevn37AuDp6cnKlSuVgRDBuIPBGcLd3Z0elWvg715Gb3pR2AkU5vqCbX2q8l3b3lRyLQlAmkaDtbU1O194Q299y41KpaJt27aZyrGkrz0uCp6h9fSFEEKYXm0PL0aMGEHdunWxVlkxKaA1n376KQ7WT3Nu+vfvr9zpWbWEB3Y2tsQkJ3E7LlppExYXQ1hYGKAdg2Vt6HmmTJnCtm3bABg+fLicZwiDFMRxeVE49hdCiNwYq+67nE+LZ2VQJvcff/yBtbU1I0aMUKY5ODgwfPhwPvroI27f1mbNLlmyhC5dumRbqqB69epUr149H90WBS3jBia3mrppGjXnz58HYEHrHlx49IBzD+9D1fJ07doVdp/L9rUZtSxXmZWXTwPQq1cvpnnVZMP1S5nqM/bu3Zvm9xOx6dcJJycnhg0bxv6g3+k6+k28vb2zmrVFS5+RKoyvQZly9KpSk2/PaD/jypUr651oG0NespqFEAXv2ND34aUO5u6GEMWOnZ0dy5cv58G0b3Czc+By2bIs69CPDdcvEl+ripLFDWBnbU3T2nXYd/okKy+f5gW6EpOcxLB/VpO0YzVpAW34dOxPJCcnA+Dk5MSQIUOyLbVWFAUHB1OiRAlzd0MIIYRQBAQEcOLECaPOM308Ss6tRU4MiuicPHkSPz+/TAdTTZo0AbSZu+Hh4aSlpfHqq6/mq2NJSUkkJSUpj2NjtXX7UlNTSUlJyde8CyO1jbXe32locnw+Y1vdtPTPZfwcM843t89Z93z6eYK2JuLFmEfEx8fj5OREA++KNPapDGhvRUr/mpSUlEyvz/g+6nj5ULt2bUqVKkX58uUpef4eg+tq6zWq07VXqVQEVqzG1VKlUKvV1KlThz5tE7hasWK2n01Wy9PRfRbp+5qbrN5Lxter1eosv4+s+ld+QHfurNqU7bzz+lvI7T2obay52rUJl//beQwcODDLdulfn/59GNonvfnk8fNVq9X6jzMsO/36mH49zm79Aqhftjz8V+69evXqBn3X2cnqtTnNL6d10pDvV/c7z+o1x4a+D//f3v0HV1XeeRz/JDeBBAi/CQKGSVsMFlEilQaWCnVFBN2UOiKLSIWxjrbsWEdkRNhlFG3rrJn6Y0YdhsFl8Uo37bZqBwsisuJaCmFciUpxCFoRtFFIUUIgJOTH/qHn8txzz8+Qm3tv8n79oznnOc/5Pj/Puc89nCvpig2Pecbg1qaO21zSWqwbEfscZObnFKvVzl514RWjX10kg3meqM8YCsqvHE512Bn91853XDrMZfZt9nnea853u145/R1knHtdG6XEfuw5J3v0eafroFdc5nH28eEXe0IZPPLwis11f4B8nbaFaTv7NrM9vI6xlyNI/zPz9bvm2svhVQbfvtUJfcWel73t3JjXwaBxO6Xx6lcJxwQYH9Z/I5GICvr0jd3DjR48VP8y+MrYPaJ53N3zFujNd/Zq00fva+Tu3Wr6cJ9Onv1qUfuhPf+j5rZWjS4YqKn/NFvf+973VODwCjWv+y77+cL0eXt77Fpwl6TEa61n2/pcS8Okderzfum80gaNS5Ln55KE4wLOpR2d28LEbd8W9Hwd6StB7vGcxq7fXOMWm1cZvOb5jrRdkLnU6Ti3+wMzD6ftTud3m/McY/SZEzpy7fe8l/AZY/axFKY9XPcFuLcJ2v4dvWcyt7n19yDXmCDXMdd1CZ/x6NeGndEegessJ/hnWL+0HZ2vgqQ197l9PvObj92uV27zhKW0tFTV1dVxc0dPWxtsaWlJdQhpL6vd7yV3Buu9xtu3b4/bvn//fl1yySVas2aNDhw4oMcff1zV1dWaMGFCLE1zc7Pq6+vPnTgrS0OGDHE914MPPqjVq1cnbF+3bp2GDh0aNGR0sY8//lgHDx7UG2+8offee0+TJ0/W/fffn+qwAEfWF3KNjY2677774p4gAwAAqffzn/9cb731luv+NWvW6IILLujCiAAAALpeXV2dbr/9dh05ckQXXnhhqsNJS6Ge5G5sbIy9J8+Ul5cX228tZPfr1y8uzebNm2PvTJakvn37qqGhwfVcK1as0NKlS2N/f/rppxo3bpyuvvpqjRo1KkzYGa+yslJjtuyR9NWT0GO27NGF867XjpPH1L9/f9XX1yfst56GsdJ+8ts/JuwznzS0zmHla7HSmD86UldXp3379qmxsVGRSETlX0pFBQN16myzlr/8nM6cOSNJys7O1rRp01T4m9dix5pxSV897WI9ZWp/gsdKY+2zvrkzt5vM8plpzXztdWM/1mTVhRmrxe3JWGu7W75WbA2PrHXc59TOZtvZWef3e1I3yH6z3rye5N62bZvq6+sTyuHUtnZWPzLz94vNOs6KzWLWlZnnW4uWxvVjt/5i+bdbb9OOV15VSUmJCn/zmuP4MOM0+9P8+fMTfpDHbZtTmezlsMfqVSf22Myn/t36pX27GYPZNy1mm9rHp1taO3s/trZZ8Zh11b9/fxUXF+vdd99NaF8zPzuzD5rn8+tTUseeuA7yI0xB83VqG2ubVzm8jnPrw2HY68etn5v1bp3bvs0+z3u1rdv1ytpvchvnQeb8tpyI6m68SsXFxTr97+tcYzP/tvd583xBr1d+ZbbvM/N32m/v827nMLe7zaX2c9nzdaoXU9C2c6pb+7Xb7RxmHl7XIPs2e3u4xWCWw16XbmWyt7/Vt4b+/nX99ZrvJMTu1h5+bWyvHy/m/VzQuJ3S2NvfFOaa4FQOK22QOeGR4ol6vlF66ZODOnHiRFya0aNH67I39umD2X1c68PtvsspTr/xaB7nN5a8trtdd51is6e1x2Z+FnAb505l8Uvr1Ced8pGU8PnBq579+oq1zas9nOILM++6nTfo+bzmXaf2dmpn+z2Qma85dp3GrN//29vDXganed5pXrT6lsU+dt3qxqxLe4zmsfPnz0+4P7DPx051Yc/HXm/2+Ozl8vos5pbWnsat3E7XQL8xZh9LTu3hdH6/ce6Uh9d13q2O3eYgp2uq17XN6bOVdc00+5lXWeznddrn9bcVm9f9g3mOIPVj5uvWzk7HO50/yL2tW9ogc6k9L6fjvK6D9jKY85h93Ljd27ildYrHzuk+Mejn5e7C+k0SuAu1yJ2fnx/3ChGLtaiZn58f+2eC9gXsqVOnatu2bZKkiooK7dy50/NcvXv3jltQtya+nJwc5ebmhgm7W8huaY37/4iyPPfb01rbzH25ublx7zZyytde12+++aaeffbZuH9W8l9Z2fpG/0H61oDBsb5QXnyx/uHORRo1apSyP0p8r3R2S6tqyqfog8pKlRgxuZVJ+mrR3Gm70zFuad3qyelvqy6s7WZdmNuq5i05tz1gOZzawyk+t7azWG1Y4hCjU75++616CzLG3Mrhdy77viDprfOZvwZurw/reHs/9uovkrR41hxdfbxNNb16JYyPuPO71L8U/94xp3J4lc2rTwad6+x9xTzO7B9v33K3yn77jGsMZpu6xRjbZqT1+oV2e2xmfk7l8xvnftvN8wWpv7DXk6p5S6QAv0gfpu3s6a1tXuXwOi5sDF7c8jDHm/3c9m25ubme/dzc7jXnuc3Rfnl6pbH3ec852WV8OB4X4Hpl7bePj8CxO/T5MLG57g+Qr9O2MG1n32a/BrkdYy9HkP5n5hvkniBomYO2j28+Hn3FXhZ727kxr4Nh4za3e/WrhGMCjA+3a43fnFCQFdFPx03S9HuXqHHDSxrVr78WvvGSGhoadMUVV3S4r7idL8x10C+N67E+192OpHXq80HicUsbNC5Jnp9LEo4LOJd2dG4LE7d9W9DzdaSvBLlGO41dt7Hi9f/29rCn85rnO9J2QeZSp+Pc7g/MPJy2O53fbc5zjNFnTujItd/zXsJnjNnHUpj2cN0X4N4maPsHnbv9rrtBPlv5lSXhPF//v/VZLND9h8/9g/n/ndEegeusJfhnWL+0HZ2vgqQ19719y92xz0V+7e8aX8h7P2s9wErb09YGc3I69zfEuqNgd8tfGzFihGpraxO2W9tGjhypiy++WJK0b1/8DwsOGzZMM2bM0IwZMzLyRwB7KvNXbffu3at169apra1N3/zmN7Vq1SrNnDlTre1t+uDE37X18EFJ0s9+9jP966SrAj1xP3HixKTG31WKFsxJdQiS0utXiKvmLYn7AgDoybpqbHp94ZCuSviBXQAB5OTk6DuFo3RBnwLNmTNH4wYXavr06akOCwCAlOE+GogXapG7tLRUNTU1Cf+cpKqqKrZ/9uzZikQi2rhxY+dFiaQKMjG2tLRo48aNam9v1/Tp0/XAAw/ooYce0tatW/XS9QtVXDAolvb6669PZrgpw4Jtx3RFvZVs2pU27dPZC5nd+cuC7louAEByXXvttfqPq2/UoEGD/BMDaYh7IAAAOl+oRe65c+eqtbVVa9eeey9VU1OT1q9fr7KyMhUVFWn06NG67bbbtGXLFj311FOO+YT4rUuch7a2Nt+69tpfsmmXWltb9eqrr+pXv/qVjh49qgEDBmjhwoXKyjr3z2Mu6FOgX0y5RgN65WnSpEnd9p3pNeVTzmsBMxVPWDotkKbT096mzljMTcYHhkxdZM7UuJEoXccsAAAAAADpItQLXcrKynTTTTdpxYoVOnr0qMaMGaMNGzbo0KFDevbZZ2PpnnjiCX300Ue66667VFlZqfLychUWFqqurk47d+7Upk2bNHbs2E4vDM45fPiwHnnkEbU3NWvW0QNaOqxEhw8f1hhjUfuWsaX6w6cf6I6LSlXzm8O6riGiIknHjh3T3r17VXBK+uUvf6mDBw/Gjrnhhhscf3z0WwOG6I/lt+rDH0ztiuIhhKIFc3Tk139IdRhAj1GyaZeqvv4XMk7vQO9JasqnqCYaVUmqAwEAAAAAdGuh31r+3HPPadWqVYpGo/riiy902WWX6eWXX9a0adNiafr06aNXXnkl9vTZo48+qvr6eg0cOFATJkzQM888o0WLFnVqQXBOY8tZPf300zp16pQk6YX/fV3vDHhHH/7+uC4fNlL/fEWxPvnkE/265h1J0uPVO6Vq6fWcXA3+/mQ9/OSj+vLLL1WZla2W9jbl5+dr1qxZGj58uCZPnux63pzsSNwT3kgua/EoU/TkJ1Gj0ah+9KMfpTqMWJ9Jh1i6O+vLpap5S1Ky0G0ttKfDIvvEiRPVwPsCAQAAAABJFHqROy8vTxUVFaqoqPBMF4lEtHjxYi1evLijsaGD1uyrUm1trQYNGqTvDxqhF/+6Xx+eOC5J2nvsb9p7//2xtMXFxTp06JAk6XTLWd28emVsX0t7m3r16qUVK1aouLg44TzpsnCXbmrKp/ADED6s12ikwwJcV7EW+Rkz6In9HwAAwGL+qzd0f+n08AWA7i30IjfSV2PLWe3evVv/fXCfJOn222/XjAN1evVvH+nUmUZNmjRJ+Z8e05u1Hys7O1v/OPIbmr9qhUo2V6lqSolWr1ipk2ebNXbsWN14441699cv6NKbb3Bc4Lbwzl+EFfQLgFQvBFqL0iVy/+Kiat4SKeS71nvyE+2pkOp+5CUa8jUe1heL5zPvmv3P6QuXWN5f9/nYB9AU/KYAAAAAuo/Y5yu+4ACQJCxydxOfnT6pn7z+B312+qQkafLkybr00ks14NAuPb30fr3+wku68s47NX7r/+mt6ZcoJydHpdvfUU1urnKzIyosLNRvZy/Q8DnXaF9uqyTpB5OuUs23v53KYqUlFvZxPiZOnKi333471WEkVcmmXSn5odVUS1W5w85JYfqg2zv9O/IFDwAAgIV//QoA6GzZqQ4A3tatW6fdu3frTMtZSdKXX36pM60tkqT29nb95S9/0ebNm/WT11/SZ6dPasCAAbq+eGzcE3rXTCrTTy+drF69ekmS+vfvrz59+iSca1DvfA0fPKQLStU99cRFvXRC/aMnK1owJ2l5M7YAAADQGfhiA0Ay8SR3Gjt79qxWrlypY8eOKZrbSzeOGa/oC2s1buBQvbzgh1q/fr127NgRSz+iT4GWr16tyTsPqKagIHWB9xDWj/iFed1AOkr2k+lBfiCTJzm8hf3ByLCvwejJevK70t1+V4FFbQAAAABApuFJ7jTW1NSkO++8U0OHDtXJs836z/ffVmtrq977++cqu+NW7dixQ1lZWSotLdWyy6/U8zPnafDgwakOG2kiyLufwyxwR6NRVVZWnk9Ioc6V7liU7x4mTpyY6hDOC69PAgAAANDd8HkbHcEidxrr16+fHn74YT366KOaPvIbkqRBgwZJkj47/ndJ0ty5c7V06VLNHTNefXN7pSzWnoqJt3PVlE/JiAXurpDMuujpdZzJ5c/k2AEAAAAASBYWuTNATk6OfjFlptZc9UNVVFRo7pjxml46UTfffLPmz5+f6vCQQcIukFXNW9KhJ0V53UHncHvKuKPtAndeY4P6BgAAAAAgvfFO7gyRk52t0qEjVNOrl5ZdfqWKFszR9pNHFYlEUh0aMgQLz90Ti6/uOrtuqGsAAAAAANITT3ID3UzJpl3d5pUGvL4knr0uWHQNprP6UdGCOR06zmwntzbjaXEAAAAAADqORW6gh+rIgtqYLXuSEEn315XvbueJfXfRaJQvTQAAAAAA6IZY5AYQp2TTLp4o7QFoY2895clqc9GfLwAAAAAAAJmKd3IDcNQTFvgAO3u/j0ajKklRLJ2NRWwAAAAAQHfFIjcAoMcr2bRLVV34WhkAAAAAANB5eF0JkMG66l3PqXwCtCvfZw0AABAW9yoAAACpxyI3gJThlSjh8L707q2mfEpSvlCKRqOe/YbXmAAAAAAAMh2L3ABSpmjBnFSHAAAAAAAAgAzHIjcAAA5qyqekOoTzxpP/AAAAAICegEVuAAB6MF6DAwAAAADIdCxyAwAAAAAAAAAyFovcAAAAAAAAAICMxSI3AAAAAAAAACBjscgNAAAAAAAAAMhYLHIDAAAAAAAAADIWi9wAAAAAAAAAgIzFIjcAAAAAAAAAIGOxyA0AAAAAAAAAyFgscgMAAAAAAAAAMhaL3AAAAAAAAACAjMUiNwAAAAAAAAAgY7HIDQAAAAAAAADIWCxyAwAAAAAAAAAyFovcAAAAAAAAAICMxSI3AAAAAAAAACBjscgNAAAAAAAAAMhYLHIDAAAAAAAAADIWi9wAAAAAAAAAgIzFIjcAAAAAAAAAIGOFXuRuamrS8uXLNXLkSOXn56usrEzbtm1LSNfW1qbnnntO11xzjYYOHarc3FwVFhZq5syZWrt2rZqamjqlAAAAAAAAAACAniv0IvfixYv12GOP6ZZbbtGTTz6pSCSi6667Tn/6059iaRobG3Xddddp0aJFOn36tJYtW6a1a9dq+fLlysvL05IlS7RkyZJOLQgAAAAAAAAAoOfJCZN4z549qqysVEVFhZYtWyZJuvXWWzV+/Hjdd999+vOf/yxJuueee7R161Y98cQTuvvuu+PyuPfee3Xw4EHHp78BAAAAAAAAAAgj1CL37373O0UiEd1xxx2xbXl5efrxj3+slStX6siRI5KkdevWadasWQkL3JaLLrpIF1100XmEDQAAAAAAAABAyEXuvXv3qqSkRP3794/b/t3vfleSVF1drdraWrW2tmrhwoXnFVhTU1Pce7tPnDghSTpy5IhaWlrOK+9Mc/z4cX3W3Bj3/1l1R3X81HE1NzeroaEhYf/x48clKZbW2mbfZ24z8zX3e7HOa8ZaW1urU7bzmPvNvK205j6nvK20Zl241ZM9rZmvvfxOdWyx6uIzW3z2urandWov83izftxiMNvDnqdTeYO2v1v9mnV8yqF+Y/k1ndbxujo1NDQklMOpX5nHOp3XrW/a8/HqV071YO/HXrxi8CqP+bfV39yY+drTOvUVM1+3seRVDrd8vcaCU/vb95v8xq5XH3SaEySpublZ+fn5gfuPmYd9HnM7h53XvGKP120s2cvtFYPXvBP0fE6x+tVxmD5obztrLLmV1W0OcpvnncaS25znFKdZZqdxHmTOb2vN1vG6OuXn56vRJzbrb6/5Mej1yqkt/do5yNxk9jevfCT39refK2g/tgRtO6853IzNa76zz49e9zZmmYNez/3mTLdjpXN9q63ptONc4dYefm0c5FpjHme/L/GL2ymNvf1NXtcEp/zCzAn2crhdz7yu3U6x+Y3JjtwzufXXIP3fa17xSmuPzfws4DbOncril9avXu33c+a1wqs+/PqKtc2rPZziCzPvup036Pm85l2n9va7vzaPDfqZwuv/w1y7ve4frb5lcbv3czrebeyaf3uNaSsPp7qw15+93tzq1tru9VnMLa09jVu5neYkvzFmH0tu9y728/uNc6c8vK7zbnXsNge53c+ZsXn1Y+ncNdPsZ15lsZ/Xfn10Sut2vXK7fzDPEaR+zHz9rvtubWGlC3Jva0/rNQ+5tbNb/fhdB/3GofW3172NW1q3eJyuH2Ychw4dSsi/O6utrZX01W8gwllWe3t7e9DE48eP1/Dhw7V9+/a47fv379cll1yiNWvW6MCBA3r88cdVXV2tCRMmxNI0Nzervr7+3ImzsjRkyBDXcz344INavXp1mLIAAAAAAAAAQLe0Z88eTZo0KdVhpKVQT3I3Njaqd+/eCdvz8vJi+62F7H79+sWl2bx5s2644YbY33379vX8xm7FihVaunRp7O+Wlha9//77KioqUnZ26N/L7JZOnjypcePGaf/+/SooKEh1OOgB6HNIFvoWuhL9DclC30JXor8hWehb6Ar0MyCctrY2ff7557r88stTHUraCrXInZ+fH/cKEcuZM2di+63Jyb6APXXq1NiPTVZUVGjnzp2e5+rdu3fCgvrUqVPDhNvtWV8ojBo1KuEVMkAy0OeQLPQtdCX6G5KFvoWuRH9DstC30BXoZ0B4o0ePTnUIaS3UI9EjRoyIvQPGZG0bOXKkLr74YknSvn374tIMGzZMM2bM0IwZMzRixIiOxgsAAAAAAAAAQEyoRe7S0lLV1NTEvVtbkqqqqmL7Z8+erUgkoo0bN3ZelAAAAAAAAAAAOAi1yD137ly1trZq7dq1sW1NTU1av369ysrKVFRUpNGjR+u2227Tli1b9NRTTznmE+K3LuGhd+/eeuCBBxzfkw4kA30OyULfQleivyFZ6FvoSvQ3JAt9C12Bfgags2W1h1xxnjdvnl588UXdc889GjNmjDZs2KA9e/Zo+/btmjZtmiTp9OnTmjNnjl577TVNnTpV5eXlKiwsVF1dnXbu3KlNmzZp7Nix2r9/f1IKBQAAAAAAAADoGUIvcp85c0arVq3S888/ry+++EKXXXaZHn74YV177bVx6VpbWxWNRhWNRlVdXa36+noNHDhQEyZM0E033aRFixYpLy+vUwsDAAAAAAAAAOhZQi9yAwAAAAAAAACQLkK9kxsAAAAAAAAAgHTCIjcAAAAAAAAAIGOxyA0AAAAAAAAAyFgscgMAAAAAAAAAMhaL3AAAAAAAAACAjMUiNwAAAAAAAAAgY7HIDQAAAAAAAADIWCxyAwAAAAAAAAAyFovcAAAAAAAAAICMxSI3AAAAAAAAACBjscgNAAAAAAAAAMhYLHIDAAAAAAAAADLW/wP7rO1dwmgxbgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[[
]]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%matplotlib inline\n", + "cerebro = bt.Cerebro()\n", + "#cerebro.broker.setcash(10000.0)\n", + "\n", + "\n", + "cerebro.adddata(bt.feeds.PandasData(dataname = df))\n", + "cerebro.run()\n", + "\n", + "plt.rcParams['figure.figsize'] = [15, 12]\n", + "plt.rcParams.update({'font.size': 12}) \n", + "cerebro.plot(iplot = False)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABZgAAAR0CAYAAAD8XHOJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADts0lEQVR4nOzdeZjNdf/H8dcsZ/adwQxDSnYastwkO1nTgrKTLOlOKtndVLZMuLWISsiSbCFNtyV7ZCljuZOohsEwjNnNcmbm/P7wm3M7ZoaZY84Z5fm4rnPpfPbv97znmOvt0+frYDKZTAIAAAAAAAAAoJAci3sBAAAAAAAAAIC/JhLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVnAvSKDs7WxcvXpS3t7ccHBxsvSYAAAAAAAAAKHYmk0lJSUkKDg6WoyN7dfNSoATzxYsXFRISYuu1AAAAAAAAAMA9JyoqSuXKlSvuZdyTCpRg9vb2lnTjRvr4+Nh0QX8VRqNRW7ZsUdu2bWUwGIp7OfibI95gS8QX7Il4g60QW7An4g22QmzBHogzoHASExMVEhJizo8itwIlmHOOxfDx8SHB/P+MRqM8PDzk4+PDFzJsjniDLRFfsCfiDbZCbMGeiDfYCrEFeyDOAOsU5tjg5ORkhYWF6cCBAzp48KDi4uK0aNEi9e/fP1fbkydP6rXXXtPevXvl4uKijh07avbs2QoMDDS3iYyMVMWKFfOc68svv9Tzzz9f6DGlG8civ/fee/r4448VHR2typUra+zYserRo0eBr1UqYIIZAAAAAAAAAHBnV69e1dtvv63y5cvrkUce0c6dO/Nsd/78eTVt2lS+vr6aNm2akpOT9d577+n48eM6ePCgXFxcLNr36NFDHTp0sChr1KiR1WOOHz9eM2bM0KBBg1S/fn1t2LBBPXv2lIODQ66k9e2QYAYAAAAAAACAIhIUFKTo6GiVKVNGhw8fVv369fNsN23aNKWkpOinn35S+fLlJUkNGjRQmzZttHjxYg0ePNiifd26ddW7d+/bzl3QMS9cuKBZs2bp5Zdf1ocffihJevHFF9WsWTO9+eab6tatm5ycnAp0vTz6EAAAAAAAAACKiKurq8qUKXPHdmvXrlWnTp3MiWBJat26tSpXrqxVq1bl2SclJUUZGRl3PeaGDRtkNBo1bNgwc5mDg4NeeuklnT9/Xvv377/j+nMUagez0WiU0WgsTJe/rZz7wP2APRBvsCXiC/ZEvMFWiC3YE/EGWyG2YA/EGVA4OT8riYmJFuWurq5ydXW1etwLFy4oJiZG9erVy1XXoEEDhYeH5yp/66239Oabb8rBwUGPPvqopk6dqrZt21o15pEjR+Tp6alq1arlapdT36RJkwJdS6ESzFu2bJGHh0dhuvztbd26tbiXgPsI8QZbIr5gT8QbbIXYgj0Rb7AVYgv2QJwBBXP9+nVJUkhIiEX5pEmTNHnyZKvHjY6OlnTjOI1bBQUF6dq1a0pPT5erq6scHR3Vtm1bPf300ypbtqz++OMPzZ49W+3bt9fGjRvVsWPHQo8ZHR2t0qVL53p4YU7fixcvFvhaCpVgbtu2rXx8fArT5W/LaDRq69atatOmDU9dhc0Rb7Al4gv2RLzBVogt2BPxBlshtmAPxBlQODk7l6Oioizyoneze1mSUlNT8x3Hzc3N3MbV1VXly5fX5s2bLdr06dNH1atX1xtvvGFOMBdmzJw/b9euoAqVYDYYDHz53IJ7Ansi3mBLxBfsiXiDrRBbsCfiDbZCbMEeiDOgYHJ+Tnx8fIp04627u7skKT09PVddWlqaRZu8BAQEaMCAAZoxY4bOnz+vcuXKFWpMd3d3q+e+FQ/5AwAAAAAAAAA7yjmKIudYi5tFR0crICDgjrukc47tuHbtWqHHDAoK0qVLl2QymXK1k6Tg4OACXwsJZgAAAAAAAACwo7JlyyowMFCHDx/OVXfw4EGFhobecYw//vhDkhQYGFjoMUNDQ3X9+nWdPHnSot2BAwfM9QVFgtlKrVu31saNG206x9ChQzVv3jybzlEYU6dO1fjx44t7GQAAAAAAAMBf3rPPPqtNmzYpKirKXPb999/rt99+U7du3cxlV65cydX3woUL+vzzz1W7dm2Lh/oVdMwuXbrIYDBY5B5NJpPmz5+vsmXLqnHjxgW+jkKdwfxX1bx5c+3fv18Gg0EODg4qX768Jk+ebHFT7zVnzpzRt99+q/fff1+SFBkZqYoVK6pevXo6ePCg+QmP//73v7V+/Xrt3LnT5mt69dVX9dBDD+mVV15RmTJlbD4fAAAAAAAA8Ff04YcfKj4+XhcvXpQkffPNNzp//rwk6ZVXXpGvr6/GjRun1atXq0WLFnr11VeVnJyssLAw1apVSwMGDDCPNWrUKP3+++9q1aqVgoODFRkZqQULFiglJUVz5861mLegY5YrV04jRoxQWFiYjEaj6tevr/Xr12vPnj1avny5nJycCnyt90WCWZLeffddjRgxQiaTSeHh4Xr66afVoEEDVahQIVdbo9Fot4Pu85tr/vz5eu655+Ti4mJR/ueff2rNmjXFkhz38vJS+/bttXDhQnYyAwAAAAAAAPl47733dPbsWfP7devWad26dZKk3r17y9fXVyEhIdq1a5def/11jRkzRi4uLurYsaNmzZplcf5y27ZtNX/+fH300UeKi4uTn5+fmjZtqgkTJqhu3boW8xZ0TEmaMWOG/P39tWDBAi1evFgPP/ywli1bpp49exbqWu+7IzIcHBzUsWNH+fn56dSpU5KknTt3ys/PTx9//LHKly9v3gK+bNkyVatWTX5+fmrSpIl+/vnnPMdMTk7WE088oV69esloNComJka9evVSUFCQgoODNWLECPNTGfOb61YbN25Uy5Ytc5WPGzdOEyZMUGZmZp79Ll++rO7duyswMFDly5fX+PHjzW1z5v7ss88UEhKiEiVKaNSoURb9t23bpgYNGsjPz081atTIdQxIq1atbH40CAAAAAAAAPBXFhkZKZPJlOfrgQceMLerUaOGNm/erJSUFMXFxWnZsmUqXbq0xVg9evTQrl27FBMTI6PRqCtXrmjdunW5ksuFGVOSHB0dNXbsWEVGRio9PV0nTpxQr169Cn2t912COTs7Wxs2bFBqaqrFYdVJSUk6evSofv31V+3atUu7d+/WSy+9pAULFujKlSvq2rWr2rVrp4SEBIvxrly5ohYtWqhGjRpatmyZnJ2d9eSTT6pMmTL6/fffdfz4cR09elRTpkzJd65bXb9+XadPn1bVqlVz1fXr10/Ozs5auHBhntfXs2dPGQwG/fnnn9qzZ4/Wr1+vmTNnWsz9yy+/6PTp09q7d68++ugj8/Eax44dU7du3TRjxgxdu3ZNCxYsUJ8+fcyJeEmqXr26IiIiCnKrAQAAAAAAAPzN3TcJ5rFjx8rPz0+enp565plnNGHCBJUqVcpcn52drRkzZsjDw0MeHh5aunSpevfuraZNm8pgMGjEiBHy9/fXt99+a+5z+fJlNWvWTN26ddPs2bPl4OCgw4cP6/Tp0woLC5OHh4dKlCihcePGacWKFfnOdau4uDhJko+PT646JycnTZs2TW+99ZauX79uUXfhwgVt375ds2fPlpeXlypUqKDx48dr8eLF5jYmk0lTpkyRm5ubqlWrpsaNG+unn36SJC1YsED9+/dXy5Yt5ejoqCZNmqhTp05atWqVub+Pj48yMjJyzQ0AAAAAAADg/nPfJJinT5+u+Ph4paam6tSpU1qyZIkWLFhgrvf29pafn5/5/fnz5y22q0tSxYoVzYdxS9IPP/wgR0dHvfTSS+ayyMhIxcfHKyAgQH5+fvLz81PXrl11+fLlfOe6lb+/vyQpMTExz/ouXbqoYsWKuQ7xPn/+vNzc3Cy2vD/44IMWa/bx8bFIant6eiopKcm89vnz55vX7efnpw0bNpgPI89Zk4uLS56JcQAAAAAAAAD3l/smwXyzSpUqqUOHDtq0aZO5zNHR8laUK1dOkZGRFmWRkZEqV66c+f3TTz+tf/zjH3riiSfMyeCQkBCVKlVK8fHx5ldCQoKSk5PznetWHh4eevjhh/Xrr7/m2+bdd9/VzJkzde3aNYs1p6WlWSSzb13z7YSEhOjVV1+1WHtycrI+/vhjc5tffvnF4mgRAAAAAAAAAPev+zLBHBkZqfDwcNWqVSvfNr1799by5cv1ww8/KDMzUx988IFiY2PVoUMHcxsHBwd98sknql69utq2bauEhATVr19fISEhmjBhgpKSkmQymXT27Fl99913hVpj586dtWPHjnzrmzRpoiZNmmjevHnmsrJly6pFixYaOXKkUlJSdO7cOU2dOlX9+vUr0JxDhgzRokWLtGPHDmVlZSk9PV379+/XyZMnzW22b9+uTp06FepaAAAAAAAAAPw93TcJ5tGjR8vLy0teXl5q0qSJWrdurX/961/5tm/WrJk++OADDRw4UCVKlNDKlSv13Xff5TrawtHRUZ9++qlCQ0PVunVrJSYmatOmTbpw4YKqVasmX19fdezYUWfOnCnUeocMGaKVK1fKaDTm22b69Onm85pzrFixQqmpqapQoYIee+wxdezYUaNGjSrQnHXq1NGXX36pCRMmKDAwUGXLltXEiROVnp4uSUpJSVF4eLhefPHFQl0LAAAAAAAAgL8n5+JegD3s3LnztvXNmzdXfHx8rvJ+/frlu/t327ZtCg8Pl3RjJ/P8+fMt6hctWlSouW5VuXJldejQQZ999pleeuklPfDAAzKZTBZtatasqaysLIuyMmXKaM2aNQWee/369RbvW7ZsqZYtW+bZf+7cuXrxxRcVFBR0x/UDAAAAAAAA+Pu7LxLMf1U3P4TwXjBu3LjiXgIAAAAAAACAe0iRJphNJpNM19OKcsjbcvBwk4ODg93mAwAAAAAAAAD8T9EmmK+n6c8H2hblkLdVMXKLHDzd7TYfAAAAAAAAAOB/7puH/AEAAAAAAAAAilaR7mB28HBTxcgtRTnkHecrLgMHDlRcXJw6dOhQbGsAAAAAAAAAgOJUpDuYHRwc5OjpbrfXX+n85VWrVqlx48by8PBQaGhornqj0ah//vOf8vf3V0BAgF555RVlZmbarb6o1wMAAAAAAADg748jMuwkICBAI0aM0Pjx4/OsnzJlivbu3atffvlF//3vf7Vnzx5NmzbNbvVFvR4AAAAAAAAAf3/3RYI5MTFR//znP1WhQgX5+Piofv36ioqKkiTNnj1bDz/8sLy9vfXQQw/pww8/NPdLT0/XCy+8oJIlS8rX11c1a9bUoUOHLOp79eolb29vValSRTt37sx3Da1bt1b37t1VtmzZPOs///xzTZgwQUFBQQoKCtL48eO1cOFCu9UX9XoAAAAAAAAA/P0V6RnM96r+/fvr+vXr2r9/v8qUKaOjR4/K3d1dklShQgVt375d5cqV086dO9WhQwfVqVNHjz32mJYsWaKjR4/qzJkz8vX11enTp839JGnv3r3auHGjvvzyS02fPl39+/dXZGRkodcXFxen8+fPWxydERoaqnPnzikhIUHZ2dk2rff19S3S9dw6HgAAAAAAAIC/p7/9DubLly/r66+/1ieffKLg4GA5OjqqTp06KlmypCTp2WefVUhIiBwcHNSiRQs98cQT5p3IBoNBSUlJOnnypEwmkypXrqyQkBDz2I8++qiaNWsmJycnDRgwQGfPnlVsbGyh15icnCxJ8vPzM5fl/HdSUpLN64t6PQAAAAAAAADuD3/7BPPZs2fl6uqq8uXL51m/fPly1a1bVwEBAfLz81N4eLiuXr0qSerTp4/69++voUOHqmTJkurfv7+5TrJMsHp6ekqyLsHq5eUlSUpISDCX5fy3t7e3zeuLej0AAAAAAAAA7g9/+wRzhQoVlJ6ebj5z+Wbnzp1Tv379NHPmTMXExCg+Pl4dOnSQyWSSJDk7O2vcuHE6evSoTp48qXPnzumtt94q8jX6+/urXLlyioiIMJdFREQoJCREvr6+Nq8v6vUAAAAAAAAAuD/87RPMpUuXVpcuXTR06FBFR0crOztbR44cUWxsrJKTk2UymVSqVCk5OjoqPDxcW7ZsMffdvn27IiIilJmZKU9PT7m5ucnZ2bpjq7OyspSWliaj0SiTyaS0tDSlp6eb6wcMGKCpU6fq0qVLunTpkqZNm6YXX3zRbvW3KurxAAAAAAAAAPz93BcP+VuyZIlGjx6tevXqKSkpSdWqVdPatWtVvXp1jR8/Xi1btlRWVpaefPJJPfnkk+Z+ly9f1ssvv6yoqCi5u7urdevWmjRpklVrWLp0qQYMGGB+7+7urgoVKpgfCjhx4kTFxsaqWrVqkqTevXtr3Lhx5va2rh86dKgkaf78+UUyHgAAAAAAAIC/PwdTznkQt5GYmChfX18lJCTIx8fHHuu65xmNRoWHh6tDhw4yGAzFvRz8zRFvsCXiC/ZEvMFWiC3YE/EGWyG2YA/EGVA45EXv7G9/RAYAAAAAAAAAwDZIMAMAAAAAAAAArEKCGQAAAAAAAABgFRLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCgnmO2jevLn+/e9/F/cyAAAAAAAAAPwFJCcna9KkSWrXrp0CAgLk4OCgxYsX59n25MmTateunby8vBQQEKA+ffroypUrFm1+/fVXjRo1SqGhofL29lZQUJA6duyow4cP5znmhQsX1L17d/n5+cnHx0ddunTRH3/8kWfbhQsXqlq1anJzc9PDDz+sDz74oNDXS4K5GO3YsUMtWrSQr6+v/Pz88mzz1ltvqXTp0vLx8VGvXr2UnJxs1/qiXg8AAAAAAADwd3b16lW9/fbbOnnypB555JF8250/f15NmzbVmTNnNG3aNI0cOVLffvut2rRpo4yMDHO7zz77TJ9++qnq1aunWbNm6fXXX9epU6f0j3/8Q9u2bbMYMzk5WS1atNCuXbs0btw4vfXWWzpy5IiaNWum2NhYi7YLFizQiy++qBo1auiDDz5Qo0aNNHz4cL377ruFul4SzMXI09NTL7zwgmbPnp1n/aJFi7Rw4ULt2bNH586dU2xsrIYPH263+qJeDwAAAAAAAPB3FxQUpOjoaJ09e1ZhYWH5tps2bZpSUlK0fft2DR8+XOPGjdOqVat09OhRix3PPXr0UFRUlD777DMNHjxYb775pg4cOKCAgABNnjzZYsx58+bp9OnT2rRpk0aNGqXXXntNW7ZsUXR0tGbNmmVul5qaqvHjx6tjx45as2aNBg0apC+++EK9evXSO++8o7i4uAJfb5EmmE0mKSXFfi+T6c5rmjNnjlq2bGlR9tVXX6lq1aqSpCNHjqhJkyYKCAhQYGCgevTokSubn2Px4sUKDQ21KKtXr57FB75t2zY1aNBAfn5+qlGjhjZu3Jjv2ho0aKA+ffrooYceyrP+888/1/Dhw1W5cmX5+fnpnXfe0ZdffqnU1FS71Bf1egAAAAAAAIC/O1dXV5UpU+aO7dauXatOnTqpfPny5rLWrVurcuXKWrVqlbns0UcflZeXl0XfEiVK6PHHH9fJkyctytesWaP69eurfv365rKqVauqVatWFmPu2LFDsbGxGjZsmEX/l19+WSkpKfr2228LdrGSnAvcUpLRaJTRaMy3PiVF8vc3FGbIuxIXZ5Sn5+3bdOvWTaNHj9Yff/yhkJAQSdIXX3yhnj17ymg0KisrS1OmTFGDBg107do19ejRQ6NGjdL8+fMlSSaTSVlZWea2JpPJ4j7cXH/s2DF169ZNX331lZo1a6b9+/erS5cu+uGHH1SlSpV815iZmSlJue7tsWPHNH78eHN5jRo1lJaWpv/+97965JFHbF5/q6IeDwWXc09v9/MHWIv4gj0Rb7AVYgv2RLzBVogt2ANxBhROzs9KYmKiRbmrq6tcXV2tHvfChQuKiYlRvXr1ctU1aNBA4eHhdxzj0qVLKlmypPl9dna2jh07phdeeCHPMbds2aKkpCR5e3vryJEjkpRr/kcffVSOjo46cuSIevfuXaBrKVSCecuWLfLw8Mi3Pi3NSVKnwgx5VzZv3iw3t6w7tqtVq5YmT56sZ599VvHx8dqyZYuefvppiw9q69atkqQmTZpoyZIl5rrY2Fj98ssvCg8P19GjR5WYmGjRLykpSUePHlV4eLgWLFigxx9/XKmpqfrPf/4jSQoNDdW0adP03HPP5bu+48ePy2g05gqc5ORk/fe//1V6erq5zNXVVVu3btWFCxdsXn+roh4PhZcTp4AtEF+wJ+INtkJswZ6IN9gKsQV7IM6Agrl+/bokmTeu5pg0aVKu4ykKIzo6WtKN4zRuFRQUpGvXrik9PT3fJPaePXu0f/9+TZgwwVyW0ye/MSXp4sWLqlKliqKjo+Xk5KRSpUpZtHNxcVGJEiV08eLFAl9LoRLMbdu2lY+PT771JtONXcX24uHxhBwc7twuKSlJ06ZN08KFC/XBBx/oscceU79+/SRJZ86c0ahRo/TTTz8pOTlZ2dnZMhgM6tChgyRp9uzZql69ujp06KCrV69q165d6tChg4xGo7Zu3Spvb2898sgj6tChgxYsWKCtW7dq9+7d5rkzMzNVtWpV83h58fT0tJgzh5eXl2rWrGk+4iMzM1Pp6elq06aNHnnkEZvX36qox0PB5cRbmzZtZDDY7/8SwP2B+II9EW+wFWIL9kS8wVaILdgDcQYUTs7O5aioKIu86N3sXpZkPlI2r3Hc3NzMbfKqj4mJUc+ePVWxYkWNGjWq0GPm/Oni4pLn2tzc3Ap15G2hEswGg+GOXz75rKtYPfvss3r55Zd17NgxrVixQsOGDTNfxyuvvKLKlStr6dKl8vPz0/r169W/f39zvYODg5ycnGQwGOTr66vU1FSLexATE2OuL1++vF599VXNmDGjUOtzdr7xMdx6b2vXrq0TJ07oiSeekCQdPXpUrq6uqlGjhgwGg83rb1XU46HwCvIzCFiL+II9EW+wFWIL9kS8wVaILdgDcQYUTM7PiY+Pz2033haWu7u7JFmcBJAjLS3Nos3NUlJS1KlTJyUlJWnv3r0WZzMXZkx3d3dlZGTkuba0tLQ8585PkT7k717l7u6url27avz48frll1/UrVs3c11iYqK8vb3l4+OjqKio2z7ZMTQ0VH/88Yf27NmjzMxMrVu3zuKBgEOGDNGiRYu0Y8cOZWVlKT09Xfv378912HaO7OxspaWlmT/MtLQ084ctSQMGDND777+v06dPKyEhQf/617/Us2dP8wds6/pbFfV4AAAAAAAAwP0o58iKnKMybhYdHa2AgIBcO5EzMjL0zDPP6NixY9qwYYNq1qxpUZ/TJ78xJSk4ONg8f1ZWlmJiYnLNERsba25XEPdFglmS+vbtq82bN+upp56St7e3uXz27NnatGmTfHx81KVLFz377LP5jlGpUiXNnDlTXbt2Vfny5WU0GlW9enVzfZ06dfTll19qwoQJCgwMVNmyZTVx4sQ8/9VAknbv3i13d3c98cQTSkhIkLu7u0Uy9oUXXtCAAQP02GOPqVy5cvLz89PcuXPtVj9t2jS1b9++yMYDAAAAAAAAIJUtW1aBgYE6fPhwrrqDBw8qNDTUoiw7O1t9+/bV999/rxUrVqhZs2a5+jk6OqpWrVp5jnngwAE9+OCD5rxozvi3tj18+LCys7NzzX87DiaTyXSnRomJifL19VVCQkKRbgX/K8t5KF+HDh34X0pgc8QbbIn4gj0Rb7AVYgv2RLzBVogt2ANxBhTO3eZFDx8+rPr162vRokXq37+/Rd1LL72kJUuW6NSpU+aHCH7//fdq3bq1Pv74Yw0dOtTc9uWXX9a8efO0YMECDR48ON/53n33XY0ZM0aHDh1SvXr1JEmnTp1SjRo1NHLkSPPRvqmpqSpXrpwaN26sb775xty/T58+WrdunaKiohQQEFCgayzUGcwAAAAAAAAAgNv78MMPFR8fr4sXL0qSvvnmG50/f17SjWfC+fr6aty4cVq9erVatGihV199VcnJyQoLC1OtWrU0YMAA81j//ve/NW/ePDVq1EgeHh5atmyZxVxPP/20PD09JUnDhg3Tp59+qo4dO2rkyJEyGAyaPXu2SpcurTfeeMPcx93dXe+8845efvlldevWTU888YT27NmjZcuWaerUqQVOLkskmAEAAAAAAACgSL333ns6e/as+f26deu0bt06SVLv3r3l6+urkJAQ7dq1S6+//rrGjBkjFxcXdezYUbNmzbI4fzkiIkKStH//fu3fvz/XXH/++ac5wezt7a2dO3fqtdde05QpU5Sdna3mzZtrzpw5CgwMtOg3bNgwGQwGzZo1Sxs3blRISIjmzJmjV199tVDXSoIZAAAAAAAAAIpQZGRkgdrVqFFDmzdvvm2bxYsXa/HixQWeu1y5clq9enWB2g4aNEiDBg0q8Nh5uW8e8gcAAAAAAAAAKFokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAq5BgBgAAAAAAAABYhQQzAAAAAAAAAMAqJJgBAAAAAAAAAFZxLu4FAAAAAAAAALg3fTt0k1y2/UcOxb2QYmPS+jL9tHfKj+ows21xL+aeRIIZAAAAAAAAQJ5Mu37Qw1Wd5NYotLiXUmzSdh7QT9/tl0gw54kEMwAAAAAAAIBc4i+kKDj5N3k9P1glez9R3MspFiaTSefPRUuXjMW9lHsWZzADAAAAAAAAyCVi8VG5GrLk3axOcS8F9zASzAAAAAAAAAByid16RC4PlJVrSKniXgruYSSYAQAAAAAAAFjIzjapxNkIeTXNvXt51qxZCg0Nlaurqzp06GBRFx8fr65du8rb21uBgYGaMGGCXetvVdTjITfOYAYAAAAAAABg4Y9dFxSQdUUeeSSYg4ODNXbsWH3//fc6f/68Rd1LL72kuLg4nT17VpcuXVLbtm1VoUIFDRo0yC71tyrq8ZAbO5gBAAAAAAAAWDi18ogMHgZ5/aNmrroePXroueeeU4kSJSzKk5OTtW7dOk2ZMkUBAQGqXr26hg4dqkWLFtml/lZFPR7yxg7mfGRnm5QSm5ZvfabRqIyELCVfSZWzIdOOK8P9iHiDLRFfsCfiDbZCbMGeiDfYCrEFeyDOUFDpP/wk93rV5OjuIpPJZC53cHDIt88vv/yijIwM1atXz1xWp04dvffee3apL+r1oGBIMOcjJTZNMdXb3rZNXUnXNMc+C8J9j3iDLRFfsCfiDbZCbMGeiDfYCrEFeyDOcCdGk6PKuQbKo3EPKTv7fxWOtz8MISkpSR4eHjIYDOYyf39/JScn26W+qNeDguGIDAAAAAAAAABmTspWmslV2fFJhern7e2t1NRUGY1Gc1l8fLy8vLzsUl/U60HBsIM5H54l3FTqly351mcajdq2bZtat24t55v+lQOwBeINtkR8wZ6IN9gKsQV7It5gK8QW7IE4Q0Ed6fSxgvdEqPTYfgXuU716dRkMBv3000/6xz/+cWOcI0dUrVo1u9QX9XpQMCSY8+Ho6CDvQPd8641GZ7n4Oskr0N1iGz1gC8QbbIn4gj0Rb7AVYgv2RLzBVogt2ANxhoIq8UQ9ZSzbLePleLmU8beoMxqNyszMVGZmprKzs5WamipHR0d5eXnp6aef1sSJE7Vq1SpdunRJH3/8sSZNmiRJNq+/VVGPh7xxRAYAAAAAAAAAC7X7PqIMo4OS90TkqvvXv/4lDw8Pvffee9q8ebM8PDzUsmVLSdL8+fPl4+OjkJAQPf744+rXr58GDRpk7mvr+tatW1skiO92PNwZO5gBAAAAAAAAWAis5KtD7g+q5N6fFdCthUXd9OnTNX369Dz7+fn5ae3atfmOa+v6bdu2Fel4uDN2MAMAAAAAAADIJb1GHSXvOarsrOziXgruYSSYAQAAAAAAAOQS0qWOMq8lKvX4H8W9FNzDSDADAAAAAAAAyKV29ypKznZXyp4jxb0U3MM4gxkAAAAAAABALi4ezroYWFv+n61T/Ne7ins5xcQkXb0qk0ON4l7IPYsEMwAAAAAAAIA8lR3SUf/dWKa4l1FssjIztfvMbg1c9VyB+/z0008aP3689u3bJ5PJpEaNGmnmzJkKDQ21aGc0GjVt2jQtWbJEFy5cUNmyZfXCCy9ozJgxcna2TNump6frX//6l5YuXaq4uDjVrl1bU6ZMUZs2bXLNv2/fPo0aNUo///yzfHx81L17d02bNk1eXl5W3YM7IcEMAAAAAAAAIE8NB9eWBtcu7mUUm8TERHX3HaypTT8qUPuff/5ZTZo0UUhIiCZNmqTs7GzNmzdPzZo108GDB1WlShVz2969e2v16tV64YUXVK9ePf3444+aOHGizp07p08++cRi3P79+2vNmjUaMWKEHn74YS1evFgdOnTQjh071KRJE3O7iIgItWrVStWqVdPs2bN1/vx5vffeezp9+rS+++67orkptyDBDAAAAAAAAABFYOLEiXJ3d9f+/ftVokQJSTcSyZUrV9a4ceO0du1aSdKhQ4e0atUqTZw4UW+//bYkaejQoSpZsqRmz56tf/7zn6pd+0Zi/+DBg1q5cqXCwsI0cuRISVLfvn1Vs2ZNjRo1Svv27TPPP27cOPn7+2vnzp3y8fGRJD3wwAMaNGiQtmzZorZt2xb5NfOQPwAAAAAAAAAoAnv27FHr1q3NyWVJCgoKUrNmzbRp0yYlJyeb20nS888/b9H/+eefl8lk0ldffWUuW7NmjZycnDR48GBzmZubmwYOHKj9+/crKipK0o3d1lu3blXv3r3NyWXpRjLay8tLq1atKvoLViF3MBuNRhmNRpss5K8m5z5wP2APxBtsifiCPRFvsBViC/ZEvMFWiC3YA3EGFE7Oz0piYqJFuaurq1xdXXO1T09Pl7u7e65yDw8PZWRk6MSJE/rHP/6h9PR0ScrV1sPDQ9KNc5xzHDlyRJUrV7ZIGktSgwYNJN04FiMkJETHjx9XZmam6tWrZ9HOxcVFoaGhOnLkSIGuubAKlWDesmWL+SJxw9atW4t7CbiPEG+wJeIL9kS8wVaILdgT8QZbIbZgD8QZUDDXr1+XJIWEhFiUT5o0SZMnT87VvkqVKvrxxx+VlZUlJycnSVJGRoYOHDggSbpw4YK5nST98MMPqlixorl/zs7mnHaSFB0draCgoFxz5ZRdvHjR3O7m8lvb5oxd1AqVYG7btm2uTPn9ymg0auvWrWrTpo0MBkNxLwd/c8QbbIn4gj0Rb7AVYgv2RLzBVogt2ANxBhROzs7lqKgoi7xoXruXJWnYsGF66aWXNHDgQI0aNUrZ2dmaMmWKOfmbmpoqSerQoYMqVKigkSNHysPDQ48++qgOHDig8ePHy9nZ2dwup09e87m5uVmMmfNnfm1vHrMoFSrBbDAY+PK5BfcE9kS8wZaIL9gT8QZbIbZgT8QbbIXYgj0QZ0DB5Pyc+Pj4FGjj7dChQxUVFaWwsDAtWbJEklSvXj2NGjVKU6dOlZeXl6QbCd9vv/1W3bt317PPPivpRmJ45syZFu2kG8do5BypcbO0tDRz/c1/5tc2r6M7igIP+QMAAAAAAACAIjJ16lRdvnxZe/bs0bFjx3To0CFlZ2dLkipXrmxuV6NGDZ04cUInTpzQnj17dPHiRQ0aNEhXr161aBcUFGTeAX2znLLg4GBzu5vLb22b066okWAGAAAAAAAAgCLk7++vJk2aqFatWpKkbdu2qVy5cqpatapFOwcHB9WoUUNNmjRRQECAduzYoezsbLVu3drcJjQ0VL/99luuBw3mnOscGhoqSapZs6acnZ11+PBhi3YZGRmKiIgwtytqJJgBAAAAAAAAwEa++uorHTp0SCNGjJCjY/7p2NTUVE2cOFFBQUHq0aOHubxr167KysrSJ598Yi5LT0/XokWL1LBhQ/MDCH19fdW6dWstW7ZMSUlJ5rZLly5VcnKyunXrZoOrK+QZzAAAAAAAAACAvO3evVtvv/222rZtqxIlSujHH3/UokWL1K5dO7366qsWbbt3767g4GBVr15diYmJ+vzzz/XHH3/o22+/lbe3t7ldw4YN1a1bN40dO1YxMTGqVKmSlixZosjISC1cuNBizKlTp6px48Zq1qyZBg8erPPnz2vWrFlq27at2rVrZ5NrJsEMAAAAAAAAAEWgbNmycnJyUlhYmJKSklSxYkVNmTJFr7/+upydLVOx9erV06JFi7RgwQK5u7vr8ccf14oVK/I8yuKLL77QxIkTtXTpUsXFxal27dratGmTmjZtatGubt262rZtm0aPHq3XXntN3t7eGjhwoKZPn26zaybBDAAAAAAAAABF4KGHHtLmzZsL1HbUqFEaNWpUgdq6ubkpLCxMYWFhd2zbpEkT/fDDDwUatyhwBjMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAq5BgBgAAAAAAAABYhQQzAAAAAAAAAMAqJJgBAAAAAAAAAFYhwQwAAAAAAAAAsAoJZgAAAAAAAACAVUgwAwAAAAAAAACsQoIZAAAAAAAAAGAVEswAAAAAAAAAAKuQYAYAAAAAAAAAWIUEMwAAAAAAAADAKiSYAQAAAAAAAABWIcEMAAAAAAAAALAKCWYAAAAAAAAAgFVIMAMAAAAAAAAArEKCGQAAAAAAAABgFRLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAABQRH766Se1a9dOPj4+8vb2Vtu2bRUREZFn24yMDE2bNk1Vq1aVm5ubSpcurY4dO+r8+fMW7dLT0zV69GgFBwfL3d1dDRs21NatW/Mcc9++fWrSpIk8PDxUpkwZDR8+XMnJyUV9mWbONhsZAAAAAAAAAO4jP//8s5o0aaKQkBBNmjRJ2dnZmjdvnpo1a6aDBw+qSpUq5rZGo1EdO3bUvn37NGjQINWuXVtxcXE6cOCAEhISVK5cOXPb/v37a82aNRoxYoQefvhhLV68WB06dNCOHTvUpEkTc7uIiAi1atVK1apV0+zZs3X+/Hm99957On36tL777jubXDMJZgAAAAAAAAAoAhMnTpS7u7v279+vEiVKSJJ69+6typUra9y4cVq7dq257Zw5c7Rr1y7t3btXDRo0yHfMgwcPauXKlQoLC9PIkSMlSX379lXNmjU1atQo7du3z9x23Lhx8vf3186dO+Xj4yNJeuCBBzRo0CBt2bJFbdu2LfJr5ogMAAAAAAAAACgCe/bsUevWrc3JZUkKCgpSs2bNtGnTJvNRFdnZ2Zo7d66efvppNWjQQJmZmbp+/XqeY65Zs0ZOTk4aPHiwuczNzU0DBw7U/v37FRUVJUlKTEzU1q1b1bt3b3NyWbqRjPby8tKqVatsccmF28FsNBplNBptspC/mpz7wP2APRBvsCXiC/ZEvMFWiC3YE/EGWyG2YA/EGVA4OT8riYmJFuWurq5ydXXN1T49PV3u7u65yj08PJSRkaETJ07oH//4h3755RddvHhRtWvX1uDBg7VkyRJlZGSoVq1amjt3rlq0aGHue+TIEVWuXNkiaSzJvOs5IiJCISEhOn78uDIzM1WvXj2Ldi4uLgoNDdWRI0esuwl3UKgE85YtW+Th4WGThfxV5XeYNmALxBtsifiCPRFvsBViC/ZEvMFWiC3YA3EGFEzOruKQkBCL8kmTJmny5Mm52lepUkU//vijsrKy5OTkJOnGg/wOHDggSbpw4YIk6fTp05JuHJMREBCgBQsWSJKmTZumdu3a6dChQ6pdu7YkKTo6WkFBQbnmyim7ePGiud3N5be23bNnTyGuvOAKlWBu27Ztrkz5/cpoNGrr1q1q06aNDAZDcS8Hf3PEG2yJ+II9EW+wFWIL9kS8wVaILdgDcQYUTs7O5aioKIu8aF67lyVp2LBheumllzRw4ECNGjVK2dnZmjJlijn5m5qaKknmozKSkpJ05MgRcwK7ZcuWqlSpkmbOnKlly5aZ++Q1n5ubm8WYOX/m1zanvqgVKsFsMBj48rkF9wT2RLzBlogv2BPxBlshtmBPxBtshdiCPRBnQMHk/Jz4+PgUaOPt0KFDFRUVpbCwMC1ZskSSVK9ePY0aNUpTp06Vl5eXJJmP0XjssccsdkeXL19eTZo0sXhwn7u7u9LT03PNlZaWZjFWzp/5tc3r6I6iwEP+AAAAAAAAAKCITJ06VZcvX9aePXt07NgxHTp0SNnZ2ZKkypUrS5KCg4MlSaVLl87Vv1SpUoqLizO/DwoKMu+AvllOWc5YOUdj5Nc2p11RI8EMAAAAAAAAAEXI399fTZo0Ua1atSRJ27ZtU7ly5VS1alVJUq1atWQwGMxnMt/s4sWLCgwMNL8PDQ3Vb7/9lutBgznnOoeGhkqSatasKWdnZx0+fNiiXUZGhiIiIsztihoJZgAAAAAAAACwka+++kqHDh3SiBEj5Oh4Ix3r7e2tDh06aN++ffr111/NbU+ePKl9+/apTZs25rKuXbsqKytLn3zyibksPT1dixYtUsOGDc1HbPj6+qp169ZatmyZkpKSzG2XLl2q5ORkdevWzSbXV6gzmAEAAAAAAAAAedu9e7fefvtttW3bViVKlNCPP/6oRYsWqV27dnr11Vct2k6bNk3ff/+9WrZsqeHDh0uS3n//fQUEBGjcuHHmdg0bNlS3bt00duxYxcTEqFKlSlqyZIkiIyO1cOFCizGnTp2qxo0bq1mzZho8eLDOnz+vWbNmqW3btmrXrp1NrpkEMwAAAAAAAAAUgbJly8rJyUlhYWFKSkpSxYoVNWXKFL3++utydrZMxVavXl27du3S6NGjNWXKFDk6Oqply5YKCwtT2bJlLdp+8cUXmjhxopYuXaq4uDjVrl1bmzZtUtOmTS3a1a1bV9u2bdPo0aP12muvydvbWwMHDtT06dNtds0kmAEAAAAAAACgCDz00EPavHlzgdvXrVtXW7duvWM7Nzc3hYWFKSws7I5tmzRpoh9++KHAa7hbnMEMAAAAAAAAALAKCWYAAAAAAAAAgFVIMAMAAAAAAAAArEKCGQAAAAAAAABgFRLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBXngjTKysqSJJ0/f14+Pj42XdBfRWZmpq5evaoLFy7I2blAtxGwGvEGWyK+YE/EG2yF2II9EW+wFWIL9kCcAYWTmJgo6X/5UeRWoG+SM2fOSJJq1Khh08UAAAAAAAAAwL3mzJkzql+/fnEv457kYDKZTHdqFBcXp4CAAEVFRbGD+f8ZjUZt2bJFbdu2lcFgKO7l4G+OeIMtEV+wJ+INtkJswZ6IN9gKsQV7IM6AwklMTFRISIiuXbsmf3//4l7OPalAO5idnJwkST4+PiSY/5/RaJSHh4d8fHz4QobNEW+wJeIL9kS8wVaILdgT8QZbIbZgD8QZYJ2c/Chy4yF/AAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAq5BgvktvvPGG+vfvX9zL+EsZPHiwAgICVKZMGZ07d05eXl5KSEgo7mUVytChQzVv3jy7zzt9+nSNHz/e7vMCAAAAAAAAefnbJ5i9vLzMLycnJ7m6uprft2/fvriXZ7WdO3fKwcFBXbt2tSgfMWJEgRPeO3fulJ+fX4Hm8fLykre3typUqKAJEyYoOzvbqnXv3btXa9as0Z9//qlLly6pfPnySk5Olq+vrySpf//+GjFiRJ59K1eurCNHjmjx4sUKDQ21av6icObMGX377bd68cUXtXz5cnM8eXp6mu9Vzmv58uVFOvcrr7yizz77TJcuXSrScQEAAAAAAABr/O0TzMnJyebX448/rnfffdf8/rvvvjO3y8zMlMlkKsaVFp6rq6s2b96sgwcP2nQeX19fJScnKykpSZs2bdKnn36qhQsX5mpnNBrvONaff/6p8uXLmxPKBfXrr78qLS1NderUKVQ/W5g/f76ee+45ubi4qFevXuZ4+u9//ytJOn/+vLmsV69e5n4FuT93kvMPI3ndfwAAAAAAAMDe/vYJ5ttxcHDQhx9+qJo1a8rT01PJycmaPXu2Hn74YXl7e+uhhx7Shx9+aNFn9+7dqlWrlvz9/TVjxgwlJSVZ1P/+++/q3LmzAgMDVaFCBU2ZMsW82/fPP/9U69at5evrq4CAAD322GO6fv261et3c3PTa6+9pjFjxuTbJiYmRr169VJQUJCCg4M1YsQIpaenKzY2Vu3bt1dCQoJ5t+2ePXvuOGetWrX0+OOP69ixY4qMjJSDg4MWLVqkSpUqqVy5cpKkLVu2qE6dOvL19VXdunW1bds2SdL777+vQYMG6fjx4/Ly8lL//v3NY8THx+v999/X8uXLNW/ePHl5ealGjRrmeb/55ht17tz5jutLSkrS4MGDFRQUpKCgIA0dOlQpKSmSpPT0dL3wwgsqWbKkfH19VbNmTR06dEiStHXrVtWuXVve3t4qXbq0XnrppXzn2Lhxo1q2bHnHteTstJ40aZLKlCmj559/Ps/d16GhoVq8eLH5/bZt29SgQQP5+fmpRo0a2rhxo0X7Vq1a5SoDAAAAAAAAisN9nWCWpBUrVmjLli1KTEyUp6enKlSooO3btysxMVGfffaZ3nzzTf3www+SpLi4OD355JP65z//qStXrqhly5ZasWKFeazr16+rVatWatWqlS5cuKA9e/Zo5cqVWrRokSRp/PjxqlSpkq5evarLly8rLCxMzs7Od7X+kSNH6vjx49q8eXOuOpPJpCeffFJlypTR77//ruPHj+vo0aOaMmWKSpQooe+++868Ozlnh/edHD16VLt371bdunXNZRs3btThw4f1559/6syZM+rSpYsmTpyo2NhYjRs3Tk8++aT+/PNPDR8+XPPnz1etWrWUnJxskVSVpOHDh6tXr14aNmyYxY7gnDmefPLJO67v1Vdf1ZkzZ3TixAkdP35cv/76q1577TVJ0pIlS3T06FGdOXNG8fHxWrduncqUKSNJ6tevn958800lJSXpjz/+UJ8+ffIc//r16zp9+rSqVq16x7VI0okTJ+Ts7Kxz585p6dKld2x/7NgxdevWTTNmzNC1a9e0YMEC9enTR6dOnTK3qV69uiIiIgo0PwAAAAAAAGBL932CedSoUQoODparq6scHR317LPPKiQkRA4ODmrRooWeeOIJ7dy5U5K0adMmBQcHa8iQIXJ2dlaDBg3UokUL81jffvut/P39NWLECLm4uKh8+fJ69dVXzUlog8Gg6OhoRUZGymAwqHHjxnJxcbmr9fv4+GjChAkaO3ZsriM+Dh8+rNOnTyssLEweHh4qUaKExo0bZ5EUL4iEhAT5+fnJ399f3bt31yuvvGJxzvOkSZPk5+cnDw8PffXVV2revLmeeeYZOTs7q2vXrmrSpIm+/PJLq68xNjZWJ06cUPPmzW/bLjs7W8uXL9f06dNVokQJlSxZUtOmTdMXX3yh7OxsGQwGJSUl6eTJkzKZTKpcubJCQkIk3fhszpw5oytXrsjT01ONGzfOc464uDhJN+57Qfj6+mr8+PFycXGRh4fHHdsvWLBA/fv3V8uWLeXo6KgmTZqoU6dOWrNmjbmNj4+PMjIy7mr3OwAAAAAAAFAU7vsEc/ny5S3eL1++XHXr1lVAQID8/PwUHh6uq1evSpIuXryoChUq5Ns/MjJSJ06ckJ+fn/n1xhtvmB/IFhYWprJly6p169Z64IEHNHny5Dwflnfzg+NuPiYiPy+99JLi4uK0cuVKi/LIyEjFx8ebr8XPz09du3bV5cuXC3Zz/p+vr6/i4+MVFxenU6dOaeLEiXJwcMjzHpw/f14PPPCARf8HH3xQ58+fL9ScNwsPD1erVq3k6up623ZXrlxRRkaGxfwPPvig0tPTdfXqVfXp00f9+/fX0KFDVbJkSfXv39/82X799dc6ceKEqlSpojp16mjVqlV5zuHv7y9JSkxMLNDay5YtK0fHgv+YRUZGav78+RYxtGHDBkVHR5vbJCYmFjhhDQAAAAAAANhSsSaY09KkpUulZ5+Vmje/8efSpTfK7eXm5N+5c+fUr18/zZw5UzExMYqPj1eHDh3MO4ODg4N19uxZi/5RUVHm/w4JCdGjjz6q+Ph48ysxMdF81EOpUqU0b948nT17Vt98843mz5+vr7/+Otea8npw3O24uLjonXfe0cSJEy0eJBcSEqJSpUpZrCchIUHJycm5rv1u3DxOuXLlFBkZaVEfGRlpPp+5MGPlKOjxGIGBgXJxcbGYPzIyUq6uripZsqScnZ01btw4HT16VCdPntS5c+f01ltvSZLq1q2rtWvX6urVq5o4caJ69uyZZyLew8NDDz/8sH799VerrsfLyyvXzuOcf4CQbnxmr776qsVnlpycbHEW+C+//JLrHGcAAAAAAACgOBRbgnnjRik4WOrbV1q/Xtq168afffveKP/mG/uvKTk5WSaTSaVKlZKjo6PCw8O1ZcsWc33Hjh114cIFffrpp8rMzNThw4e1Y8cOc32nTp10+fJlzZs3T2lpacrKytKpU6fMR2ysWrVK586dk8lkkp+fn5ycnO76DOYcPXv2lKenp7766itzWf369RUSEqIJEyYoKSlJJpNJZ8+e1XfffSdJKl26tJKSkhQTE1Mka5Ck5557Tjt37tSGDRuUmZmpdevWaffu3Xr++ecL1L906dL6448/zEn9jIwMbdu2TR06dLBoZzKZlJaWZvGSbtyH8ePH69q1a+YzoPv06SNHR0dt375dERERyszMlKenp9zc3OTs7KyMjAwtXbpUcXFxcnR0lJ+fnyTl+9l07tzZ4nMvjNDQUP3xxx/as2ePMjMzNXPmTMXGxprrhwwZokWLFmnHjh3KyspSenq69u/fr5MnT5rbbN++XZ06dbJqfgAAAAAAAKAoFUuCeeNG6amnpPj4G+9zTonI+TM+XurS5UY7e6pevbrGjx+vli1bqkSJEvrqq68sds4GBARow4YNmjt3rgIDA7V161b16NHDXO/l5aVt27bp+++/1wMPPKASJUqoZ8+e5h2qP/30kxo3biwvLy81atRIAwcOLNDO3IJwdHTUjBkzLJKVTk5O2rRpky5cuKBq1arJ19dXHTt21JkzZyRJVapU0cCBA1W9enX5+flp7969d72OSpUqad26dZo0aZICAgL09ttv6+uvv9aDDz5YoP4vvviiLly4oICAANWuXVu7du1SzZo1VbJkSYt2x44dk7u7u8Vr9+7dmjt3rh544AFVr15dNWrUUKVKlTR79mxJ0uXLl9WjRw/5+fmpYsWK8vX11aRJkyTdeNhjpUqV5O3trVdeeUUrVqxQiRIl8lzjkCFDtHLlSovd4oW5PzNnzlTXrl0VFBSk9PR0i2NQ6tSpoy+//FITJkxQYGCgypYtq4kTJyo9PV2SlJKSovDwcL344ouFnhsAAAAAAAC2l56ertGjRys4OFju7u5q2LChtm7dWqC+Fy5cUPfu3eXn5ycfHx916dJFf/zxx2377N27Vw4ODnJwcDAfB2tPDqZbnwyXh8TERPn6+iohIaHADzfLT1rajR3K8fHS7WZ2cJD8/KSLFyU3t7ua0iaMRqPCw8PVoUMHGQyG4l7O39Yrr7yi8uXL68033yzupVgYMmSIQkND9dJLL9llvpx4O3bsmNLS0jR16lS7zIv7A99nsCfiDbZCbMGeiDfYCrEFeyDOgMKxJi/ao0cPrVmzRiNGjNDDDz+sxYsX69ChQ9qxY4eaNGmSb7/k5GTVrVtXCQkJeuONN2QwGDRnzhyZTCZFRETkuRkyOztbjz76qE6fPq2UlBRduXIl10ZNWyua8xkKYfVqKS7uzu1Mphvt1qyReve2/bpwb6pVq5bat29f3MvIZcGCBcUy75gxY/gFAAAAAAAA4B518OBBrVy5UmFhYRo5cqQkqW/fvqpZs6ZGjRqlffv25dt33rx5On36tA4ePKj69etLktq3b6+aNWtq1qxZmjZtWq4+n3zyiaKiovTiiy9q7ty5trmoO7D7ERnr10sFfbaco6OUxzPwcB8ZPHiwQkJCinsZAAAAAAAAwB2tWbNGTk5OGjx4sLnMzc1NAwcO1P79+xUVFXXbvvXr1zcnlyWpatWqatWqlVatWpWr/bVr1zRhwgS9/fbb5meKFYdC7WA2Go1WnTt7s6tXnZSdXbAMc3a2dPVqtozGrLua0xZy7sPd3g+gIIg32BLxBXsi3mArxBbsiXiDrRBbsAfiDCicnJ+VxMREi3JXV1e5urrman/kyBFVrlw513EaDRo0kCRFRETkuZkyOztbx44d0wsvvJCrrkGDBtqyZYuSkpLk7e1tLp84caLKlCmjIUOG6J133in8xRWRQiWYt2zZIg8Pj7uaMCOjvhwcgmQyOdyxrYODSRkZlxQefuiu5rSlgh7QDRQF4g22RHzBnog32AqxBXsi3mArxBbsgTgDCub69euSlCspPGnSJE2ePDlX++joaAUFBeUqzym7ePFinvNcu3ZN6enpd+xbpUoVSdKxY8e0YMEChYeHy8nJqeAXZAOFSjC3bdv2rh/yd+2ag3788c7JZUkymRw0ZEgpdejQ4a7mtIWOHTuqYsWKmjNnTp5n4q5YsULz58/X7t27i2F1+LsxGo3aunWr2rRpwxnMKHLEF+yJeIOtEFuwJ+INtkJswR6IM6BwcnYuR0VFWeRF89q9LEmpqal51rm5uZnr8+uX37h59R0+fLjat2+vtm3bFuQybKpQCWaDwXDXXz49ekhvvCHFx994kF9+HBwkPz/p+eedVRTfd82bN9f+/ftlMBjk4uKi2rVra9asWXr00UetGu/bb79VeHi4DAaDfvjhBz311FOKj4831/fr10/9+vW7+4UDNymKn0EgP8QX7Il4g60QW7An4g22QmzBHogzoGByfk58fHwKtPHW3d1d6enpucrT0tLM9fn1k1Sgvl999ZX27dunEydOFOAKbM/uD/lzc5OWLLnx3w75bGTOKV+y5Eb7ovLuu+8qOTlZFy9eVJ06ddSlS5eiGxwAAAAAAADAfS0oKEjR0dG5ynPKgoOD8+wXEBAgV1fXAvV988031a1bN7m4uCgyMlKRkZHmja9RUVH5HsNhK3ZPMEtS587S+vU3dihLkqOj5Z9+ftKGDTfa2ULOkxsvXLigy5cvq3v37goMDFT58uU1fvx4ZWZmSrpx9snTTz8tf39/+fn56dFHH9XZs2clSa1bt9bGjRsVGxur9u3bKyEhQV5eXvLy8tKePXu0ePFihYaGSpLmzJmjli1bWqzhq6++UtWqVc3vV65cqdq1a8vPz0/169fXvn37bHPxAAAAAAAAAGwiNDRUv/32W66HAh44cMBcnxdHR0fVqlVLhw8fzlV34MABPfjgg+YH/EVFRWnFihWqWLGi+TV37lxJUt26de1+3HCxJJgl6cknpYsXpaVLpaeekpo3v/Hn0qU3ym2VXJZuHM792WefqUKFCurZs6cMBoP+/PNP7dmzR+vXr9fMmTMlSe+9954yMzN14cIFxcbGauHChRZPapSkEiVK6LvvvpOvr6+Sk5OVnJysxx9/3KJNz549tXfvXkVFRZnLli5dqj59+kiSwsPDNXLkSC1evFjXrl3T2LFj1blzZ8XGxtruJgAAAAAAAAAoUl27dlVWVpY++eQTc1l6eroWLVqkhg0bmh8WeO7cOf3666+5+h46dMgiyXzq1Clt375d3bp1M5d9/fXXuV7PPfecJOmLL77QnDlzbHmJuRTqDOai5uYm9e5942UPY8eO1eTJk+Xm5qbQ0FAtWbJEzZs316VLl8y7j8ePH6/Jkydr3LhxMhgMio2N1enTp/XII4/k+y8Md1K6dGm1bt1ay5cv15gxYxQTE6OtW7dq3rx5kqSPPvpIb775purWrStJeuaZZzRr1iyFh4ebk9AAAAAAAAAA7m0NGzZUt27dNHbsWMXExKhSpUpasmSJIiMjtXDhQnO7vn37ateuXTLd9JC6YcOG6dNPP1XHjh01cuRIGQwGzZ49W6VLl9Ybb7xhbvfUU0/lmjciIkKS1L59e5UsWdJm15eXYtvBXBymT5+u+Ph4Xbp0Sf/5z3/k5uYmNzc3lS5d2tzmwQcf1Pnz5yXdOM/k8ccfV/fu3VWmTBm9+uqr+T7p8U769u2rpUuXSpK+/PJLNW7cWOXLl5ckRUZGaty4cfLz8zO/IiIidOHChbu8YgAAAAAAAAD29MUXX2jEiBFaunSphg8fLqPRqE2bNqlp06a37eft7a2dO3eqadOmmjJliiZOnKhHHnlEu3btUmBgoJ1WX3j3VYL5VuXKlVNaWpouX75sLouMjFS5cuUkSV5eXnr33Xd16tQp7d+/X99//7151/HNHB3vfBu7dOmi8+fP66effrI4HkOSQkJCNGvWLMXHx5tfKSkpGjNmTBFcJQAAAAAAAAB7cXNzU1hYmKKjo5WWlqaDBw/qiSeesGizc+dOi93LOcqVK6fVq1crISFBSUlJ+uabb1SpUqU7zjl58mSZTCa7716W7vMEc9myZdWiRQuNHDlSKSkpOnfunKZOnap+/fpJkjZt2qTffvtN2dnZ8vHxkcFgkLNz7lNFSpcuraSkJMXExOQ7l7u7u7p27arx48frl19+sTg35eWXX1ZYWJh++uknmUwmXb9+Xdu2bTPvpAYAAAAAAACAe9F9nWCWpBUrVig1NVUVKlTQY489po4dO2rUqFGSpDNnzqhdu3by9vZW9erV1ahRI7300ku5xqhSpYoGDhyo6tWry8/PT3v37s1zrr59+2rz5s166qmnLB4W2LlzZ82YMUODBg2Sv7+/+cmP2dnZtrloAAAAAAAAACgCxfqQP3vauXNnnuVlypTRmjVr8qwbMWKERowYkWfdtm3bFB4ebn7/ySefWDwdskmTJurfv79Fn2bNmuW59V2SunXrZrGrGQAAAAAAAADudff9DmYAAAAAAAAAgHVIMAMAAAAAAAAArEKCGQAAAAAAAABgFRLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAVnEu1tnT0qTVq6X166XYWKlECempp6Ru3SQ3t2JdGgAAAAAAAADg9opvB/PGjVJwsNS3740E865dN/7s2/dG+TffFNvS7OHcuXPy8vJSQkJCcS8FAAAAAAAAAKxSPAnmjRtv7FSOj7/xPjvb8s/4eKlLlxvtikjz5s3l5OSkY8eOmcvi4+Pl4OCgyMjIIpsnPw4ODoqIiDC/L1++vJKTk+Xr62vzuQEAAAAAAADAFuyfYE5Lk/r3v/HfJlPebXLK+/e/0b6I+Pv7a+zYsUU2HgAAAAAAAADcz+yfYF69WoqLyz+5nMNkutFuzZoim3rYsGH64YcftHv37jzrV65cqdq1a8vPz0/169fXvn37zHXx8fHq1q2b/Pz8VLVqVX300Ud66qmnzPXLli1TzZo15e3trfLly2vixIky/f81NmjQQJLUuHFjeXl5adq0aYqMjJSDg4Pi4+N15MgReXt76/r16+bxoqOj5eLiogsXLkiSfv75Z7Vo0UIBAQGqVKmSPv300yK7LwAAAAAAAABgDfsnmNevlxwLOK2jo/T110U2dUBAgEaPHq0xY8bkqgsPD9fIkSO1ePFiXbt2TWPHjlXnzp0VGxsrSXrllVeUkpKis2fPaseOHVq+fLlF/xIlSmjdunVKTEzUxo0b9cknn2jFihWSpIMHD0qS9u3bp+TkZI0bN86ib506dVShQgV9fdO1Ll++XM2aNVPZsmV16dIltWnTRi+99JKuXLmi9evXa9KkSfr++++L7N4AAAAAAAAAQGHZP8EcG/u/s5bvJDtbunatSKcfMWKEzp49q/Xr11uUf/TRR3rzzTdVt25dOTo66plnnlHVqlUVHh6urKwsffXVV3r77bfl6+uroKAgvf766xb927dvr8qVK8vBwUGhoaHq0aOHdu7cWeB19e3bV0uXLjW/X7p0qfr27Wv+76ZNm6p79+5ycnJSzZo1NWDAAHMCGwAAAAAAAACKg/0TzCVKFG4Hc0BAkU7v7u6uSZMmady4ccrKyjKXR0ZGaty4cfLz8zO/IiIidOHCBV29elVGo1EhISHm9uXLl7cYd/PmzWrcuLFKliwpX19fzZ8/X1evXi3wunr16qXt27crOjpaR48e1e+//65nnnnGvLbw8HCLtb3//vuKjo6+y7sBAAAAAAAAANazf4L5qacKt4P56aeLfAkDBw5Udna2lixZYi4LCQnRrFmzFB8fb36lpKRozJgxKlmypAwGg6Kiosztz507Z/7vjIwMPfPMMxoyZIguXLighIQEDR061HwGsyQ5ODjcdk1ly5ZVs2bNtGLFCi1dulTPPPOMPD09zWt7+umnLdaWlJSk8PDworolAAAAAAAAAFBo9k8wd+sm+ftLd0i4ysHhRruuXYt8CU5OTpo6daqmTZtmLnv55ZcVFhamn376SSaTSdevX9e2bdt0/vx5OTk5qXv37po8ebISEhJ06dIl/fvf/zb3TU9PV1pamkqUKCFXV1cdOHAg1/EVpUuX1u+//37bdfXt21dLlizRihUrzMdjSFKfPn20fft2rV27VkajUUajURERETp06FDR3BAAAAAAAAAAsIL9E8xublLOzuH8ksw55UuW3GhvA88++6wqVapkft+5c2fNmDFDgwYNkr+/vypWrKi5c+cq+/93W3/wwQdydXVV+fLl1bx5c3Xt2lXOzs6SJG9vb3300UcaPHiwfHx8NHXqVD333HMW873zzjsaPny4/P39NWPGjDzX9Mwzz+jPP/+Uo6OjWrZsaS4vW7asNm/erAULFigoKEilS5fWyy+/rMTExKK+LQAAAAAAAABQYM7FMmvnztL69VL//lJc3I2zlrOz//enn9+N5HLnzkU2ZV4P3Pvxxx8t3nfr1k3dunXLs7+/v7/Wrl1rfr906VIFBgaa3w8dOlRDhw7Nd/4XX3xRL774okXZzUdoSJKnp6eSkpLy7F+nTh1t2bIl3/EBAAAAAAAAwN6KJ8EsSU8+KV28KK1ZI339tXTt2o0H+j399I1jMWy0c9lap0+fVkJCgh599FGdOXNG06dPV+PGjYt7WQAAAAAAAABQbIovwSzdSCL37n3jdY9LSUlR7969FRUVJV9fXz311FNq3rx5cS8LAAAAAAAAAIpN8SaY/0JCQ0P166+/mt8bjUaFh4cX44oAAAAAAAAAoHjZ/yF/AAAAAAAAAIC/BRLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAq5BgBgAAAAAAAABYhQQzAAAAAAAAAMAqJJgBAAAAAAAAAFYhwQwAAAAAAAAAsAoJZgAAAAAAAAAoIunp6Ro9erSCg4Pl7u6uhg0bauvWrQXqe+HCBXXv3l1+fn7y8fFRly5d9Mcff+TZduHChapWrZrc3Nz08MMP64MPPijKyygwEswAAAAAAAAAUET69++v2bNnq1evXpo7d66cnJzUoUMH7d2797b9kpOT1aJFC+3atUvjxo3TW2+9pSNHjqhZs2aKjY21aLtgwQK9+OKLqlGjhj744AM1atRIw4cP17vvvmvLS8uTs91nBAAAAAAAAIC/oYMHD2rlypUKCwvTyJEjJUl9+/ZVzZo1NWrUKO3bty/fvvPmzdPp06d18OBB1a9fX5LUvn171axZU7NmzdK0adMkSampqRo/frw6duyoNWvWSJIGDRqk7OxsvfPOOxo8eLD8/f1tfKX/ww5mAAAAAAAAACgCa9askZOTkwYPHmwuc3Nz08CBA7V//35FRUXdtm/9+vXNyWVJqlq1qlq1aqVVq1aZy3bs2KHY2FgNGzbMov/LL7+slJQUffvtt0V4RXdWqB3MV65cUVpamvm9i4uLPD09lZWVpcTExFztczLlSUlJyszMtKjz9PSUi4uL0tPTdf36dYs6g8EgLy8vmUwmxcfH5xrX19dXjo6OSk5OltFotKhzd3eXm5ubMjIylJKSYlHn5OQkHx8fSVJ8fLxMJpNFvY+Pj5ycnHT9+nWlp6db1Lm5ucnd3V1Go1HJycnKzMxUdna2rly5IhcXF/n6+kqSEhISlJ2dbdHXy8tLBoNBqampFvdPklxdXeXh4ZHnPXRwcJCfn58kKTExUVlZWXnew7S0NKWmpuZ5D7Ozs5WQkJDrHvr5+cnBwSHPe+jh4SFXV9c876Gzs7O8vb0lSXFxcbnGzbmHKSkpysjIuO09vNnNn01e99Db21vOzs55fjY59zAzM1NJSUkWdXdzD3Pi+073MK/4zrmHecV3zj28U3zffA9z4i0pKUne3t5Wxbe199DR0dEc33ndw9vF9/38HXGzm+/hvfgdERsba/4+c3a+8dcC3xF3vof30ndEjruJb3t9R9z896eHhwffEbr3vyP+Kr9HuLu7S5JiY2Pl6Gi5h4LviBv+Ct8RN7uXf49ISUnJ9Xcn3xH/cy9+R/xVfo/I+Xsy5/r4jvhrfkfc679H5MRZQkKCfH19+Y74C31H5OD3iBvs9R2Rs65bx3F1dZWrq2uusY8cOaLKlSub70mOBg0aSJIiIiIUEhKSq192draOHTumF154IVddgwYNtGXLFnNe6MiRI5KkevXqWbR79NFH5ejoqCNHjqh37965xrGVQiWYd+/eLQ8PD/N7R0dHubi4WPwFeDM3NzdJNw62vjW4DAaDnJyclJmZmeuDzBnXZDLlCjzpxgfo4OCgjIyMXD/4zs7OcnZ2VlZWVq4vKgcHB/MHf2vgSTeCz9HRUUajMVfQOjk5yWAw5Bp3z549Ftea17g513q7cf9u9zCvcfO7h4UZ9168h3mNm3MP8xo351qt+Wx27Nhh0/i+m3uY17h8R+S+1nv5OyLn+0ziOyLHX+07wtbxXZTfEXv27OE7Io9rvZe/I252L39H7Nq1K99x78V7yHfEX/v3iJv/7uQ74n/u5e+Iv8rvEVu3buU7Qn/974ib3YvfETt37uQ7ohDj3kvfEfwecYO9viNyEvW3JoUnTZqkyZMn5xo7OjpaQUFBucpzyi5evJirTpKuXbum9PT0O/atUqWKoqOj5eTkpFKlSlm0c3FxUYkSJfKdw1YKlWBu2rSp+V+LpPv7XwwzMzN14MABNWzYkB3MedxD/sWw6HcwHzhwQM2aNWMHs/4a3xE3u9d3HsXGxpq/z9jB/Nf8jsjxV9hVcPPfn+xgzn0P78XviL/K7xHu7u7aunWrmjVrxg7mv/B3xM3u5d8jUlJStGPHDou/O/mO+J978Tvir/J7RM7fk23atJGLiwvfEX/R74h7/feInDh7/PHH2cGsv9Z3RA5+j7jB3juYo6KiLHYl57V7WbpxPnJedTlJ7Vs/75v75TfurX1TU1Pl4uKS5zhubm75zmErDqZbP/U8JCYmytfXVwkJCbm2d9+vjEajwsPD1aFDBxkMhuJeDv7miDfYEvEFeyLeYCvEFuyJeIOtEFuwB+IMKJzC5kVr1qyp0qVL6/vvv7co/+WXX1SjRg3Nnz9fQ4YMydXv6tWrCgwM1Ntvv62JEyda1M2bN08vv/yyfv31V1WpUkX//Oc/NX/+/FzJcUkqVaqUWrVqpS+//LKQV2o9HvIHAAAAAAAAAEUgKChI0dHRucpzyoKDg/PsFxAQIFdX1wL1DQoKUlZWlmJiYizaZWRkKDY2Nt85bIUEMwAAAAAAAAAUgdDQUP3222+5juY4cOCAuT4vjo6OqlWrlg4fPpyr7sCBA3rwwQfNx8TkjHFr28OHDys7OzvfOWyFBDMAAAAAAAAAFIGuXbsqKytLn3zyibksPT1dixYtUsOGDc0PCzx37px+/fXXXH0PHTpkkTg+deqUtm/frm7dupnLWrZsqYCAAH388ccW/T/++GN5eHioY8eOtri0fBXqIX8AAAAAAAAAgLw1bNhQ3bp109ixYxUTE6NKlSppyZIlioyM1MKFC83t+vbtq127dlk8FHHYsGH69NNP1bFjR40cOVIGg0GzZ89W6dKl9cYbb5jbubu765133tHLL7+sbt266YknntCePXu0bNkyTZ06VQEBAXa9ZhLMAAAAAAAAAFBEvvjiC02cOFFLly5VXFycateurU2bNqlp06a37eft7a2dO3fqtdde05QpU5Sdna3mzZtrzpw5CgwMtGg7bNgwGQwGzZo1Sxs3blRISIjmzJmjV1991ZaXlicSzAAAAAAAAABQRNzc3BQWFqawsLB82+zcuTPP8nLlymn16tUFmmfQoEEaNGiQNUssUpzBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAq5BgBgAAAAAAAABYhQQzAAAAAAAAAMAqJJgBAAAAAAAAAFYhwQwAAAAAAAAAsAoJZgAAAAAAAACAVUgwAwAAAAAAAACsQoIZAAAAAAAAAGAVEswAAAAAAAAAAKuQYAYAAAAAAAAAWIUEMwAAAAAAAADAKiSYAQAAAAAAAABWIcEMAAAAAAAAALAKCWYAAAAAAAAAgFVIMAMAAAAAAAAArEKCGQAAAAAAAABgFRLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAq5BgBgAAAAAAAABYhQQzAAAAAAAAAMAqJJgBAAAAAAAAAFYhwQwAAAAAAAAAsAoJZgAAAAAAAACAVUgwAwAAAAAAAACsQoIZAAAAAAAAAGAVEswAAAAAAAAAAKuQYAYAAAAAAAAAWIUEMwAAAAAAAADAKiSYAQAAAAAAAKAYxcfHa/DgwQoMDJSnp6datGihn3/+ucD9T548qXbt2snLy0sBAQHq06ePrly5cts+y5cvl4ODg7y8vO5q7c531RsAAAAAAAAAYLXs7Gx17NhRR48e1ZtvvqmSJUtq3rx5at68uX766Sc9/PDDt+1//vx5NW3aVL6+vpo2bZqSk5P13nvv6fjx4zp48KBcXFxy9UlOTtaoUaPk6el51+snwQwAAAAAAAAAxWTNmjXat2+fVq9era5du0qSunfvrsqVK2vSpElasWLFbftPmzZNKSkp+umnn1S+fHlJUoMGDdSmTRstXrxYgwcPztVnypQp8vb2VosWLbR+/fq7Wj9HZAAAAAAAAABAMVmzZo1Kly6tZ555xlwWGBio7t27a8OGDUpPT79t/7Vr16pTp07m5LIktW7dWpUrV9aqVatytT99+rTmzJmj2bNny9n57vcfF2oEo9Eoo9F415P+HeTcB+4H7IF4gy0RX7An4g22QmzBnog32AqxBXsgzoDCyflZSUxMtCh3dXWVq6trkcxx5MgR1a1bV46OlnuBGzRooE8++US//fabatWqlWffCxcuKCYmRvXq1ctV16BBA4WHh+cqHzFihFq0aKEOHTrkmYAurEIlmLds2SIPD4+7nvTvZOvWrcW9BNxHiDfYEvEFeyLeYCvEFuyJeIOtEFuwB+IMKJjr169LkkJCQizKJ02apMmTJxfJHNHR0WratGmu8qCgIEnSxYsX800wR0dHW7S9tf+1a9eUnp5uToZ/++232rJli44ePVoka5cKmWBu27atfHx8imzyvzKj0aitW7eqTZs2MhgMxb0c/M0Rb7Al4gv2RLzBVogt2BPxBlshtmAPxBlQODk7l6OioizyovntXs7OzlZGRkaBxnZ1dZWDg4NSU1PzHM/NzU2SlJqamu8YOXV36u/q6qqMjAy99tprGjp0qKpXr16gNRZEoRLMBoOBL59bcE9gT8QbbIn4gj0Rb7AVYgv2RLzBVogt2ANxBhRMzs+Jj49PgTbe7t69Wy1atCjQ2CdPnlTVqlXl7u6e5znLaWlpkiR3d/d8x8ipK0j/OXPm6OrVq3rrrbcKtL6CuvtTnAEAAAAAAAAAqlq1qhYtWlSgtjnHWgQFBZmPurhZTllwcPAdx8ivf0BAgFxdXZWQkKApU6Zo2LBhSkxMNO/MTk5OlslkUmRkpDw8PFSqVKkCrf1mJJgBAAAAAAAAoAiUKVNG/fv3L1Sf0NBQ7dmzR9nZ2RYP+jtw4IA8PDxUuXLlfPuWLVtWgYGBOnz4cK66gwcPKjQ0VJIUFxen5ORkzZw5UzNnzszVtmLFiurSpYvWr19fqLVLJJgBAAAAAAAAoNh07dpVa9as0bp169S1a1dJ0tWrV7V69Wp17tzZ4nzl33//XZL00EMPmcueffZZLVmyRFFRUeaHEX7//ff67bff9Nprr0mSSpUqpa+//jrX3O+//77279+vL7/8Ms8HBRYECWYAAAAAAAAAKCZdu3bVP/7xDw0YMEC//PKLSpYsqXnz5ikrKyvXecmtWrWSJEVGRprLxo0bp9WrV6tFixZ69dVXlZycrLCwMNWqVUsDBgyQJHl4eOipp57KNff69et18ODBPOsKigQzAAAAAAAAABQTJycnhYeH680339T777+v1NRU1a9fX4sXL1aVKlXu2D8kJES7du3S66+/rjFjxsjFxUUdO3bUrFmzLHY/2woJZgAAAAAAAAAoRv7+/vrss8/02Wef3bbdzTuXb1ajRg1t3ry50PMuXrxYixcvLnS/mzneuQkAAAAAAAAAALmRYAYAAAAAAAAAWIUEMwAAAAAAAADAKiSYAQAAAAAAAABWIcEMAAAAAAAAALAKCWYAAAAAAAAAgFVIMAMAAAAAAAAArEKCGQAAAAAAAABgFRLMAAAAAAAAAACrkGAGAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAqzgXpFFWVpYk6fz58/Lx8bHpgv4qMjMzdfXqVV24cEHOzgW6jYDViDfYEvEFeyLeYCvEFuyJeIOtEFuwB+IMKJzExERJ/8uPIrcCfZOcOXNGklSjRg2bLgYAAAAAAAAA7jVnzpxR/fr1i3sZ9yQHk8lkulOjuLg4BQQEKCoqih3M/89oNGrLli1q27atDAZDcS8Hf3PEG2yJ+II9EW+wFWIL9kS8wVaILdgDcQYUTmJiokJCQnTt2jX5+/sX93LuSQXawezk5CRJ8vHxIcH8/4xGozw8POTj48MXMmyOeIMtEV+wJ+INtkJswZ6IN9gKsQV7IM4A6+TkR5EbD/kDAAAAAAAAAFiFBDMAAAAAAAAAwCokmAEAAAAAAAAAViHBDAAAAAAAAACwCglmAAAAAAAAAIBVSDADAAAAAAAAAKxCghkAAAAAAAAAYBUSzAAAAAAAAAAAq5BgBgAAAAAAAABYxdnWE6xdu9b8388++2yebaIdHMz/HWQy5eqXn/zGK4iVK1dq3bp1WrVqldVj2NIPP/yg0aNHa+/evcW9FAAAAAAAAADI0z29g7lEiRL5vu5Gdna2xo0bp4kTJ5rLJk6cqFq1asnZ2VkjRoy44xguLi7q3r27SpQooYCAADVq1Ej//ve/ZTQa72ptOR577DEZDAZt2LDhtu0uX76sF154QaVLl5aHh4dq1KihDz/88LZ9duzYoRYtWsjX11d+fn656qdPn64HH3xQPj4+KlOmjPr376/4+Hhz/e+//6727dvL399fZcuW1cyZM2873y+//KJWrVrJ399fZcqU0eDBg3X9+nVzffPmzeXq6iovLy/z6+LFi/mO98ADD2j9+vUWZZGRkXJwcLBY582io6P15JNPKjg4WA4ODoqIiMh3/HHjxsnBwSHXHAsWLFD58uXl6empjh07Kjo6Ot8x2rdvb3E9bm5ucnR01NWrVy3uyxNPPCFvb28FBARo4MCB+Y43cOBAffbZZ/nW3+zEiRN64oknVLJkyTzvyXvvvafatWvLx8dH5cqV08iRI5WRkWGuj4mJ0fPPP6/AwEAFBgZq5MiRysrKyne+/v37y8XFxeJ69+/fb65/5ZVXFBISIh8fH5UtW1YjRoywmC8v33zzjZo2bSpvb2+VKFFCDRo00Pz58/Ntf7uf3/T0dDVv3lylSpWSj4+Pqlatqk8++cSizcmTJ/XYY4/Jw8NDlStX1saNG/Oda/ny5RbX6uXlJQcHB82ePdvcZsOGDeZ7XLFiRc2ZM+e21wsAAAAAAPBXZZME89q1a82v/MoLskPZVsLDwxUQEKBatWqZyypVqqSZM2fqySefLPA4M2bMUGxsrC5fvqwZM2ZoyZIl6ty5s0z/vwv7bvXr1++2yeL4+Hg99thjSkpK0sGDB5WQkKAPP/xQYWFhevPNN/Pt5+npqRdeeMEiIXazrl276siRI0pMTNRvv/2mjIwMjRw5UpKUlZWlJ598UnXr1lVMTIy2b9+uDz/8UCtWrMh3vp49e6pKlSq6fPmyjh8/rqNHj+qdd96xaPPuu+8qOTnZ/AoODr7drSk0R0dHtWvXLlfS+FZHjx7VN998o6CgIIvy7du3a/To0Vq9erViYmJUunRp9erVK99xvvvuO4vrGTRokFq3bq2SJUtKki5evKiWLVuqe/fuiomJUXR0tF5++eW7vk5JMhgM6t69uxYvXpxnfVZWlhYuXKjY2Fj9+OOP2rlzpyZPnmyu79Onj1xdXXX27FkdPXpU33//vd59993bzjls2DCL623UqJFF3a+//qrExEQdPXpUR48eve0/Snz88cfq16+fBg0apPPnz+vq1av6+OOPtWnTpnz73O7n19nZWR988IEuXryoxMRErVu3ThMnTtSePXskSUajUZ07d1arVq107do1zZ49Wz179tSZM2fynKtXr14W17pr1y45OjqqW7dukm4k6Lt3767Ro0crISFB69ev11tvvaXNmzff9h4CAAAAAAD8FdlsB/Ptdh/f7Q7ku7Vx40a1bNnSoqxfv35q3769fHx8Cj2ewWBQs2bNtG7dOu3atUvfffedJOnIkSNq0qSJAgICFBgYqB49eig2NlbSjR2ODz74oEUy+scff1RAQIDS0tIkSa1atdLOnTuVlJSU57z//ve/5ezsrJUrV6pChQoyGAxq0aKFli1bptmzZ+uPP/7Is1+DBg3Up08fPfTQQ3nWP/zww/L19TW/d3R01OnTpyVJp06d0qlTpzRp0iQZDAZVqVJFAwcOzLUj9GZ//PGHevfuLRcXFwUGBurJJ5/U8ePH821vC6VLl9awYcPUoEGDfNtkZWXpxRdf1IcffigXFxeLukWLFql3795q2LChPD09NX36dO3atSvfe3yztLQ0LV++3GKH8pw5c9SyZUsNHDhQ7u7ucnV1Vd26da2/wJvkfCY1a9bMs3706NGqX7++DAaDypUrp759+5qPYklJSdHWrVs1adIkeXh4KDg4WCNGjLjt53sn1apVk6enpyTJZDJZxNOtkpKSNHr0aL3//vvq06ePfH195eDgoEcfffS2Cebb/fw6OTmZdzdLkoODgxwcHMwJ5N27dys2NlYTJ06Um5ubOnXqpGbNmmnp0qUFur6FCxeqbdu2CgkJkSSdP39eJpNJvXr1koODgx555BHVr1/f7jEPAAAAAABgD/f0ERm2EhERoapVqxb5uBUrVtSjjz6qXbt2SbqRmJ0xY4YuX76sEydO6MKFCxozZowkqWPHjrp+/bq5rXQjidmjRw+5ublJkkJCQuTm5qYTJ07kOd/mzZvVvXt3OTk5WZQ//vjjCg4O1rZt2yTd2GndqVOnQl3LihUr5OPjI19fX3399dfmHdHZ2dmSZJEYz87O1rFjx/Ida+TIkfriiy+UmpqqS5cu6euvv1bnzp0t2kyZMkUBAQGqU6eOvvjii0KtNS979+7N8/iP25kzZ45q166tZs2a5ao7duyYQkNDze9Lly6tMmXKFChp+PXXX8vR0VFPP/20uWzXrl3y8vLSY489phIlSujxxx/XgQMHCrXeHCtWrFDt2rWt6puzlpz+JpPJ/MqRnZ2ts2fPKjExMd8xvvjiCwUEBKhGjRqaNWuWOU5yzJgxQ15eXipVqpSOHj2qV155Jc9x9u/fr+vXr6t79+63XXPt2rVvu2s+L506dZKbm5uqV6+u0qVLmz+PY8eOqUaNGjIYDOa2oaGht43pHKmpqVqxYoVefPFFi77NmjXTkiVLlJWVpZ9//llHjx5V27ZtC7VeAAAAAACAvwKbPeQvZ6dufhp37aq8TrA1P/BvzZo7jmGtuLg4q3YqF0TZsmV17do1SdIjjzxiLi9durRef/11c6LW2dlZ/fr10+LFi9W8eXOlpaXpq6++MieFc/j4+CguLi7Pua5evZrvURLBwcG6cuWKJJmT2oXRs2dP9ezZU+fOndPChQv14IMPSrqxO/aBBx7Qv/71L7399ts6c+aMPv/889smH9u3b68BAwbI29tbWVlZeuqpp/TCCy+Y66dPn67q1avLw8ND27dvV/fu3eXt7W2RkL1Vr169LBKCtyY0mzRpku95zHn5448/9OGHH+rnn3/Osz45OTlXwtrPzy/f3eU3++yzz9SnTx+LXdHXrl3Tl19+qf/85z+qX7++PvnkE3Xq1Em//fab/P39C7xu6X+flTU+/fRT/fDDDzpy5IgkycvLS02bNtWkSZM0f/58Xbt2TXPnzpUkJSYm5vlzM3z4cIWFhSkgIECHDh1S9+7d5ejoqNdee83cZsyYMRozZoxOnjyp5cuXq0yZMnmu58qVKypZsmSuHeS3Kkjy91abNm1SVlaW9u7dq127dsnd3V3S3X22a9askYuLi8XRHI6Ojurfv79eeeUVDRw4UNnZ2ZoxY8Zd/SMAAAAAAADAvcomO5ifffZZ8+t25UG3eTXu2rVAY1jD39//tgnRu3HhwgUFBARIks6cOaMuXbooODhYPj4+6t27t8VD3l544QWtXbtWycnJ+vrrr1W+fHnVq1fPYrzExMR8E44lS5bM92F4Fy9eVGBg4F1fT/ny5dWpUydzAi3nwYNHjhxR2bJl1atXLw0YMCDfY0/i4uLUunVrDRo0SNevX9e1a9fk6emp3r17m9s0atRIvr6+MhgMeuKJJzRkyBB99dVXt13X8uXLFR8fb35Zk3C82eDBg827qPPi5eWlhIQEi7KEhAR5e3vfdtw///xTO3bsyPUAPy8vLz311FN67LHH5OLion/+859yc3OzeDierS1fvlwTJkzQli1bLM6cXr58uVJTU1WpUiW1bt1aPXv2lIODQ75xWLduXQUGBsrJyUn/+Mc/NGbMmHw/v2rVqumRRx5R//7986wvWbKkrl69eseHAFrLyclJzZo10+XLlxUWFibJ+s9WunE8Rt++fS3+sWP79u0aOnSo1q1bp4yMDJ0+fVrLly/Xxx9/XLQXAwAAAAAAcA+4L4/ICA0N1a+//lrk40ZGRuqnn35S8+bNJUlDhw5V2bJl9csvvygxMVHLli2zOHqgSpUqeuSRR7RmzRotXrxYAwYMsBgvKipKaWlp+Z6l26ZNG61evVpZWVkW5Xv37tXFixfVqlWrIrkuo9GoyMhIGY1GSVKNGjW0ZcsWXb16VREREUpPT8/zWAlJ+v3335Wamqrhw4fLxcVF/v7+GjJkiL799tt853N0tH9Yfv/99xoxYoRKliypkiVLKioqSn379jXvwq1du7YiIiLM7XMezHfzgyLzsnDhQjVo0CDXZ3jz7vbisHz5co0YMUL/+c9/cu2sLVeunNauXatLly7pt99+k7e3t+rVq2c+R/lO7vT5GY3GfM9gbty4sTw8PLR69eqCXYiVbl5D7dq19d///tcc39KNY3Tu9NmeOXNGu3fvtjgeQ5J+/vlnNWzYUM2bN5ejo6Meeughde3a9bYxDwAAAAAA8Fd1XyaYO3furB07dliUGY1GpaWlKSsrS1lZWUpLS7NION2O0WjUnj179Oyzz6pZs2Zq166dpBu7j729veXj46OoqCjzjsmbDRw4ULNmzdLu3bstdvVKN3ZCNm3aNN+dlK+99prS09PVq1cvRUVFyWg0ateuXerdu7eGDx+e70P8srOzlZaWZt4lmpaWZn6woCTNnz9fMTExkm4cHTFmzBi1bNnSvEvz2LFjSklJUUZGhtatW6fPP/9cEyZMyHOuqlWrysvLS/PmzVNmZqaSkpL06aefqk6dOpKk+Ph4hYeH6/r168rKytL333+v+fPn39UO9fzcfJ0ZGRlKS0szH60RFRWliIgI8ys4OFhz5szRv/71L0nSgAEDtGzZMh08eFDXr1/XuHHj1KxZM/PRIXnJysrS4sWLc+1elqRBgwZpw4YNOnDggLKysjR//nylp6ercePG+Y6X87nd/MqLyWRSWlqa0tPTJUnp6elKS0sz/+PGl19+qeHDh+u7774zfw43+/XXXxUfH6+srCzt3LlTU6ZM0dtvv53vulatWqXExESZTCYdPnxYM2bMMH9+ycnJWrRokeLj42UymXT8+HFNmTJFTzzxRJ5jeXt7691339Xw4cO1fPly87gREREWx1Dc6nY/vxEREdq6datSU1OVmZmpb7/9VsuXLzevoWnTpgoICNDUqVOVnp6u8PBw7dy5U3379s13PunGPx40atQo13nujRo10qFDh/TDDz/IZDLp7NmzWrt2bZ73GgAAAAAA4C/PVAAJCQkmSaaEhISCNLewZs0a8+tmF6U7vu40hrUyMzNNDzzwgOn48ePmsn79+pkkWbz69euX7xiSTC4uLiYvLy+Tn5+fqWHDhqbZs2ebMjIyzG327Nljql69usnT09NUp04d06xZs0y+vr4W4yQnJ5u8vb1NTz/9dK45WrZsaVq3bt1tr+XixYum/v37mwIDA01ubm6mqlWrmubOnWvKzs42t5k6daqpXbt25vc7duzIda03h0LXrl1NgYGBJg8PD1O5cuVMgwcPNsXExJjrx48fbwoICDB5eHiYGjVqZNq7d6/Fmtq1a2eaOnWq+f3evXtNjz32mMnX19cUEBBg6ty5s+n33383mUwmU0xMjKlBgwYmb29vk7e3t6lWrVqmhQsX3vaaK1SoYPr6668tyv7880+TJFNcXJzJZDKZdu/ebfL09LRok9c179ixo8BzfPzxx6ayZcuaPDw8TO3btzddvHjRXLds2TJT9erVLdp/++23Jk9PT1NiYmKecyxevNj0wAMPmLy8vEyNGjUyHTx4MN9r7tOnT76f2a1z59yLW19//vmnyWQymR544AGTs7OzydPT0/y6uf+8efNMpUqVMrm7u5tq165tWr9+vcVahgwZYhoyZIj5/eOPP27y9fU1eXp6mipXrmx69913TVlZWSaT6UZ8t27d2hQQEGDy9PQ0VaxY0TRy5EhTSkpKvtdqMplMGzZsMDVp0sTk6elpCggIMNWvX9+0YMECc3316tVNy5YtM7+/3c/voUOHTPXq1TN5e3ubfHx8TLVr1zbNnz/fYr7//ve/psaNG5vc3NxMlSpVynXNnp6ept27d5vfZ2ZmmoKCgkyff/55nuv/7LPPTFWrVjV5eXmZgoODTcOGDTOlpqbe9pqLU0ZGhmn9+vUW31+ArRBvsBViC/ZEvMFWiC3YA3EGFM7d5EXvFw4m001nNuQjMTFRvr6+SkhIsNnD8eztyy+/1Pr16+941m9+jEajwsPD1aFDB4vzV63x0EMPae7cuerUqZO5bN++fRo1apT27t17V2Pj76Eo4w24FfEFeyLeYCvEFuyJeIOtEFuwB+IMKJy/Y160qN2XR2RIUo8ePaxOLhellStXKisrS+3bt7cob9y4McllAAAAAAAAAPc05+JewP2sWrVqunbtmpYsWSInJ6fiXg4AAAAAAAAAFAoJ5mJ08uTJ4l4CAAAAAAAAAFjtvj0iAwAAAAAAAABwd0gwAwAAAAAAAACsQoIZAAAAAAAAAGAVEswAAAAAAAAAAKuQYAYAAAAAAAAAWIUEczHbuXOn/Pz8zO+bN2+uf//737ft065dO4WHh9t2YX8Dbdu21bZt24p7GQAAAAAAAMDf1n2RYG7evLlcXV3l5eUlb29v1ahRQ6tXry6y8Q8cOKAWLVrI399ffn5+ql27thYvXlxk499sx44dunLlijp06KBp06bJy8tLXl5ecnd3l4ODg/m9l5eX9uzZY5M13M5bb72l0qVLy8fHR7169VJycrLV7VetWqXGjRvLw8NDoaGhufr2799fLi4uFte8f/9+c/348eP15ptvFtm1AQAAAAAAALB0XySYJendd99VcnKyEhMTNXPmTPXq1Utnz56963GTkpLUrl07Pffcc4qJidGVK1e0cOFClSpVqghWndtHH32kAQMGSJLGjRun5ORkJScn67vvvpOvr6/5fXJysh5//HFzP6PRaJP13GzRokVauHCh9uzZo3Pnzik2NlbDhw+3un1AQIBGjBih8ePH5zvGsGHDLK65UaNG5rqmTZsqPj5eP/zwQ9FcIAAAAAAAAAAL902COYeDg4M6duwoPz8/nTp1SpK0ePHiXDtkQ0NDtXjxYhmNRpUuXVo7d+60qK9Vq5b27t2r3377TSkpKRo8eLAMBoMMBoPq16+vDh06mNvGxMSoV69eCgoKUnBwsEaMGKH09PRCr91oNOo///mPWrZsece2kydPVqdOnfTSSy8pICBAY8aM0eTJk/XUU09ZtPPz87O4tpUrV6p27dry8/NT/fr1tW/fvgKv7/PPP9fw4cNVuXJl+fn56Z133tGXX36p1NRUq9q3bt1a3bt3V9myZQu8hps5ODioZcuW2rhxo1X9AQAAAAAAANzefZdgzs7O1oYNG5SamprnsQu3MhgM6tOnj8WRF/v371dMTIwaNmyohx9+WL6+vnr++ee1YcMGXbp0yaK/yWTSk08+qTJlyuj333/X8ePHdfToUU2ZMqXQaz99+rSuX7+uKlWqFKj9f/7zHzVs2FAxMTF655137tg+PDxcI0eO1OLFi3Xt2jWNHTtWnTt3VmxsbIHmO3bsmMU9DQ0NVVpamn777bciaZ+XL774QgEBAapRo4ZmzZql7Oxsi/rq1asrIiKiwOMBAAAAAAAAKLj7JsE8duxY+fn5ydPTU88884wmTJhQ4GMsBg4cqLVr15rPB168eLGef/55GQwG+fj4aP/+/QoICNDrr7+u4OBgNWzYUD///LMk6fDhwzp9+rTCwsLk4eGhEiVKaNy4cVqxYkWhryEuLk4eHh5ycnIqUPuaNWuqf//+cnZ2loeHxx3bf/TRR3rzzTdVt25dOTo66plnnlHVqlUL/EDB5ORkiwcWGgwGeXh4KCkpqUja32r48OE6deqU+ViSuXPnau7cuRZtfHx8FBcXV6DxAAAAAAAAkFu0g4OiHRyKexm4R903Cebp06crPj5eqampOnXqlJYsWaIFCxYUqG+1atVUs2ZNrVmzRmlpafrqq6/Uv39/c32lSpU0f/58/f777zp//rwqVaqkJ598UiaTSZGRkYqPj1dAQID8/Pzk5+enrl3/r717j4+zLvPGf00PhJbSQssphSI8KoKCIAcPEQGFlgpadSeoRUAOgkfUXQ+LCFseBDyBusoqeEC0iooz4BYWHyy+QNG4IiorqygefsUWIkKBhp5oaOf3R3vHmWSSzNyZY/J+8+qLZOaee66ZfDOT+cw1190dDz/8cNW3Yeedd47169fH5s2bK9p+7733rmr/K1asiPPPP3+gzp122inuueeeePDBByu6/IwZM2LNmjUD3z/99NOxfv362HHHHWuy/WCHHnpo7LrrrjF58uR48YtfHOedd1585zvfKdmmr68vdt5554r2BwAAAABUZ8IEzMWe9axnxQknnBA333xzRGwNOtevX1+yzeBRF2eddVZce+21ceONN8YznvGMeMELXlB233Pnzo3zzjsvHnzwwXjsscdi3rx5sdtuu8UTTzwx8G/NmjUD3dDVePaznx3Tp08fmB09mkmTSn+8g2/nunXroq+vb+D7efPmxRVXXFFS67p16+K8886r6Pqe//znl4yjuOeee6KjoyP222+/mmw/msG3NyLid7/7XUWjUAAAAACA6rVEwHxb3BbPjefGbXFbQ65vxYoVccstt8RBBx0UEVtn//7lL3+JO++8M55++un4xCc+MWTu8Bve8Ib45S9/GR/72MfizDPPHDj997//fXz84x+PFStWxJYtW+KJJ56IK6+8Mvbbb7+YM2dOHHHEETFv3ry44IIL4sknn4xCoRAPPPBAfP/736+67qlTp8bxxx8ft99+e6rbfeihh8bPfvaz+P3vfx8bN26M888/PzJFH2945zvfGZ/85Cfjl7/8ZRQKhVi/fn3cdtttsWrVqojYOhpkn332GXb/Z5xxRnz2s5+NP/7xj7FmzZr4t3/7tzj55JNj2rRpqbbfvHlzbNy4Mfr7+6NQKMTGjRtLDo54/fXXR19fXxQKhbj77rvjYx/7WGSz2ZLruP322+NVr3pVqvsLAAAAABhZ0wPmQhTi/Dg/7ov74vw4PwpRqMv1/Ou//mvMmDEjZsyYEUceeWQcd9xx8W//9m8RsbWj+ROf+ER0d3dHZ2dnPPXUU/G85z2v5PI77rhjnHTSSfH73/8+3vSmN5Wc/utf/zpe9rKXxcyZM+M5z3lOPPLII3HTTTdFRMTkyZPj5ptvjgcffDAOOOCAmDVrVpx44onxpz/9KdXteOc731lywMFqvOIVr4i3vvWt0dXVFc961rPioIMOKhlH8epXvzo+9rGPxdlnnx0777xz7LvvvvHv//7vAwfO++tf/xovfelLh93/mWeeGWeccUa89KUvjb322it22mmnkpnIl112Wbzyla+sePulS5fGtGnT4pxzzonf/OY3MW3atJIDHF555ZWx9957x4477hhvetOb4h3veEe8733vGzj/zjvvjJkzZ8bLXvayVPcXAAAAADCyTKFQGDXR7evri1mzZsWaNWti5syZNS3g1rg1FsbCge//X/y/OD6Or+l11MrFF18cv/nNbyKXy0V/f3/ccsstccIJJ8TUqVMbWsfxxx8f733ve0vC2kY49thj48orr4wDDjigodeb1vHHHx/vf//7Y/78+c0uZcyaud4Y/6wvGsl6o16sLRrJeqNerC0awTojreQgf52jR4njSj1z0fFiSjOvvBCFuDAujMkxOTbH5pgck+PCuDAWxILIRGsdmfKRRx6JL33pS6m7h2vp1ltvbcr1/vCHP2zK9abVrPsJAAAAACaKpo7I+EH8IH4Rv4jNsTkiIjbH5vhF/CJ+ED9oZllDXHrppbHPPvvEiSeeGMcee2yzywEAAAAAaAlNC5iLu5eLJV3M9ZrFnMaHP/zhWLduXVx11VXNLgUAAAAAoGU0LWAe3L2caNUuZgAAAAAASjUlYB6uezlR6y7mffbZJ773ve/VZF8AAAAAAGzVlIB5uO7lhC5mAAAAAIDW1/CAebTu5UQrzmIGAAAAAOAfGh4wj9a9nKh1F/Nvf/vbOPTQQ2PmzJlx/PHHx0MPPRQrVqyITCYTTzzxxMB2733ve+P000+PiIjXve51cdFFF5Xs521ve1u8/e1vr0lNAAAAAADtrKEBc9K9PKnCq50Uk2rWxfzlL385rrvuuvjb3/4We+yxR5xyyimjXuass86Kr3/961EobL3+jRs3xre//e0488wzx1wPAAAAAEC7a2jAvCk2xV/jr7EltlS0/ZbYEitjZWyKTWO+7re//e2x//77x/Tp0+MTn/hE3H777bFq1aoRL/PKV74ynnrqqfjRj34UERE33nhj7LXXXnHEEUeMuR4AAAAAgHY3pZFX1hEd8Yv4RTwSj1R8md1it+iIjjFf9zOe8YyBr3fffffo6OiIqVOnjniZyZMnx2mnnRbXXnttHHPMMXHttdfqXgYAAAAA2KahAXNExLxt/zXaAw88MPD13//+93jqqadizz33jIiI9evXx0477RQREb29vTFt2rSBbc8888w49NBD40Mf+lD86Ec/iqVLlza0bgAAAACAVtXwg/w1y9VXXx1/+MMfYsOGDfGv//qvcdRRR8Vee+0Ve++9d3zta1+LLVu2xO233x633HJLyeWe/exnx6GHHhpveMMb4pWvfGXstttuTboFAAAAAACtZcIEzGeeeWYsXrw4dt9993jwwQfjm9/8ZkREXHPNNfHVr341Zs2aFVdffXW88Y1vHHLZs846K/7nf/4nzjjjjEaXDQAAAADQsho+IqMZVqxYERERH/7wh4ecd+yxx8b9998/4uX32Wef2H333eOEE06oR3kAAAAAAG1pwnQwp7Vp06a44oor4uyzz44pUyZEHg8AAAAAUBEB8wh+9KMfxc477xyPPvpofOADH2h2OQAAAAAALUVL7giOPvroWLduXbPLAAAAAABoSTqYAQAAAABIRQczAAAAAFBWPp+PiIiuJtdB69LBDAAAAABAKo0PmFeujPjVryr/t2pVw0sEAAAAAEhj7dq1sWTJkli4cGHMnj07MplMXHvttUO2+9KXvhRHH3107L777tHR0RH77rtvnHHGGbFixYoh22YymbL/Pvaxj9X/Bo2isSMynnoq4ogjIh5+uPLL7LFHxIoVER0ddSsLAAAAAKAWHn300bj44otj7733joMPPjjuuOOOstv9+te/jn333TcWLVoUO++8c/x//9//F1/60pfi5ptvjv/5n/+JuXPnlmw/f/78OO2000pOe8ELXlCvm1GxxgbM220XsffeEY88ErFly+jbT5oUMW/e1ssBAAAAAA2VzWYH5jBTmc7Ozujt7Y099tgj7r777jjiiCPKbvf5z39+yGmvfe1r4/DDD4+vf/3rcd5555Wct99++8Upp5xSl5rHorEjMjKZiI98pLJwOWLrdh/5yNbLNcHpp58e733veyMiYsWKFZHJZOKJJ55oSi0AAAAAQOvr6OiIPfbYI9Vl99lnn4iIYTPIDRs2xMaNG1NWVh9VdTD39/dHf3//2K7x5S+PyYcdFpl77onM5s3DblaYPDkKhxwSm1/+8oixXmdKW7ZsiS1btpTc7uTr4u+h3qw36sn6opGsN+rF2qKRrDfqxdqiEawz0to8bVpETLy1k9zevr6+ktM7Ojqio0YjfVevXh2bN2+Ov/71r3HxxRdHRMSxxx47ZLtrr702Pv/5z0ehUIgDDjggLrjggjj55JNrUsNYVBUw/+AHP4jp06eP+Up3fdWrouuXvxxxm8zmzfGzV70qHvn+98d8fWmtWrUqHn/88bjlllvi4W1zo3/wgx/EjBkzBrZZvnx5s8pjArLeqCfri0ay3qgXa4tGst6oF2uLRrDOqMaUKVPil9/61tZvbrmlucU02Pr16yMiYt68eSWnL1myJC666KKaXMeee+4ZTz31VEREzJkzJz772c/G/PnzS7bp6uqK17/+9bHvvvvGQw89FP/xH/8Rb3rTm2LNmjXx9re/vSZ1pFVVwLxgwYKYOXPm2K/1la+MLTffPGwXc9K9fMT559dsPMZnPvOZ+NznPhePP/54zJkzJz70oQ/FmWeeGT/84Q/jwgsvjD/+8Y8xd+7cuOSSS+LVr351RETk8/nYaaed4oQTThg4euOCBQtip512iv7+/li+fHnMnz8/pk6dWpMaYTjWG/VkfdFI1hv1Ym3RSNYb9WJt0QjWGWksW7YsXnTqqRERsfuaNU2uprGSzuWVK1eW5KK16l6OiPj+978fGzdujPvuuy++8Y1vxLp164Zs89Of/rTk+zPPPDMOO+ywOP/88+P000+Pads6zJuhqoB56tSptXvwufTSiIULy56V2bw5MpdeGpNqdHC/+++/P5YsWRK/+tWvYv/994+HH344Hn744bjvvvti8eLFkc/n45hjjomenp448cQT46677ornPOc5MWnSpJg0aVLJ7R58H9T0PoFRWG/Uk/VFI1lv1Iu1RSNZb9SLtUUjWGdUa/KGDRERE27dJLd35syZtWm8LePlL395RES88pWvjNe85jVx4IEHxowZM+Jd73rXsJfZbrvt4l3vele87W1vi1/+8pdx5JFH1qW2SjT2IH/FFiyIOOKIiMmTS0+fPHnr6QsW1OyqJk+eHIVCIX7729/Ghg0bYvfdd4/nP//5cfXVV8fpp58er3jFK2LSpElx5JFHxqte9aq4/vrra3bdAAAAAACVeOYznxkveMEL4pvf/Oao2yZjOx577LF6lzWi5gXMmUzERz4SMXhExubNW0+v0WiMiK0/mK997Wtx5ZVXxu677x4LFiyIe+65J1asWBFXXXVV7LTTTgP//vM//zMeeuihml03AAAAAEClNmzYEGsqGEXyl7/8JSIidt1113qXNKLmBcwRQ7uY69C9nHj9618ft99+ezz88MNx8MEHx6mnnhrz5s2L97znPfHEE08M/Fu7dm184QtfqPn1AwAAAABERDz99NPx+OOPDzn9rrvuinvvvTcOP/zwgdMeeeSRIds9+eST8ZnPfCZ22WWXOOyww+pa62iqmsFcc0kXczKLuQ7dyxERf/jDH+Kvf/1rHHnkkbHddtvFjBkzYsqUKfHWt741Fi5cGMcff3wcddRR8fTTT8evfvWr2GmnneKAAw6oaQ0AAAAAwMRw5ZVXxhNPPDEwKeGmm26KVatWRUTEueeeG4VCIebNmxdveMMb4nnPe17ssMMOce+998ZXv/rVmDVrVlx44YUD+/qP//iP+N73vhevfvWrY++9947e3t645ppr4q9//WssXbo0tqvRcezSam7AHPGPLuZf/KJu3cubNm2KCy+8MH73u9/FpEmT4uCDD45rr702Dj744PjWt74VF1xwQdx3330xadKkOOSQQ+Lyyy+veQ0AAAAA0E56kybQXK65hbShyy+/PB544IGB72+44Ya44YYbIiLilFNOiblz58Zb3vKWuP322yOXy8WGDRti7ty5sXjx4rjgggtin332GbjsS1/60ujp6Ykvf/nLsXr16thhhx3ihS98YVxzzTXxile8otE3bYjmB8yZTMRll0W8+91b/1/j7uWIiIMOOij++7//u+x5r3jFK4b9QVx77bUDX++zzz5RKBRqXhsAAAAAML6sWLFi1G0+85nPVLSv+fPnx/z588dWUB01P2COiDjuuIjf/a7ZVQAAAAAAUIXmHuQPAAAAAIC2JWAGAAAAACAVATMAAAAAUCKfz0dERGeT66D1tcYMZgAAAACg5SyPiK9+9atx67bvd/jnf25mOalkMpl473vfG3vvvXezSxmXBMwAAAAAQFlLM5n485//HIWjj46IiEl/+lOTK6re7373u9h+++3jsssua3Yp45KAGQAAAAAYYlNE/LSjI85961vj3Ne/PiIiJs+d29yiUpg/f36zSxjXzGAGAAAAAIb4dURsmDIljjrqqGaXQgsTMAMAAAAAQ/wsInbbbbfYf//9m10KLUzADAAAAAAM0TN1ahx9zDGRyWRKTr/yyivj8MMPj46Ojnjta19bcl53d3d0dnbGzJkzY999941LLrmk5PyHHnooTjjhhNhhhx1i7733ji996UvDXv+dd94ZM2bMKPk3adKkePe73z2wzU9+8pN48YtfHLNmzYo999wzPvShD8WWLVvGfuOpmIAZAAAAACjxxBNPxJ8mT45jurqGnDd37ty44IIL4uyzzx5y3pIlS2LFihXR19cXP/rRj+K6666Lb3zjGwPnL168OPbYY4/4+9//Ht/97nfjAx/4QPzoRz8qW8PLXvayWLt27cC/P//5zzF58uR44xvfGBERmzdvjte85jXxmte8Jh577LH46U9/Gt/+9rdHDK2pPQf5AwAAAABK/O53v4tMR0cc9aIXDTnvn/7pnyIi4p577olVq1aVnHfQQQcNfJ3JZGLSpEnxxz/+MSIi/vznP8dPfvKTuP7662OHHXaIF73oRfGmN70prrnmmjj66KNHrelrX/taPPvZz46ubaH3mjVr4rHHHos3v/nNMXny5Nhnn33iuOOOi3vvvTf17aZ6OpgBAAAAgBL/+7//G88/8MCYM3t21Zd9xzveEdOnT4+999471q5dG6effnpERPzmN7+Jzs7O2H333Qe2PeSQQ+I3v/lNRfu95ppr4qyzzhr4fvbs2XHmmWfGV77ylejv748///nPcdttt8WJJ55Ydc2kJ2AGAAAAAAZs3rw5/vCHP8TRRx8dmyNiu8cfr+ryn//852Pt2rXxi1/8Ik477bTYeeedIyJi7dq1sdNOO5Vsu9NOO8WTTz456j7vvPPO+Mtf/hKnnXZayemvf/3r44tf/GJMmzYtnvWsZ8WrXvWqWLhwYVX1MjYCZgAAAABgwJYtW+Lpp5+O7WbPjk3bwuFqTZo0KQ4//PDYcccd4/3vf39ERMyYMSPWrFlTst2aNWtixx13HHV/X/nKV2LRokWx6667Dpz2hz/8IV7zmtfEpz/96di4cWM89NBDcd9998V5552XqmbSETADAAAAAAOmTp0az372s+PHP/5xSffy5Llzq95Xf3//wAzm5z//+fHQQw/F3//+94Hz77nnnpK5zeX09fXFd7/73XjLW95Scvq9994be+21V3R3d8eUKVOis7Mz3vzmN8d//dd/VV0n6QmYAQAAAIASz33uc+Puu++OtevWDTnv6aefjo0bN8bTTz8dW7ZsiY0bN8amTZvigQceiHw+H2vXro0tW7ZET09PfPazn43jjz8+IiKe+cxnxktf+tI4//zzY/369XHXXXfFN7/5zZK5yuV861vfijlz5sSCBQtKTj/ssMPioYceiu9973uxZcuWeOSRR2Lp0qXxghe8oHZ3BKMSMAMAAAAAJQ488MDYtGlT9Nx995DzLrnkkpg2bVpceumlcdNNN8W0adMGwt/PfOYzsddee8VOO+0UZ555Zpx77rklIyu+9a1vxYMPPhi77rprZLPZ+MQnPhFHH330wPnPe97z4pvf/GbJ9X3lK1+JM844IyZNKo0y99133/j2t78dF198cey8885x4IEHxm677Raf/vSna3lXMIopzS4AAAAAAGgtu+22W+y6665xR09PLCgKgCMiLrroorjooovKXu7OO+8ccb977rlnfP/73x/2/N/+9rdDTrvrrruG3X7RokWxaNGiEa+T+tLBDAAAAAAMyOfzERGx//77x49uv73J1dDqBMwAAAAAwBAn3XhjPPDXv8aKlSubXQotTMAMAAAAAAyxeenSmLrTTvHj3/0uJs+d2+xyaFFmMAMAAAAAQ0ybNi2OOOKI+PKXvxy/+c1vml1OaqtWrYojjjii2WWMWwJmAAAAAKCs7u7uuO666+JPf/pTs0tJ7dnPfnZks9lmlzFuCZgBAAAAgLIWL14cixcvbnYZtDAzmAEAAAAASEXADAAAAABAKgJmAAAAAABSETADAAAAAEM4MB6VEDADAAAAAJCKgBkAAAAAgFQEzAAAAAAApCJgBgAAAAAgFQEzAAAAAACpTGl2AQAAAABA68hms80ugTaigxkAAAAAgFQEzAAAAABA5PP5yOfzzS6DNiNgBgAAAAAgFQEzAAAAAACpCJgBAAAAAEhFwAwAAAAAQCoCZgAAAAAAUhEwAwAAAACQioAZAAAAACaY3kwmejOZZpfBOCBgBgAAAAAgFQEzAAAAABDZbDYiIvL5fJMroZ0ImAEAAAAASEXADAAAAABAKgJmAAAAAABSETADAAAAAJCKgBkAAAAAgFQEzAAAAAAwwXQWChER0ZvJNLkS2p2AGQAAAACAVATMAAAAAACkImAGAAAAACAVATMAAAAAAKkImAEAAABgAsvn85HP55tdBm1KwAwAAAAACJlJRcAMAAAAABNcV3f3wNfZbLaJldBupjS7AAAAAACg+bq6u6OzUGh2GbQZHcwAAAAAMMEYh0GtCJgBAAAAAEhFwAwAAAAAQCoCZgAAAACY4HpyuWaXQJsSMAMAAAAAERHRm8k0uwTajIAZAAAAAIBUBMwAAAAAAKQiYAYAAAAAIBUBMwAAAABMUA7uV3tr166NJUuWxMKFC2P27NmRyWTi2muvLdlmy5Ytce2118aiRYti3rx5scMOO8SBBx4Yl1xySWzcuLHsfr/yla/EAQccENtvv308+9nPjs997nMNuDWjEzADAAAAwARULlzuLBSaUMn48uijj8bFF18c9913Xxx88MFlt1m/fn2cccYZ8cgjj8Tb3va2+MxnPhMvfOELY8mSJfHKV74yCoN+DldffXW85S1viec973nxuc99Ll7ykpfEu9/97vj4xz/eiJs0oinNLgAAAAAAYLzo7OyM3t7e2GOPPeLuu++OI444Ysg22223Xfz0pz+Nrq6ugdPOPvvs2GeffWLJkiXxwx/+MI477riIiNiwYUN8+MMfjhNPPDFy294UOPvss2PLli3xkY98JM4555zYeeedG3PjytDBDAAAAABQIx0dHbHHHnuMuM12221XEi4nXve610VExH333Tdw2u233x6rV6+Od7zjHSXbvvOd74x169bFf/3Xf9Wg6vSq6mDu7++P/v7+etXSVpL7wf1BI1hv1JP1RSNZb9SLtUUjWW/Ui7VFI1hnDOdFp54am6dNszYGSe6Pvr6+ktM7Ojqio6Oj5tf3t7/9LSIidtlll4HTfv3rX0dExOGHH16y7WGHHRaTJk2KX//613HKKafUvJZKZQqDB3qU0dfXF7NmzYrrrrsupk+f3oi6AAAAAACaav369XHyyScPOX3JkiVx0UUXjXr5ZETGV7/61Tj99NNH3X7+/Plx1113xQMPPBA77bRTRES8613viquuuiqefvrpIdvvtttuceyxx8a3vvWtUfddL1V1MC9YsCBmzpxZr1raSn9/fyxfvjzmz58fU6dObXY5jHPWG/VkfdFI1hv1Ym3RSNYb9WJt0QjWGYlly5aVfP+iU0+NiIjd16xpRjktK+lcXrlyZUkuWo/u5csuuyxuu+22+PznPz8QLkdsncG83Xbblb3M9ttvHxs2bKh5LdWoKmCeOnWqB59B3Cc0kvVGPVlfNJL1Rr1YWzSS9Ua9WFs0gnXGYJO3hZTWRank/pg5c2ZdG2+/853vxAUXXBBnnXVWvP3tby85b9q0abFp06ayl9u4cWNMmzatbnVVwkH+AAAAAACaZPny5XHaaafFiSeeGFddddWQ8zs7O2Pz5s3x97//veT0TZs2xerVq2Pu3LmNKrUsATMAAAAAQBP8/Oc/j9e97nVx+OGHx/XXXx9TpgwdOHHIIYdExNZ5zsXuvvvu2LJly8D5zSJgBgAAAABosPvuuy9OPPHE2GeffeLmm28edtTFK17xipg9e3Z84QtfKDn9C1/4QkyfPj1OPPHERpQ7rKpmMAMAAAAAMLIrr7wynnjiiXjooYciIuKmm26KVatWRUTEueeeG5MmTYrjjz8+Hn/88fjABz4Q//Vf/1Vy+Wc+85nxkpe8JCK2zmD+yEc+Eu985zvjpJNOiuOPPz7uvPPO+MY3vhGXXnppzJ49u7E3bhABMwAAAABMcD25XGSz2WaXMW5cfvnl8cADDwx8f8MNN8QNN9wQERGnnHJKRESsXLkyIiLOO++8IZd/85vfPBAwR0S84x3viKlTp8YVV1wRy5Yti3nz5sWnP/3peM973lPPm1ERATMAAAAAQA2tWLFi1G0KhUJV+zz77LPj7LPPTllR/ZjBDAAAAAATSD6fb3YJjCMCZgAAAACYgIzEoBYEzAAAAAAwQQmZGSsBMwAAAAAAqQiYAQAAAABIZUqzCwAAAAAAGsdYDGpJBzMAAAAAAKkImAEAAAAASMWIDAAAAACYwIzMYCx0MAMAAAAAkIqAGQAAAAAmiHw+H/l8vtllMI4ImAEAAABgghEyUysCZgAAAACYQObMmdPsEhhHBMwAAAAAAKQiYAYAAACAcao3k4neTKbZZTCOCZgBAAAAYAJZvXp1s0tgHBEwAwAAAMA4NNKB/LLZbAMrYTwTMAMAAAAAkIqAGQAAAACAVATMAAAAADDOlBuPMdLIDEhrSrMLAAAAAADqoyeXi4gIE5epFx3MAAAAADCOdXV3R28m0+wyGKcEzAAAAAAApCJgBgAAAAAgFQEzAAAAAEwg2ayJzNSOgBkAAAAAgFQEzAAAAAAApCJgBgAAAAAgFQEzAAAAAACpCJgBAAAAAEhFwAwAAAAAQCoCZgAAAAAAUhEwAwAAAMAE0NXd3ewSGIcEzAAAAAAApCJgBgAAAAAgFQEzAAAAAEwQ2Wy22SUwzgiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVATMAAAAADBOZbPZZpfAOCdgBgAAAAAgFQEzAAAAAACpCJgBAAAAYJzqzWSaXQLjnIAZAAAAAIBUBMwAAAAAAKQypdkFAAAAAAC1lc1mIyKit8l1MP7pYAYAAACAcaqzUIjOQqHZZTCOCZgBAAAAAEhFwAwAAAAAQCoCZgAAAAAAUhEwAwAAAACQioAZAAAAAIBUBMwAAAAAAKQiYAYAAAAAIBUBMwAAAAAAqQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVATMAAAAAACkMqXZBQAAAAAA9dVZKDS7BMYpHcwAAAAAAKQiYAYAAAAAIBUBMwAAAACMI/l8PvL5fLPLYIIwgxkAAAAAxgGhMs2ggxkAAAAAgFQEzAAAAAAANbJ27dpYsmRJLFy4MGbPnh2ZTCauvfbastved999sXDhwpgxY0bMnj07Tj311HjkkUdKtlmxYkVkMpmy/7797W834BaNzIgMAAAAAIAaefTRR+Piiy+OvffeOw4++OC44447ym63atWqOOqoo2LWrFlx2WWXxdq1a+Pyyy+Pe++9N+66667YbrvtSrZfvHhxnHDCCSWnveQlL6nXzaiYgBkAAAAAoEY6Ozujt7c39thjj7j77rvjiCOOKLvdZZddFuvWrYtf/vKXsffee0dExAtf+MKYP39+XHvttXHOOeeUbH/ooYfGKaecUvf6q2VEBgAAAABAjXR0dMQee+wx6nb5fD5e9apXDYTLERHHHXdc7LfffnH99deXvcy6deti06ZNNau1FqrqYO7v74/+/v561dJWkvvB/UEjWG/Uk/VFI1lv1Iu1RSNZb9SLtUUjWGcTi5/z2CX3YV9fX8npHR0d0dHRkXq/Dz74YPz973+Pww8/fMh5L3zhC+OWW24Zcvr//b//Nz7wgQ9EJpOJww47LC699NJYsGBB6hpqpaqA+Qc/+EFMnz69XrW0peXLlze7BCYQ6416sr5oJOuNerG2aCTrjXqxtmgE62x8mjKlNOorF1JSnfXr10dExLx580pOX7JkSVx00UWp99vb2xsRW8dpDNbZ2RmPPfZYPPXUU9HR0RGTJk2KBQsWxOte97rYc8894y9/+Ut86lOfile+8pWxbNmyOPHEE1PXUQtVBcwLFiyImTNn1quWttLf3x/Lly+P+fPnx9SpU5tdDuOc9UY9WV80kvVGvVhbNJL1Rr1YWzSCdTa+LVu2rOT7RYsWNamS8SPpXF65cmVJLjqW7uWIiA0bNgy7n+23335gm46Ojth7773j1ltvLdnm1FNPjec+97nxvve9r70C5qlTp3rwGcR9QiNZb9ST9UUjWW/Ui7VFI1lv1Iu1RSNYZxODn/HYJffhzJkza9p4O23atIiIeOqpp4act3HjxpJtypk9e3acccYZ8bGPfSxWrVoVe+21V81qq5aD/AEAAAAANFAyGiMZlVGst7c3Zs+ePWqXdDK247HHHqt9gVUQMAMAAAAANNCee+4Zu+66a9x9991DzrvrrrvikEMOGXUff/nLXyIiYtddd611eVURMAMAAAAANFg2m42bb745Vq5cOXDaD3/4w7j//vvjpJNOGjjtkUceGXLZBx98MK655pp4/vOfX/ZAgY1U1QxmAAAAAKA1ZbPZyOfzzS6DiLjyyivjiSeeiIceeigiIm666aZYtWpVRESce+65MWvWrDj//PPju9/9brz85S+P97znPbF27dr45Cc/GQcddFCcccYZA/v64Ac/GH/+85/j2GOPjblz58aKFSvi6quvjnXr1sW///u/N+X2FRMwAwAAAADU0OWXXx4PPPDAwPc33HBD3HDDDRERccopp8SsWbNi3rx58aMf/Sj+5V/+Jc4777zYbrvt4sQTT4wrrriiZP7yggUL4qqrror/+I//iMcffzx22mmnOOqoo+KCCy6IQw89tOG3bTABMwAAAABADa1YsaKi7Z73vOfFrbfeOuI2ixcvjsWLF9egqvowgxkAAAAAgFQEzAAAAAAApCJgBgAAAIBxJpvNNrsEJggBMwAAAAAAqQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAADAOJDP55tdAhOQgBkAAAAAxpFsNtvsEphABMwAAAAAAKQypdkFAAAAAABjp3OZZtDBDAAAAABAKgJmAAAAAABSETADAAAAAJCKgBkAAAAAgFQEzAAAAAAApCJgBgAAAAAgFQEzAAAAAACpCJgBAAAAAEhFwAwAAAAAQCoCZgAAAAAAUhEwAwAAAACQioAZAAAAAIBUBMwAAAAAAKQiYAYAAAAAIBUBMwAAAAAAqQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVATMAAAAAACkImAGAAAAACAVATMAAAAA40JvJhO9mUyzy4AJRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAwYeXz+cjn880uA9qWgBkAAAAAgFQEzAAAAABMaF3d3Q4OCCkJmAEAAAAASEXADAAAAABtrjeT0YVNUwiYAQAAAJjQenK5iIi2CWiFybQSATMAAAAAAKkImAEAAACgzXUWChHRPl3YjB9Tml0AAAAAAJBePp+PiIiuJtfBxKSDGQAAAADaVBIuz5kzp8mVMFEJmAEAAACYsLLZbLNLqEo+n2+7gxIyvhmRAQAAAMCElHT/jhc9uVzbBea0Px3MAAAAANAmBMi0GgEzAAAAAACpCJgBAAAAoM0kc5ih2QTMAAAAAExYc+bMaXYJ0NYEzAAAAAAApCJgBgAAAIA2t3r16maXwAQlYAYAAACANtXV3T3w/+RraCQBMwAAAABs05vJNLuEVHpyuegsFJpdBhPQlGYXAAAAAACkl81mm10CE5gOZgAAAAAAUhEwAwAAAND28vl8s0uACUnADAAAAMCE066zlqHVCJgBAAAAGPd6M5kRQ+V2OUCeTm1ajYAZAAAAAIrk8/mmBbmVXrcD+9EqBMwAAAAAjCvNDIhhohEwAwAAADCuJN297RwyVzIjurNQaJvRHoxfAmYAAAAAaANJYG48Bq1EwAwAAAAALWq0gxNCswmYAQAAAABIRcAMAAAAwLjU1d09avfv6tWrG1RN5bq6uyOisjnM0GwCZgAAAAAmtHaYaSxsbh+//OUvY+HChTFz5szYcccdY8GCBXHPPfeU3banpyeOPPLImD59euyxxx7x7ne/O9auXdvYgsdoSrMLAAAAAIB66MnlRgyPu7q7o7NQSL1/B91jsF/96ldx5JFHxrx582LJkiWxZcuW+PznPx9HH3103HXXXfGc5zxnYNt77rknjj322DjggAPiU5/6VKxatSouv/zy+OMf/xjf//73m3grqiNgBgAAAGDcKu787cnlIvL5qgPhZB/DhdGjnZ9WTy43MC6D9nDhhRfGtGnT4mc/+1nMmTMnIiJOOeWU2G+//eL8888feFMiIuL888+PnXfeOe64446YOXNmRETss88+cfbZZ8cPfvCDWLBgQVNuQ7WMyAAAAABg3OssFKKruzu6ursjn89HTy5XNhDuyeUGvs7n8yWBYKMU10B7ufPOO+O4444bCJcjIjo7O+Poo4+Om2++eWD8RV9fXyxfvjxOOeWUgXA5IuK0006LGTNmxPXXX9/w2tOqqoO5v78/+vv761VLW0nuB/cHjWC9UU/WF41kvVEv1haNZL1RL9YWjTDe19nmadMiovT2FZ+WfJ0YfD8MPn+k/VZzfhrJPsvVNF5/fq0oua/7+vpKTu/o6IiOjo4h2z/11FMxrczPbPr06bFp06b43//933jxi18c9957bzz99NNx+OGHl2y33XbbxSGHHBK//vWva3gr6itTKIzeu9/X1xezZs2K6667LqZPn96IugAAAAAAmmr9+vVx8sknDzl9yZIlcdFFFw05/fnPf3489dRT8bvf/S4mT54cERGbNm2KZz/72fHXv/41ctvmgudyuTjppJPixz/+cbzsZS8r2cfrX//6uPPOO6O3t7cut6nWqupgXrBgQUnL9kTW398fy5cvj/nz58fUqVObXQ7jnPVGPVlfNJL1Rr1YWzSS9Ua9WFs0wnheZ8uWLYsXnXpqRETsvmZNLFu2LCKi5LSHZ82KiIifL10aERGLFi0q2cfDs2YNnFeseB+Dr3Ok89PejmSfP1+6dGDfI9VN/SSdyytXrizJRct1L0dEvOMd74i3v/3tcdZZZ8UHP/jB2LJlS1xyySUDYfGGDRtK/l9uP9tvv/3A+e2gqoB56tSp4+7BZ6zcJzSS9UY9WV80kvVGvVhbNJL1Rr1YWzTCeFpnyYzkbDYbvdsOiFd82yZvC+qmTp068HVi8H0w+Pxy+0hzfhrJPsvVNF5+du0gua9nzpxZUePt2972tli5cmV88pOfjK997WsREXH44YfHBz/4wbj00ktjxowZEREDYzSeeuqpIfvYuHFj2TEbrcpB/gAAAAAY95pxsD4mpksvvTQefvjhuPPOO+M3v/lN/OIXv4gtW7ZERMR+++0XEVsP/BcRZcdg9Pb2xty5cxtX8BgJmAEAAACYMHpyuWaXUFY+nx8Sgmez2SZVw1jtvPPOceSRR8ZBBx0UERG33XZb7LXXXrH//vtHRMSBBx4YU6ZMibvvvrvkcps2bYp77rknDjnkkEaXnFpVIzIAAAAAYLzqLBSiONKttuu5N5OJzkJhTDVks9nozWTGtA9ay3e+8534xS9+EZdffnlMmrS133fWrFlx3HHHxTe+8Y248MILY8cdd4yIiKVLl8batWvjpJNOambJVREwAwAAAEALGS6k7uruHnOATX39+Mc/josvvjgWLFgQc+bMif/+7/+Or371q7Fw4cJ4z3veU7LtpZdeGl1dXXH00UfHOeecE6tWrYorrrgiFixYEAsXLmzSLaieERkAAAAAtK1kjERxt3E9O4B7M5kR9z/a+cNt2+jbQX3sueeeMXny5PjkJz8Z73znO+MnP/lJXHLJJfGf//mfMWVKaa/voYceGrfddltMmzYt/vmf/zm++MUvxllnnRW5Fh3jMhwdzAAAAADQwnQtt49nPvOZceutt1a8/ZFHHhk//elP61hR/elgBgAAAGDc6+rurmr7cvOXq53JPNx+a7EfaBU6mAEAAACYcJKRFJVs11vnWoajc5l2oIMZAAAAgLZVrhu4pw4zbGu9T13MjBcCZgAAAADaXrmO5OS0nlyuJgHxnDlzxryP4QicaVdGZAAAAADQduodyFY6QiPNfpPae3K5IbOh63W9UC86mAEAAACgSr2ZzMDXyazkeozmgFYnYAYAAACAJhjcvQztyIgMAAAAACaEzkIhokajNWrdrWw0Bu1KwAwAAABA22pkMLt69eohc5MFw0x0RmQAAAAAMCGM5cCASagsUIZSAmYAAAAAxoXkYHujnSYkhtoxIgMAAACAcaOzUIiuTGbrN2XCZaC2dDADAAAAMK5ls9mGdC0Xz2buTULuEfTkctFZKEQ+nx/T+A5oJgEzAAAAAG2rFcLZSsLkelwWWoGAGQAAAIBxo56B7XBd0J2FwsC/NJLO52YH5ZCGGcwAAAAAjDtpw9567wvGGx3MAAAAAACkImAGAAAAgArVcgRHIw48CPUmYAYAAACgLc2ZMyciBLXQTGYwAwAAADAhNDqI7s1kKprf3NmAWqBedDADAAAAAJCKgBkAAAAA6qCS7mVodwJmAAAAAKiDWh4QEFqVGcwAAAAAtKXVq1cPOa1du4a7urvbtnYmNh3MAAAAAFBnvZmMjmbGJQEzAAAAANTIaF3I+Xy+QZVAYwiYAQAAAGg72Wy26dc/lhqaXT/UihnMAAAAALQlIS00nw5mAAAAAGggwTjjiYAZAAAAAOqkkgP79TagDqgXIzIAAAAAoEKjHcSv1fYL9aaDGQAAAADqKJ/PN7sEqBsBMwAAAAA0kMCZ8UTADAAAAEBL6s1kKpph3Go6CwUjL5gwBMwAAAAAtJV8Pq8LGFqEgBkAAAAAgFQEzAAAAAAApCJgBgAAAAAgFQEzAAAAAACpTGl2AQAAAAAwUXUWCs0uAcZEBzMAAAAAAKkImAEAAAAASEXADAAAAABAKgJmAAAAAFpabybT7BKAYQiYAQAAAABIRcAMAAAAAHWUzWabXQLUjYAZAAAAgLaRz+ebXQJQRMAMAAAAAEAqAmYAAAAAAFIRMAMAAADQ8nozmZLv22WucU8uZ6wH45qAGQAAAIC2MDhkBppPwAwAAAAAddZZKERnodDsMqDmBMwAAAAA0ABGZTAeCZgBAAAAoIHaZX40VELADAAAAEDLyefz0ZPLlZw2+Hug+aY0uwAAAAAAqJTuX2gtAmYAAAAAaADhOOORERkAAAAAAKSigxkAAAAA6qSruzs6C4VmlwF1o4MZAAAAgJaXHOAvn883uRKgmIAZAAAAgJY1uPvXHGNoLQJmAAAAAABSMYMZAAAAgJbWWSiEvmVoTTqYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAABqrDeTaXYJ0BACZgAAAACok85Codkl0ECnn356ZDKZYf89+OCDERFxzDHHlD1/4cKFTb4F1ZvS7AIAAAAAAMaDt771rXHccceVnFYoFOJtb3tb7LPPPrHnnnsOnL7XXnvFRz/60ZJt586d25A6a0nADAAAAAA1pnN5YnrJS14SL3nJS0pO+8lPfhLr16+PN73pTSWnz5o1K0455ZRGllcXRmQAAAAAANTJddddF5lMJk4++eQh5z399NOxdu3aJlRVOwJmAAAAAIA66O/vj+uvvz66urpin332KTnv/vvvjx122CF23HHH2GOPPeLCCy+M/v7+5hQ6BlWNyOjv72/LG1kPyf3g/qARrDfqyfqikaw36sXaopGsN+rF2qIR2mWdLVu2bODrVq+V8S1Zf319fSWnd3R0REdHx6iXv/XWW2P16tVDxmM885nPjJe//OVx0EEHxbp16yKXy8Ull1wS999/f3znO9+p3Q1ogEyhMPpAmL6+vpg1a1Zcd911MX369EbUBQAAAADQVOvXry872mLJkiVx0UUXjXr5k08+OXK5XPT29sacOXNG3Pacc86JL33pS/Gzn/0sXvziF6ctueGqCpgfffTRmDlzZiPqann9/f2xfPnymD9/fkydOrXZ5TDOWW/Uk/VFI1lv1Iu1RSNZb9SLtUUjtMs6SzqYFy1a1ORKmOj6+vpil112iZUrV5bkopV0MK9duzZ23333eMUrXhE33XTTqNf1hz/8Ifbff//4yEc+EhdccMGYa2+UqkZkTJ06taUffJrBfUIjWW/Uk/VFI1lv1Iu1RSNZb9SLtUUjNHud9WYyERHROUrfo98Fmi1ZgzNnzqy68fZ73/terF+/fsh4jOHMmzcvIiIee+yx6opsMgf5AwAAAKDpejOZgeAZxoNvfvObMWPGjIo78f/yl79ERMSuu+5az7JqrqoOZgAAAAColXw+HxER2Wy25PTB30O7eeSRR+K2226LxYsXDzmmXV9f35ARG4VCIS655JKIiDj++OMbWutYCZgBAAAAaCqdy4w33/nOd+Lpp58uOx7jV7/6VSxevDgWL14cz3rWs2LDhg1x4403xk9/+tM455xz4tBDD21CxekJmAEAAABoimw2O9DFDOPJN7/5zdhtt93iuOOOG3LeM57xjHjZy14WN954Y/ztb3+LSZMmxQEHHBBXXXVVnHPOOU2odmwEzAAAAAAANfSzn/1s2PP23XffuP766xtYTX0JmAEAAABouJ5cLkL3MrS9Sc0uAAAAAACA9iRgBgAAAAAgFQEzAAAAAACpCJgBAAAAAEhFwAwAAABAw3V1dze7BKAGpjS7AAAAAAAmts5CodklACnpYAYAAACgYfL5fLNLAGpIwAwAAABAQ/XkcmVP781kBv4B7UHADAAAAEDL6Gx2AUBVBMwAAAAAAKQiYAYAAAAAIBUBMwAAAAAN11koNLsEoAYEzAAAAAAApCJgBgAAAAAgFQEzAAAAAHXXm8lEbybT7DKAGhMwAwAAAACQioAZAAAAgIbL5/PNLgGoAQEzAAAAAHVVHCZns9nIZrMl3wPtS8AMAAAAQF1ls9noyeUiIsxhhnFGwAwAAABA3Ti4H4xvU5pdAAAAAAATj9EYMD7oYAYAAACgLpLZy53bvu/J5aKzUBjxMr11rgmoLQEzAAAAAC1ltBAaaB0CZgAAAAAAUhEwAwAAANBSHBQQ2oeAGQAAAACAVATMAAAAAACkImAGAAAAACCVKc0uAAAAAIDxrTciurq7o7NQaHYpQI0JmAEAAACoq55cLiIislVcpjeTEUhDGzAiAwAAAACAVHQwAwAAAFBXlY7HSLbpzWTqXRJQIzqYAQAAAGgZwmVoLwJmAAAAAOoim61m6nIp85ehPQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFKZ0uwCAAAAABh/8vl8RER0NbkOoL4EzAAAAADUjYP1wfgmYAYAAACgZQikob2YwQwAAAAAQCoCZgAAAAAAUhEwAwAAAACQioAZAAAAAIBUBMwAAAAAAKQiYAYAAAAAIBUBMwAAAAAAqQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVATMAAAAAACkMqXZBQAAAAAw/mSz2WaXADSADmYAAAAAxqw3k4neTKbZZQANJmAGAAAAACAVATMAAAAANZXP5yOfzze7DKABBMwAAAAAVEWADCQEzAAAAABUrau728xlQMAMAAAAwNjoZoaJS8AMAAAAQNV6crmIiIEu5uR7YGKZ0uwCAAAAABgfenK5CN3MMKHoYAYAAAAAIBUBMwAAAAA1l81mm10C0AACZgAAAACq1tXdPex5wmWYOATMAAAAAKRW7uB+eXOYYcJwkD8AAAAAqlYuWE7oYIaJQwczAAAAAFWbM2dOs0sAWoCAGQAAAIAx07UM//CrX/0qFi1aFLNnz47p06fHgQceGJ/97GdLtunp6Ykjjzwypk+fHnvssUe8+93vjrVr1zap4vSMyAAAAABgTJJwWcgMET/4wQ/i1a9+dbzgBS+ICy+8MGbMmBF//vOfY9WqVQPb3HPPPXHsscfGAQccEJ/61Kdi1apVcfnll8cf//jH+P73v9/E6qsnYAYAAAAgNaEy/ENfX1+cdtppceKJJ0Yul4tJk8oPkDj//PNj5513jjvuuCNmzpwZERH77LNPnH322fGDH/wgFixY0Miyx8SIDAAAAAAq0pvJRG8mExERq1evbnI10Hquu+66ePjhh+PSSy+NSZMmxbp162LLli0l2/T19cXy5cvjlFNOGQiXIyJOO+20mDFjRlx//fWNLntMqupg7u/vj/7+/nrV0laS+8H9QSNYb9ST9UUjWW/Ui7VFI1lv1Iu1RSOMdZ1tnjat5PtFixZZs4xryfru6+srOb2joyM6OjqGbH/bbbfFzJkz48EHH4zXvva1cf/998cOO+wQp556anz605+O7bffPu699954+umn4/DDDy+57HbbbReHHHJI/PrXv67fDaqDTKFQKIy2UV9fX8yaNSuuu+66mD59eiPqAgAAAABoqvXr18fJJ5885PQlS5bERRddNOT0gw8+OP70pz9FRMRZZ50VxxxzTNxxxx3xuc99Lt74xjfGt771rcjlcnHSSSfFj3/843jZy15WcvnXv/71ceedd0Zvb29dbk89VNXBvGDBgpK27Ymsv78/li9fHvPnz4+pU6c2uxzGOeuNerK+aCTrjXqxtmgk6416sbZohLGus4dnzYqfL10aEVu7l2G8SzqXV65cWZKLlutejohYu3ZtrF+/Pt72trfFZz/72YiI+Kd/+qfYtGlTXH311XHxxRfHhg0bht3H9ttvP3B+u6gqYJ46daonuUHcJzSS9UY9WV80kvVGvVhbNJL1Rr1YWzRC2nU2uSj4sk6ZCJJ1PnPmzIoab6dtGyOzePHiktNPPvnkuPrqq+NnP/vZwISIp556asjlN27cOLCPduEgfwAAAACMKp/PR08u1+wyoKXNnTs3IiJ23333ktN32223iIh4/PHHo7OzMyKi7BiM3t7egX20CwEzAAAAAEANHHbYYRER8eCDD5ac/tBDD0VExK677hoHHnhgTJkyJe6+++6SbTZt2hT33HNPHHLIIQ2ptVYEzAAAAAAANfD6178+IiK+8pWvlJz+5S9/OaZMmRLHHHNMzJo1K4477rj4xje+EU8++eTANkuXLo21a9fGSSed1NCax6qqGcwAAAAAAJT3ghe8IM4888y45ppr4umnn46jjz467rjjjvjud78bH/rQhwbGX1x66aXR1dUVRx99dJxzzjmxatWquOKKK2LBggWxcOHCJt+K6giYAQAAAABq5Kqrroq99947vvrVr8aNN94Yz3jGM+LTn/50vPe97x3Y5tBDD43bbrst/vVf/zX++Z//OXbcccc466yz4qMf/WjzCk9JwAwAAABAxbLZbLNLgJY2derUWLJkSSxZsmTE7Y488sj46U9/2qCq6scMZgAAAAAAUhEwAwAAAACQioAZAAAAgBHl8/lmlwC0KAEzAAAAABUxfxkYTMAMAAAAwLB6M5lmlwC0MAEzAAAAAACpTGl2AQAAAAC0rs5CIbqSLuZCobnFAC1HBzMAAAAAwzIiAxiJDmYAAAAAhsjn8xER0bXt+07dy0AZOpgBAAAAAEhFwAwAAABAWV3d3c0uAWhxAmYAAAAAAFIRMAMAAAAwIvOXgeEImAEAAAAASEXADAAAAEBZPblcs0sAWpyAGQAAAACAVATMAAAAAACkImAGAAAAICIiejOZ6M1kml0G0EYEzAAAAAAApCJgBgAAACAiIjoLhYiIgS7mru7uZpYDtIEpzS4AAAAAgNaQBMs9uVxE/CNwBhiODmYAAAAAIp/PN7sEoA3pYAYAAACY4JJwOelczmazzSwHaCM6mAEAAAAASEXADAAAAABAKgJmAAAAAABSETADAAAAAJCKg/wBAAAAEBEO7gdUTwczAAAAAACpCJgBAAAAAEhFwAwAAAAAQCoCZgAAAAAAUhEwAwAAAACQioAZAAAAAIBUBMwAAAAAE1g+n292CUAbEzADAAAAAJCKgBkAAAAAgFQEzAAAAABENpttdglAGxIwAwAAAACQioAZAAAAAIBUBMwAAAAAAKQiYAYAAAAAIBUBMwAAAAAAqQiYAQAAAOosn89HbyYTvZlMs0sBqCkBMwAAAEAD9ORyERE1D5nz+Xzk8/ma7hOgUgJmAAAAIDVduZXr6u5udgkANSdgBgAAAGpGN+1WzQjeR7vO3kwmHp41q4EVAROBgBkAAACoqa7u7oGwcyJ2Nw93m5MRGSNtUw8T9ecANIaAGQAAAKBOyoW7nXW6rsEznpMDCwLUk4AZAAAAqKniTt2Jrt73xXDjSCoJlo0zAWpBwAwAAADUTDabbXYJFEkC7s5CYdhtstmsnxuQmoAZAAAAqInijtiJ2sWcz+eH3PaeXK6pIe5w4XJSjy5mYCwEzAAAAEDNFYepAsz6Kw6wJ2q4DzTHlGYXAAAAADAeDRf09g7+ftu85JHGWAzZRzJjeZjr6Mnloqu7u2SfnYVCrJo+veLrAKiEgBkAAAComyRk7c1kqgpQ281IXdrDjcZIe5/k8/noGuH8gWB5hH0vW7as6usFKEfADAAAANTU4EC1q7s7IsZ3yJzNZoeEzIM7iMsZ6ERuEgf3A8bKDGYAAACgKr2ZTEXBaMl4hnoW1GSD749sNhudhcKo4fLgERrNDpsB0tDBDAAAAG0kzbxe2kclXd7ZbDby28LpwR3I1a6LfD6vixkYEx3MAAAA0Iby+Xzk8/mKu4mbRXhZmZGC4eRnDdCKdDADAAAA41oSzrZC2F0cJGcjorfKy481aN59zZqIW275Rw0tcJ8A7U0HMwAAALShSoLBVu9uHi/GMq5kpFnNyc8v+VkPnvMsHAZagQ5mAAAAIJV8Ph9dzS6ihXR1d9dlNnZvJhMx6ICAY7Vo0aKYOnVqTfcJTEw6mAEAAGAcGK5TuSeXq2knczKioWdQ4Dna/qsdBVFrXd3dbdnN3dnsAgBGIWAGAACANjY46B1pu1ofKG7OnDkD119JHfXo7h1JIw6OlxxoEWCiEjADAABAG6omOO3J5aKruzu6urvrWFHradSM4p5cbsRZypVIQup6vBEAUE8CZgAAAGhjo4WoSajck8s1LbxMwlcHHRxZcRd48c+p0i51gGYQMAMAAMA4VxxC16urNwmyh9u/rtyRFXc/N6rzGqAWpjS7AAAAAKAy+Xw+uirYJqL1QspsNhv5bZ24Xdu6mOs5k3m4QLuW90+tQ/NW+5kBVEIHMwAAAIxDg0dRZLPZlggwi+dAJwfhq+fojHrc7sEHD6z1/o0RgfHj0ksvjUwmEwceeGDJ6cccc0xkMpkh/xYuXNikStPTwQwAAABtanCw2ZvJRFeMPLO3t4bdw6tXrx74ulXmBBd3KCdBcK0D4GTfjdZZKETz3yIAKrVq1aq47LLLYocddih7/l577RUf/ehHS06bO3duI0qrKQEzAAAAjBOdEdE7+LRhguSxBs1d3d3Rk8uVdCSn3U9xTbUam2HmM9Bs73//++PFL35xbN68OR599NEh58+aNStOOeWUJlRWWwJmAAAAmMDSzCRO062cXM/gUDrZ11iD6vGqN7beN/WcVw3U3o9//OPI5XLx61//Os4999xht3v66adj48aNMWPGjAZWV1tmMAMAAEAbSQLZ0QLhakPgcnN/R5qNnHa2cbPmQHcWCjUJaQfPX66XJFSuVd1A42zevDnOPffceMtb3hIHHXTQsNvdf//9scMOO8SOO+4Ye+yxR1x44YXR39/fwEpro6oO5v7+/ra8kfWQ3A/uDxrBeqOerC8ayXqjXqwtGsl6o16qWVu7bNpUst0umzbFw7NmRX9EbC7abvO0aUP2t3natIGvf750aUXblqspOW2XTZu2nrBs2Yj1L1q0aOD84hoqua7hLFu2LF506qkREbH7mjUl582ePTsee+yxWLRo0cA+l22rsdrrKbZo0aKB/RTfplpK7tN6PM54DIPqJL8rfX19Jad3dHRER0dH2ctcddVV8cADD8Rtt9027H6f+cxnxstf/vI46KCDYt26dZHL5eKSSy6J+++/P77zne/U7gY0QKZQGP1tsL6+vpg1a1Zcd911MX369EbUBQAAAADQVOvXr4+TTz55yOlLliyJiy66aMjpq1evjv322y/OP//8eN/73hcREcccc0w8+uij8b//+78jXtc555wTX/rSl+JnP/tZvPjFL65J/Y1QVQfzggULYubMmfWqpa309/fH8uXLY/78+TF16tRml8M4Z71RT9YXjWS9US/WFo1kvVEvlaytwZ2zxR6eNSt2j4iHB50+uLP34Vmzhq1hpG2T80aqoVIPz5pV0j0dEcN2Io8kqSW57OB9Dnc/VXs9w13vWO6DZvEYBtVJOpdXrlxZkosO1718wQUXxOzZs0ecuzyc973vffGlL30pbrvttvEbME+dOtWDzyDuExrJeqOerC8ayXqjXqwtGsl6o14qWVvlzp+8YUNMjYjJ274fbm7v5A0bSg6s11koDMxZHrzfyRs2DHudY1n/kzdsGLjuZJ5xcl1p9ltc52g1juV6Ktl/u/AYBpVJfk9mzpw5auPtH//4x/jiF78Yn/nMZ+Khhx4aOH3jxo3R398fK1asiJkzZ8bs2bPLXn7evHkREfHYY4/VqPrGqCpgBgAAAJpntAPk9W77f6UHhRu8XW8m05ADyhVfR3KbeofbOKVmHUwQmLgefPDB2LJlS7z73e+Od7/73UPO33fffeM973lPfOYznyl7+b/85S8REbHrrrvWs8yaEzADAADAOFDciVxP9Q5u8/l8RdfRm8lEbOvEBmgFBx54YNx4441DTr/gggviySefjH//93+PZz7zmdHX1zfkIIGFQiEuueSSiIg4/vjjG1ZzLQiYAQAAoE6S8Q9jDWUr3U/a7uNKwunk/Hp2OCejO9J0UvcUhc2VBtRpbkvyswAYbJdddonXvva1Q05POpaT8+64445YvHhxLF68OJ71rGfFhg0b4sYbb4yf/vSncc4558Shhx7auKJrYFKzCwAAAIDxKgk6xxpK1mo/1cjn8yWhbaN0dXdHRFTUjd3V3T0kTK40zB9ruGwEB5DWM57xjHjZy14WN954Y7zvfe+Lf/u3f4uNGzfGVVddFVdddVWzy6uaDmYAAACog4GAtAXHOCQH2Cun0hEVtdZZKEQMCtCr6TIe6TZVKgmQR9uXcBmoxh133FHy/b777hvXX399c4qpAx3MAAAAUGdd3d3Rm8m0xHiFzkKhIQfyq5d8Pl9yP9Z67nTSQT1aDQBsJWAGAACAGqtFADk4SG2W4jC6J5ere02VjuVIgvLif9XozWQG/rXKfQ3QjgTMAAAAUCMjBZWVBqfLli0ru99manTXcyXjKZp5nxiRAfAPAmYAAACokeGCx0rC5YdnzUq9/4mgnp3Gld6v2Wx2Qv8MAMpxkD8AAACoo2SmbxIyJzODK+kI7urujt6I6KpwewBoNB3MAAAAUAc9udyQULj4AHLFB6fL5/Px86VLIyLiRaeeWnKZzjLbN0MzR1Ik113JAfhGU27cR7PvW4B2poMZAAAAGqwzInqHOe/nS5fGz5sU5iZd1iOFyc0cEVE8aqTRdST3iREZAKV0MAMAAEAd1CqITILoeo/IaNURHEmw2+hwWVczQGV0MAMAAEAZ1cxKHkly+WxERKEwanC5aNGiWLZsWdl9NEpXd3dFByastZGC45LxGC0ahgNMRAJmAAAAaIKeXC4in2+pkQtJLcON72imkg7mGuwvCe1HCvyNxQAYnYAZAAAAmqg3k4kYplu4lcZWNDpk7SzT7V2vGjqLv66gyxyAfzCDGQAAAJqsq7s7Fi1a1OwyWlLJaIw6acWObYB2oYMZAAAAWoyRDI3VjHnTAOOFDmYAAACokWRmL2NXPKYim83WbzxG0RiSwdeRdE/7uQIMTwczAAAAMKBV5g83cv70SOF1V3e3DmeAEehgBgAAgBqrptu21cLLzkKhpQ4u2EqMLgEYSgczAAAAlNFZKERvJhO9mczA18npY9UbWztjB/ZVKER/f/+Y91srRkIAUCkBMwAAADRBK3cJ69T9h85CIULgDjAsATMAAACUUe0s4kq7fls5WAaAapnBDAAAAGUkQXBPLlfVyAjdv+OHNwMARqeDGQAAAEbQ1d1d0YH4BMvjh2AZoHI6mAEAAKAKg7uZkwMBAsBEpIMZAAAAiiRhcWehEJ2FQtnwuHibiK1jNJIDwelkBmAiETADAAAAjMCbBgDDMyIDAAAABil3YL+eXG7YWcxd3d0RIYgEYOIRMAMAAEBKZi8DMNEZkQEAAAAVymazQmUAKCJgBgAAgJSSkRnZbDYMxwBgIhIwAwAAwCi6urujs1BodhkA0HLMYAYAAIAqdBYKwmYA2EbADAAAAABAKgJmAAAAAABSMYMZAAAABimeuTzSOIyu7u6BA/0BwESkgxkAAACq1JvJDHydzWabWAkANJcOZgAAAKiSg/wBwFY6mAEAAAAASEXADAAAAABAKkZkAAAAQBHjLwCgcjqYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVATMAAAAAACkImAGAAAAACAVATMAAAAAAKkImAEAAAAASEXADAAAAABAKgJmAJggejOZ6M1kml0GAAAA44iAGQAAAACAVATMAAAAAACkImAGAAAAACAVATMAAAAAAKkImAEAAAAASEXADAAAAABAKgJmAJjA8vl85PP5ZpcBAABAm5rS7AIAgObrzWQGvu4sFJpYCQAAAO1EwAwA41zSodw1zPld3d0REdEZEb2NKQkAAIBxwogMABjnstlsyffGYgAAAFArAmYAGMd6M5mS8RcR/wichcwAAACMlYAZACaoZDRGTy5X9nydzgAAAIxGwAwAbaxch3KxcgfsqzY0Hmn/AAAATGwO8gcAE1jSxZzoyeUi8vkhc5t7M5myYTUAAAATmw5mAJgABgfJo22raxkAAIBKCJgBYILoLBTKzluutDNZ6AzAeON4AwAwdgJmABjHhMIAMDrPlwCQnoAZANpIPp8f9cB+5VTSpdw7hssCQLtKxkjpZAaAdATMADCOdRYKwwbExecNNz5jsGqD7TRhOAA0WvIcKGQGgOpNaXYBAED1enK5iHw+umq4z2w2GxHDdzKXk4TH5ULsfI3rA4B6SMLlOXPmxHNe/vLoDZ/eAYBq6GAGgHGg0o6rbDY78A8A+IfVq1c3uwQAxoHf/va3cdJJJ8X/+T//J6ZPnx677LJLHHXUUXHTTTcN2fa+++6LhQsXxowZM2L27Nlx6qmnxiOPPNKEqsdGBzMAtKGu7u4hIy2SkDmZJZmm+6p4nEU9Q+hly5YJuQFoGWk+xQMA5TzwwAPx5JNPxpvf/OaYO3durF+/PvL5fCxatCiuvvrqOOeccyIiYtWqVXHUUUfFrFmz4rLLLou1a9fG5ZdfHvfee2/cddddsd122zX5llROwAwAbawnlxsIlJP/J0YaXzGa4ssMN0O5mhEYyT522bQpIiJedOqp0dvd7SPIALSUzkJh6xu2+bw3QgFI5YQTTogTTjih5LR3vetdcdhhh8WnPvWpgYD5sssui3Xr1sUvf/nL2HvvvSMi4oUvfGHMnz8/rr322oHt2oERGQAwDiThcrkD9Y31IHuDDxRYy4P2OQAgAAAw3k2ePDnmzZsXTzzxxMBp+Xw+XvWqVw2EyxERxx13XOy3335x/fXXN6HK9KrqYO7v74/+/v561dJWkvvB/UEjWG/Uk/XVfnpyuXjRqacOfL952rSS8zdPmxY/X7o0XnTqqbF7RDwclf98kw7jZNzGokWLyl5Psr/ktOH2P7jW4stVWxuMxGMZjWS9jQ/Lli2LiK3PdcnPMjktojk/X2uLRrDOoDrJ70pfX1/J6R0dHdHR0THs5datWxcbNmyINWvWxLJly+L73/9+vOENb4iIiAcffDD+/ve/x+GHHz7kci984QvjlltuqeEtqL9MoTD6Z1P7+vpi1qxZcd1118X06dMbURcAAAAAQFOtX78+Tj755CGnL1myJC666KJhL/e2t70trr766oiImDRpUvzTP/1TfPGLX4ydd9457r777jjiiCPi61//epxa1JATEfHBD34wPvnJT8bGjRtHDLBbSVUdzAsWLIiZM2fWq5a20t/fH8uXL4/58+fH1KlTm10O45z1Rj1ZX+0l6axKuoJ33/ZueLEXnXrqkA7m3desSXU9xR3MEREPz5pVcr3FdQze7udLl5bUGrG1c/mea66JQ848M+Zu2JCqNijHYxmNZL21t8HPm4Of65rJ2qIRrDOoTtK5vHLlypJcdLTw973vfW90d3fHQw89FNdff31s3rw5Nm37xOiGDRuG3cf2228/sM24DJinTp3qwWcQ9wmNZL1RT9ZX+5gzZ078fOnSIQcfSr7v7e4emMk8NSImR6T+2Q6+3ORtfwglpw/+Phmt0bXt9OJtBu9n6oYNY6oNyvFYRiNZb+NDK/4MrS0awTqDyiS/JzNnzqyq8Xb//feP/fffPyIiTjvttFiwYEG8+tWvjp///OcxbduowaeeemrI5TZu3BgRMbBNO6gqYAYAGEk2m418Ph89udw/AvCiaVyrjNoCoEUMfqMWAOqpu7s73vrWt8b9998fnZ2dERHR29s7ZLve3t6YPXt223QvR0RManYBAEBtdRYK0bkt1B3650pzFY/DaLXaABg/8vn8wKdqBkuC5eHOB4B6SMZirFmzJvbcc8/Ydddd4+677x6y3V133RWHHHJIg6sbGwEzAIxznaMfz7dmvFgHoJFGCpITvZlM9GYyDaoIgInu73//+5DT+vv74+tf/3pMmzYtnvvc50bE1jc8b7755li5cuXAdj/84Q/j/vvvj5NOOqlh9daCERkAwJj1ZjKpg+yxXHY8SkIQ9wlA5co9l3R1d5d8WqY3k4meXK6xhQEw4bz1rW+Nvr6+OOqoo2LPPfeMv/3tb/HNb34zfv/738cVV1wRM2bMiIiI888/P7773e/Gy1/+8njPe94Ta9eujU9+8pNx0EEHxRlnnNHkW1EdATMAtLnhZkjWM6AcrVvMXEsAGiU5sG2i+DmqM8qPZPI8BUC9vOENb4ivfOUr8YUvfCFWr14dO+64Yxx22GHx8Y9/PBYtWjSw3bx58+JHP/pR/Mu//Eucd955sd1228WJJ54YV1xxRVvNX44QMAMALWbwx5gnaievzm6AsTPvH4BGe+Mb3xhvfOMbK9r2ec97Xtx66611rqj+zGAGAKoy3MeLq5m/vPuaNSXh6USej5nP54e9/RP1PgFIo9wblOXGZgAAtSVgBgCqNmfOnIj4R3dxcehc7ceOJ/o8zGw2Gz25XPTkcpHP5wfuj84m1wXQLJUcuK8ag4Nm4zEAoLYEzADAENlstuwL8OFGNtSqI6yWgQIArWGkT2pUcrnRVPpGZbmOZgBg7ATMAMCY1aoLubibd6IZLqQ3JgNoZyO9cTjW8Ujl9u0xEwAaT8AMAFRt9erVA1+n7QYTAgxVHDIXH5iq1h8XB6iFsTw2VXO50Z4vBn/ipqu72xgMAGggATMAkEq5F+/VvKDvLBRKOpWTGcQTVXHnto9xA+1kuMfuSh/TK3nDcXCYXe6AfuW+BgDqb0qzCwAAqlPcPdwMje4Ky+fz47ITLQlHKj3wVFd3d/SG4ARoTYMfqweHy9U8dhXvp/jTHMnj4HA8PgJAcwiYAaCNtGrQmraugcsVChFFYUQ2mx0xRGhnSejSVcG2nYWCUSJAWyh+Eyx5nMtmsyVBcyUdzcWXTQw3l79VnxMBYKIRMAMALaWSUGGsynUPAzB2vZlMRNFj90ghcE8uNzB7frjweSIe9BUA2o0ZzADQBvL5fPRmMhO2m7WWtzufzzc1sKim426i/ryB9lJ8gNJqFD8eDrePbDY78C9hTj0AtBYdzABAW+jNZOoWKOQHjeeop8FdeoO7/coZzyNDgPGnq7tbAAwAE4iAGQDaRPFHiSeCzm1zmSfSbR5MQAO0kuLxQsVvlhU/Vo30yYtyb+Ally03exkAaA8CZgBoIxMtcEw6dzsjojdq38Vcz65ogImgVoGwYBkA2peAGQBoebUeD1HcFV3JiIp66CwUBjr9BCtAO0get4Y7IF8jrh8AaD0CZgBocc16Id8qkkCh2gPeFX+Ue9h9x9DwulW7mluxJmBiqeRx2GMVAEw8AmYAaGGNPPhcszXy9g03z3oiz3sGGEk+n2/Kpz0AgNYnYAaANjDew+VGSu7LWo/dSEOnH9CuPC8BAAkBMwC0kKRj2Qv34VUywmLwx7jHSyd4JWM/AAAAGmlSswsAAEp1dXdXPW+Y4Y0UNld6GQC2ymazbf1GHQBQezqYAaAF9eRyEfm8F/FFOguFgeC3VQ/EN5JaHKwxuQ/a8fYDAADjk4AZAFpMj4Mojcng7uNK7s9yc5kHh7jGlwAAAAwlYAaAFtPV3R0R5uymkc/nI7YFytlsNnozmejq7m56aJ+E03PmzInVq1fXJKTWxQzUg1nvAEC1zGAGgBbTk8t5YT8Gc+bMKfl+tHC5J5eraHzFQJfzthEVyb9GMhsaaIZajPgBAMYvHcwAwIQyUvdwEuwXz3qOGBpS9+RyA53m1Vi9enXVlwGop+I3rnpyuegqOk+wDABUQsAMALSN4gP9RZTp6B2hW7lcsNxbZrt6GutojHK3X7c7kFY+ny8JlAfLZrNCZgBgVAJmAGghDiBXW52FQsQw4UgSzI52jzd7fjPAWCQBcfGnLorfmKrmExmeowCAcgTMAMC4Vm0gMtKc42w2G71RGtToIgbGI49tAEClHOQPAFpAPp/3MeQqVHpgvrFeR7FsNlsSPhcHL408+F5noSD0AcakN5MpeQwd7jGl+LFN9zIAMBwBMwDQVoqDkHKhSCMOpFdSQ9Hpw71RkM1mhTNAU/XkcqO+OdXV3T2wTfLY5vELABiNgBmAcaM3kxnSSdoOncG9mczAyIVWr7XVJUHIWMKQkTqEq+keTtZjO6xBoL0UP9+N9hgz+PFw8GNYcr5PRwAAaQmYARj3urq7hwTP5cLoZvGCPr3in2Gtx2ZUGlL3lqmlEYRBMPGUe+5KHqtGC5mrnkcfjRlHBAC0Pwf5A2BcyOfz0bXt6+TFd7nwLXmh3DXknOYorqf4o8m0t+L1WG+Dw6ZkDY30ewCMT/l8ftQguZI3wzoLBcEyAFAxHcwAtK3BHwtODsqWzI1MXkQncyeLR1GkvY560Y3anlrx5zY4WG6VTn2gMUb7na/2ccv8ZQBgNDqYAWhrXd3dW0cUbAuXI/4xsqDYcC+4ezOZgWA6CZ/rGRgWh9Vd3d0ldUO1BsLkKF33rdapD4xdPp+PyOVGfKO0mjdRRwuOBcsAQKV0MAPQtrLZ7EA4nEg6s5J/5eZOVvoCvDgMrlUXsxfstdOINwSq3Xfy8622U74WBv8uAONLuecPn1AAAFqBDmYA2k65sHe0+cWDzyseI5C8ZC/X+VxLg+suvm6q15PLtWxg3zNKlyFAJZLnjeLHuuSxb+ATOGYlAwBNpoMZgLaXzFiuRrkZlMPNpcxms1tHcYyhU8zBkiaOpGu+WbOZdTLD+FPpc4jZ6wBAM+hgBqBttWr36kjaseZ20FkoTMguvuTglREjj+XozWRa7mCEQHW8UQkAtCodzABQpDeTGfg33PlQLFkTPblc0wKgcuNdjOiA8S/5PS93vAHPVwBAo+hgBoBhFM91Lv7Y8UjdoMUv6HWMNlazusM7C4WywXJxZ3EjDkQ4OEzyUXloXyO9WeWTMABAqxEwA8AwRgoFiw8SONo2yUxcocD4V/wzbvQbDMn1WWUwfg1+Hhlt5rrxOABAIwiYARgwXAdkK2nUCIJKb/vgF+/FM3F7cjljCuqkkWG9NwaARstms6M+33UWCmXfUPLpBQCg0QTMADRF8QvnNAFevUK/NKH64BAgm+xj2+n1HpFA8wmhgbFKnksGP56keXwp+QRNPu8xCgCoKwf5AyAiIpYtWxY9uVzZj9vm8/m6dQ53dXePeFC9RtRQjXJB8Uhdyj25nHAZgIbqLBSMZwIAGkYHMwADkhehvWXO6+ruHjh9rIFpvqizt9jgcROVzDluhsEfP+4cZjsv6mkllcxiHa6DEmg/fo8BgEYRMANMQIM7gadMKX066CwUtm5Th47h4usuFyYXb9dV82uvreJ5y9CKRlufrfomDkwkg5+THZgPAGg3AmaACajcwYMWLVo04vYxxjC10vEWvZlM2TEd7ULHGK2kuNu+eBbrwKcIirZthRE0MNE5MCwA0I7MYAZgROUC03JB83BzlJPZyaMdtGikbq3eTKZk+1YLcXtjayjQanXBYMnM82StJm/mFIfLyTZAY3juAADanQ5mgAlu0aJFccsttww5vdwL3kpGQhSfX9yJXE13ZLlZ0L2ZTEQLdjb7GDPtrpGfGDDjGYYq9/zoEwUAQDvRwQwwTpXrKE5Oq/UL13w+X5OQqrNQKAlshbdQXyN9HF8XM9RX8gmfkXgzBgBoBzqYASagru7ugfC2v7+/ZvsdrsN5LC+Qk312RmndQOU6C4WSg3Y28hMB5Q4kWHxaux9ocLSubF3blFMuWM5msyWf3AEAaBc6mAEmgKRLqpYfha+kEzqbzdYsVPGiG8am2QFnEiQXd02Ppy7p0R4Px9NtpXbmzJkz7HnN/p0FAKiUDmaAcSifz0dXmdOz2WxEDbsEu7q7twa/RcF1JXOaq9VZKPyjC7Cme4aJabg3m0YamZFGPp+PyOWG3W9SR3JgwVbvYk47Xii5/bqZGWz16tUl3ye/A1YIANBOBMwAVKU4QO7ZFhwNHl1Rj5BIIAP1Va+P54/UoRlR+1C70co9NhU/Rib/Tx4re3K5yOfzHtOarNVGs1gPAEA7MyIDYJxKgg1HogcSyYE0k7BzuPNrrbhjuieXi85CoSR8bRdpQ8BsNtsyQSalmj26pJajpAAAmkUHM8A4l4RI9Qo3enI5L46hTXUWCiN+FH+4sRW1HPUwUQ5sVhxkJuOFhM7N1Rnm+wMA1IKAGWACEGIAxap5TBhpNvJIox6SEDqZMTs4zG7FN6aGC84r+SRIyTZl5k4Xz9YVarYGPwcAgNoQMAO0ueJQYyDQqPNHzosPugeMP8MdrHPw731Xd/eoBw5txSC5nOLbVjyft9xj3Wi3KZk7PXg+fSXXX81lqI12OMAkAEArM4MZoI3k8/lRg93ieab1mqca8Y+5ke0SHgHpDR7vUGv1fKxqlmTWdDXa/YCH7aSRay6fz0dvJjPwe1TLETMAAK1ABzNAmyjubks+1lv84jibzUaMMk8VYKx6to1/6CwUoje2hs+1mMVeHGI3M2weaSZ0pbcxGQsynKRDXOds4yXrNaKxgX7ye9ObydT9U0YAAI0mYAZoY8ZUAI2SBGNJKFePg9a18kHXqg3QK93e43jzCPcBAGpDwAzQ4gaHDyVdy40uBqCFFM9KrvU+q5XNZquup0cna82NNH4in88P6R6uxxoCAJhozGAGAGBYg4O3ZLZwcnq5kLTWXbmD589XMo++2v0nOguF6MnloieX013cZMVzi6s1eO5xYvBYjGQdj+W6KiXEBgDGKx3MAC1scLjhgEBAKxtrIFs8HqOaA6H1ZjKxy6ZN1V9fEigO00mchJH1CAY7B83MF2bXXk/RSJfi04rVO1Qu93NNZpgDAIwXAmaAFpbNZoUOQFMUd3aOtE02ajM3uZLALZ/PlwTOycHyaiXZd/L/am/XWELDkQ4uSDrDHcRv8BqKKF3n1by5MRxvEAMAE4kRGQBtwotToBmKx2F0dXeP+lg0XKhXK7XuODUHuTVV8ubqSKNSitdpNWumN5MZuOxY3uAd7vek+PcJAGC80MEM0ILy+fw/QhrhB9AGahHUDnfAtcGBX61GDHQWCtE1wkHemhUE9mYyEzqETH7OyYiLkQ7E19XdPdD5Pfj84g730cLiarYFAKCUDmZgQku6n+o9gzGNJKzJZrO6l4GW19XdXffu5Vprtcf+iRwqD2e4+6Q4hK7GSM+ng7uLi8PtahWH1J7DAYDxTgczwDat2DHWavUA1FPSRdqbyUR229f5QW+2VTOneLSQr5UfY0fq2p0ostlsScCbfF0cKhevid5MZsyf+hlL93K5ywqXAWBiWrt2bXzyk5+Mn//853HXXXfF448/Hl/96lfj9NNPL9nu9NNPj6997WtDLv+c5zwnfv/73zeo2rETMAMTVi1eiNZCyTiMRAvUBVCpISMtxri/nlwuIp+PrtjaRdqTyw0c4G+4MQgPz5oV8a1vVXwdrd5h2hm1OXhiuxkc0g53sMk5c+bE6tWrR91fZ6FQVWhcMru54kuVqrQ2AGD8evTRR+Piiy+OvffeOw4++OC44447ht22o6MjvvzlL5ecNmvWrDpXWFsCZmBCym8LLhLFXXPlusWKX9hO5G4yYOJq5GNfMmO5lgFru3QEF88CnsiqCf1Hu89a8Q0EAGB86+zsjN7e3thjjz3i7rvvjiOOOGLYbadMmRKnnHJKA6urPQEzkErSDdRuL9oGdzENhBhFL0wHdxT35HIlYXQ9QoqeXG7gvhQsABNZ8WNrcfdprZ5vWr1zOVE89qHVQ/FGGC1ETu6jVviJJt3Lrby+AID66ujoiD322KPi7Tdv3hzr1q2LmTNn1rGq+qkqYO7v74/+/v561dJWkvvB/UEjtNJ6W7ZsWcn3q6ZPL/l+9zVrGllO1RYtWjRwGzZPmxYRW+/XXTZtiojY+hHrbeftHhHLli6NiK0B8ItOPbVkX8ltH8ttfnjWrIht15H8fHfZtCkWbTu/ET/zVlpfjH/WG9VatGjrI+JIa2aXTZvioW1/wPf39w88zieXjYh4eNtjfrFWXYeDn5Natc56KnebN0+bFj/f9pyZhLj1vG8Gri+fL1lLxddb7vorWbMwHM+TNIJ1BtVJflf6+vpKTu/o6IiOjo4x73/9+vUxc+bMWL9+fey8886xePHi+PjHPx4zZswY874bJVMojN4S0dfXF7NmzYrrrrsupg8KkwAAAAAAxqP169fHySefPOT0JUuWxEUXXTTq5ZMRGeUO8vehD30oCoVCHHroobFly5b4f//v/8XXvva1eOlLXxp33HFHTJnSHsMnqqpywYIFbduqXWv9/f2xfPnymD9/fkydOrXZ5TDOtcJ6K+4Ge3jQsPmfL11a0t3b6l3M5TrbBktuY9IpVW7bcvdD4kWnntry90OiFdYXE4f1Rr0ka+uQM8+Mu7/4xYgo/9hd/EmckZ4HaJzBz7kRrfWzeXjWrNg9Ih6Of/yN89Aee8Q911wTTz/9dMmno1qpbtqT50kawTqD6iSdyytXrizJRWvRvfzRj3605Ps3vvGNsd9++8WHP/zhyOVy8cY3vnHM19EIVQXMU6dO9eAzyHi9T9rlQDhptevta+Z6y2azkc/nY9myZZFdv37g9GSW5c+XLh2YW9wuvxMj1bnXttu41wiX32v9+pJ5kIPnOY+0/1acYT1eH89oTdYb9TJ3w4aBr0daY630+DvRTS76mUW03s9m8oYNMTUiJsc/3qB4UVHNxW9aeFyjVjxP0gjWGVQm+T2ZOXNmQxpv//mf/zkuvPDCuO2228ZnwAzjRU8uF13d3Q6cU4HBB8UbrPhFYG/R6a0WoDainp5cLiKfLzkg4HCSwD6fz7fMfQQwHjzc7AIapF0OVliNdr0dXd3dW/8GAACogWnTpsWcOXPisccea3YpFRMwM8RIR+hulORFU9IRG1GbbuOB2+ZFQFVq/XNoptEC87SSF5bZbDZ6oyhsLnrRmc1m27Z7HqBd7L5mTcSgA9IWa6cQcyI8Z+Tz+Yhtb/y3o2REmJAZAKiVJ598Mh599NHYddddm11KxSY1uwBaV6NezPRmMkP+jbQdjdeTy0VnoTDqmugsFKInl6tbiJtWuXpqHTBks9mBfQ6+n5IXzcV1JJ3L7RR0ALSDZSOEy+0meT4Z6W+gdnseKb4tg5+fW/lvveRTWslzdzKLefc1awb+/gEAqMbGjRvjySefHHL6Rz7ykSgUCrFw4cImVJWODmZKJF0krfJipWdbLfltnaARY+vmSS6TjdJxDu1utPEP1YyHqGW3VFd3d9n7uVFvXgysm6IO4loby20xHgOg9hYtWjRu5kkOF7YWP6+P9LzdauOqim/P4BEfvRHRGa3591lnofCPeod57m6V+xgAaB1XXnllPPHEE/HQQw9FRMRNN90Uq1atioiIc889Nx5//PF4wQteEIsXL479998/IiJuvfXWuOWWW2LhwoXxmte8pmm1V0vAzLDq+bHM0fadHCxtLPsYbKQXWbW+rc14QZeEueVuQxLSF7+wq+S29mYyqceJJC8Wm6HVOqgjitZ0cr+3YI0AtLbeTGbYTtlWPK5E8ndHzwgjMIY7lkOrESADANW6/PLL44EHHhj4/oYbbogbbrghIiJOOeWU2GmnneJVr3pVLF++PL72ta/F5s2b41nPelZcdtll8f73vz8mTWqfwRMCZgY0KpTLFx0ErdKO6Ww2OxDMJS+uyo0dSPPHf3HoWq5TqJKgO3mxVzx/b6TAN63kY78j3c7ibu/B1118v5V7IVo8BzH5OVUS9leis1Bo+Mdek3XTjJeEyc+olV8sAzA+1Lrzt1Gzn4v/nmm1cBwAYKxWrFgx6jZLly6tfyEN0D5ROG0vn88PhMFjnVNXLvRMQtFKg/Lk8j25XEk9g2tLOn8HzwXszWQquq7BHwctN3O60n0V76d4f6NtW+2bB8l9UMnc5cHKzRUevI9Kg+bkfhl8e0e6fKt9HDi5DwffB+YvA1Cp4ueQSp470jz311py/Z0VbAMAQHvTwcwQg1+4lOt0rXbUQrLfWryQKL6+zqLu1KRzJ+kc7hnUGV1NmFc8+3mw5LSuQdtGRGm3bFHHbvF9mGxffB8mncXF3UfJ9sn1TZnyj1/XgW2LuqXLzZcuHnFRXGNy3uAaSrarg2q6mIs73SO21pstFCKf3FcN6q4CgGYZ/DdPYrjn6sEjNJJPVlU683/w3zhpFf/9lPxNUu7vHwAAxgcdzETE0K7P4f74L9c9WskLheG6Tru6u2saaCbjH8p1IY8WbiddpsWdpSN1mVYayCadO4Ovf3Bna08uV/LicbRO3WS/gy+X7Lu4xpH2Uc+jnlfaAV3cxV18PxWPGxlJK3RqAUCzDDceI/m7pviN2UYa7m+Uev7tAQBA4+lgnkAGulLKhXWD/tDvLOpyLbnsoIslHakjHVimeK5vonimcq0Mrrnk6xFeyFQyY7h439XOJE66qROjHXm8+LqSyy1atChuueWWWLRoUUydOrXiOYuj1dpbtE2jhzUUr5nBnc3ljizfk8sNHBhvuBncrTYeAwDqrdzfPxGjH69hpG0GfwpsrAbvy/M0AMD4ImCeQIpHPox0NO9KlAsti48UXnydxZdp1MuJJDSt9QHWqh3HUDy2Is11JZfr7+8fcn5xODzSdY9WW6MNFyYnBxQcrTO83MHz5syZE6tXr/aCFYAJa+B5fYRP9CTPv10RA6MzihU/j1Yzimq4TxF5XgYAmBgEzONcuRcHA10pxbP8KtjXnDlzSvY7eJ/F4WDE0DnBjVKuk2e4ILZd5/e2a92D9WYyAy9yE+VejJZ7c6KzUBh4Qbt69eo6VgkA7WOkruTBzQWDR4tVOqs5YvQAWrgMADBxCJjHseKDpA0+6Esaw4V4nYXCsN0yzZyxN15C2PGueJZ0tS9GvXgFgNEV/63WGcPPbK52nwPHixj0957nZwCAicVB/sa5Wga8w71YKPexSLP2GInwHwAaa/CIqeT74tFU5f5eGzzWarSDEAMAMPHoYJ4AikcJRFQf9haH1OWCwYH9DepkbsaB42hP1R44EQCo3uDn2pH+ViseOVbuYM7JJ+VGO3YCAADjn4B5nBluFEbaP/pHGn9RjhcXAADjT/EojOLxVgAAIGAeh4oPtleLwFdoTD0MzG5sdiEAQFnJKIxyBwhM+DsRAAABcxvK5/ND/shPxmAkB/UzcoB2YI0CQOsaPGYNAADKcZC/NjPcH/nFHSadhYLgDgCAMUsO/lf8t2VvbG1m0L0MAECEgLmt5AcdQE+IDABAI2lmAABgMCMy2lBxt0jxEb6NxQAAAAAAGknAXEfJ2IqI9LNmK517J1gGAKCejMQAAKAcIzLqZHAw3JvJlATOyTa9mczA/5Ovk8uWC5f9YQ8AAAAAtAoBcx315HIREdFZ9HVxkDySwWF0coAVAAAAAIBWYURGDSWhcBImZ7PZ6B20TU8uF13d3f+Yl1woRDa2Ho07uVzCTGUAAAAAoJXpYK6RfD4/JCBO9EZpWJwcfbtY8v2cOXMGvhcuAwAAAACtTAdzDfRmMhFF4XJxmDw4JB5tzMXq1atrXyAAAAAAQB0ImEeQzEnu6u6OiNKweNmyZTFlypRYtmxZdEWUjLxIy4xlAAAAAKCdGJFRhXw+P3CQvkWLFg2cbpwFAAAAADAR6WCuQtLJ3JPLRWzrYAYAAAAAmKgkpCMYGFlR1J3cm8lEV3f3wAH9ijuZAQAAAAAmEiMyqpSMwxAsAwAAAAATnYAZAAAAAIBUBMwAAAAAAKQiYAYAAAAAIBUBMwAAAAAAqQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVATMAAAAAACkImAGAAAAACAVATMAAAAAAKkImAEAAAAASEXADAAAAABAKgJmAAAAAABSETADAAAAAJCKgBkAAAAAgFQEzAAAAAAApCJgBgAAAAAgFQEzAAAAAACpCJgBAAAAAEhFwAwAAAAAQCoCZgAAAAAAUhEwAwAAAACQioAZAAAAAIBUBMwAAAAAAKQiYAYAAAAAIBUBMwAAAAAAqQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVATMAAAAAACkMqWSjQqFQkRE9PX11bWYdtLf3x/r16+Pvr6+mDp1arPLYZyz3qgn64tGst6oF2uLRrLeqBdri0awzqA6SR6a5KMMVVHA/OSTT0ZExLx58+paDAAAAABAq3nyySdj1qxZzS6jJWUKFcTvW7ZsiYceeih23HHHyGQyjair5fX19cW8efNi5cqVMXPmzGaXwzhnvVFP1heNZL1RL9YWjWS9US/WFo1gnUF1CoVCPPnkkzF37tyYNMm04XIq6mCeNGlS7LXXXvWupS3NnDnTAzINY71RT9YXjWS9US/WFo1kvVEv1haNYJ1B5XQuj0zsDgAAAABAKgJmAAAAAABSETCn1NHREUuWLImOjo5ml8IEYL1RT9YXjWS9US/WFo1kvVEv1haNYJ0BtVbRQf4AAAAAAGAwHcwAAAAAAKQiYAYAAAAAIBUBMwAAAAAAqQiYAQAAAABIRcAMAAAAAEAqAmYAAAAAAFIRMAMAAAAAkIqAGQAAAACAVP5/sXfMxK+qCFoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[[
]]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cerebro.plot(iplot=False, volume=False, style='candlestick')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/explain_stocs_py.txt b/explain_stocs_py.txt new file mode 100644 index 0000000..fd94401 --- /dev/null +++ b/explain_stocs_py.txt @@ -0,0 +1,40 @@ +This code is a Python script for backtesting a simple moving average (SMA) trading strategy using the backtrader library. It includes the following components: + +1. Importing necessary libraries: + - The `backtrader` library for backtesting trading strategies. + - The `yf` library (yahoo finance) to download stock data from Yahoo Finance. + - The `pandas` library for data manipulation. + - The `datetime` module for working with dates and times. + +2. The `SMAStrategy` class: + - This class defines a simple trading strategy that uses a simple moving average (SMA) indicator. + - The strategy buys when the stock's closing price is above the SMA and sells when it's below. + - The strategy uses the `bt.indicators.SimpleMovingAverage` indicator to calculate the SMA. + +3. The `MetricsAnalyzer` class: + - This class is an analyzer that calculates and stores various metrics during the backtest, such as the initial and end cash, total number of trades, winning and losing trades, and return on investment. + - The analyzer uses the `notify_cashvalue`, `notify_trade`, and `get_analysis` methods to track and compute these metrics. + +4. The `get_user_input` function: + - This function prompts the user for input, including the initial cash, start and end dates for the backtest, and the stock ticker to analyze. + - The function also allows the user to select a stock from a predefined list of stocks. + +5. The `generate_unique_key` function: + - This function generates a unique key for each backtest run using the stock ticker, start date, and end date. + +6. The `save_results_to_csv` function: + - This function saves the backtest results to a CSV file. + +7. The `load_results_from_csv` function: + - This function loads the backtest results from the CSV file using the generated unique key. + +8. The `run_backtest` function: + - This function orchestrates the backtest process by calling other functions and classes. + - It first checks if the results for the given unique key already exist in the CSV file. + - If not, it downloads the stock data from Yahoo Finance, sets up the backtrader environment, and runs the backtest using the SMAStrategy and MetricsAnalyzer. + - The function then saves the results to a JSON file and prints the results to the console. + +9. The `if __name__ == '__main__'` block: + - This block loads the user input from a JSON configuration file and calls the `run_backtest` function to execute the backtest with the user-provided inputs. + +Overall, this script demonstrates a simple backtesting framework for evaluating the performance of a trading strategy over a specified period using historical stock data. \ No newline at end of file diff --git a/requirements..txt b/requirements..txt new file mode 100644 index 0000000..895a98d --- /dev/null +++ b/requirements..txt @@ -0,0 +1,6 @@ +backtrader +seaborn +matplotlib +datetime +plotly +yfinance diff --git a/screenshot/Figure_0.png b/screenshot/Figure_0.png new file mode 100644 index 0000000..2d1c444 Binary files /dev/null and b/screenshot/Figure_0.png differ diff --git a/script/backtest_results.csv b/script/backtest_results.csv new file mode 100644 index 0000000..d760738 --- /dev/null +++ b/script/backtest_results.csv @@ -0,0 +1,2 @@ +key,ticker,initial_cash,start_date,end_date,metrics +NVDA_2024-01-15_2024-06-10,NVDA,2500.0,2024-01-15,2024-06-10,"{'return': -0.03151280212402344, 'number_of_trades': 5, 'winning_trades': 2, 'losing_trades': 3, 'max_drawdown': 0.47658238860666036, 'sharpe_ratio': 'N/A'}" diff --git a/script/config.json b/script/config.json new file mode 100644 index 0000000..0747697 --- /dev/null +++ b/script/config.json @@ -0,0 +1,6 @@ +{ + "initial_cash": 20000000, + "start_date": "2023-05-16", + "end_date": "2024-05-30", + "ticker": "NVDA" + } \ No newline at end of file diff --git a/script/indicators.py b/script/indicators.py new file mode 100644 index 0000000..3b70ec0 --- /dev/null +++ b/script/indicators.py @@ -0,0 +1,205 @@ +import json +import backtrader as bt +import yfinance as yf +import os +import pandas as pd +from datetime import datetime + +class SMAStrategy(bt.Strategy): + params = (('sma_period', 15),) + + def __init__(self): + self.sma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.sma_period) + self.order = None + + def next(self): + if self.order: + return + + if not self.position: + if self.data.close[0] > self.sma[0]: + self.order = self.buy() + else: + if self.data.close[0] < self.sma[0]: + self.order = self.sell() + + def notify_order(self, order): + if order.status in [order.Submitted, order.Accepted]: + return + + if order.status in [order.Completed]: + if order.isbuy(): + self.log(f'BUY EXECUTED, {order.executed.price}') + elif order.issell(): + self.log(f'SELL EXECUTED, {order.executed.price}') + + self.order = None + + def notify_trade(self, trade): + if trade.isclosed: + self.log(f'TRADE PROFIT, GROSS {trade.pnl}, NET {trade.pnlcomm}') + + def log(self, txt, dt=None): + dt = dt or self.datas[0].datetime.date(0) + print(f'{dt.isoformat()} {txt}') + +class MetricsAnalyzer(bt.Analyzer): + def __init__(self): + self.init_cash = self.strategy.broker.get_cash() + self.end_cash = self.init_cash + self.trades = [] + + def notify_cashvalue(self, cash, value): + self.end_cash = cash + + def notify_trade(self, trade): + if trade.isclosed: + self.trades.append(trade) + + def get_analysis(self): + return { + 'return': (self.end_cash - self.init_cash) / self.init_cash, + 'trades': len(self.trades), + 'winning_trades': len([trade for trade in self.trades if trade.pnl > 0]), + 'losing_trades': len([trade for trade in self.trades if trade.pnl <= 0]) + } + +def get_user_input(): + initial_cash = float(input("Enter initial cash: ")) + start_date = input("Enter start date (YYYY-MM-DD): ") + end_date = input("Enter end date (YYYY-MM-DD): ") + + # User chooses a stock + stocks = { + '1': 'NVDA', # Nvidia + '2': 'TSLA', # Tesla + '3': 'MC.PA', # LVMH + '4': 'WMT' , # Walmart + '5': 'AMZN' # Amazon + } + + print("Choose a stock:") + for key, value in stocks.items(): + print(f"{key}: {value}") + + stock_choice = input("Enter the number corresponding to your choice: ") + ticker = stocks.get(stock_choice, 'NVDA') # Default to Nvidia if invalid choice + + # User chooses an indicator + indicators = { + '1': 'SMA', # Simple Moving Average + '2': 'LSTM', # LSTM time-series forecasting model + '3': 'MACD', # Moving Average Convergence Divergence + '4': 'RSI', # Relative Strength Index + '5': 'Bollinger Bands' # Bollinger Bands + } + + print("Choose an indicator:") + for key, value in indicators.items(): + print(f"{key}: {value}") + + indicator_choice = input("Enter the number corresponding to your choice: ") + indicator = indicators.get(indicator_choice, 'SMA') # Default to SMA if invalid choice + + return initial_cash, start_date, end_date, ticker, indicator +def generate_unique_key(ticker, start_date, end_date): + return f"{ticker}_{start_date}_{end_date}" + +def save_results_to_csv(results, csv_file): + df = pd.DataFrame([results]) + if not os.path.isfile(csv_file): + df.to_csv(csv_file, index=False) + else: + df.to_csv(csv_file, mode='a', header=False, index=False) + +def load_results_from_csv(key, csv_file): + if os.path.isfile(csv_file): + df = pd.read_csv(csv_file) + result = df[df['key'] == key] + if not result.empty: + return result.to_dict('records')[0] + return None + +def run_backtest(config): + initial_cash = config['initial_cash'] + start_date = config['start_date'] + end_date = config['end_date'] + ticker = config['ticker'] + indicator = config['indicator'] + + # Generate unique key + key = f"{ticker}_{start_date}_{end_date}_{ticker}_{indicator}" + + # Check if results already exist + csv_file = 'backtest_results.csv' + existing_result = load_results_from_csv(key, csv_file) + if existing_result: + print("Results already exist. Loading from file.") + print(json.dumps(existing_result, indent=4)) + return + + # Download stock data from Yahoo Finance + df = yf.download(ticker, start=start_date, end=end_date) + # Create a Cerebro instance + cerebro = bt.Cerebro() + + # Add the strategy + cerebro.addstrategy(SMAStrategy) + + # Convert the DataFrame to Backtrader format and add it to Cerebro + data = bt.feeds.PandasData(dataname=df) + cerebro.adddata(data) + + # Set initial cash + cerebro.broker.set_cash(initial_cash) + + # Add analyzers for metrics + cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown') + cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe') + cerebro.addanalyzer(MetricsAnalyzer, _name='metrics') + + # Run the backtest + results = cerebro.run() + strat = results[0] + + # Extract metrics + metrics = strat.analyzers.metrics.get_analysis() + sharpe_ratio = strat.analyzers.sharpe.get_analysis().get('sharperatio', None) + drawdown = strat.analyzers.drawdown.get_analysis()['max']['drawdown'] + + # Prepare results + backtest_results = { + "key": key, + "_SYMBOL": ticker, + "initial_cash": initial_cash, + "start_date": start_date, + "end_date": end_date, + "indicator": indicator, + "metrics": { + "return": metrics['return'], + "number_of_trades": metrics['trades'], + "winning_trades": metrics['winning_trades'], + "losing_trades": metrics['losing_trades'], + "max_drawdown": drawdown, + "sharpe_ratio": sharpe_ratio if sharpe_ratio is not None else "N/A" + } + } + # Save the results to a JSON file + with open(f'results/backtest_results_{ticker}_{start_date}_to_{end_date}_{indicator}.json', 'w') as f: + json.dump(backtest_results, f, indent=4) + + # Print results + print(json.dumps(backtest_results, indent=4)) + +if __name__ == '__main__': + with open('config.json', 'r') as f: + config = json.load(f) + + initial_cash, start_date, end_date, ticker, indicator = get_user_input() + config['initial_cash'] = initial_cash + config['start_date'] = start_date + config['end_date'] = end_date + config['ticker'] = ticker + config['indicator'] = indicator + + run_backtest(config) \ No newline at end of file diff --git a/script/nvda_backtesting.py b/script/nvda_backtesting.py new file mode 100644 index 0000000..6b9730c --- /dev/null +++ b/script/nvda_backtesting.py @@ -0,0 +1,103 @@ +import backtrader as bt +import yfinance as yf +import matplotlib.pyplot as plt +from datetime import datetime + +# Download NVDA stock data from Yahoo Finance +df = yf.download('NVDA', start='2020-06-22', end='2024-06-18') + +# Define the strategy with the SMA indicator +class SMAStrategy(bt.Strategy): + params = (('sma_period', 15),) + + def __init__(self): + self.sma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.sma_period) + self.order = None + + def next(self): + if self.order: + return + + if not self.position: + if self.data.close[0] > self.sma[0]: + self.order = self.buy() + else: + if self.data.close[0] < self.sma[0]: + self.order = self.sell() + + def notify_order(self, order): + if order.status in [order.Submitted, order.Accepted]: + return + + if order.status in [order.Completed]: + if order.isbuy(): + self.log(f'BUY EXECUTED, {order.executed.price}') + elif order.issell(): + self.log(f'SELL EXECUTED, {order.executed.price}') + + self.order = None + + def notify_trade(self, trade): + if trade.isclosed: + self.log(f'TRADE PROFIT, GROSS {trade.pnl}, NET {trade.pnlcomm}') + + def log(self, txt, dt=None): + dt = dt or self.datas[0].datetime.date(0) + print(f'{dt.isoformat()} {txt}') + + +# Custom Analyzer for metrics +class MetricsAnalyzer(bt.Analyzer): + def __init__(self): + self.init_cash = self.strategy.broker.get_cash() + self.end_cash = self.init_cash + self.trades = [] + + def notify_cashvalue(self, cash, value): + self.end_cash = cash + + def notify_trade(self, trade): + if trade.isclosed: + self.trades.append(trade) + + def get_analysis(self): + return { + 'return': (self.end_cash - self.init_cash) / self.init_cash, + 'trades': len(self.trades), + 'winning_trades': len([trade for trade in self.trades if trade.pnl > 0]), + 'losing_trades': len([trade for trade in self.trades if trade.pnl <= 0]) + } + +# Create a Cerebro instance +cerebro = bt.Cerebro() + +# Add the strategy +cerebro.addstrategy(SMAStrategy) + +# Convert the DataFrame to Backtrader format and add it to Cerebro +data = bt.feeds.PandasData(dataname=df) +cerebro.adddata(data) + +# Set initial cash +cerebro.broker.set_cash(100000) + +# Add analyzers for metrics +cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown') +cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe') +cerebro.addanalyzer(MetricsAnalyzer, _name='metrics') + +# Run the backtest +results = cerebro.run() +strat = results[0] + +# Extract metrics +metrics = strat.analyzers.metrics.get_analysis() +print(f"Return: {metrics['return']:.2f}") +print(f"Number of trades: {metrics['trades']}") +print(f"Winning trades: {metrics['winning_trades']}") +print(f"Losing trades: {metrics['losing_trades']}") +print(f"Max drawdown: {strat.analyzers.drawdown.get_analysis()['max']['drawdown']:.2f}%") +print(f"Sharpe ratio: {strat.analyzers.sharpe.get_analysis()['sharperatio']:.2f}") + +# Plot the results +cerebro.plot() \ No newline at end of file diff --git a/script/results/backtest_results_MC.PA_2023-05-05_to_2024-05-05_MACD.json b/script/results/backtest_results_MC.PA_2023-05-05_to_2024-05-05_MACD.json new file mode 100644 index 0000000..a79c018 --- /dev/null +++ b/script/results/backtest_results_MC.PA_2023-05-05_to_2024-05-05_MACD.json @@ -0,0 +1,16 @@ +{ + "key": "MC.PA_2023-05-05_2024-05-05_MC.PA_MACD", + "_SYMBOL": "MC.PA", + "initial_cash": 12000.0, + "start_date": "2023-05-05", + "end_date": "2024-05-05", + "indicator": "MACD", + "metrics": { + "return": 0.005124994913736979, + "number_of_trades": 14, + "winning_trades": 4, + "losing_trades": 10, + "max_drawdown": 1.3054504701848728, + "sharpe_ratio": -0.7278526552857935 + } +} \ No newline at end of file diff --git a/script/results/backtest_results_MC.PA_2023-10-12_to_2024-03-12.json b/script/results/backtest_results_MC.PA_2023-10-12_to_2024-03-12.json new file mode 100644 index 0000000..126e3ce --- /dev/null +++ b/script/results/backtest_results_MC.PA_2023-10-12_to_2024-03-12.json @@ -0,0 +1,15 @@ +{ + "key": "MC.PA_2023-10-12_2024-03-12", + "ticker": "MC.PA", + "initial_cash": 10000.0, + "start_date": "2023-10-12", + "end_date": "2024-03-12", + "metrics": { + "return": -0.06772999267578125, + "number_of_trades": 3, + "winning_trades": 2, + "losing_trades": 1, + "max_drawdown": 0.3588194830248242, + "sharpe_ratio": -0.20911894002292608 + } +} \ No newline at end of file diff --git a/script/results/backtest_results_NVDA_2020-07-16_to_2020-11-30.json b/script/results/backtest_results_NVDA_2020-07-16_to_2020-11-30.json new file mode 100644 index 0000000..231a328 --- /dev/null +++ b/script/results/backtest_results_NVDA_2020-07-16_to_2020-11-30.json @@ -0,0 +1,14 @@ +{ + "initial_cash": 10000, + "start_date": "2020-07-16", + "end_date": "2020-11-30", + "ticker": "NVDA", + "metrics": { + "return": -0.00013134994506835938, + "number_of_trades": 5, + "winning_trades": 2, + "losing_trades": 3, + "max_drawdown": 0.04392433887744277, + "sharpe_ratio": "N/A" + } +} \ No newline at end of file diff --git a/script/results/backtest_results_NVDA_2023-05-16_to_2024-05-30.json b/script/results/backtest_results_NVDA_2023-05-16_to_2024-05-30.json new file mode 100644 index 0000000..68484ea --- /dev/null +++ b/script/results/backtest_results_NVDA_2023-05-16_to_2024-05-30.json @@ -0,0 +1,14 @@ +{ + "initial_cash": 20000000, + "start_date": "2023-05-16", + "end_date": "2024-05-30", + "ticker": "NVDA", + "metrics": { + "return": -2.774100685119629e-06, + "number_of_trades": 14, + "winning_trades": 6, + "losing_trades": 8, + "max_drawdown": 6.003988736776245e-05, + "sharpe_ratio": -8177.912558984574 + } +} \ No newline at end of file diff --git a/script/results/backtest_results_NVDA_2023-07-16_to_2024-05-30.json b/script/results/backtest_results_NVDA_2023-07-16_to_2024-05-30.json new file mode 100644 index 0000000..f1b69e4 --- /dev/null +++ b/script/results/backtest_results_NVDA_2023-07-16_to_2024-05-30.json @@ -0,0 +1,14 @@ +{ + "initial_cash": 1000, + "start_date": "2023-07-16", + "end_date": "2024-05-30", + "ticker": "NVDA", + "metrics": { + "return": -0.05866000747680664, + "number_of_trades": 9, + "winning_trades": 3, + "losing_trades": 6, + "max_drawdown": 1.154916640182771, + "sharpe_ratio": 0.6937241094599604 + } +} \ No newline at end of file diff --git a/script/stocks.py b/script/stocks.py new file mode 100644 index 0000000..a28aa1e --- /dev/null +++ b/script/stocks.py @@ -0,0 +1,188 @@ +import json +import backtrader as bt +import yfinance as yf +import os +import pandas as pd +from datetime import datetime + +class SMAStrategy(bt.Strategy): + params = (('sma_period', 15),) + + def __init__(self): + self.sma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.sma_period) + self.order = None + + def next(self): + if self.order: + return + + if not self.position: + if self.data.close[0] > self.sma[0]: + self.order = self.buy() + else: + if self.data.close[0] < self.sma[0]: + self.order = self.sell() + + def notify_order(self, order): + if order.status in [order.Submitted, order.Accepted]: + return + + if order.status in [order.Completed]: + if order.isbuy(): + self.log(f'BUY EXECUTED, {order.executed.price}') + elif order.issell(): + self.log(f'SELL EXECUTED, {order.executed.price}') + + self.order = None + + def notify_trade(self, trade): + if trade.isclosed: + self.log(f'TRADE PROFIT, GROSS {trade.pnl}, NET {trade.pnlcomm}') + + def log(self, txt, dt=None): + dt = dt or self.datas[0].datetime.date(0) + print(f'{dt.isoformat()} {txt}') + +class MetricsAnalyzer(bt.Analyzer): + def __init__(self): + self.init_cash = self.strategy.broker.get_cash() + self.end_cash = self.init_cash + self.trades = [] + + def notify_cashvalue(self, cash, value): + self.end_cash = cash + + def notify_trade(self, trade): + if trade.isclosed: + self.trades.append(trade) + + def get_analysis(self): + return { + 'return': (self.end_cash - self.init_cash) / self.init_cash, + 'trades': len(self.trades), + 'winning_trades': len([trade for trade in self.trades if trade.pnl > 0]), + 'losing_trades': len([trade for trade in self.trades if trade.pnl <= 0]) + } + +def get_user_input(): + initial_cash = float(input("Enter initial cash: ")) + start_date = input("Enter start date (YYYY-MM-DD): ") + end_date = input("Enter end date (YYYY-MM-DD): ") + + # User chooses a stock + stocks = { + '1': 'NVDA', # Nvidia + '2': 'TSLA', # Tesla + '3': 'MC.PA', # LVMH + '4': 'WMT' , # Walmart + '5': 'AMZN' # Amazon + } + + print("Choose a stock:") + for key, value in stocks.items(): + print(f"{key}: {value}") + + stock_choice = input("Enter the number corresponding to your choice: ") + ticker = stocks.get(stock_choice, 'NVDA') # Default to Nvidia if invalid choice + + return initial_cash, start_date, end_date, ticker + +def generate_unique_key(ticker, start_date, end_date): + return f"{ticker}_{start_date}_{end_date}" + +def save_results_to_csv(results, csv_file): + df = pd.DataFrame([results]) + if not os.path.isfile(csv_file): + df.to_csv(csv_file, index=False) + else: + df.to_csv(csv_file, mode='a', header=False, index=False) + +def load_results_from_csv(key, csv_file): + if os.path.isfile(csv_file): + df = pd.read_csv(csv_file) + result = df[df['key'] == key] + if not result.empty: + return result.to_dict('records')[0] + return None + +def run_backtest(config): + initial_cash = config['initial_cash'] + start_date = config['start_date'] + end_date = config['end_date'] + ticker = config['ticker'] + + # Generate unique key + key = generate_unique_key(ticker, start_date, end_date) + + # Check if results already exist + csv_file = 'backtest_results.csv' + existing_result = load_results_from_csv(key, csv_file) + if existing_result: + print("Results already exist. Loading from file.") + print(json.dumps(existing_result, indent=4)) + return + + # Download stock data from Yahoo Finance + df = yf.download(ticker, start=start_date, end=end_date) + + # Create a Cerebro instance + cerebro = bt.Cerebro() + + # Add the strategy + cerebro.addstrategy(SMAStrategy) + + # Convert the DataFrame to Backtrader format and add it to Cerebro + data = bt.feeds.PandasData(dataname=df) + cerebro.adddata(data) + + # Set initial cash + cerebro.broker.set_cash(initial_cash) + + # Add analyzers for metrics + cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown') + cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe') + cerebro.addanalyzer(MetricsAnalyzer, _name='metrics') + + # Run the backtest + results = cerebro.run() + strat = results[0] + + # Extract metrics + metrics = strat.analyzers.metrics.get_analysis() + sharpe_ratio = strat.analyzers.sharpe.get_analysis().get('sharperatio', None) + drawdown = strat.analyzers.drawdown.get_analysis()['max']['drawdown'] + + # Prepare results + backtest_results = { + "key": key, + "ticker": ticker, + "initial_cash": initial_cash, + "start_date": start_date, + "end_date": end_date, + "metrics": { + "return": metrics['return'], + "number_of_trades": metrics['trades'], + "winning_trades": metrics['winning_trades'], + "losing_trades": metrics['losing_trades'], + "max_drawdown": drawdown, + "sharpe_ratio": sharpe_ratio if sharpe_ratio is not None else "N/A" + } + } + # Save the results to a JSON file + with open(f'results/backtest_results_{ticker}_{start_date}_to_{end_date}.json', 'w') as f: + json.dump(backtest_results, f, indent=4) + + # Print results + print(json.dumps(backtest_results, indent=4)) + +if __name__ == '__main__': + with open('config.json', 'r') as f: + config = json.load(f) + + initial_cash, start_date, end_date, ticker = get_user_input() + config['initial_cash'] = initial_cash + config['start_date'] = start_date + config['end_date'] = end_date + config['ticker'] = ticker + + run_backtest(config) diff --git a/script/user.py b/script/user.py new file mode 100644 index 0000000..597fd72 --- /dev/null +++ b/script/user.py @@ -0,0 +1,115 @@ +import backtrader as bt +import yfinance as yf +from datetime import datetime + +def get_user_input(): + initial_cash = float(input("Enter initial cash: ")) + start_date = input("Enter start date (YYYY-MM-DD): ") + end_date = input("Enter end date (YYYY-MM-DD): ") + return initial_cash, start_date, end_date + +class SMAStrategy(bt.Strategy): + params = (('sma_period', 15),) + + def __init__(self): + self.sma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.sma_period) + self.order = None + + def next(self): + if self.order: + return + + if not self.position: + if self.data.close[0] > self.sma[0]: + self.order = self.buy() + else: + if self.data.close[0] < self.sma[0]: + self.order = self.sell() + + def notify_order(self, order): + if order.status in [order.Submitted, order.Accepted]: + return + + if order.status in [order.Completed]: + if order.isbuy(): + self.log(f'BUY EXECUTED, {order.executed.price}') + elif order.issell(): + self.log(f'SELL EXECUTED, {order.executed.price}') + + self.order = None + + def notify_trade(self, trade): + if trade.isclosed: + self.log(f'TRADE PROFIT, GROSS {trade.pnl}, NET {trade.pnlcomm}') + + def log(self, txt, dt=None): + dt = dt or self.datas[0].datetime.date(0) + print(f'{dt.isoformat()} {txt}') + +class MetricsAnalyzer(bt.Analyzer): + def __init__(self): + self.init_cash = self.strategy.broker.get_cash() + self.end_cash = self.init_cash + self.trades = [] + + def notify_cashvalue(self, cash, value): + self.end_cash = cash + + def notify_trade(self, trade): + if trade.isclosed: + self.trades.append(trade) + + def get_analysis(self): + return { + 'return': (self.end_cash - self.init_cash) / self.init_cash, + 'trades': len(self.trades), + 'winning_trades': len([trade for trade in self.trades if trade.pnl > 0]), + 'losing_trades': len([trade for trade in self.trades if trade.pnl <= 0]) + } + +def run_backtest(initial_cash, start_date, end_date): + # Download NVDA stock data from Yahoo Finance + df = yf.download('NVDA', start=start_date, end=end_date) + + # Create a Cerebro instance + cerebro = bt.Cerebro() + + # Add the strategy + cerebro.addstrategy(SMAStrategy) + + # Convert the DataFrame to Backtrader format and add it to Cerebro + data = bt.feeds.PandasData(dataname=df) + cerebro.adddata(data) + + # Set initial cash + cerebro.broker.set_cash(initial_cash) + + # Add analyzers for metrics + cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown') + cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe') + cerebro.addanalyzer(MetricsAnalyzer, _name='metrics') + + # Run the backtest + results = cerebro.run() + strat = results[0] + + # Extract metrics + metrics = strat.analyzers.metrics.get_analysis() + print(f"Return: {metrics['return']:.2f}") + print(f"Number of trades: {metrics['trades']}") + print(f"Winning trades: {metrics['winning_trades']}") + print(f"Losing trades: {metrics['losing_trades']}") + print(f"Max drawdown: {strat.analyzers.drawdown.get_analysis()['max']['drawdown']:.2f}%") + + sharpe_ratio = strat.analyzers.sharpe.get_analysis().get('sharperatio', None) + if sharpe_ratio is not None: + print(f"Sharpe ratio: {sharpe_ratio:.2f}") + else: + print("Sharpe ratio: N/A") + + # Plot the results + cerebro.plot() + +if __name__ == '__main__': + initial_cash, start_date, end_date = get_user_input() + run_backtest(initial_cash, start_date, end_date) \ No newline at end of file diff --git a/script/user_json.py b/script/user_json.py new file mode 100644 index 0000000..5f22b52 --- /dev/null +++ b/script/user_json.py @@ -0,0 +1,131 @@ +import json +import backtrader as bt +import yfinance as yf +import os + +class SMAStrategy(bt.Strategy): + params = (('sma_period', 15),) + + def __init__(self): + self.sma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.sma_period) + self.order = None + + def next(self): + if self.order: + return + + if not self.position: + if self.data.close[0] > self.sma[0]: + self.order = self.buy() + else: + if self.data.close[0] < self.sma[0]: + self.order = self.sell() + + def notify_order(self, order): + if order.status in [order.Submitted, order.Accepted]: + return + + if order.status in [order.Completed]: + if order.isbuy(): + self.log(f'BUY EXECUTED, {order.executed.price}') + elif order.issell(): + self.log(f'SELL EXECUTED, {order.executed.price}') + + self.order = None + + def notify_trade(self, trade): + if trade.isclosed: + self.log(f'TRADE PROFIT, GROSS {trade.pnl}, NET {trade.pnlcomm}') + + def log(self, txt, dt=None): + dt = dt or self.datas[0].datetime.date(0) + print(f'{dt.isoformat()} {txt}') + +class MetricsAnalyzer(bt.Analyzer): + def __init__(self): + self.init_cash = self.strategy.broker.get_cash() + self.end_cash = self.init_cash + self.trades = [] + + def notify_cashvalue(self, cash, value): + self.end_cash = cash + + def notify_trade(self, trade): + if trade.isclosed: + self.trades.append(trade) + + def get_analysis(self): + return { + 'return': (self.end_cash - self.init_cash) / self.init_cash, + 'trades': len(self.trades), + 'winning_trades': len([trade for trade in self.trades if trade.pnl > 0]), + 'losing_trades': len([trade for trade in self.trades if trade.pnl <= 0]) + } + +def run_backtest(config): + initial_cash = config['initial_cash'] + start_date = config['start_date'] + end_date = config['end_date'] + ticker = config['ticker'] + + # Download stock data from Yahoo Finance + df = yf.download(ticker, start=start_date, end=end_date) + + # Create a Cerebro instance + cerebro = bt.Cerebro() + + # Add the strategy + cerebro.addstrategy(SMAStrategy) + + # Convert the DataFrame to Backtrader format and add it to Cerebro + data = bt.feeds.PandasData(dataname=df) + cerebro.adddata(data) + + # Set initial cash + cerebro.broker.set_cash(initial_cash) + + # Add analyzers for metrics + cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown') + cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe') + cerebro.addanalyzer(MetricsAnalyzer, _name='metrics') + + # Run the backtest + results = cerebro.run() + strat = results[0] + + # Extract metrics + metrics = strat.analyzers.metrics.get_analysis() + sharpe_ratio = strat.analyzers.sharpe.get_analysis().get('sharperatio', None) + drawdown = strat.analyzers.drawdown.get_analysis()['max']['drawdown'] + + # Save results to a JSON file + backtest_results = { + "initial_cash": initial_cash, + "start_date": start_date, + "end_date": end_date, + "ticker": ticker, + "metrics": { + "return": metrics['return'], + "number_of_trades": metrics['trades'], + "winning_trades": metrics['winning_trades'], + "losing_trades": metrics['losing_trades'], + "max_drawdown": drawdown, + "sharpe_ratio": sharpe_ratio if sharpe_ratio is not None else "N/A" + } + } + + # Create the results directory if it does not exist + if not os.path.exists('results'): + os.makedirs('results') + + # Save the results to a JSON file + with open(f'results/backtest_results_{ticker}_{start_date}_to_{end_date}.json', 'w') as f: + json.dump(backtest_results, f, indent=4) + + # Print results + print(json.dumps(backtest_results, indent=4)) + +if __name__ == '__main__': + with open('config.json', 'r') as f: + config = json.load(f) + run_backtest(config) \ No newline at end of file diff --git a/script/user_save.py b/script/user_save.py new file mode 100644 index 0000000..5cde68c --- /dev/null +++ b/script/user_save.py @@ -0,0 +1,170 @@ +import json +import backtrader as bt +import yfinance as yf +import os +import pandas as pd +from datetime import datetime + +class SMAStrategy(bt.Strategy): + params = (('sma_period', 15),) + + def __init__(self): + self.sma = bt.indicators.SimpleMovingAverage(self.data.close, period=self.params.sma_period) + self.order = None + + def next(self): + if self.order: + return + + if not self.position: + if self.data.close[0] > self.sma[0]: + self.order = self.buy() + else: + if self.data.close[0] < self.sma[0]: + self.order = self.sell() + + def notify_order(self, order): + if order.status in [order.Submitted, order.Accepted]: + return + + if order.status in [order.Completed]: + if order.isbuy(): + self.log(f'BUY EXECUTED, {order.executed.price}') + elif order.issell(): + self.log(f'SELL EXECUTED, {order.executed.price}') + + self.order = None + + def notify_trade(self, trade): + if trade.isclosed: + self.log(f'TRADE PROFIT, GROSS {trade.pnl}, NET {trade.pnlcomm}') + + def log(self, txt, dt=None): + dt = dt or self.datas[0].datetime.date(0) + print(f'{dt.isoformat()} {txt}') + +class MetricsAnalyzer(bt.Analyzer): + def __init__(self): + self.init_cash = self.strategy.broker.get_cash() + self.end_cash = self.init_cash + self.trades = [] + + def notify_cashvalue(self, cash, value): + self.end_cash = cash + + def notify_trade(self, trade): + if trade.isclosed: + self.trades.append(trade) + + def get_analysis(self): + return { + 'return': (self.end_cash - self.init_cash) / self.init_cash, + 'trades': len(self.trades), + 'winning_trades': len([trade for trade in self.trades if trade.pnl > 0]), + 'losing_trades': len([trade for trade in self.trades if trade.pnl <= 0]) + } + +def get_user_input(): + initial_cash = float(input("Enter initial cash: ")) + start_date = input("Enter start date (YYYY-MM-DD): ") + end_date = input("Enter end date (YYYY-MM-DD): ") + return initial_cash, start_date, end_date + +def generate_unique_key(ticker, start_date, end_date): + return f"{ticker}_{start_date}_{end_date}" + +def save_results_to_csv(results, csv_file): + df = pd.DataFrame([results]) + if not os.path.isfile(csv_file): + df.to_csv(csv_file, index=False) + else: + df.to_csv(csv_file, mode='a', header=False, index=False) + +def load_results_from_csv(key, csv_file): + if os.path.isfile(csv_file): + df = pd.read_csv(csv_file) + result = df[df['key'] == key] + if not result.empty: + return result.to_dict('records')[0] + return None + +def run_backtest(config): + initial_cash = config['initial_cash'] + start_date = config['start_date'] + end_date = config['end_date'] + ticker = config['ticker'] + + # Generate unique key + key = generate_unique_key(ticker, start_date, end_date) + + # Check if results already exist + csv_file = 'backtest_results.csv' + existing_result = load_results_from_csv(key, csv_file) + if existing_result: + print("Results already exist. Loading from file.") + print(json.dumps(existing_result, indent=4)) + return + + # Download stock data from Yahoo Finance + df = yf.download(ticker, start=start_date, end=end_date) + + # Create a Cerebro instance + cerebro = bt.Cerebro() + + # Add the strategy + cerebro.addstrategy(SMAStrategy) + + # Convert the DataFrame to Backtrader format and add it to Cerebro + data = bt.feeds.PandasData(dataname=df) + cerebro.adddata(data) + + # Set initial cash + cerebro.broker.set_cash(initial_cash) + + # Add analyzers for metrics + cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown') + cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe') + cerebro.addanalyzer(MetricsAnalyzer, _name='metrics') + + # Run the backtest + results = cerebro.run() + strat = results[0] + + # Extract metrics + metrics = strat.analyzers.metrics.get_analysis() + sharpe_ratio = strat.analyzers.sharpe.get_analysis().get('sharperatio', None) + drawdown = strat.analyzers.drawdown.get_analysis()['max']['drawdown'] + + # Prepare results + backtest_results = { + "key": key, + "ticker": ticker, + "initial_cash": initial_cash, + "start_date": start_date, + "end_date": end_date, + "metrics": { + "return": metrics['return'], + "number_of_trades": metrics['trades'], + "winning_trades": metrics['winning_trades'], + "losing_trades": metrics['losing_trades'], + "max_drawdown": drawdown, + "sharpe_ratio": sharpe_ratio if sharpe_ratio is not None else "N/A" + } + } + + # Save the results to CSV + save_results_to_csv(backtest_results, csv_file) + + # Print results + print(json.dumps(backtest_results, indent=4)) + +if __name__ == '__main__': + with open('config.json', 'r') as f: + config = json.load(f) + + initial_cash, start_date, end_date = get_user_input() + config['initial_cash'] = initial_cash + config['start_date'] = start_date + config['end_date'] = end_date + + run_backtest(config) \ No newline at end of file