From 1e98fb4414da164a6a4548f953f53982536693b2 Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Wed, 26 Jun 2024 22:50:48 +0300 Subject: [PATCH 01/25] chore: update main for logger --- backend/main.py | 32 ++++++++++++++++++-------------- 1 file changed, 18 insertions(+), 14 deletions(-) diff --git a/backend/main.py b/backend/main.py index 25e476b..ad7b6ea 100644 --- a/backend/main.py +++ b/backend/main.py @@ -147,24 +147,28 @@ def perform_backtest(scene_id: int, db: Session = Depends(get_db)): db_scene = db.query(models.Scene).filter(models.Scene.id == scene_id).first() if db_scene is None: raise HTTPException(status_code=404, detail="Scene not found") - - # Fetch data based on the scene's date range - df = fetch_data(db_scene.start_date, db_scene.end_date) - # Perform backtest - metrics = run_backtest({ - 'period': db_scene.period, - 'indicator_name': db_scene.indicator.name - }, df) + config = { + 'initial_cash': 500, + 'start_date': db_scene.start_date.strftime('%Y-%m-%d'), + 'end_date': db_scene.end_date.strftime('%Y-%m-%d'), + 'ticker': db_scene.stock.symbol, + 'indicator': db_scene.indicator.symbol + } + + logger.info(f"Config: {config}") + + metrics = run_backtest(config=config) + + logger.info(f"Metrics: {metrics}") # Save metrics to database backtest_results = [] - for metric in metrics: - db_backtest_result = models.BacktestResult(scene_id=scene_id, **metric) - db.add(db_backtest_result) - db.commit() - db.refresh(db_backtest_result) - backtest_results.append(db_backtest_result) + db_backtest_result = models.BacktestResult(scene_id=scene_id, **metrics) + db.add(db_backtest_result) + db.commit() + db.refresh(db_backtest_result) + backtest_results.append(db_backtest_result) return backtest_results From 08bf4737c301e9e66876c6fcc131988644dfa039 Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Wed, 26 Jun 2024 22:51:12 +0300 Subject: [PATCH 02/25] fix: fix sharpee ratio for none value --- backend/schemas.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/backend/schemas.py b/backend/schemas.py index 174ffc6..d86d801 100644 --- a/backend/schemas.py +++ b/backend/schemas.py @@ -82,7 +82,7 @@ class BacktestResultBase(BaseModel): total_trades: int winning_trades: int losing_trades: int - sharpe_ratio: float + sharpe_ratio: Optional[int] = None class BacktestResultCreate(BacktestResultBase): pass From 47653b730a34810d4b326eb53a903291663c8a1e Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Wed, 26 Jun 2024 22:51:35 +0300 Subject: [PATCH 03/25] feat: integrationof backend --- frontend/src/components/BacktestForm.js | 294 +++++++++++++++--------- notebooks/lstm.ipynb | 76 ++++-- 2 files changed, 248 insertions(+), 122 deletions(-) diff --git a/frontend/src/components/BacktestForm.js b/frontend/src/components/BacktestForm.js index 7db4259..1e783c5 100644 --- a/frontend/src/components/BacktestForm.js +++ b/frontend/src/components/BacktestForm.js @@ -1,40 +1,112 @@ -import React, { useState } from 'react'; +import React, { useState, useEffect } from 'react'; function BacktestForm() { const [parameters, setParameters] = useState({ startDate: '', endDate: '', indicator: '', + stock: '', paramsRange: '', }); - const [results, setResults] = useState(null); + const [results, setResults] = useState(null); + const [indicators, setIndicators] = useState([]); + const [stocks, setStocks] = useState([]); + const [stockDescription, setStockDescription] = useState(''); + const [indicatorDescription, setIndicatorDescription] = useState(''); + + useEffect(() => { + // Simulate fetching indicators and stocks from an API + const fetchIndicators = async () => { + const response = await fetch('http://127.0.0.1:8000/indicators/'); + const data = await response.json(); + console.log("The Response on Indicators is :: ",data); + + setIndicators(data); + }; + + const fetchStocks = async () => { + const response = await fetch('http://127.0.0.1:8000/stocks/'); + const data = await response.json(); + console.log("The Response on Stocks is :: ",data); + setStocks(data); + }; + + fetchIndicators(); + fetchStocks(); + }, []); const handleChange = (e) => { setParameters({ ...parameters, [e.target.name]: e.target.value, }); + + console.log("The changed s ::",e.target.name, "The Val =" ,e.target.value); + + if (e.target.name === 'stock') { + console.log("It is here") + const selectedStock = stocks.find(stock => stock.id === parseInt(e.target.value)); + console.log("Selected Stock :: ",selectedStock) + setStockDescription(selectedStock ? selectedStock.description : ''); + } + + if (e.target.name === 'indicator') { + const selectedIndicator = indicators.find(indicator => indicator.id === parseInt(e.target.value)); + setIndicatorDescription(selectedIndicator ? selectedIndicator.description : ''); + } }; const handleSubmit = async (e) => { e.preventDefault(); console.log(parameters); - // Simulate API call to backend - + let a = { + "period": 15, + "start_date": parameters["startDate"], + "end_date": parameters['endDate'], + "indicator_id": parameters["indicator"], // + "stock_id": parameters["stock"] // Nvidia + } + console.log("The final to be sent to API is :: ", a) + // API POST call to backend + const response = await fetch('http://127.0.0.1:8000/scenes/', { + method: 'POST', + headers: { + 'Content-Type': 'application/json', + }, + body: JSON.stringify(a), + }); // const response = await fetch('https://localhost'); - const response = { - "return": "10%", - "numberOfTrades": 50, - "winningTrades": 30, - "losingTrades": 20, - "maxDrawdown": "5%", - "sharpeRatio": 1.5 - } + // const response = { + // "return": "10%", + // "numberOfTrades": 50, + // "winningTrades": 30, + // "losingTrades": 20, + // "maxDrawdown": "5%", + // "sharpeRatio": 1.5 + // }; + const scene = await response.json() + console.log("The Response of backtest is :: ",scene); + + const scene_id = scene.id; + console.log("The Scene ID is :: ",scene_id); + + // const response2 = await fetch('http://127.0.0.1:8000//backtests/'+scene_id+'/'); + const response2 = await fetch('http://127.0.0.1:8000/backtests/'+scene_id+'/', { + method: 'POST', + headers: { + 'Content-Type': 'application/json', + }, + body: JSON.stringify(""), + }); + + const data2 = await response2.json(); + + console.log("The Response of backtest is :: ",data2); // const data = await response.json(); - const data = response; - setResults(data); + // const data = response; + setResults(data2[0]); }; return ( @@ -42,103 +114,119 @@ function BacktestForm() {

Backtest Parameters

-
- - -
+
+
+ + +
-
- - -
- -
- - -
-
- - -
-
- - -
+
+ + + {stockDescription} +
+
+ + +
+ +
+ + +
+ +
+ + + {indicatorDescription} +
+
- +
{results && ( -
-

Backtest Results

-
-

Return: {results.return}

-

Number of Trades: {results.numberOfTrades}

-

Winning Trades: {results.winningTrades}

-

Losing Trades: {results.losingTrades}

-

Max Drawdown: {results.maxDrawdown}

-

Sharpe Ratio: {results.sharpeRatio}

+
+
+

Start / End Portfolio

+

${results.initial_cash.toFixed(2)} / ${results.final_value.toFixed(2)}

+

Total Portfolio: {results.final_value.toFixed(2)}

+

Return Percentage: {(results.percentage_return * 100).toFixed(2)}%

+
+
+

Win / Loss Trade

+

{results.winning_trades} Wins / {results.losing_trades} Losses

+

Total Trade: {results.total_trades}

+

Win Trade Percentage: {((results.winning_trades / results.total_trades) * 100).toFixed(2)}%

+
+
+

Sharpe Ratio

+

{results.sharpe_ratio}

+
+
+

Max Drawdown

+

{results.max_drawdown}

)} diff --git a/notebooks/lstm.ipynb b/notebooks/lstm.ipynb index afe0397..3207302 100644 --- a/notebooks/lstm.ipynb +++ b/notebooks/lstm.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -12,7 +12,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -31,27 +31,65 @@ "text": [ "INFO:nixtla.nixtla_client:Validating inputs...\n", "INFO:nixtla.nixtla_client:Preprocessing dataframes...\n", - "INFO:nixtla.nixtla_client:Inferred freq: h\n" + "INFO:nixtla.nixtla_client:Inferred freq: h\n", + "INFO:nixtla.nixtla_client:Attempt 1 failed...\n", + "INFO:nixtla.nixtla_client:Attempt 2 failed...\n", + "INFO:nixtla.nixtla_client:Attempt 3 failed...\n", + "INFO:nixtla.nixtla_client:Attempt 4 failed...\n", + "INFO:nixtla.nixtla_client:Attempt 5 failed...\n", + "INFO:nixtla.nixtla_client:Attempt 6 failed...\n" ] }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:nixtla.nixtla_client:Restricting input...\n", - "INFO:nixtla.nixtla_client:Calling Forecast Endpoint...\n" + "ename": "ConnectError", + "evalue": "[Errno 11001] getaddrinfo failed", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mConnectError\u001b[0m Traceback (most recent call last)", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_transports\\default.py:69\u001b[0m, in \u001b[0;36mmap_httpcore_exceptions\u001b[1;34m()\u001b[0m\n\u001b[0;32m 68\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 69\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m\n\u001b[0;32m 70\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_transports\\default.py:233\u001b[0m, in \u001b[0;36mHTTPTransport.handle_request\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 232\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m map_httpcore_exceptions():\n\u001b[1;32m--> 233\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_pool\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreq\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 235\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(resp\u001b[38;5;241m.\u001b[39mstream, typing\u001b[38;5;241m.\u001b[39mIterable)\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpcore\\_sync\\connection_pool.py:216\u001b[0m, in \u001b[0;36mConnectionPool.handle_request\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 215\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_close_connections(closing)\n\u001b[1;32m--> 216\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 218\u001b[0m \u001b[38;5;66;03m# Return the response. Note that in this case we still have to manage\u001b[39;00m\n\u001b[0;32m 219\u001b[0m \u001b[38;5;66;03m# the point at which the response is closed.\u001b[39;00m\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpcore\\_sync\\connection_pool.py:196\u001b[0m, in \u001b[0;36mConnectionPool.handle_request\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 194\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 195\u001b[0m \u001b[38;5;66;03m# Send the request on the assigned connection.\u001b[39;00m\n\u001b[1;32m--> 196\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43mconnection\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 197\u001b[0m \u001b[43m \u001b[49m\u001b[43mpool_request\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\n\u001b[0;32m 198\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 199\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ConnectionNotAvailable:\n\u001b[0;32m 200\u001b[0m \u001b[38;5;66;03m# In some cases a connection may initially be available to\u001b[39;00m\n\u001b[0;32m 201\u001b[0m \u001b[38;5;66;03m# handle a request, but then become unavailable.\u001b[39;00m\n\u001b[0;32m 202\u001b[0m \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[0;32m 203\u001b[0m \u001b[38;5;66;03m# In this case we clear the connection and try again.\u001b[39;00m\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpcore\\_sync\\connection.py:99\u001b[0m, in \u001b[0;36mHTTPConnection.handle_request\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 98\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_connect_failed \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m---> 99\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\n\u001b[0;32m 101\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_connection\u001b[38;5;241m.\u001b[39mhandle_request(request)\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpcore\\_sync\\connection.py:76\u001b[0m, in \u001b[0;36mHTTPConnection.handle_request\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 75\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_connection \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m---> 76\u001b[0m stream \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_connect\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 78\u001b[0m ssl_object \u001b[38;5;241m=\u001b[39m stream\u001b[38;5;241m.\u001b[39mget_extra_info(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mssl_object\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpcore\\_sync\\connection.py:122\u001b[0m, in \u001b[0;36mHTTPConnection._connect\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 121\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m Trace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mconnect_tcp\u001b[39m\u001b[38;5;124m\"\u001b[39m, logger, request, kwargs) \u001b[38;5;28;01mas\u001b[39;00m trace:\n\u001b[1;32m--> 122\u001b[0m stream \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_network_backend\u001b[38;5;241m.\u001b[39mconnect_tcp(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 123\u001b[0m trace\u001b[38;5;241m.\u001b[39mreturn_value \u001b[38;5;241m=\u001b[39m stream\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpcore\\_backends\\sync.py:205\u001b[0m, in \u001b[0;36mSyncBackend.connect_tcp\u001b[1;34m(self, host, port, timeout, local_address, socket_options)\u001b[0m\n\u001b[0;32m 200\u001b[0m exc_map: ExceptionMapping \u001b[38;5;241m=\u001b[39m {\n\u001b[0;32m 201\u001b[0m socket\u001b[38;5;241m.\u001b[39mtimeout: ConnectTimeout,\n\u001b[0;32m 202\u001b[0m \u001b[38;5;167;01mOSError\u001b[39;00m: ConnectError,\n\u001b[0;32m 203\u001b[0m }\n\u001b[1;32m--> 205\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m map_exceptions(exc_map):\n\u001b[0;32m 206\u001b[0m sock \u001b[38;5;241m=\u001b[39m socket\u001b[38;5;241m.\u001b[39mcreate_connection(\n\u001b[0;32m 207\u001b[0m address,\n\u001b[0;32m 208\u001b[0m timeout,\n\u001b[0;32m 209\u001b[0m source_address\u001b[38;5;241m=\u001b[39msource_address,\n\u001b[0;32m 210\u001b[0m )\n", + "File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python310\\lib\\contextlib.py:153\u001b[0m, in \u001b[0;36m_GeneratorContextManager.__exit__\u001b[1;34m(self, typ, value, traceback)\u001b[0m\n\u001b[0;32m 152\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 153\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgen\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mthrow\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtyp\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalue\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtraceback\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 154\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[0;32m 155\u001b[0m \u001b[38;5;66;03m# Suppress StopIteration *unless* it's the same exception that\u001b[39;00m\n\u001b[0;32m 156\u001b[0m \u001b[38;5;66;03m# was passed to throw(). This prevents a StopIteration\u001b[39;00m\n\u001b[0;32m 157\u001b[0m \u001b[38;5;66;03m# raised inside the \"with\" statement from being suppressed.\u001b[39;00m\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpcore\\_exceptions.py:14\u001b[0m, in \u001b[0;36mmap_exceptions\u001b[1;34m(map)\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(exc, from_exc):\n\u001b[1;32m---> 14\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m to_exc(exc) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mexc\u001b[39;00m\n\u001b[0;32m 15\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m\n", + "\u001b[1;31mConnectError\u001b[0m: [Errno 11001] getaddrinfo failed", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[1;31mConnectError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[5], line 5\u001b[0m\n\u001b[0;32m 2\u001b[0m nixtla_client \u001b[38;5;241m=\u001b[39m NixtlaClient(api_key \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnixtla-tok-31lvshOqu4BTxxhJJY9Y6oxZQHciSZYElRgwsh5Btg60GK5JG3imcfbbUhdSIOyV2HSadFlgdJTpDsJb\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 4\u001b[0m \u001b[38;5;66;03m# 3. Forecast the next 24 hours\u001b[39;00m\n\u001b[1;32m----> 5\u001b[0m fcst_df \u001b[38;5;241m=\u001b[39m \u001b[43mnixtla_client\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mforecast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mh\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m24\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m80\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m90\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 7\u001b[0m \u001b[38;5;66;03m# 4. Plot your results (optional)\u001b[39;00m\n\u001b[0;32m 8\u001b[0m nixtla_client\u001b[38;5;241m.\u001b[39mplot(df, fcst_df, time_col\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mds\u001b[39m\u001b[38;5;124m'\u001b[39m, target_col\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124my\u001b[39m\u001b[38;5;124m'\u001b[39m, level\u001b[38;5;241m=\u001b[39m[\u001b[38;5;241m80\u001b[39m, \u001b[38;5;241m90\u001b[39m])\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:60\u001b[0m, in \u001b[0;36mdeprecated_argument..decorator..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 58\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnew_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m argument duplicated\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 59\u001b[0m kwargs[new_name] \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(old_name)\n\u001b[1;32m---> 60\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:60\u001b[0m, in \u001b[0;36mdeprecated_argument..decorator..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 58\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnew_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m argument duplicated\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 59\u001b[0m kwargs[new_name] \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(old_name)\n\u001b[1;32m---> 60\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:1304\u001b[0m, in \u001b[0;36mNixtlaClient.forecast\u001b[1;34m(self, df, h, freq, id_col, time_col, target_col, X_df, level, quantiles, finetune_steps, finetune_loss, clean_ex_first, validate_api_key, add_history, date_features, date_features_to_one_hot, model, num_partitions)\u001b[0m\n\u001b[0;32m 1227\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Forecast your time series using TimeGPT.\u001b[39;00m\n\u001b[0;32m 1228\u001b[0m \n\u001b[0;32m 1229\u001b[0m \u001b[38;5;124;03mParameters\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1301\u001b[0m \u001b[38;5;124;03m predictions (if level is not None).\u001b[39;00m\n\u001b[0;32m 1302\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1303\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(df, pd\u001b[38;5;241m.\u001b[39mDataFrame):\n\u001b[1;32m-> 1304\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_forecast\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1305\u001b[0m \u001b[43m \u001b[49m\u001b[43mdf\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1306\u001b[0m \u001b[43m \u001b[49m\u001b[43mh\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mh\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1307\u001b[0m \u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfreq\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1308\u001b[0m \u001b[43m \u001b[49m\u001b[43mid_col\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mid_col\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1309\u001b[0m \u001b[43m \u001b[49m\u001b[43mtime_col\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtime_col\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1310\u001b[0m \u001b[43m \u001b[49m\u001b[43mtarget_col\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtarget_col\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1311\u001b[0m \u001b[43m \u001b[49m\u001b[43mX_df\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mX_df\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1312\u001b[0m \u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1313\u001b[0m \u001b[43m \u001b[49m\u001b[43mquantiles\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquantiles\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1314\u001b[0m \u001b[43m \u001b[49m\u001b[43mfinetune_steps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfinetune_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1315\u001b[0m \u001b[43m \u001b[49m\u001b[43mfinetune_loss\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfinetune_loss\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1316\u001b[0m \u001b[43m \u001b[49m\u001b[43mclean_ex_first\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclean_ex_first\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1317\u001b[0m \u001b[43m \u001b[49m\u001b[43mvalidate_api_key\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvalidate_api_key\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1318\u001b[0m \u001b[43m \u001b[49m\u001b[43madd_history\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43madd_history\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1319\u001b[0m \u001b[43m \u001b[49m\u001b[43mdate_features\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdate_features\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1320\u001b[0m \u001b[43m \u001b[49m\u001b[43mdate_features_to_one_hot\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdate_features_to_one_hot\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1321\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1322\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_partitions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_partitions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1323\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1324\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 1325\u001b[0m dist_nixtla_client \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_instantiate_distributed_nixtla_client()\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:730\u001b[0m, in \u001b[0;36mvalidate_model_parameter..wrapper\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 725\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m model \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msupported_models:\n\u001b[0;32m 726\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m 727\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124munsupported model: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m 728\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msupported models: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msupported_models)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m 729\u001b[0m )\n\u001b[1;32m--> 730\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:748\u001b[0m, in \u001b[0;36mpartition_by_uid..wrapper\u001b[1;34m(self, num_partitions, **kwargs)\u001b[0m\n\u001b[0;32m 746\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;28mself\u001b[39m, num_partitions, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 747\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m num_partitions \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mor\u001b[39;00m num_partitions \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m--> 748\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs, num_partitions\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[0;32m 749\u001b[0m df \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdf\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 750\u001b[0m X_df \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mX_df\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:976\u001b[0m, in \u001b[0;36m_NixtlaClient._forecast\u001b[1;34m(self, df, h, freq, id_col, time_col, target_col, X_df, level, quantiles, finetune_steps, finetune_loss, clean_ex_first, validate_api_key, add_history, date_features, date_features_to_one_hot, model, num_partitions)\u001b[0m\n\u001b[0;32m 954\u001b[0m nixtla_client_model \u001b[38;5;241m=\u001b[39m _NixtlaClientModel(\n\u001b[0;32m 955\u001b[0m client\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclient,\n\u001b[0;32m 956\u001b[0m h\u001b[38;5;241m=\u001b[39mh,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 971\u001b[0m max_wait_time\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmax_wait_time,\n\u001b[0;32m 972\u001b[0m )\n\u001b[0;32m 973\u001b[0m df, X_df, uids_dtype \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_uids_to_categorical(\n\u001b[0;32m 974\u001b[0m df\u001b[38;5;241m=\u001b[39mdf, X_df\u001b[38;5;241m=\u001b[39mX_df, id_col\u001b[38;5;241m=\u001b[39mid_col\n\u001b[0;32m 975\u001b[0m )\n\u001b[1;32m--> 976\u001b[0m fcst_df \u001b[38;5;241m=\u001b[39m \u001b[43mnixtla_client_model\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mforecast\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 977\u001b[0m \u001b[43m \u001b[49m\u001b[43mdf\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mX_df\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mX_df\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43madd_history\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43madd_history\u001b[49m\n\u001b[0;32m 978\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 979\u001b[0m fcst_df \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_restore_uids(fcst_df, dtype\u001b[38;5;241m=\u001b[39muids_dtype, id_col\u001b[38;5;241m=\u001b[39mid_col)\n\u001b[0;32m 980\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mweights_x \u001b[38;5;241m=\u001b[39m nixtla_client_model\u001b[38;5;241m.\u001b[39mweights_x\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:559\u001b[0m, in \u001b[0;36m_NixtlaClientModel.forecast\u001b[1;34m(self, df, X_df, add_history)\u001b[0m\n\u001b[0;32m 557\u001b[0m main_logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPreprocessing dataframes...\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 558\u001b[0m Y_df, X_df, x_cols \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpreprocess_dataframes(df\u001b[38;5;241m=\u001b[39mdf, X_df\u001b[38;5;241m=\u001b[39mX_df)\n\u001b[1;32m--> 559\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset_model_params\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 560\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mh \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel_horizon:\n\u001b[0;32m 561\u001b[0m main_logger\u001b[38;5;241m.\u001b[39mwarning(\n\u001b[0;32m 562\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mThe specified horizon \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mh\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m exceeds the model horizon. \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m 563\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThis may lead to less accurate forecasts. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 564\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPlease consider using a smaller horizon.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 565\u001b[0m )\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:513\u001b[0m, in \u001b[0;36m_NixtlaClientModel.set_model_params\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 512\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mset_model_params\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m--> 513\u001b[0m model_params \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_api\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 514\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel_params\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 515\u001b[0m \u001b[43m \u001b[49m\u001b[43mSingleSeriesForecast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfreq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfreq\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 516\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 517\u001b[0m model_params \u001b[38;5;241m=\u001b[39m model_params[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdetail\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m 518\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minput_size, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel_horizon \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 519\u001b[0m model_params[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124minput_size\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[0;32m 520\u001b[0m model_params[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhorizon\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[0;32m 521\u001b[0m )\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:229\u001b[0m, in \u001b[0;36m_NixtlaClientModel._call_api\u001b[1;34m(self, method, request)\u001b[0m\n\u001b[0;32m 228\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_call_api\u001b[39m(\u001b[38;5;28mself\u001b[39m, method, request):\n\u001b[1;32m--> 229\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_retry_strategy\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 230\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdata\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m response:\n\u001b[0;32m 231\u001b[0m response \u001b[38;5;241m=\u001b[39m response[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdata\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\tenacity\\__init__.py:332\u001b[0m, in \u001b[0;36mBaseRetrying.wraps..wrapped_f\u001b[1;34m(*args, **kw)\u001b[0m\n\u001b[0;32m 328\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(\n\u001b[0;32m 329\u001b[0m f, functools\u001b[38;5;241m.\u001b[39mWRAPPER_ASSIGNMENTS \u001b[38;5;241m+\u001b[39m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m__defaults__\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m__kwdefaults__\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 330\u001b[0m )\n\u001b[0;32m 331\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapped_f\u001b[39m(\u001b[38;5;241m*\u001b[39margs: t\u001b[38;5;241m.\u001b[39mAny, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkw: t\u001b[38;5;241m.\u001b[39mAny) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m t\u001b[38;5;241m.\u001b[39mAny:\n\u001b[1;32m--> 332\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(f, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkw)\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\tenacity\\__init__.py:469\u001b[0m, in \u001b[0;36mRetrying.__call__\u001b[1;34m(self, fn, *args, **kwargs)\u001b[0m\n\u001b[0;32m 467\u001b[0m retry_state \u001b[38;5;241m=\u001b[39m RetryCallState(retry_object\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m, fn\u001b[38;5;241m=\u001b[39mfn, args\u001b[38;5;241m=\u001b[39margs, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m 468\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[1;32m--> 469\u001b[0m do \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43miter\u001b[49m\u001b[43m(\u001b[49m\u001b[43mretry_state\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mretry_state\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 470\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(do, DoAttempt):\n\u001b[0;32m 471\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\tenacity\\__init__.py:370\u001b[0m, in \u001b[0;36mBaseRetrying.iter\u001b[1;34m(self, retry_state)\u001b[0m\n\u001b[0;32m 368\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 369\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m action \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39miter_state\u001b[38;5;241m.\u001b[39mactions:\n\u001b[1;32m--> 370\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43maction\u001b[49m\u001b[43m(\u001b[49m\u001b[43mretry_state\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 371\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\tenacity\\__init__.py:412\u001b[0m, in \u001b[0;36mBaseRetrying._post_stop_check_actions..exc_check\u001b[1;34m(rs)\u001b[0m\n\u001b[0;32m 410\u001b[0m retry_exc \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mretry_error_cls(fut)\n\u001b[0;32m 411\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mreraise:\n\u001b[1;32m--> 412\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[43mretry_exc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreraise\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 413\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m retry_exc \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfut\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mexception\u001b[39;00m()\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\tenacity\\__init__.py:185\u001b[0m, in \u001b[0;36mRetryError.reraise\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 183\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mreraise\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m t\u001b[38;5;241m.\u001b[39mNoReturn:\n\u001b[0;32m 184\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlast_attempt\u001b[38;5;241m.\u001b[39mfailed:\n\u001b[1;32m--> 185\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlast_attempt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 186\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\n", + "File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python310\\lib\\concurrent\\futures\\_base.py:438\u001b[0m, in \u001b[0;36mFuture.result\u001b[1;34m(self, timeout)\u001b[0m\n\u001b[0;32m 436\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m CancelledError()\n\u001b[0;32m 437\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_state \u001b[38;5;241m==\u001b[39m FINISHED:\n\u001b[1;32m--> 438\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__get_result\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 440\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_condition\u001b[38;5;241m.\u001b[39mwait(timeout)\n\u001b[0;32m 442\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_state \u001b[38;5;129;01min\u001b[39;00m [CANCELLED, CANCELLED_AND_NOTIFIED]:\n", + "File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python310\\lib\\concurrent\\futures\\_base.py:390\u001b[0m, in \u001b[0;36mFuture.__get_result\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 388\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception:\n\u001b[0;32m 389\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 390\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception\n\u001b[0;32m 391\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 392\u001b[0m \u001b[38;5;66;03m# Break a reference cycle with the exception in self._exception\u001b[39;00m\n\u001b[0;32m 393\u001b[0m \u001b[38;5;28mself\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\tenacity\\__init__.py:472\u001b[0m, in \u001b[0;36mRetrying.__call__\u001b[1;34m(self, fn, *args, **kwargs)\u001b[0m\n\u001b[0;32m 470\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(do, DoAttempt):\n\u001b[0;32m 471\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 472\u001b[0m result \u001b[38;5;241m=\u001b[39m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 473\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m: \u001b[38;5;66;03m# noqa: B902\u001b[39;00m\n\u001b[0;32m 474\u001b[0m retry_state\u001b[38;5;241m.\u001b[39mset_exception(sys\u001b[38;5;241m.\u001b[39mexc_info()) \u001b[38;5;66;03m# type: ignore[arg-type]\u001b[39;00m\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\client.py:2283\u001b[0m, in \u001b[0;36mNixtla.model_params\u001b[1;34m(self, request, request_options)\u001b[0m\n\u001b[0;32m 2263\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmodel_params\u001b[39m(\n\u001b[0;32m 2264\u001b[0m \u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m, request: SingleSeriesForecast, request_options: typing\u001b[38;5;241m.\u001b[39mOptional[RequestOptions] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 2265\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m typing\u001b[38;5;241m.\u001b[39mAny:\n\u001b[0;32m 2266\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 2267\u001b[0m \u001b[38;5;124;03m Parameters:\u001b[39;00m\n\u001b[0;32m 2268\u001b[0m \u001b[38;5;124;03m - request: SingleSeriesForecast.\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 2281\u001b[0m \u001b[38;5;124;03m )\u001b[39;00m\n\u001b[0;32m 2282\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m-> 2283\u001b[0m _response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_client_wrapper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhttpx_client\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2284\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mPOST\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2285\u001b[0m \u001b[43m \u001b[49m\u001b[43murllib\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43murljoin\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_client_wrapper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_base_url\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m/\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodel_params\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2286\u001b[0m \u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjsonable_encoder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2287\u001b[0m \u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43madditional_query_parameters\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\n\u001b[0;32m 2288\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2289\u001b[0m \u001b[43m \u001b[49m\u001b[43mjson\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjsonable_encoder\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2290\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43madditional_body_parameters\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\n\u001b[0;32m 2291\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\n\u001b[0;32m 2292\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mjsonable_encoder\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2293\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mjsonable_encoder\u001b[49m\u001b[43m(\u001b[49m\u001b[43mremove_none_from_dict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43madditional_body_parameters\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2294\u001b[0m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2295\u001b[0m \u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjsonable_encoder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2296\u001b[0m \u001b[43m \u001b[49m\u001b[43mremove_none_from_dict\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2297\u001b[0m \u001b[43m \u001b[49m\u001b[43m{\u001b[49m\n\u001b[0;32m 2298\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_client_wrapper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_headers\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2299\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43madditional_headers\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2300\u001b[0m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\n\u001b[0;32m 2301\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2302\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2303\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtimeout_in_seconds\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2304\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mand\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtimeout_in_seconds\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\n\u001b[0;32m 2305\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_client_wrapper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_timeout\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2306\u001b[0m \u001b[43m \u001b[49m\u001b[43mretries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2307\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmax_retries\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore\u001b[39;49;00m\n\u001b[0;32m 2308\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2309\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;241m200\u001b[39m \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m _response\u001b[38;5;241m.\u001b[39mstatus_code \u001b[38;5;241m<\u001b[39m \u001b[38;5;241m300\u001b[39m:\n\u001b[0;32m 2310\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pydantic_v1\u001b[38;5;241m.\u001b[39mparse_obj_as(typing\u001b[38;5;241m.\u001b[39mAny, _response\u001b[38;5;241m.\u001b[39mjson()) \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\core\\http_client.py:94\u001b[0m, in \u001b[0;36mHttpClient.request\u001b[1;34m(self, max_retries, retries, *args, **kwargs)\u001b[0m\n\u001b[0;32m 90\u001b[0m \u001b[38;5;129m@wraps\u001b[39m(httpx\u001b[38;5;241m.\u001b[39mClient\u001b[38;5;241m.\u001b[39mrequest)\n\u001b[0;32m 91\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrequest\u001b[39m(\n\u001b[0;32m 92\u001b[0m \u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs: typing\u001b[38;5;241m.\u001b[39mAny, max_retries: \u001b[38;5;28mint\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m, retries: \u001b[38;5;28mint\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: typing\u001b[38;5;241m.\u001b[39mAny\n\u001b[0;32m 93\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m httpx\u001b[38;5;241m.\u001b[39mResponse:\n\u001b[1;32m---> 94\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhttpx_client\u001b[38;5;241m.\u001b[39mrequest(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 95\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m _should_retry(response\u001b[38;5;241m=\u001b[39mresponse):\n\u001b[0;32m 96\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m max_retries \u001b[38;5;241m>\u001b[39m retries:\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_client.py:827\u001b[0m, in \u001b[0;36mClient.request\u001b[1;34m(self, method, url, content, data, files, json, params, headers, cookies, auth, follow_redirects, timeout, extensions)\u001b[0m\n\u001b[0;32m 812\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(message, \u001b[38;5;167;01mDeprecationWarning\u001b[39;00m)\n\u001b[0;32m 814\u001b[0m request \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuild_request(\n\u001b[0;32m 815\u001b[0m method\u001b[38;5;241m=\u001b[39mmethod,\n\u001b[0;32m 816\u001b[0m url\u001b[38;5;241m=\u001b[39murl,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 825\u001b[0m extensions\u001b[38;5;241m=\u001b[39mextensions,\n\u001b[0;32m 826\u001b[0m )\n\u001b[1;32m--> 827\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mauth\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mauth\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_client.py:914\u001b[0m, in \u001b[0;36mClient.send\u001b[1;34m(self, request, stream, auth, follow_redirects)\u001b[0m\n\u001b[0;32m 906\u001b[0m follow_redirects \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 907\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfollow_redirects\n\u001b[0;32m 908\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(follow_redirects, UseClientDefault)\n\u001b[0;32m 909\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m follow_redirects\n\u001b[0;32m 910\u001b[0m )\n\u001b[0;32m 912\u001b[0m auth \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_request_auth(request, auth)\n\u001b[1;32m--> 914\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_send_handling_auth\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 915\u001b[0m \u001b[43m \u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 916\u001b[0m \u001b[43m \u001b[49m\u001b[43mauth\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mauth\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 917\u001b[0m \u001b[43m \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 918\u001b[0m \u001b[43m \u001b[49m\u001b[43mhistory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 919\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 920\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 921\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m stream:\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_client.py:942\u001b[0m, in \u001b[0;36mClient._send_handling_auth\u001b[1;34m(self, request, auth, follow_redirects, history)\u001b[0m\n\u001b[0;32m 939\u001b[0m request \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mnext\u001b[39m(auth_flow)\n\u001b[0;32m 941\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[1;32m--> 942\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_send_handling_redirects\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 943\u001b[0m \u001b[43m \u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 944\u001b[0m \u001b[43m \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 945\u001b[0m \u001b[43m \u001b[49m\u001b[43mhistory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhistory\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 946\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 947\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 948\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_client.py:979\u001b[0m, in \u001b[0;36mClient._send_handling_redirects\u001b[1;34m(self, request, follow_redirects, history)\u001b[0m\n\u001b[0;32m 976\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m hook \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_event_hooks[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrequest\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n\u001b[0;32m 977\u001b[0m hook(request)\n\u001b[1;32m--> 979\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_send_single_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 980\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 981\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m hook \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_event_hooks[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mresponse\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_client.py:1015\u001b[0m, in \u001b[0;36mClient._send_single_request\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 1010\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[0;32m 1011\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAttempted to send an async request with a sync Client instance.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1012\u001b[0m )\n\u001b[0;32m 1014\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m request_context(request\u001b[38;5;241m=\u001b[39mrequest):\n\u001b[1;32m-> 1015\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43mtransport\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1017\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(response\u001b[38;5;241m.\u001b[39mstream, SyncByteStream)\n\u001b[0;32m 1019\u001b[0m response\u001b[38;5;241m.\u001b[39mrequest \u001b[38;5;241m=\u001b[39m request\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_transports\\default.py:232\u001b[0m, in \u001b[0;36mHTTPTransport.handle_request\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 218\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(request\u001b[38;5;241m.\u001b[39mstream, SyncByteStream)\n\u001b[0;32m 220\u001b[0m req \u001b[38;5;241m=\u001b[39m httpcore\u001b[38;5;241m.\u001b[39mRequest(\n\u001b[0;32m 221\u001b[0m method\u001b[38;5;241m=\u001b[39mrequest\u001b[38;5;241m.\u001b[39mmethod,\n\u001b[0;32m 222\u001b[0m url\u001b[38;5;241m=\u001b[39mhttpcore\u001b[38;5;241m.\u001b[39mURL(\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 230\u001b[0m extensions\u001b[38;5;241m=\u001b[39mrequest\u001b[38;5;241m.\u001b[39mextensions,\n\u001b[0;32m 231\u001b[0m )\n\u001b[1;32m--> 232\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m map_httpcore_exceptions():\n\u001b[0;32m 233\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_pool\u001b[38;5;241m.\u001b[39mhandle_request(req)\n\u001b[0;32m 235\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(resp\u001b[38;5;241m.\u001b[39mstream, typing\u001b[38;5;241m.\u001b[39mIterable)\n", + "File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python310\\lib\\contextlib.py:153\u001b[0m, in \u001b[0;36m_GeneratorContextManager.__exit__\u001b[1;34m(self, typ, value, traceback)\u001b[0m\n\u001b[0;32m 151\u001b[0m value \u001b[38;5;241m=\u001b[39m typ()\n\u001b[0;32m 152\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 153\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgen\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mthrow\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtyp\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalue\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtraceback\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 154\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[0;32m 155\u001b[0m \u001b[38;5;66;03m# Suppress StopIteration *unless* it's the same exception that\u001b[39;00m\n\u001b[0;32m 156\u001b[0m \u001b[38;5;66;03m# was passed to throw(). This prevents a StopIteration\u001b[39;00m\n\u001b[0;32m 157\u001b[0m \u001b[38;5;66;03m# raised inside the \"with\" statement from being suppressed.\u001b[39;00m\n\u001b[0;32m 158\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m exc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m value\n", + "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_transports\\default.py:86\u001b[0m, in \u001b[0;36mmap_httpcore_exceptions\u001b[1;34m()\u001b[0m\n\u001b[0;32m 83\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m\n\u001b[0;32m 85\u001b[0m message \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(exc)\n\u001b[1;32m---> 86\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m mapped_exc(message) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mexc\u001b[39;00m\n", + "\u001b[1;31mConnectError\u001b[0m: [Errno 11001] getaddrinfo failed" ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACHgAAAN+CAYAAABkFi4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hT9f4H8HfapumedFA2yN6gDMHNkOHk6sWBOK7eq6hX+TmuXhfqleueXPGqF3ArbhQEZCkb2Xu3pXTSNk2bNDu/P06+J+ckJ120TQvv1/PwkCYnycnJGUm+7/P56DwejwdERERERERERERERERERERE1GKFhXoGiIiIiIiIiIiIiIiIiIiIiKhmDHgQERERERERERERERERERERtXAMeBARERERERERERERERERERG1cAx4EBEREREREREREREREREREbVwDHgQERERERERERERERERERERtXAMeBARERERERERERERERERERG1cAx4EBEREREREREREREREREREbVwDHgQERERERERERERERERERERtXAMeBARERERERERERERERERERG1cAx4EBERhdj8+fOh0+mQnZ0d6lmpk+zsbOh0OsyfP7/WaW+99VZ07ty5yeeJiIiIiIiIQo/fb4mIiIiImhYDHkRERNTiiR/dlP8SEhIwaNAgvPPOO3C5XKrpL7744oDpxb9evXqF6FUQERERERHR2c7/+61er0ebNm1w/vnn4/HHH0dubm7AfVavXh30O65Op8MXX3wRgldCRERERKEQEeoZICIiOttNmzYNU6dOhcFgCPWs1EmnTp1QXV0NvV7f7M99ww03YOLEiQCAiooKLF68GPfddx9ycnLw8ssvq6Zt3749Zs+eHfAYiYmJzTKvREREREREZxt+v6078f3W7XajvLwcW7ZswRtvvIE333wTH374IaZOnRpwn/vvvx/nnXdewPUjR45sjlkmIiIiohaAAQ8iIqIQCw8PR3h4eKhno850Oh2ioqJC8txDhgzBzTffLP99zz33YPjw4fjss88CAh6JiYmqaYmIiIiIiKhp8ftt3fl/vwWAnJwcjBs3DtOnT0fv3r0xcOBA1e0XXHAB/vSnPzXnbBIRERFRC8MWLURERPUUrO/uM888A51OJ/+t0+lw77334vvvv0e/fv1gMBjQt29f/PLLL6r7afUo9ng8eP7559G+fXvExMTgkksuwd69e9G5c2fceuutQZ+zpscEgCVLluCCCy5AbGws4uPjMWnSJOzdu7derz9Yj2LxOqOiotCvXz9899139XrchtDpdMjIyEBEBDOrRERERERE9cXvty3n+y0gVRSZP38+7HY7XnrppWZ5TiIiIiJqXTgaQkRE1ITWrl2Lb7/9Fvfccw/i4+Px1ltvYcqUKcjNzUVqamrQ+z311FN4/vnnMXHiREycOBHbtm3DuHHjYLfbGzwvH3/8MaZPn47x48fjxRdfhMViwbvvvovRo0dj+/btmj/q1dWyZcswZcoU9OnTB7Nnz0ZpaSluu+02tG/fPmDa8vJyuFyuWh8zJiYGMTExqussFgtOnToFADCZTFiyZAl++eUXPPbYYwH3d7lc8rRK0dHRiI2NretLIyIiIiIiIvD7bWN/vw1m5MiR6NatG5YvXx5wW2Vlpeb33NTUVM1wDBERERGdeRjwICIiakL79+/Hvn370K1bNwDAJZdcgoEDB+Lzzz/Hvffeq3mfkpISvPTSS5g0aRIWLVok/0jzz3/+Ey+88EKD5qOqqgr3338//vKXv+C///2vfP306dPRs2dPvPDCC6rr6+vRRx9FRkYG1q5di8TERADARRddhHHjxqFTp06qaQcPHoycnJxaH/Ppp5/GM888E3Dd008/rbru7rvvxqxZswLuf+DAAaSlpQVc/9e//hVz586t9fmJiIiIiIjIh99vG/f7bU369euHH374ASaTCQkJCfL1t99+u+b0BQUFyMzMrPPjExEREVHrxYAHERFRExozZoz84xcADBgwAAkJCTh27FjQ+/z666+w2+247777VGfgPPDAAw3+AWz58uUwGo244YYbVGf7hIeHY/jw4Vi1alWDHheQfkjasWMH/vGPf8g/fgHA2LFj0adPH5jNZtX0n376Kaqrq2t93K5duwZcd9ddd+G6664DIFXwWLlyJd59910YDAa8/vrrqmk7d+6M999/P+AxtM66IiIiIiIioprx+23jfr+tSVxcHACpYocy4PHUU0/hggsuCJg+JSWlXo9PRERERK0XAx5ERERNqGPHjgHXJScno7y8POh9xNk/3bt3V12flpaG5OTkBs3H4cOHAQCXXnqp5u3KH4zqK9j8AkDPnj2xbds21XWjRo1q8HN1794dY8aMkf++9tprodPp8MYbb+D2229H//795dtiY2NV0xIREREREVHD8ftt436/rUlVVRUAID4+XnV9//79+T2XiIiI6CzHgAcREVE9Betrq9V3Nzw8XHNaj8fTrPPidrsBSH2Ktcq2RkQ030eCkpKSOvUojouLk89aqslll12Gd955B7/99psq4EFEREREREQ14/fb09PY32+FPXv2ID09/bTCKkRERER0ZmLAg4iIqJ6Sk5NhNBoDrq9L3926ED19Dx8+rCrjWlJSEnBmlDjjyWg0IikpKei8iDK66enpjX62j3J+/R08eDDguvPOO69RexQ7nU4AvjOciIiIiIiIqG74/Tb4/Pprju+3ALBhwwYcPXoUN998c52mJyIiIqKzCwMeRERE9dStWzdUVFRg165dGDBgAACpT+93333XKI8/ZswY6PV6vP322xg3bpx8FtMbb7yhOS8A8Ntvv+HKK68EAJjNZixYsEA13fjx45GQkIAXXngBl1xyCfR6ver2kpISpKWlNWh+27Zti0GDBmHBggWqPsXLly/Hvn375B/IhMbuUbxo0SIAwMCBA+s550RERERERGc3fr9VC/X325ycHNx6662IjIzEww8/XP8XQERERERnPAY8iIiI6mnq1Kl49NFHcc011+D++++HxWLBu+++ix49egT0422ItLQ0PPTQQ5g9ezYmT56MiRMnYvv27ViyZAnatGmjmnbcuHHo2LEj7rjjDjz88MMIDw/H//73P6SlpSE3N1eeLiEhAe+++y6mTZuGIUOGYOrUqfI0P//8M0aNGoV33nmnwfM8e/ZsTJo0CaNHj8btt9+OsrIyvP322+jbt29AZY3T6VG8bds2fPLJJwCAyspKrFixAt988w3OP/98jBs3TjVtRUWFPK0/nglFRERERETE77damvv7rdvthtFoxJYtW/DNN99Ap9Ph448/lgM3Sr///jusVmvA9QMGDNCcnoiIiIjOPAx4EBER1VNqaiq+++47zJw5E4888gi6dOmC2bNn4/Dhw43yAxgAPP/884iKisLcuXOxatUqDB8+HMuWLcOkSZNU0+n1enz33Xe455578OSTTyIzMxMPPPAAkpOTcdttt6mmvfHGG5GVlYV///vfePnll2Gz2dCuXTtccMEFAdPW1+WXX46FCxfiiSeewGOPPYZu3bph3rx5+OGHH7B69erTemylzz//HJ9//jkAqa9yx44d8fDDD+Opp55CWFiYatq8vDxMmzZN83EY8CAiIiIiIuL3Wy3N/f02IiICCQkJ6N69Ox544AH87W9/Q8eOHTXv89Zbb2le//TTTzPgQURERHSW0Hk8Hk+oZ4KIiIjqpnPnzrj44osxf/78UM8KERERERERUYPx+y0RERERUf2F1T4JEREREREREREREREREREREYUSW7QQERERAMBut6OsrKzGaRITExEdHd1Mc0RERERERERUf/x+S0RERERnKgY8iIiICACwfv16XHLJJTVOM2/ePNx6663NM0NEREREREREDcDvt0RERER0ptJ5PB5PqGeCiIiIQq+8vBxbt26tcZq+ffuibdu2zTRHRERERERERPXH77dEREREdKZiwIOIiIiIiIiIiIiIiIiIiIiohQsL9QwQERERERERERERERERERERUc0iQj0DLYHb7UZ+fj7i4+Oh0+lCPTtERERERETUAng8HlRWViIrKwthYa3j/Ah+vyUiIiIiIiItrfE7LhEFYsADQH5+Pjp06BDq2SAiIiIiIqIW6MSJE2jfvn2oZ6NO+P2WiIiIiIiIatKavuMSUSAGPADEx8cDkHZoCQkJIZ4bOhs4HA4sW7YM48aNg16vD/Xs0FmM6yKdDbieU0vBdZFIrTVsEyaTCR06dJC/M7YG/H5LodAatmc6O3BdpLMB13NqCbgeEgVqDdtFa/yOS0SBGPAA5LK1CQkJ/AGMmoXD4UBMTAwSEhJa7IGezg5cF+lswPWcWgqui0RqrWmbaE2tTvj9lkKhNW3PdGbjukhnA67n1BJwPSQK1Jq2i9b0HZeIArHBEhEREREREREREREREREREVELx4AHERERERERERERERERERERUQsX0oBH586dodPpAv7NmDEDAGC1WjFjxgykpqYiLi4OU6ZMQVFRkeoxcnNzMWnSJMTExCA9PR0PP/wwnE5nKF4OERERERERERERERERERERUZMIacBjy5YtKCgokP8tX74cAHDdddcBAB588EEsWrQICxcuxJo1a5Cfn49rr71Wvr/L5cKkSZNgt9uxfv16LFiwAPPnz8dTTz0VktdDRERERERERERERERERERE1BRCGvBIS0tDZmam/O+nn35Ct27dcNFFF6GiogIffvghXnvtNVx66aUYOnQo5s2bh/Xr12Pjxo0AgGXLlmHfvn345JNPMGjQIEyYMAHPPfcc5syZA7vdHsqXRkRERERERERERERERERERNRoQhrwULLb7fjkk09w++23Q6fTYevWrXA4HBgzZow8Ta9evdCxY0ds2LABALBhwwb0798fGRkZ8jTjx4+HyWTC3r17m/01EBERERERERERERERERERETWFiFDPgPD999/DaDTi1ltvBQAUFhYiMjISSUlJqukyMjJQWFgoT6MMd4jbxW3B2Gw22Gw2+W+TyQQAcDgccDgcp/tSiGol1jOubxQKJ0+WISIiDBkZSVwX6azA9ZxaCq6LRGqtYZtoyfNGRET1ZzZbceJEKXr2zIJOpwv17BAREREREdVbiwl4fPjhh5gwYQKysrKa/Llmz56NWbNmBVy/bNkyxMTENPnzEwnLly8P9SzQWcZmd+GNN/8AADzy0DD5By2ui3Q24HpOLQXXRSK1lrxNWCyWUM8CERE1oum3vo38gnK8+vJ0jBzZM9SzQ0REREREVG8tIuCRk5ODX3/9Fd9++618XWZmJux2O4xGo6qKR1FRETIzM+VpNm/erHqsoqIi+bZgHnvsMcycOVP+22QyoUOHDhg3bhwSEhIa4yUR1cjhcGD58uUYO3Ys9Hp9qGeHziK5uacASAGP8eMvh8fj5rpIZzzuc6ml4LpIpNYatglR7ZGIiM4M+QXlAIDVa/Yy4EFERERERK1Siwh4zJs3D+np6Zg0aZJ83dChQ6HX67FixQpMmTIFAHDw4EHk5uZi5MiRAICRI0fiX//6F4qLi5Geng5AOvsrISEBffr0Cfp8BoMBBoMh4Hq9Xt9if1ikMxPXOWpuEXrfbl+v18PjccuXuS7SmY7rObUUXBeJ1FryNtFS54uIiE5PRER4qGeBiIiIiIioQUIe8HC73Zg3bx6mT5+OiAjf7CQmJuKOO+7AzJkzkZKSgoSEBNx3330YOXIkRowYAQAYN24c+vTpg2nTpuGll15CYWEhnnjiCcyYMUMzwEFERERERERERERnt8jIkP8kSkRERERE1CAh/zbz66+/Ijc3F7fffnvAba+//jrCwsIwZcoU2Gw2jB8/Hv/5z3/k28PDw/HTTz/h7rvvxsiRIxEbG4vp06fj2Wefbc6XQETUKnk8nlDPAhEREREREdWB0+nC3TP+iy6d0/H4Y1NCPTutnl7PCh5ERERERNQ6hYV6BsaNGwePx4MePXoE3BYVFYU5c+agrKwMZrMZ3377LTIzM1XTdOrUCYsXL4bFYkFJSQleeeUVVSUQIjpzZOcU4y93/gfr1h0I9awQERERERERNZs//jiKvXtP4Keft4Z6Vs4IrOBBoVRdbcey5TtRVWUN9awQERERUSsU8oAHEVFdPf30l9i3Pw8PP/pRqGfljMACHkRERERERK2DxWIL9Sy0esoqlhERrOBBofPq6z/imVlf4omnPg/1rBARERFRK8SABxG1GhUmS6hn4YzCFi1EREREREStg9XmCPUstHp2u1O+HKlnBQ8KncWLtwEANm8+HOI5ISIiIqLWiAEPImo1dKGeASIiIiIiIqIQsFrt8mW32x3COWm9rFZfSEYfyQoeFDoGgz7Us0BERERErRgDHkRERERERERERC2YMpzgdrMaY0MoQzJEoWQwsIIMERERETUcAx5E1HroWMOjMbFFCxERERERUetgU7RocblYwaMhlG1uGJKhUGIFDyIiIiI6HQx4EBGdpZjvICIiIiIiah2UFTycDHg0iHIZupxchhQ6DHgQERER0elgwIOIWg0W8GhcrOBBRERERETUOijbizCc0DA2ZcDDzWVIocOABxERERGdDgY8iKjV0DHhQURERERERGchVfUJlyuEc9J62e1s0UItgyEyQr7Mk2+IiIiIqL4Y8CAiOkvxJwQiIiIiIqLWwe5wypddbNHSIA6HLxjjZgUPCiFlBQ+bzVHDlEREREREgRjwICI6W/EsESIiIiIiolbB6fSFExjwaBinYrlxGVIohYX7KtTa7azIQ0RERET1w4AHEdFZivkOIiIiIiKi1sHlZDjhdDlYBYVaCI+iRZCTLZeIiIiIqJ4Y8CCiVkNX+yREREREREREZxxlexGGExrGqQjJuN0844FCR7kuupwMeBARERFR/TDgQUSth44Rj8bkYQkPIiIiIiKiVkHZosXJAeEGUS43t5shGQodh2p75rpIRERERPXDgAcR0VmK+Q4iIiIiIqLWQdnGgRU8GkYVkuEypBByOhjYIiIiIqKGY8CDiIiIiIiIiIioBXOyRctpU7a5cXMZUgg5nE75MgMeRERERFRfDHgQUavBDi2NjSU8iIiIiBrTb7/9hiuuuAJZWVnQ6XT4/vvvVbd7PB489dRTaNu2LaKjozFmzBgcPnxYNU1ZWRluuukmJCQkICkpCXfccQeqqqqa8VUQUUukbOPAgEfDqFu08PswhY7DwRYtRERERNRwDHgQEZ2l2KKFiIiIqHGZzWYMHDgQc+bM0bz9pZdewltvvYW5c+di06ZNiI2Nxfjx42G1WuVpbrrpJuzduxfLly/HTz/9hN9++w133XVXc70EImqhlOEEBjwaRh3w4DKk0FG1aHGxggcRERER1U9EqGeAiKiudCzh0ag8THgQERERNaoJEyZgwoQJmrd5PB688cYbeOKJJ3DVVVcBAD766CNkZGTg+++/x9SpU7F//3788ssv2LJlC84991wAwNtvv42JEyfilVdeQVZWVrO9FiJqWZyKUIeTAY8Gcaja3PD7MIWOw8kKHkRERETUcAx4EFGrwXgHEREREbVWx48fR2FhIcaMGSNfl5iYiOHDh2PDhg2YOnUqNmzYgKSkJDncAQBjxoxBWFgYNm3ahGuuuSbgcW02G2w2m/y3yWQCADgcDjgcjiZ8RUQ+Yl3jOtd0HHanfNlus3NZB1HTumi3OxTTObkMKWSUYSOb1VbruvjlV+uwe88JPPPUdYiICOc+l1oErodEgVrDdtGS542I6o4BDyKisxQreBARERE1n8LCQgBARkaG6vqMjAz5tsLCQqSnp6tuj4iIQEpKijyNv9mzZ2PWrFkB1y9btgwxMTGNMetEdbZ8+fJQz8IZy2SqlC9v2LARhYUHQjg3LZ/WunjgwAn58okTJ7B48eLmnCUimdXqC2auW78BJ0/uq3H6/7y7CQDw2uufoF/fNPl67nOpJeB6SBSoJW8XFosl1LNARI0g5AGPkydP4tFHH8WSJUtgsVhwzjnnYN68efIZSx6PB08//TTef/99GI1GjBo1Cu+++y66d+8uP0ZZWRnuu+8+LFq0CGFhYZgyZQrefPNNxMXFheplERG1eIx3EBEREbV+jz32GGbOnCn/bTKZ0KFDB4wbNw4JCQkhnDM6mzgcDixfvhxjx46FXq8P9eyckeYtOABAGhQeOvRcjBjRI7Qz1ELVtC7m5C7Fxk35AIC2bbMwceLEUMwiEV59/Q/58tCh52L4sO41TA28+LIU8MjK6oKJEy/kPpdaBK6HRIFaw3YhKj4SUesW0oBHeXk5Ro0ahUsuuQRLlixBWloaDh8+jOTkZHmal156CW+99RYWLFiALl264Mknn8T48eOxb98+REVFAQBuuukmFBQUYPny5XA4HLjttttw11134bPPPgvVSyMiavlYwYOIiIio2WRmZgIAioqK0LZtW/n6oqIiDBo0SJ6muLhYdT+n04mysjL5/v4MBgMMBkPA9Xq9vsX+qEhnLq53Tcfp9LV0gC6My7kWWuuiy+X7DuzxgMuQQsLtdqu3Z4+uzuuixeJQTct9LrUEXA+JArXk7aKlzhcR1U9YKJ/8xRdfRIcOHTBv3jwMGzYMXbp0wbhx49CtWzcAUvWON954A0888QSuuuoqDBgwAB999BHy8/Px/fffAwD279+PX375BR988AGGDx+O0aNH4+2338YXX3yB/Pz8EL46ImpsOp0u1LPQ6rEtCxEREVFodOnSBZmZmVixYoV8nclkwqZNmzBy5EgAwMiRI2E0GrF161Z5mpUrV8LtdmP48OHNPs9E1HIoB4RdLlcNU1IwTqdbvuxyuWuYkqjpmM021d/OWrZnt9u3rlZVVTfJPBERERFR6xLSCh4//vgjxo8fj+uuuw5r1qxBu3btcM899+DOO+8EABw/fhyFhYUYM2aMfJ/ExEQMHz4cGzZswNSpU7FhwwYkJSXJLV0AYMyYMQgLC8OmTZtwzTXXBDyvzWaDzeb7MC1KEjkcDjgcjqZ6uUQysZ5xfWs4LruGcTic8mW7wwGHI9x7PZcnnbm4z6WWgusikVpr2CbqO29VVVU4cuSI/Pfx48exY8cOpKSkoGPHjnjggQfw/PPPo3v37nKFyqysLFx99dUAgN69e+Pyyy/HnXfeiblz58LhcODee+/F1KlTkZWV1ZgvjYhaGWU4QXmZ6k4ZklEOmhM1p6oqq+rv2rZnu933O47/fYmIiIjo7BTSgMexY8fw7rvvYubMmXj88cexZcsW3H///YiMjMT06dNRWFgIAMjIyFDdLyMjQ76tsLAQ6enpqtsjIiKQkpIiT+Nv9uzZmDVrVsD1y5YtQ0xMTGO8NKI6Wb58eahnoVWpMlfJlxcvXhzCOWm9TpX6zvZY8esKxMVFAuC6SGcHrufUUnBdJFJryduExWKp1/R//PEHLrnkEvnvmTNnAgCmT5+O+fPn45FHHoHZbMZdd90Fo9GI0aNH45dffpHbjwLAp59+invvvReXXXYZwsLCMGXKFLz11luN84KIqNVSV/BgOKEhVMvQzeqWFBqmSnUVDlW7Fg3KgIfFYqthSiIiIiI6W4Q04OF2u3HuuefihRdeAAAMHjwYe/bswdy5czF9+vQme97HHntM/qENkCp4dOjQAePGjUNCQkKTPS+R4HA4sHz5cowdO5Y9z+rh8y+OoqxMOlth4sSJIZ6b1ik7uxgf/m8XAODSSy9FYmI010U643GfSy0F10UitdawTYhqj3V18cUX19gST6fT4dlnn8Wzzz4bdJqUlBR89tln9XpeIjrzMeBx+hwOVvCg0PNvs1Lb9myz+aqJWartTTJPRERERNS6hDTg0bZtW/Tp00d1Xe/evfHNN98AADIzMwEARUVFaNu2rTxNUVERBg0aJE9TXFysegyn04mysjL5/v4MBgMMBkPA9Xq9vsX+sEhnJq5z9aML08mXudwaJjzct9uPUKx/XBfpbMD1nFoKrotEai15m2ip80VEZxe32w23ouIEAx4N43QpAh4uVvCg0KgMqOBRW8DDV8HDzBYtRERERAQgLJRPPmrUKBw8eFB13aFDh9CpUycAQJcuXZCZmYkVK1bIt5tMJmzatAkjR44EAIwcORJGoxFbt26Vp1m5ciXcbjeGDx/eDK+CiKj18EDxI1YNZ5cSERERERFRy+A/AOyqpaUDaXM6WAWFQq+qUh3SqK1Fi83uq+BRyYAHERERESHEAY8HH3wQGzduxAsvvIAjR47gs88+w3//+1/MmDEDgFS+9oEHHsDzzz+PH3/8Ebt378Ytt9yCrKwsXH311QCkih+XX3457rzzTmzevBnr1q3Dvffei6lTpyIrKyuEr46IqGVjvoOIiIiIiKjx2GwOfPvdRuTnlzXq467fcED1N8MJDaMMyrjYooWakdliw+tvLMK+/XkwmfwreNQS8FBW8DAz4EFEREREIW7Rct555+G7777DY489hmeffRZdunTBG2+8gZtuukme5pFHHoHZbMZdd90Fo9GI0aNH45dffkFUVJQ8zaeffop7770Xl112GcLCwjBlyhS89dZboXhJRNSEdLrap1HauTMb23ccx7SbL0J4eEjzbC2HqoAHEx5ERERERESN5eNP1uB/81YiOjoSK5Y/0yiPWVBQjsf/+ZnqOicDHg1id/gGyt0MeFAz+s9/luC77zfj2+82YeDAzqrbXLW2aPFV8DCbbVx3iYiIiCi0AQ8AmDx5MiZPnhz0dp1Oh2effRbPPvts0GlSUlLw2WefBb2diM4MOtQv4XH3jP8CANq0ScDkSUObYpZaHYY6iIiIiIiImsamTYcBANXV9kZ8zEMB17GCR8NYFe+L28XvxtR81q6TqvC4XG5s23YMADBwYGfs3JkNp0tdwcPpdOH1NxZh6NBuuPSS/qqAh8fjgcVih8EQ3nwzT0REREQtDk9pJ6Iz3okTp0I9Cy2Gx6N9mYiIiIiIiE5PU7T9OHykMPB5GPBokGqrL+DBZUjNxePxoKoqsLVKu6wUAIEtWpb/ugvffb8ZTzz5OY4dK4Ld7lTdXlmlbvFCRERERGcfBjyI6IzHqhXaPOByISIiIiIiaiwed+N/xyopqQi4juGEhrFafZUQmiKMQ6SlvLwqoKqPwaBHTEwkAMDp16KlvLxKvnzzLW9i9+5c1e0Wi63W5ywpqQgIhhARERHRmYMBDyJqPerXoYU0qEIdzHcQERERERE1GncjBzyqqqxyawclrYBH3snSgEoApKYcZHc4uKyoeZzMLw+4LiEhGuERUpsV/+1W2ZIFAFat2q3622Gved3NzT2Fq655ETPufb8hs0tERERErQADHkTUauh0THicLhYzISIiIiIiahruRv7C9cyzX2pe7z8gvG79AVz/51fxfw8taNTnP9MoAx7+FRWImkphYWDAIz4+GlEGPQDAalWvi8XF6qo9+QXq+zscNVfmWLV6DwBg774TrGhLREREdIZiwIOI6CzFL/pERERERESNx92IrVPsdifWrz+oeZt/BY+FX28AAGz540ijPf+Zxu12qyojVFfX3uaCqDGIVinp6YnydQkJ0YiNjQIAVFWp18WSUyYAQFZWivbj1RLwSEmJky8r270QERER0ZmDAQ8iorOJItTBfAcREREREVHjqW8Fj5Urd+OJJz+D2RIYNjCZLEHv5x/wcLnYbqQ2Vqu67QUreFBzcTql7bV9O19gIyI8HHGxBgBAldmqmt7qXTf/csdl6NA+FQAQHR2J7ue0BRDYosVssckhEkBd4SMn91RjvQwiIiIiakEY8CCiVqOhLVoYZPDhsiAiIiIiImoa9angceqUCU889TlWrtqD9esPBNxeWVkNQGrlkJgYo7otMODReJVDzlT+gQ6r1cHlRs1CBLASEmKQlpYAAOjduz1i46QKHha/gIdYLw0GPd55+y+47NL+eOqJ6xAZGQFAXcHDZnPg8gnP4ZopL8rXWSy+dd2/3QsRERERnRkiQj0DRERNj6kGwaNYFh4uFyIiIiIiokbjctf9O1Z2drHvfhpBg8pKadA3Pj4aL/17Gr74ci3cbg8WL9kWML3bxe92tam2SoPe4eFh8vKz2hyIjTGEcrboLCAqeIRHhOG1V25FYZERI4b3wObNhwEAVWZ1BR+nd/0MDw9DWloinnv2BgDAlwvXAQAcimodJ06UwuVyo7zcDLvdicjICJgVgZHS0sqme2FErYjH44HRaEZyclztExMREbUCrOBBRK1Gw+p3UFD8DZCIiIiIiKjRuN2+4EVt1SHsDl+bBacjsMXKJ5/9BgBIiI9G164ZePyxKWjnbfHACh71J9peJCbGICxM+nWhWqM1DlFjc8mBjXB065aJUef3Qnh4GOK8FTyqqrQreISHq3+21+tFBQ/f/iIqSi9fFm2dLIr1ury8qrFeBlGr9uH/VmDSFS/g97X7G/2xKyur8dzzC7F7T26jPzYREVEwDHgQEZ1FlC1aPOzXQkRERERE1Gg8igoeDkUbBS12u8N32W9au92Jtd5BqPyCMvl6MeDLgEfdVFZW49cVu2CzOeS2FdHRkYiOjgQQ2LaFqCk4nVIgI8IvsBEbKwU8zEFatEREhKuuj/QGPJT7FpciVGYySW2dzIqAR2kpAx5EAPC/eSsBAC+9/H2dpv/m2434auH6Ok07972lWPLLdvz1b3MbOntERET1xhYtRNRq6HSs4XHaGOogIiIiIiJqEm7F9y273YmoqMig09ptvkFah18Fj4LCcvmyGLQFagh4uBnw8OfxeHD91FdRUWHBww9dhTZtEgAAiQkxsNmcMJttsDDgQc1ArsgRoQ54KCt4eDwe+TevoBU8IqXAh3J/Idq/AICpMrCCR2kZW7QQKWlVbvJ4PFi77gDCdDqMGtULZeVVePW1HwEAl13aH6mp8arp3W43jBUWJMRHIyIiHCfzfcds0SqJiIioqfFoQ0R0FlFX8AjdfBAREREREZ1plMELm72WCh6KQVq737QnT/qqdgwa1Fm+LAZ8nazgUauysipUVEgD3seOFcntLRITY+SWGNXVbNFCTS94BQ8DAGn7tdudMBj08t9AYMBDs4KH07cfkSt4mH3rtcm7DRCRpNrqCLhu7boDePQfHwMA5s+7F2Vlvso3ubklqoCHx+PBU09/gZWr9iAsTIfzR/ZESUmFfPvWrUcxcmTPJnwFREREErZoIaIzHoMM2jzggiEiIiIiImosyqCGskKH9rS+QSanU13BIz/fF/B48onr5Mu+Ch7q6d2s4BFA2fbG7fagosIMAEhIjEGUaNFiYQUPanq+Ch7qlisi0AEANpsjYHr/QIgIKdnt2hU8Dhw4id27c5CdXSxf59/+iehsp9WuuqjIKF/euPEQDh0qkP9evGS7atrDRwqwctUeANKxZe26Azh+3LfNrf5tbyPPMRERkTYGPIio9WCHltOm/CKj9aWGiIiIiIiIGkYV8LAHniUcfFr1IKyoMHHlFeehbWayfH3QFi1OBjz8ORUVUsxmq1zNIzEhBgaDNFBuq+U9ImoMIoThX5EjIiJcvk4Z8BCBr4AKHnKLFt/+wqkIe81fsAp/vfs9lJSY5Ov89y1EzWnXrhzcdPMb2LrtaEjnwz9E6f97qFVR1WP1mr2qihw/L96qun95uRQW7NI5HfP+dy8i/IJbFUZWzSEioubBgAcRtRqiHyk1HCMdREREREREjc/j8dQY2vCnPAvf4VAPPonBJL1ePXAUHi79HRDwYIuWAMoWOFVmKypM3oBHYgwMkVLlBFstVVaIGoOvIkd4wG2iiodyXQzWokWv1aIlyLYv7suAB4XSvfd/gOPZxbjv/g9DOh8mkzp0UV2trt5ktfr+PnDgJPbvz1Pdrmx7JMKDUdGR6NkjC20zk9SPZWNwkIiImgcDHkREZyumPYiIiIiIiBpFYEij5tCFssKHfxsF8VgRAQGPMM3Hdrn55c6fsoJHebkZ5WVVAICEhBh5UP1sHfx+482fMPWG12A2W0M9K2cFUWXDP7ABQK4moxxgri3gEaxFi9LAgZ29056d6zi1DP6VM0IlJ6dE9beo6CQoK3gAwL6AgIdvXymO15He43NUVKRqWpuVrb+IiKh5MOBBRHQ2YYsWIiIiIiKiRuc/kOof2qhpeqdfOEQEPPQR2gGPmip48HuexKEYWNy/Pw9r1x0AAHTqlIbISG+LlrP0TOuvFq5H7olTWLV6b6hn5awgWihFRAT+DC8Gh+tSwUOrRYsryAD65eMHA2DAgwgAduzMVv0dGPCoOZShrODhH8AcNKizatpq69l5XCEioubHgAcRtRoNbdDCH7h8lIuCi4WIiIiIiISSUyb8vnY/3G62+2gIZUUOIDC04U9Z8cM/DOJ0Sn8HtmgRAQ/1Yyv/bu3tWmw2B9b8tg9mi632iWugtfzDw8PQt08HRVuMs28gThkOiI7Sh3BOzh51quBhC6zgEeEX8JIreCjeQ/8KHud0y8Q3Xz+M4cO7S9My4EFnOYfDiS++XKe6zlhhVv0t2qpobaMAYLb4Kng45Aoe0vZ4151j8acpI3DP3ZdLj8UKHkRE1EwY8CAiOosw7EJERERERFpuuPF1PPqPj7F02c5Qz0qrZPMbSHXUUppeGQhx+Ff/8LZgEAO6QkSQCh5uRYuWllISv6Hm/GcJHnv8Ezz19Ben9Thayz81NR7R0ZHyoPrZOPhdWlolX46OMYRwTs4ewQIbAGCIFGGj2it4iMCXwx480HXNNcPRNjMZBm+VGpfL3er3CUQNtWXLEVx0yVOorKwGACQlxQIATH4VPGzeqhtXXzUMcXFRAKTtr337VAA1V/CIjY3CzAevxLlDuwEIbPdCRETUVEIa8HjmmWeg0+lU/3r16iXfbrVaMWPGDKSmpiIuLg5TpkxBUVGR6jFyc3MxadIkxMTEID09HQ8//LB8pgMRnVl0uobW8CAtHjDsQUREREREEou3YsLmLYdDPCf1U15ehev+/Arenbs0pPOhHHSV/q75tyllIMThV21CDMgGVPDwDhDX1KLF/4z+1ua77zcDADZsOHhaj6NVwSMsTPpNIViLluf/9TUemDnvjK5ic+qUSb4s1juHw4k/th49KyuaNIdggQ0AiIoKrCYTPOAhrbfKKiyiOkivnu3wxuu34YrJ5wLwrePA2RlkIgKAF1/+XvX34EFdAABGv4BHtbfqRs8eWfh4wf2Ycc/leP2125CengjAP+ChruAhiG2ZFTyIiKi5hLyCR9++fVFQUCD/W7t2rXzbgw8+iEWLFmHhwoVYs2YN8vPzce2118q3u1wuTJo0CXa7HevXr8eCBQswf/58PPXUU6F4KURELZ4q1MF8BxERERER+dFrnGXeki34aDVOnizDx5+sCel8+Ldoqa2Ch6OGgIcYQPI/41+u4OEMHvBwOFr3YK4hMqL2iepAa/mHeU8a8bVoUba6cGHxkm3YvPkwjmcXN8o8tESnSpUBD+n1vzt3Ge7/+4d4+dUfQjVbZzQR2NKq4BFpEIPCtQc8Ir2BL60WLQmJMRh2Xnf5OZTVf/z3L0RnC+Xx5IvPZiI5WargUeHfosW7/Rmi9MjISMJNN16Ic4d2Q2ysVOXIYla0aAlSYcsQFbgtExERNaWQBzwiIiKQmZkp/2vTpg0AoKKiAh9++CFee+01XHrppRg6dCjmzZuH9evXY+PGjQCAZcuWYd++ffjkk08waNAgTJgwAc899xzmzJkDu51pSaIzDgt4nDZlhxa2ayEiIiIiIn/+gxYtjdPpUn2XyckpCeHc+PifJV/ToKrZbMXyX3f57uvQbu8SUMEjSIsW5XM7Xa27+oS+kQIemhU8vMtPBDyUoRyTyXdGd9gZUD00L68UZWWVAddXW3y/l4qQ0RdfSifbLV68rXlm7ixTUwUPX9hIWhc9Hk/wCh7ebUNZLcgXHlFPGx4eJt/fP3xGdLaI8bahuubq4ejYsQ0SE2MAABVBWrRERUWqro+Nkdq1mC2KCh5Bjs/R3vva7c6AYzQREVFTCHnA4/Dhw8jKykLXrl1x0003ITc3FwCwdetWOBwOjBkzRp62V69e6NixIzZs2AAA2LBhA/r374+MjAx5mvHjx8NkMmHv3r3N+0KIqMVijoGIiIiIiKhuIhtpgL0p2O1O3HTzG7jn3vfl6woKykM4Rz42v4CHs4YKHvv25an+9q+6IcIJ/mEbrYCH0+kK+Ls1a6wKMjVV8PC1aPEtd5OpWr6svL41KiurxPVTX8XkK2cH3KYMANkdLpSXVzXnrJ2VRJUNrQoeUX4BD+W2HB6unl7sD5SBsBrDI2I9Z4uWVsnj8SAnt4RhgdNQ5t2/XT5+EAAgMVFU8FAHPKze7U9sj0JMjBTasFgCW7T4BzxEixYgsP0XERFRUwjpt/bhw4dj/vz56NmzJwoKCjBr1ixccMEF2LNnDwoLCxEZGYmkpCTVfTIyMlBYWAgAKCwsVIU7xO3itmBsNhtsNt+B2WSSyhM6HA44HDwAU9MT6xnXt/pRnqVVn2Xncrm4rL2cDmUZYCfXRTorcD2nloLrIpFaa9gmWvK8ETUmZSjAf9CiJTl6rBAn8kpxIq8UJlM1EhKiUaUone52uxEWFppzmfwrePj/nZdXih8XbcHUqaMDwgfKM/IBX/UP/wFhrYBHQLCklbdjaKyAkVOjVY0uzL9Fi7KChy/gYbW17qrABw/mB71NGSaaN38lXnzpu+aYpbNafSp4qAIeflU5IiOl/YHyPXSJCh7hWu1fImCptsPeygNLZ6ufF2/DC7O/wZ//PAp/v29SqGenVfF4PPj8i7VyADQ5JQ4AglbwqK6W9vlR0eoKHqKihzL05wgSwFQeu6w2h1w9hIiIqKmENOAxYcIE+fKAAQMwfPhwdOrUCV999RWio6Ob7Hlnz56NWbNmBVy/bNkyxMTENNnzEvlbvnx5qGehVTFVVMiXFy9eXOf7HT9+vF7Tn8lyc339dn///XccOiSl17ku0tmA6zm1FFwXidRa8jZhsVhqn4joDGBRtG1oyQGPsjJftYH8/DIkJLSDtdo37zabE9F+AzTNxVFLBY+/3fMeysqqkJNbgrFjBqpuC2zvIv0dWYcWLf5nCrf6Ch6NFPDQquBxTrdMAIpBdbuygodvf2+tbt3hPuVrdzpdqqCQsnVQcXGF6n66M6A1TUsktkmtgIc469/qbRGhrLAS4d+iRa/RosUlqoMEPnZkpGhFxIBHa3PyZBlemP0NAODLL9cx4FFPy5fvxDtzlgCQtrvUlHgAwQMetiAVPHzVnnzHBHuQCh5hYWGIitLDanVIn0uSG+vVEBERaWtRdTeTkpLQo0cPHDlyBGPHjoXdbofRaFRV8SgqKkJmpvSFLDMzE5s3b1Y9RlFRkXxbMI899hhmzpwp/20ymdChQweMGzcOCQkJjfiKiLQ5HA4sX74cY8eOhV6vr/0OBAD4cVEeCgrNAICJEyfWOv2LL28CAHTp0gUTJ17epPPWWmzbfhyff7kfADBq9Gh06dyG6yKd8bjPpZaC6yKRWmvYJkS1R6IznbL8eEtucVlUZJQvnzxZiu7d26La6ht4sVhsIQt4BIY01AEDEU7ZtSsHo0f1BgDExUWhqsoKq1VdMUIM0EcEadHirCHgoRVsaE0iFa/ZP5xQH1qVTB588ArpOTQG7SqUAY9WXsFDGTayWh2Ii/MtQ5czeLuH6KiWeSxu7Vw1hDBiY6Wz/M3eSkTK98c/EBKp0aJFhEe0thOxnjPg0bqsXLUbTzz5eahno1U7drxYvvzEP/8kfy4QAQ9jhVk1vTgGR/ntA0UYULkN+VqoBW5zen0ErFaHahslIiJqKi0q4FFVVYWjR49i2rRpGDp0KPR6PVasWIEpU6YAAA4ePIjc3FyMHDkSADBy5Ej861//QnFxMdLT0wFIZ38lJCSgT58+QZ/HYDDAYAgsk6XX61vsD4t0ZuI6Vz/Ks0nqs9zCwsO4nL2UX/ojIiLk5cJ1kc4GXM+ppeC6SKTWkreJljpfRI3NbPG1OXG04IGJoiJfxYGT+eUwGs2qVp7V1aEbmDcrQjJA8OUYFRUpB2pSU+NRVWUNmG9HkAEk0bLBpQhx+Ac8CguN6NE9qwGvoGVQvuaqKiuSkmIb9Dj+QZeMjCSkJEtl+g0G78B3kBYt1a28godV8bpsNgfi4qLkv2sKACUk1q2q8ZEjBcg7WYqLL+rX8Jk8i7hqqOARGyu9N2aztE9wuXzvj//0em+LFmV4qab2L1pBJmr5GO44fSL4dMPU0Rg/bpB8fUK8tI+rrKxWTS8q6PgHPGqu4BE4rCam92+7RkRE1BRC05jU66GHHsKaNWuQnZ2N9evX45prrkF4eDhuuOEGJCYm4o477sDMmTOxatUqbN26FbfddhtGjhyJESNGAADGjRuHPn36YNq0adi5cyeWLl2KJ554AjNmzNAMcBDRWaoFn4HW3FRn47XkU/OIiIiIiKjZKFu0tOSzvcvLfS1aTuaXorSsUnW7pdrmf5cm4/F48MWXa7F9x3EAwKlT6oo//hU8hOhovS/gkSIFDix+AQ/5DOGIurRoUb9fr772Y6se0FW+Nv9lWh/+rWru/tt4+XJ0lHQ2t7L6i6igAAA2a+uu4FFV5XstVqtfhReN4FG7dikAALe7br8R3HLr23j8n59h9+6c05jLs4evjUrgGf8ifCPeM2Vgw79ljnYFj+CP7VvPW/f6fLbxf98TEpqujX1T8oTwN8dgIQxRwcNqdcjHSYfDKW93BoO6ApgcBlR8LhLhjUiNgIfYDltyUJaIiM4cIQ145OXl4YYbbkDPnj1x/fXXIzU1FRs3bkRaWhoA4PXXX8fkyZMxZcoUXHjhhcjMzMS3334r3z88PBw//fQTwsPDMXLkSNx888245ZZb8Oyzz4bqJRFRE2I/2Eag+ILFfAcREREREQHqAW3/gfGWRJzlDgD5+WUoPeUX8LA0X8Bj3boDeOvtxZhx7/sAag54KEMLUgUPaXmnpsYDkCqPKAfDfC1atAMeTsVZ/qIKRWpqPJKSYlBSYsLhwwWn9+JCSDmQdsrv/a0PsfyvvWY4vv/2UYwbO1C+LTrGO/CtWF+UVVSqra03IAOoz073bzejtX2fP7InAPXyqIvDR1rvetbYXC43HnpkAd56e3Hgbc7gVTZiY7wtWiyBAQ9/YrBavW8RLVoCp4+R2780336RTl98fJTqb4vFHtKwREMFBBeb8bOFaFMVGak+hsbGGuRty+TdTypDcNHR2i1alKFJh1N6bP/jMwBE6kXAo+V+jiIiojNHSFu0fPHFFzXeHhUVhTlz5mDOnDlBp+nUqRMWLw788ExERIFa4XdCIiIiIiJqYjbFoLq9BZcWVwY4tm49ht692qtur7Y035nq2Tkl8mWPx4MSbxghPi4KlVVW1WCWyWSRLxsiI1DtrTSS4g14eDwe2GwORHnPuHcEqeAR4x0MVlZcEQNPiYkxMBj0MBotMBrNjfMiQ0A5kFbSCBU89JERSE9PVN0mlqMq1KG4bPUGnlwut+ZAe0unrOBh8wuriIoPSnLQqJ7BFv6+4LNrdw7Wrz+I9TiI++6doDpByVVDBY9YbwUPc5VNNa1mwMM7WK0MQYn3M1zrseX9BQMerYmoyjRu3CAsW7YDTqcL1dV2eb/VWpgV+yFA2rdrbQNNwdfmTD30pdPpEB8fBaPRApPJgrQ2CXJLq/DwsID502rR4qvgEfha9KJFCyt4EBFRM2h931KI6OzFAh6NysPeNUREREREdRLs7Fmn09Uqz6z1pxq8aMEDE2a/gcqFX29Q/d2cA5lhigFci8WGUyVSGKFtltTuQjkIqzyD3mZzymGClOQ432MoAgbiPRCDRUJcbJT82OI9E4OBBoMeycmxAIByoxkul7tFV2MJRhk2KimpaPDjBAvJAEBMtHfgW7HMLaqAhwM/L96Kiy55Eus3HGzwPISKKuBhq71Fi1gPnU5Xrdu/shoNEx4+TsUZ+9VBKhdohTbENl1lrr2CR6Q+cPBYDo9oTM8KHq2Px+ORjx33zZgAvTdEUFFhqeluLYLH48Hu3Tny/qfKL+BhNDbfa7DLFTwCz21OiJfatJhMUgUPEYIzGPQBlaPlCh7KFi1yha3AxxbHGzsreDRIXl4pnnt+IU6eLAv1rBARtQoMeBARnUWUoQ7+FkNEREREVLujxwpxxVWz8c036jBBVZUVN097EzPuez9Ec9Z4lGEEe0sOeHgHQTt2bAMgcPDaf2C1KVmqfYOmBQXlOHDwJACga5cMAOpy9MppLRabPOAaG2tAVJQ0gKSsPhIsnBAba5AHoMSyEMvAYIhAcpI0UF9cXIHb/zIHU294LWCQraWzK97T0xnkEYNweo2zrKOjvS1aFK1xqhXvkclkwb9e+AZutwcPPbxAHghsLSqrFC1aAip4BA48iiAAAFRX11zFw6p4f5rqJ4WdO7NbXZshh6pij3p9Ectcq41KnLeCh9hOawqD+KoD+J7LNz0reJwJHA5faNRg0KNNmwQAwKnShrerai6r1+zFX+9+D/f//UMAgQGPsvKqZpsXOSSpsf9PSFQHPETFJnEsVhIBEbtNEfAQ4ZGaKnjYtT9HtcbQZXO68eY3sOSX7Xj1tR9DPStERK0CAx5E1Gr4J6mp/lShDiY8iIiIiIhq9eJL36OsrAqvvr5Idf1XC9ch98Qp7NiR3azBgqagKvnfgs88tXiDEUOHdNW+vRnfh3LFYNUtt74NAEhJicM53TIBqAdhlQOsuSdO4cgRafC6bWayImzgm8YZJJwQFhaGmBhp+ipvSwc54BGpR1KSVMFjwUercfhwAfILyvG1XzCppVFWwHE6XaoAwbFjRQ1+XLEea7UEEMtctMYB1AGbVav3qKb//ofNDZ6PUKisVAQ8Aip4BG7fERHhcqDAZq8l4KHYxlTVPBpJQWE5Ztz3Pqbf9jb++ONIoz9+U1EOZpsq1ZUKxNn8kRpn/Md6K3iY61HBw+Vyy9OJFi1a4RFfS6fWFfI6mylDi5GREUhPkwIeJcUNr2bUXFau3A0ActhRVKURysqaL+BR0zYX7w1Vif2kaE0lWqQpyRU8FO+L2KcaNKYXoQ+HRpDj1CkTrpnyEp56+ou6v5CziNPpkj/7FBUbQzszREStBAMeRHTGOxNKJhMRERERUXDHjhUFPdv/dL8PVFVpn71fpBhwKW/GM1ObgnLwoiWXFhctWkSVDCEhIRpA856pXl5uDrhu8qRzoY/0lmhXDJRbLOrgSX5BOXQ6Hfr374Rob7uQ6urACh4RGmcIx8VJr1Wsl74KHr4WLcqzhL/4cm3Izxp2u92qEJGQd7IUk654Aa+8+gM8Hg9++22fKoBwPLu4wSECXwWPwAE+5ZnaIhRUbfUtf/8KDAcO5mk+h9vd+AGHxlBVGbxFiwgEKCUnxcLgPfPcf3p/yuXUFMG23bty4HZL++yDh/Ib/fGbivI4EbSCh+b2LA02Oxwu2O3OGgMeysCXqFDgdAVfz0V4xH//Qy2X2E/qdDro9eFo4w14FJ9Gu6rmkpmZJF+urrYHVPBozs9JIuDn3+YM8AU5bN59ma2GCh7yflFx/BIht+jowOnFdqhVwWPe/JUoLa3Eryt21f2FnEWUAaDMjKTQzQgRUSvCgAcR0VlE+eM2cy9EREREdCYwmSy47Y53cN2fX8GBAydVt504cQqTrvgX5i9Y1eDHt9m0S20rz2RvzjNTm4Jy8D1YafFQ83g8cmuTrl3VAY8OHaSWLc1ZSaXSL/jzpykj8Le/jkN8vBTAMFb4zuLXCp50aJ+KuLgoxHirSSirj8gVPDSqT8hnH3sHz8TAk8EQgcGDu8jTtWuXAkAabBbLLRQcDiem3fIWxk94Djt3Zqtu27UrB0ajGd9+twlHjxZi/wEpSHH1VcMASOulyWTxf8g6kQf4NAbVw8LCfJVTvIPfYt0RA+5Khw4GBg2OHSvC+AnPYd78lQ2av6ZSVGTEkaOF8t/+LVocTvX2fekl/dCvX0dEapyprkW537NaG39726/YhwdrL7Rhw8GAllmhJirqAICpwq+Ch9zSIXCwWVTkAaSKBzVW8FAMVosglDNIOyflY5vNrODRWihbbul0OqSnJQIA3v/gV1VlnpZIVLsApCpS/utdcwY8RKs5re1C3vd7941iHxll0Ah4aOwXRcgtyhBYwUMcb7SCsocO+dpOhTp02RKdOmWSL7e2tmhERKHCgAcRtRrs0NIIFKEOVjYhIiIial7PPPMMdDqd6l+vXr3k261WK2bMmIHU1FTExcVhypQpKCpqeIuCs8WJE6XyYNfva/epbvvgw19hNFrw3/eXN/jxtSoPAOowQbkxsJpDa6J8jWJgJJTcbnfA95Xqart83TnntFUNgHZoLwIezRdksFZLAz4v/nsa1v72PGY+eCUAyANyp0p8gxUi4DHq/F64796JiI+LwuOPTQEAxMZKFTzMVb4WDWKQV/OsfG8AoaoysIJH717tMeHywejbtwPmfXivvIzstbTdaEqFhUYczy6GzebA9h3HVbcpB82KiipQVCSdpd6hQxtfUKaWbWvf/jyMv/xZfPrZb6rrRQUPrRYtAAJa44jtecCATgHTligGnoR35y6F2WzD+x/8WuP8NbdZz32l+ts/9CQCAQMHdsat0y/Bc8/eAJ1OpxjIrHn7r1YERpqiJVJRkVG+rBVMsNkc+L+HF+DV1xcFBPpCxeFwYu57S+W//Y8HNVXwkNou+fYBIrAVqVF5IDw8TG5dLPbTNVX78bV/CV3AK5Ra4yC6cn8OqMOLs1/8NmTzVRfKSjEffbwae/eeUN1e3IxtZkRQVauCh1i2IqAmWq5oVvDwTqv8jGQTgZCaKnhofI6qUIQVGxpcPJOdKq2UL1dw+RAR1QkDHkTUaujAhMfpUlXwCOF8EBEREZ2t+vbti4KCAvnf2rVr5dsefPBBLFq0CAsXLsSaNWuQn5+Pa6+9NoRz2zqUnPINGhT5DSCIUv+nI9gZ7ZYzqIKH8jU6QtyiJTunGJOvfAF/uv4V1SCIslpAXFyUHAAAgA4dUgE0bysCcRZvdJQeYWG+n9fS06WAR3FJhfz9SwQ8oqMjccPU0Vj6y1NykCA+IQYAYPIGNpSDklrVJ+QKHhoBDwB48onr8P57dyMuLirooH1ObkmznSGrXLf8n1MZPjBWmFFUbAQAZGQkIjlJajdTW8Dj2ee+QmWVFXP+84vq+65Yj7UGygFfwMMiV/CQ3iMRFgIC22coWW0ts+3Fjh3Zqr/9l59o0TJpwhDcdedYOTBgMHhbEdRSlUNZwaO6CbY3k6JKQaVGBY8tW47Il/NOljb68zfEiRPq+djhF2SqqYIH4FvPqsxWX/uHqMDqAKJtBwA47NL67WtFVEOlgmasbOTP4/GE5Gz8o0cLMX7Cc/jgw5YVwKqN2FeL/dagQZ3l21av3lvnllVNeUJXdk4x3p27NGC98q/os3jJNgBAkndfXlBobLJ58ueooYKT2C5E5Q6xzUVFB25zkYrWVWKZ1ljBI1IEPNSfo1wuNwoVr3/ylbPx/L++rvsLOgsoK3hUtPLQNBFRc9H+ZOmnIT8ozZ07F+np6fW+HxFRY2OlCiIiIiJqKSIiIpCZmRlwfUVFBT788EN89tlnuPTSSwEA8+bNQ+/evbFx40aMGDGiuWc15Nxut2rgHJA+2x84eBKdOqbJZz2XKColFBepAx7hirP3PR6PPJhZH8ECHqoKHorS4x98+Ct+/nkr/vve35DmrebQ0in7y9c2oN7Utm8/DqPRAqPRgvUbDuLy8YMBKMqoR+mh0+nQtUs6tm0/DoNBjwRvSMLSrBU8vIM8fgOxaWkJ8vxWVlqRkBAtBzzEOquUkCAFVcQgqHJgSGtwqk0b6fFFVQkxIGjQKC8fGRkBi8UGm6KCx4kTp3DDja8jMTEGS35+oi4v9bQoW4T4txhQblsVRotcwSMzIwmJSTHACXWrG38ejwf5+eXy3ydPliEjQ1o+olJF0AoeUaJMvwh4SPPS3tvaBgA6dUqTz0KvMluREhmn+VgWiw0xMQbNfVao+bdFEIGAcL/lUvcKHr79nlbrodNVqQgDmDUCHn9sPSpfPnHiVKM/f0MUl6iPOxs2HITN5oDBoIfbrazIo70uylV8zDbf4LHGYDMgbdN2u1MOjfhaEQX+xC/WcWstbXea0nPPf41flm7HrdMvwV13jm225503fyWqq+3437yV+MsdY5rteU+X3a7en3fqmIb+/Tti9+5cANIgeEZGUo2PcfBQPu7/+4e4/bZL8efrRzX6PN540xsApP3vnX+5TL4+WEWfIYO7YOWqPSjIL2v0eQlGVLjRClWJSh0BFTw0jqGJiTHQ6XRwudwoL69CSkq8fEyL1qjgESkCWH4VPPLzywIqyixesg1hYTq5mpe/hn5mba1KFRU8KquscDpdQY/fREQkqVPA4/vvv8f111+P6Ojo2icG8Nlnn6GqqooBDyJqERjv8FEtCwZfiIiIiJrd4cOHkZWVhaioKIwcORKzZ89Gx44dsXXrVjgcDowZ4xuI6NWrFzp27IgNGzYEDXjYbDbYbL5BNpNJGvR1OBxwOEI3qHO6vlq4Hu/991dcc/Uw3Dvjcvn65ct34fkXvkFyciy+/PxBGAx6FHvP+geAomKj6nWHh/l+HDeZzJoD7LVRDrjb7Xb5B3fl4OapUyY4HA4UFhrxv3krAUjtYq6YfG69ny8UlK1NSkpMsFiqNQcMgxHLvDHWufJy34/8f/xxBJdd2g8AUFUlDfwaDHo4HA48+sjVeOvtxRg4sBMiI6VBAHOVtdnWezEQG6EPUz1nWJh0Rn5VlRVFxeWIjo5AlXegOioqImD+Yr3rZEVFFRwOB6qrfYPaHo87YPo2baSQQWGh0Tu99N5FRIQFTCvOPrZYfMtl67aj3uezqNbnpmK2+F5PRYVZNY/KFhwnC0rlsFZaWjwSvaGd0lKTfB+32435C1ajX9+OGDbsHBQWGlWDZgUFZUhJkX67FG1pwnTa62Wkt2KFxWyF3W6Xwybp6QnyNBnpiTh2rAjV1XZUVFQhPs63/6iq9M37mHGz0LdvB+zdewL9+nbAm2/cFrKBqfj4aFWQprS0UvX6gy0Xsa6YLTVvQ2I7FJdPZ3tzu90wmarlQVQAMFX6Aj2VlerHz8ktwVcL1/v+zilpEce5ggJp4HrYsHNw/HgxSkpM2LTpEEaO7KEKVwEezfn17QPMsHjbqRgiA/cVgPJ9kt6HmtbzCL0UNqqutoVsOf2ydDsA4LPPf8dtt17cbM+rDNM0x36usYj3NVLx/r/z1h3489TXUVhkRH5BGVJSYmt8jDff/AmVldV4862fce01wxp3/hT77EOH81XHfov3tiuvPBc//viHPN2A/h2xctUeFBYZm+29EEEZXVjgdiHWDYtF2i7Ea4rU2ObCwoDMzCQUFJTj2LFCREVFyIGt8HBd4PTh0muzWu3ybXa7E3f9ba7mfO7clR3wGC6XGzPu/QB2uxPv/udOzfDmmci/hY/JZFZVamtNGvMzcVNpyfNGRHVX52/rb731Vp0DG19/zRJTRNT4Wsn3sRZN1aKF+Q4iIiKiZjV8+HDMnz8fPXv2REFBAWbNmoULLrgAe/bsQWFhISIjI5GUlKS6T0ZGBgoLC4M+5uzZszFr1qyA65ctW4aYmJjGfgnN5oMP/4DT6cLCrzegaxdfSfK16/IAAOXlZnz++Q9IT4/B9u2+kv0FBeX4+eef5QGEnJxc+bYHZs7F1Vd2r9d8+FcDXLToZ0RESINmZWW+H6P37T+MxYsX49eVOfJ1e/bsQXhYcb2eL1SOHcuWL3s8Hnz11Y9ITo6q9+MsX778tOdlxw7fMty5S1quAFBQUOWdP6d83ehRSQAqsH+/1BIhP79Ivq2piYHuTRvX4eAB9bLS6aR1dsWKVWibGYeDB6X5y8vLDZi/wsKTAIC9+w5h8WInKiul4EhYmA5LliwJeN78/BIAwL79R7F48WIcOSo9dnb2USxerK544HRIg8Vr1vyOY0el4MLhQ76zqBcu/AFxcdqVAhqDxeJAQaGvIkx2zknV6z94MFu+vHbtHng8HsTERGD9+jUwVUptLzZv3gF9hPSa9+47hZ9+lgIqjz48HEeO+qp3AMDKVb8jP19q11NySrr/rl07YLXmwl9VlRQm2bhpM8rKfPuQQ4d3K6YpRXi4tA9YtnQlMjOlgVWPx4PsnCLV44lKH3v2nsCHHy5Ehw4JaG4ul1sOd1w+vgt+WXoc2dnqZV5SLFW98F8uVZXS/mzzpi2oqlS3GFHasdO3TzuRV3ha29uXX+1Hdo4JF17QHiNHtAMAlJf5Al4nTqi35x071Mt8z56jzba912T9eum4ZLOakJwcjpIS4NcVa1FefkRVEWXlyl/l44eSxSKtixs2bIbDIe07jMZSzdfmdkmDcmt/X4927eJRXCK9n7v37ITDkaeatrhY2vYqjFU1LidxnGvsgXfxWgBpkPubb35EdHTdg4On49Qp3+emb775ETExrWOQ/MgRaZ9WbVG/Z+Hh0nq0bNlq5Oak1vgYxcW+yjaNvX2UlPgCWCXFJfIxf/ny5ThxIh8AYDGXqO5TWiYd0x0OF77/4ScYIoOH335dkY38gir8+freNU5Xm8pK6fPC5s0bkZuzW3XbsaPSunH8uHQ83rNH2m6KivI1l1dUlLQe/7x4NY4e9VV4Wr16BcLD1dvzyZPSYx04cBCLF0v74sJCMyq8lagSEiJhMvkqnRQVGQOes6jIjP0HpM8Fr776CQYNyqjPS2+19h84pvr7559/QUJC/UPZLUljfCZuKhZL8OpoRNR61OlT1apVq5CSklL7hF5LlixBu3btGjxTRETURBS/T7N1DREREVHzmjBhgnx5wIABGD58ODp16oSvvvqqzhUz/T322GOYOXOm/LfJZEKHDh0wbtw4JCQ0/wBjY5n73m7YbNKPjxMmTJAHno4eWwJA+uG7d5+BGD6sOxb9/L58P6fTjdGjL0FiohRuWfPbJwCkgd6DB8swceLEes1HZVU1Xnpls/z3RRddKj/2f+bukq+Pjk7ExIkT8e33vrM0zzmnJyZOHFmv5wuVLVsXAvANCnXt2g8jR/ao8T67d+ciPiEanTulweFwYPny5Rg7diz0+tMbSNux81sA0gCM3R4mv2c7dmTjo0/2IikpIeB9TEs/iu9/OIyoqNh6v8cN4Xa78eLLmwAAl18+Dikp6tYdn31xBJWVpTh36DAMHNgZu/d8j+07itGvX29MnHiBalqbbRN+X5uH5KQ0TJw4EQUF5fjP3O0wROo1X0tm5jEsXnIMHnckJk6ciD+2fg2gBAMG9AtY377+Jhtl5VYMGXIezju3GwAgKmoPvvvhMACgT9+h6Ne3Q2MtFpW33l6Mb77dhmHDzpGv0+ujVa9p957vAUiD9mLgsHevjpg4cSJyTyzDrl0laNu2AyZOlKr45J38FYAU8Jg4cSJ++nkrgEPy43Xt2hNjxw7G8uXLEReXAKAKw4cP01yXf/u9HLm5JvTu3Q8XXdgHr76+BQDw5z9fiU2bymG22PDwQzfgoUc+RlVVCQYNPhdDBncBAJSVVeGlVzZDp9Nh5oOT8epri1SPHaFPx8SJl57O4muQoiIjgC3Q68NxxRWX4ZelH8DtiVAt8x8W5QH5gcvlt9/LkZNrQu/efTFx4tCgz2GqXAdACoCEhxlOa3sT29Bvv+fh8cemQ68Pl68DgLJyK/btd+Kh/7sSAGCs+B1ANrp0Scfx48WoMruaZXuvza7d3wM4iaFD+yIvrwyHDpXjnHN6YOLE0TAazXjjra0AgMmTJ2q28Nmy1YxjxyvQrWsPOJwuLP81G507d9R8bV8tPA5jRTEGDhyMU6eOeNfzSgw77zyMHt1LNW3eyVLMW7AHbo8u6HKy2Ry4+573UVRcgZdfnIY+fdqf7uKQ5eeXAdgi/921W38MHtQlYLpvvt2I9PREXDC6d6M99959P0LsW/r0Gdqor6sprVq9F998dwjp6W1U79mmzVU4mb8XHTucU+vniiVLC5HvDUSOH395QAjhdOzbl4f/zZcCE3ZHOMaOHSsf+xf9dBKACZdcfD5+XeELat5809X44ssDcDhcGHX+hUhP125d53S68OLLzwIAIiLaYuLEhldAm/vf3QAcuOTii9Cli98Jy7rtWL4iB8nJqZg4cSJycpcBOIkePc7BxInjAx5r/0EXjh//AxkZHXHBBefizbe3Ijw8DFdcMTlg2twTy7B1ayE6dOgsH7d++20fgD3o2SMLQ4Z0wedfrJOnt9tduPTSMapWb+/OXSZfXro8G5OvuBTR0ZGIi4tC28zkBi+Tlu6b73JUfw8bfj66dmmd4ZbG/EzcVETFRyJq3eoU8Ljooovq9aCjR49u0MwQEdWIJTyIiIiI6AySlJSEHj164MiRIxg7dizsdjuMRqOqikdRUREyMzODPobBYIDBEHiGm16vb7E/KtZFXHwUKkzSgK/N5pLLNCt7vB89Woyt245j3z71Wctl5Wa0aSMNIJgVbVRiYgz1XiYWs/oHUKfTIz9GtWJejOVmREREeAe04J1vZ63PZ7M58PAjH6FDhzZ4+KGr6jVvjUm0odHpdPB4PPjp56248MK+Qaf/Zel2PPvcQrRJjccP3/9Dvr4x1juTovVFaWkldLowRESEw+mUzqKNjooMeI74eCl0U11tb5b1XvneJyTEBjxndLS0TTocbuj1enneozTmPSk5HoDUc16v18PtzeFH6MM1X4tYt02V1dDr9fJ7FxMduH6L0u5ul2+9VbYcOnWqskHLy2q14/l/fY1R5/fChAlDAm43W2z45ltpoH7zZl91jMpKq+r57HZXwH2zslKg1+uRkCBVy1C+pza7rxqCXq+H1epU3beqyiZP6xLLPDpwmQOQB9ScTjfc3kIDOp0OsTHReG/u3+RQWVxclPc1+7bn/AIjAKBtZhKGDwsMjxQWVYRk/1tulM4Yb9MmAW0zpRP1SkurEB4eLgcLxHIx+K2L8vJQrCtaqqt9Zd3FOtgQytY6AHD3jPfxwr9uCphu3fqDeOwf0nNYLNJz9+/XCcePF8NkqkZ1tQMJCaGtVlVQKFVd6NAhDWVlUtUMp9PtXTbSehQeHqZ5rAaA1JR47+MYkZgorfexsdrHK0OUd/32Lj5XDfuW+DhpudhsDkRERMjrtM3mQHm5GZmZSfjjj2M4ekwKQmzddgwDBwYGMBqqokJdUejkyXIMO0+9veTlleKtt6VKRZ99+gA6d0r3vj73aQUTlC3UKkx1W09P9zkbg9t7AIg0qI+lGRlJAICyckutr0X5y2lBgRFdGnGQ3OH0VWUpL6uS50Wv18tty+ITYvDwQ1fh1dd+xJ1/GYv4+FjExkbBaDTDWsPnohMnfJ+fTuSV1fo6i4qMuP/vH+LCC/tgxj0TVLfJx8WYqIDHiYuV9uniM5po5xIbGzgtACQl+o5FLpf0/kRFaX/WEftRt9u3Hy05JVUlat8+Fe3aBVZfMZlsiI+P9d7Pje++36y6/b77/wcAyGqbjK8XPqy9MFq50tJKHDmirlZot7la9fcYoGV/F2up80VE9VPvTy0XXXQRPvroI1RXV9c+MRERtSiqFi1gBQ8iIiKiUKqqqsLRo0fRtm1bDB06FHq9HitWrJBvP3jwIHJzczFyZOuoAtGYlKXiSxUl+6sUg//v/XcZvvzSdyZk+/bSD+fFRb7WKeXlvvYQFosNVVXqAafalBvNqr9/WbodAOBwOFUDlGXlVaiosMBs9g0qKUMAwazfcBB/bD2K777fVKfpm4oYDJt+y8XQ6XRYu+4ATpw4FXT6lav2AABOlVbiVGll0OlqY7Xa8de752Lue74zVk0VvrLRbrcHJSVSyMZqkwZ3o6ICf5SOiZEGVSzNtAzFQBYAGAyB505Fe+dRTCcGkCIjA6cVFWFECXend2BKa1pACioBvvfM5l0uIsyhJK4T0wC+5QgA5npuD8LnX6zFylV78Ny/tFs0nzqlfWaoyaQuCW61Br5fYrA+LlZ6ncpt1ur3/prN6vlXbq8O7/apj9Au8y/WI5vNoXp/dDqdav8T6x0MtCieS6yTmZlJyMoKPKO6tDQ0Z8aWlEj7vjZt4tGmTTzCw8PgdLpQWlYlT2N3SK/Vf7lorStalMu8qsoKt9tdw9TB+T/P8ePFePqZLwEA6emJ+OZraSDTZKqWf8cQ7WfS0hLk7ebUqYbvfxpLfr4U8GiXlaJYjtJyFiEmvT54u4nB3sowW/44Km8TyjP6leTHt0vLT17PNR4/Oto32CzWcY/Hg9vueAfX/uklfP/DZmzb7mvHU3oa+3It/vuB7OzAlmXK51yzZh8A4M23f8akK/7lrUgTnMfjwdz3luGnn/4IuK3SLyhYm9LSSlxx1Qv494vf1TptUxJhwAi/7TMhQQq5im0gGI/Hd8wEgJumvakKu9TXU09/gfv//iFcLmm+bFbfdmuptsvrIQBYvbdFGfS45urhWL70adwyTTppON4blFN+hvN3/LivBVNuTknQ6YRPP/8dJ/JK8elnv6OgQN2uyyH2cxrbRZR3uxDHQmsNx1AAiIuTlr3ZbJOP6dFBtk/xvon9LAB53jIzk5CpUYFDuX5WV9uD7oPzC8rl9+FMsnnLYVxx1WwA0mf/jPTAgDYREWmrd8Bj8ODBeOihh5CZmYk777wTGzdubIr5IiIK0OACHmxFIlMuCS4WIiIioub10EMPYc2aNcjOzsb69etxzTXXIDw8HDfccAMSExNxxx13YObMmVi1ahW2bt2K2267DSNHjsSIESNCPevNzq44U1/543dVlfbgxuhRveQy3CXeQSW73amqqAFIP7Tv25+H6be+jc1bDqtus9kcuO/vH+CKq2bj8OECAECFX8Bjz95cAIHhjYoKCw4dzlddV5dBFfE8AJCdEzj41Rw8Hg+OHpUGVkad3wt9vS07Dh3KD3ofo2K55NRhICaYP/44it27c/HRx6vlAZkKvxBAoffseDF4ZNAYWInxVsxorpCMCBpERek1Wy6IeRSDYTY5QBA4gJSSLLV3KfMGmcSArf8AnyACHna7FDISA2xag1MiJKLcnpTLqKEDKHv2nqjx9tIgg+52u1MdNrEGDmSJgfs4b9UeZcBDGaxxudywWKS/xbIyKgJdIigTodcOyojlZbU65GWoFaqRgyaKYIMYhI+JMWi+/2WlVQHXNQcxsJvWJgEREeFo00Zq01VYaJSnEful2Fh1NQkRVKo14KFYZzweD6qqGrYOaT2P2OcMGthZPmve6XTJ62yld/8fHx8tB29O5pcFDRQ1B5vNIS/3du1S5OUo1hGHUww0By+i3ae3tM89ceKUvE5rBdkABARInHLAI/DxlfsEsa3Z7U5kZ0v77LXr9qO42ChPczphPS3+x8RsjWOFMrBw9Kh0Bv+XX66DyVSNr7/ZUOPj7z9wEh99vBov/PvbgKCR8nHrEvD4fe1+GI0W/LhoS0B1mebklPf/6v1KvLw/rDngsWfvCeT7hR1ycht2jHa53Ph1xS78sfUoDhyQWuNV+4XyTBW++fEPG0ZHR8phuVgR8DAHBjx2785BqV9YtC7r4p49ufLlHTuzVfMtKnhoHRfFtrV/fx6MRrN8nA62zYkqTouXbJP37eI47C/B+z4pg6ri81JKSjwGD+qCQYM645ZpF6N3b6ltUKXiPRUh4YiIcLzx+m0Bj+8fkjwTKKt8PfboNWjrDU1azAx4EBHVpt4BjzfeeAP5+fmYN28eiouLceGFF6JPnz545ZVXUFRUVPsDEBFRy8CEBxEREVGzysvLww033ICePXvi+uuvR2pqKjZu3Ii0tDQAwOuvv47JkydjypQpuPDCC5GZmYlvv/02xHMdGnbFWaEVih/KqzR+8H3l5el46cVbkOg9818M7OTllcLt9iA21oDOnaVlXGGy4B//+BiHjxTggQfnqR7n8OECbN16DKWllZi/YBUAqQWBUpn3THgxCBcZGSH3k9+pGGAA6hY2yMsrlS8fOxaa31SKiipgNJoRHh6Gc87JRFbbZPn6YJRnCNcl4LF37wncfMub2LLliOp6ZYjh4EFpMFC8321SpbYFhd75sIkz2zUGbMSZ6jabo8bBOZfLjb8/+L/TPku7upaz7AMreAQPEKSmSgEPo9ECp9MlBxOCnfEvqpUA0nooBno1Ax5i0F4R8FBWzTA3cABFOWCqDI8INQ3OKbcpsXz+NMUXYhNnqosy+qpghaI9iN3uhNki3SaqaCj3FbVV8DBoVPDQWoYiSKBVnSfY+9/YA+W12bv3BK778yt4862fAQDp6UkAgMwMad8kQlKAr2qLeF2CeC1ifQrGf9DNVNmwAUc5sGXQo3//jqrbBg3qgqgovbx/EPt0UZUhPi5KHnR99B8f48qr/61ZDaY5lJZWwuPxIDIyAklJsQEBDEcdKniIdd7t9qC8XDrGBK/goQ7iOGrYX0REhMvXi3VWWYFl/fqDcjUmoPGDSSIINnnSUADaxwr/gMfnX6yV/w4PD77MAHUAs6xMPe/K/UZdAh7KAfvDRwpqmLJpuUTAw++1i/W9spaqS+vW7QcAjBs7UA4QNLTKjTKEJUJU/qE85T63pmpS8XGBgT0A2L0nF3+9+z38+YbXVMs92Hvm8Xjw0cersXbtflWFlxxFQFZ5TNKu+OV7r2+8+XVf5ZEg25yoPgIAr7z6AwAg1fv5xF+a9/NgUbHv81O19/GjoyMRHR2J/7xzF/7213Hy5xZlGFhsnzExkRh2XnfERKvnyegXOj4TiCD2A3+fjMmTz0VsjPeYywoeRES1alBjuYiICFx77bX44YcfkJeXhxtvvBFPPvkkOnTogKuvvhorV65s7PkkIoIODS3hQYKHoQ4iIiKikPniiy+Qn58Pm82GvLw8fPHFF+jWrZt8e1RUFObMmYOysjKYzWZ8++23yMzMDOEch45dMcgowhQAUOUdDHpu1lT5us6dpPCGKKMtBgFPen807tC+jRz+MJksQQdflT8m790nDUyJQTFRMrrcO4hUXS1NGx0diW5dpf72u3f7ziZV3rcmysEt/wGq5lLgHfzNapsMg0GPjIwkAECh4sxuJbfbrTpjvi5nzz/4f/Nw7FgR/vH4J6rrlWcDZ+eUwOVyywNAPXpmSfMhKnjU2KLFN2CjHIDavScX10x5CStX7gYA7Nufhy1bjuDHRVvq/N3o6LFCPPTIAtXZ6CJoEB2tPSAkl4Cv9p01DwAGzRYtsQgL08Hj8aCiwuIbsA0STNDrI+RBW4vFJg+wxcVFBUwrAiVvv7NYvq5aEZLwb3FSV8plpzXgVNOAaqVJcca3970655y28nVisDs2LrBFiwh0AFJQRYQN2rVLDZiX2oIyBm81FavNIQ/GawVwfAEPRSUR77Yd7Q3bhIWpf6uorKyutRJGY/px0RacPCnt75KSYnDllecCgBw+E4Esl8sttzGK8avgIbYrsW8Lxj8U1NBQgG8wOALX/+l81W2DB3eBTqeT1wWTd50R+//4+OiA9V05oNqcRPub1NR46HQ6eb0KbKESvIKHweALs4j3Kti+RX587/KTKz4EWc/FoLXVJr3vyuMpAFXLh8YIJv28eCv+evdclJVVIjdXavM1ZswAAEBxcUXAoK0y8HU8u1i1r9Jqf6Wk3N79W3QojwN1CXgoWzCdyA3enqypOV2iRYtfBY8gAQl/W7cdAwAMG9YdbdpIIYSGVrhR7sNEqzz/IJU64CGCchr7UY39OeCrwmGx2LBkyXb5+vJys2ZYc+/eE5j73jI88o+PVS34RFUa/3nU2qeLZQlIwUpfYDNIBY943/SiOkqKN5jpLz1Nvc8FfBW//MMa4m9VVS2zqLAk7d9i/fZzN017s8EVWVoqsUzbZaUA8FWXqi30/OprP+KSy57GZ5//3rQzSETUgjUo4CFs3rwZTz/9NF599VWkp6fjscceQ5s2bTB58mQ89NBDjTWPREQATqNFC8mUv2Ey60FERERELZWy4oByYFWcldulSwYuubgfRo/ujczMJABAnDyAoB4MTEiMQbwc8Ahe3lx5FqUYtBA/vGd5f3guK6+Cx+PxDfBGR8o91f3Lz9fl7EPV4HUDB9tPlwiZJHiXUYb3rH/l2bFKZWVVqkHBsvKaB3ilNg7Sa6uutqvu63/mamVltRwe6O4d9C/0zoevRUvgIIxeH47w8LCAx3zp5e9RVGTEE099DkA9YFXXCivTbnkL69cfxOzZvmo6YhA82ICQqDIiBlXtNQQIwsPD5LYkpWWVsHtb1QQbsAV8gRaz2Ypi78C2COYoiduqq+3yclFV8GjgGbLKZawVTCqvYZ1QVnwQA2ti+wIgtzzRGtCsMPrua7U55Plo563gUa4Y8HXUOvCtrODhXbc0Ax5iWQdW8Ij2Dp736JEl3ybe4+YMbInqQWPHDMCnHz+Azp2kdlUpKdIAr3g/lOt8nF8FD61KJVr891PK6iD1IQaDo6IiEZ/gG0BNTY1Hxw5tAPjaUvgqeEj/x8VHBcx/ZQ379qZU5g0PpKRIA74BFTbsokVL8O1Zp9PJgRWxv4sN0gLCVyFEPH7NgbBov7BZTdv8qVOm025P8q8XvsHu3bl47/3lctupbl0zkZwstdzJ9RucrqwM/r5p7S9V86sIbvi3JVGHE2rfFpXVwRZ+swEOhxMLv14f0OatqTmDtOiSAxI1LC+PxyMPivfp0x5tUqUWTQ0NeFgVy1C0edJqTwdIQSEx7zVV8PB/v5WD+MrgoMfjUe3P/Z/PX6Hi84qY78jICM0WWv7hMFs9KngIYtn6S/d+fiorq5LbzskVn/wCHtEaAQ+L97OF2P61gpv+1edaOxHOymybBMB3zP3yq3VyONef2+3GN99uhM3mwDtzltT42Z6I6ExW74BHcXExXn31VfTr1w8XXHABSkpK8PnnnyM7OxuzZs3CBx98gGXLlmHu3LlNMb9ERABYiaLBlF+YwGVIRERERC2P0+kKGgIQg/wxMQb86/kb8dK/p8k/4IsKHiIEIu4XExMZcCa4FuXz2GwOWK12eTBcDEA7HC5UVVnls+CjoyPlgSsxiOI7E75+FTxqOzO3qYhlIpaRGKhUnh39yKMfYdr0t2C22ORKAUJ5LYNn/q9LOfivXEZVVVZUePvLx8Ya5OCMqBAgl1HXGDzS6XTy2bAWRQUCMcAi2IMEh4L5ZanvjOKDh/Ll76FyyfUgA0JR8sCNuoJHZJAz0lNTxJnWlb7KE0EGbAFfwGPjpkPyoJo4W1tJ+V6J91NZNaWhPe6VIQCtMEdN675yGxTvaYJigD8lWVr/lJUzxHJXDvjZrA55PsT2aTSa5WlrW47yQLnVUWMARwywKddj/xY9zz4zFSNH9MCcd+6Ut5/matNSWlqJ3BOnoNPp8H8zr0Jysu/McnFZhE3Ea9DrwwNea5xGkEWLCAjIlX5qaOVUE7mCR2QEEuJj5OsHDeoMnffsHrFeiP2CaE8RHxdYweN0Wxe43e6A35lsNgeys4uDTu9yueWAm9iGA1q0OGtv0QL4BpFFtYm0NO0BZF+AxP/xtfctoqWTfFysYb/ncrlVlQdOx5EjhXC7PQgPD0NycqwcOlJWWgBqDnhotX9SUgYXDh3KV92mCnjUYVtUHg/27j2BZ59biNff+Al/uv6VgONIU3I6RQUP9foiAhIn8kqDBjZKSkyorrYjPDwM7dulKip4nH6LFrF9+VcmEhXAlO+VVsBDhBj9Axq5J4JXo8g/GRiuMZm0Ax6qSiJyYCNIRQ7/fUeF9Nq0PlsAQLjGMSRYi5akxBjo9eHweDzychfHC//PC9HR0j5XHXQVFTyCBzyChW9bI5fLLe8DxPGqY8c0+fb3P/w14D5Opysg0NXcQSwiopai3gGP9u3b44MPPsD06dORl5eHr7/+Gpdffrn84RsABgwYgPPOO69RZ5SISKk+AQ9mQbRxuRARERFRSyRaVAjix2+Xyy0PImj9cC8PxHpbtJi9pehjYgzyAGJNg0kWvzObKyoscjn7pKRYeVC9vNwsD2DHRBvkAV1BDHzW9FxCZZUi4NHAwfbTValoewAoSvp7B0lMpmqsXXcAR48WYuy4WVi8ZJvq/rVVKvAf0FH+rWwXYDbbYPLelpgYi6QkKTgjBl8qvP/HxgYOeAC+0IMyXCAGXQFg+/ZjqvektoFsIHDQWLTh8W/R4U8M5Ni8FTxERZrISO0BJLHOFBcZfQO2NZy9Ll7rnP/8Il/nPyAI+N5TADB6l61Voxx8fakqeGgEPPy3JSXle2BVDHzNfuFm3P238ejbtwMA34Cgw+GC2WyDy+VWrTtWq0MOG4gWLU6nS37u2gbWlRU8RDsNrYFJcSa1svKBXHLf+/63b5+KV1+5FYMHdZEH/ubOXRp0GTSmnbuyAQDdumaogjKAL6wltlHR4iY2NrA6RIx3u6qqJfgk1pmu3tZURUUNrOChWObK+T536Dny5Q7eSh7r1h1QVQLSatFiDHJmf124XG7cfMubGHXBP/H4E5/K1z/62Ce48eY38MfWowH3uff+D3DjTa/LZ5/LFTyi/CtsiAoeNVejULaBAID09CTN6cQ6KqrOiCCT1vavfJz7//4hzGarvM/1r0ogKiDdevs7+Grh+hrntajIGBD0A6TQiyCqB7VJjUdYWBg6d5YGbXMUla7y8krx22/7APgqNin5t5MRPB4PDh3Ox8KvN8jXbd9xXL6s/KwASOu/2+1GySkTXn9jUUA7FyAw8LdCUTlg4cIN/pM3GV8FD/WQjXJ9nzd/leZ9RXWUdlkpiIgIR1obKSTU0NCOzaYMRErbvX9478jRQmlauy/4odWiRWwf/mEbrYocYl30r4oGBB5vzukmtTGsNKmPDUDwihz+24pYl/0/ywndumYEfObUClQCUgWqNG+bFrENWBWBYCXx+UGrRYvYH0eEa2/XtYWfWgvldpfg3Qcq9wWiBSMghXtuu/0dXHjxk7j+z6+qHqcun7eJiM5E9Q54rFixAvv378fDDz+MtLQ0zWkSEhKwapX2hw0iosZQWziBFT60sWoHEREREbV0/j9cy60lFGeO1hjwqBIVPLyDmTEGeQCxoEA9KKU8M9d/sNtYYfENQEfr5cHyqqpqVYsW5RnzANCunVRNQAQShKPHCnH3Pe/ho49Xw+FwwuPxoLJS0aIlZBU8pIERsYzkgW/vIMmzz3+lmn7RT38A8P0IX1uLFv+QhLIKg3+Llgo54BGDZBHw8E5/4MBJAMA552RqPo8YLFFVfFGsM4t+2lqniillZZV46JEF2LjpUEDFl/kLpN+6rEHOyBXEMhSVXuQKHkFCG6LNUGGRUQ441VzBQ/28IhTh76knr5MvV8gVPHzLZMsfR7B6zZ6gz6PFbncGDJ7606rgIbZPsUw9Ho9iIE6Piy7sg2k3XySfQBYdHSkPQpeUVMBksqi+51db7fIAWmZGkjx4VnKqEh6PJ2irA0EMlFtrqeAR650H5bojl9zXeP/FWdvbdxxvlrZLeXnSPq1798ABcjFguWnzYalNjxg8jAkMSYnQR21VXUQFiC6dpYoMJQ2uDiAtc4NBL4e5AOD883vKlydcPhgA8MfWo7BaHfJ7GhcX1agVPIqKjHJlidWr98rhjM2bDwMAvv5aPcBvszmwY0c2TuSV4pelOwD4zugPaKFSxwoe/q8nPT1YBQ/p8TdtPoLjx32BsMjIIAEPRSWQ9/67TA4qdemSoZpOtBmqrKzGG2/+FHQ+nU4Xbv/LHEy98TVs3HhIdZsyZCMG8tt4n799eymsozzT/uNP16CouAIZGUl46P+uDHguZTspQNr3TJv+FqZNfwsvv/yD6rYDB07izbd+lqfzn2eTqRoz/28+Fn69AS/8+5uA56qqCr7ef//j5mb7jVGs4/5VI5TbSF5eqeZ9RXimY0dpWYtl71/xw2SqDqjEocWumEYEv8R70rePdMw5drTIO62vFZFWWxTRLkq07ZEfV+M4PGRIVwBAdk5g9ZzycvV23rtPewDSsVZ8nhOt0YJV5NASHR2Jzt59mr+IiHB8982jqutEqFCL2HaLvMcnS5CAh6g69smnv2Hv3hMAfIEHESxUthh7+aVb5Mt1qUrTGpi8x9Xo6Ej5WN3H+54C6tDNz4u34aBfpR6BAQ8iOlvVO+BxwQUXNMV84N///jd0Oh0eeOAB+Tqr1YoZM2YgNTUVcXFxmDJlCoqKilT3y83NxaRJkxATE4P09HQ8/PDDcDrPjBQjEflRVAqq7csVAx7aVIuFy4iIiIiIWiC7XT3wIIIXNsVgj9ZArBgMFlUxfC1aDHK5+5Wr1IPZ6moS/hU8zIof5g3y2YWmympVBYcUv4CHaBdhMlWrWs0sWvQHdu7Kwdz3luGjj9fAZvMNWAK1nznfVPwreIjQgtXmgMfjwfr1BzXvd9550pn2RUUVNbaXqfArqa4ciK1WtFOpqrLKtyUlxiAxKUae3mZzyGcK9+mtHWZITpLeB+XZysrwwfHjRary7uYgVSZefuUHrF9/EDP/b748+HDLtIsASC1RqqqsNQ7wA76KHNnHpQEqsU4bagt4FBrldaKmAWHxWoV33vqL5nS9e7WX3yetCh4A8P4HgSXQa+K/nfgPuAG+ZasMYvXv1xGAL1CkbMUUbDm28Z6B/u57ywIG8IuLK+R1t0OHVHmAeteuHLjdvu+6wSoniDOwT5w4VWMLHRF82LMnF7Oek8JOouR+THTgfCvP7M7Pb1h1i/oQ65bWMszKSpYvL/91p7wv1Sr7Hyu3aFFvyzabA4cPFwCQKiOIfWLbttJjm2qpnGE2W3H3jP/izbd/Vu3v5BYthgjExBjw4r+n4eWXbpGrDgC+EElxcQX+PFU6Yzs8PAzR0ZGqAW8AWLV6T4N/B1JWpRbPp+TfokO5HxGD52J5KFv/AECZdyA2wa9Chz9lRY3ExJig24S4/vjxYnz19UH5NUdEaK/nyu316282Yv36A9JzJMXIlYAAoJ9fSCxYhYCcnBKUl5vhcrnx/Q+bVbeVaoR92reXBsLF+6U8HhR4t4+77hyL/v074eqrhqnu6x8Uu/jSp3D0aCGOHSvC3n0n5OtFKGj5rzsBqIMh4riWk1OCo95jyNatxwLms6bjb15eadBQRWOTW7T4VW4wGPQYP34QgMCAn5Bz4hQAoJO36oHYlk6V+o6JVVVWXH3tv3H7HXNqnRdlCEQEv0QoVQQti4oq4PF4FNuzdqhCribkFwjV+uwwTHy2KDQG3CZagoWF6RAdHYnrrzsfYWHS9is+z4ngoCFIixYtPXtmyZVDtCQmxiA9PVH+u51i3+ov3VvBo6TEW8HDqv15QbRoAYA7//ouAPXnVgA4f6S0bk+/5WKMOr8Xsrz7mcZqpRRq/p8/AWk5/e2v4wD42twBwDrvvqun91ivZGLAg4jOUnUKeAwZMgTl5XX/UjJ69GicPHmyztNv2bIF7733HgYMGKC6/sEHH8SiRYuwcOFCrFmzBvn5+bj22mvl210uFyZNmgS73Y7169djwYIFmD9/Pp566qk6PzcRnZmYXdCm/MGDy4iIiIiIWiK7XbtFi/Jsf60zRBMTpQGkUyUmb6sGX4uWMZcNQEdvuX8lY5BqEtJtFl9p7Si9qkKICCZERwVW8BA/wLvdHtVZhbv35MqXs7OLA844bM4KHjm5JfKZ1KKiQkKCFKgQgyLV1fYaz/IdMKATsrJS4PF4sGfviaDTBbRoUQU8fANxVWYrSr2BjNTUeLmCh9lsw779eXC53EhOjkVGRiK0iBYA2dlSqMLj8ciDQQBwPLtYFfgItrwPHymUL4vB6/79OskDlCfzy+R10f+MXGHAgE4AgH3783D+6MflZRysgocIhBQpKnhE1BDwuOvOsfjTlBEYNqw7Xnvl1qCDaoAUlgF867oIJ4jB84KCcng8Hvlfbfwr3Xzx5Vp8/Y26woF4X6+5ejgAIDk5Ft27+yoESNPUXJEHkNZTAFi7dj+OHlOf8DXrWSlskZGeiKioSJw7tBsAYP2Gg3C5lAEP7eXYt29HhIXpkF9Qjhf+/S0AwKDRQidGMQi3dOkOuFxuVHv3LVEa7/8/HrlGvpyv0QqisdVUHaZzp3QkJ3vX25Nl8hnl/uEIAIjztgTwDz69/OoPmH7b2/h1xS7V9trOG2TzD3D527krBzt3ZuPLL9fhgw9XyNf7DwhfMLo3Rp3fS3Xf5OQ4ed045Q1KxMdHQafToW2meoB1//48eX2pL7tfgKOoyKhaDja/sIPRGPia23pDWqI9xZGjhXjxpe/wyae/AQismOGvWzdfZaJuXYNP20OjUgsQfD2/8Qb1iZrLlkshiJgYg1xtyv/5gcAB5HnzV+LGm1/Hh/N87+GOncdVoR2tqgJtUqWQgWi5pAwElXjDMSKA+fBDV+HnRY9j5oNXAFAfH4IFTuZ9OAP/N1Oq/lFZWS1VBvKuW5GREWjjrazy7Xcb5fvodLqA6iD+oR5/tbUiayxOl3aLFgDy9hFsm8vNlQIeHTtKx0IRkDMaLfLy27M3F1arA8ezi2tspQX4PnMBvgDM/gN5AIDhw7sDkI4nNptLVZFHS6po0aIIAdlsDs33VYSlyjWqgxV6Qx9P/PNPWL70KXTrmilXHxPLRcxLsOOKll4929c6jbJ6mP/nPiURBCkuroDb7fZ9XojxD3gEHj98n8ek1/Tn60dh6ZIn8de7pMCDeE/9q7K0VuL1xvsF4MTnbbGdut1uuYrbPXdfHvA4rOBBRGerOgU8duzYgZ07d2LXrl11+rdjxw7YbHXr41lVVYWbbroJ77//PpKTfR/OKyoq8OGHH+K1117DpZdeiqFDh2LevHlYv349Nm6UPpQtW7YM+/btwyeffIJBgwZhwoQJeO655zBnzhzY7dp9+oio9VKeVKE8I6c2rOZBRERERNR6BKvgoQx4aOncOQ1JSTGwVNuxe0+u6kxIg0GPu+4cG3AfdcBD/TuCyWTxVWqIjkRcvDfgUalu0eLftz0lJV7+cdrobdPi8Xjks4cBabBS2Z4FaL4KHhaLDTfc+Dr+dP0rcDpdAWdQRhmkQQebzaFqUfLL4idUj9O+XSoGDewMANi9O0e+vri4Ajfe/Dq+/GodgMCAR3mQgIe5yopSb/n2lJQ4VZWBGfe+D0Cq3uF/tr0gBlA/+ngN5r63DGVlVfLgUUJCNOx2J779bpM8fbDlrSxLf+DgSfn+YkA7P79MDvgEWxfbZiajd+/AAaOgLVq8AY/CQiOKi40Aam7R0rVrBmY+eCXeeO02jBjRI+h0gK80vhgQEqGlBx+8wjvQ6cD27cdx2dhncOvt72i2V1EyWwKX22uvL1L9Lba9EcN74OMF92Puf/4qBw3EOmXzltEPDw8LWmVj2Hnd5ctLva0w/IkwzWWX9gcAbN50BDt3SSEfvT486MB3bIwBgwZ1UV2XrhEe6tw5XVVdoajIKIdktFr0dOuWiUsv6QcgsCVUUxCBoGDr1k03XggA+PiTNXjxpe8AAN012hzFxqpbXAmLF28DALz08vdydY+IiHB5UN6/FZU/5T721xW75Mu1nfEPSAPxYrBXEMcD5fVin/DHH0drnJdgnA51qLCw0CiffQ8A27Ydw5Jftst/a73mTG/gJNEblAOAH37cIod8utYQ2gCAiROGyJdF4EvLoEGdNa8Ptp736dMBP37/Dzz91PWq65OSYvH3+yahd+/2+O/cv2Gw37Yg9kOAtD2//8GvyM4uwerVe+XrTaZqrFnj+1tr0FkcH8VyUbZxESESUfFAp9N5Qz3SdqXcFwULI3TsmCY/tsPhgtXqUK1bYr+zfUe2fB+Px6MKbJhMFrlKzZjL1CefivXcWEulmsbiqqG1lAjrVWgEjEpLK7Fjx3EAvvZpCQnR8uOIsIQy2FhQSwBNGfA0V1lRVl6FkyfLoNPpcO7Qc+TQTmWlHTa7L1SjRQQTKhUVsMS+RqfT4YrJ58rTytU+NEI1eSelSiod2reRg74inCqWi6j2Jj7LaHnin39ShZp69NAOTik99ui1GDKkK26dfknQzyGAL+Bx4kSpKiTjf7zwrwAltRLytakTlOEHrUo4rZn4/Olf4Sjabx9w8mQZLBYbIiMjMHiwb18l1hUGPIjobKV91NVw2WWX1XmQtKaDnL8ZM2Zg0qRJGDNmDJ5//nn5+q1bt8LhcGDMmDHydb169ULHjh2xYcMGjBgxAhs2bED//v2RkeH7kDx+/Hjcfffd2Lt3LwYPHqz5nDabTRVAMZmkD5QOhwMOR+096IhOl1jPuL7Vj0cR6rA77NDpgu+TROodkJK+XNYS5dkVDqeT6yKdFbieU0vBdZFIrTVsEy153s5k/md0igFCqzxoo/2jfVhYGAYO6Iw1v+3DkSMF8kCgKHV96aX98WBZJeb85xf5OYwaLVp0Oh08Hg+MRrNvIDfaIP/Ibqq0yo8dHW1AbKwBkZER8mO2zUxCUlIsqqqs0oBDJ6kHu/J1lZZWyj9Ii+crLzfD4/HU6zeVhlC21CgsNMqlrcUP7OKsUrvdKYcxUlLikJAQg9hYg/za27VLwcCBnbF4yTbs2p2LdlnSYMmvK3YhO7sEb771My67tH/AYGiwqimmymq5nUFKSjzCwsLQu3d77N+fJ09z8cV9g76ufn07ypc/+ng1evdqB0AabLn6qmH47/vLVdNrDQhUVlbLlQKU4hOikZWVjL37TngDHr6ATzD3zpggB1OESI0KEYCvRUtxiQnffS+1PdAKiDSEaJFwwttioNo74BQfH402beJRUmLCjz/9AatVasVx8NBJDBrYJejjVVXWHkRSLh8xiJbgrWBj8qvgUdNZ1g8/dBWmXPcyAF959okThsDhcGL5r7tw6SX98H8zrwIgBTGy2iYjv6AcK1dJzxUba9Cs9iO89cbteODBecjOKcH1152P6/40MmCauLgo/LTocUy75S3knjiF49nFOOFthdAmLSFgegBo29YbBmqWCh7Scgw2wJ+mMY+imoqSaNFitzthszkCghdVVb79XmyswVeRwVQNt9sddDkrt/eCgnL5sevaRqFTxzQc97Y6AnyBFmXA4/yRPbFu/QEcP14UcP+68K/g8cK/v5VbBAjPPb8QEy6Xfmf2H+zPzEySl3OXLhlokxofsB8Z0L9TjfOQkZGEO26/DAs+Wi1XvtESFRWJK684Dz8u2oIBA9JgLPegXbuUGttLtGmTgKFDuqqu69I5HUOGdMWH798jX/fB+/fgmVlfIi+vFCfzyyF+VldWnxJSUuJQVlaFtesP4DJvKEK85okThqBv3w5Yt/4ArrryPACKCh7egWmz2Srv//3XUTHwrWzh5V85CJBCM9HRkfB4PAgPD4PL5UZlZbXcHicqSo9k7wCwf/ikrKxKbqeWnV0Cj8eDzMwkDBzQSRVE6tQxDSUlJlVbnqYkt2jRqOCRIAIefvMy5z+/4NPPpEoxvXq2Q8+e0vat0+kQF2eA0WiRl19RkS+4lF9Qjm7dMrF9x3GEh4Whf/+Oqs8fyso1ZosNJ09KgbX09ETExUUhPS0RFRUWVFb5Pt8YNNpcAdLxRnxOmvnQfLw75y75GBwXa8ADf5+MqCg9Lrt0gNyezb+di9Vql0NBHTqkytdnpCchN/cUCgql/a38WbGGfcvECUMwccIQbNx0CFu3HgsI9mhJTY0P2g5NKc0bWNq46RAeefQj+Xr/ZZPpF147daoyoKKaP1HZQxm+bc1EC0D/Ch6iOpao4JGraD8UERGOxx+bgh07jyM9LRHzF6yqU8Bj6bIdWLNmL/75+BQ50EhE1NrVKeBx/Pjxej9w+/a1fxH94osvsG3bNmzZsiXgtsLCQkRGRiIpKUl1fUZGBgoLC+VplOEOcbu4LZjZs2dj1qxZAdcvW7YMMTHaB1CiprB8+fLaJyJZaamv5+UvS5ZCrw/+BVbZ6zonJweLFy9u0nlrLfYf8C3DzZs2oaRY+jDNdZHOBlzPqaXgukik1pK3CYvlzDhDrrUR5bVF8OFkfhncbrfvrMwafrQXZ1EXF5vks81FwAMArvvT+bj2mhF48unPsXr1XtXgo6hM0LZtMvLzy1BRYVEMVOsRHyf9AF1VVY38AjHQkQCdToeE+Gh5cCuzbTJSU+ORl1eK/IJyDBzYWdWWBJACHuLs1a5dM3D0aCFsNgeMRnONpb8bg7I0fU5OSWAFD8XyLfGWrReDCkoGgx59+ki//UjVSTIDHn/P3ly5nUFiYgwqKiyqih4WxRnaBQXl8tnWopz7rGf+jAULVmP0qF4YPLhL0EEPAOjZMwtDBnfBtu3Sb1iP/fNTAFLgZtT5vQICHvn5gYPv4ixupfDwMKSlJaJdO2lAac5/fsGFF/QBAPlMcy0D+nfCOd0ycURRuSXY4FdKShz0+nA4HC4YjWYYDHr8aUpg2KAhRGuiXG/7Cqui+kTbzGSUlJiwd69vAFdZQl+LGHQbNKgzLh8/GP9+8buAAVpl9RxBDkh5ByettuBVMIS2bZPx7KypeOrpL+TrOnRog+m3XIxZz0wNmL5du1RVqEKrlYZSWFgY3nzjdgA1n6ym10egZ88s5J44hYcf+Uh+bcFaaWRlSfuhAo11rLHZ5BYt2vvF/v18wYJhw7ojPi4Ko0f1CpguPj4acXFRqKqyIi+vVA7mKMNrYn8ZG+MLeLjdHlRVWYNum8p9rMfjkR9b7P+U1VG0DBjQCau9VSL0+nA5MBAdHYlrrh6G4mITRo3qhXXrD8jtG+rLv4IHAMx9b1nQ6cX+fPSoXrj2mhHo27eDquLCf/5zF6bf+jaqq+3Q68Nx4YV95KBVTe64/TJMv+VizeoNSg8/dBUuvLA38k/uw5VXTkZkZPBtSEj1tioRRLhBqU/v9hh1fi98+dU6HDni2xdu334sYNo/Xz8K785diqVLd+Dmmy5Et66ZcouWNm0ScM3Vw1VBFbG+iNZfYqA+Li4qICjn33ID8B2fDQa9XFliiDe0otPpkJAQjfJyM0wmiy88ZNAHPZ4qK0mJfVFcbJRqoDkmOtJXwcNYc6WaxiJOygoP16rg4a3eUGGB0+mS15PPPv9dnmbqn0ep9mUxMVFSwMO7TxYhCECqRrV7T64cRJxxz+VyxR9AXcGjutqOk97qGW3bJgGQ1qnDRwpQVWX3tWgJsh8CfOHdnTuzUV5ehUqxD4iPRnR0JB58QGrNIz6TmM02VdhMBEzi46NV+5t27VKw5Q/f7b73v/ZhrxHDe2DE8JqrYNVXRrqvEpT4PHJOt8yAENyggZ0x5+2/4OFHPoKl2o6Skgp5nfevaCGI191cgaOm5Ha7seY3ad8+enRv1W3ic4H4jFjureYiWi5NnjQUkycNxVcL1wOovQKex+OR27p17ZqBv9wxpsbpiYhaizoFPDp1qjll3BAnTpzA3//+dyxfvhxRUc2bmnvssccwc+ZM+W+TyYQOHTpg3LhxSEjQTt8TNSaHw4Hly5dj7Nix0Ovr3hPwbPfrihLk5EpfAsePH1fjj2kOhxOvvCaFxzp27ISJEyc2yzy2dFHRe/DjoiMAgPPOG4bBgztxXaQzHve51FJwXSRSaw3bhKj2SM1L/MDdvXtbHD1aCLvdiVOnKuXKA1E1lPQXgzF//HFEPsu+XZb6LMnw8DB5oOTgwXz5etGipV1WCvLzy2CsMKO0VFoHEhNj5ZYh5eVm5ORIg+Wi172yEkVqShy6dc3Azp3ZclsWMTgUHx+NSm+Ll2JvC4CU5DhUeM/4LiwyNnnAQ3kmdHZOsTxQIAa2IiMj5HBNkQh4xEuDCv98fAqemfWVPLie5a1UIA3ESIM3yrLqj//zM4z0thDp1DENu3bnBG3R4nK5sXu3FDRo6x18bN8uFf98fEqdXpdOp8PLL03Hzp3ZeOQfH8sDZR06tME552Ri3NiBOHDwJPr26YAlv2yXS70rHTosrQ8XXNAb+/blobS0EtdcPQyxMQbVgOhvv+8DUHMFj/DwMHzw/j3weDz437yVCA8PC9qOIiwsDO3bp8qVCgYM6FRj64r66OANeJw8KQWllKGlzLbJ2LU7Rx4YA4BSjbL4SmIQNyU5DkMGSwOs/mfXy88R41s+YmDqwIGTOHqsENbqulVwOHdoN0RHR8qP2bdP8BPKevTIwpY/jsh/X3P1sBofG6h7FeLBg7pg+a++M/tHDO8edCBeVJfIb44WLbWcOZ+ZmYSffnwM0dGGGtdXnU6Hrl0ysGt3Do4eK5IDHgZFwENsH7GxUdDrI+SKPmXlVUhIiIHH48Hrb/6E5KRY3HbrpQACWzSJgId89n6c9kCmcO01I1BUVIFzz+2G/v06IT7e9xvyww9dDQDYvOUwADQ44CGqgqSmxsvrNyC1yfhowX248aY3EBamg8vlRnh4mFyFJjklTrNFUvt2qfjum0dhMETA4XDVuNz91RbuAKR9y3nndsPi4oN1Xn91Oh0+/OAe3PGX/yAlJQ59glQI6t5dalVx8JDv2CgGqYWM9ERcdeUwvDt3KQBg+fJd6PZXX8AjrY06TAJIQQ5RZcNoNMsBj7Q2gb/Di7ZSymOJ2MdkZCTilmkX48DBk5h280Xy7fHxUsCjsrIaDu++P8qgR7K3pYUgAkvKx5bDCVF6+dgDSO0wEhWhiuZQUwWPNm3iERMdCUu1HSdOnEKXLhmwWu1yxfV77r4cY8cOVN1HVOYxm61wu91Yu+6AfNvJ/DJkZ/uq48xfsArXXjNCXl+VAQ9AalUESC3IAF+7kGqLU25tVtfj1lvvLMao86WgWbJfmzsR+qmutuO33/dh7BjpNeV5q1D5h6XatZPeMxFAEZ/HagoPNqX09MB1+tVXbw24TqfTYfDgrujYMQ0HDp6EqbJa/jymFapVXn8mVPAoKTGhutqO8PAwXD5+kOq2qGhpPRIt5USw1H9d8VX7qbm1nLIdUW7uqdOabyKilqTOLVoa29atW1FcXIwhQ3w9Bl0uF3777Te88847WLp0Kex2O4xGo6qKR1FRETIzpS8ZmZmZ2Lx5s+pxi4qK5NuCMRgMMBgMAdfr9foW+8MinZm4ztWPMu0cEVHzsvN4fF9yw8LCuJy9lGcBhEeEy8uF6yKdDbieU0vBdZFIrSVvEy11vs50old8mzbxqLbYcCKvFHl5pXLlgagaBstEwEMMTkVHR6JLl8Cz7Hv2lNp3LP91Jx54YDJiYwzyoIAYnM3NOSVXAOjYoY08wP/z4q3y43TsKA2eZ7ZNxrFj0u8RYWFhOOccMUh2EoCvpH9W22TkOl2orrbLAyvx8VHIyEySAh6FRvTu1TitOYJRhlGOZxfLZ9KLgQOdToeoKL0UQhEBD+/Z1xdf1A+rVvSVBxWjoyMVlTm8P8T7BQQ2bDwEAOjUWQp4BGvRImS1TUavnoEtJOoiOjoSI0b0wHOzpuK/HyyH0+HC9FsugU6nwzNP/xkAsGPncSngkacR8DgknbXes0cW/nrnOJzIK5WrHfgHhQDUWuY7MlL62e3uv42vdd6f/Od1WLFyF2x2J66+svZgQl2JqigulxsmU7Vc7TIqKhJZbQNfU6lGixolsX2mpMQhxjt4aLHY5DYdJSUVsNudCAvTyUEqAOjSJV2+vHHjIXkbqW0QLikpFq+/ehuWLtuBK684V952tUy5dgTWrduPk/mluGLyeZhxz4QaH7s+Ro3qhZg5S2CptmPgwM6aFUQEEXwqKChv8rZLInwRrEUL4Bswr023blLAY//+PIwbOxAej0dVZeett6XKqLFx0vuelpYAs7kEJcUmdO6UjpISE77+egMA4KqrhiElOQ5GvxZNolWG8uz9mkRGRuDv90+qcZrMDGk9LiwyNmh5ixYtKSlxuOnGC+TXeeEFvdGhfRuEhengdntQXl6FNm0S5DBgbEzw7V/sTxsrqNUYevdqj99WPwen0xX0hCnRSmbPnlyUl1chMTFGruYhgn9vvnEHEhKicdWV5+GHH7fI+3TxXif6hSrEfTPSE5FfUI6CwnI54JimqHYgpHgHcU2marlShdm7vsTGRsntNZR8lQ2qoQuT3n9DlB7pfo9/TrdM7NufJ+/HAF9VI4NBj549fMcel9sjVx7xX4/9eTwe/Lx4G3r3boduXYOPSdRGBBO1gj7is8Wu3Tk4dLgAXbpk4Jg3FJiUFIObb7ow4D4i4GEx21BaWomiIqN826aNh+TWXYAUotm+4zjOH9kTgC/4Ivz0s/TZR3xGEgGP1b+dQKfOUphVfFbQ8vxzN+CJJz8HACxdugNLl+4AIL0nSjqdDhMnDME3327E77/vlwMeYl47+AU8RIjxqPczWJniGBUKSX7r/3V/GqkZZBLEPrCystrXoiXIckyQWwW2/goevhB2SsD6Hh0trbci2K0MliqJKmFanyWVduzMli+LoCIR0ZkgeH+DJnbZZZdh9+7d2LFjh/zv3HPPxU033SRf1uv1WLFihXyfgwcPIjc3FyNHSmUqR44cid27d6O42Jc2Xb58ORISEtCnT59mf01E1MQU39Hd3oR6MJ5abj9bqZYLFxERERERtUDl5dJASkpynHymZt7JUtjqUMGjQ/s2qr9HDO+B8PDAnz4mTxqKhIRo2O1OHPb+2Ct+IBZBjsPeQa3MzCRER0di1Pm9VIOoQwZ3kQfI7/7beAwZ0hWffPR3AMDgwV0AADt2ZMNkssgDYIlJsXKp/OxsqQpIXFy0XHa6vLzm6gmNQflD+P79eXC7pS8GyoFWUeL840/WAJB+gBf8B08zM5IAACaT9LilZdoBgU7eaifKM6HFWZeTJw2Vr7vgwj4Bpczr66KL+uLTjx/Al1/8n3x2ryDWkaIiozw4LoiBzB7ds9C1awYuurCPvP6076BetwBfufDG0KtXO8y4ZwJmPnAFugZp/dEQBoNeDpqIQVVACsO0bUDAQwR4kpPjEKtowSLey127cgAA55zTVlW5ID4+Wh6AnPOfX7B7tzSdso1LMAMGdMLDD11VY7gDkLbVBfPvxcwHzsPf759Yr8oJtUlLS8R/37sbjzx8Nd547TbN/YqQkSENKlutDrlSRVOxe6tPBGvRUh/DzusOAFjz2154PB7YbA5V+1th6JBuAICM9CQAkCv9iKAEAGzdehROpwt7954A4DvrvsTbAkhuDVVLi5a6yMxMgl4f7m0jUf+qKaJFiz4iXB4sBoAbb7wQ4eFhclWlU95597UgCk2FgNMRERFeYzXc9u1T0atnO7hcbiz4aDVOniyD1epAeHgYvvvmESz88iE52NjDG4YoN0r7BHOVtFzigrynos3VyZNlNVbwSEiIlrcvcUwULUZig+wvkrwD4tt3HJdDDMlJsfJxB5DCQv36dQQA+fkBX5AhKkraV156ST8AwITLB8shgbLSmo/Nv6/djxdmf4Npt7xV43S1cbq8AY8g+5du3aRjgwiIrlu3HwDQr5929XURQjJbbAGBDRGY6N27PS66UBpHOamobOVw+JaL0vneyhtJSb4QwoKPAj8r+Lv0kv5Y9/u/5Kpeggj7KYnPUEXFRt/8ikCA3zFdVKM5dqwIx44VoUyEAeoYbGtsYWFhWLrkSTncdev0S2qcXlQlMhrNcgWPxCAtr5RBptYux1tJQ+xPlETws7pa2u6DhXbEMb7aol3BQ/wGvl1RhSg391SztVwiImpqIavgER8fj379+qmui42NRWpqqnz9HXfcgZkzZyIlJQUJCQm47777MHLkSIwYMQIAMG7cOPTp0wfTpk3DSy+9hMLCQjzxxBOYMWOGZoUOIjqDMMDRIKp8B5chEREREbVAYkAnOTlOrtaRl1cqD0bXdEZ0z55ZeOShq1BZZYXHA0yZMkJzuvDwMAwY0Blr1+7HwYP5GDSwizxoN2RwF/lMZUAaeAekQacX/nUTioqMuPKK81RnHI46v5dcbhyQwgwd2qfiRF4pDh7Ml39MTkqKhc3mQF5eKbJzRAWPaFi95c39B2BO1x9bjyI7uxhTrh0hBzPMygoe3rN/DQa9arn6f1cYNKhL0OfIyEjCwUP5qDBJVRxEcGXggE7Y6R3sB4BOnaSBNqPRLJ9lX+2dl1tuuRgdOrTBqtV7cOMNF5zOS65VSkqcXOY+v6AMnTv5KkuIQYTMzKSA+6W1ScAbr9+GBx6cJ1+X2ogBj6aUEB+NU6WVKCmWBjUjIsIRERGOXhqBiQMHT9b4WKWKwbPIyAi57YLZbENsbBQOH5HO5O7dK/CxlYPn/5u3UpouSKuIlqhr14w6hW8MBj2SkmJgNFpQUmKSB+WUbDYHPvn0N2RmJmHSxKEaj1I3dru07xAhntMxfHh3REXpUVhoxMGD+XKrAZ1Ohycen4IX/v0t2qTG4+qrpAoz6d4gixhQtyv2X4sXb0NmRhLKyqqQlBSDy8cPwgcfrpAreFRVeQMetVTwqIvIyAj07tUeu3bnYMfO7IAWDkoVFRYcO1aIPn06yPs8EUzRR0agf7+OSEiIRvfubeV1uF1WCkpLK7Fu/QH06tVO3ofWJZzUGo31trP6auF6fLVwPQBpUN2/GoaoVCCOb1VmqcpGXJDKRu3bp2DLH1LAQwQBtdpZhIWFITkpFqdKK1FWVoW0tESYzaKCh/Yyz/AGDb9auF4OmPTs2U4+7gDAZZf2lyt6KYMDNlHBwxuSenbWVPzfTAuSk+Ow0VuBSqy3wRw+XCBfDlZFprrajm3bjmHQ4C5BgyqiRUt4kFY9aWmJ3vmRlt9Ob2WCC0f31pxehJDMZitsdofmNEMGd5F/K8xXtLIQAcirrhqG80f0xM+Lt6J9+1Q5UJGgse1maVS6UtLpdHjhXzdh27ZjWL1mL4qKKzDmsgEB02V628Ao2y7t2Su1cOvRXV3hq02bBGRmJqGw0Iibb3nTd30Ij8/x8dFYMO8+AKi17Z7YBx7PLobb7VGFyvyJykAVtVSUaQ1yc9WtDpXatImHTqeTWoCVVSI/v9x7vXp/IdrAabVo+e/7y/HtdxsxftwgrFi5S3Xb3r0nMGpUr4D7EBG1NiGr4FEXr7/+OiZPnowpU6bgwgsvRGZmJr799lv59vDwcPz0008IDw/HyJEjcfPNN+OWW27Bs88+G8K5JqLmUFs2Qf2DJIMMWrhUiIiIiKgl8gU8YtHee8bvrl05MJtrH1TT6XS4+urhmHbzRbhl2kVBB1EAoPs5UlnwY8eLpFYE3jMAs7KS5VAHAFx/3fny5VHn98K114zQLJ/uT5xpWGW2ylUrkhJj5EEHcQZxclKsXJVElIpvDB6PB/f//UO89voi7D/gG7TXKmXtPyA62u+H7yGDgwc8RBjCZLLjeHYJKiurER0dibFjB8rThIeHoXevdggL08HlcuNUaSXcbrdcfjsmOhLTbr4I//tgRo2lzBuDTqeTq3HknfCdrezxeOSzYoMNOg87r7tc4QUAUtu0joCHeD2igke094zs7t3b4sILpDO3zz+/J8LCdDh2rCjoYKbH48Eh70Bml87p0Ol08oCrGIAVbX3atg08k7tL5/SA6849t1uDX1dLltZGGogVy8Pj8WDbtmMo8b4H3363CR/+bwX+9cI38tn4DeGwiwoete+TahMVFYmRI6T2DOs3HJD3udHRkZgwYQi+Wfgwvvh8phxsyvAO+Iv1SlkRZ9v2Yyj0Bj86d05HW++ArVgeooJHXPzpV/AAgP79pcoM+/fnBZ3m6NFCTLnuZcy47wNcM+UlbNhwEIC6gkdCQgx+/P4xvPbKrfIg/eXjBwEAtm47CkBZwePMDHgow4qCMggniPZPRm/VrSrxngap4NHVG67Yuu2oHIgI1s4kw3tcOe7dNsS6GKwtlgh4AJDbjvXq1Q7x8dHo1bMd4uKi8Jc7xsjVdZTBARGwFJUqwsJ8A+yi7VtJLQEP5bpQrlEdwGZzYMZ97+PhRz/CX/82V27F4s9VQ4sWrfkRnyP8q1oIYnmZzb4KHhkZSRgx3FdFY9h53eUAbX6+rwKOQ1QH0kfgvPPOwTNP/xl/uWOMfLs4fiuJKi01MRj0GDmyJx77x7V447Xb5DY4Spne96mkxISDB0/i0OF8OZA6cGDngOmV77+QkhqaFi1Cx45tNKtT+BMBwGNHpRYzaWkJQStEiYCDsgJNa5VbQwWPmBiDfP3WbcdwyNt2sV/fjgHTAYGfa0tKKjB/wSqYTNVY+PUGWK0O9OiRJYcpd+/JARHRmaDe8e6uXbtiy5YtSE1VH7CNRiOGDBmCY8eONXhmVq9erfo7KioKc+bMwZw5c4Lep1OnTli8eHGDn5OIWqfaqk+wOEUQXDBERERE1MKJFi3JyXHyGf+7dufIg85xcY0zqCbOGjxx4hSqq+3yd4yYGAOe/Oef8MvSHRg0sDMGDQwebqhJjBhYqbL6WrRoDGR06pQmn03cmBU8cr3lzAHIZb8B3w/h5513DqKjIpGYGIM7br9Mdd/ZL9yMJUu2YfaL32HKlBE1nmXvC3jY5PYc/fp2xOXjB+OLL9chL68Ut992KVJS4pGVlYK8vFLk5pYgNsYgL3PRb725dOiQikOH8nHseBFGe898rq62y4NuWhUXBGXLjSSN97MlEu/fAW/QJ17x+l74140oKTGhTZsEXPfnV1BYaERxcUXAmbKANKhUWlqJ8PAw9OghldWPjY2CyVSNKu8AbLF3XRYDqUr9+nXE009dj9LSSuTklKBHj6yAcv1nirT0BBw+UoBi70DcTz9vxex/f4vExBh8+skDWL1mjzxtYZERnTXCL3UhQhWN0aIFkNrhrFq9B4cOFeD8kdJAvwjx+FdwEOuV2Tugrgx4OBwu5ORIZ2intUlA5y7S69u5Kxsvv/KDqkVVY+juPav/kLfllpZt24/J+z+j0Ywnn/4CP37/Dzi8273eWwXFvxqKqJog9s9nesCjQ4fAQXrRGkRJVPAo91ZlEpVNggU8LrqoL15/8yfs3p0rXyfavPgb0L8T9u49gR07snH5+MHyumUwaA9laA2IiwpF77z9F1htDqQkx8HmDXOcOHEKDocTen2EfJ1WdTCxH6yosMBudwatlKMcYM4/WYYUvwoMb729WN7/HjtWhBUrd2P8uEEBj+P0tkSKiNAe4BcBD/F5SFRU0tpfA1AE8GxytR9DZARmPfNnfPvdJnTulIbzzjtHXr7K4IBo0aJsTad0nl84r3PnNAwd0lVz2vpKTo5DWloCSkpMuO0O37jQeeeeI693Sv36dpCrmQjBlklLI/ajR45K1a/S0wKPnUKadx9sNttgNluDBp6akt3uxPYdx9Gje9taq5PUJM/bDqiDRvs7AOjbtwNyckrw8is/wOVyIysrJaC6Woz3s6PFr4KH0ej7zBsXF4WUlDg8N2sqduzMxs+Lt6r2QURErVm9Ax7Z2dlwuQJTpjabDSdP1lzGkYjodChLHNavggcJqromXEZERERE1AKVKSp49OndHrdOvwTzF6ySS4c31oCg+FE5N/eUPDgTFqaDwaBH587p+Ntfx53W48eJgRWLDUZvOe3kpNiAwYlOndKwa7cUjBADTY3h4EHfQKdNcaatOBP6nG6ZuO/eiZr3DQ8Pw+TJ52LkyJ6aoRQl8YN7hcmGVaukQetBgzojJsaAeR/OgNFokc8u7tQxDXl5pcjJKZHPCNfpdPKZ082lb58OWLFiN1at2oNpN18EnU4nV+/Q68NrnJ9hw87BihW7ERERjrCwFl0YVyYGkBb99AcAYJDiDOiwsDD57Of4+GgUFhrlZeHvpHdAJqttMqKipNLoYlmJNgdF3goN/mEAQWtQ80wkBulExY6ly3YAkAaKd+w4Lp+9DPhaXDSEaLsQGWQQtr66nyMFdw4dzofZUnNbDBFwEOXx7X4tIA4fkao0pKUlovs5bRETY4DFYsN332+Sp2mXpV15oL5E4Ojo0cKgLTJEeHDcuEFYtmwHLBYbCguNcHgHt/VBqiaIUIHYP4vjRbDl0trpdDrc+Zcx+PXXXXIFjT59OgRMF+89FlssNlgsNrjd0m9MwQIebdok4NprhuPrbzYCAHr2yAra0qOnN5xxwhtUrC3IdO7QwEpAotJMTIxBXlf/n73zDo+iaqP4mdmWnhBCEnrvXQREEQtNQRR7V7ArWMDyiQWlKHYFBFEUrCgCitIJIL33XgKBkE562b473x+zd3Zme2DT39/z8LC7c3f27uydknnPPadhw3qIjAhBSakRC37fiscfuxFGx/lR5+G4HxUVCq1WDbPZitzcYoWDk5wimYgyPSMfXbo4nQasVhv+XbYHgLh/nUnOxOHDFzweC/05eMTVdzg45BShTG+SCtve4sLY9VJJiUEmktEgMjIUjz92o/N7Os7zxUXO78EcPDQaz+WjNm0a4vu5z2HP7h1o3aYrunVt4TNCrzxwHIdZXz+Nl1+Zh0zHtV+3rs3xvzdGemz/xOiBMJutWLR4BwDxWi5Yx5aKhl0TsuNLAw+xRYzwMB0iIkJQWmpETk4RWrasfIHHhLd/w44dp9Dvmnb4/LNRl70edp1Rz4NgBwAefKA/Vq8+4HTkae8uBguTRbTIj/vMladRw3r4fcE4qNUqcJzoIAcABw6m4MDBFPT0ET9IEARREwhY4PHvv/9Kj9esWYPoaOcfajabDevXr0eLFi2C2jmCIAjv+HHwqKRe1GhoIxEEQRAEQRDVECmiJUacGfjA/dfhl183STdmI4I0Y7GRw5I8P79UutEcFqbzWBi8HNjMylK5g0dMuCKChOM4NGxYz62AGAzkM4pLHDfI5a8HUpz0VjSSk5ggbsfMzDJkZorfk8U8hIeHKGaYMqFHZmahVBQODdUGbZsHSs+e4izjU6czsGXrCQy4vhOKS8TCVlRUmM/+PPLwDYiOCsPDDw2olL4GA1cHlkGDunlsFxUltpM7vsjJzxf3zVjZuGAFPZPZCkEQpBngCV4EHnUFKUrBsT3kzi9lZSYptglwCg8uBylGIUgOHsy9ISenyBmLEeb5mBsaKhbX2DHFbFFOCGQxHA0aREGtVqFdu4Y4ePC8tPzee/p5FQOUF+ayYTRaYDZbPRaa2bmlWdP6aNY0DqkXc1FUrHc6eHgRybBtywrktd3BAwBGj7oZo0fdjKNHU3EuJRvX9mvv1oYV/u12QRrPKhXvs8j/2KM34t9le2G3C5gy5UGvIjk2ttg2N/txk2jbtiG+/+55PPXMNwDcY8YYOp0GL744HB9OW4IlS3bgsUdvcDp4eNiHOI5DXP1IZGQWIDe3xLvAQybSksecAOL+zq5f7rmnH6Z99JckXHHFavXt4NGoUT3wPIeSUiNOnxIn2oaH67yORRajU1BYCrOJiWTcy0HRDlcnuVDF3zYHHIKV0yHo26ctNJrgCjWbNK6Phb+PR3JyFtRqHm0c4jNPhIZqMe6VEbjllp746OO/8ZhDuFkT6Nu3LXiekwRSfXq39dk+Pj4apaVGZOcUoWVLd2ediuTU6Qwp2mrnrjMwmSzlEvUYjWapvXQt6uUc0LpVIoYP74Vly0RhKnNpksPc3wRBgNFokY4b0j4dolEIlORxMLO/WY253z4fcN8JgiCqIwELPEaOHAlAvLB5/PHHFcs0Gg1atGiBzz//PKidIwiCkCO/NGcXvl4hdwqPyF07yMGDIAiCIAiCqG7YbHapUMQKE1FRYWjbtqFkb+7tZnB5kRdE8vNL3F67UpiwoazMhCKHXXRMTDjatElEZGQoSkoMmPfDGEVBzOgh0/5yYfbqAFBa6iwuB7s46RrF0b17C3To0NhjW1bMLSszQm8Q+8FuyFcm7ds1QsuW8UhJyUHaRdGVgol8onzE0bD3tn/1jgrvYzDp3KkJVq85AAD45KNHcU1fz7EoTAgiFyOw5/v3n5PcOeTxA5LAw2RBQWEZzGYrOI6TBA51FSY4yHFsMyaWACDNSGdciYOH09mg3CbNHmEFM3nRPsybg4eLPb6rg0dWViEA5wxtufvS7wvGBXWGfVioViqSFpcY0MCjwMMZ/xUVHQZcBIqKymAx+3YqcHfwEL9vbRZ4MLp0aaZwo5Ajj0th4q/IyBCfhfW4uCjMmf0s7IKAJo3do2AYbDxLAg8f4gRGp05N8enHj2HL1hMY88ItXtsNHtQNH05bgty8EhQXG3D2XDYAeHVuatAgChmZBZIbjyeKZK5H6elKgUeJ4/wbGqpFS0cUU6pXgYfDwUPlWVQREqJF06ZxuHDhEvbtPwcAHiNLGOxYnZ9fKo1fT9uQifvKykywWm1Qq1WwSuKx4BxbLge1WuX1esITHTs0wU/zX6zAHgWfBnFReOThAfj5l03o3KkpBg30LMBksGtjudtKZSEXLwmCgJMn09Fd5gjmi8zMAtx976cYOLAr3p5wtyR6CvdxHL3vnmuxevUBqNUq3HhjZ7flISEacBwHQRCg15vcBR4u5wGe59G7dxvs2ZOMsjKj2/oIgiBqGgGfoe128aDbsmVL7NmzB3FxnvOxCIIgKgN/4gT5YtIxOKFtQRAEQRAEQVRniov1kphbXrRo2qS+JPCICJItvkajgkrFw2azI89RnPJ1o7m8MIeMsjIjChwF3JjoMISEaPHD3BcAAE2aiAWuEFmRPFhYZLPpS2UOHqzQHKziZExMOHQ6jdT39u3cZ1kymICgtNQoxcZUdjwLo0/vtkhJyZF+GzYD29XtojYwbFgvJK07jAbxUbjOy8x2AIiKdNj0uwg8PvhwCTZvOS49j411CjxY8c9ksiInu0ha7q1YXleId9js5ziKwnq9cx/McBF4MGcJOYIgICu7EA0TPUdYMFgBXKMNTkSLfH/MzRXdR7wdF90iWkxWn+1Y/AQgxjUFE47jEBERguJiA0pLDAqnJIY8/ktyLCgy+HXwkIuY7Ha7JICqrREtgSLfXuw4Gh6Aw1YgBXtXUQ0TLPoTG1x3XQefxzhx3RrUrx+JvLwSHD5yAfsdQglvTgRxDrFabl6J13XKi+0ZmS4OHo7zb0REiBRpdulSsccoIauNOXj4ds24cOESjhxJBQCEhngXSdZzCDwKCsp8isEiI0OlQnlxsR6xsZGSg4evvhDB4blnh2L0qJuh1ar9Oo8wR6UymUtbZVFWqhRFXEzLC1jg8dffYjTX+vVH8PKLwwGIUTq+RL6tWyfil59eRkSEDrGx7o5yHMchPFyH0lIjSkoMkuscu770tE8/eH9/7NmTHDTXK4IgiKqk3GGhKSkpkrjDaCSlG0EQVYM/nQK5U3hB7uBRhd0giIomad0hbNt2sqq7QRAEQRBEOWEzrKOiQhVFhaZNnZNMguXgwXGcVMzMywu+gwdzqygu1ksFwWiHaKVJk/qSuANw3oQ2VpDAQ+7IINliB+m7chyncPHwZmEPyF1NjDAYxaJwiI/iVEXCBETMPeH8hUsAoPhdaguhoVrM+eZZTJn0oM/ikTOiRSnwkIs7AKXAg41ds9mK7OxCABTPAgDxDgcPFtEid/BwjXBw3d4A8OVXy3D3PZ9i+XLRnj5p3SGMGz9fOlYxzD7iJS4HtVolHXul46IXIYNbRIvZs8AjNExsd+891wIA+l3j2UHmSmEOIaWlnu9Xs309JiYc0dFM4KGXxAPeI1rEgnhxsQEZGQUwmSzQaFRITIgJZvdrHDzPS2OFOXgEK0KNFV9NzMEjyE41DR0RbZs2HZNeS0/P89g2Lk4Zt+QJebSJ6/5cIhN4sOOlIAiSW4ccycHDS0QLACmq5MjRCwDEGApvsGN1QYHMwUPnvg1VKl66ZmHOPczZpiodPOoSOp0moFgZpxNaFQg8XEQl3vYZT/C887uVya5D/X3nZs3iPIo7GGyMs2MQ4BSGhXgQeLD9xegQJhIEQdRkyi3wsNvtmDJlCho3boyIiAicOyeqXN9991388MMPQe8gQRAEQyFIKJeDB0kZPEHbhaitXMotxnvvL8Tr//u5qrtCEARBEEQ5YYW5KMfsakabNonS40BmCAcKm/nKbgxXRETL8RNpAEQhhLf4D3bDObgOHvKIFmfBM9gRLQAk23kAaNHC+8z8iAjxM0tKjVIcTVU5eLgKPM6eywIAtGpVuZn21QlvES2usFmygHKm/eEjYsExPoEEHmymfmmpEbm5xQrBlWtECxM7yVm8ZCcA4MOP/kJxsR7vvb8Qu3afwf/e/EVqY7fbpXgUbyKMyyHUsU/m+3E2YsINycHD4tvBo2/ftvhx/lhMnfJQ0Poqhx1fXR1oTp1Kl2Z4i+3CpHNMcbFe+m28R7Q4j1GPPj4DANCiRTw5GwDQapjAQxQDRUQG5/zMjiss9scsiXCCIzZg4pxzjngWABh4c1ePbevFiAXkwiLvUUpFMgcP18I7i0iLjAhViCXMFneBh+TI4+N7tmsrCjwCOYey4rfZbJWcyrwJNmIcoicmtDX7ET4RVUOYzB3OExcv5mLK1EU4fyEnKJ9nt9vx7XdrsX79YTfx3E8/b8S+/Wf9rsNqteGXXzdJzyUnuSBcz9d3iD/y8p3iR28RLYDzuj+YgmqCIIiqotwCj6lTp+LHH3/EJ598Aq3WOcuiS5cu+P7774PaOYIgCG+QNuHykG822oZEbUVuj0pCJoIgCIKoWegN4k1fV8vm/td1RJcuzRAZGYoWzYNn7c+EFezGcFhY8NwkundrDp7npFm/kZEhXguCUgSAMXg3nOWzg+Wzi8sqQODx+OM3QqtVoV+/dri6V2uv7djs7rJqKPA4fSoDgFJMVNeQF7190blTU+kxc44wm61YuWo/AOC6a31HJNQFQkK0khDm9JlMxTLmjMEcUwx+ZhJ/NX2F9JgJxlzfF8x4KZ2jAMaOi95EdfKIFrvd7tXBg7XjOA7t2jbyacl/JbCZ7fIi5I4dpzD6yVl4d+Lv0usRESEytxqnwMPf8RlwFg6DeR6qyTA3CBYzFCwHD3ZcMZmUDh66ILlJxMSIx7rUi7kAgObNG6Bnz1Ye24b4EWBaLFZJOAkAepfCe2mJ+Dw8IkQp8PCwPuYqEOrjWqRZszjF8xCd97Y6nQYNHBEzp05nSK95oonDKS3lvCgMsDr2C20dj9uqbrBjvTeBx7vv/YFVqw9g7IvBqdNt3HgMP/28Ee++94ckzOjSpZm0/I8/tvldx/IV+xTPWdRLMGKuYuu7O3gw8Yan60v2mtGDsJIgCKKmUW6Bx88//4zvvvsODz/8MFQq54Vv9+7dcfIkWaETBFFxyAu1dr9FWyrqeoKK3URdg8Y8QRAEQdQsJHcJlwKgWq3CrJlPYdk/EySXgWDAZvLl5QY/oqVRo1i0bOl0g2CCAk9IN5yDOKPQbHYKPNj3AyrGwaN1qwS8NPYqfDj1QfC891tNLF4n5XwOTp1KB+C7OFWRSLOVC8uQmVmAjMwCqFQ8Ondu5uedtZdIx+x7uYOHp6Jmy5ZOxxY2076szCjNYieBh0hjR1zRGReBh7S8sRgH5M8q/viJix5fZ8U2lYoPaowCc/Bgxw1vRTj5cdpgtPgVeFQ0zD2iVDZ+Z89ZAwDYtfsMbDY7APE4JIlTjGbJJUKr9R3RIie2vvfIgLoEc5qQ3F6CFKHGtjkbUywuRBOkcc5+f3Y+7H21d2GiJMA0eR7fcvcOQBRRyu9DlDoK8ZERIeA4TnLE8LS/SI48od73GddrIH8iybYOx4+jR1MBeBfJtHVEv7DjFXPwUJODR7XCGXXnFBX9vXQXps9cAUEQpN9PLni4EpgwCIAUw3Ztv/Z47NEbAHh2oHLl/Hmlm0iBQ1gbDEEYc/DIzXVGKLF91ZOYSYpoCaKgmiAIoqoot8AjPT0dbdq0cXvdbrfDYqEDI0EQFUg57CeUES0V052aiEAWHkQdQCEGs9M4JwiCIIjqxoYNR/DEk7Pw7Xdr3cSYbEa6p4KgRqMOehZ8SKjrTPXgFiIjZOuLifYu8HDOVg6mg4ezeJSb5xR4sKJAsL+rSsX7FHcAypv5v/+xFUDVOXiwGfylpQacdhQw2rZpGFQnhJqG08HDWSDPk40dwP131jrGbq5DDMBxXFBFWDWZJk1FAcex454FGk0aiwKQQApknmDF6fBwHTiOu6x1eMJ5XPQdXaXTacDz4uca9CZZvISyIOwq2KsoIl0iWn786T+cPZulaMPzHMJCtZKLiMFglrkJee6np4iKej4Ee3UJdk7OD7aDh6Mwa7XaYLPZZSKc4Ao8GL4EmOwzXc/PKSnZmDV7NTKzChXt7HZBUTyWO8fI21lcIloEQZCugXy53Lju797GLaNNa1G4wdyq2DHbFRavlp6Rp+gfOXhULyKkiBbx+J+XV4JPP/sHCxduw+nTGZJQM1ikpeVJj5OTRfFIeLgOHTs0AaCMA/SEIAj4c9F2xWu5Dme7YFyHNmxYDwCwafNx2O2iiI+5czABqhwm7DabrZLoDxDPp6tW7Q/qdThBEERFU26BR6dOnbBlyxa31xcvXoyePXsGpVMEQRCekN/89adNoFn7/hHI5YQgCIIgCIKoApLPZuHkqXT89PNGt1l9rGBZURb+rrAbvcxePtgzzeX54tEOS3hPsMJkQUFp0P6WkTt4FBSUwmq1wWq1STevK2tWvRxPs979FacqCrbNS0uNUnEyzmFlX1eRYitkDghFLnEt9917reI5K6BccsyejYgIgUpV7tuNtRI2I37r1hMel0sOHn5mEnMcp4gPYccIp1gruAU910gKb6InjuMUQgkm8IiNVe7nlXU8j4xw7tMA8N3cJLc24WE6Zb/1Zr9FdU/imXr1IoLS55oOK/4fPy5GB0UE2cEDEAux5iCLDVzHtC+BBzvGyR03bDY7Hn50On5bsBk/zFsPAEiIj5YET/L4DOaI5CrwYJF0DJPJIu3bvvYZnucVhXF/IkkmJGN4E8mw44jRIO73rHCv8eJsQ1QN7LqyTC+OsW3bnY76BYVlklATCM698VLZWL7oEHtEhIdIbjoWs83j+xgnHW5tcrJyCgEAUdHer4sDZfiwXgBEIQoTmjodPNz3I/n+IhdzzJi5ElM+WIz7Hvgcp89klGvbCYIAu8VOtQiCICqdcv/FNXHiRIwdOxYff/wx7HY7/vrrLzz99NP44IMPMHHixIroI0EQhBv+LproosoL5RDJEERNRX4Djhw8CIIgCKL6cfuI3tKM7iMOy3CGLwePiiAkVLzRW1ior5DPlReRfBWQGjeOBcdxKCszBc1W22p13nS32wUUFJYpCsmVVXSVEx6mw403dla8VlUOHkzgYbcLyMgoAOCMbamrsG1SUmKQ/qZm8QP16oXjzf/dieefG6p4D5tpf+lSEQCnSIQAOrRv7HN5Y+bgoTf5bAcAWpmLBNuPWYEv2MctV9GVLwFJaKgz6oIVwOvHRsiWa/06+wQLVkBnAg9PsAgRdvw7cDAF/208qngtEHwdz+sSJY5tzX77ChN4ONZfUQ4eERHej1vOiBbn+fPixVzp8e7dZwAAMfXCpXN+mWyfZkIs9hlMpDJq9Nc4cOCc1M4gi2ryd16Ub2d/bRs1Ugo8vLUP0Smj4piDh0ZNDh7VCSbuKSsVx1VGRr60rCC/VOGiow/g3OIPg4cIsfiEaOmcZPbj4FFUqHd7jUW9RAXB7StCFrnF9lH2vycHD/kxxChzz/p32R4AwKVLxRg1+mt89PHfOH8hx+39nhBsAqwGK+xmu//GBEEQQaTcV9h33HEHli1bhnXr1iE8PBwTJ07EiRMnsGzZMgwePLgi+kgQBAFA6Tjh18HDy/vqOrQliLqA0u2HRj1BEARBVDcSE2Nw9939AACnXGb2VZWDByNYxSlGeKARLToNGibGAABSUy8F5bPls40BIC+3RLK5B4JXKCsvffu0UzyvKoGHTqeRtkF6ujgrNdrHb1QXYDN/zWarVCBhcS0tWybg9hG9FU4SgHMcpaSIhZDoqLotkpHTtFmc4nlCfLTiuSTwMFr8/t3Cy1xRmDuA5OARZIGH63ExzIeNPhPr6Q1mqT9xcU4nnMp0Cop0HL8zMwuwc9dpj22YWMX1O3p7zRsk8BDJdTj3MKKCtP+rVLx0rDGZLLCYg+smEeYiWvIVFeFJ4OFJiBkdFeZ0VyhzFtZLSj07eADAa2/8LD1mhfSQEI1fUVSkTJDC+ucNV4FHYmI9j+1CZG48AIK+zYngwM6xhUVi5E5WdpG0LL+gFDa7U2Qgd+O6XDyJRHr2aAmNhjl4+BZ4yB1AGFmOWKNgHS+YkMNd4OG+b8j3rV9+3Sw9dnVqWrZ8Lx56+Css+N09ycANuwBY7bAZbRBokhlBEJXIZUmor7/+eiQlJSEnJwd6vR5bt27FkCFDgt03giAIBfL7HX6LtorGFdOfmg4Vvom6AI1zgiAIgqieNG0iRhNkZhYqXtdLVvmVUxR0nZnerGmcl5ZXvn5/BcHGjm2SkVkQlM+WO3gAYiHOJJsF7Sl2oDKIdBHRVFVEC+AsuO3ekwwAqFfHi7ZhoVopXoUJO4odES3ehBsal8iEYBVsagMx0WHQyJw3XMUOLKJFEAQ3QZYcjnPOpgec7gDOiJYgO3iEujp4+BB4OL6TwWBGjsPFpW3bhtLyytynmAPN3n1nMf7VHz22YcX10DAP1v3lEBaycxihJD6IMVfstzKbrbJzV3AEgeEuv3+ED5caViROScmRnDtYrJucqOgw6Zzy6adLYbPZsWrVfmzZIkY0sXOfVlZ0NhjM2Ls3GRPf+wObNh8HEJjAVeng4bt9gwZRCmFew4YxHttJDh4OVwOLNbixOERwiKknHlOZu1Z2lvOaceu2kwpBRkkQBB6uDh5Dh/YAz/NSRIuvcxcAlHrog+TgESTHL6cIy+r4XxR4+BMQL/xzGwAgP7/E673DX3/b5Pfz7Va7WGUVBBJ4EARRqVAoJkEQNYdyzMovlxikDiGQ8IWoA1BEC0EQBEFUfxIbijNIMx03pk0mC8aNn4/Fi3cAqLxZ34MHd1M8b968QVDXHyYrIvmL/2CFUHbT/kqRF4QBIDevRLoRr6si9w7AWYRlVJWDB+DsCyuIRMfUbXECx3GoXz8SgHNmPhuP3goxzP2EkZAQ7bFdXYTneTRo4NweAwZ0UiyPreeMMvFkg88QBGUR7ZdfNuH8hRypeOcrQuVycD1W+Toes2K0Xm+SYnq6dGkmLXd1fKlIIgKw++/erQUAz0X0UB/Hom9mPYP+13VA/fqRGPvCreTg4YW4IAo82HH5h/nrpYKwPKroSiiPg4fccWPM2LkAgILCMrd20VFhaOxwyzh1OgPX3/AOpnyw2PkZDlGGxuU7vPTKPKxbfxgzv14JIDAnmYhIZ/99jVtAdEOJl7kHNfTi4MH2CRYBJTl4kMCjWsHc4AwGM0wmi8LB49Ch80hPd0a2lJZ4j6sKFINB6eDBxie7jvQX0VJa5u4AwgSkwRKEsutIJuxgY9ifuw0g3ic/ezYbANCoofu+UVioh8XPdxTsAsBz4smabkESBFGJlFvgUa9ePcTGxrr9q1+/Pho3bowbbrgB8+fPr4i+EgRBSPg38Ag8zqUuQduCqAtQRAtBEARBVH8SHXEkWVmFyMjIx9iXvscuR449oBRGVCQ9urdUPJdHCwQDeeE12k9BkBXQ2Y3vK4XddGc3vnNzi2F2zG7UBnDTu6KQF6aAyo1wcMW1+ExFW6dAI8tRUGUz1qO9CJR69FDuQ72vblNxnauByB1rHnzgesUylYqXiseFHgrGDKvVpvi7ZuWq/Xjo4a9w/rwYixMfH1xRTWxspOK5rwgY5oRx7NhF5OSIoiB5AVkeF1DRuLoDeeLJJwcCAMI8uET5cvDo3r0FPvn4MSz7ZwIeeuh6r+3qOnJBU7BYs+ag9DhYDh6u1xjhPsYOi38ARKEk4Hl/jY4O8xl9xmJV/AksQwM4JzZu5HSQ8XdtAQAlxU7hqLfrHF2I08HDYDBLjmrBclkggkN4uE66dsnLK3GLSZITDAcPvV4pPiwtFUUjUkSLi5hYjslkwexvVntdHhWAKC8QdFqlwENy8PByrfv7gnHS4+Ur9uFMciYAoF37RvhuznNu7QsK3Pd35tRht9ghWO3geE6026J7kARBVCLlFnhMnDgRPM9j+PDhmDRpEiZNmoThw4eD53mMGTMG7dq1w/PPP4+5c+dWRH8JgqjDlMeVQ76UCrxOqPBN1DVomBMEQRBE9SQhPhocx8FksmD6zBU4duyitCwmJgw9e7b08e7g0rJlPACgW9fmQY8tkQsGmDOCN9hMxuLi4Dh4WB033VmxNTfX6eDhqwhV0bAiF6Mqow46tG+seN5OFi1RV0mIjwEAZGcXYclfO7E26RAA7+N3wPWdMHnSA+jYsQmuuqoV+vVrX1ldrREwN4v69SMRFRWKd96+BwCkKBwmdlvw+xav6yj24uqzbPlexTqCRVyci8DDV3yFo7C28M9tkuNCA5mLQ+tWiUHtmy8iAhB4MLGKp1iLQJwTCN/4EgOVl6FDe7i95jo2L5eE+BhpHwSA8DD/ES0Mg8GM9RuOAABatoiXXo+KCkP/6zp4XQ8TN/pzxAhE4NqqpfNzu3dv4bd9y5YJAMTrK/n3lsPGv90uIDX1EgBRNOXqukVULRzHSS5L99z3GWw2O9RqFa7ycN18pQIPq9XmFsHCxptGK4pMfEW07Nx5WvE8JiZMcc3XQjaOrwQposVsUfzvzcGjebMGaN1aPDf9/MtGbHbEI3Xp1AzNmzdAWJgOsbERkrNPXn6J4v2CIMBqsMJmssFmtMCUb4K5wASbwQqbrfJEjQRBEOX+i37r1q2YOnUqnntOqWb79ttvsXbtWixZsgTdunXDjBkz8PTTTwetowRBEIJMtuE3doGEDH6hrULUBSiihSAIgiCqJxqNGnFxkbh0qRg7dog3gHv0aIEZXz0JnufA85WXKDt50gP466+dePKJgUFf94DrO+HhhwYgJETjVzwQbIEHc/CoVy8cKedFm22z46Z3VQo8GjWqh5AQjWShHexYnPLw2qu3o7CwDNu2nwRQMbPPaxoJCTEAgKysAixyRCYBQKIXW3+Viseggd0waGA3j8vrOi+9OAwNGkSjbRuxmHTL0B7geU4Sfjz37BC89fYCbPjvKF4df7tUkIqICJFmSpeU+rbZT3T8ZsEiNjZC8dzX8cLVySA2NgKhoVrMnvU0lv6zB2PH3BLUvvmicePAxWKhoe6FP0+xLYRvundrjkOHLwAA3vzfnUFd93vv3oe9e88iz+Ga8dfiN4Lm+BQaqkWf3m2ww1GA9hXR4lokXrlqPy5cEAUQjz12I6bPWA6O43BVz1Zo2rQ+3p/8p9s6IiJCEO84v2h1vs+/gbggXXtte0RGhqJtm0Q0CMB57K0Jd2Pejxvw1JPer3PkcWnnzjkiKxyRM0T1QucSyxPfIAqNGsVi/4EUxevFAQg8Nm06hnMp2Rj1+E1uImd5dNivP7+MQ4fPY8RtVwMAtA6hktlshSAIHgXSLIYRAK6/viM++vARFBXpMefbtejXr73XuKDywvZRdl0ZSETLrJlP49bhU5Geni/F2gwc2BWRkaH4fcE46LRqvDJ+Pk6eTEd+XqnyzQIg2ATY7XbYDDZAECBYBViMFkDDQx1NsUYEQVQO5b5jsmbNGgwaNMjt9YEDB2LNmjUAgGHDhuHcuXNX3juCIAgv2AXfilil20cFd6YmQcIXos5B45wgCIIgqits1rnVKjpNvPLybVCrVZUq7gDEGeavvzbSLZYgGISGajHmhVvw5BMD/bqDsAiMoiA7eDBLe0EATNXAwYPneUz/6knpebBjccqDTqfB1CkPYuDArnj3nXurrB/ViebN4gAAe/edVbzeMMguEXUFjUaNxx69QXI24XketwztiSYOMcKA6zshNFQLvd6EnJwi6X2ebO9VKh5DhvQAoBRGNXX8ZsFCXjD2F1t0ySUegM3O7tG9Jd6feF+FHFe9odWqMXnSA25FPY7joFLxiuK2RqNG797KQjoJPMrPR9Mexfvv3Y//1k/C7SN6B339Go0zRivYTjVXXdVKeuzN1QJwLxIv/HMbAFGUOnRIDyz/9y388/ebaNYsDhzHuQk0Rt7RB3/8Pt7j+Bo/bgSmffiI4rUHH/QfARQbG4m/lryBzz8b5bctADRrFof3J94nHXc8oVarpOiP02fEyIqGjYJTgCeCyxOjlUKdhIQYj/tHqR9xIABMePs3zP1+HQ47hFpymCuTWq1Cq1YJuHNkX2mMyK8j2XW8K2fPZkuPbxnaU3QfiQnHm/+7EzcM6OS3b4HCYpTS0vIAOCNaXIUwcqKiQhXnhEaNYiWBa4O4KERFhUliRzcHD7sAc4ER5nyDKPSwCLCZbLCbbRBMVtit5OJBEETlUO67JrGxsVi2bJnb68uWLUNsrKjqLCsrQ2Rk5V3AEwRRN1DoEfwaeMiEDFTglaAtQdQ1yMGDIAiCIKovrjP3fBUe6gIsi7y42PuMS6vVho2bjqLMcdPdFxYrE3iIN74FCJKVtq9ZjZVB1y7NMHXyg5g96+mgx+KUF51OgymTHsStt/Ss0n5UFzp2agIASEnJUbzuzcGDuDJ4npdiLQxG52xpVjCTz6q32ex49+17sHnjFLz/3v2IjAjBgw/0R/NmwXXBadEiHkMGd0eb1okYPeomn21dY1GaNAmu2KS8DBrYDeuT3sPTTzknJ27b8gE2bpjsVhT96ovRWLHsLek5CTzKT3R0GIYM7l5h55S2FRibNXJkXzRv3sCv+5DORRDJishX92oNQNyHWdEbAIYNu0p6rFLxePihAYit53TFsZidxfA7R/bFDQM6Ye63z+PppwZh88YpAcfchIfpgr7dtQ5BDROxdOnULKjrJ4LDrbf0VIzbq69ujfr13cWycgcOTxhl5xxPcS7s/Z5ig+QCD7MHQSLgFADeObIvbryhs8++XAls/5s3fwNMJgtMpsCuda/q6RR5derYxG15tOSsp9w2gs0Ou9EGm8UGm9EGjgNgFwC7AJvZDpvZ8/YgCIIINuWesvHuu+/i+eefx3///Yc+ffoAAPbs2YOVK1dizpw5AICkpCTccMMNwe0pQRCEEHhECzl4eEYhfKHtQtRS5GPbTgOdIAiCIKot8tmGrVsnBs16vabCcu59zbic+N4f2LjpGB595AY8/9xQn+uzOMQcLCddsDsFHlXp4MG4+eauVd0FwgMtmsdDrVYpZuSOuO1qt0I+ETxCHMICo0GcdWyz2WGziTOAmzdrgFOnM6S2zGmgfbtGWL3q3QoRSKlUPN5/7/6A2k74310Y9cTXEAQBKhWPa69tH/T+lBee5/HIwwNQWFiGbl2bA/Ds0MBxHOrVi8AXn48Cz3PQaKr+uEgoGffyCJhMVtx377VBX3d4mA4Lfn3FbzvRWYyD3S6OcZvNDo7jMHSIZ1Hg4EHdEBcXiZjocNjsdjRurIw5adU6AXv2JiM8XCeNy86dm6Jz56ZX/J2uFL2LIKBPH/9xMUTVIB9XI267GidPpkvPw0K10BvM0Bt8i4Fzcop9LmfjITTU/fpc7q5jMVsBD9fwBQVitEn/6zpUqJhXHm1YWFgGk0nsd4gfgUeLFvHS46uvbu22PIo56xU51y8IAmxGGwS7ANgAG2eFKkQNTg3YTHbYzXbwNNGMIIhKotxXrk8//TQ6deqEr7/+Gn/99RcAoH379ti0aROuvVa82Hr11VcDWtc333yDb775BufPnwcAdO7cGRMnTsStt94KADAajXj11Vfxxx9/wGQyYejQoZg9ezYSEhKkdaSmpkqCk4iICDz++OOYNm0a1Gq6KCeI2oZStBH4xZJgJ2s0j1Dhm6il2EnhRRAEQRA1ArkjwKjHbqy6jlQTQh0zJPVe3DkEQcDGTccAAP/8u9uvwMPosKgODdE63g+ng0c1EHgQ1ROVikdUVCjy88XCzDV922HCm3dVca9qN2wfZcU4i8UqLWveXCnwkFPV7jeA6LCwbcsHsFptsFhs1cYFQ6NRY9wrIwJqe03fdhXcG+JySUyMwVdfjK6w9Qe6D61c/g6sVitMJitWrd6Ppk3j3IQbDJ7n0esq92Ix48nRA9GxQxN0qQaCDlcGD+qGLVtPoGePlri+f0e0aVNxDirElTFoUDf8+ttmjLyjD+LiohAb64z4atasAU6eSodB79nBo6hIj0uXilAoEy6UlrmLi9n1aJiH4zrP85LgiV1bulJQUAYAqCdzsKkICgrLpMcGozlgB4/o6DBce217ZGcXeXTycTp4yKITBUCw2gFBgDpSXD87jvBqHlarFfYyz9uDIAgi2JTrL3qLxYJnn30W7777Ln7//fcr/vAmTZrgo48+Qtu2bSEIAn766SfccccdOHDgADp37oxx48ZhxYoVWLRoEaKjozF27Fjcdddd2LZNtAmz2WwYPnw4EhMTsX37dmRmZuKxxx6DRqPBhx9+eMX9Iwii+uJP4CGPZaH6rhNF3bvqukEQFUs53H4IgiAIgqg65A4ecXHu1tJ1DeZg4k3gYTRapMft2zf2uz62nnCH84IgCDA7RB/VwcGDqL5ERjoFHnFxFMFc0YSEikUiZpdvkdndeysiVzfUapUipoIgahNRUaHSY9eon/ISERGCIYO7X2mXKoT337sfVquN3GxqAK1bJWLd2vckJ43YWOe5ulmzOFHg4SWi5cmnZyMjIx8PPtBfeq3Mg3ucM6LFs8OeTquG3mCG2eIuaBAEQXLwqFcvPMBvdXmwzwGAslKTdL2s0/kfx5998rjXZdEeHDwAQLAKEOyCJOwQBAH6C2IfNHE6WEotIAiCqAzc/el8oNFosGTJkqB9+IgRIzBs2DC0bdsW7dq1wwcffICIiAjs3LkTRUVF+OGHH/DFF1/g5ptvRq9evTB//nxs374dO3fuBACsXbsWx48fx6+//ooePXrg1ltvxZQpUzBr1iyYzb4zxgiCqHnIRRt+YxcUQgYq8EqQ2oWoA9gVUUQ05gmCIAiiukICDyXhjhvoFosNFosVWVmFGP3E11ixch8AoLRUlgHu788hQZBuzLP1CoIAUzWKaCGqLywuCABiYyt25i3htL83OCJa5A4edT26iiCIyoPjKKqoJqHTacDzYnlPfq5u0CAagOhm4crevcnIyMgHAKxec0B6vbTMXVxscAiFvTkzaRzXkudTctyWlZQYpaixmJiKFXg0b+6MWikq1kv3AUNCrsxRijl4nL+QA7vFBqveCsFmF8UdGnG7C4KAkpOFKD1ThNIzRbDkmmA323ytliAIImiU+4w9cuRILF26FOPGjQtqR2w2GxYtWoSysjL069cP+/btg8ViwaBBg6Q2HTp0QLNmzbBjxw5cc8012LFjB7p27aqIbBk6dCief/55HDt2DD17es7CM5lMMJmcJ63iYjFvzGKxwGIhhd3lkpdfgiVLduK24b3QqFHNmGFQVbBxRuOtfMhn4lvMvvdX+TK7zU7b2oHN5rzItFqtNBaJWonF7BzPZtm5ncY5UdXQWCQIJTVhn6jOfasNNJRFtJBLgLKQazCY8c2c1Th1OgMffLgEw4f1QkmJc3alN5cPhtFokf5+inA4eNgFAdu3nwIAaLW+bauJuo18tnqUo8BBVByhIeL+OGXqIrRo0UAqKul0GnTq5Ixx+GbWM1XSP4IgCKJ6o9WqMXxYL+TllaBbt+b4bQE8OnjM/HqV9JhFqABAqQcHD73j/SxC0BUm4Pjr713o37+jYllBoehoER6u8xuVcqW8+/Y9uOe+zwBAch8DAnPw8EWUw8EjNTUXx49cROvG8VBHaGC3Ou+tlyYXw5Dm3I6mSwaERJMwliCIyqHcR7m2bdti8uTJ2LZtG3r16oXwcKUC76WXXirX+o4cOYJ+/frBaDQiIiICf//9Nzp16oSDBw9Cq9UiJiZG0T4hIQFZWVkAgKysLIW4gy1ny7wxbdo0TJo0ye31tWvXIiyM/nC9XBb8cRwXL5bgn393YczzV1V1d2oESUlJVd2FGkVBfoH0eOvWbUhO9q4ALix0XphmZGZi5cqVFdq3msLRY85j48GDB2G1pAOgsUjULjIynH/QbVi/AVFRYrGExjlRXaCxSBBKqvM+odfr/TeqIGbNmoVPP/0UWVlZ6N69O2bOnIk+ffpUWX8qAp1OgwW/viI9ruuo1SpotWqYzVaU6U0oLFSOP/nN9zK9+414OUwAwnGc5A5gMlmxZ28yACAtLTeYXSdqGXIHD2ZRTlQcIbLZ0U8+NRtzv30egGhr37NHS7z/3v1o3iwuoGgmgiAIom7y9lt3AwD27z8HADAYlGJgu92Oi16u//QerivZtaQ3J6kRt12N3//Y6tEpxBnPUvFih0aNYnFN33bYues0LlwQ3UR4nrvi2LBOHZtIj48euoCmIZGwlllEBw+eQ1lKMfTnSwAAIQ3DYMzUw1JohtZEDh4EQVQO5RZ4/PDDD4iJicG+ffuwb98+xTKO48ot8Gjfvj0OHjyIoqIiLF68GI8//jg2bdpU3m6ViwkTJmD8+PHS8+LiYjRt2hRDhgxBVBTZwl4uH3+6CwBQWmrBsGHDqrg31RuLxYKkpCQMHjwYGg3dyAyUZSvSkZEpXiD2u/ZadOzg/eZGeno+vp17CACQmJBIY9KBwbgT69ZfAAB069YdA2/uTGORqHUcPXYRv/x2DABww403Iq5+BI1zolpA53+CUFIT9gnm9ljZLFy4EOPHj8ecOXPQt29ffPXVVxg6dChOnTqF+Ph4/yuoQbRoUbu+z5USFqaF2WwVb6pzymUlJc6IljIPVtpy9DJbbZ4XV5SV5RTMJzas5/F9BAG4CDzIwaPCCXWxkZ/z3RoAQP1Y0dloyODuld4ngiAIombCHDdY7BcjO7sIRqNnd8Ks7CK315gDSJiXiJbrru2A3//YiqKiMrdlzB2kXr2KjWdhhDm+828LtgAAOnduCo7jfL0lgHXqcOfIPvh76W7k5ZdAsNlhLbOA4znoL5TAlC1el4ckhiG6SyzsJhvM+SaYc3xfoxMEQQSLcgs8UlJSgtoBrVaLNm3aAAB69eqFPXv2YPr06bj//vthNptRWFiocPHIzs5GYmIiACAxMRG7d+9WrC87O1ta5g2dTgedzl15qNFoqu2NxZoGbcfAoDFXPjjZHU4Vr/K57dRq5+FNzJCk7QwAPO9UL6tVzm1IY5GoTagU41xN45yodtBYJAgl1XmfqKp+ffHFF3j66acxevRoAMCcOXOwYsUKzJs3D2+++WaV9ImoHEJDdSgs1EOvV86GNBjMKCmVCTw8WGnLkc+6ZDe4U1OdszaffXpIsLpM1ELkog5y8Kh4Ql2KZ/v2ibOv69en6CqCIAiifLBziquDR3p6ntf37Np1GgUFpQrHDSbwYE5wrkTHiNcHhYWeBB4OB4+YyokrCQ8PUTx/6IHrg7Jedh7OLywDr1OB16hRluoQd3BAZLtohDYVv2NY8wiY802w5JoAmkNOEEQlwFd1B1yx2+0wmUzo1asXNBoN1q9fLy07deoUUlNT0a9fPwBAv379cOTIEeTk5EhtkpKSEBUVhU6dOlV63wmCqFgEQZAe22WP/bUV/LStq9BWIWordsEue0wjnSAIgqhZmM1m7Nu3D4MGDZJe43kegwYNwo4dO6qwZ0RlwGywS0oM2LMnWXp90+ZjiogWvcEsZZ97winw0MJ1AuM1fdshMTEmeJ0mah0dZFEgUSTwqHBcBR6M+vUrpzBGEARB1B7CHIKM4mID0tPzpdfLHOLhzp2aIjJCKYiw2wVMn7kSO3ackl6TX0t6IiY6XPocm80Ovd6EDRuOQK83VYGDh1KE0rNnq6CsNzY2ElqVCpF2NQS7AF7DwZIvXo9HtI5CWLNIcBwHwSZAE6MDp+YAm4BQm2dRDEEQRDApt4MHAKSlpeHff/9FamoqzGblrJIvvvgi4PVMmDABt956K5o1a4aSkhIsWLAAGzduxJo1axAdHY0nn3wS48ePR2xsLKKiovDiiy+iX79+uOaaawAAQ4YMQadOnfDoo4/ik08+QVZWFt555x2MGTPGo0MHQRC1CL8Cj4Cb1ilI+ELUBRT7v53GOUEQBFGzyM3Nhc1mQ0JCguL1hIQEnDx50q29yWSCyeScocdiZSwWCywWzzbMRPUlNER0jdmw4bDi9clTFmHEbb0Ur5WW6r3moheX6MX1hWphtyuFIA0bxQR9bLD10ZirHXTs1Eh6HBmhq1G/a00ci02axAIQ99d+17TDhv+OAhBnDtek70FUHjVxnBO1DxqH1ZPwcC3Cw3UoKzPhhbHfYfGfrwIAyspEJzidTo2xY27FtI//BgC0bBGPlPM5WLv2INauPYjl/76JyMhQKRpQq1V7/I3DwsRrVrtdQH5BMaZPX4kN/x3FjTd0RozD3SM6OrRSxgc7jwLAjTd0Rmio5z6Xl5joMHx6z+2Ii4iAqdAIOy/AUijWQ9XxOlhtVgCApdgMcBzUURpY8s0It4RV6/2iOveNIIjAKbfAY/369bj99tvRqlUrnDx5El26dMH58+chCAKuuuqqcq0rJycHjz32GDIzMxEdHY1u3bphzZo1GDx4MADgyy+/BM/zuPvuu2EymTB06FDMnj1ber9KpcLy5cvx/PPPo1+/fggPD8fjjz+OyZMnl/drEQRRA5CXae1+iraCrLVAXhUeIX0HUVuRizponBMEQRC1nWnTpmHSpElur69duxZhYTTzvqZRViYKdI4cSXZbtmv3CcXz1avXICTE822dEydFG26DvgSHDx9SLEuMN2PlypXB6K4bSUlJFbJeovK58462sFjt2LLlv6ruymVR08biqMe6IDRUDbtdwKVLDaBWcwjRFVTYvkrUDmraOCdqJzQOqx+3DG2OJX+dxqVLxVixYgU4jsOhw6ILflFxAazWdNx8UzO0aV0Pq9acU7z3r79WoEGDMCQnXwAApKYmY+XKQo+fo9OpYDLZsOzf1ZI4ceOmY+jUsT4A4OLF85VyHtOXOcXuXbvogvaZmZmliMiOQVxEBFJSzoM/xyEO9VCmNuDwyW1u7WON0YjUhMGkMlfr/UKv11d1FwiCCALlFnhMmDABr732GiZNmoTIyEgsWbIE8fHxePjhh3HLLbeUa10//PCDz+UhISGYNWsWZs2a5bVN8+bN6Y8dgqgjXHZEC83glyDXDqIuYFccK7xblxMEQRBEdSQuLg4qlQrZ2dmK17Ozs5GYmOjWfsKECRg/frz0vLi4GE2bNsWQIUMQFUUB0DWNnbtLkHK+CAJEO+ybb+qCM8mZuHgxD4WFSgfVmwcOlOyxXdFoD+PfZcloEN8APXv0xIqV4s3720dcjQceGBH0flssFiQlJWHw4MHQaDRBXz9R+QwbVtU9uDxqw1h86KGq7gFR3akN45yo+dA4rL4YDGYs+esDAMDNNw9GaKgWesNOrF6TgubNmuC224bjttvEtidO/YGLF50i4k6de6L31a2x8E/x2vHmm/qjVy/PkSe//Z6MtLQ8dO9xNQCn+1yD+ATgRB66deuCYcP6VsyXdCGxYTvwHIcBAzoFbZ2CIEB/vgQF23IQb3S6hCR2boRm9VsCAGxmOwSLHapwNaxlVpiNJly4mFmt9wvm+EgQRM2m3AKPEydO4PfffxffrFbDYDAgIiICkydPxh133IHnn38+6J0kCIIAoLTw8CdUoIgW/9CGIWorJPAiCIIgajBarRa9evXC+vXrMXLkSACA3W7H+vXrMXbsWLf2Op3OY0SpRqOptjcVCe9EhIcCAPLySgAA4eEhCNGJYg+z2apoq+JVXn9jnuel/9VqlfM9Ku/vCQY07ojqAo1Foi5A45yoDtA4rH6oVM5rP5tNgEajgcUiToAKDdUpfi9XsXBRoR4ajQZ5+aUAgISEGK+/b0xMONLS8rB06R7F6zar+FkhIbpKGxuDB/WokPWqW9ZD4c5LEGzi/cWQhmEIixe3md0iQLAIUIVqoQrRQM2rIVhsAKr3flFd+0UQRPngy/uG8PBwmM3irJGGDRvi7Nmz0rLc3Nzg9YwgCMIH5XLwoIgWCflmo61C1FbkxwfSMREEQRA1kfHjx2Pu3Ln46aefcOLECTz//PMoKyvD6NGjq7prRAUTGiaKOQwG8b5LWJgOuhDPN2FtPoSsTOTKcxw4npNe5zhv7yAIgiAIgiBqAzzPQ6cTrx+NRgsAwGQSry1DXK4ro6KUkY5p6XlY8PsWlJQYAAD160d6/ZyYaPG96zcckX02B7ND5KDVqDy+rybBa3iEt4kGp+HBa3lEtBYdEu1WATaTDeA5cGoeHA9oItTgVOUuuRIEQVwWATt4TJ48Ga+++iquueYabN26FR07dsSwYcPw6quv4siRI/jrr79wzTXXVGRfCYKo45QndkUgBw+PKLYhbRiilmK3l2+cp6fnY/rMFXj04QHo2rV5RXaNIAiCIALi/vvvx6VLlzBx4kRkZWWhR48eWL16NRISEqq6a0QFExaqdGMJC9NCp/N868Zu8x5Fx66AeJ4DJ1N18DwpPAiCIAiCIGo7ISEamEwWGI2isIMJPVwFHtHRSoHH/B//kx6rVDwiI0O9fkZMjHtUoEajhsXhOqfRljtAoFoS2jgc2vpaqMM00nW13WKHKkQFwWqHKlQNXs2LYg8VXWsTBFE5BHyEnTRpEp577jl88cUXKC0tlV4rLS3FwoUL0bZtW3zxxRcV1lGCIAh5mdavgwdltBBEnUUop8Dj3fd+x8mT6di69QS2b/2wIrtGEARBEAEzduxYj5EsRO0mLEwp8AgN1UkzMF2x+RB4SIJXjgPPyR086KYzQRAEQRBEbSdEp0ERAKNJFHYwgYfrdWWHDo29rkOnVfu8doyOdhd4aLVqmC0OgYemdgg8wHHg4BRNCzYBgiCA1/Cw8wDHA+A58GoeXC1wLSEIomYQ8BGWFUhatWolvRYeHo45c+YEv1cEQRAeEC4zdoH0HTJI90LUAcojBgNEBw+CIAiCIIjqQLgjooURFqaFTqu8Ea/TiTMy7b5cDQVnRAtk9+V5nmyjCYIgCIIgajss4o8JO5iTR2io8lqza5dm3lfiRxhcz4ODh1arhqUWRbQAAK/mpWhEm1kUWHMcB3WYGnaLHQAHXi0+5+hSmyCISqJchxua6UEQRHXBX0SLvMIbSIG3riB3NqGIFqK2onDw8HesAEjtRBAEQRBEtcGTg4fcSlul4qWb5Ta7DwcPx/UNx3PKWBa6rUMQBEEQBFHrCQkRhRwmo9LBI0TnLhz+ds5z6HYZkcVNm8W5vabV1r6IFk7Lwy6IsSx2qx02gwW8hgOvU0EVpgHHiSIQAFCH1I7vTBBE9adcR5t27dr5FXnk59MsWIIgKohyiDaUbh9UvGXQpiDqAvbLdPshCIIgCIKoalwFHmFhyogWnVYNXiXeQLYHENEiGng47+PwNHGHIAiCIAii1hPKHDxMZsf/joiWEK1b265dmmHA9Z1w+MgFxev+Lhtbt0pwe02jVkkRLdpaEtGiUnPgAViNNvBqHnaBgypMDVWoGoLVDqtdAByCak2M+/YlCIKoCMp1hJ00aRKio6Mrqi8EQRA+KY9oQ7GYCryeoco3UUuRHx/IwYcgCIIgiJpEeESI8nm4UuCh1Wmkm+2BRrRwMgcPhZsHQRAEQRAEUSthQg6DQRR2mBwRLTqd55KgSl3+bJHExBjE1Y9Ebl6J9JpWq0ZxiQEAoNHWjogWTq0CxwF2kw18iAqCjQOvVomT4dU8VDqAU4nX2HwtiaUhCKL6Uy6BxwMPPID4+PiK6gtBEIRPFJoNP7ELFEXiGYVIpgr7QRAVSXkjWmhfIAiCIAiiutC4Uazieb164Yob8TqdBjarmGseUEQLx7k4sZLAgyAIgiAIorbDoliYsMNqFa8bNV4ECGqVu8DD3y11nufx+OM34fMv/pVeCwvTSYKP2uLgwet4QK0Cbwd4LQ9BAHiNuL04joNKR6IOgiAqn4Blef6iWQiCICoT/xEtssdUvpVQbJcAhC9lehMW/rkN2dmFFdcpgggydopoIgiCIAiihhIfH61w2YitF6GMaNGpoXLcgLf5iGgR7E6BhzyWhRw8CIIgCIIgaj8hjogWg1F08GDCYJXKsxhB5UHgEQhDBndXPLdabbA4Ilo0tUXgoeKhDleDD9OA16mhiwsFX0vcSQiCqLkEfNSmAglBEFWNMqLFb2PnwwBm8BOe+fKrZZg+YwWefnZOVXeFIAJG4eARwPULXeMQBEEQBFFdUKl4hIXppOdRUWEuAg8NeMcNeLvN+zUMW8LznMK0gybvEARBEARB1H6YuMLKnN9sTODhuSSoVl+eYCEyMhRvvD4SPXq0ED/PZofFIn5mrYlo4TloonQITQiFKkQNTsWBuzw9DEEQRNAI+DBkt9spnoXwSkFBaVV3gagDKAUe3merics9PybKIZIBsHPnaQBAbm5xRXWIIIKO/FjhM5teal+RvSEIgiAIgigfcXGR0mOViodOq4xoYS4cdl8RLewaiFOKOsjBgyAIgiAIovbDhByuAg9v14KehB+B6oJH3tEHT4y6Wfo8s1l08KgtES0AoA5VQxWqBq/moNKqwKlJ4UEQRNVCRyHiitmy9QSGj/iwqrtB1DH8FW3lsSy+bnzWNRSFbHI2IGopiogWimgiCIIgCKKG0aN7S8VzjULgoYaKd0S0+Pg7h13H8y4RLWTgQRAEQRAEUftxjfRj/6u9OHioLtPBw/X9RkckDFB7IloAiK4dHAdViBq8hidXPIIgqpzac4QlqoxPP/unqrtA1BXkrhz+BB6yxTaKaJFQuKBUYT8IoiJRRLTQ/k8QBEEQRA3j2WeGIPVirpRpLr85Lka0OBw8fEW0OK77OZ6niBaCIAiCIIg6hlqtFHiwCZBeI1q8vB7454kCD4PBJL2mrSURLQRBENUREngQV8SlS0UU3UBUGvKZ+H5LtjIhA7uQJcoPGXgQNRG5g4c9kEFMA50gCIIgiGpEdHQYvp7xlPRcq3HeHNdpNVCpxOe+/s5hjoccp7TipogWgiAIgiCI2o/r9aLNale87tbeg4NHeW6XMUGJwWCWXqtNDh4EQRDVDYpoIa6IH3/a6PaaNxUoQVwp8otKvxEt8rYk8JBQOHgEdJVOhW+i5iEf2qTdIAiCIAiipqN2dfBwiDR8RbSwy3ie48BBHtFCAg+CIAiCIIjaDqvRWK3KiBZvYt8rdvBQKSNaVCqe6kQEQRAVCB1hiSvCYrG6vUY3jIjKwJ84QSAHD79Q4ZuorSiETAFEtNCuQBAEQRBEdUbh4KFTQ8WLt3J8id7tUkQLB44ngQdBEARBEERdgokrbDab+L/julGl9lwS9PZ6oKhd3k/iDoIgiIqFjrLEFdGwYT2318jylagoyuM+IV/qc2ZbHaP8Dh4EUfOQFzuEAOQbtC8QBEEQBFGd0Wg9O3j4ciqUIlrAQa7poL/XCYIgCIIgaj9McCFFtNhYRIvnkqAnB4/y6ILVLhEvV+oIQhAEQfiGjrLEFeFpxhDNCCIqDHnsgr9Z+eTgERSo7k3UBGw2O8xmmaOUbOD6i3MiCIIgCIKo7mhdI1rYjEyf1zniMp7nwHPk4EEQBEEQBFGXcI9oEZ08mBOct/aXi6vAgyeBB0EQRIVSpUfZadOmoXfv3oiMjER8fDxGjhyJU6dOKdoYjUaMGTMG9evXR0REBO6++25kZ2cr2qSmpmL48OEICwtDfHw8Xn/9dVit7tEhRPBRFNQc0IwgoqKQz7K3l0N5QAVeJyTYIGoj41/9EXfe/TGKi/UAlMeHQCJaCIIgCIIgqjNqt4gWh4OHD6dC6W8gDorpl/T3OkEQBEEQRO1HpRKvHwN28HARaJQXimghCIKoXKr0KLtp0yaMGTMGO3fuRFJSEiwWC4YMGYKysjKpzbhx47Bs2TIsWrQImzZtQkZGBu666y5puc1mw/Dhw2E2m7F9+3b89NNP+PHHHzFx4sSq+Ep1DrPFXeBBM4KIysCfUEG+nBw8nJQ3ooWiK4iawJ69ySgoKMPKVfsBuEa0+IeGOUEQBEEQ1RmtQuChkWWqe/87h13H85yLgwfo73WCIAiCIIjajtrlepHdK/MmvPD0ennul6lcHTxIVEwQBFGhqP03qThWr16teP7jjz8iPj4e+/btw4ABA1BUVIQffvgBCxYswM033wwAmD9/Pjp27IidO3fimmuuwdq1a3H8+HGsW7cOCQkJ6NGjB6ZMmYL//e9/eP/996HVaqviq9UZzCZy8CAqD/k1pT/hgcLtgwQeHgnkIp0K30R1R17YOHMmE4CLkIkcPAiCIAiCqOFotC4RLQ5rbV9/50gCD55TTMLg6O91giAIgiCIWo9KzQQeNsf/vh08XAUa5UWtUr5fpbqy9REEQRC+qVY+SUVFRQCA2NhYAMC+fftgsVgwaNAgqU2HDh3QrFkz7NixAwCwY8cOdO3aFQkJCVKboUOHori4GMeOHavE3tdNLOTgQVQiCtGGn6KtIJOD+M6mJgiiJmA0mnHyZLqbuMtgMEuPCwpEBzBfcU4lJQb88+8epKbmSq+RUw1BEARBENUZrcZF4MFmZPr4O8f59xKnEHXQhAyCIAiCIIjaD3PwsFqVES1MKOyt/eWi0ynnkqvompMgCKJCqVIHDzl2ux2vvPIKrrvuOnTp0gUAkJWVBa1Wi5iYGEXbhIQEZGVlSW3k4g62nC3zhMlkgslkkp4XFxcDACwWCywWS1C+T13BaDS7vcZzHAwGIziOo6w1L7BxRuOtnMjuX1r97K9WmfjIZrPRtnZgtdqkxzab1e9YlBe+aRsSVcnYF7/H8RNpePutuzBkcHfp9eJiZ6xbcYkeFotFsf9bLcpxPm78jzh+Ig09urfA9K9Gu30OjXOiIqHzP0EoqQn7RHXuG1F30MgjWrRq6Ya53e7fqZDnKZSFIAiCIAiiruEa6Sc5eKi9OXi4v16eebxarRoajQoWi03x+QRBEETFUG0EHmPGjMHRo0exdevWCv+sadOmYdKkSW6vr127FmFhYRX++bWJ1Itpbq/ZbBbce98nUKl5jH68Czl6+CApKamqu1CjKCtzFnKPHD0KtfqS17apF4ulx0ajCStXrqzQvtUUziRflB4fP34SkRGic5K3sSgvatA2JKqS4yfE883PPyfBakmXXs/LM0iP09MvYeXKlTh6zCnw3Lt3L4qLzwEQxzlbz8FD56UxzewqARrnROVA53+CUFKd9wm9Xl/VXSAIaGQOHmq1yhnREoCDB8dzCtcOcvAgCIIgCIKo/agdkSs2mx2CIPiNaHGNWCkvHMchMjIU+fmlACA5zhEEQRAVQ7UQeIwdOxbLly/H5s2b0aRJE+n1xMREmM1mFBYWKlw8srOzkZiYKLXZvXu3Yn3Z2dnSMk9MmDAB48ePl54XFxejadOmGDJkCKKiooL1teoEm7cUAChQvGazccgvMAIArr/+JkRFkWjGFYvFgqSkJAwePBgajaaqu1Nj+PnX0ygsEt13OnXqjGHD+nhte+BgCn7/4wQAQMWrMWzYsErpY3UnM2s9duzIAAB06NAegwf39TkWZ80+BJNJLH7TNiSqko8/3QUAqBcbqxiLJ0+l4/t5hwEAJpMdw4YNg96wE+vWXwAA9Ox5Fa69tq00ztl6AOeY/vKrfbDZrIrXCKIioPM/QSipCfsEc3skiKpE7uDB8U6nTJvMnc8VSeABKKZf8jQBgyAIgiAIotajkiJabApRsMpLREswHDciIkIkgQc5eBAEQVQsVSrwEAQBL774Iv7++29s3LgRLVu2VCzv1asXNBoN1q9fj7vvvhsAcOrUKaSmpqJfv34AgH79+uGDDz5ATk4O4uPjAYgzwKKiotCpUyePn6vT6aDT6dxe12g01fbGYnWFZbgpkN0vKi42on796MrrUA2Dxtzlw/O8z22nkqmO7XZ7QNvZYrFCrVbVatcZjnNeXKtUKmm7eB2Lsk1BY5WoFgjKsWg2OwsbRqMFFotdkSfKq3jFOJcjPadxTlQydP4nCCXVeZ+orv0i6hZarfPWDc/z4FXixYvNh4MHy7fkeV4h6uDIwYMgCIIgCKLWI49oYe4d8tddUXuIaBF8XWp6IDIyVHpMrnEEQRAVS5XK6MaMGYNff/0VCxYsQGRkJLKyspCVlQWDQbRbj46OxpNPPonx48fjv//+w759+zB69Gj069cP11xzDQBgyJAh6NSpEx599FEcOnQIa9aswTvvvIMxY8Z4FHEQwcVsds+kNhqdr+XllVRmd4g6hODnClO+2Grzn01dXGzAsNs+wP8m/HqlXavWyLdLIBfp/rYzQVQ2dpcxadCbFc+LivSKmQmCz8KHow2Nc4IgCIIgqjHyG/E8z0kzL+1273/nSNdDnDI/vTaL2QmCIAiCIAgRucBDfs3oTeARDMeNKJnAw5tTCEEQBBEcqtTB45tvvgEA3HjjjYrX58+fj1GjRgEAvvzyS/A8j7vvvhsmkwlDhw7F7NmzpbYqlQrLly/H888/j379+iE8PByPP/44Jk+eXFlfo05jtrhbwsoLZXkOSy6CCAbyseUrb9rROPC2ADZtPoayMhO2bj1x2f2rGcgK31TUJmogruNWrzcpnpvMFoWow1UQwvNcQMcEgiAIgiCI6gLnErHCZkT6uqZh10w8xylcO0jgQRAEQRAEUftRq0V368AdPFQeXy8PEREhfj+HIAiCCA5VHtHij5CQEMyaNQuzZs3y2qZ58+ZYuXJlMLtGBIjZbPW5PC+XHDyI4KF0nwjcwcPXzDbCN6QBIaobro4ceoPSwcNkskJQCJmU71erVdK5SxAEcBxH45wgCIIgiBpDk6b1wctmZHqDXd/wPAdOlkdHdtkEQRAEQRC1HyawsFptimtGb9eCngQZ5dUFKyJaSOBBEARRodBRlgiIpf/sxl33fILzF3IUr1v8CDz0BpPP5QRRLgTvRVu3plA6eJBbhUh5I1qo8k1UN1wdOVyFhmazVRnR4tJePiPBarV5bEMQBEEQBFHd+OH7F/Dpx4+hebMGCsttbzivhzjFjXyeHDwIgiAIgiBqPfLrxUAcPILhuKHTaYK6PoIgCMI7dJQlAuKTT5ciK6sQn332j+J1kx+Bh9VKzglExeA6i99tuctiXzc/6xLKQjYVtYmah+u+z0QaDLPZ4jPOSaNxCjxMJt/nMIIgCIIgiOpCxw5NcN11HQA4M819RrQ4rvV5ngPkmg4SeBAEQRAEQdR6VGp3gYdKxXuN6wsJ0eLN/92J11+747I/U37PTUWucQRBEBVKlUa0EDWPklKj4rm/ornNZvO5nCDKg/z2pessfre2LsttNrvPLMHafsn5/qSFyM4pQudOTaXXAjEtIAkIUd1wHZOu5yGTSeng4TrQ5TNYTSaLIh+UIAiCIAiiJsCuZ3xFUTJRLMdxCtcOimghCIIgCIKo/ahV4n1wucDD33Xg7SN6AwA+dUzyLa/hrfzeOzl4EARBVCx0lCXKhetMaSbgGD9uhOf25JpABBFfs/LdGyuf+m0vu+lZ29w+7HY71iYdwqFD53HmTGa53kvRFUR1w3VM+nXwcGkvPxaYTJYK6CFBEARBEETFwvMBRLQITOABxUxNb7M2CYIgCIIgiNoDE1hYrTYsW74XAGCxVOxkXLnAg12vEgRBEBUDHWWJcmG1uAo8xBtKV1/dGj98/4Jb+9pWKCeqE+UTHpRnLLoWjGs68hgKeeGbxBtETcQ1osV13zabrC7jXPl+u6w9CTwIgiAIgqiJqFTMwcPH9bzgjGjheLnAo0K7RhAEQRAEQVQDmMDDZrNj3vwNlfKZiogWcvAgCIKoUOgoS5QLi5uDh1goU6tUku2XYnktK5QTVYu8UOvPkcNVvODLvtiV2ibwMBjNHl8PROBBGhCiuuHqyGG1ukS0mJURLZ7imqS2DvETiZ0IgiAIgqhJsBmRvv7GscsiWjhZICVPCg+CIAiCIIhaj0rt3/HNH+W9bFQ4eJDAgyAIokKhoyxRLrw5eKhUvMcMN4poqZ78vXQXps9cUfOKmuVwn3BdWp6xWNF2dZWNyeh0KTCbrT5aEkT1x93BwyWixcWVw1UMZpM9TzmfI66zhh0KCYIgCIKo27DZkb7+bhEEp8BD/rc65yd7nSAIgiAIgqj5sMm4JnPludeSgwdBEETlQUdZwi/yQrrV5l3g4SnLlyJaqieffvYPFi7chiNHUqu6K+VCXoP1K/BwdfDwMxbls99qnYOHwengQZEURE1HwJU5eMj39SlTFyEzq0C5flJ7EARBEARRzdHpNAAAo9H7tT27pOF5DjIDD3LwIAiCIAiCqAMwgUVhob7SPlPu4KEiUTFBEESFQgIPwi/yWUE2l0KaXwcPKwk8qjPFxZV3gRds/EW0uFp4+GsvF3W4RhHVdIyyiBa5ajuwiBYqdhPVC9ch6ergYTJZAo5oAYCUlBzFc7/HFoIgCIIgiComJEQLwLd4W35NIxd1eJqYQRAEQRAEQdQuWERLZaKRR7TwVHokCIKoSOgoS/hFXhxWyU7SdrtdummkUvEerV5dC2+eMJksSFp3CEVFNVdsUJOQFzttNayQKZQnosVPUdcVuZDJNYqopmOQ7cPyWX5UyCZqIq4RLa5CQrPZqtj/XcUeruPe4taehIkEQRAEQVRvQkKYg4fZaxvmesbzSrdNimghCIIgCIKo/dSPjbzidZR33p+aIloIgiAqDTrKEn6RxzvIkRfJVCreo9VrIBEt336XhPfeX4hx4+dffieJgJH/JjWtkKkUePhua3cVePj5rnJ3mtoW0SIXdchn+fnK7CaI6orrvu26v7oKPKAQtTn38w7tGwMA9C7nOBI+EQRBEARR3WEOHgZfES2OaxqO4xQCD4poIQiCIAiCqP1ERISgaZP6lfqZGpnAgyeBB0EQRIVCR1nCL/LZ/zZZIU0uFPDm4BFIRMvqNfsBACdPpV9JN4kAkRdDXWfCV3fkNVu/kSsu4gV/YiOrrRZHtMgK2CaTVfbY+w1hBjkbENUN132f7dssi97NwUP+2OZ8HBERAgC4dKnY4/oIgiAIgiCqK8zBw+TDwYNdA3Gc+I9BDh4EQRAEQRB1g9ZtEhXPr7++Y7neX15dsEatlh6rSeBBEARRodBRlvCLSTYryCorfFldBR64PAcPm61miQxqOnLXBn+uFoBY4D9xMg2lpcaK7Fa58RfRYrZYFc/t/gQe1toc0eLZwcNstnpqrqA8ohqCqBS8OHiEh+sAiI418rGqfOw8DkREigKPOd+ucVk9jXOCIAiCIKo3IToW0eJDsO24pOF5DrxM1MGRgwdBEARBEESdIDwsRHrct09bTPvg4Qr9PJXaWW7kSVRMEARRoZDAg/CLWVbsVogDrEqBh6eTdiACD3IFqFwsXlxYvLFz52k8+dRsPPHUrIrsVoB4Ltp6wjV+xN93lbcPxHnGZLJgz55kWCz+RRJVjTybW74dAnHwkEPOBkR1wHXPZ/src+QwGs1eI5zkYzgiPMRLGxJ4EARBEARRvQkJZREtPhw8ZBEtoIgWgiAIgiCIOgdzfQOA2NgI8HzFlgPlES0qcvAgCIKoUOgoS/jFbJY5eFht0uxmmyzSguc5jzOBrAFEXZArQOVi9SLY8cZ/G48CANLS8iqsT4GiLNq6jxur1YaMjHzY7XY34YXNX6SLTNRhsfoXbXzy6VK8PG4evp61ym/bqiYnp8jj64E5eDi3Gwk8iKpCGRXkOaIlMiIUAKA3mL22lz+OcLR3hUSHBEEQREXSokULcByn+PfRRx8p2hw+fBjXX389QkJC0LRpU3zyySdV1FuiusIcPEw+HDycES1Kr02KaCEIgiAIgqgbsDhjAAgL01X458kjWipaTEIQBFHXUftvQtRF0tLy8PY7C9ChQ2PceENnxTKbzQ61WiUV1UTL18t38KCiceUiF3UE4uAgV95WJzwJgz76+G+sXLUfAwd2RZfOzRTL/I0zq618Dh6rVh8AACxavAPjXhkRSJerjA0bjnh83eRH4CEIgmK7kRiLqCrk49A1QoXtu5KDh8GsEGkIds8ipYgIz3/YksCDIAiCqGgmT56Mp59+WnoeGRkpPS4uLsaQIUMwaNAgzJkzB0eOHMETTzyBmJgYPPPMM1XRXaIaEhqAgwdTx7tFtFRozwiCIAiCIIjqgtzBg10/lofyphir5Q4eahJ4EARBVCQk8CDcMJksuO+BzwEAZ5Iz0b17C8VyV4EHs9vyNBOIBB7VD7k7hdnk38FBra4+Ag/FrHyXK8y09DysXLUfALBt20m0a9tIsdzuT+Ahj2gJwNmkpmAwmJGRWeBxmT+Bj6vDBxW+iarCl9BIimiJFAUeBoNZ0UaQuf3YHGOY4ziEe4toISETQRAEUcFERkYiMTHR47LffvsNZrMZ8+bNg1arRefOnXHw4EF88cUXJPAgJHQhATh4yK9pZG6bnpw3CYIgCIIgiNqHVlvZDh4ygQc5eBAEQVQoJPAg3Cgu1iuep6TkKJ5brTbodBrphhETeHjK8g0kooUEHpWLTeZOYTIH4uDhPEwIglBlNwQFQVAKL1xqsKdPZ0iPLRabmzjBr4OHbKwGEtFSU8jOLvS6zF9Ei9HlhjHtq0RVoYxZUY5DFhfGIloMRjNKy4ye32tzzmSVz1xo1jQOqRdzAQB6vSnIvScIgiAIJR999BGmTJmCZs2a4aGHHsK4ceOgdtgZ79ixAwMGDIBW6zxPDR06FB9//DEKCgpQr149t/WZTCaYTM7zV3FxMQDAYrHAYvF/vU/UPNQq8W8yo8kCs9ns8W80do0kCHbYbFbF6xUxLtg6acwRVQ2NRaIuQOOcqA7QOKz+aDROkYVOqyr3b8Vx5f19nffsOE6ok2OjJuwX1blvBEEEDgk8CDdc4ynOn3cVeIjLg+XgQVQuVxLRYjRaLsvOLRgUFxugNzgtiF2LvHIhks1mR1FRmWK5JzGDzWYHx4mZgPJxH0hES00h04t7B+D/9zcYlJbPFNFCVBXyc4mrcFBy8IhwOniUljgFHnKzH/l5q3HjWOn1Z58dglmzVyMjIx/FRUqRI0EQBEEEk5deeglXXXUVYmNjsX37dkyYMAGZmZn44osvAABZWVlo2bKl4j0JCQnSMk8Cj2nTpmHSpElur69duxZhYWEV8C2IqsbkcGK02wUsW7YCag8W2BmZmQCAE8ePA0K29PqePbuRm3u6wvqWlJRUYesmiPJAY5GoC9A4J6oDNA6rL6dPO++XJ589jZUrvd8n9oTFYsXKlSsDbl9Q4Lwfl5KSUq731jaq836h19O9T4KoDZDAg3DDteib4iLwsFjEm0lWx4wgXw4eJPCoflhkxVGTHwcHQGnhW1pmrDKBR3p6nuK54BLRkpKSrXiem1eieO46rq1WGx4fPROhIVrM/e55aTwD/p0tagp6vQmffv4PAKB+/UjkuWwT/w4ergIP2p+JqkEp8FCOQyb4iGAOHgYzSkoM0vLc3CLpMRvDKhWPzp2aSq9r1CrERIchIyMfhQEIPBYt3o6jR1Px9lv3QKulSymCIIi6zptvvomPP/7YZ5sTJ06gQ4cOGD9+vPRat27doNVq8eyzz2LatGnQ6S7PNnnChAmK9RYXF6Np06YYMmQIoqKiLmudRPXGZLLgqxn7AACDBg9GWKj72Nm5ayFOncpH5y5dMGhgV8z4Woyz7NOnD3r3bhP0PlksFiQlJWHw4MHQaDT+30AQFQSNRaIuQOOcqA7QOKz+aDSHsWZtCgDg+uuvwXXXtg/ofR9/usvxfjWGDRsW8OdlZxfiu+8PAQDatWuLYcMGlrPHNZ+asF8wx0eCIGo2VVqV2Lx5Mz799FPs27cPmZmZ+PvvvzFy5EhpuSAIeO+99zB37lwUFhbiuuuuwzfffIO2bdtKbfLz8/Hiiy9i2bJl4Hked999N6ZPn46IiIgq+Ea1A9dYhkuXihTPvTl48B4cPAKJaCGuHLPZijNnMtGpUxO/ESpWi7Oobw7AwcMia19WakSDuKq5SZyW5irwUC53FSLl5irFDEaX75qVXSi5fsz8epWiILxjxykMu/WqK+1ylbN4yQ5kZRUCAK69tj2WLdurWO7XwcNF4FGbnE2ImoVNJi7yFr8UGel08Cgpde7Pa9YewotjbwUARbRYSIgW999/HQ4dPI9evVrj76XiH69FhUr3H6vVhslTFqFLl2a4795rcfz4RXz51XIAwIgRvXF1r9bB/KoEQRBEDeTVV1/FqFGjfLZp1aqVx9f79u0Lq9WK8+fPo3379khMTER2tlK4zJ4nJiZ6XIdOp/MoDtFoNNX2piJxZfC802URAu/xd2Z/F2o0asVylVpdoeOCxh1RXaCxSNQFaJwT1QEah9WXsHDn3whx9aMu63cqz3tCQ0Okx4JQvvfWNqrzflFd+0UQRPmoUoFHWVkZunfvjieeeAJ33XWX2/JPPvkEM2bMwE8//YSWLVvi3XffxdChQ3H8+HGEhIgni4cffhiZmZlISkqCxWLB6NGj8cwzz2DBggWV/XVqDa5FX3mkB+B07nAKPMSbS55zf6kgXBks+WsnZn69EneO7IPXXxvps63CwcPk36lCPh5KS40+WlYs6Rn5iufyuBCr1YaLF0UBSGRECEpKjcjNVSpRXce1PMLhj4VbFcuOn0gLSp+rmtTUXOlxt67NsXfvWUVkiycHD+aMwnEcDHqlwEOvN7m1J4jKwDWixWq1Qa0Wzz02KxN4hErLCwqcIo2SEgNMZnH/tzrWwwSJL784XGoXHR0OACgqVjp47N17FuvWH8a69Ydxz93X4KJMbEZxLgRBEAQANGjQAA0aNLis9x48eBA8zyM+Ph4A0K9fP7z99tuwWCzSjbekpCS0b9/eYzwLUTdRqXjwPAe7XVAI8uWwv5c4jlNMxvAzH4AgCIIgCIKoJYTonE7cMTHhFf550dHOeEhyvCUIgqhY3INaK5Fbb70VU6dOxZ133um2TBAEfPXVV3jnnXdwxx13oFu3bvj555+RkZGBpUuXAhBtblevXo3vv/8effv2Rf/+/TFz5kz88ccfyMjIqORvU3tghTBvMFcOVwePYAg8XGM3iMD4889tAIC/l+72uw3lgh29wX/BXh7jEkj7iiI9XRR4sItD+ffMyiqE1WqDTqdB23aNAAA5OUrnGVeBR2GRcpa+HEs5I1qqq1NNo0bOIkC7to3QtUszxXJPDh4ff7IUtw6fiszMAjcHj6oU+BB1G7vLuUR+XJIiWsKdswQKXVw4mKCLRbTwvPvlD/sjtLDQRbQhO7Wlp+fDIBM6FcucfwiCIAjCHzt27MBXX32FQ4cO4dy5c/jtt98wbtw4PPLII5J446GHHoJWq8WTTz6JY8eOYeHChZg+fboigoUgAEhiV4uXv0XsMuE2qToIgiAIgiDqILJLwMoQeKjVKnz7zbMYOLArbr2l5rtjEwRBVGeqrYwuJSUFWVlZGDRokPRadHQ0+vbtix07duCBBx7Ajh07EBMTg6uvvlpqM2jQIPA8j127dnkUjgCAyWSCySQr0DgypywWCywW/5EVtZ0yP0Vco9EMi8UCk0ks/qpUHCwWC2w296K41WrzuU2ZG4hz3SbpRlVthm2TYI23Dh0aI9shaCgt1SMkROu1rVFWtC8tNfrtg9HgbF8WQPuK4mKa6EbRuHEsUlJyFGMrL0/ch2NiwtCsaX3s339O4fABiO4T8r6z93jCbLH6/J52u7LYXFRUiqioMC+tqw72WycmxKBFizh06tgYa5MOScvNZqtiLKak5ODfZXsAAJ98thS3DO2hWF9xcRkdI4kqgZ1vGGWlemg1okiDnUfUGh6hoVoYZMcsNrM1P79EsR6Vincby+Hh4nGzsKhUsUyvd54TT55KQ2mZ83mRVj75HQABAABJREFUS1uC8Eewz/8EUdOpCftEMPum0+nwxx9/4P3334fJZELLli0xbtw4hXgjOjoaa9euxZgxY9CrVy/ExcVh4sSJeOaZZ4LWD6J2oNGoYDZbYbV4EZs7BB48z4EngQdBEARBEESdQ14HCA93j3SsCLp2bY6uXZtXymcRBEHUZaqtwCMrKwsAkJCQoHg9ISFBWpaVlSVZ2TLUajViY2OlNp6YNm0aJk2a5Pb62rVrERZW/Yq0lUlRkQnfzj3os82mTZtx6mQ40tLEgpnRYMDKlSthNrvfWNLrxWXecI0IWbZ8JXTa2i/wYCQlJQVlPdnZzvG+bNkqhId7z1E7cdIZL5CenuXz9wGAC6kXpcc7d+5GcfG5K+jp5SEIApKTRVcejdri6Feq1PdzKYViO7sFRmOux3UcOXIMkRGF0vM9ezO9fp7BYPK5XVzH+ooVaxAdXTkXyeXh5MkLAIAWLUKxcuVK5OWXKpYbjRasWbMWPM8hKSkJS/46JS3btesM7LYSRfut23YiPz+54jtOEC4UFCiFh6tXJ0n7XHGxOK53796J6GiNJPAIDVVDp1WhsMiE//7bgiZNIrFj+04AgNnsvo+fPy8eE86ePa9YduyY85iyZcsuGI3O/f/gwWOIiVbuJ0TNxGSyQqervMviYJ3/CaK2UJ33Cb0+eHFcV111FXbu3Om3Xbdu3bBly5agfS5RO9FoHA4eXgQekoMHyMCDIAiCIAiiLtKmdUPpsSf3dYIgCKLmUm0FHhXJhAkTFLOkiouL0bRpUwwZMgRRUVFV2LOq552Jf8BfSkrfvtegc6emOHAwBb/9fhxRUZEYNmwYTCYLvpy+V9FWrdZg2LBhXtd16VIxvpqxT3p+0003Iya64u3CqhqLxYKkpCQMHjxYyta+Erbt+B04JUaY9Lu2P5o0ru+1rUp9CP8uE4v0Om2Y4vcpKtJjzdqD6NSpKbp0bgoA2LQ5H0ABAKB9h04YNuxqt3VWNJmZBTAYdkOjUeGWW67B6TOrEB4WI/V9w4ajAE6hUaN4jBgxEKvXfC+9NzREC4PRjObNW2LYMKcjUHrGOgCpiIoKxVtv3oU33/oNWo0aZosVdht8jtvs7ELFWO/T91q0bpXgtX15yblUhFfG/YjbR1yNB+6/7rLXc+LkMmBfFjp27IBhw26EzWbHrl35sNnsOHsuGwBw3XUDsGPHFgwePBiLlpxXvD8rWzljtW3bjhg2rLfPz/xv4zHs3n0G4165jbIWiaBxIfUSvvve6T7Tr991aNFCFHjO+/EEABMGXH89cnI0yMoS2w0Z3BOnTmegsCgdHTp0QWnpBfTu3Rs//XIU4eFhbvu4gP3Y8F8qYqLrK5aZLbuBlWcBAM2atYLRaAG2pQEA4uMb+TxWEDWDJX/txIyZqzBl8gMYcH3HoK5bEARYrTZoNOLxMNjn/5pMSakBkRGhVd0NooqpCfsEc3skiOqGWu04t3iJaBEcjoYczylu6HOgm/sEQRAEQRB1gSZN6uP7uS+gXr3aX28hCIKoa1Tb6ltiYiIAIDs7Gw0bOpWG2dnZ6NGjh9QmJydH8T6r1Yr8/Hzp/Z7Q6XTQ6dxn22s0mmp7Y7GyMBqcBd2WLeORkpLjoRUHjUYDDqI9vlqtgkajgSC43yiyWu2KbZqbW4wVK/ej11Wt0KVLM1itSjWJ3YY69RsEa8xZLc7IELPZ7nOdcgGP3mBWtP1u7josX7EPISEarE96HxzHKW4YWiy+1x1sTpxMw4EDKajnyAhs17YRWrUS9+2s7EKpL3rHjP3IqFA0aBCtWEdkVCgMRjMsLmMxJ0e8Wf/QgwMwYEBnfDPrGfA8h2ef/xY2ux0cxyvigoqL9QgPD4FKxaO0VBkXYTHbgrpdFizYivT0fHwzZy0efeTGy14PcxoJDwtxjDVg/ryxEAQBNw96H2azFSaT2Eaj0UCvF6OrundvgUOHzuPixTzF+oxGq9/v+f6kPwEA3bq1wO0jfItBCCJQeE7p7GSTnSusjmNUSIgWPXq0xNqkQwgJ0eCxR2/EJ58uBQDo9eK5jePE85ZKxbuN5ahI0cHLYLQolskde8r0Zthkx8TSUlONOmcVFpYhN7cYbdo09N+4DjFj5ioAwNQPluC/9e4Ob1fC1A8XY8uWE5j3/Rg0bhwrvV7XrzkX/rkN02eswIcfPIQbb+hS1d0hqgHVeZ+orv0iCK3DwcNbRAv7u4/nOJqxSRAEQRAEUUfp1LFJVXeBIAiCqAD4qu6AN1q2bInExESsX79eeq24uBi7du1Cv379AAD9+vVDYWEh9u1zOkBs2LABdrsdffv2rfQ+1waaNHEWH1Q87zGbzWoVxQQ2m/i/SiUOI553v2nE2gBAVlYhHnz4S3z73Vq8Mn4+LqRegsGoLJSXlhpdV+FGcbEBycne4zXqImazU5jDivTesFicsThlZcrtnZ1dBECM7sjIEF075DE6LPqgsnjyqdn4etYqfDBtCQCgR4+WaNRQHKOZmYUQHHctS0rE7xEZGermAMPGsNmkdKO4cOESAKBFiwYARFFD69ZOYZjc6vjAgXO4ZdhUzP9xAwCgsKhMsa4yP9u8vJjMVv+NAsBoEn8vXYizMMFxHHieR0RECADgv41HpWVlZeL36HVVK8V6EhJiAPjfP82yfhcWlvloWfO5lFuMtUmHJHEBUbHIzyWAc2wDznEbHh6CO27vjbnfPo+ff3oJDRvWQ2Sk6A5QUmoQ1+OYyari3S9/wsLEY4XrMVT+vLTEKAnKAODiRc+RUNWV1//3Mx4bNRMHDqZUdVeqJaxQFkxWrtyPkhIDvpy+LOjrro4EekycPmMFAGDq1MVX/JmlpUYcOZoqPTcazfhh3nqcOp1xxesmCIKozqhZRIvV898OLKIFHOfxb3WCIAiCIAiCIAiCIGomVSrwKC0txcGDB3Hw4EEAQEpKCg4ePIjU1FRwHIdXXnkFU6dOxb///osjR47gscceQ6NGjTBy5EgAQMeOHXHLLbfg6aefxu7du7Ft2zaMHTsWDzzwABo1alR1X6wGIy/mZ+cUoUvnZm5t2M17VnDjHQIP+ayga/q2k9qyIvzZs1lSIU6vN2HGzJUwuggGCgIoCj/z3Dd4bNRMnD5DN+4ZckGAN4FHbm4xjhxNhV5vlrU1S78PAJTKBB8HD6W4rc9orDyBh7xfdkdRtk/vNkhIiAbHcTCZLDh7NgsAUOoo3kZGhCI8XKdw3mBCBqPRIlufHRdSRYFH8+YNpNflkSJyIcxX08VC1Lz5DoGHyzjVlwVX4KFWOfsv+MtMgrifpaXlub1ucnznkBD3maf5+aUAgDnfJkmfw37rEbddjYEDuwIAYmLCcG2/9gDcBUGupKc7+8B+s9rKk0/NxvuTFuLPRduruit1AqOLQIvtzxaLVRIWhYeHgOM4dO7cVIqpYqINJk5zFSbK8SrwkJ2nSkoMivNW8tksj/teZSEIAj75dCnenPCrQmDljWPHLgIAFtG49YgmCLFSRUV66VxptzuFScnJWVe8blcyMvIxfeYKFBSUBn3d5UWvN+H5F77F4KGTpXNzIKjUVy6q+ezzf/Dsc3OwZu1BAMCnn/2DH+atx3vv/XHF6yYIgqjOsPgv7w4e4vU4iTsIgiAIgiAIgiAIonZRpQKPvXv3omfPnujZsycAYPz48ejZsycmTpwIAHjjjTfw4osv4plnnkHv3r1RWlqK1atXIyQkRFrHb7/9hg4dOmDgwIEYNmwY+vfvj++++65Kvk9VM//HDZg8ZZHbTOfyYHIpoo0edTP69++Il14chnbtRNGMzeHgYXUplKlUPO65px9uvqkL3pt4H3ieg81mlwrJTDwQFSXOqN6x4xSeH6P8rYpcCucbNx3FkSMXpOdWqw2pqeKM6a1bTwT0fV5+ZR7mzV/vt21NxhyAwOPe+z/Hs8/Nwc6dp6TXBEFQuHIUF+ulx7/8ugkAcOmSM3dcLpKoaIqK9G6vtWjRABqNWhJtPDZqJsxmK0pKRIFHRIRY4I2JDpPe09Dh+CEf2zk5xTAaLVCrVWjcyOlao1arpBug8m0qvyn6x8Ktbn3z55pSXtRq56FZH4BrygfTluC+Bz7Htu0nFa+z3ytE59ta3G4XYDZbpWNHRGQo3nv3Pkz78BHM+34smjYVi+WefhM5qbJIl7y8Er/9rsnk5or7xdZt/o9DxJXDtjeDiRHLZOKqsDCt2/tCHa+x4xwruPMeBR5at3UCyv27pMQAg8tx8NKlosC+RBCwWm1YvnyvdB7csvUElv6zG5u3HMfapEOKtllZhZg3fz0OHTovvZeRWsOcRyoS+XZhhTJ/2Gx2j+K7tLQ83H3PJ3jxpR8gCILimJmfX+p2fZaVVYgZM1dKx0uj0YyXx83DN3PWBNSP9yYtxMKF2zDu1R8Dah8sBEHA7G9W4/sf1kmvrVt/GIcOX4DJZMFBPw4x8u2g83N+CgQ29idN/hOnz2Rg1eoDAMRxfiXXxETwsFvtsFudv4XdYodgq91CUIKoDDQOkZzFm8DDIbjmXBw8KK2FIAiCIAiCCIT6sZFV3QWCIAjCC1c+VfEKuPHGG33OTuc4DpMnT8bkyZO9tomNjcWCBQsqons1Crvdjrnfizfab7mlB/r0bntZ65EXwadOfhDdujXHJ90eBQBs3HgMALD0n91o2LAebDbxRpJ8JvT4V0ZIjxs0iEZ2diEyMvJRv36kFO/QrWtz7N6T7HG2sdwZ4fiJNLz1tvjb/rv0TcTFRSFN5hCgUilnfdpsdpw5k4k2bRIlB4ekdYexZ28y9uxNxhOjB17GFqkZKAUe7oIAQRCk33b/AWXhpazMKM1cL5YVo1JTc3H2XJYkngDgFqlTkWRkFiieq1Q8Yh0XlfLjRlGxXhbRIH6PkFBnobdN60SshdIB4PyFHABiJJHaZfawRqOGyWRRbNMimfBlxsyVSEyMUbzHX0SLyWTBBx8uQWmpER9Ne0ThFOIJq6wIUlhQhvAw96gkOWvWHAQA/PzLRlx3bQfpdfadQ0LcC99yLBabtA05jkNoiAY8z+OGAZ0AAPXqRQAACgp9zxJPdbiiAIELPKxWm9tvUJPgQHfIr4Sz57LQuFGs3zHqKvBgogsmHAwN1XocR6GO9YrHLk4Shmg8tPXm4GHQKx08XKlM4ducb9diwe9b0KljE3w/9wUcP54mLdu16zRuG95Lev71rJXY8N9R/PTzRqxdPVEh4EtLy4PZbPV7LKoL5OY6j1WBzHC22ewYM3YuCgpK8fNPLykECosWb4feYMax4xex8M9tuLpXa2mZ1WrDxYu5aNy4nvTaK+PnITU1F9nZhfhg6kPYtesM9uxJxp49yejVq5XbtZzBYIbRaJaOycyR5XQlR5GkXszFr79tBiAKK+8c2RdbtzkFhlnZhYr2eXklmDlrFe67px86dWqK/fvPScuutMjoeq4ZNfprxfOLablo0Tz+yj6EuGJsJhsgAHwED0EQYDNaAZ6DOpSOQQRxJTgjWjwLPFhEC8cp3TYJgiAIgiAIwhczZzyJH+atx+uv3lHVXSEIgiC8UKUOHkTwkAsjMjML/bYXBAEHD6W4RU2w4tfEd+9F795tFMuYq8C27SfxyGPTfVrdA0CjhmIRgxXqWbxDdHQ4el/dxuN7CmUCg6R1ztnIUz9cAovFigvnnQVk11nTv/+xFU88NQv/e/MXaZa2/Mb/hdRLAcVd1DRSU3Nx4YJzu3hyk2DiGk9cchS3rFYbShztmjWNAwD8889uRVvXSJ2KZPPm44rnarVKGmvyGdcmk0Wyww8NFQu08niQVq0SAACZGU7BCNtenoo+rOBpdkS0CIIgudAwsrIKoVLxaNFCjHfxVPSVs3LVfqxbfxg7d53G7t1nfLYFnJEzAPxa78vHtOvscybq0el8F1BMJps0bsLCtOB55T4d6ygmyreDIAj4avpyPPHULFx0uAFclLkCuBb4PJGcnImRd32M996vuTb6HFleXzZ7953Fo4/NwGtv/KwYx4Ig4Isv/8Wnn/0jvS53EgKA3XvO4KefN0r7Xnh4CDzBhCNGg7gvMKFIXJz7DAQm8DCbrYqICfm55mJankLwBQAp53MC+LbB4Z9/xWPy8RNpyMoqdOubnFOOor/FYsOWrSeQl+fcf81mK06cSAMBpF50nj+LivRu1wmHDp3HvPnrke84Fu/ceRqHj1zAxbQ8nDqlFFZcSHUeA2fMXIkVK/crlp8+kyk9LiszSk4s/208ihMn03D0WKq0fOlS5flXEAQ8/ew3uOPOjzH/xw0QBAENGkRJy7MDOOYGi+MOYQkgfs9RT3ytcFXLdBFo/vjTf1i79iCeeuYbbNp8HAt+3yIty8sr8Rv/5YuTp9Klx506NnFbLhfw1EaSkzORlVVY1d3wjwAINtG1Q7DaxX8WO2wm/9FSBEF4R3Lw8BbTxiJaOI4EHgRBEARBEETA9LqqNWZ//Qxatkyo6q4QBEEQXiCBRw2gsLAMixZvx+IlO7y2kRe/5MV+b+zceRovjJmLF8YqI1KcBWF3y+yIiFDFc38Cj4aNHAKPjHwATpFBREQI3n3nXowedZPbe+TFbHlBfvfuM9jw31HkyIpZOTlKgQcrfO3YeRrr1h9xtCmUlj/40Jf47PN/Pfa1JjPhrV8Vz10LJWaz1W1byWHbSC5SuH1EbwDA4iU7FW1dowkqkt17lEKIzp2chRu5DbHRYJZiTEIdzh3jx4lOMv2uaYf2jmih8xcuSSIGNtu5ZUvvAg+LWfwMo9Hp5jF0aA+p3ehRN2Hgzd0A+C8gyeMQXGNUPFEiE+Sw/ccb8ggA132ROQvoPLgjPPzQAOmxySwXeLi7hdSrFw5AuX+eS8nGn4u24+TJdCz5SxwnqbLiZlpanl9B1dQPlyA/vxRJ6w77bMfYuvUEbrv9Qxw4cM5/40pCxdf+0+jefWdx/PhF/w0DWA9zzwGA5Sv2AQD27z+HDRuOSK+nZ+Rj8ZKd+HvpLpxJzoQgCDgjK4wDomvNt9+txW8OFwHm3uNKaKh4Llu1+gCWLU+WjoXx8dFubeXrePLp2bBYrBAEAedSnH02mSw4dy4bABAbKwqfvp61yq2gXRFYrTaFW8hd93wiRVEAQNrFXGmfM5ksyJCdQzdvPo6sbGUf97vsR8eOXcTSpbuQn+88nv238Sjee/8PhftHTScnpwhTP1iMhX9ug15vUhy39HqT4nhttdrw9rsL8P0P6/H4qJnIyMjH9h3OmLPks8pxyWLmWBTdwj+3KZafOeMUhMgFNwDwyivzsGatU9h64GCK4hialpaHc+eyYbXaMPf7ddi164wiYm3PnuTAN8IVcjpZ+b1drzvlYw8ATsu+94S3fsWu3WekQqPdLuCgI0bosvriOJ8PHdoD3899Ad9+8yz69+8oLfcnwKzJ7N13Fo+P/hr3P/g5kl1+k+qEYBcgWG0QLDYINjvsZjssZRaY8g2wllqkCAmCIMpP4A4eJO4gCIIgCIIgCIIgiNpE7a9M1QIKi8rw5VfLMXduktc2coFHekae13aMjZvEuJXz55U35X0JPHr2bKl4zgpNGo3neIXGjWIBOGdyMuFBeLgOUVGhePqpwfj+u+dx442dccvQnmLf053FbHZTnhWck5MzFYX07GynaKG01Kh473ffrYXdbnf7fn8v3aV4vndvMlavOaB4zViBMSQlJQbJXcQf5y/k4NffNiticzzhOntc7sqSlVWIYcOnYtyrP7q9LyEhBoBzO7JZ6RERIRg27CqPn6W/glm25UXuFqFS8XjyyUHSc7mNvsFokZxFmMDj2n7t8cvPL+G9ifehfv1IJMRHQxAEHHDE0xw9Ks6S7tK5mdvnSg4eDlFHYVGZ9Podt/dGZGQorr++Ix55+AapSOzqJmOxWJGWlieJL+Qzq886isO+KCl2FqTkxUY5e/cm49nn5yiKjbkuLgcGgyjaCA1x35+ff26I9NhsskkxM54K5ayQXVRkkNxT0i46jzObNh+H0WiWHAMAcZ+Uj8XSUiOmTF2EKVMXYf/+cxAEQSFOsXq5MS3njTd/QX5+Kca+9IPfthUJE7cBQCAJLRkZ+Zg1e5XfAhw7NphMFvztUmivKi5dKsJLL/+Ap5755oockJLWHcJLL/+AcePmw263w2SyYOdO59iVOx3I3QGmT1+Bzz7/B7t2nwHPc+jaVbnPbvjvKAAgwouDB3P1AYDjJ/JwJll05oiPj3Frq9Go8dyzQwGI+39RkR65eSUoKTGA5zkMGdJD0b5Nm4bS463bTqCiycouVI49F/QGs+RQkpauFFitW39YijxjbN/u3P4mkwUvvvw9PvnsH9xz32fYtfsMMjML8PY7C5C07jBWO2KgfCEIAr6etQrz5q8P6PscOHAO9z/wOdas9b/uYPLV9OVYuWo/ps9YgaG3TsEXXy5TLJfHhxw6fF46F+XlleCe+z5TXEeccolGYS5kDz3oFNDpdBqMelwUtLLxBzgFczEx4WjWLA4lpUZFFFFRkV4hqjvkIoIY/9qPCneu3ZUo8MhzXIuNHnUTHnrwerflZ5IzFWLTix7OY88+MwTDh4mRQkeOpCqWCYIQ8LVSsmObtmsrijm7dm2OTz56VIorcxV46PUmbNl6okKv9SqLn3/eCEEQYLHYcPJkuv83VBFWgxXmQjNM+SZYjTbYrXbYjXbYDFZY9VYIPo5rBEH4hv0dbrV4vo5mAio3xzkSfBAEQRAEQRAEQRBEjYYEHjWAcIfAQW8wKwo2x0+kSTeuFc4W2d7dGhgREc5imLyIaDJ7j3RwFXikOezgIyND3doCQMOG3h08GJ06NcWHUx/GHbeLjhHnZbNAWftevVoBEGeIyoUs2TJ3DvZYq1VDp9MgI7MAFy5cUswWd8Vut+OlV+Zh8pRFOHFStKpf+s9uDBw8CTO/Xun1fZfLzp2ncdvtH+LzLwJzEXn0sRmY/c1q/PTzxnJ9jryovvDPbYqiH0OtVuHqXq0BQIoiYKKCqKgwxMSEY+63z0vtmZAhswJswM+cyURKilL0IAiCVNj6a/Eb2LJpKnr2cI6/qVMekh4bDWYYjEqBBwC0bpWIqKgwAMANN3QGAGz47wisVpsUZdC+Q2O3/rAbpSyipahQLNhFR4ehR/eWWLPqXXw87VFotWo0iBPt8V3jIyZPXYT7Hvgcw0d8gF9+3aQQIx09muqzSCsIAtLSneKJn3/Z5LEQ9cr4+ThyJBVTP1gsvZZyPgdHjlyQnuv14vs8uXLwPI+2jgK1yWyDvswh8AhzL5RHRYVBpeIhCIL0XeSCquzsQtw86H2YTBZERoQgMTEGAHBYVrT75ddNWLX6AFatPoCxL32PRYt3SAIUAAoHB38EIjSw2ezYtfuMX4HU5SCPQeL93CA/ey4LTz3zDX5bsAWjnvga+/afVSy3WKyY/+MGPPTIl7jt9mnIzS3GF18uw6ef/YP3Ji0MqD8L/9yGV1/70aMg5K+/d2Lhn9ukYmlpqRFzvl2L9esDc02RC8h8RT35gxXxs3OKsGbtIdw08D0Uy4RM8mPUOdnx4MDBFPztiKp4ceww6bjlSpg3Bw8XcdOuXaIzUEKCu4MHADz26A2IdJyjSsuMkpNUQkIMHn14gKJtdJTz3PflV8u9jrXtO07hscdnYO733kWagZCW5l28GR0tHut+mLcBgDOerGXLeNx0YxdF23ffvgc8z+HY8YtSVEZWdqEk2jQaLRg3fj7uvvdT6T2BFI8vpF7Cgt+34Psf1ksiOjmHD1/Awj+3Sce/t9/9HRfT8jBp8p9XNLbKyy5ZTBbrS0xMOEaMuBoAsG+fcx9l11NRUaFS3JccV9FFkUMQOPDmrpjw5l3o378j3ppwF/pd0w4AcF62P+U5hCPNmzfAhP/dhZgY0Snpjtt7o0mT+gAgucUA4r4DAH37tPU4E3vvvrN+j412ux1HjqZe8XGRxdU0a9YAY164BUsWv47rr++I554diiZN6sNms2O1w12mrMyIQsd59NtvnsWYF27Bc88OxaOPDEDHjuI5eMtWZySbIAh4f9JC3Hb7NMlxx2634++lu/DpZ/8gLT1PIdpg1zzyuBrAeW0qP84AwE8/b8T/3vwFL770Q42O7SssLFO48Jw9l+3X3erIEXEfDETcUlhYhs+/+Bc//7IpoP4cOXIBfy7a7lGsKdgF2C028X+jBXajFXa7HapQDewmG6xlFNNCEJeLFNEi2/cEQcDatQfxzZw10t/W/q5XCYIgCIIgCIIgCIKoWZDAowbAZiDbbHZYLGKUwo03T8RTT8/GY4/PQFGR3kX44F/gIS+myAsIJkcWtk7rPuO/ZQtlnAUTT0RGeJ453aih6OBxJjkLVqsNpY4CsqeZ1i0c687OLpRmfRY7buAzl4UDB1OwfYcz3qK42CDdpGZFmGZN49C5c1MAoiV/QYFT7OD8jmJhQ77NmP1/UtIhCIKA3//YilOngjcb0m63Y/xrP8JisUnFSn+wwtPBQymK1z+ctgT3P/A5tm49AavVJjlOMLZuOykVLbzl2t98c1fcfJNY9Fu1+gByc4slNwVWKOzcuSkG3twVAPD6q3cAEH8fiyV4N+L1ehMeHz0TDz86XXLMAICSEqMUw8LiQeRc37+jFL1iMJolm/pQD1EkANCLiVnOZaOszFmcj/IgTtJqxO25ffspCIIgOXiw4pucBvFiQSk7p0ja5larDdu2iePUbhfwzZw1OHEiTfG+6TOWuxVB8vNL8NjjM3Dd9W8r9k+r1YZ1HiJM7F4szU86xq3VapPGuieBB+AsipvNNqcYxEOhXK1WoWNHMSLnwEFxPDKnoFatEhSOKv36tceggWJ0zb/L9kivH5YJTwBxFr288Pb+5D899tEb/gqU6zccwbjx8zH2pe/Ltd5AKJXtV94ssRl/LtouFSDtdgErZU4VADB7zhrM/X4dzp+/hMLCMqxYuR/Llu8FAOzbd87jzHc5RUV6TJ+xAjt2nsZzL3yn2C7Z2YX47PN/MX3GCsz9fh0A4PMv/8XPv2zEu+/94Vac9oRcnOTpeBoopSXObTZl6iLp8aOP3ADAWTAGnOen/td1kMRCMTFhGHlHH48CJMAZieFKSKjnY4I3gQcARDiOC6UlRkk8Gd8gCq1bJ+L9ifcBAG4Y0AlWq1KodcQhajCZLNi+45S0j//222Ykn83C/B//Q2bW5Ue5pHsReLz+2h247jrRreDfZXvw24LNUvxHXP0ovPzScMTHRyMkRIOXXxqOW27pifvuvQ4AMG/eepSWGiWXocaNY3GVi5gTEB2D5HEgnpDH6OzcdVqxLCMjH2NenIvpM1Zg+Yp9KCrSK8SIgYzFYGC12qTvsWLZW1i08DV88dkoLPj1FQy7RXSu2rrtpCRMZdchfXq3xZdfjMZtw3vhjdfuwB8LxoPjOKSm5kpiGpPJIolkYmLCMOK2q/HJR49i8KDuaN5cvMbJySmSxIvs/9h6EejevQV+/vFFvP/e/Rg/bgQ6tBeFDy+9Mk+61mLtO3Vqgv+9MVI67o4fNwJqtQqFhWXI8iPC/OLLZXj2uTmY/+N/V7QdC/Kdfec4Dg0T6+HjaY/isUdvwJ0j+wIAvpqxAmnpeVJcS3R0GLp2bY6HHxqAxx69ARzHSd8zJSUH6xyis717zyJp3WEUFpZh02bRbW7R4h349LN/8PfSXbjv/s8x9NYpWOsQjbHfyPUYwJ67OniwKJtjxy8qBDflwW63Iz09v0oFIsnJmYrrgIV/bsOYF793E1fZbHZpf3thrLgP3jzofZ/RfYAoeF7y107M+XaNIsaIcfxEGr79bq10znl/8p/4avpyzPl2raKdIAgQrHYIVgGCXYClzApzkRklJwqQvzMb1lILrGWVF/9HELUNKaJF5uCxbdtJvD/5T/zy6yanWx4JPAiCIAiCIAiCIAiiVkECjxpAiGwGssFgxtZtJ6VieHZOEdZvOIxLstnPhYVlfouf8tnSZxUCD+8RLRqNUkjAbLEjIjwX1lq1SkBoqBYlJQasWn1AKuZEOlwV5ERHh6GRw/GDZbGzm/LXXtsezZs3QFmZCcXFBqhUzmHL4l9yHGKN+IRoabbyr79t9tgvVqS8kOp0C0lOzoTNZleIOvxZ0hcV6fH1rFUKO3dvuBa3/RXK5PC88/vmF5Ri+Yp9uJiWhzfe/AXfzFmjKK4DYrRAUtIhAE67eDn333cdXn/1dvTr1x6dOzeFzWZH0rrDUkSLXPTw1oS7sfjP13Dtte0RGqqF3S4gPSPfbZ2XC/v9AChcPPILxIJZRESIx7EIABGRYqHXaDBLQp9QL8Xcpo7Z0GkXc6XicUiIBmq1e7wQG6e/LdiMffvOSs+jPYzbxo1iodGoUFJiwKlTolX/2bNZMBotiIgIwYDrO0ltu3VtjkccDgCLl+zEw498JTlBbNx0FA889CWSzzrt+5s3b4DHHr0RALDW8XsGQk6OuC/Ix5g3gQeLYzGZbCjTOyKUvLRlDiqseMQKyHfd2Rcvjh2G+vUj0bJFPJ56chAGD+oOADh0MAVWqw12u3Pf+nbOcx7FMv4oLlaOZbnLiRyr1YbSUiO2OSIzjh27KBVgg4VcmLJ//zmpGOyJow4Xk4EDRbHUkaOpiqLgLpdC+LffKYtjrseOgoJSrF5zAGfOZMJqtWHFin3SsrS0POyVuQ/Ij00//bwRg4ZMwhrZcU0e7+MNeWFPXpAvL0XF7seiwYO64Z57+gEQI5nYGGFxQT16tMTPP76Ed9+5F7NnPQOdTuPVqSMq0n3/BIAwbwIPDxEtDCZCLC01SkXQBg1EQciQIT3w+4JxeOede93EPcwNadY3q/Ha6z9hxswVAJSiy507lb93eUhzjLP77r0WH0x9CL/8/BJWLn8bd47sK0VdAMCcb9ci3bF/xNaPQHx8NP5e8gaS1ryH+++7DhzH4cWxtyIhIQZ6gxlnkjMlIU+zpnGYOeMp6djDyM0rwY6dyvFy8mQ6Nm0+Lo3nZFn8iDxODQC++GqZJFr8+ZeNOHcuS7H80OHzl7dRykmxrNgfFRWGxo1jcc017RATE44uXZqhVasEmM1WrFsvOgrJhY8N4qLw1oS7MXJkXzRrFodmzeIAACPumAar1Sa1VatVbsfcqKhQ6Rpn8pTFMJlt0jZiEVhxcVEYMrg7NBo1+vRpK733s8/+AeC8dqlXLwK3j+iN5f+KApV77u6H1g53EVcxISAes5cv34syvQl//S3Gy6xavd+tnStWqw2/LdgsjWs5TJDF+i7n3nv6ISEhBjabHcePp0miJubqJqdDh8Zo5xBr/u3o29FjToHCl18tx67dZzB9xgq3965yOISwa0VXNzn2XC7wsNnsCme3JX/tdFuvPzZvOY7+A97Bvfd/hs2bj/t/QznJzi5UXNN7I8uLW99x2RhYuWo/ht46BbcOn4rJUxYp3MNWrnIfA/n5JTh+/CIEQcBZ2T568qRyXBUWluGpp2fjp583Yuk/u1FcrJeu5xb8vkVyxQMAweYQeHCASsvDbrLBkKWHJd8kPk4vg81ADh4Ecblo1OLf5/KIliMeXLRc/14kCIIgCIIgCIIgCKJmQwKPGoBarZKK3Hq9CVkuM4BXrTrgFssy65vVPteZKyt4ygsrvgQeADB71tPSY1b4ivDi4BEREYK77hRnch4+fEFqn+hl5vTVV7cBIM7etFptUvE7tl4Evvh8FIbdehVuvKEzZs54Et26NgcA/PiTOAv1kjTLOhp3juyDGwY4C+t3juwrFREBZ5Hy+HHnDeiDB88jJSUbellRfPcep427J/5dtgcLft+CsS99L32+N06fzlQ89zcrX14wVskEHnLreECcoeXJEeWnXzYCAC65zNDcvHEKXn5pOMId77n1lp4AgNVrDrg5eACiYKJRo1hwHId2bcU4j9WrD/rse3mQFz5Pnc6QHstnB3uDuXUYjBbJfcKbwKNRo1jwPAe9wSxt+3AP2w1Q7ht79p6VihbxHsZtSIgWXR1j8X8TfgEgOtYAQPv2jfDG63dgxG1X46knB+Lzz0fh2WeGSDOWL6blYenS3dDrTfj4k6UK1w6O4/DYozfidhYZsP+cIn7Dm7gBcO4LbP9Rq1VuLi8MVgAzGKxSe28FdOaywz6bFeyjo8Jw/33XYdk/E/Dbr6+gSZP6aN06AZERIdAbzDh9JtPhtiMeWzp2aIxFC1/FY4/e6Dbj2tXV5PiJNKxafQAmkwX33PeZYlnaRfdtYDZb8fwL32HEHdMUjhD+ZrUzFi/ZgQlv/eo3LiLNZf/d4SKUSE7ORE5OEYqLDVLEyTNPDYZWq0ZaWp4iIoIVeT/84CFp3+M4ThL2HZHF3FitNox96XtMnrIIj4+eiQE3vot5P25w+WxnUe6ETLDG85wiWgZwF494Qh4BUCDbpuWFRVdMnvSA9NpNN3VBPZnY54mnZgNwjt3w8BBERITg1lt6ooXDAYFFzbgiP27J8ebg4RrnICdCFtHCCq0spgoAmjdrgPAwHWwu4/VMciZMJgsWL94BQBRybd16QnLHAOAWR+UJVoR2FQIyB49mzeJw041d0LpVoiSW6tmjJbZv/RAxMeGw2ezS7xZXPxKAOKbk4kiO49CieQMAojCIXVfEx0eD4zjcffc1CA3VommT+lK8iNzN5VJuMV4Y+x0mvPUrxr36IywWq8LBIzdPWaBOSXEW1TMzCzDmRaWzTs4l3wXtkhIDJk35U3JHCoSCglK32CImFIuMCFFsDwBQqXjc6IjzYudgdl705BDTVybCWJt0SHIFi42N8Bih8vZbd0OrVWP/gRSsWZsiXYO09hD9MvDmrmjTOhEApEiVgkJx/2P7TExMOBo3Fp3SunYTz0Ouoq1ly/fimefm4MOP/sIMmUjC6BL554nly/di1uzVePTxGYq2cjFLPQ8CD7Vahe6O/uTmFkvn3EYeBB48z2OK45hw9JgYXyYfRwAwbvx8j/1jx8hiSZyqPAaw81tWVqHU/0uXiqVzESC6VJw5k4knn57tUUTiCXmE3+9/bA3oPYFy9Ggq7rz7E9xz76c+z/M2mx0HD6Z4XMZEbcXFenz8yd/S8dTVVcf1OjQ3txhPPDUbTz3zDX75dZNinz15KkPRVi4kmj5jhSS2YTz51GycOpEOu8UGu8UGS6EJhXtykLs1C+ZcI0xZTsGfOdcIayk5eBDE5cKiJeWiU7mbB8M1ooUMPQiCIAiCIAiCIAiiZkMCjxoCK1zrDSZcdBQ2R9x2NXQ6DY4dvyjN2o6LE4tWixfvwPHjF72uTz6jfePGYzh9Rrx5K0W06DwXhHt0b4n3HBb1DE8xF4wuXcSb/EePpUqfKS+UyenTWxR47N5zRhGjERkZioaJ9fDO2/fgww8eRo/uLfHSi8OgUvFIWncYp06lO63OYyPA8zzeeedeDB7UDZ06NsH9912H8a+MQFuHQCE3txjFxQYs/ccZlZJ8Nkty/GBFlZSUHLeCqBy528eevU7hhdVqw3vv/4HPv/hXEsxcuHBJ8V7msuCNNyf86nwiuwHHRDLXXdsBPM8h9WKuJEiY9sHDUrt4x2xz+Yz75cvecnOsGHhzN6jVKpw5kykVC6K8FErvuKMPANHZQl6wvBLk6zktE3jkOwQenuJZGCEOgYdeb5IcbeRuN3K0WrU07s4ki8Ujb04VTz81SHq8fsMRqWDerGmcx/ZMxHTpUjFMJotk+d6yZQJiYyMx4c278MTogQgP00Gl4vH93OfxxOibAQC79yZj46ZjUrHs9wXjsHXzVKxc/jZuvaUnGjWKRfPmDcTZtGedheElS9xnHbMC5NqkQygpMUj7UFiY5wI34HQ2yc83Su29bZcmjrasyMyKap4K6zzPo4ljez319GypqB0VFQq1WoXw8BA89+wQrF75Lj6a9oj0PrlLx8I/t+Gpp2djytRFuGnge26iC7kDDyC6Ftx480QcO34RJpMF+/Y5hQl5+f4dPMxmK774chk2bT6OV1//UbHv5xeUKoph5132Z5MsXmjb9pN4bNRM3Hn3J7hl2BQAQGJiDJo2jZNcFj77/F8AgNFolr7X1b3aYOXyt/HX4jewds1EvP/e/QCAIzIRxomT6YqiGyCO/86dmkrj9rBMsMeELa+Ovx0fT3sUffq0xdNPDcIP37/gaHvB4+x8RnGxQVHIK/Dj4CEIAv5eugvvvf+HdE4BRFEGcz3p0b0Ffl8wDq+9ejsGXN9JcUxyRkt5H7ve3I+8CTxcZ/UzPLn3MJg7UGmJAZmOeAlPghDXAkpycpabo9Mbb/6imDUv34+9MefbNXjo4a8wcPD7mD5zhbRd2O/ZMNG9UM5o3Egs+B88eB6A85rAE2yfPnToPE6cEM9nrRxigwZxUVj052uYP2+sFC8id/5auXK/VCjfvfsMfluwRfGb57k4eLBzNHMCYnTpIkawFfkZW1/PWoU1aw7i9f/97LMdY8HvWzB8xIe4feRH2LzF6bJQ4ogK8jYu2PaTIlqYeMCDg9MjDw+QRCI//fQfUh3HiCYO0YUrPXu2wtTJDwIATpzIk9zKel7Vyq1taKgWP/34IurVC4fFYsOxYxcVDh6uDLxJdAham3RIit0TBEHhCMSinwCgpNSo+D0ZBQWluPf+z/DQI1/iX1n7EyfTFW0AURDjydkKcO4vl3KLJXcr5tThSqNGsdBq1bBYbMjMKpCul1jUF2PMC7egkyMqDBCPy2azVRqHrr8pO7/t3HVaig1h11ANG9ZDr16tYLcLeHz0TJw4kYaFf27z6JwhCAL+WLgVH3y4BJ98ulQSoAJAZlYB9uxJ9io8Ky9bHQImi0WMZlv45zaPAsXv5iZJDhztXbZrieOcsvDPbbBYbGjapL7CNat79xYAlEJiQRDwvwm/SttnzrdrFfGNrpGFGZlKoTkTxzBBGQBMfP8PlGWUwm4RUJJcDMEqAAJQeqYItjIrOA0PTYx4jDdnGICqS7shiBqNJPCQRWharR5ccVwEHb5E9ARBEARBEARBEARBVH9I4FFDYDPyDHoz0jPEAmuvq1pJM2sZb024S3q8XGbdb7FYMWnKn1iwYAusVptUKGBuAitX7odeb5Jm0Htz5QCAq1yKEawY5gl245ndsNdq1V7jGa66qhU4jkNKSo5k7xwZGeqxENepU1Ncd20HAOKMVVZ4ZDNbw8N0mPT+A/h+7guSjXq7tmJfdu9NxqrV+5GTU4S4uCj06iV+HxaD0b9/R9R33KR2LabKkc8ylbugHDx0HknrDmPJXzvx088bAbjfHPdXcJZHdeTLignsd2vaNA7Dh/dSvKdTpyaY8Kb4++fkFEEQBGm7LFn0uscbedHRYbi2X3sAzsKCt4LN0CE9EBcX5Zhdrixw2+12pKRkw2q1Ydbs1Yqx5wt54eK0bHtKv6eH2cEMJnqSuwp4iyIBgISEGADAOYfYwJtTxehRN2PFsrcQExOGjIx8/LfxKABxm3viphu7SPtnZlaBVBRp6XC8cIXnedwwQJwlvnv3GXz+hVjsf+rJgWjerAF4nlcUq9kMbXk0jtzCntGju7Nw+s+/e5yOHD62SfNm4gz+vHyD5ILizdmEFS2zc4pw8mS6VLD3FLkEKMcRE095svMfcH0n6fsWForFVEEQMHduksf1suPHv8v2Stb/VqsNP/+y0fOXBAKKaJELI44cScVX05dL6x79xNe4/8EvcG3/t3Dv/Z/hh3nrFe+VRwCwfV0+450VtZ96ciAAsbBWUmKQxFk6nQbh4TpwHIfExBiEh+nQ1VH4TjmfIwn4mHioT5+2eOP1kejUsQnGjxuBr2c+hRsGdAbPc9ix8zQOOQrHTECVmBiD667rgK++GI3Ro25Gxw5N0L9/RwiCgCkfLFb0dc+eZIy4YxrGjJ2LDf8dUXxPf04o/208ik8/+wdJ6w4rZrmXlhpht4ufER0dhubNGuCuO6+R4qfuuL231NZkskBf5nTwcOWWoT09OtJ4Exo2aVwfzz07FK+/djuaNxeLzv0cxzxvMFekklKjdCxu7RD+yXGNaDl9OgNzf1gHAJKg0JVjxy9KkVKeKC424LcFW6TnCxduk46nbLz4ch/p2KmJ4nk3h5OCJ1gfV67aL83uZ+5YgFj8CQvTIS5OPB/KBQF79yUDcB7nvpubpDhXyfc5g8EsFeHvc0TENGoUi6V//Q+PO6Jgjh2/iClTF0n79Nq1BzHqia+R5hCUbdnqFGnIBTNyyvQmrFt/GPkFpVi/QRy7drtS5OBLsAEAjRs74rwc7gnsfOFJQBQXF4U1q95FaKgWF9PysHGTeK5o7BAWeKJ//464TXbubtM60at4kOM49LtGHKu//7FVcpPydBzt1q05undvAavVJp3LL10qVvwmrsjj+Rjbtp9Ceno+zp+/hJMyUce4cfOk34atMyYm3M0FhcGERbm5xdIx0ZvAQ6XipW1w4fwlydlr9KibpOtNrVaNoUN6YMrkB6Wol/z8UunYy3EcIiKU57reDtEwAPzy6yZYLFbkMLe3+Gg89cQguJLkIQ4tKekQZsxciRUr92HpP7sVTm+XLhXj5XHzsGVr4M4yruzZk4w33vwFS//ZrRjn381NwvQZK/Dq6z9Kr9lsdpw4mYblK5zimxscrjOMsjIjrFYb/li4DQAwatTNUnRhSIhGOg9dSM2Vjv0nT6V7jPdhgq8DB1MU7kNMHMKunxnfznkOHTqIf1fkXyrBoUMXYDNaYc4VfyddvPM4HdEqCuGtROGtJd+MpmWJEOyk8iCI8sL+HpILYK1W9/Mkc/D4+KNH8fprd6BlS3f3KIIgCIIgCIIgCIIgag4k8KghsCLthx8tkRw8GsRHo0MHZzGnUaNY9O3TVpoRLxcd7N6djDVrDuLr2auwbfspCIIAlYqXnASS1h2Sigfh4TqvRV5AnNnLRBMAEBHh3cEjISFaURhp1KieR+tyQCwWsBiQhY4b096K5ADQt69oj75v/zmfM1sZ/ft3BAAsXbobfy8Vs97vubsfHn5wgKJd1y7NpJvaC//c5nFddrtdMYNRHhexWxa/8Muvm3Bt/7dw/EQa1GqV1IfcXN8F55gY5zY7ezYLL738A0pKDFJhJTY2Aq+/egeefmoQoqJC0aRJfdSrF4GePcVCcnpGPkpLjZKzhTdRDeCMaWF07NjEYzuO49Cypfh7yIt3KSnZeOiRr/Dwo9Mx4MZ38duCzfhw2hIcO3YRd971MabPdLc9FwQBgiDgYprTFeHEiTQkO9w18gOIaJEiLBw50xzHeY0iAWQCD0dRK9yLwAMQxxFzW2C0buVe4GWfq3bMnnvo4a+kQmnnzk29rr916wS0aCGKKwwGMxISYnDfvdd5bNvIMaM8PV0sqHw9axWOHRPdebp2bSa169q1GYbdehUAYPY3qzH1w8UAfAs82M3dnJwySUDirX29ehFSsW35ir1OBw8vhVKDwemAsWOnuE3qxXj+Pdkxgrmr5OQUSUW0554diri4KNx8Uxe8NeFuaQZ8RkY+Hn7kK9jtdo+FKTmffvaPtC+4cuDAOaxatR/btovRBiyjfMOGIzCZLMjMLJCiFwDn7xAZESJtb7nAg+3bMTFhuGFAJwwc2BWjR4nH2Xr1IqTibHp6vuRyEBcX6XZcrFcvQlr/rFmrIAiCJDhr0bwBRt7RB9/PfQH33N0POp0GrVol4LbhYqTP4iViRAgTZCQmxrh97zffGImwUC1On87Anr3J0veY+uFi5OWV4MDBFHzy6VLFe3btOu0z1oGNSwDYt++cJNRjgq3wcB00Gvd99I3XRyLSISpMS8tzRrR4GIv160difdL7jjgS59jz5jwEAI89egNuG94Lgwa2wJgXhkpjyBvseLlq9X6pkNm2jbtg4+abxKJpkyb1JdEFK4o/+EB/xTFk3vdjkJAQA7PZiluGTVVEadhsdmzYcAQ7d53GgQNKBxAAWLRoO6xWm+TIVF82S97tuz5yg+SK0aBBlCRs9MSwW6/C0KE9pOeNGsV6FLKwYn3SusPIzy+BIAiS48fkSQ/g6acGSfvNww+Jrha5eSU4f0Ecr0yEp9WqMeD6jli86DX89svLiI+Pln630lIjVq0+gLvv+RQHD6Xg/cl/4vTpDHwzZw0uXSqSxF8AsNEhunPlww+XYOJ7f+DJJ2cpHKFSUnIkkQHbVyM9RK4AkM5xWVmF2PDfEWmf83YtEhamQy/HcXHLlhMAgKZNPAs2GK+8PAxduzZA40axeP65oV6viQBg5B19wHEctm0/CbPZCpWKl0R/cjiOQ++rWwMA0hznVXYt0koWATPyjj7SuP3fm79g3nynWE0QBPz1l7s7FCCKne6+51Ncyi0O6PzMHLP27TuLiw6RDhMUe4Jt94OHzkv7f2JiPUz/8gmsXP42/vzjVcTFRaFhw3r46ovRAMTrBHZsjowMkQRjDLVahR/nj5We79x1RoozTIiPRrduzd3EzP8u2+MWFXbosP8oq3PnlE5I+QWl+PSzf3DkaCr+XroLL4+bJwnv5Cz8cxteHjcPW7eewCefLvUoKmavWa02vDxuHp58arZ0zTv2hVvx4AP9Fe1LS41ITc2FwWBGaKgWQ4d0x/PPDcXLLw3Hj/NeRJfOzaBWq1BYWCYdh1jf+vfvKJ2jwsN1mDH9SenY/PCj0zHt479QVKSXRKY3DOgs7RvX9G2Hhg3r4Ye5L2DcY0Mx65F70SwkEqYcPQSrAE7NIaprPcT2i0e9Xg2gaxgGVZgaEW2jAQ5QCypy8SCIy0By+ZQ5z7kexwCAc5ynr+/fEXeO7Fs5nSMIgiAIgiAIgiAIosIggUcNIdRhVX/+/CWpuN4gLgo33dgZiYkxUKl43HfvteA4TpqBm5KSg9TUXMz5dq3C1vyPhWJmeGxsBK65ph3q1QtHQUGZVBRk8R6+YLNcAbHY6A2O4xQ39Xtd1drneq9xOJLs8lCYcIV9z5Mn0qRt4kvI0P+6Dujduw2sVhtSU8UCSI/uLdCmjbOgxXEcOnduKhXm1q0/jG3b3WdmFhSUKWYRnziZJhWxdu9Jll6Xt7lzZB90dMxslDt4/J+9+w6PolzbAH7Plmx6g1QIEOlNQJCuglIUUFEsCCpNUAEVOTY8AoIUwYZwFI4fig3sgoiAICIcFWmCBZDeQxIgvW2d74/dmZ3ZkgRItiT377q8THYnyzubdya7+97zPEePZeKJJ9/DxMf+D3feNR//+/kA8vPti1CdO9tDLLt2H8WU5z+W/424uAjodFqMGnkj1qx+Hss/egI6nRapKXGIiDDAZLJgj6PlisGglz/886Rbt+by7yg1NV5uleOJVH5bGVD5v3d/kJ9PpbEPL0ZWdj4+++wXVdngP/44gfsffBO3DX4ZP/20T/VcPThyESY+vlReGPR0pbKkdesG8uMBnhfJlZIcC05ywCPce4gJAK7r2Ur+OjU1Hmlp3q/KvqaD+irWpKRYjwvCEo1Gg4fH9pO/v2tIV69Vc6SWActXbMUjj/4XKz6xX91/1VVJmPLsnfLia6NGiXj8sYHyz0m/k/KCLOnpiWjePBUWi4jt2w9XuH3/fu0B2ENHUnuKaC8LpQkeziPefp/S7TNmfo43Fnwrt19p2DABDz5wA1aveg6zXhqGQQM7qoIzZWVmHD6S6dYCyZO+/We4hTyOHsvEhMeW4qXZX8phrhnT70VMTDhKSk04cfK8vDgJAAvfHIM33xiN118diWXvTZTPHcqAh7TgOG5sP8ydcz9emnGf3AoDsFeUkP5tKTzgKYABABMn3AJBEHDwUAZyc4vkhVtlwE7pOkeA7PSZiygsLJXHleyhpUd8fBRucQRI1q61l/p/ed5KVZhFIgXTDh7KcGuRYbXaUFxixDerd8rnHMmYh96G0WiWKz94CyYIgoAGjmoyD4xYiLx8++Klt7CRVDWgbh1nJYu65YQenNuE4Z67u5d7PgSA2267FqGhepw4YZ9X9evX8VjB4Y7BXTDv5Qfw38UPY9ZLw1SBk9at0lTVM9LTE+UFFZPJgqee/kC+77XXV+OFaZ9g8r/el6vdtG/fSL4/KipMXlTXajVe29EA9jDGO0sewfKPnsB/Fz/itcICYF8Af+H5u9CzZ0s0aFAX06fe7bFiVhNF6OPV11cjJ6cIJSVGaDQC0tLqYtTIG7F61XP4+stnMGH8zXL4csLE/8P5CwVyMCUuLhKCICAlOQ4Ggz2g5ykgNn7C/8lf/77nGG6/Y57q/mUfbHb7mZOnzsvVlrKy82G12lT7PmrMW8jJKZTnd5yX1wpRUWHygvXrb3wLALjpxrZoXk444Z67u6u+7+L4u+2NXq/DgJuvworlT1RYTaZNmwaYNvVu+fv69et4DEkBzipTP23Zh7feXo85L38NwH7envfyAxg3ti8mP3krmjWz74vZbMXSdzchIyMHBQWleG/Zj/jHEYRp06YBoqLCsHDBaFVbvq1b9iFHeh1Szt/nzp2bIjo6TA7mJCXFlvv6TAqWLl9hn/9RUWEICwuBVqtBbGyEqrVfYmIMDAY9SktNeGLSuwCcrwdcNWuainvvtYcnn33uI/zn7XUA7OdcQRDkv6+A/Xxz6tQFeR5JTp323DJGSRl6FUURT05ehpWrtmPO3K/wyqvfYOfOI5j24qdu1Wd+2rLP9aHQ64bWcqhC8sOmP/Hjj3+5tYC64YbW8rEkKSoqw0FHwKlZ0xRoNBpERobi3nt6oEGDujAY9Gje3B78evqZD3Hw4FkcOmQPV7Zonor58x5Et67NMOPFoYiPi8RjitcV3367CwNvnY2//joFvV6Lnj1aYtrUuzFx/C2YPWsYAPv5/KaOLaEXNLBmlCH/T/vf0JA6obCV2QDB3ppFtNgAAQhNCUdYs0iciMyAoPX+Go6IPJNeKykreLhWGANQ7nskIiIiIiIiIgo+DHgECUOI3u22OnWikJZWF1998TR++nGmvMgQGxshty95fcG3bq0LpAXxxMQY6HRaDL69MwB7Wwfp9opIJfWbN0uVF5i9GTGiF8LDDdBqNejnWCD2Zui9PVWLV9KVyJ40apSI8HADSkpNchn3uDjvCwharQbjH71Z/j4uLgKtW6ehTp0odOpoD56MHNEL0dHh6Ne3He66qxsAYI2jD73ZbMEXX/6K2XO+wt+OK9WlihFlZWYMHfYGTp++IF85/MmKJ1X//qOP9EeC47n67rvfcfCQfXF32bIfsXPnEfy+5zgyM/Pw7HMfyRVWXntlhPzzv+85Li8IK6+c1em08oKPRqOR2+Js/MFeary8RRVpH9757yNY9t5EfPD+Yx4X+CTSAu2S/36PHzf/hd43TVeFNLzZt9/+fF24UIB/PfU+jh/PVi2ILH3nUXlR7fffj8mPWd4Vwn37XK2aq008XHmu1Mjx+NICS3lBBsBe8r5f33aIiDDgMcdCuzdjRt+Evn2ciz8tW9Sr8IPU669vhYnjb8GE8Tfj3ns8V+8AILfqAIA//3JeSfzK/AfRqFEivvz8KXz+2b/Qo3sLREeH4eMPn1D9vLcKG4BjIebGNqrbPFVNkEiLYX/+Zb96NyRE53WxfPyjN8vHlcTbuWL4MGcVnS++3CYvrEstZJRcF7PWf79HrqYTEqJDn5uuRp+brkZa/TpY8vbD8nZmsxUfL9+i+tmDBzPgqlXrNHneFRaWyueWXje0RqeOjXHttU3QtWszpKbGI8rRFqSwsEz++fOOMEOCl32VWmh8vHwrTp12BDa8tGiIjY2QK0NkZOTKFTlSPAQ2AHuFJAA4l5Ejh14SEqK9/k579bKX9v/r71PIzMyTFzaXvvMoJox3nivHPdRHruywbdshucXI62+sxvW9pqJvvxmYN3+lXL1COZ/fWLBGDoSV11okNMz5e5Xa/1R0jD70UB+EhxvQv397r+0fLkfDBgkYdt918ve9XFogSHQ6La7r2RJxcZFo26YBvvv237j33h64954eqF+/Dm66sS1atqyPAQOugcGgx31De8hBMwD4bu1uTJ3+CVZ9s0O+TTpX3jqwk1xdac/e4xh8pz3kUKdOlFulAk/S05O8BoeUtFoN5r/8AD5dMRlt23pu53LVVUl40bHI/9NP+7Bgob19UXJSrPw3MD4+Sv73Jo6/BYA9CHn74JflNjeefv/KUIwn+fnOyh13DekKwB7Sk0JggL2i1hsL1rj9bNMmKarwxS+/HnRWwSmnOpgUrJRCNf0reN3SqVMTTHpiEAwGPXp0b6EKjVaFG3u3kcMq5T12o4b2fSoqKpODEhERBtwxuAuu69kSI0f0hk6nRf9+7VThl4+Xb8WIUYvk1lPduzfHO0sewbrv/o1OnZqgf7/2GD7MfjwsXvI9Zs/5CkD5f58jwg2YPvUe6B3Vra5u6/21HAC0baOee+XNXYNBj9tutVcrKiyyn3vL+x3d1Lut220tHdXvHnjgBtSrF48RD/bCvffY58onn/4sh1JFUcRJx98jZfg1yqUllPL1zG+/HZJb+CnDh+fPF6gq9wDOtketWzmDi/Xq1UEbl2Nx2vRP8fXK7W77IR1T/13yiBxyy88vqbAtjtQaCbAH+6QqTs2b1UOrlvXx2qsj5fZ9gwZ2lF9jAJDbbd15R1ckJ8eiefN6GDbsOtVrgbhrEhBWLwIQAZvR/porNDkMEARoQjSwlFhgM9mgC9dB0Guhi9BDFFi+g+hyhIXZXyupKniY3QMeGgY8iIiIiIiIiGoUBjyCRIjB/YpN6cNUQRDcrtK96Sb7B9rKdiE33dhWtV0rxxWTdwzuolrUl/qbl+e6ni3xxuuj8NprIyvctn27dHz7zRSsWf28arHak5iYcDzz9GCEhOjQqFFCuVdMarUaecEHAPR6LRIdbTi8ad4sFbffdi1iYyPwr8m3QavVQBAEvLlgNL79ZgrGPtRX3laq4rFj5xHk5hbhkfHv4I0Fa/Dd2t2Y8vzHAIDGjZPlSg2FhaV4YMRCAPYP1aVFQq1Wg6XvPIrQ0BD07NlSXvBY9c1hHD2aia2Osu6uGjVKhFarwb+fHyLfJlUTSPVQol3SwVFNYtOmvwCorwT3RqfTonmz1HIX9wH1At0LUz+B0WgGYF8ofnH6vQDsi2quV5iPn/B/uHChAF9+tQ0lpSZVtYq0+nXQokU9LFgwWl5wllzlpS0KYJ/37duny983KadiBmBfJFMGQiozz6dPuwcb1k9z63HvqnHjZMx4cSgeGnMTYmLC8dCYPhU+tiAIGDbsOgwfdn25oRpPCzSLFo6RF/lDQnRyVQjAvhj77+eHQBAE6PVa3H1Xd7efV+rSpZlqTMrn1JXUGkBq05HeKNFrkCU5ORYL3xyDfn3bybdJZfhd9ejeAs8/d6f8vbQ4JbWxcaW8ov2zz37B+44r+h8a0wczZwzFzBlD8dmn/8LVVzfEmtVT5N/1svc3Y936PfLPbt26X/W44eEGJCfFyot3RUWlyMrKc+yP+3yRtvtt+yFs/ulviKKIzEx72CQh0XOYYdSI3ggJ0eHkyfNYu85eOaN+OS0dpLGfy8zFOcdje5u70u2FRWXY6wjySYu+nkhth86dy8Wdd80HAFzTIR2tWqVh2H3XYcL4m/HYxAFo0iQFH33wOEJCdBBFEUvf3QSLxYovv/rNY8uWWwd1kq9AX/3tTsyY+TkA7wEfAEhOct+n6HLCSQBw/XWtsH7tC5g+9Z4qvzL1vvuuQ8uW9dGhfboq7FEeQRDwxGMD8cTjAyEIAsLDDXj3/8bjhefvAmCv3PDeuxPk89/sOV/J52nXoEOzZql46l+3I62+unJQRX9Dq0vfvu3k86c05gYeAliA/W+X8m/3y/NWAvBc2SIyMhQNHVXAGpZTDSw2NhwjR/SWH+O+YW/g4+Vb8eVX2/D9hj+wY8dhhITo8NZ/xqJ///aoWzcak54YhElPDJJbWMx9+Wus/95+/EvtqTy55x71ObN5C+/VO+Sfubs7Nm2cjlfmP1jlc1Gv1+Gpf92OAbdcg6cm3+51uyZNktGxo7Oa1DXXXIXnnrnDrTpUUlIsXn1lhDznVn2zQz7PAfbXbABUQaKRI3qjaZMUuXUW4L2SkKRbt+Z4c8FoPP7YAPyrnHEDQKtW9fHsM3fI54g77+ha7vbjH70Z99zdHd27N8esmfep/s54euzmLn9HWzkqQd3Yuy2++OwpPDyuH24ddC3Cww3455+zePX11SgtNeHgwQxcuFgIg0GP7j1ayIGmvn2uxoI3RsmPd0ER8Nj4w59ex/Lscx/h+HF7FTFRFOWKMp06OcOQqalxuP66Vm4/KwU8x43ti6ioMLRsWV8eT9s2DfDkk7cCAH759R98/sWvAOC18kzPni3xzcpnERYWgoOHMnDxYiHq1o3GtV4quNWvVwevzH8Qr74yAtdd1xJ33tEF48b29bgtYD8XxnZMgD7OIFfp0MUYIGgE6MJ0EDQCNCFaaA1ahETpoAnx/hqIiMoX7qjyqTw/m8wWt+2Y7yAiIiIiIiKqWTzXeaaAM/LB3hBFYJvj6r+mTctfzJZ6wkuSEmMwfdo9KHj6A+x0tBBp164RAPui24TxN+PNhd8BqLi8OGD/8LYy20nCwkIqLIsv6d2rDbp1bQZBEOQPr70ZOaI3tmzdj5Mnz2PYfddVGFAAgGefuQPPPnOH6jZBENzaBzRtkozIyFAUFZVh4K1zPD5WWlpd/HvKnVi4aC2++vo3uQWE9NyMf7Q/HhpzE0JD7fseGxuBzz/9F+4YYl9MHf3QYgD2ha0VH0/Cb78dwr8cpfulqycHDuiInJwiLF7yPQCgRYt6HisbSG66qS3eW/YjRFFESkpcuR/CX6qbbmyLnbuO4uefnaGUWwd1wjNPD4ZWq0GPHi2g1QjYuesoXpr1BSIiQuWFo+EPvCm3jHh+yp24eLEI2347iDGjb4JGo0FC3WjMmTUca9f9jv+8tRYdOzZG2wqu+h3xwA34+6+TCA0LkSuueGMw6DFubF/Mmv0lBEFAnz7ew0OSS12oGz3qJoweddMl/UxFdDotlr03ERcuFOD06QuIjAitsNXRwAEd0b5dOkIMOq+VJCSNGiagW9dU/L0vF088PrDcCj6JiTFo1ChBrrDRylGNojzKYMRV5SyqDhrUCW8vWY+8vBI5hOFtnt/cvwP692uP/76zUVWhyNMCcXx8FL78/Cn8e+oK/PTTPsya/SVatqyHAwfOYuv/1AGPJo2TIQgCIqPsC6KFhWXIzS12PI771erKq8z//cIKzJ41DAUFpdBoBK9jj44OR/fuzfHTT/vkxT3l1duuUlPi8McfJ7Bq1Q4UF9uvzkzyEmQLDQ1BWv06OH3mIt5evB5A+W2uPFX36du3PQD73FdWVgHs4a19+09jxSf/83qFfYO0umjUKAHt2qerzhOAuqWKq0cf6Yfv1u6Wv+/dq43XtkVK5YWjrkREuAFL33m0yhfr4+Ii8e03U/DijM+wxREw6t69Of49ZQiGP/Am8vKKkZQYg4YNE6DTabFi+ZN4cvIy7Np9FPfe00NVWcWXBEHAc8/egf/+dwMOHspAbGw4HnrIe5DtuWfvgEYjYMNGeyWpuLgIOTSppNFosOzdCbBabYiIsP++u/d8XrXNpCcGyZU4+vVrL7dwk+a4ZPSom9ChfTo6uITUOnZsjE8+/Vl1W6uW3kMbKclxePCBXvK5pTLtf6R9qS6333atXDnNG0EQMG/uAzh48Czatm1Y7rHRpXNTrPzqWTz1zAfYvdve9qNhwwTUr1cH/fu3d9s+IiIU//fOo5j+4qfYsnU/mjVLdWtN40n7dulyYKSisd9+27Xo0b05Dh7MQPfu5beuMRj0mPTEoAofF7D/Xha/PQ6CIOCnLftgs4ke/y4mJ8di3Ni+WPDmGnz77S5s335YDqv27NkC8XGReOP1UThw4Iw9xBYVhneWPIJxjyzB2bM5sNls0Gg0+PPPEwDs5yaLo02CVquRq4c9/8IKfPTB4ygpMcmvGQfccg0+/GgLRFFE46uS0apVfRgMOixc9J3c5kbStUsz3HlHV4SGqqtZde/WHC1b1seBA2cc+y2UGwhLSIjBgw/0wn/f2QAAGPtQnwpfc3fv1lx+bVoRjUZAVLNYQC9AF6KFpcQCTaQe+ugQaPRaQAC04TpoNAIM8RWf64nIs/Aw9xYt0utFJUHDhAcRERERERFRTcKAR5Bo06YBXntlBCwWK9av31NuP3jA/sHtoIEdsea73QgLC8H8eQ9Cp9NiwvibMflf76NVy/qqKwTvubs7/vrrJC5eLETXrs3KeWTfkAIRldnu/fcmIienqFLl6C+FRqNBe8UiZYO0upg9axj2/nECbyz4FikpcRgz6kbo9To8OWkQunZphl+3/QOtTitfMazRaNz2JSkpFg/cfz2+/XY78vKNiIkJx7+evBWCIOCaa65CenoiwsMMct94APbwSoQBBQWluOlG93LjSo0aJmLJ2+NwNiMHN1zfutLBmsqIj4/C/JcfgMVixZmzF5GSHKdqmSEFbK7r2RLfr5sKURTxww9/4sWZn8vhjnr14tGzR0vodFoMudP9Kt0Bt1wjtyaoaHE1PT0JX3z+VKW2lR47MSEaNlEst7JBoGneLNXtCuSK1Cunyour669Lw9w54xASUv5cEQQBk54YhDcXfoeSYiMG3OK+YOtq4IBrsOqb7dBqNRW2LmjTugF+/uUf+fvy2m4IgoBHHu6H06cvYPNPf6Nfv/ZeF54EQcCM6fdibMYSHDqUgc2b/8Zv2w8BsB+PV12VhD/+OIHHJg4A4KzMUVhQirw8e8DDU/unpk1ScNONbbHpR3tFg3+/sAIAUL9+HbdWMkpPTroVp05dwLFjWRg96kZcfbXn1hiAvbrJuvV7sGfvcQD2RdjyjunJk2/Ds899JC8c3uw4lry5+65u+OLLbQCAli3ro89N3s8vIx7shWee+wgA8Pob3wKwV8Z55OH+OHX6An7++QDuGNwFGo0G/3ryVreAh9RCxpP4+Chs3jQDa77bDbPZIrcO86fq6ldvMOjx4vR78f2GvWjVsr5cfWjhgtH4fsMfuHVQJ3lxXqvVYP68B3Dy5PkK/+5Xt65dmqFrl2Y4ffoCUlLiyg0QhIcb8OL0e3HP3d3x518nMeCWa7xWZCnv732LFvUwcMA18vc392+P3b8fxdq1v6u2S2+UKLfYcOXaKuqRh/sjIaH8VnQjR/RCZmYurrnmqmqbB9UhPNwgV/GqiMGgx6I3H8KZMxdx5Og5XNezlVs1OKWQEB3mzB6OgwczkJ6eWO457nLVrRtdYdu/yyHNsYra7dx5Rxfk5xdj2fubkZ2dj+zsfGi1Gowc0RsA3AJEzZqlIjIyFHl5xXjr7fWYMP5mZDuCez17tMBPW+zt5lq3SsPtt12Ll2Z/iZMnz2PLln2o76jOExUVhrS0uvjyi6dw6tQFtG3bAIIg4Ob+HdCta3P8/fcpPP3sh/K/Wb9+HY/hN4NBjwWvj8KS/36PAwfO4v7h1yPNS/svybD7esJqtSI5OU5+3VVVtKE66GIMsJaaYDFaIeg00IfrodFrYTPbAKsIjUaAoNNAMLCCB9Hlkl4TKlu0ZGfnu23neiEDEREREREREQU3QfRUX72WKSgoQExMDPLz8xEdXfUfLPuLxWLFX3+fQsMGdREfH6W6vbqueq5psrLy8OPmv9Gksb30uXSFbkFBCSIiQstdDCmP2WzG2rVrcf31NyImJkJ15a8oikG1oFQZKz75Hz797Bc0bZqCh8bchJYtKq78QL4hzcUBAwZAr6/6BTsAMBrNsFhtFVbYOX48C08/8yGSk2Nx113d0OuGNhU+ttlsQVZWvrxYVp6l7/6A95b9qLrt4w+fQHp6Imw2UT6eX39jNb786jeMeLAXfvvtEA4eysAr8x9Ej+4t3B7TZrMhKysfk558T26h1LtXG8yeNazcsZhMFpzLzC23Go/kl1/+wRtvrkFJSRlemnlfhRVczpy5iDXf7UKjRom4uX/Fi3bSleeVcerUBQwd9joAewBi9arnvC4aHD2WiQceXCh//9WXT8uthXzNF/OcqsbiJd/jo4+34KUZQ9G7dxuPc/NcZi4sZiv++84GNG6cjDvv6OrWGkzp+w178fvvxzD5yVurJZhwKTgXA98//5zFizM+g06vxeiRN+LGcoK17y3bhKXvbgIAzJ09HFP+vRyCIODpp27H/FdWAbC3k3p57v2qv0Ht2jXCH3+cQPfuzfHq/BFeH18URYx7ZAn27TuNfn3bye3wAp1oE2EttcBUYIRGK0DQaqAJ0UEXqYO50AyIgC5CB41OA5PRhHXr1wX0MRGM7xWDccx06f755yxGP/QWEhNjsOrrZ2Gz2dD7pukwm62q7X784cVKX0BxJfg3jgIF5yLVBpznFAg4D4ncBcNxwfeLRDUDK3jUYDqd1q1UuXQ7VU5SUqxcjUPJ25XIlyoyMtRt8aqmhTsAewWSYfdd5+9hkJ8YDHpU3DzJXpHlyy+evqTH1ut1lQp3AECch5YkDRrUhSAI0Gqdx51cwaOwFLlyBQ/3Fi2AvUpPSkoc+vS5Gsve3wwAaNzYe1sUSUiIrlLhDgDo0aMFundvDlEUKxXEqF+/Dh55uH+lHhu4tNYSDRo4rwjvc1Pbcq8IbXxVMp54fCDeXPgdbr/tWr+FOyi4PDyuL+4Y3KXcqlzSXJr1UvlBKkn/fu0rrN5AJGnRoh4+/WRypbYdNfJGHDyUgf/97wCm/Hs5AHsoo9cNreWAR4sW9uo7Q+7sKgc8/vjjBADgphvLbxcnCALefGM09uw5js6dm1zG3viHoBGgDdVCZ9EDoggIGkBj3x9NiAYajQCNTiNvS0SXJyxcXcHj+PFst3AHUPnqmEREREREREQUHKqvYTgREVEAiYtXhzRGj7rRY+BNCnicPn1RLnPtKRyi1KNHS/nr9PSKAx6XShCESwpiVKfZs4ahZ8+WeOKJQRVue+89PbB+7Qt49pk7fDAyqgk0Gk2Vt1wjqi6CIKBbF3VrwwZpdREbG4Hnn7sT9w+/HvcPvx6APSi49J1H5e0iIgzo26f8gAdgb73To0cL6PXBlcsXtBoIWg1EmwhBI0AXZh+/LlQHTQjD5kRVQaqOV1JihMVixX/eWue2jfS6loiIiIiIiIhqjuD6pJCIiOgyxSsCHkPv7YmHxvTxuJ10tfXOXUfk2+rWLb93eauW9XHXXd3w158ncW2n4LnK+nL07tUGvXtV3D5HUlUVj4iIAtG11zZVff/E4wMBAIMGdXLbtlWrNPlrnU5b46vqCVoBEAUIGlbqIKoO8fGRMBj0MBrNOHcuF2czcty2mffy/X4YGRERERERERFVp8C4HJiIiKiaKdusdOjg3r5KcnXbhkhvlKi6rTJXTk+edCuWvTcRkZGhlz9IIiIKKvXqxePm/h0gCAImP3krunVrXu72N/a2B+RGjbzRF8PzK22IFoJeA9HfAyGqoTQajdw+7+uV23HmzEXV/Q+P64f27by/5iUiIiIiIiKi4FRjAh5vvfUWGjVqhNDQUHTp0gU7duzw95CIiCiApNWvgxuub4WBAzqiZ48WXrfTaDRYsvhhREfbS1onJET7aohERBSEnp9yJ37YMB13DelW4bZTpgzB66+NxF1DuvpgZP4laAVoDVpoQ2rMW06igNOoYQIA4LPPfwEAREWG4u23xmL4sOsw9N4e/hwaEREREREREVWTGtGi5bPPPsPkyZOxZMkSdOnSBQsWLED//v1x8OBBJCYmVvwARERU42k0GsydU7ky1VFRYfhg2WN46+31eOD+G6p5ZEREFMwupd1KRLgBXbs0q+YRBQ6toWa3oSHyt2HDrkdpmRllpSaIENG/Xwe0b5fOyh1ERERERERENViNCHi8/vrrGDt2LEaNGgUAWLJkCb777ju89957eO655/w8OiIiCkZJSbGYOWOov4dBRERERORR82apmP/yA/4eBhERERERERH5UNAHPEwmE3bv3o0pU6bIt2k0GvTp0wfbtm3z+DNGoxFGo1H+vqCgAABgNpthNpurd8BEgDzPON/I3zgXqTbgPKdAwblIpBYMx0Qgj42IiIiIiIiIiGqfoA94XLhwAVarFUlJSarbk5KS8M8//3j8mblz52LGjBlut2/YsAHh4eHVMk4iTzZu3OjvIRAB4Fyk2oHznAIF5yKRWiAfEyUlJf4eAhERERERERERkSzoAx6XY8qUKZg8ebL8fUFBAdLS0tCvXz9ER0f7cWRUW5jNZmzcuBF9+/aFXq/393CoFuNcpNqA85wCBecikVowHBNStUciIiIiIiIiIqJAEPQBj7p160Kr1SIrK0t1e1ZWFpKTkz3+jMFggMFgcLtdr9cH7AeLVDNxzlGg4Fyk2oDznAIF5yKRWiAfE4E6LiIiIiIiIiIiqp00/h7AlQoJCUHHjh2xadMm+TabzYZNmzahW7dufhwZERERERERERERERERERERUdUI+goeADB58mSMGDECnTp1QufOnbFgwQIUFxdj1KhR/h4aERERERERERERERERERER0RWrEQGPe++9F+fPn8e0adOQmZmJ9u3bY/369UhKSvL30IiIiIiIiIiIiIiIiIiIiIiuWI0IeADAxIkTMXHixMv6WVEUAQAFBQVVOSQir8xmM0pKSlBQUMC+3uRXnItUG3CeU6DgXCRSC4ZjQnqPKL1nDAZ8f0v+EAzHM9UOnItUG3CeUyDgPCRyFwzHRTC+xyUidzUm4HElCgsLAQBpaWl+HgkREREREREFmsLCQsTExPh7GJXC97dERERERERUnmB6j0tE7gSRMS3YbDZkZGQgKioKgiD4ezhUCxQUFCAtLQ2nT59GdHS0v4dDtRjnItUGnOcUKDgXidSC4ZgQRRGFhYVITU2FRqPx93Aqhe9vyR+C4Xim2oFzkWoDznMKBJyHRO6C4bgIxve4ROSOFTwAaDQa1K9f39/DoFooOjo6YP/QU+3CuUi1Aec5BQrORSK1QD8mgu2qJr6/JX8K9OOZag/ORaoNOM8pEHAeErkL9OMi2N7jEpE7xrOIiIiIiIiIiIiIiIiIiIiIAhwDHkREREREREREREREREREREQBjgEPIj8wGAyYPn06DAaDv4dCtRznItUGnOcUKDgXidR4TBDVHDyeKVBwLlJtwHlOgYDzkMgdjwsi8hVBFEXR34MgIiIiIiIiIiIiIiIiIiIiIu9YwYOIiIiIiIiIiIiIiIiIiIgowDHgQURERERERERERERERERERBTgGPAgIiIiIiIiIiIiIiIiIiIiCnAMeBAREREREREREREREREREREFOAY8qEabO3curr32WkRFRSExMRGDBw/GwYMHVduUlZVhwoQJqFOnDiIjIzFkyBBkZWWptnn88cfRsWNHGAwGtG/f3uO/JYoiXn31VTRr1gwGgwH16tXD7Nmzyx3fvn37MGTIEDRq1AiCIGDBggVu22zduhW33norUlNTIQgCVq1aVal9r6r9oqpRm+fiO++8g169eiE6OhqCICAvL89tG+nfVf738ssvV+rxKXDUhHlemX3wJCcnB8OHD0d0dDRiY2MxZswYFBUVqfZ75MiRaNu2LXQ6HQYPHlzhY9Llqc3zcPbs2ejevTvCw8MRGxvrcRvXc60gCPj0008rfGwKbr46Ll588UWPcywiIqLCMb711lto1KgRQkND0aVLF+zYsUN1f2VeT3hy6tQpDBw4EOHh4UhMTMTTTz8Ni8Ui33/u3DkMGzYMzZo1g0ajwaRJkyr1uET+EujHc2XeM3z99dfo168f6tSpA0EQsHfv3krtO19vBY7aPA/5eqv2CPZ5bjab8eyzz6Jt27aIiIhAamoqHnzwQWRkZFS473z9FFhq81ysaMwnTpzwOObffvutwsem4ObLz36+//57dO3aFVFRUUhISMCQIUNw4sSJCsf4xRdfoEWLFggNDUXbtm2xdu1a1f18TUxEV4IBD6rRtmzZggkTJuC3337Dxo0bYTab0a9fPxQXF8vbPPnkk/j222/xxRdfYMuWLcjIyMCdd97p9lijR4/Gvffe6/XfeuKJJ7B06VK8+uqr+Oeff7B69Wp07ty53PGVlJTgqquuwssvv4zk5GSP2xQXF6Ndu3Z46623KrnXVbtfVDVq81wsKSnBzTffjOeff77c7WbOnIlz587J/z322GOX9O+Q/9WEeV6ZffBk+PDh2LdvHzZu3Ig1a9Zg69atGDdunHy/1WpFWFgYHn/8cfTp06fcx6IrU5vnoclkwt13341HH3203O2WLVumOt/yzX7N56vj4qmnnlLNrXPnzqFVq1a4++67yx3fZ599hsmTJ2P69On4/fff0a5dO/Tv3x/Z2dnyNpV9PaFktVoxcOBAmEwm/Prrr/jggw/w/vvvY9q0afI2RqMRCQkJeOGFF9CuXbtKPzaRvwT68VyZ9wzFxcXo2bMn5s2bV8m9tuPrrcBRm+chX2/VHsE+z0tKSvD7779j6tSp+P333/H111/j4MGDuO2228p9XL5+Cjy1dS5WZsySH374QTXujh07VuqxKXj56rg4fvw4br/9dtx4443Yu3cvvv/+e1y4cMHj4yj9+uuvuO+++zBmzBjs2bMHgwcPxuDBg/H333/L2/A1MRFdEZGoFsnOzhYBiFu2bBFFURTz8vJEvV4vfvHFF/I2Bw4cEAGI27Ztc/v56dOni+3atXO7ff/+/aJOpxP/+eefyx5bw4YNxTfeeKPcbQCIK1eurPCxqmq/qPrUlrmotHnzZhGAmJube1n/JgWfYJ/nnvbBk/3794sAxJ07d8q3rVu3ThQEQTx79qzb9iNGjBBvv/32yxk2XYbaMg+Vli1bJsbExHi873LO31TzVNdx4Wrv3r0iAHHr1q3lbte5c2dxwoQJ8vdWq1VMTU0V586d67Ztea8nXK1du1bUaDRiZmamfNvixYvF6Oho0Wg0um1/ww03iE888USFj0sUSALteFaq6G/O8ePHRQDinj17Knwsvt4KbLVlHirx9VbtE8zzXLJjxw4RgHjy5Emv2/D1U+CrLXNRyduYL/ccTjVPdR0XX3zxhajT6USr1Srftnr1alEQBNFkMnkdzz333CMOHDhQdVuXLl3Ehx9+2G1bviYmosvBCh5Uq+Tn5wMA4uPjAQC7d++G2WxWJRlbtGiBBg0aYNu2bZV+3G+//RZXXXUV1qxZg/T0dDRq1AgPPfQQcnJyqnYHKqmq9ouqT22Zi5fi5ZdfRp06ddChQwe88sorqvKfFJxqwjx33QdPtm3bhtjYWHTq1Em+rU+fPtBoNNi+fXuVj4kuTW2Zh5diwoQJqFu3Ljp37oz33nsPoihWyeNS8Kiu48LV0qVL0axZM1x33XVetzGZTNi9e7fq39ZoNOjTp88Vv27dtm0b2rZti6SkJPm2/v37o6CgAPv27buixyYKFIF0PFcnvt4KbLVlHl4Kvt6qeWrCPM/Pz4cgCF7bCwF8/RQMastcvBS33XYbEhMT0bNnT6xevbpKHpOCS3UdFx07doRGo8GyZctgtVqRn5+Pjz76CH369IFer/f6c9u2bXOrntG/f/8qeY/L18REBLBFC9UiNpsNkyZNQo8ePdCmTRsAQGZmJkJCQtxeTCYlJSEzM7PSj33s2DGcPHkSX3zxBT788EO8//772L17N+66666q3IVKq6r9oupRm+ZiZT3++OP49NNPsXnzZjz88MOYM2cOnnnmGX8Pi65ATZjnnvbBk8zMTCQmJqpu0+l0iI+P5znXz2rTPKysmTNn4vPPP8fGjRsxZMgQjB8/HosWLaqCkVKwqM7jQqmsrAzLly/HmDFjyt3uwoULsFqtqkWEK/23JZmZmR4fV7qPKNgF2vFcnfh6K3DVpnlYWXy9VfPUhHleVlaGZ599Fvfddx+io6O9bsfXT4GtNs3FyoiMjMRrr72GL774At999x169uyJwYMHM+RRy1TncZGeno4NGzbg+eefh8FgQGxsLM6cOYPPP/+83J/zdi6tive4fE1MRAADHlSLTJgwAX///Tc+/fTTKn9sm80Go9GIDz/8ENdddx169eqFd999F5s3b8bBgwdx6tQpREZGyv/NmTOnyv7tOXPmqB771KlTVfbYVD04F91NnjwZvXr1wtVXX41HHnkEr732GhYtWgSj0Vhl4yPfqgnz3NM+PPLII6rHpsDGeehu6tSp6NGjBzp06IBnn30WzzzzDF555ZXLGhsFp+o8LpRWrlyJwsJCjBgxQr7tf//7n2ruLl++vMr+vVtuuUV+3NatW1fZ4xIFspp6PPP1VnDhPHTH11s1T7DPc7PZjHvuuQeiKGLx4sXy7Xz9FHw4F9Xq1q2LyZMno0uXLrj22mvx8ssv4/777+c5t5apzuMiMzMTY8eOxYgRI7Bz505s2bIFISEhuOuuuyCKYrV+1s7XxERUHp2/B0DkCxMnTsSaNWuwdetW1K9fX749OTkZJpMJeXl5qjRnVlYWkpOTK/34KSkp0Ol0aNasmXxby5YtAQCnTp1C7969sXfvXvm+qiqxDtj/0N9zzz3y96mpqVW2X1T1attcvFxdunSBxWLBiRMn0Lx586oYHvlQTZjn3vZh5syZeOqpp1TbJicnIzs7W3WbxWJBTk4Oz7l+VNvm4eXq0qULXnrpJRiNRhgMhip5TApc1X1cKC1duhSDBg1SXbXUqVMn1XGRlJQEg8EArVaLrKws1c9f6r+9dOlSlJaWAoBcKjc5ORk7duxwe1zpPqJgFojHc1Xh663gUdvm4eXi663gFuzzXFpQP3nyJH788UdVxQS+fgoutW0uXq4uXbpg48aNV/QYFDyq+7h46623EBMTg/nz58u3ffzxx0hLS8P27dvdjgvps5/k5OQrfo/L18REVB4GPKhGE0URjz32GFauXImffvoJ6enpqvs7duwIvV6PTZs2YciQIQAgX3XbrVu3Sv87PXr0gMViwdGjR9G4cWMAwKFDhwAADRs2hE6nQ5MmTapor9Ti4+PdFo2qar+o6tTWuXi59u7dC41G41ZyjgJbTZjnFe1DYmKi27zs1q0b8vLysHv3bnTs2BEA8OOPP8Jms6FLly6XNQ66fLV1Hl6uvXv3Ii4ujosNNZyvjgvJ8ePHsXnzZrfSyGFhYR6Pi44dO2LTpk0YPHgwAHuFnE2bNmHixImV/jfr1avndlu3bt0we/ZsZGdny8fMxo0bER0djVatWl3CHhEFjkA/nqsCX28Fvto6Dy8XX28Fp5owz6UF9cOHD2Pz5s2oU6eO6n6+fgoOtXUuXq69e/ciJSWlyh6PApOvjouSkhJoNOpGCFqtFoD9fau3z366deuGTZs2YdKkSfJtGzduvKR/m6+Jiag8DHhQjTZhwgSsWLEC33zzDaKiouQ+ZDExMQgLC0NMTAzGjBmDyZMnIz4+HtHR0XjsscfQrVs3dO3aVX6cI0eOoKioCJmZmSgtLZVTma1atUJISAj69OmDa665BqNHj8aCBQtgs9kwYcIE9O3bV3VlryuTyYT9+/fLX589exZ79+5FZGSk/MKgqKgIR44ckX/m+PHj2Lt3L+Lj49GgQQOPj1tV+0VVp7bORcBeyi4zM1P+2b/++gtRUVFo0KAB4uPjsW3bNmzfvh29e/dGVFQUtm3bhieffBL3338/4uLiLu8JJ7+oCfO8on3wpGXLlrj55psxduxYLFmyBGazGRMnTsTQoUNVlWz2798Pk8mEnJwcFBYWyvvVvn37y3q+ybPaOg8Be+WQnJwcnDp1ClarVR5zkyZNEBkZiW+//RZZWVno2rUrQkNDsXHjRsyZM6fKrk6lwOWr40Ly3nvvISUlBbfcckulxjd58mSMGDECnTp1QufOnbFgwQIUFxdj1KhR8jYVvZ7wpF+/fmjVqhUeeOABzJ8/H5mZmXjhhRcwYcIE1SKbtB9FRUU4f/489u7di5CQEC5iUEAK9OO5Mu8ZpL9VGRkZAOwftgP2KxK9XXnI11uBpbbOQ4Cvt2qTYJ/nZrMZd911F37//XesWbMGVqtV3of4+Hivn/vx9VPgqa1zsTJj/uCDDxASEoIOHToAAL7++mu89957WLp0aaXGTsHLV8fFwIED8cYbb2DmzJm47777UFhYiOeffx4NGzaU550nTzzxBG644Qa89tprGDhwID799FPs2rUL77zzjrwNXxMT0RURiWowAB7/W7ZsmbxNaWmpOH78eDEuLk4MDw8X77jjDvHcuXOqx7nhhhs8Ps7x48flbc6ePSveeeedYmRkpJiUlCSOHDlSvHjxYrnjO378uMfHveGGG+RtNm/e7HGbESNGlPvYVbVfVDVq81ycPn16ufu+e/dusUuXLmJMTIwYGhoqtmzZUpwzZ45YVlZWmaeWAkhNmOeV2QdPLl68KN53331iZGSkGB0dLY4aNUosLCxUbdOwYUOPj01VqzbPwxEjRnj8uc2bN4uiKIrr1q0T27dvL0ZGRooRERFiu3btxCVLlohWq7UyTy0FMV8eF1arVaxfv774/PPPX9IYFy1aJDZo0EAMCQkRO3fuLP7222+q+yt6PeHNiRMnxFtuuUUMCwsT69atK/7rX/8SzWZzhc9Pw4YNL2n8RL4S6MdzZd4zLFu2zOM206dPL/ex+XorcNTmecjXW7VHsM9zb+87lPPVG75+Ciy1eS5WNOb3339fbNmypRgeHi5GR0eLnTt3Fr/44otKj52Cly+Pi08++UTs0KGDGBERISYkJIi33XabeODAgQrH+Pnnn4vNmjUTQ0JCxNatW4vfffed6n6+JiaiKyGIoiiCiIiIiIiIiIiIiIiIiIiIiAKWpuJNiIiIiIiIiIiIiIiIiIiIiMifGPAgIiIiIiIiIiIiIiIiIiIiCnAMeBAREREREREREREREREREREFOAY8iIiIiIiIiIiIiIiIiIiIiAIcAx5EREREREREREREREREREREAY4BDyIiIiIiIiIiIiIiIiIiIqIAx4AHERERERERERERERERERERUYBjwIOIiIiIiIiIiIiIiIiIiIgowDHgQURERERERERERERERERERBTgGPAgIiIiIiIiIiIiIiIiIiIiCnAMeBAREREREREREREREREREREFOAY8iIiIiIiIiIiIiIiIiIiIiAIcAx5EREREREREREREREREREREAY4BDyIiIiIiIiIiIiIiIiIiIqIAx4AHERGRn73//vsQBAEnTpzw91Aq5cSJExAEAe+//36F244cORKNGjWq9jERERERERGR//H9LRERERFR9WLAg4iIiAKe9KGbp/+6du0qbzdy5EjVfQaDAc2aNcO0adNQVlbmxz0gIiIiIiIiUr+//eqrr9zuf/HFFyEIAi5cuCDf5vpeNzo6Gu3atcNrr70Go9Hoy+ETERERkZ/p/D0AIiKi2u6BBx7A0KFDYTAY/D2USmnYsCFKS0uh1+t9/m/fd999GDBggOq2hIQE1fcGgwFLly4FAOTn5+Obb77BSy+9hKNHj2L58uU+GysREREREVFtw/e3l2bmzJm48847IQhChdsq3+vm5eXhq6++wlNPPYWdO3fi008/re6hEhEREVGAYMCDiIjIz7RaLbRarb+HUWmCICA0NNQv//Y111yD+++/v9xtdDqdapvx48eje/fu+OSTT/D6668jKSmpuodJRERERERUK/H9beW1b98ee/fuxcqVK3HnnXdWuL2n97pdunTBZ599htdffx2pqanVOVwiIiIiChBs0UJERHSJvPXdlcqoSgRBwMSJE7Fq1Sq0adMGBoMBrVu3xvr161U/56lHsSiKmDVrFurXr4/w8HD07t0b+/btQ6NGjTBy5Eiv/2Z5jwkA69atw3XXXYeIiAhERUVh4MCB2Ldv3yXtv7cexdJ+hoaGok2bNli5cuUlPW51EQQBPXv2hCiKOHbsmL+HQ0REREREFDD4/tZ/72+HDh2KZs2aYebMmRBF8ZJ/XqPRoFevXgDg9twQERERUc3FCh5ERETV6Oeff8bXX3+N8ePHIyoqCgsXLsSQIUNw6tQp1KlTx+vPTZs2DbNmzcKAAQMwYMAA/P777+jXrx9MJtNlj+Wjjz7CiBEj0L9/f8ybNw8lJSVYvHgxevbsiT179nj8UK+yNmzYgCFDhqBVq1aYO3cuLl68iFGjRqF+/fpu2+bm5sJqtVb4mOHh4QgPD1fdVlJSoupDDAAxMTEVltOVPuyKi4ur8N8lIiIiIiIid3x/W7Xvb7VaLV544QU8+OCDla7i4ero0aMAUO7zT0REREQ1CwMeRERE1ejAgQPYv38/GjduDADo3bs32rVrh08++QQTJ070+DPnz5/H/PnzMXDgQHz77bfyFUz//ve/MWfOnMsaR1FRER5//HE89NBDeOedd+TbR4wYgebNm2POnDmq2y/Vs88+i6SkJPz888+IiYkBANxwww3o168fGjZsqNq2Q4cOOHnyZIWPOX36dLz44otut02fPl112+bNm+WrliRSCCQ/Px+rVq3CV199hTZt2qB58+aXuGdEREREREQE8P1tVb+/BYBhw4bhpZdewsyZM3HHHXd4rGCipHyv+/nnn2PVqlW4+uqr+V6XiIiIqBZhwIOIiKga9enTR/7wCwCuvvpqREdHl9sq5IcffoDJZMJjjz2m+nBn0qRJl/0B2MaNG5GXl4f77rtPVQFDq9WiS5cu2Lx582U9LgCcO3cOe/fuxXPPPSd/+AUAffv2RatWrVBcXKzafvny5SgtLa3wca+66iq328aNG4e7775bdVu7du1U3xcXFyMhIUF1W8+ePfHBBx9U+GEZERERERERecb3t1X7/lYa8wsvvIARI0Zg1apVuOOOO7w+hqf3ut27d8dHH31U4b9PRERERDUHAx5ERETVqEGDBm63xcXFITc31+vPSFf/NG3aVHV7QkLCZbcYOXz4MADgxhtv9Hh/dHT0ZT0u4H28ANC8eXP8/vvvqtt69Ohx2f9W06ZN0adPn3K3CQ0NxbfffgsAOHPmDObPn4/s7GyEhYVd9r9LRERERERU2/H9bdW+v5UMHz5cruIxePBgr9sp3+saDAakp6d7bBtDRERERDUbAx5ERESXyFsVCE99d7VarcdtRVH06VhsNhsAe5/i5ORkt+11Ot+9JDh//nylehRHRkYiMjLykh9fq9WqQiD9+/dHixYt8PDDD2P16tWX/HhEREREREQ1Fd/fXpmqeH8rVfEYOXIkvvnmG6+P4fpel4iIiIhqJwY8iIiILlFcXBzy8vLcbq9M393KkHr6Hj58WFXG9fz5825XRklXPOXl5SE2NtbrWKQyuomJiVX+gZByvK4OHjzodtu11157RT2KL1VKSgqefPJJzJgxA7/99hu6du16xY9JRERERERUE/D9rffxuqrO97f3338/Zs2ahRkzZuC2226r/ICJiIiIqNZhwIOIiOgSNW7cGPn5+fjzzz9x9dVXA7D36V25cmWVPH6fPn2g1+uxaNEi9OvXT76KacGCBR7HAgBbt26VPwQqLi7GBx98oNquf//+iI6Oxpw5c9C7d2/o9XrV/efPn3fr5VtZKSkpaN++PT744ANVn+KNGzdi//798gdkkivtUXw5HnvsMbzyyit4+eWXsWrVqip7XCIiIiIiomDG97dq/np/q6ziQURERERUHgY8iIiILtHQoUPx7LPP4o477sDjjz+OkpISLF68GM2aNXPrx3s5EhIS8NRTT2Hu3LkYNGgQBgwYgD179mDdunWoW7euatt+/fqhQYMGGDNmDJ5++mlotVq89957SEhIwKlTp+TtoqOjsXjxYjzwwAO45pprMHToUHmb7777Dj169MB//vOfyx7z3LlzMXDgQPTs2ROjR49GTk4OFi1ahNatW6OoqEi1bVX0KL5UderUwahRo/D222/jwIEDaNmypc/HQEREREREFGj4/tadv97fDh8+HC+99BL27t1bZY9JRERERDWPxt8DICIiCjZ16tTBypUrER4ejmeeeQYffPAB5s6di1tvvbXK/g2pNOuePXvw9NNP4+jRo9iwYQMiIiJU2+n1eqxcuRKNGzfG1KlTsXDhQjz00EOYOHGi22MOGzYMmzZtQr169fDKK6/giSeewKeffor27dtj1KhRVzTem2++GV988QWsViumTJmCr7/+GsuWLUOnTp2u6HGr0uTJk6HRaDBv3jx/D4WIiIiIiCgg8P2tO3+9v9XpdHjhhReq9d8gIiIiouAniKIo+nsQREREVDmNGjVCr1698P777/t7KERERERERESXje9viYiIiIguHSt4EBEREREREREREREREREREQU4nb8HQERERIHBZDIhJyen3G1iYmIQFhbmoxERERERERERXTq+vyUiIiKimooBDyIiIgIA/Prrr+jdu3e52yxbtgwjR470zYCIiIiIiIiILgPf3xIRERFRTSWIoij6exBERETkf7m5udi9e3e527Ru3RopKSk+GhERERERERHRpeP7WyIiIiKqqRjwICIiIiIiIiIiIiIiIiIiIgpwGn8PgIiIiIiIiIiIiIiIiIiIiIjKp/P3AAKBzWZDRkYGoqKiIAiCv4dDREREREREAUAURRQWFiI1NRUaTXBcH8H3t0RERERERORJML7HJSJ3DHgAyMjIQFpamr+HQURERERERAHo9OnTqF+/vr+HUSl8f0tERERERETlCab3uETkjgEPAFFRUQDsJ7To6Gg/j4ZqA7PZjA0bNqBfv37Q6/X+Hg7VYpyLVBtwnlOg4FwkUguGY6KgoABpaWnye8ZgECzvb4Ph90/kSzwmKFBwLlJtwHlOgYJzkXwtGN/jEpE7BjwAuWxtdHR0QH8ARjWH2WxGeHg4oqOj+cKN/IpzkWoDznMKFJyLRGrBdEwEU6uTYHl/G0y/fyJf4DFBgYJzkWoDznMKFJyL5C/B9B6XiNyxwRIRERERERERERERERERERFRgGPAg4iIiIiIiIiIiIiIiIiIiCjAMeBBREREREREREREREREREREFOAY8CAiIiIiIiIiIiIiIiIiIiIKcAx4EBEREREREREREREREREREQU4BjyIiIiIiIiIiIiIiIiIiIiIAhwDHkQUNIqKyvDRx1uQkZHj76EQERERERERERFdstzcInz40U84f6HA30MhIiIioiDEgAcRBY03FnyLxUu+x6gxb/l7KERERERERERERJfspVlfYsl/N+Cppz7w91CIiIiIKAgx4EFEQWP378cAAIWFpX4eCRERERERERER0aX7bfshAMDhI+f8PBIiIiIiCkYMeBARERERERH5gNVqxdSpU5Geno6wsDA0btwYL730EkRRlLcRRRHTpk1DSkoKwsLC0KdPHxw+fNiPoyYiIiIiIiIiokDBgAcRBQ3B3wMgIiIiIroC8+bNw+LFi/Gf//wHBw4cwLx58zB//nwsWrRI3mb+/PlYuHAhlixZgu3btyMiIgL9+/dHWVmZH0dOREREREREnog2seKNiIiqkM7fAyAiqjSBEQ8iIiIiCl6//vorbr/9dgwcOBAA0KhRI3zyySfYsWMHAHv1jgULFuCFF17A7bffDgD48MMPkZSUhFWrVmHo0KF+GzsRERFVDa1WA6vV5u9hEBHRFRJFEaJVhM1khdaghaDlNfVE5Bs82xBRjbX5p78xZ+5XMJks/h4KERERERG6d++OTZs24dChQwCAP/74Az///DNuueUWAMDx48eRmZmJPn36yD8TExODLl26YNu2bX4ZMxEREVUtoZZcwLRr1xGs+OR/qlZ0REQ1ibXUApvJClEEeKojIl9iBQ8iChqX+v733y+sAAA0bpyMe+/pUQ0jIiIiIiKqvOeeew4FBQVo0aIFtFotrFYrZs+ejeHDhwMAMjMzAQBJSUmqn0tKSpLvc2U0GmE0GuXvCwoKAABmsxlms7k6dqNKSGML5DES+RKPCQoUnIvVT6P4gKsmP8+PT3oPAFC/Xjy6dWvm59GocZ5ToOBcDG7y700EbBobNGLgX1PPuUZUMzDgQUQ1Xk5Okb+HQERERESEzz//HMuXL8eKFSvQunVr7N27F5MmTUJqaipGjBhxWY85d+5czJgxw+32DRs2IDw8/EqHXO02btzo7yEQBRQeExQoOBerjwhne5a1a9f6cSTVR1m147u1W5Cbe8SPo/GO85wCBeci+UpJSYm/h0BEVYABDyKq8VgKkoiIiIgCwdNPP43nnnsOQ4cOBQC0bdsWJ0+exNy5czFixAgkJycDALKyspCSkiL/XFZWFtq3b+/xMadMmYLJkyfL3xcUFCAtLQ39+vVDdHR09e3MFTKbzdi4cSP69u0LvV7v7+EQ+R2PCQoUnIvVb9Fbe2E226tv9e9/M7TawL/i+1IUFJTAJorAqzsAAGlpjTBgQF8/j0qN85wCBedi8BJFEeYiMwSNAIgitKE6aHSBfz6XKj4SUXBjwIOIgkZt6VFKRERERDVTSUkJNBr1h35arRY2m/1K3vT0dCQnJ2PTpk1yoKOgoADbt2/Ho48+6vExDQYDDAaD2+16vT4oPiQOlnES+QqPCQoUnIvVR/nxltUqIjS0ZjzPFy8W4ru1u7HkvxuQVr+OfPuFi0UBO5c4zylQcC4GH9EmAlpA0AoQbSJ0+uAIeHCeEdUMDHgQEdUybyz4FuHhBjw8rp+/h0JERERUq9x6662YPXs2GjRogNatW2PPnj14/fXXMXr0aAD2QPOkSZMwa9YsNG3aFOnp6Zg6dSpSU1MxePBg/w6eiIiIqoTZbJW/tlpt5WwZXB4Y8Sby8uyl/0+fuSjfXpDPdgAUPC5cKMDHy7eiebNU3HLLNf4eDgUL0fEfEZGPMOBBREGD9Tuu3Llzufjiy20AgDGjb/LzaIiIiIhql0WLFmHq1KkYP348srOzkZqaiocffhjTpk2Tt3nmmWdQXFyMcePGIS8vDz179sT69esRGhrqx5ETERFRVRBFESaTRf6+JgU8pHCHqzKjyccjIbp8q77Zgc+/+BUAcMMNrREe7l4pL1j9/fcp7Nx1BA8+0KvGtYbyP6Y7iMi3GPAgouDBFi1XzGS2VLwREREREVWLqKgoLFiwAAsWLPC6jSAImDlzJmbOnOm7gREREZFPKMMdAGCz1fxFwbJSs7+HQFRpBYWl8tfFxWU1JuBhsVgx7pElAOwXAI4ZfRN+/uUfXJWeiA4drvLz6IKZCIiC82siIh9hwIOIiIiIiIiIiIiIqJqVlanDDjWpgoc3rOBBwaSs1DlfS2tQOGnfvtPy12u+24013+0GYA+XL//4CTRqmOivoQUvUfEFW7QQkY/5tQ6T1WrF1KlTkZ6ejrCwMDRu3BgvvfQSRNF5JhRFEdOmTUNKSgrCwsLQp08fHD58WPU4OTk5GD58OKKjoxEbG4sxY8agqKjI17tDRERERERERERERORRWZk67GC11fyAR01aJKear7RMGfAw+nEkVauouMzj7aIoYtu2Qz4eTc0iMthBRH7g14DHvHnzsHjxYvznP//BgQMHMG/ePMyfPx+LFi2St5k/fz4WLlyIJUuWYPv27YiIiED//v1RVub8gzR8+HDs27cPGzduxJo1a7B161aMGzfOH7tERAGIL7I8E/nEEBERERERERH5TJkxuCt4bNr0J9at+/2SfsbICh4UREoVFTxKSmvO3DV7aNvdqmV9AMCBA2d8PZwaQvHZuihyDYKIfMqvLVp+/fVX3H777Rg4cCAAoFGjRvjkk0+wY8cOAPbFxwULFuCFF17A7bffDgD48MMPkZSUhFWrVmHo0KE4cOAA1q9fj507d6JTp04AgEWLFmHAgAF49dVXkZqa6p+dI6IqJwgVb0OVJ4p8TomIiIiIiIiIfMW1RYvNGjwrgiaTBVOnfwoA6NatOWJjIyr1c6zgQYGsoKAUS9/diP79OqB16zSUljhDHWU1KuBhlb/u3asNmjdPRVRUGPYfOAOjiccoEVGw8WvAo3v37njnnXdw6NAhNGvWDH/88Qd+/vlnvP766wCA48ePIzMzE3369JF/JiYmBl26dMG2bdswdOhQbNu2DbGxsXK4AwD69OkDjUaD7du344477nD7d41GI4xGZ3mtgoICAIDZbIbZzD9mVP2kecb5dokU73kv5bmz2ax8rh0sirS2yWyCxhHw4PNDNRnPuRQoOBeJ1ILhmAjksREREVHwMboGPIKoRUuxosWD0Vj510hGoxk2mw0ajV+LiRN5tPTdjfjyq9/w5Ve/4def57i0aKl5AY+uXZph9qxhAIC1jmo8ZpPV68+Rd6II+3qFANW6BRGRL/g14PHcc8+hoKAALVq0gFarhdVqxezZszF8+HAAQGZmJgAgKSlJ9XNJSUnyfZmZmUhMTFTdr9PpEB8fL2/jau7cuZgxY4bb7Rs2bEB4ePgV7xdRZW3cuNHfQwgqJSXF8tdr166t9M8dPXrskravyS7mlMpff7/+e+h09jfXnItUG3CeU6DgXCRSC+RjoqSkxN9DICIiohrENRgRTC1aikucF0xe6riNRgvCwkKqekhEV+zU6Yuq76u7RYsoihD8UFJZCnjo9Fr5Nr3ja7PFvX0LXQKRLeKJyPf8GvD4/PPPsXz5cqxYsQKtW7fG3r17MWnSJKSmpmLEiBHV9u9OmTIFkydPlr8vKChAWloa+vXrh+jo6Gr7d4kkZrMZGzduRN++faHX6/09nKCx/JMjyM2zv5kcMGBAhdvPe2U7AOCqq67CgAH9qnVsweLUqQtY+u6fAID+/ftDowHnItV4POdSoOBcJFILhmNCqvZIREREVBXKXAMewVTBo8hZwcNkurQF4bIyEwMeFJAiwg2q75UBj9JSo+vmVyQ3twijH3obfftcjfGP3lylj10Rs6Oqc4ingIeHCh75+SXYtesIrruuFUJC/LqMGCREiEx5EJEP+fXM/PTTT+O5557D0KFDAQBt27bFyZMnMXfuXIwYMQLJyckAgKysLKSkpMg/l5WVhfbt2wMAkpOTkZ2drXpci8WCnJwc+eddGQwGGAwGt9v1en3AfrBINRPn3KVRZpsv5XnTarV8nh10eudpX6fTQau1P6uci1QbcJ5ToOBcJFIL5GMiUMdFREREwamsTF0RwGYNngXBIkWLFpP5UgMebHtHgSm83IBH1c7bVd/sQFZWHj5evtXnAQ8plKVXhDX0js+JPR3PTz39AfbtP40H7r8Bjz7S3zeDDFZSsCN4TudEVAP4tfFdSUmJW+89rVYr9x5MT09HcnIyNm3aJN9fUFCA7du3o1u3bgCAbt26IS8vD7t375a3+fHHH2Gz2dClSxcf7AURBT6+uvKEoWIiIiIiIiIiIt8xlgVvi5aiImc1A5Px0it4EAWiiAhnwKOszKRu0VJStRU8tFptxRtVE4vFXqVDr3Ov4GExu1fw2Lf/NADgu7W73e4jNdFmAzS+b7tDRLWbXyt43HrrrZg9ezYaNGiA1q1bY8+ePXj99dcxevRoAIAgCJg0aRJmzZqFpk2bIj09HVOnTkVqaioGDx4MAGjZsiVuvvlmjB07FkuWLIHZbMbEiRMxdOhQpKam+nHviKiq+aM/IRERERERERERUVVwbdFiC6YWLYoKHmYPV/wLguDWokCr1cBqtaGUFTwoQOkVLUsuXiySgxCA53l+JcLC/FcdUK7goa9cBQ+J8vkgF47TnTZUB5vJCl5kSkS+5NeAx6JFizB16lSMHz8e2dnZSE1NxcMPP4xp06bJ2zzzzDMoLi7GuHHjkJeXh549e2L9+vUIDQ2Vt1m+fDkmTpyIm266CRqNBkOGDMHChQv9sUtEREHD/qaboRkiIiIiIiIiIl9wbVViDdKAh9HkviAcHR2G/PwSAMC/nx+C3r3aYMzYt3Hy5HkYWcGDApRJMZdzcgpV91VFuOGLL39FcnIcruvZEmGhIfLtRqMZBoPvAh9mR5UOZaBFqubhqYKHxGIJnnOUX0ihNkFgvoOIfMqvAY+oqCgsWLAACxYs8LqNIAiYOXMmZs6c6XWb+Ph4rFixohpGSEQBhVmEKsXXnEREREREREREvuPaqiS4WrQoK3i4LwhL+3LddS3R56arYTDo5QVtVvCgQKUMeBQUlKruu9Lj8+jRTLyxYA0A4Nef5yAkxLkcV1xc5qeAh6KCR4hUwaO8gAcreFREtAGWIjP0MSEVb0xEVEU0/h4AEVFlXW6LFpFJBs/4xBARERERERER+YzRtUWLNXg+mykuNspfm4zugQ2bYzH8sQkD5IVrQ6j9/67BFqJAoQwr5ReUqO6rqHqFKIr455+zXud3bl6x/LXRaFZdbFdUZHT/gWoktZsJCXFW8AhxVPMorxUNAx4VEADRbIXVZIXNFDyBPSIKfgx4EBERERERERERERFVs2Bu0aKs4OHpin+rzb58rdU6lxykCh6u+00UKIwm59wscA14WN3n+Ucfb8EdQ+YjMzMPG3/4E6MfeguPPfGux8dWXqtYUFCiCksUKVoe+YIUZNHpFC1aHNU8PFXkkdhswRNC8z3R+T92QiciH/NrixYiIvIfFvAgIiIiIiIiIvIdt4BHELVoKVYsSCvbWkikfdFonKucoazgQQHObHKGGyrTomXxku8BAO/830ZcuFAAANi377THxy4tcc77vLwS1eMVF/k64CFV8FC0aPFSwYNVOypJ+dk6P2gnIh9jBQ8iolpK5AtPIiIiIiIiIiKfKTOqgw7BdHW8soKHp5YONkc1Eo2igkeoVMGjlBU8KDAp53JhoTrgUV7QoaCwRA5IeFNS4mzDkp9frAp4lJT6NvRkcuynVLXD/rUU8LCqPidWjhtwby1FCtLTZoM68EFEVM0Y8CCioCGwzFmVYr6DiIiIiIiIiMh3jG4VPNQLyKIoYu2633HkyDlfDqtSihWLviajOuAhiqIcVtGqAh6OCh5GVvCgwGRUVKNxbdFSXoWd0hITtLrKBzzy8tUtWqw+rpJhcbRhUYZSlGEP5diKXQIers8LKUgLFgIY8CAin2LAg4iIiIiIiIiIiIiomrm2aLFZ1SuCP//yD2bN/hIPjlzky2FVirKlhMmlgodyIVyrca/gUcoKHhSglBU88gtcK3iUE/AoM0FfYcDDGWzKz1e3aPF1GxSTHPBwhjqU7Vqk+wHA6rLf+fkMeHgiurZoEYOn5RYRBT9dxZsQEQUGAZdXwoOtSLzh80JERERERERE5CtlLq0OrDb1guDBg2d9OZxLUlSsCHiY1AEPZasZjcb5+Z1UwcPICh4UoJTVaNwqeJQTwigrM0GnK//66ZJSZyUMo9Gs+oza7KcKHiGKCh46RUDFogx4uJyX8lnBw40oirA5gjCiKLJSNhH5HCt4EFHwYIuWKsUXnkREREREREREvuPeoiV4rvhWVfAwlVPBw0OLFlbwoEClrEZT4FrBo7wWLaVmVUDCE2WrE4vF6lLBw7fHvtli30/lmLVajXy8Kp8Hm8t+nz51AXfd/QreenudD0YaJERAtIgQtIL9GkrpPyIiH2HAg4iolmJlEyIiIiIiIiIi3zE6KniEh9lblygrXwQyURRRqginuLaXsNm8BTzs+1lWxgoeFJjMisoVhYXqgIdrBQ/lvBdFETpFNQybzT2wUaIIeJjNVtXP+7pFixQuUR6fgDPwoazg4XpeWvbBZmScy8XyFf+r5lEGGxGWQhMspRZ7hxZR5OftROQzDHgQEREREREREREREVUzqUVLeLgBgPuV8oG6OGi12lRjc608YrU671MuIEvtIJSL6ESBpNyAh8s8Nyoq12i1Gui0zoBHWZl7lRqzyfnYZrNrBQ8fBzwsngMeescxqqzg4Vq55Pz5gmoeXRBynA+t0vyxiRCDpyATEdUADHgQUdAQBPZoqUqB+qEBEREREREREVFNJFWykAIergupgfpRjetitHvAw3m/RuP8/E4fogMAmM3qli5EgcJT5Q2JaxsVo6ISjSAI0Oqcy2ueqtQojwv3Fi2+DXhIVTlcAx7S98qwWXnPiVSFqLYTRUC0iRCtjv/7e0BEVOsw4EFEVEvxhScRERERERERke9IV/nLFTxswVHBw7UCh2vAQ9nSQaNxLjno9faAh4kBDwpQrnMZcIaUXEMYyiodVotVrooBAKWl7sEH5WObzRZVYMQ1PFLdpLFovAU8FMewzer9PJSbW1wNowtOolW0f8BuAyAy5EFEvsWABxEFDVbwqGIB+qEBEREREREREVFNY7FYYXK0eIiMDAWgXlQNZOYKKnhIQRXX6gAhIY4WLSa2aKHA5KlaRVhYCAD3ea4MeJgtVlUAxHMFD3XFDn9W8LA4qom4HqNSIMtSyQoeeXkMeABQXDkpQrQ5gh6iyCsqichnGPAgoqBxufEO5hicAvVKECIiIiIiIiKimqykxCh/HRUVBsB9ATlQP7axuFTwcG0tI33vunjMCh4U6KweqlWEhUktlFwqeCjak5jNVlVlG0+tS5THt8lkVbVsca2KU90qbNGiCHVYywl45OYWVcPoApvNYrOHOFREOdAhWkXH9/4YHRHVVgx4EBHVJooXmoH6oQERERERERERUU1hNluQl1eMYkfAIyREhxCDPfjg3h4iMD+scQ1oWF0WvqWWDlJrC4le76jg4ePFbKLK8tSiJSxUb7/PpY2KMsRhcang4SnEpGrRYrGq2rK4HkPVTRqLVuM54GFVjc3+dUSEwe1xLubUwoCHyQqb0eX3JQJwVBsXHc+dKIqwmX3beoeIai8GPIiIailW8yAiIiIiIiIiql6jH3obAwbNxonj2QCA8PAQxVXzwfHZjGsFj8q2aJEqeJhNrOBBgUmau1ddlSTfFhFhb6HkWqnGalFX4FAFPDzMceXPW8wWlxYtvg0C2LxU2dE6QlnKsUmBrYSEaLfHOX8+v7qGGLBE0f1zdFEE4Dh/a0K1EEI0gMUe8HCv9kFEVPUY8CCiGk8M0Ksf/EH5YpTPChERERERERFR9Tp6NBMAsPGHPwEA4WEG+Sr6YGnR4lqBw3Xc0vcal+oAIVLAw8IKHhSYpJBV927N5dvq1o0CAFWAA3AJbFjULVrMJvc57lrBQ/W9j9sWWb0FPHTeW7To9Tq37bOza1/Aw9OH6KJNBAT7XRqdAEHQwGYDRCsDHkTkGwx4EFHQEASh4o2oXIH6QQERERERERERUU1WZjQBAMLDDXIrE+WiKuByYU4AfYjjGtBwrT5glSt4uLRoCXG0aGEFDwpQUvAhKSlWvq1u3WjVfa7bSqRjGgCMJjNcqSp2uFT88HUFDzmE5XKMarVa1f2AM/Si1Wjc9vn8hYLqHGbwsImQEx6CvVuLIIj22wPo3E1ENRcDHkREtYiqmglfbBIRERERERERVRtlgMNYZl8ADg83yFfFl1fBw/U+f6qoRYuzOoBWdbtUwcPk42oFRJUlBzwSY+TbpNYkrhU8XFsqlZU6Qx2uVW6Ujy3drwp8WH1b1cbqpY2SFDazqFq02OT7evZoodo+52JRdQ4zaEgVPGQCIGgcSQ9+5E5EPqDz9wCIiCrtMgt4CJf7gzUc8x1ERERERERERNWnrMzs9nV4uAEaLwEPJdfFZH8yW9QBDavL4rTNah+rtFgs0UstWjwsfhP5mzKAlZjkDHjUqWNv0eIeZFLP45JSo/y1pyo15bVocQ1NVTc5hOXSRkkKfCjPN/K2Og3Gje2LZs1S0bBhAqa/+FntDGu5FOUQRRGiCAgQAdFRdVwQINoAU24ZtIYI/42ViGoNBjyIKGhcbosWkbFZJ5cXo0REREREREREVD1KSpwLwKWlUouWEHmR1T3E4b7IGghcAxquY7N5qQ4Q4mjRYmKLFgpAynkstWUB7CEswEMrIpfvlQEuY0UBD5NFVSXDtTpIdXNW2fEc8FCOVar2odFo0KRJCpo0ScHeP44D8H0wJSCJjv9cq3WIgGgDxAA6dxNRzcWABxFRLcJQBxERERERERGRb0ihDgDILygBAISGhdTYFi0al+oAOp1Wvt9ms7ndT+RPyoCVwaDHLTd3QEZGDlq3TgPgHsJwnffK49vsobKFWwUPxeO5hkeqm7SvbgEPjXQusrpvq6jIo9c5qvH4OJgSMNw+UhcdIQ/7HdJ1qaLNxqrZROQTDHgQEdUi6nJy/hsHEREREREREVFNV6JYAC5wBDwMIXrodPZFVdcFZOWFOcr2Ef7muqjrWslAuuJf69KiJSTEufxgNlthMDDgQYFDGcDQagRMfeFuAEBOTqF8vyiKclVpq0vFHWXAw1OVGpvi8Q8fPofDh8/J3/s6KOEthCW3aLEqzj0ettXp7WEttluC/KG6ejYI9ltsIj90JyKf4CsqIgoal9egBR4StgSwdQ0RERERERERUXVStmgpLrZ/HWLQyZUt3AMezq8tAVTBo6IWLVI1Amm/JHq9OuBBgaOgoARDh72Ope/+4O+h+I2ygoeysoVyHqtal7jMe6PR2aLFU8CjvCo8fmvRolMvCWq09k/cLaoWLaLjPue2ei/nrFpDFCE6nhdRatGi/Gzdke8Qbfb/iIiqGwMeRES1iCrUwXwHEREREREREVG1UV7hLzGE6OXFZNc2Dao2CQEU8JAWdb21lpHudw94OL83eWhhQf7z5VfbcOrUBby37Ed/D8VvlPNYWa1CW8mAh5KngEd5IS2rD4MSoig6Ax6uLVq0zjZK8tg8bOstlFZbiBYbREWVE9FqAyyAdEmqIDgqMIlgBQ8i8gkGPIiIahG+viQiIiIiIiIi8o1SRQUPiUFZwcPqvTJGeYvJviYtXhsMegDuY5NatrhWBxAEQQ55mD0sgJP/eAok1DZWmzLg4awdrVMEG1SVLazeww2eKtSUdwz7skWLqlKJtxYtiufC5qHlkr4Wt2gRFGXFbRYbRLMN5gIzrGYr5CsoBfvn7qKNNbOJyDcY8CCioCEIl92khSSKhIfItAcRERERERERUbXxtIhuCNErroZ3reChXGQNnM9tpKv2Q0M9BzwsXqoDAM42LbVxYTiQBdL88hebYt4qP3dWzmNlpY3ynjOTyex2W/ktWnwX4FKGN9wqeDhCHKpzj+NrZVUTnb52V/AAAIgirGVWWIrNEEURokV0VsgWAAROJo+IagEGPIgoeDDfUaWY7yAiIiIiIiIiqj6eFnhDDDroHJUuXNs0BGoFjwMHzgAAQh0VPFxbT1i9tGgBgJAQ+22sGBFYatPngmvW7MKg2+bgyJFzqtutcpBB/aGz1msFj/JatHiq4FFOxQ8fHg/Kcbu3aHFvu2R1BFk0WkUFD52zlUsgnZt8RnRU6LDYYMwts1fssNrkCygFQYBoE2vXgUVEfsWABxFRLaJ8jcmCcURERERERERE1cc1CAHY25xIi6quV8Mrr+pXto/wJ6vVhnXr9wAA9CE6+TYlixzwcF9u0OmkCh4MeASW2vG5oCiKmPPy18jJKcLHK/6nuk+qyKHRuLcWkoMPimPU6qHqxu23XQvA8/wuNxDiw+NBOQ5vYRabhyCLsp2L1KIFqL1VPESrzfGfCAECbCYrtAZFqE3kp+1E5DsMeBAR1SJ8mUlERERERIHk2zW78OCIhTiXmevvoRARVTmPFTxCdOW0aCl/MdkfHp3wjvz14Ns7A/DeokWn9VDBw7EwbHJp0XLiRDays/OrdKxUecqLwGrygv25c87XFwl1o1X3SSEqrca9bLR8jCrmuqfAVmJiDADAaPTeoiU2NsLtPl+2LLJanb9s1woeUrhFuW9SSxfltsrqPJ6eh5rEaDSjsLBUdZvoKM5hM4v2r602aAxaaPTO50jwEHAjIqouPOMQUdBQ9kK8FCJLo3nGp4WIiIjI586ePYv7778fderUQVhYGNq2bYtdu3bJ94uiiGnTpiElJQVhYWHo06cPDh8+7McRE1WvuS9/jSNHM7F48ff+HgoRUZXztHCuDngEdouWnNwi/P33Kfn79u3TAXgft6cWLVLVD4uiYsHFi4UYdv8CDL5zXpWPmSpH+XmpsQa3z8nLL1F8p/4wVK5UoXVfJnNW8HAPPijFx0cBAIqKy9zukx5/wRuj3O7zZcsiZXDMrUWLzr1Fi83qXtlEFfDwYTjF14pLjLjzrvkYMGg2/vrrpOIe0T59RBGACNEqun22rgvTQtCyxzwR+QYDHkREtYiqRQuDL0REREQ+lZubix49ekCv12PdunXYv38/XnvtNcTFxcnbzJ8/HwsXLsSSJUuwfft2REREoH///igrc//QmKgmMZrcr3wlIgp2nkIaBoMeOq37oiqgrujhaTHZ1/7444Tqe0MFLVo8LZSH6O0/o6zgceRopvw1P5/yD6k9CeC5+kRpqQkbf/gDRUXB/RpUWYmhtNSkuk9qS6LxMG+ldkPKMJOn47luXXvAo6Cg1O0+uYJHjLOChxSU8G3Aw7GfGsHtAkq5RYtiPkiVTTSKsIJWq5Hbu9Tkdktnz15Ebm4xrFYb9h84o7pPtNnDHRBhD3gwy0FEfsSABxFRbcI3zURERER+M2/ePKSlpWHZsmXo3Lkz0tPT0a9fPzRu3BiAfYFjwYIFeOGFF3D77bfj6quvxocffoiMjAysWrXKv4MnqmaeyvoTEQW7Clu0WAO7gsfnn/+i+l7rNZhi3w+dhxYFekeLFrNiQVu5aF6T24MEMmWow1PA47U3VmP6i5/hhWmf+HJYVU4Z8CgrU++nFGrQeGjR4mmuezompfBGeQEPrVaDBx/oBa1Wgxen3QPAtyEJaT89VirReKjgIW2vUW8vnbfMNfiYNRqdv5eSEqP6TlGEaBMhaAVow7TQhHB5lYj8R+fvARARVdblhmJ5JYCTuoKH/8ZBREREVButXr0a/fv3x913340tW7agXr16GD9+PMaOHQsAOH78ODIzM9GnTx/5Z2JiYtClSxds27YNQ4cOdXtMo9EIo9H54WNBQQEAwGw2w2wO3IoI0tgCeYzkWxqNUKvnA48JChSci1XL0/Oo1QqAIDrut6q2MVuci4tGk3//lp8/X4A//jypuk0U7YvAVqtNNTYpIODpXK5zBDxKy4zyfUajs5JCYVEJoiLDqn4HysF5rl68Li4uhdkcqbp/7drfAQA7dhwO6ucpP69I/rq4pEy1L2WOeajVatznrSN4WqaYt56eh/BwPQB7kER5v81mk4MSNtGKMaN7Y/iwHnJFFLPJqnq9Xp3PcZnjvYJG476fUkEPk+J8Y3JUVRME9bj0ei1MJgvKSo1BPSfKU1LsDOoUF9vni8Vihs1iBWwCLBYLrFYrBI0AeMjgWawWWCwWaAL4+ampvzui2oYBDyIKGq4l5OjKiK6NAomIiIioWh07dgyLFy/G5MmT8fzzz2Pnzp14/PHHERISghEjRiAz016uPCkpSfVzSUlJ8n2u5s6dixkzZrjdvmHDBoSHh1f9TlSxjRs3+nsI5EfKMH5W1jmsXbvWj6MJDDwmKFBwLlaNAy4l/gFg547fUFRkX1i+eDFHde7LysyWv/7ll19w6mR09Q/Si337LrjdtmXLTwDs1QeU496/LwMAkJnpfi7Pz88FAOzcuRslxfbAyP4Dzsdet/Z7REaGVOnYK6s2z/MTJ0/JX/+46SckJUWo7hcE58Vhwfz3edfuDPnr06fOqvblXKY9/GE0Gt320WS2hyK2/u9nHDliD78cPnwKrrZv/xmAPTDz7bdrPFb++HHTJoSG2pfiSkvtIS6rzYY1a76Tq4dU51zMzbWHSkTR6rafZ86cBgAcPHgIa9eWOL62n7dOnz6l2t5ms1fu2PTjZiTUDfz3GZfj6NFc+esDBw5h7drLCEMcq8IBVYOSkhJ/D4GIqgADHkRU4zEY4qT8AJWVTYiIiIh8y2azoVOnTpgzZw4AoEOHDvj777+xZMkSjBgx4rIec8qUKZg8ebL8fUFBAdLS0tCvXz9ER/tvUagiZrMZGzduRN++faHX6/09HPKTsjIT5r+6AwDQsFEDDBgwwM8j8h8eExQoOBer1rnMTfjl17Oq23r07In8vGJ8+fUhREZEqc59677PBE7Zq3F17twFHdqn+3S8ShdztgA4qrqtb78+WPzfvRBFqMZ9MWcLftp62uO5fMvWHJw8WYBWrdpgwIBrAAAWy075sXv0uB716sVX67644jwHftqaA8C+mH3ttV3Qpk0D1f2vL9gFs9m+oB/Mf59Pnd4AwB5iiIyKVe3L/v1n8OFH+xAREe62jx+vOIz8fCO6dO6Ktm3tz82x4+uxY+c51XaDB9+Khf+xVzvp2bMX4uLsYRCj0YxXX98JALj5lv4IDzMAAEpLTVj4n90AgJtu6gudTqj2uXjq1AW8s/QPGAwGt/08cnQtft+ThauuugoDBtirCGac24Rft51Fenq6avt3l+1HaWkhunXrgWZNU6plrP7205Z9+PLrQwCAxMQUDBgwAJZiM2xGKwAB5kITbBYrdGH2pVVLoRklxwoR1iAS+rgQmApMCEuOQEiswY97UT6p4iMRBTcGPIgoeFxmToNBBic+E0RERET+k5KSglatWqlua9myJb766isAQHJyMgAgKysLKSnOD02zsrLQvn17j49pMBhgMLh/gKjX64NiwSJYxknVIz/fWQZbp9VyLoDHRHUqLCzFI+P/i9692uChMX0q/oFajnOxaoii+sOsBg3qomWL+tiz9zgA+1X+yufZ4lhQBwABGr/+Di5eLAYAREWFobCwFDf2boNQx2sOURSh1Wqh0dirFdgcxQpC9Dq3MRsMesc2onxfmdHZisZqFf22n7V5npeVOtvkePod2NuW2OdjMD9HxcXO/TSWmVX7Is1fnc79NYje0VoIEOT7PH2uGhpqQGRkKIqKylBaZkGiY1uT2VnBI9RgkB9DEDSKn3Y+dnXORenf1GoFD/vp2DdReZ/guE99POv1Ose97o9zKURRxO7dR9G8eT1ERfm2PVNFLBbnb7nMMV8EHWATtBC0AgQbYCmyyC18is8WwHzRBPPFHCT2qQedVgedzv08GEgCeWxEVHmaijchIqIaQxl2YdqDiIiIyKd69OiBgwcPqm47dOgQGjZsCABIT09HcnIyNm3aJN9fUFCA7du3o1u3bj4dK5EvFBWXyV+bTJZytiS6ct+s3onjx7Px3rIf/T0UqkUsFvsC+TXXXIVZL92HT1dMhkajkRcHpfslZkXAw2qzwZ8uXLRf5T1ubF8s/b/xmPrC3XL7CUDdgsJisX+t1WnhSloUVu5bUZHz/G80XkYLBLosn372M77fsBcAUFDoDFmWlbn/DnQefpfBqKjIuZ+lZSbVfRbHHJbapChpHceocp5bLZ6PyfBwe/CppMTocVvlcaPTaeV/z1evfWyOc4m0T0rS2GyK8430tevzonNsqzyWL8c3q3fi8Unv4aVZX1zR41QH5fmoRBGCsllE2EqtgE2Esli4rcz5XIhm/56ziah28XvA4+zZs7j//vtRp04dhIWFoW3btti1a5d8vyiKmDZtGlJSUhAWFoY+ffrg8OHDqsfIycnB8OHDER0djdjYWIwZMwZFRUW+3hUioqDCyiZEREREvvXkk0/it99+w5w5c3DkyBGsWLEC77zzDiZMmADA3lpw0qRJmDVrFlavXo2//voLDz74IFJTUzF48GD/Dp6oGpSUOD8497S4RFSV+B6Yqosoivj8i1/x05a/3e6TFofbtE7Djb3byrdLi+cWq3pB0GyxuP2sv5w/bw94JCbGoFXL+jAY9KpFf5MyjOIYq87DAnJIiHvAo1ixEM7zv2+cy8zFwkVrMWPm59i//zQKC50hmzIPIRtlKCGYqfbTZa7JwQeN+75KYQZlCEua51KgQxIa6qhMo6qK4vw51+fSU+ipOknj9vQ71WoF1TaA87zkur3OUdXEbLmycb//wWYAwM+//AMAuHChAJs2/YkylwCOP6gCHsrATrEJllIzRJv6tYTNZPP4NRFRdfNri5bc3Fz06NEDvXv3xrp165CQkIDDhw8jLi5O3mb+/PlYuHAhPvjgA6Snp2Pq1Kno378/9u/fj9DQUADA8OHDce7cOWzcuBFmsxmjRo3CuHHjsGLFCn/tGhFVA0G4zB4tJFMV8OBnW0REREQ+de2112LlypWYMmUKZs6cifT0dCxYsADDhw+Xt3nmmWdQXFyMcePGIS8vDz179sT69evl979ENYmyFYHRxAU+ql7SIjNRVdu9+ygWvLkGAPDrz3NU93lbWNXp3BePAcBkcn5vs/n3g5uC/BIAQFxshHxbaKgegiBAFEWUlhgR4VjotjgWs6X9UpJaXZjNzvCKcuGUFTx8IzfHeUHsnr3HUaio4FFa6r6wXlMqeJS3nzar/RjTeAg+SPuvDD5IgZBh9/WE2WxF927NAQBhoSH2x1cESJTHvutn2iEhOhiNZpjMvqngYS23UolGtQ0A2OTtvQRTrrDySKni+D9+PAsTHluKvLxiDB92HSaMv+WKHvtKGRXto1TzRSPYK3RoBFUbeWuZc3ubxXE/EZEP+PWdzbx585CWloZly5bJt6Wnp8tfi6KIBQsW4IUXXsDtt98OAPjwww+RlJSEVatWYejQoThw4ADWr1+PnTt3olOnTgCARYsWYcCAAXj11VeRmprq250iooDDHIMTr1giIiIi8q9BgwZh0KBBXu8XBAEzZ87EzJkzfTgqIv9QLmxygY+qm0ER8DCZLAx8UJXZueuo/HVpqQlhYSHy994DHt5atDgXC690EfVKSe0jQgzOY0UQBISHh6C42KiqwmS1SAEPDy1aHMeash2F8pzvqXoEVT1lS5a8vGKvlQokNaWCh7oVjTrgUX5lC0cIy+pewSPUEILRo66Tbw91HPPK4IJU5cLTY0t/f0xGHwU8HGGx8vZT3aJF2l4dVoiMsAe6lC32vFm1ajvq1o1Gz54t3e5TBmqGP/Cm/PXPv/zjMeBRWmrC5p/+RssW9ZCenlThv+3JiRPZSEiIRkRE+aF5kyJwXFzs/H0KggCryQZB53xObBYbRIvzs3abyQZNaM0IRhFR4PPrO5nVq1ejf//+uPvuu7FlyxbUq1cP48ePx9ixYwEAx48fR2ZmJvr06SP/TExMDLp06YJt27Zh6NCh2LZtG2JjY+VwBwD06dMHGo0G27dvxx133OH27xqNRhiNzpNzQYG93JzZbIbZzBeUVP2kecb5dokU4YRLee5sVhufawdlqU+zxcy5SLUC5zkFCs5FIrVgOCYCeWxENYFy0YQl+qm66fTOj0GLissQHxLpx9FQTZKVnS9/nZdX7CXgoV7008oVPFxatCgqGykXpv1Bqi4QolcvIYSHG1BcbERxiXORV9oPj4vZHtpRKMMePP/7hrKSxdmzOar7PFXwqCkBj6Ii536bzVZYLFZndQ6b98oWOg/HqFwJwyX4EB7mXsFDCtAYPIQJPVW1qU6WcsImUpUOi4dKJa4VPKKiwgCo55InR46cw/xXvwEAfPft84iLU/+99RQoAoCTJ8+joKAE0dHhqtvnzP0Km378CwaDHis+noSUlDiPP+/Nb9sPYfK/3seNvdtg1kvDyt1WeT7KzS2SL5YURRGi1QZAI1fpsJWpA3qi2QYw4EFEPuLXgMexY8ewePFiTJ48Gc8//zx27tyJxx9/HCEhIRgxYgQyMzMBAElJ6lReUlKSfF9mZiYSExNV9+t0OsTHx8vbuJo7dy5mzJjhdvuGDRsQHh7u4SeIqsfGjRv9PYSgkpubK3+9du3aSv/cyZMnLmn7muz0mQL56/9t/R8SEuznPM5Fqg04zylQcC4SqQXyMVFSUuLvIRDVaMpFE19dxUq1l7L8fEmxEfFxDHhQ1ShRXM2em1ukWnz0WsHDEfiwllPBo6DAvwEPKZChdwl4REQYcP68epFW2k9PFTyk25TtKJRtEFjB6cqcO5eLmJhwhDva5XijXJT/acs+1X0eW7Qo5qwoikHZOttms6GoSF1toqzMjMhIreN+R6UKjafKFu4tWrwdz6GOFi3KCiHSHDcY9G6PLYWefNWiRQ6beBiLXMHD6ryw0iq1rnEJvkgBj4rOTfv2n5G/Xrvudwwfdr38vdlsUYW9AOCuu7ph8+a/cfFiITIyct0CHvsPnJH34+dfDuDuu7qX+++7WrjoOwDAj5v/rnBb5fnIZLKgoKAUYaIWolWEoNNAtIhywEfZngUAbGYbGO8gIl/xa8DDZrOhU6dOmDPH3puwQ4cO+Pvvv7FkyRKMGDGi2v7dKVOmYPLkyfL3BQUFSEtLQ79+/RAdHV1t/y6RxGw2Y+PGjejbty/0evcXVuTZ2nXncDbD3i9ywIABFW4/75XtAICGDRtVavva4I8/TmDFJwcAAD179kSDBnU4F6nG4zmXAgXnIpFaMBwTUrVHIqoeytYE/r5SnWo+i2IhzXXBj+hKKIMOuXnFqvsscusS9YKwXMHD6r2CR2Ghf4OmcouWEPWSZXiYPUigbNHibT+VP69sOaNsg+DaNoMqb8/e43j8iXfRo3sLvDz3fhQVlSHjXA6aNklxC2QUFno/75WWemjRovhdWixWt6BPMCgpMckhDklpmQmRkfY2HVar98oWzgoeihYtNs8BD6lqjzIoY3IEBUI8BTwcVT18Vb2mvLCJVH1EGQCyeGm5JAUvKqrg8dffJ+Wvv1u7WxXwUJ43JANvuQYHDpyxBzzO5aBFi3qqsWRl5cnfv7FgDbp1a4769eqUOwal8+ed7+mUFVw8cQ2cZWfnI8UQCdFig6ARUHahFKacUkQ2joG1VB1UsbkEV4iIqpNf/yqnpKSgVatWqttatmyJr776CgCQnJwMAMjKykJKSoq8TVZWFtq3by9vk52drXoMi8WCnJwc+eddGQwGGAzuiVa9Xh+wHyxSzcQ5d2mUb0wu5XnTaDV8nh2UJUF1Op38vHAuUm3AeU6BgnORSC2Qj4lAHRdRTaFcNDl/Pr/CD92JroRJsfCibC1R2/399ynMf2UVHn9sADp1auLv4QSl4mLn4nieS8DDawUPx7lOeR4URVHVuiQ/338BD5vNJo/dvYKHfXG8uFjZosXzgrDy55XhFWUFD0/VI6hy5s1fCavVhq3/2w8AeOrpD/DnXycxfNh1mDD+FtW25S3Kl3is4OH8XRYXGxEbG3wBj7x8+/FoMOih02lQXGxEmWJfpaoVri1XAECrK6+Ch3qeh4ba3zMo57Kzaob785aQGIMjRzORmZl3yft0OcobSz1HUOJshrNtjxRac60KU16Llm9W70RJiRE5OUVYu/Z3+fYTJ86juLhMPm9Ij63Xa3Hf0OtQWFiCpk1TkJoSh337TuPcuVzV42Zm5bmFdL78chsmPTGoEntuP5cpzzcXLhQiOTnW6/auoZvs8/lITomAaLEBWg2Kj+UDIpC767z7v2W0ud1GRFRd/NpIrUePHjh48KDqtkOHDqFhw4YAgPT0dCQnJ2PTpk3y/QUFBdi+fTu6desGAOjWrRvy8vKwe/dueZsff/wRNpsNXbp08cFeEBEFD1H0/DUREREREZGvKVu02GyizxY6qHYyqyp4uF+tXluNe2QJjhzNxPxXv/H3UIKWsoKHa+sC7y1aHG0RbCJsjqoAVpdqHv5s0aIMY+hD1IvC4eH2K/6V+y2dzz1VQpCqGygrdSiDLJ6u6KfKUS58Z2Xl4c+/7JUTNv34l9u2hUXe51Oph9+BTfHBob/bBV0uqXJD3bpRCHO0UVGGWaSKHBoPLVqkY1RVwUM6nl1al8gVPCrZoiWtvj1UcebMxXLHbzJZMPbhxXjl1VXlblcRUzktWurViwcAnD17EaLjd17sNeBhD2m4BjxKSoyYN38lFv1nLZav2AoASEiIRny8vRXa0aNZqm0BIDIyFI883A9PPzUYGo0GKSn2cbgFPByvDRuk1cX119kvFt+z93il9/38+QLV7zAzK7ecrd2Ddeez8yEIgM1ig7XIDHj4PN2QaA++2Iys4EFEvuPX2OWTTz6J7t27Y86cObjnnnuwY8cOvPPOO3jnnXcA2K/WnzRpEmbNmoWmTZsiPT0dU6dORWpqKgYPHgzAXvHj5ptvxtixY7FkyRKYzWZMnDgRQ4cORWpqqh/3joiq2mW3emSSwSPR0ytSIiIiIiIiH7Fa1B+En83IQf36lS+5TTXP2bM5ePe9TRg+7Do0buy5Mu/lUi5YK9tD1GaqdgKKBXe6NMWKoIMy9AA4W7C4XvEfoghNmM1WGAwat99BgR9btCjHEqJ3adES7t6iRVr41pUT8PBU3cD+OAxcXS5ltQGpigcAFBeVQRRFVTVkT89zbGwE8vKKPVZRsSjOmfkF/m0XdLmkgEdiQgzOX7B/razg4S2ABSjaKCnCqFYvQSY5xOSxgod7qEJ6rXPq9AW3+ywWKxa8uQaRkaFo1SoN+/adxr59p/H0U4PL21UA9moVx45loXHjZNXvXh5LiPtYkpNjodEIKCsz4+LFQtStGy3PlYgIdcBDatHiOh9cQxkpKXFYsvhhvDxvJbZtO4jDR87h6qvtF3VLFY9cwyOpqXEeH0sKk8TGRmDC+Jux9X/7cerUBdhsNo/BHFcZisokgHuVJVfS/akpccg4l2ufNwKg0WtgKrCPXRuug6AVYCk0QxOiQWhKOIzZpbAy4BHQbDYbTCYGCil46PV6t9ePSn4NeFx77bVYuXIlpkyZgpkzZyI9PR0LFizA8OHD5W2eeeYZFBcXY9y4ccjLy0PPnj2xfv16hIaGytssX74cEydOxE033QSNRoMhQ4Zg4cKF/tglIqKApgx1MPdCRERERET+5Hq1en4FH7pTzTdz1uf4669T2Pq//fhhw/QqfWxlBQ9lufba5suvtuGff87i2WcG48RJZ9vry72mJphkZ+cjLi7CreXIlVIunCvbtQDeF5DDwkIgCAJEUURxcRkMBr0qhAQAWVn5VTrOS6E8XlzbrkiLvkVFihYtVu8tWqTF7xIvgaKSUgY8LocoisjPd/7d/OmnffLXhUVlyM8vQWxshHxbWak62KbRCHhswi14afaXKPXwOzArQpgFfmwXdCUuOAIeCQnR8nxVVtmQAjJSixUlaVHNc4sW1+NZCj05n8fyAh5Nm6QAAP7884R87Ei+XrkdX6/cDgCYqGizYzSaPT6W0gcf/oT/W/oD7hrSFZOfvM25n+WMRa/XISkpFufO5eLs2Rx7wMNLCKOOoyLHxQuFqtszFKGMevXi8d7SCYiKCkOTxsnYtu0gjh7NlO/31v4lJTnO7bEA53kmMioUKSlx0Om0MBrN6Hn9C3jk4f548IEbyn1Ozp5VBzzy88uvRpPreC3atGkKMs7lIju7QL5PqtAREm9AdMs4iFYbRNF5Oyt4BC6TyYTjx4/LFbOIgkVsbCySk9WhPYnfG6cNGjQIgwZ575clCAJmzpyJmTNnet0mPj4eK1asqI7hEVEguYQSHiLTCx7xaSEiIiIiokBhcangwau46dChcwCqZy6YTKzgcfBQBl5/41sAwPXXt1KV2c8+X6Ba1K9ptu84jCcnL8N9Q3visYkDquxxLRarqoqC69z1tiCs0WgQEWFAUVEZioqMiI+Pcnv+z53LRWFhKWw2EUVFZXIrBV+QjpeQEJ3bokJcnH2RNze3SL5NCqdoPQQ8wh2L356qGwA891+ukhKjKhTk2rYiKztfFfBQBhsaN07G3DnD5eoGRcUeAh6KEE5efnAGME+fsVfISEiIxrlMe3CgTBXwsH8ttW9R0uncW7QYTZ6DEtLznJvrfJ6cAQ/3JbjWrdMQHR2GgoJSHDp4TnXf9h2H5a+/37hX/jo/vwSJiTEe9xOwn2v+b+kPAIAvv/oNjzzcXw5RSGPxFGQBgPr16tgDHhk5aNeukdcQRlJSLAD73FJWiJHmUc8eLTB71jA5RNekib0S1+Ejzn30GvBQVPBQPrb0dyoyMgw6nRaNr0rCwUMZAIAl//0eQ+/toaqI5OpshmvAw/tcFkVRruDRrFkqtmzdj+zzzqCdzeRo6RNinxuCVgMBziUL0SLCZmaAINCIoohz585Bq9UiLS2tUpVfiPxNFEWUlJQgO9sexk5JSXHbplIBjzvvvPOS//ElS5YgMTHxkn+OiMibS2nRwoBHJfA5IiIiIiIiP7K4VPAo8VAinmqXsDC9auFXSRRFrFu/B02aJKNZ00tvy2yxOBcra2s7kn/+OSt/vX37IfxzMEP+XhRF5OQUIT4+wtOPBp3Tpy/g9z3HceugjtBoNHj55a8BAJ98+nOVBDykBUhlmxLAU8BDqmzhvqAUERHqCHjYFzClxXqDQY+4uAhkZuZhyX83YNeuI8jKzscny59ESkrcFY+9MqSwiV7vHtioWzcaAHDhovMqfumKf9eWDgAQGmZfVPbWEogBj8uTl1d+VY1iRYUVwPn8vzLvQfTo0QIAUFRo36bAQwsWZQWP/CCs4JGTW4T13+8FAHS8pjEOH7FXkShVVDKRnpNQTwEPRwUP5d8kKcxlcAlKJNSNAgBcuOis9mB0zPFQD1UzdDotmjVNxa7dR3HqlLNNiyiK2LfvlPz94cPOYERFAQ/X1iOZmXm46qokxz7Yx+KtAki9evHYuQs4c+YiAGUIQ/28JCREQxAEmEwW5OYVI94R9srOtocg6tevq6qQ1MTRau3YsSy5pYq3gEdign3fTCYLCgtL5XYwUsAjOspe0b9///ZywAMAjh7LRMsW9b0+L+4VPLzP5aKiMjnQI73O2LnzCHLzixETaoDNEXzThKjPi4JWA02oFrYyK2xltfP1RSCzWCwoKSlBamoqwsPD/T0cokoLCwsDAGRnZyMxMdGtXUulokqrVq1CSEgIYmJiKvXfd999h6KiooofmIjIB5hjUBDZooWIiIiIiAIDK3iQK+Uim+uFG7t3H8Ws2V9i5Kj/XNZjqyt41M4FGOXC1spVO3DgwBnV/Rdzas7nuRMeW4p581fi089+AWCvUCK50ouCdu06ggGDZuOHTX+qqqAA7u1GLBbPFTwAICrSvmBZVGxfZDc5QhUhei1at04DAKxctR2nz1yEyWTBjp1Hrmjcl8IkBzzcrw+tW8exmH3B+ZwWOkIqkRGhbtvL7Ssci+miKLpU8GC473J4q0QQ7miJU+gS8JAqqEiBGwCIibEvdhYUuLetUFYHUVamCAbFJUbcd9/rMBrNaNmyPrp0aYroKPtCWYaiooMU8JDaCClJx+x7y36UzxlGLy1d5NCTonVJeS1aAKB+/ToAgLMZF+XbTp2+IP8uXMNSBYXlh2yUgSsAyMrK8zAWz9d7S9WBzp69aG8b5Xg9FuESwtDrdajjOP4zM52PL50L6jqCLpK0tLoICdGhtNSEjAx7BRVvjx0SopPPiTmKv0Vyi5ZI++/v7ru6Y8pzdyLSse25DHVLF1cnTtivfm/dyn5OzfcQZpJI+xQRYcC11zZBlGPObNttr6riWsFDSRdhf26tpWzTEmikoGVIiPtxThTopFCS2ewegK90LZqFCxdi2bJllfqPBwoR+RvDC54pnxcRfJKIiIiIiMh/pIVPSSkreNR6yoUw1wXHo8ey5K+l6gJ//XUSa9bsqtRjq8rse6gS8vK8lXjm2Q9rdH92TwvCDz5wA5o3s1+pnFtDAh42m01ecFy3fg/Ons1RhTo8LWZfimee+wj5+SWYNv1TXHRZVPXeosW9EkaEFPBwVFGQWmLo9Fr069vebfuTJ89f0bgvhVnRosWVczHbGfAolip4RLoHPKTAQakj/GK12mCzOX8fDPddnlxHxYbmzVLlqjQ39++Atm0bAgCKi10qeEjtSMKcC+vR0fYFbKPR7HZeVJ4zDx48i2Ayd+5XcsBl1IjeEAQBna9tAgD4+ecD8nZyixYPAY9OnRrLX0vPTZnU6sSg3l46JoqKyuTXMpUNeHz40Vbs22ev4vH33/bqHe2uboiN30/Hm2+MlrevqIqK67nIc8DDe4sWwF7twmg0y8dnuIfAVppj3CcdwQnlvy2FvyQ6nRbpjexV/o8cVbdgc63gAQBx8faKIMqAR6Ec8LCPRavV4NZBndC9u70KTcY5zwGPLVv2oef1/8aRo/bKLV27NgMAFHh4HkVRxDv/txEjRi0CALRoUQ8hITr0uelqAECW41znrYIHAOgi7M+ttbR2BkiDgWu7MaJgUN68rVTAY/PmzYiPr3yPv3Xr1qFevXqV3p6IqDIEVP6PsPKNO/92OzHUQUREREREgYIVPEgURdX7d+Uc8NQyQHL2bA5OnbqAhx/9L+a8/DX27Ttd4b+lrNrhWsGjsLAUq7/diZ9/+QfHFYtWNY105fIjD/fH2If6YPDtnTFm9E2IlxbVcmtGwCNDcUV3fl4xdu0+qrr/nJcFQaXTpy9g1Tc7PAZ+pDYNgDrkADiDDhIp4KGrRAUPqSVGiF6Hnj1a4LGJA1SVAk6d9mHAo9wWLfZF3NzcYvk8Ll1lH+Uh4BEmBzxMbtU7AOdx/9tvh9zaKZB30oJ/bGwE7hvaExu/n4YX/j0EkY5WFq7VZeRqFYo5FR5ukCtVKM+5oiiqzpN/7zvl9jc7UJWWmrD5p30AgB7dW8jtaNp3SAcAHD+RLf/dkdq1eGrR0uuG1vJzIz2XUiDEtYJHRIRBnvu//voPgIrboqSmOtstrVlrP0dJAY82bRoAAK69tgmuu64lgEsPeJw+46wMIo8lxHuLFgA4c/ai6u9wWKj79k2a2NuuHDribB8jVQ+Rgi5KaWl1AQDnzuUBcFbs8RjwiHP/WyS1sJIqsEhSHe2qzij2UyKKIhb9Z60cVElKikWL5vb1SmXlEcnXX/+G9z/YLH9/tSMklZwcCwA4fzEfoijCanRU8DC4nxe14Y4KHmXBcZwQUfCrVMDjhhtugE7nuXyTJz179oTB4H6CJiLyB1bz8IzPCxERERER+ZPrYhEreNQuoihixktf4O57XkVBQSlEUVQtYLkuTipL3586fQE/bv5L/v6vv0+6Pf6Bf85gyvMfy4s50oI1ABhdAh7Kygg5F4M75GA0mjH24cWYOu0Tt1Yk+Xn25zcmJhyjRt6IZ54eDL1e5/GqaW+KisqQnZ1f9QO/DOfO5eL06QtutyvHd+FiIXa7BDwu5hS6/oiKxWLFvfe9jvmvrML//neg3G3POwIeCQn2hU3vFTzcP4aXK3g4whHSz4aGhUAQBNw3tCd+/GEG5s65H4Dz91eVzGYLjhw55zZXnO1i3NcEYmLC5f3JySmCxWKVQxuRngIejoVcm80eGnA9/nJyivDzzwcw+an3Mfbht6+4hU5tkeeo4BETGwEAiIgIhUajkdvkuFXwkFu0OMMMgiDIVTyUlW1cQzhlZeZKBaMCQUaGvWJPdHQYXpn/oHz1c2JCDARBgMlkkaufOCt4uAcZBEGQW3RIz40U7jK4BB8EQcCAgR0BAP9zVAipqC1KQt0Yt9v+doQV27RuIN+WmGDfTlmRwxPpfunYVAYfK27RYq/KUVBQio0//AnAfixrNO7nraZNUgAAx446q2pJf5/ruLRoAYCkJPv4pfOys4KHe6gmPs79b5FU4ci1OpAUNPnrL/e//8eOZ8mVPbp0bop/Pz8EjRvbtz9x8rzq9QBgr/QEALGx4bjn7u64a0g3x9hjAdgreIhWEXAERrQGTy1a7HPCxgoeROQjlW7RIrnhhhvw4YcforT0ykrZERFdKlbiuHKq98h8w0xERERERH4ktWiRWgCwgkftsvv3Y9iwYS8yzuVi375TyM7OV10x7tpGQ3l1cnZ2Pv7444T8/T//uLcPGPPQ29iydT/eXrwegLM6AuC+eHlCEfCoaBEt0OTnl+Ctt9fLi6+7dh/Fvn2nsenHv3DwYIZ6W8cV+rEx4arb68TbF+UqCj4AwJOTl2HwnfP8vthrsVgxcvR/cO99ryPHZdxSKwrJD5v+VH1fUZDl9z3HPH4NuM+dY8fti5wNGyQAcIY1JHIFD537x/DSFem5ufbFZingFBOt/v1Iv6/8cqraXK7/vLUOD45chPmvrFLdbnJc8a/30KJFo9HIrRguXChQ7bOnq/JDFRUMSktNKC1xVkFITo6F1WrDnJe/BgDk5ZXg0OFzbo9B7qSAh+vxHBlpn1dFRc6/qVarTT6/hoepf0fRjvmmDNiVKAKXTRQL48HgjKMKjBRakISE6FDHEWaTgn9y2xoPFTwAKMIvJbDZnM9hqIeqHFKFCKmahfSaJizM84XQUihMUlpqwnHH+aRV6zT59pRke6WKis65+/efAQDcMbgzAHvIUTo2yypo0RIWFoIbrm8FAPjq698AuFfMkEihB6l6UWmpSd5X1xYtAJCYqA6oFJfTokV6TpRVNqQKR5Eu7WI6dWwMjUbA8RPZOH9eHTo85mjpdnXbhnjj9VHo1LExkpJiEBUVBovFimPHnZW6zl8owP4DZyAIAj764AlMemKQXEkkxVHBI/tCPmwm+7lc0AkQPAT2tBH2c6XNaLOHQYiIqtklBzw6dOiAp556CsnJyRg7dix+++236hgXEdEVYdrfM+XzwqeIiIiIiIj8yWq1L7hLi0vSgtK5c7mqxXuqmZRVFs5fKHBrjVLgUsEjV1GyPTMzT3XV7qlT6ioOynBIQWEpLBYrTpxwLk66tmhRLg5JV/1u/OEP3HnXfBw8pA5JBJqp0z7B8hVbMWPm5wCAvXtPyPft3HVEta1UFSXKZeFOatGSW0HwoazMhH377VeFb/7p7ysa95XKzs6X9+fnX/5R3VfmoRqQIAjo2PEqAO6tDADg4MGzOHnKPkcOHXIGDNzmlsu8/PbbXQCA6x2Lo/n5JarKCVKlIk9XwkutC6TWK9K8jXZZsI+JdSzAOxb0q4rJZMHXK7cDAL5ZvVPV6sBkto/bU4sWwNmK4fyFQnkBNiwsBDqdh9YFWo3cpqWouAzFJc4F287XNgXgDCsAwKEAP+YChbJFi1KkXBnGOVfLFKEn1/YiUssdZbhNCuGEhYWgUaNEAOpKR762Zs0u9L95Jpa++wMAwGaz4fyFAo+f/2Zk2AMeyhYokiTHgn1mpv08r9xPT6TXJwWFZaq/G55autRxhBukwFlhkTTPPQc8pPOuZO/eE7DZ7JVHlEGJ5BT7mM95aC0i+fCjLfht+yEAwMCBndCoUQLMZqtc6aqk2HMVDKU+N10NwNnyxPXvhETaTynIIp1Pw8JCPIY2EhPt489yq+Dhvq0UJjp02HkOKJaexyj12KOjw+VQzY6d6r91JxyvJ6S5C9j/BjRtaq8+Mn7CO3Iw9Pvv9wIAWrWqL++b5KrGyVj45hjM//cw2EyOc7mH9iwAoAnRQNDar061sooHXaEPP/wQderUgdGoDr8PHjwYDzzwgJ9GRYHmkgMeCxYsQEZGBpYtW4bs7Gxcf/31aNWqFV599VVkZWVV/ABERJdLUcKjogCH8m6GPRT4VBARERERUYCQKnhEOT60lz70v/veV/HohHdUH/BTzaNccDx/vkBekJEUulQrUG6/+ae/VVeYnzl7UfXeX7lYbDFb8NC4xfKiH+CsTiBRtgdauWo7jh7LxPQXP0NmZh4+Xr7lUnfNZ0RRxC5H+5E//zoJURRx8qTzeZQWMSVSe4FQl8XMOA9l8T1RhmSULXOqyqlTF/D24vVuVTA8OXvW+ft0DQRIV6vHxjqDEle3bYDWrextD1wrfpw9m4NRY97CfcPegCiKOKw49xw+oq4mUeChikbLlvVxx+AuiIuzL7SfPu0MSkj74mlhVVp8PO64mlx6bPcKHvbHLSwqc2tt5erixULcO/Q1vPb66nK3A4DjJ7LlCiOAs7UE4Gxp5KlFC+AMBVy8WOBsoRDhffE4xhFaKcgvQXGxc4G3f//2btsqj9VgJ4oiXpzxGZ557iPVc10V8vI9V/BIdFRBOKyohCKd4zQaQa6aJanvqHRx5uxFxfZS9YkQ1KsXD8D9fOJL7yz9AYVFZXhv2Y8AgJkvfYHbB7+MOXO/dttWChxIrU2UkuWARx4AZwUP13OiRKrgUVhQIp8/Ac+tTqTqIBcd50ZnMMFzUMI1DPXc88sBAI0aJsptZQAgNcX+/J9V/H6UjEYz/m/pRgBA48bJaNokGTf2bgsAclhWqv4j7Y8n9eurK55Eu5yHJNKxX1hYCpPJIrepqlMnSjVuSVKitxYt7gGPps1SAQCHD2XIf9OdQRn388u11zYBoA42ApADo+npiarbmzW1P35pqQmjH3oLRUVlWPa+fU7dcnMHt8ePCDegRVxdROUB1iL7OVHrJeAhCAK0YfZ5YSk2e9yGqLLuvvtuWK1WrF7t/FuenZ2N7777DqNHj/bjyCiQXHLAAwB0Oh3uvPNOfPPNNzhz5gyGDRuGqVOnIi0tDYMHD8aPP/5Y1eMkIlJhaOPK8TkkIiIiIiJ/khYqpcXlgnx7CXSbo8f5rl1H/TY2qn7KxbLs8/mq8ADgXinBqAhlSKXqe/ZsCcC+iK6s2iFVCACA3/ccdwsAuFbwUIZH8vNL8Oqr38jfR0V6XxDzt8JCdRDi5Knzqqu8M12u+DYaHYuZLmX6pSvJc3LLD3gcPZbp/LdOZpez5eWZ8vzH+Hi5sxpJec4qQgB5LpUtpAoe7duno2XL+gCAUaNudO6nS5Bl587D8teFhaWqUEdOTpHcigCwn6cAoEFaXfzryVtxy80dMGP6vdBqNWjgaNMiVQIRRVEeW5xLlQUAaNTQvn1GRg4sFqtckcF1ETYqKkxeOHU9Llz9sOlPnD5zEV99/Rt++fUfj9uYTBb8+edJHD2aqbpdamsAAEWOf8fbFf/yVfwXCuXqOp72USKFVvLyS1AiBTwiDOjQPh2zXroPr8x7EBPG3wygZgU8zp7NwYaNf+Dnnw/g5MnzsNlsWLhoLWbP+UpVlehySMEa10oLXbs2g0Yj4OChDHnxXaqyEhER6rYIL7UyUYampEBIWFiI3GIj+3wB/CEnV30M7t9/Ghs2/gEA+OXXA27by0GpGPeAQnKSvapHpqNaibyfXlq0SM9tviLgERKi81iRp04de7CmsKgMRqPZa2sRpRen3eN2W+PGSarvGzSwV/rJzS1WtdGRHD2aKYeH3nxjFDQajXzeO/CPvW2Lt/ZPSq4Bj6goz+OOigqTK/tczCmUAzWu1S8kiUn2+ZOTUwSz2SIHPCI8BDzSG9nDLYVFZcjNK4bVanNu7+Fc1LSJvSKHdM6VSIHRho5zrKR581TV928s+BalpSY0apSAwbd39jj+/L8uovRMMYwX7b9PbxU8AEAbZr/PWswKHoFMFEV7uzA//FfZ9ZiwsDAMGzYMy5Ytk2/7+OOP0aBBA/Tq1auanhkKNp4juJW0Y8cOLFu2DJ9++ikSExMxcuRInD17FoMGDcL48ePx6quvVtU4iYhUKvpbyPCCZ6oWLX4cBxERERERkRTwSHb0c7+YU4Q8xeKF0ejbKyC/+PJX7Np9FC9Ou9druXaqOsrf78kT5/Gno+VKUlIssrLy3Bayy4zubTdGj7wR+/efRk5OETKz8uQFvWIvFSAaNkzAyZPn3eZWaan9+8TEGGRn5+OPP53tX3w9Dy+FsrUMAPz00z7VVfbnvFTwMLgEPKQrz3M8tC5ROnrUGQC44GHb48ezsOqbHRg5orcc3LoU0lXX3oIJSsoFPdeAR6ljP8NCQ/DK/AdxLiMXrVunOa+sL1aXPD+iCDqcPHVBbssSFRmKwqIyHD58Tm5JomyjMmRINwxRPE6L5vXwxx8n8Pvvx9C/X3sUFpbJC6+ubTQAe7BGr9fCbLbi/IUC+Sp714VprVaD6Ogw5OeXIOdiIeLLeW537HCGVT797Gf06N5Cdb/VasMTk95VzXFpP48dd/5+pePP24Kw9HxcuFAgB4Pi4r2PK8ax//l5xdBq7YvjEY7WFVK1AZOjaojUJqkm2LP3uPz1yVPnkZNbhE8/+xkAkJAQjXFj+172Y3urhBAXF4nk5DhkZOQg42wOEupGy2GQSA+L5PXr2ytEKFv0SBWSwsMMciWMC34KeOTlqo/vvYoWbnl5JSgtNan+ZsvVKjxUzpAqeEjtaKQKO17bkcRLlWqK5L9Bri1uJFFRoQgN1aOszIzMrLxyq/dI+vVrj6saJ+LBEf+Rb7vnnh6qbcLDDUhOjkVmZh6On8hC+3bpqvsPOSq1dO7cFPGO8UoBjxMnzuPV175xnrfKCXhERISiQVpdnDp9odxtBUFAfHwUsrLykHOxSA54SJU9XMXFRiAkRGev9nG+QDFv3V9nhYTokJQUg8zMPJw5fRH6dGeYwlNQRgq/nDx5HqIoQhAEWCxWuYpSeiN1BY9rOzVWfb9u/R4AwKABnTyGdgDAUDcMphyjXMFDCnj8P3v3HR5FubYB/J5t6b0nQCAEQgsdBURFqoAIgh2BoHIUEcWKKHIEFMFzbJ+Agg05iKIgKkUIIihN6R1CDYGQ3utmy3x/zL6zM7uzu9mQCs/vutAtk913Z2dny3vP85gNPDgNZIEpja8WhhJDDQ+rJ/WlstKAgYPfapD73rb1rWp/x5g8eTJ69eqF9PR0xMTEYPny5UhKSlKslENuTm7varKzs/H++++jU6dOuP3225GTk4PvvvsOqampmDNnDr744gskJyfjs88+q4vxEkJuYtL3Lgpw1IxsrdE6JIQQQgghhDQgNvHJjg7W6w24LGnTwY6wrQ88z+PDjzZg587T+PmXffV2vzczaQUPFu4AgC6dYwEAJcUVDpdnWreOECcspaEOduS01DNT7sZT/xImUx1V8OjWrZXd3xUXO6+YUB/KyiplbWSYrGx5wOOPP47LwgvZ2dYJWZ7nxSoothOUbFKwpLTSbt1ISSt45NkEPIxGE8aN/xg/rtmL71fvdvWQ7Ni2r3DViuS8pMpGgW0FD9Z2wVOH4CBfdOzYHADgbZkgLCuXBzxKJGGivXtTYDbzCAryQc+eQvn/1MvWMImz4MOtt7YBABy0tM1hwRNvbw+7thgAoFKpEGaZPM/OKhKXV5pYjYkWJuGvXFVu0wAI+9BDh62BgtOn02E2y9frn3+elIU7AOCBB/oCENYpW3fiEf8KVRAAacCjRKyIEuIs4OFvrYRgPYJfPmEbHSVUV8hQCHiUlFTYtdZpCqRtNS5ezMK2bcfE83/+dfK6ft8Uq08oTJSzthhsHyFWk1AKeCi0aGFVcLy8dAi1tHzJtgmU1Rfb1+v58/LKM7YVX1iVHX+lCh6SFi08z4vVPhy1LgmzPPacnCLoWYsrB9U+OI5Dy1ghUJB6KdsaHnES8ACA2BZhGD+uI8JC/THj1fsQ2yLMbhkWVEi9ZF85iVVeaSmpViENgf207h9x/+qsRQsAJCbGiqcdhV4A62s9N69ErK4SaqlgYovjOPFzXlZWobi/dRQgYdvjlau54nar02kU96HNm4cKFT9KKsT95+XLOTCZzPD29hDvlwkO9lNsCzVsmH17FkYXKn/+1B5q8CYepgojzAb569c3PgABXULg01J5XRDijm7duqFLly5YsWIFDh48iJMnTyIpKamhh0UaEbcreDRr1gytW7fG448/jqSkJISF2b/hdO7cGb169aqVARJCCKk9FIwhhBBCCCGENBZGozDh4OvjCW9vD5SX63H6TLp4fX0eLSxt2ZCaaj+BQmqftC0K065dDLp2aYnkrUcVWrTYBzy0Wo14VK801FFaqrdbtl1CtLjNFRbZVnyosiwTgy1bjsiuKy6xL4lfnzIyCjBu/EdQqVT4fOnTaNXKWr4/2zJ526JFKNLScsVKFKwqRHm5HlVVRvHoafabgG0FDz8/T6jVKphMZlk1jEuXsvDef3/BbX3boUuXlmJwARDaBRiNJmg0wtHM165ZJ+UPHb7o9uPMsgl05eQWIyoyyOHy0vYitm0LWBjI9ihZVjGizCYAJA3P/LXzFACgTZtotGwp/O6dKmlHwyaElSY/27YVyv9nZBaiqsoorkul6h1MeLg/rl3Lx67dp3HFUjmkWUyw3XItWoTh1OmrYnURqSNHL2HZ51tx5Uoe9HoDgoN9UVJSgfJyPVJTcxAXZ91m/pG0owGAhLbReOLxgdi46RCysgrxzz/ncOedHSVH/CtP8rKj9fPySsQKHsHVqOBRWFgutn5gzwcTbQmx5OeXyqoy8DyPyf/6FDm5xfhm+TRxArgpkIaHNmw8KG4/AHDpUjaOHbuMLl1aOr2NnbtOw1BlxIABibLLHVXwAKxtMdg+ggXglKogsPVeXFyB4uIK+Pt7iRU8vLx0iLKEIvLzS7F4yWb07t0GPbq3trudumJbkUnaQgkQKli0bh0pnndUCQewVgzLzCxEZaUBBoMQJHMUZmABgW1/HMedd3YEoBySYeLiInAmJR379p8X9zPOKngw0dG+WPPjS9BqlauDtGoVgb1/n8VFhc8nGRlCwCMqSr6/bN06Uraf1Ok0DsMpTOfOsdi46SAAoKVN9QupEMvrf9nnyeJ+z1GLFkBYj1ev5iEru0jctzha5zExwThw8AIyMgrE5952X8F4eGjFih9pabkICvLFiZNXAAifJ5QqHfz7zQfx7zcfxGszV+KvnacwcGCi04pTXtHy/TenU4E38+C0VKajqfL01GLb1rca7L7d8eSTT+Kjjz5Ceno6Bg0ahObNm9fRyEhT5PZeaNu2bTh9+jReeeUVxXAHAPj7+2P79u3XPThCCJHiYP1QxnoyO0JBBtdoFRFCCCGEEEIaEjtCX61RiUeDpqRYAx62E/x16ZKkNYG0XUNjkpaWi5zchimRX1NHj6Yi6fFF+Pj/NtpdV2kJbDw27g6MHdMbd/XvhE8X/0s86rqkWD5pz46ebhMfBQCY8ep9AKyTZ9JJQNsJfABo2zYG7ds3g0rFIS0tV9a+hB2tHhzsi/GP3Sn7u/qu4MHzPH7++R/8+ZcQNNi1+zQqKw0oL9fjd8nR/8LYhHXUOTFWNskbHx8ltsFgk53SgIztBINKpRInuNhkPQC8NfcHHD2aii++/B2LF/8Gs5nHkCFdoVJx4HleVjkjV7JtXr6cA6PRhIKCUmFy2uC4Koj0b6QyMwsdLltcXIHCQuv2UVRULqtUwQIbto+TTRKW27RoKZcEPC5eFPYFbeKjEGs5Gv/cOeuEslh9QmHCMSjQB97eHuB5Htcy8sX1E+Q04BEIAPh21U6xOkeswsQqa0WQcjZddnlObjFefGk5jhxJFauqjHv0DrRvJ7Ro+OjjDbLfyC5a2uy8+vIoTH/+HixeNBkcx2HAXZ0AACu//QuApM2FoxYtlsncaxn54nPvbJKUrYO0tByxyoztOvTz8xKrHUireJSWViLtSi4qKqqwfHn15hyMRpOs8oPRaEJaWm61fy/keb5WfluUvo9lZRWioqIKCW2jcfdQoWLArt3ydkRmsxm795wRw0EnT17BazNXYtbs7+xe/9I2KrZYBQ/WsqnESbsQb28PcXI+/ZqwDVZUCOvOy1sHf39v3HqLUJ3m21V/4aWXv7ELVdUl2/35BZv36IOHLsjOi+EkP8cVPEpKKsR1o9GoHbZMCAu1VmL47/u/ALBWr1HSvXscAGDdz/+Iv10rhWrc1dJJBY8My74y0iYQ9868R9HfEkoB7CtXKUlMbCGe7tbVvqIVwyqEXLqULYYiHbVoAazbY2pqjstqItLqQCViFRTH1URaWCqesNYyJ06kAQA6dWzh8G8AYM5bD+Hfsx/Eyy+Ocrqc1k8HbYB8+zCWG8BZu8fApDfBpHdedYo0HhzHwctL1yD/3G2v8uijj+Lq1av4/PPP8fjjj9fRGiFNldsBj9tvv70uxkEIIS5J3wBdfcmi8IIDkvVCIRhCCCGEEEJIQzKahB/DNRq1eLSxtHVAaan9JH1dyZFUC7lwIdNle4j6lptbjElPLMK0575o6KG4Zfk323H27DWs/mG3XYsRFtgIDvbFSy/ei3fefhQeHlr4W47qlU6M8jwvBkLenvcIVq2cjlH3CtWDlSp4KAU8/P29EBDgLR5tfEZSLaaCVXzw1OFBS7sKpri4fit47Nx1Gu/99xfMfH0ljEYTjhxJFa/bf0A+kSkGGbx0aNE8VLw8OipInDwrLBAmilnAQ61WiVU3pFjISlrNhp2uqjKKbXSefGKgOAGXJQlhSAMepaWV2LM3BS+98g1mvPY/zJr9ncvHzSbnGEcBj6oqIz5ZtAmA9Qhwk8ks219IW7RIsZYgti0fysvtK760bRuFbl1bAgBSUq6J4YmKCsdtGjiOQ7NmQnWJ9Kv51arg8dCD8u3Nx8dDDE9I9endFgCwa9cZcZvkeR5LPt2MykoDmjcLweQnB+GN18fi4Yduw8sv3QudToMDBy/g+HFhwtNsNuOiJczWtWsrPPhAXzEYNPKengCEgBvP82LAylGLlpiYEHh76VBWpse2bcfFyxy57bZ2AITtm7X6UKo8EWWpJiFtuyFtB7Tpt0P46OMN6NvvdQwaMgfvLvjJbuKa53lMf/FrjL5vAVJTs2EymTHtuS/w8KMf4H8r/3Q4RubChUyMGPkOxtz/H1lFm5ooLRG2yxhLVRZ/fy+8+upo9OoltP85bFPtZkvyUbzy6go8MXkJysv1+HXDfvH3u/f+87P4OuZ53tqiRSGcEG8Jwh08JNw+2yc6ahcibV0CSNq/WLbzMWN6i8tWVRmxfceJaj3+2mD7emUGD+oMADh9+qp4Gc/zTtsL+fh4iq0+vv9BaCXl7+/lcNK1uWS/yoIjSq9PZtjd3RBhqRLCbtvdI/aVxLUSAh6XbCp46PUGpKUJ4bioqEDZdS1ahGL+O+PEx9uzh+uqK7EtwvDYuDvw+KQB4jahRKllmLP1wiqhnL8ghOV0Oo1dJSmGhY3y8kqsFTycVEFh4Te2bzt5StjfJXZyHvDw8NBi6JCuDvdxsmUjLAETDtD4CpP0ZhPAG83geR5mvRlmCniQOhAQEICxY8fC19cXo0ePbujhkEamWgGP7t27o6DAvvedI/369UN6errrBQkhpB5QjsFKGurgQSuGEEIIIYQ0Xikp6fU+sUrql9FgDXiwthOsnDwgL21f16ThgKoqI65ajqRvLA4duoiKiiqkpeXW63pxF8/z2LDxIMY99hH27T8nq4ZiO4HP2mh42rYL8WcVPKyP02g0iUdDBwX5ykrHs3L5ZZKqDLYtWma+NkY8zSatpIGESklQIiTED0s/fQr//c9EAEJLifoM/OzeYz2iPyXlmmwi1Xa7ZKEXTw+tGCwAhCO5WaigyNKOhq1vR5NqrL1GgSXUwfO83bbm6+uJmOhgMUxyOc1adcO2usxrM1eKIZqdO0/bHXVvy7b1iG3LFubTpVskLQTCxCoQ0moiYosWBxU8ysr0st9HlCYrEzvFIiwsAK1bR4LnefGxsMoG3t7KR/yz9ipX0/NQYKmG4izg0b5dM7GaAwB06NBccbI5ISEGzZuFwGg0YcbMlcjPL8GpU1fFo+dffPFeTEoagBHDe4DjOMTHR6H3rUIohK2vaxkFqKiogk6nkW0vgLW9g15vQGFhmcs2Cl5eOtx/vzyc0qFDM4ePs22baAQH+8JkMuOEJXASEGC/XqKjg8SxMrmSgAcA/PDjHgBCMGf9hgP45dd9sutPnEjDoUMXUVamx9Jlyfhn3zkxPLj6h91iBQFHfvhxDwoLy5GVVXjdQQb2Gnpu2gis/u5FrFs7A+3bNUPHDkKZ/YuXsmTb4tatRwEIFUwOH7mEA5JQV2lppbgdVlYaxL9TCsr0vrUt1GoVLl/OQU5usRiAcjRRziosiC1dbKqs9O2TIAu/Xbli3yqorjgKe4669xYAQHp6vviclpfrxdOOJu5ZIGj9+gMAHFeSYLcxb87DssucVargOA49LFU8AKBDe+XXs7tYVZ+8vBLZZ+M//jiOsjI9IiIC0TouUvFv//veBAwcmIjZbz7g8n44jsMzU+7Gk08McrpcWFiA3WXOWrSw0MuePSkAhP2Ko/USKgl4sM9mzqqgsEod+/45h+LiCqSmCu9LzvZH7vKM8YF3Kz8E3xIOqAGVlxYqlTDnYCo3ASoOwPU/z4QoSU9Px7hx4+DhodyqiNy8qhXwOHLkCI4ePYpjx45V69+RI0eg1ysnKwkhpDa4ruBB4QUltFYIIYQQQkhTsOJ/OzDpicV489/fN/RQSC2oqKjCT+v+xj/7zskuZ1UzgoN9EWcJeEjVZwUP2/s6dz7DwZK15+jR1Gq3XDl6LFU8LZ34bGx++WUf5r+7FpdSszH9ha9lR95ftjnymIUTPGwqIShV8GAT9gDg4aGRLe/jwwIe9hU8Hp80AGt+eFmsTgBYS+5Lq7ZUVMqPVk9MjEXvW9tAq1WD5/l6bY0jrRgw+alP7a5j1SkAaxUUT0+trLT+Lb3iEWiZPC+0HM1eKVlWSRCr4GGp+FFUXG5XGaFL55bgOA6xsUJJfGlbldxc4bm+b/QtYlhASnqUvZIcS1UHNkmoVMGjqsqI1at3i+ebNwu1BlkkLVtYYMN222KT1dLqB9Llpz5zNwDhiHAWBIqy/J+NT6z24qClA6ticfVqXrUqeADALbfEi6e7dmnpcLmEhBgAwr5j+gtf4+dfhGDDkMFdxBYa8uWFajXrNxzAqdNXcfRoKgCh3YNtFRdp8GfGzJVOW9GI4+5lHXdoqL+snYWS5pZQCQt7BQUpBDyihICMtEWLdD8SER6AyMhAtGoVLrYhOnRIXgXj7Nlr4uldu89g3ts/iucLCspw5arjcEJFRRW2/XFcPL//wHmnj8kVFvDw8/NE8+ah4nYTGRkIjuNQWWkQg0AAcOr0FfH0Nyt2ICOjAF5eOvH5Ze8FLGjEcZzia9rX11NsmZMrCXg4mihnrYKysoTtvLS0wnI7wv5YrVZh+vP34IXp9wCQV1ipa2xb7NMnQXzO27dvhi5dWkKn06CqyijuL1j1Dg8PrcMw2+OTBsjOBzhoQ8QMGJAoVqAAnAcZAPnrQrpfvh4+3h5iSOKSpE3LL7/uBwCMHnWLuG5s9ewZj3lzHnHaWsZd4x+7w26f46yCj+17gr+D4BggadEiq+DheD/EwkyXUrOxdesRAECzZiFOW0a5i+M4eEV7Q+OjBWcGdP5agOOg1qqEOQjKd5A6UFBQgHXr1mHHjh2YOnVqQw+HNEIa14sIBg4cWO0J09pIJRJCiB3JrsXV7oiCDK5RBoYQQgghhDRWny1NBgDs328/sVJQUAq93ui0dDRpOAUFpVjxvz/RrVsr3HF7BwDCEdPLPt8KlYrDpg1vwN8ymcKCCtFRQeLEn1RVlRF6vcHhJA0gTNT+uv4A2iVEi5OfjpjNZsya/R2uXsnDW/9+CHFx1lCJXcDjXAZu79cef2w/gX63tRPHXFtOnryCKVOXITw8AN+unA6d1vkxWNLWNRkZ+UiwtBkBAIPBiJ/W/YNbb2kjq2zREJZ9sdXhdafPpGPIkK7ieb0lqGAb2PC3HHVdVWVEebke3t4eYhhEqb2Ir2XiR/ocsoBHQIA3oi0tHxh25LE0tCG29PCybmsqlQrh4QFIT89HVlYhoiLtQwt1QRpUkPL20qG8ogqZWYVoGSs8z9YqKDqMuvcW7N9/Hh6eWvTs2VqsasAmx/V65YopjDT4EhKsQna2df0Mu7sbzDyPZ54eCgDidiatysEqorRoEYZxj96BdT/vQ0JCNA4fvoR1P/+DdBcTwqxKQ6eOzfHnX6eQqVDBY+qzn4unAwN9MH78nbj8dg7S0/NlFTxKSpWrT3h4aKFWq2AymVFm2bYAoMIygdyvX3v06N4aAYHW13tYmGW9WB4fm1hXatECQKyMcfVqnlhBIMhFwKP3rW3h5+cFPz8v3Duyl8PlOnZsjt+3HQMgtFJhFXLGju2juHzfPgn4/IvfAQA/rftbDHi0bROluLyfrydKSitx4kSaeJlSdQimc+dYtImPwrnzGXatZpTENAuR7ctY1RgpNhGcrtCiZfCgzpjzlrWawvHjl/HUlKU4cfKK7DbyJG2GTCYziorKoVar4OGhRXm5HhcvZiEm2v71/MFH67FmzV7ZZdIgmCNmsxnJW48ioW20WI2KcbQt6nQahIX5Izu7CNeuFSA42A9lZZVi5RQA4vNwz4geiI4OllUiKS+3tmdxNBcTHOyL3Nxi5OeXWishOKrgEcEqeBRaxq28fLTYQqf+goasmkh860hMeWoIcnKK0bFjC6jVKsTEBOPSpWxcuZKLmJhgcf05q8rx5BODcPx4mhje6S6puKGE4zgMuCsR36/eBQDo1rWV0+X79WuPkBA/mM1m3Df61mo/TldaxoYhK6sQV67kokuXltDrDTh5Stj2hwzpUmv3Ux3+/t748INJ6NvvdQCASsWJrWCUdO/WChqNWqyG5evnuCKHtMpWpiVw5KyCh7+/F7p2bYmDBy/iU8v3h44dm7v1eNzB8zw4FqbhOOH1p+LoYFNS67p164aCggIsXLgQCQkJDT0c0ghVq4LHpUuXcPHiRVy6dKla/y5evIjY2Ni6Hjsh5Cbm8kOT7Hr6gMXI1ht98CSEEEIIIU2M2WzGv57+DA889F/89tsh8fK//zmL19/4VvGIb3ccPnIJb81ZLWuRQNyz8L2fsfqH3Zj5+re4eFHoh37EMqloNvM4f16YkCwtrRSPbI6KCkLLluHi5L807FHsoh3Jjj9PYuF76zDpicUux3blah527DiJ8xcy8cf247Lr2OQXO0L2+Ik0fLtqJ95+Zw2enfZFrf9wz+4/O7sI+2wqm9jKyS0W1yVgP7H2yaJN+Pj/NmLuvB9t/7ReGY0mFCqEE9gk9/4D52Xr0VpRwqbKgrcH/CyTiuwofhZO8PDQ2k1msiPMpROjpZYJQaVJIXHC3jJxy/O8OIFoO5ktti3IKkJ9KSwqs7vswQf6ItIy8S19/iv1rFKFFjqdBu8tnIB5cx4Bx3GItARS2Dqs1Dtv0cKWZ8EK9pjbtYvBm7MewL/ffFAMx7DS9ydPXRGfU7Y+w8L8ER0djKnP3I1BAztbW264CnhYKoB0tJTbt12e53kx0DBhfH/8+vNriG0RJlbHkFY+Ye19/G0mETmOg5/lskJLpRKe51FuqeDh7aVDu3YxsjBPqE3Fl4py67JKmjcX9l9nz11DXr7wmJQqVUgFBvrgp7Wv4rtvpzutDjBgQKLdZd27tUJiJ+UqAQkJMWKroU2bDiE9XVinSRPvUlx+xoz77C5z9DgBob3Wok+exIJ3H8PDD/VzuBxj20IiKNA+4BETbV/Bo0wMJ8gn7VtK2laUlVuribNAyH2jb8HoUbdg+LDu+OjDSRhwVycAkO1PmQsXMmXhDtY2h22Xzvy4Zi/mzvsRz03/ShY0E9ocCeeVKhawMAsLOzoKTdx5R0d06dwSgBBqEbZZyz7LyfMTHGRtu1TmILBhOxa2jZRaxm0bTGHPT/q1/Hqb0GYhGR8fD8THR6FPnwQxwBHbwlJNyNIuqsjSvsRVVY5pzw5DREQg/P29MGJ4D5djmJR0F3r1ise4R+9AfLxyQIrx9vbA/755Dt/+b7rL6j3uYJ9PsixtdM6fz4TJZEZwsC8iLdfVt8+WPIXw8AC8PnOs0+W0Wg02b5olng8JdryfCwz0QbRle2QhHNvXvq3b+wmBYlbthbVtqW08D7FaB8cBUPFC4IMDqIQHqW2pqakoKirCyy+/3NBDIY1UtQIesbGxbv9Tq9Wub5gQQmqIogk1Q/kOQgghhBDS2BkM8pYA0hYBaWm5Yq/1ee+sQXp6PgoLy/DiS8ux48+TSLaUZq6p//73FyRvPYpXXl0h63F+szOZzDhy9JI48QMIE+4XLmbaTfCcSUkHIExs7dmbArPZjNOnrEdXX7goTNCyybvAQG9xUv3NN+7H4k+exBefPyMe2f3332edjk1amt9VwCdXUrHBtpoAm/y6q78wAXjiRBp++HEPAOFIeaVqAtdj798p4mlp+wFbm347hFGjF8guy7Bp0bJm7d8AhHVvMpkBAD/8uAdLlyXDbDbX1pBdkk5srl3zCtolxCAuLgIfvJ8EnU6DixezsHu3NTzFJmKUWl2IbS4s25zeSXsRNuF4NT1PvMxa1t1+MjMk2DrpCQjBAINBOKo41GZynU2oZdZjwIO1GOjTJwEPPtAXW7fMxvTn70EbS9WFU5LXk7P1wiZsMzILZMt6OGjREhUVCADIsryOsi0tSSIkrQmY+NaR0Ok0KC6uEF9L7PVl26aDHfEv3X8wRqMJf/9zFtu2HRP//tZbhNY4V6/mYeOmg+KyhYVlYtDn8UkDxEouSgEPFgxTqrwTE822LWF7MRhM4utGqSoHa80gBjzEai/KE+sdOzRHQIA3CgrKcPCgsH+qTqsAH28PaLXOi22Hhfpj4YLxYmuEkBA/TJs2wunf9OzRWhbqiW8daVfVhhlwVyIeuF9eDcRZBQ9ACADccXsHh+0hpO68o4PsvFLwJUoSCGLvLxUVBstY5Ovcz88LgZZqK+mS1z+rBpOQEINXXxmNWW/cjx7dW6NZs1BhWYWw0f9W/glA2B/NePU+PPnEQABAfn6J0yADz/P4/nuhskNeXgn+2nlKvK68okrctmyDEoB9mIW9Vlu2DBOX8fbSoXPnWMTHR0KtVqG0tBI5OcXi9uhs22LVkOYv+Els1eSoEkKLFsK6SbuSC57nJS1a5Muz/Up5uV4WqlOyZu1ejB6zULZOnDl+Ig2Hj1yyu7zYMvaAAPvtRRx3mtB2h+0/2WN3JD4+Cmt+eBkb17/h8PUg5efnhY8/fFxs4+RKYKBPrYY7AGuVlS+/2obDRy6JnyPat2vWYBX1O3eOxc8/zcDwYd1dLuvt7YGBAxKh02nw5BODnC7LKnCwdku+Tlq0AMDt/drLzndyEHqrDWxdqz3V4FQs7VFnd0cIIQ5VK+BBCCGNgfTDKm92nk6Qf/eiT1mEEEIIIYQ0VmXlevy185TYIiHXZrJbGrSQlo0HgOStR2TVDwoK7I98r6709HxcSrX2Nf/HRVUFQJggfOXVFfh6+R8AhMnKDz78FX/8cdzFXzYta3/6G89M/RwTkv4PeXkl0OsNeGLyEoyf8H/YJnmsPM/LJll37TqNK1fzxFLvgNCaBLAesRwpOVJerVahW7c4+Pl5YdDAzgCAvXutQQgl5yUtIpQmhqTyJEdi2042s4oPbdpEoW3baJhMZrHCCADkZLsu08/zvDgB7cy1a/lITc0RzxcUlDpcdtnn1pYnbBJfWtmA53lZy5LLl3NQUlKBjz7egG9W7MCGjdYJ8rrGJvt8fDwQFRmEr76cipUrnkf7ds0w8p6eAIC9ksAOO9I6UGEiLiaGhQKESdsKS4UFpfYisbHCZGhaWq4YaBHbEShMZrJJN9bSI9syURoc7Gs3wc4CHqxtQV0zmczienxj5hhMf/4e+FgeQ5dEoVry0WOp4vLWFi1OAh6WqgBsnTiasI+MEJbPyioCz/PIthwlHq4Q8NBqNeJ6v3QpGzzPi/vuUJuABzvCPjU1226ifPUPu/HiS8vx5r+/ByDsA1q1ChcnC1l7ETYuQAg1SFsBhIcL97d0WTJKSiosVROU22IAQPPm8glhtm0BymEjNoHO9m0VFc4reGi1GgwZLG+X0K6d8/ZR7ri9X3t8+MEkbN70JtatfVXWrkmJTqfBPSOsFQpcjYWFqxildVJTthPpShPgrBJBRUWVuM7FFkoKARwxsHPVGvDIt2yLttVQWDWZDJtKGSaTGXss7zUff/g4Rt3bS6z0YzCYHAYZDhw4j7ffWSNWVACAQ4etoUNWSUajUStWzrFW8BD26ezxxkSHiNvQI4/cDo1GDY1GLQZCLl/OEd/D2L5SCS8J+LHPT0qhNwBoFhMCtVqFiooq5OQUi+/bfjbLe3hoxde4s7ZL6en5+ODD9cjOLsK3q/5yuByzZ28Knnr6M0x99nNZiA2QVOUIsH89t7DsX9KuCO+pxdWs4AEI+5vqBJMaC2mYZ+qzn+Orr4XPnsPu7tZQQ3Lbm7MewC/rXpO1yFPS0aYCh4+TFi2A9bXEtHZx+zXG3sI4DmpvLdSe7L2IQwNlbAghN7Gm8w5GCLnpST8nuSoDSH3vHJCsF57qoBBCCCGEkEbgiy9/x2szV2LKM8tQUVGFUyflP+xLJ1ZYKICFvw8dvoh9lvLNgLWMd03k5MqP0GdHxzrz7rs/YfeeM/j8i99RUVGF3bvPYM3avzFr9neyagZNHTuKvqKiCmvW7sXu3WfEEvcnJRMx5RVVsoorx45fxtatR2W3tW//eZjNZmRYJrSibX6UZ9jRm0qVVE6evIJVq3aipKQCp09fFS+XVvMQx3DsMh5/YjH+/uesLDxk2/6htMR6tPKEx+60u52sakzwvzFrFe4dvQApliomjpw7nyk77yiYpNcbZCET1lbhmqSCR0FhmdjTHgBOn7mKs+euieePHbvsctznz2dgyN1zxaBSTbHnSqlqQo8eccJ4jgvjMRpNYuuCAKcBD0u7gDLHFTkiIwOh1aqh1xvEiVaxgoePfZiBTZIVFZXDZDIjhwUZwuyDDCzckFVPFTxYQAGwX4+dLS0aTp68Ij7nrO2KUjWJaEkFD57nkW+pWMIqmNhiR4dXVFahosKIbEuoKSI8UHH5Vq2ECbRLl7JQXFwhvvZtJ9WbNw+BRqNGeUWVXSWcbTZhuH63tYNGo8bkyYMBCC2MNlnacWVmFVjGI3+epBOB637+R1Y1gbVxsB0PAFy5IgQ82PuGl5dOFpZi2EQxm2SurHAcNmBYoAkQKmbU9pH8gPDYlMar5Kl/DUFEeAB0Oo3LVioxkhCGl5cOKlXtTh/0798RANChfTPF8Xt4aMVwBatswaqmeCkFPJqxgId1n24Nj8nXe7RNSxTm/PkMlJZWwsfHQwzAaLUasZKUbdUkADhy9BKem/4Vftt8WHb54cPWoKE1aOSpWGEh2jaEJak89Na/H8KmDW9gUpK1nQ6rVvHrhv04cPCC8PidBDweevA2u8tsAxuMbYCkVGzpolR5RBi3bRCjqsqIufN+RP8Bs/HAQ/8VLz9x4oqsgpaSf/6xhv9+kLTKAYCiQsehDTZm1t5GrOCh8Npv6qSVXZiQED/cYVMZpzHT6TSK7/m2Olk+AzJB1diHTn/+HvH/1d03uk94f1ap2etZ+D/Hsf8QQkj9oYAHIaRJci+/QUEGRhrqoAwMIYQQQghpDPZYWjaknL2Ghe+tw9p1f8uuL5JM8LMJyv53ChNEJ09ekbXwYJMATE5OEaY8sxRTnlmKnBznE7QV5VWy8+y+TCYzft92DPn58soiRUXlOHI0VTx/8WKWbPLywMHzcOWvnafw6GMf4ty5DJfLNpS8vBLZ+H5a9w/W/GSdfEmXHDVdZDn62MNDi3YJwiTZ+g0HAAD3398HWq0ahYVlyMgoFCfMoqKUJ6fYkfcsBMBcuZKLyU99ikVLfsPMN76VBUo2bjooq1jB8zxeefUbnElJx0svf4PLadaqGfn5pbIj98XJLB8P9O/fEV27toS3l05sIZCd7Xz7KS/XY8efJ1FSUoEPP9pgd31xcQXKLC1Jrl7NlV3HtjVbv67fj4qKKoSHB2Dnn29j4AChqklGRoEYAsi2CR68M38tpj33pXi+OkGl5d9sR2lpJT7/4ndxjM4YjSZZpRaGTWb6K1RNaBMvVBm4Yin/7yzIAAhHkwPWI8TLSh1X5NBo1IiKtLZ1ACA+DqVACJtc4nkexcXlYiuSsHB/u2VZNYEsFy16eJ7Hv9/6Hi+/+o0scOOM0WiyOziFta3x9NTaTVC1bBkGPz8vVFYacO688Jq0Vjawrw4QGSmMvaxMj5KSCnE7Cw72s1sWEF63LJxRXFwlbvMs+GGrVctwAMCl1Gxx8jYw0FtWXQMQJspbWqp97NhxUry8rKwSZ84IYagRw3vgtr7t8NS/hgCQT+a9/c4aAMCFC0KorLllkptJlJTiP3EiTQwaabXKVRPECWFLyIyFCJW2W8C6vbCJ43LLfsPL23HAIz4+ClOfuRvt2sXgtdfGOFyuvvj6euLrr57Fd9++4PLIeVblAqjd6h3MSy/ci6SJd+G99yY4HoMl+MBe/2Koxsv++WzGwmDXrO9F7HVkG/BiFURyc4tlr+mDlnBg1y6tZK+7lmKVmiy7+11jE0KY8ep9UKtVyMgoEFutsDYnSpVkAHk7Gtm4LVV2AgN9ZAEbVjVn27bj2LXrNABrBQslHTo0x9NPDZVd5qiCBwA0s4Sf0tPzxP25bYsWALjF0iLoJ5vPa+t+/gebtxwW35c1GjXUahV4nseff560ux0A2PHnCcz+9/f4UbI+//jjuOwzF/scqNR2hQVcsrIKYTAYrRU8qhEiaGq6dmmFN2c9gHlzHkbHDs0RHR2M1169rw7DDA0nISFGfG7VahVus2nBouSB+/vg159fw4MP9K3bwXGcZVbVUrVD8o8OOCWE1CcKeBBCmih3WrQQRrZeaCURQgghhJAGVl6uxxVJQCB561EcOZIKAAgVJxqtFQzyLa0sunePg6+vJyorDbLJ8cIi+aTz18u34+ixyzh67DL+899fAAhtVZIeX4SnpywVj/IG5GX6AWurmP+t/BOz//09ZltaCDBpaTmyH3LPnbsmLxHvYNJe6rWZK5GamoPpL37lctmGwtpBxMVFIL51JEpKKsTnCIDs+WOT/oGBPmhmOaqaBQy6JMYiznLE/9lz13DGUuWCHU1vi03621bwWPfzPvE0q9jR77Z2YhDjxzV7xOuvXSsQy8zzPI/16w/IbotN8ALWo/j9/LygUqmw+JPJ2Jr8b/FI/LQr8lCGrdNnrJVEbNsM6fUGPPzo+xg1egHOncsQb6t160gA1u1aKnnrUTEo8ti4O6BWqxAREQCVikNVlRF5lvtwFTzIdhBsysoqxJ9/nYLZbEbqZWvw5fhx1xU//vPfXzD8nnfw5VfbZJcXs4CHQmCDHZFfVWVEUVG5OFnu5+upODll26KFtdBxNDkZKTkS3mg0ia9nR4EQdnR3QUGZpFKFfZCBbcepl3OchnyuXMnD1t+PYc+eFFmLBkfOnEnHXQP/jaXLkmWXswlepTYqKpUK8ZZt5oqlvYhebNFiPxHv6amTVSBgE6bSMv+2WKClqFgvbjvhlststWplCXhcykaOJeARFqocBhkzpjcAYM3aveJ+k4VUwsMD8MbrY/Gf9yagpSU0olTt4JSlWk+H9s1kl/v5eWH0qFsACEeHS9uzKN1OlGWSPyOjEABQXOS48oz08oqKKuj1BpSxajLezlsGjHv0Dnz1xVS78TaUwEAfuzYGSqTLVDes5I6QED/8a/JgBDvZDqPF54hV8BC2c6UKHuw1ysKGPM+jrEz5dRQY6IPu3YVqQr9tPiJezsKa3bq1ki3PqtSwahlSxy0tT955+1G8O/8x3Duyp1j9g703FVsCio4CHtGWgGNWdhGMRpOkaobytmUb5oiNDcOAuzopLsvcP7a3rKqO0j6RYeGnCxezxH2oUvWZoUO6AhAqLJklbWAOHBDW0/Bh3fHG62Ox/KtnMeVpIWDyx/YTdreTkVGAt+b8gN+3HRMviwgPgNFoEsOaZrO1XZptRRZA2J48PLQwm3lkZhaiqNjx+9CNYNjd3TBwYGd8vmwK1vzwMm67rV1DD6lOqNUqvPH6WAwcmIilnz4lhp6c4TjOrkVYbRPevnhwKpUQ6uB5cNQanhDSQNwOeMTFxSEvL8/u8sLCQsTFxdXKoAghRIn0i7nrbAKFFwghhBBCCGns2MS2t5dO7DcPAD17tEbbBOGIf+kEf4ElNBEa4ic7apuRVhUwm834Y7u1/P/uPWF01KcAAQAASURBVCnIyS3Gp59uwdmz13Ds+GVZm45ym8oFeXnChCXrcX5IUnYdgCzMAQiTlUphh+pw1KKjMbhsmfzv0L4Z/j37Qbvrr13LF4MyhUWsLL63XXCjY8cWaNtWeE7fmLUKx48Lk2O9b22reL/+YgUPedsdFjiR6tqlFRa+Ox6AvNLGGUnoQopVGGDtP4SKEvKJOI7jwHEcEhNjAQgTV9JAT3m5HqfPXBUnQKWtUDIyCqC3tM4AhJBLYWE5ysv1+PmXfTh9ShhX3z4JAIR1LL3tsnI93pqzWjw/cEAiACGYwFqGsHL0rCVJZ8s4bTmq4PHWnNWY+fpKLF22FZcuZYuXp6RcU1yeKSmpEKuyfPnVNlkrImuLFvvJTJ1OI4ZwsrKLxIBHgIOy6zGWCh6ZmYUwGk1OW64A8nYk0jE5mihlIYcV/9shbjNhCi1amjULQefEWBiNJvz5l/IR6IC8Ys/evWcdLsd89/1OmExmrPjfn2JgAADKLZWElAIegLUqB6sWJLZoUajgAcBa2SSjwNqiJcRJwCNKuP28vArk5giBEKXgC2Ct4HH27DVxPxEaqlwd5O6hXeHpqUVGRgHOWioCnT0r/J/tF2yxKkAALMEyYR+c2Ml+W+/aVZiYLywsE6sxOZoQjLKsw5wcYVJd3G4DlCfhfX09oFIJv0ddTc+DwSC85oMdtLpp6qStZxqq1ViUwwoeCi1aLPuKq5b9eVWVUXxPUnod3WWpAHZK0t7r4gWhbVb7djGyZbtZtqvkrUdlLUZycoqQk1MMlYrDrbe0wZ13dADHcejZozUAYL8l6OCsqhEgvF60WrXQKiqn2NqKykEIQxq+WfzJk/j6y6kOl2W8vT3wwP3WigaO9omANSzDWmnpdBrFfW5YmD84joPBYBLf93mex4mTwvv6mDG9MWJ4D8TFReAuSwDlyNFUMZjISKt9AEJY88knBwEAfv5lH0wmM0pLK2E2s2pP9uuR4zg0t4z78uUcl4Et0nR07dIK8+Y8gg4dmrteuJ6xKQoesHRpEap58LWfiSOEEIfcDnikpqbCZLLfU+n1eqSnO+8xSgghtcWdkmdUqMJKut5ovRBCCCGEkIZWYjnS0s/fGxPG94dWq0ZYmD/envco/P3sKzgUFLAWA77o0qWleHmL5kLJ/tzcEnHC/fyFTBQXV8DbS4dWrcLB8zx27TqNv3aeEv9OGshgZfdZpYGUlGsoK6t0eAQzq8LAJj/Onc+UhT7cCXgA13+k9NGjqcjMLLyu21DCgg8BAT5o3ToSM169D36+nnhvwXhotWoYDCZxglw8+tjPEwmSydn41pGIjAxE2zZRstvu0SNODCzYYhM55RVV4rqpqjKK7WJ+XP0yZr/5AIYP646RI3uKR/4XFZUjNVUILFy4KJTV79+/o+y277hd6Fd/0XJ9ZaVBvA/bI63ZBF9GRoEsbLJo8W944skleOPNVQAgBlYA4XuXtB2MdFtY9/M/OG+ZTBw7pjc0GjVKSipkz92pk1fE049PGiCruGDbuoBV8GjfoRk6SUJPWq1QFaO8XG+3LebkFOGoJZDyv5V/yr4nnjx1BbZycosxcdIneOjh9/HGrFWy61b/sFs8zartODpaPSI8ULi97CJxUtBRGf3QUD/odBqYTGZkZRWJE5+Ojj5nE5/XMgrEScSAAG+HpevZdpe89Sg2bzksu8xW164tAUDcrpSwI9cBiNVpnMmTVPiRhmqcVfAAJAEPy/Zibemi3EqDrRdp2wjp0fy2unRuCQD4+59rMJnNUKtVDpePjg4Wx/nx/20EAIdHT3t66sTqBpct6/HsOeFx2+4XmA/eTxJP/77tGCoqqhAdFYSEBPtACGvpUlBYJlYeUAoDAML7h06ngdnMIyuryFp5xk95W1SpVOL+6LvvdgnL+nvZtaK5kbB95t1DuzXI/bMKHpmWKisVllZESi1jWIuW7Owi6PUGWVhTafn2lsnikyevwGzmodcbkGF5PcVa3keYu+7qhLAwf5hMZlyUtGlh+8m4VhGy12qvnvEAgAMHzoutqADHoQqVSiUJYeW7DLK1bxeD4GBftGoVjq5dWzl83dt69JF+GHVvL0wY31+xbRHDWmOx99ngYF/FKjharUYMOB3YL4TbcvNKUFRUDpWKQ2tJG6CoyCB0aN8MPM9j46aDstthLZtmvjYGny15Cm/OegCDBnaGn68nMjMLceJEGgotrfe8vT2g1Sq/5lrHC5WNXn3tf+L73Y3YooU0HE6tAm8pVsNeE5zK/rVhqjSBN9EP7qR+JCUlYfTo0Q09DNKAqh3w+PXXX/Hrr78CALZs2SKe//XXX7Fu3TrMmzcPLVu2rKtxEkKIjKuAB4UXHOClJ2klEUIIIYSQhsVKaQcEeCMuLgIrVzyPr796Fv7+XuKP80otWoKCfdHTMpECAL16xcPb2wN6vUGchGVVCRISYtCmjTAh+OFHG2RtWa5I2m6wScFeveLRonkoSksrseq7neL1fpIJGp7nsXPXaQDAvSN7AQBOnboiqwhS4CLgYXtktO2Rre44e+4apkxdhscmfCwLmZw4kYbKyiq75S9dysL/fbJJ1uPekeISSysNy6T9qHt7Ycvm2ejXr704CXflqrAe2X15eerQ+9a2Ymn3Rx+9HQAQHy+fyH3h+ZEO79fHx1P8EZ1NwF69mgej0QQfHw9ERwfh7qHdMOuN++Hn5yWbQHv51RUArJPg0koAgYE+6NxZqABw2FKVhU3CqdUquwlBb28P8bFLnyNWSWTnztM4cvSSeOQyG4d00p5Vq5DqnBiL8PAAcSIs5ax1+X37zwEQKtk88fhA2d+xIAubgGMBj8iIQHzy8RPYtOENbN40C+vWvipWWGDtApi//joFWx07Nresk4t2YaPFi3/DuXNChRrWqiA2VmgVsO7nf8TXlLMKHoA1QCFU8HA+CadSqRAdzcIseS6PbI+WtGhh7UKclWoPVLjf8DDl5dk6v+Qg4FFVZcRBSQuHc+cyZG0LlEj3PekKlYSUJqYBINIyGZyZWYjycj0qLa0rWHUUWyzgcfLkFaSl5YLjOKctQ4YN624JbgnjDw8PgFqt/POxWq3CjFdHyy5jFQCUsHYU1yxtN865qOARGOgj7kNYi63OnVsqTjiz5QoLy1BeYQnJOFiHKpVKDMpkZBa43G6F2xIm3Df9dgiA823rRjDn3w9h+dfPYuZrYxrk/llgh7VdYxU8lFq0BAb6iIGIa9fyxSo4Xl46xW03ztJaqLS0Et+sOIG0K7ngeR5+fl7i/TIcx4nBpLQ062v25ElLuyCbygKdOrWAh4cW+fmlSE3NlrULcoTtF6UVPBwFQnx8PLFq5QtYtnSK4uvAEY1GjRmv3oennxridDnb16+zNjosDPvW3B/ww497cMESXGzWLMQuRDJ69K0AhIpoLFh55Uouzp3PgFqtwh23d0DnzrHw8/OCh4cWfSzVrXbtPoOiYudhQABo09r62YIF7AKoggepRZyaA8y80JJFBYCD8H9wQgUPDuA0Kmh8btzgH6lfrJKgo39vvfUWPv74YyxfvrxexpOZmYnnn38e8fHx8PT0REREBG677TZ8+umnKC+3fs9p2bKlOEYfHx90794dP/74o911Sv+SkpLq5bHcSKod8Bg9ejRGjx4NjuMwceJE8fzo0aPx8MMPY+vWrXj//ffrcqyEECJyHfCg8IISquBBCCGEEEIaEzaxxn6Ib948VJxQYJNtbHJcOpkZHOSLhLbR6NMnAdFRQRg6pCvatxcmYU6fEX7cZ+XUw8IDxAkdNnHNJj2lYQg2serr44lBgzoDAL5evl28Xi8pI15cXCFOUiRNvAstWoSKJcQZV21X8mzCFY5aaVTH7t1nAAiP4YcfhYoKf/51Cv96+jO8MmOF7HuA0WjCuPEf4/vVu/C/b/9yedtiiXmFyU9WFp2tR/HIeU8ddDoNFv3fk/j4w8fFo8ATEqIRFuaPFi1C8deOeYiTHOVrS61Wwc9PmOQqtKzLq+l5lvsNVZzcYpPi167lg+d5Wfhh4YLxCAnxw9w5D4sBD9bCRToJp3S7oZYKBtKAhzSg88zUz1FaWgkvLx3uGdETAHBaUv6fTVJKvfiiEG5hk4fSQMjv24TWQmPG3Go3HjaheNoydtaiJTw8AB4eWgQG+sDf3xvBwX645dY2AOyrdOywtBph679L51gs+r8nERDgjbIyPfbvt7YbKSvXY8efwvJ9erdFdFQQbuvbDksWTYafryfy80vxz75zlvUorBNHlRDCw4UJwZycIvGo7MAA5WACAMREW7cvdmS7o4lP9po+dvyyuD2GOqlUIW0LwDS3VAKyxcIs0gleAOIR6S+/8g1KSisRFOQDjuNQXq5Hbq7j8BTP87LQj9J+yFEFD1ZNo6CgVAy8eXpqHS7P1sv2HScACM+5s9YFPt4eskowLS2P3ZHBg7ogMbGF7LwjbCysukHqZSEwE9860uHfBAbKx2rb+klczhJwKS6ukEzwK68TwNq6JjOjQAwROlsvb7w+VnbeWRWUG4FWq0HbNtEOwz11TQx4Wl4nFZb3fqWqLBzHiZUnrqbno6xc2Fc4ek1Iq15k55Rj1y7h/bNt2yjF/X+L5sJrYO1Pf8NgMAoBT0slsG7dWsmW1ek0YmgvLS23WgEPX8v7XFlpJcpKrZ9DHPH393LYfuh6RUYGiu2IAOdtiKIl7WI+WbRJfM9ro1CRZ8Tw7ujTJwFVVUb89wMhrLXdUr2jR4/WduGNfv3aAwC+XfUXjlvaxTgLeLDPbFKOWi4RUhMqtSXIwQNQsUQHJ/txXRfkCZW2YfaZ5MaTkZEh/vvoo4/g7+8vu+zll19GQEAAAgMD63wsFy9eRLdu3ZCcnIz58+fj8OHD2Lt3L1599VVs2LABv//+u2z5uXPnIiMjA4cPH0avXr3w0EMPYc+ePdi/f784/rVr1wIAUlJSxMs+/vjjOn8sN5pq73HMZjPMZjNatGiB7Oxs8bzZbIZer0dKSgruueeeuhwrIeQm5044gQIehBBCCCGENH7WiTX7H+LZZBurIMEmMz08tOKRue//ZyLW/PgKOnVqgVatrJMqgFAuHADCQv0wdEhXcbInIiIQj427A4C8RUtFhXVita/l6FGpqioj9HphkolNzvr4CNUdxo7pbbc8C5g4UiKpTAJArDpQEydOWNuDbPvjOMxmMzZuPAAAOHjwIs5aqj0AENupAMC2bcdlFU2UiM+RwgRVs2bChPgVm4AHC1rExUWgVy9rpRVPTx2+/d90fPn5Mw5bZ0ixo+TZuklPFyodxFhK8ttasfw58fS1awXIZAGPyCDc3q891v8yEz17tEaMpfJISWklysv1KCm1TMI5CA+wyVy2TZnNZuRLWmwwPXq0FgMb0moPRZYwQ3R0MAYOSMSaH15GW0tVGdbKhj1HJaUVYjClV682dvfRxlIF5bJlcpxti0oVHMY9cju8vT2QcvYajhxNBSAEA44cEU4vfHc8flj9Ej78YBI8PLQYOqQrAGEbYs6cuYqqKiMiIgLxX8vr7T/vTUBQkC+GDesOAFizZi8A62vVcQWPQABCKKW4Gkdlt7ZM/P/991mUsICHg9YFUZLJxg8+XA/AeZWFnj1ay84PH9bd4fIsDJCfXyruAwDgl1/24Z35a8WqJnf17ySpOpJvf0MWFRVVsoAJCzoAQqAGALy9latPsDBcUXE5CvJZyyrHYQPpegGABAfVMqRG3tNDPB0Wpty2RuqF50eiW9dWeHPWA2JlDCUsQHPo8CWcPn0VBoMQuHMWlrB9bEEOKgqwiiwmkxk5OcI+ztPLcSsK9jxdkwQ8nB3x37FjC1nYwdnjJNfPP8C6nQPy6lBK2HvC1at51pCUgwoutpZ/swMA0LVLK8XrWWDh8uUcLFi4Dunp+Ui7kgudTiMGEaTYtjHzjW/FdiFOAx6WMEdpmfW9yMe3bgIcrmi1GlmrKmkrPFtDbdr3sCpGSuuR4zi8OF0INR45koqKiirs2i1UQet/Z0e75Xvf2lY8vWjxbwCcvz7DwwMw5emh4nkvL534Pk9IbeDUQqiDN/OWgIelRYsl6wEOUGktlQgacqDkhhEZGSn+CwgIAMdxsst8fX3tWrT0798f06ZNw/Tp0xEUFISIiAh8/vnnKCsrw6RJk+Dn54f4+Hj89ttvsvs6ceIEhg0bBl9fX0RERGD8+PHIzbWGmp955hloNBocOHAADz74INq3b4+4uDiMGjUKGzduxMiR8oqMfn5+iIyMRNu2bbF48WJ4eXlh/fr1CAsLE8cfHCzso8PDw2WPk7jH7UjZpUuXEBoqfCCvrKx0sTQhhNQNCnDUjHSt0TokhBBCCCENzVoa3/6HezZJzI7gtU5mKveEZ0fwpluqPLCARUiIHyIiArH8q2cxZHAX/Hv2A2hlqehxVdImoVwSTmjXLkZxwpyN13bcY+6zBjyG3S1MemRmFtq1aTCbzTh+Ig1Go0lsO8JIKz64K1tS/aOgoAwpZ6/JWn5ctJROB4BCSeWA3Nxi/GZpOeCIswoezZpZJtWuCOtcnIRzMrHm6+vpsM2GrTDLhDurKJGRIUyaRzuYuImJCRbbkly5miuGWWwnY318PMWS/tnZRWLlCUeTcMGWCej8PGEbLCwqh8lkBsdx+G3jLDz91BDcO7IXZrwyGi0sk9jSFhysgsft/dpj3txHZONn42XhlatXhf+HhPgpHqUdGiqMpbCwHEajCaWljo8QDw31x139OwEAfv/9GABg1Xc7YTKZ0a5dDGJigtEsJkQ8op1VNkmTjP30aaEiTof2zexed3daJuZYix42Ue7nYCKOtUA5dfKKuE4CnFTwuHtoVwDA3r/PItPS1iPIQZghMND+dtgkvpJRo27BSy/eiyWLJ2PxJ0/atRqRCgjwhqenEBZg25TJZMYPa/bIlmvdOlJ8bq85CXjYtuw5fvyy+P2chaQcVR9ggZisrCKxCpCzo+zbt2smC1M5q5rDDLirE9q2FdZdv9vauVy+XbsYLF40Wdz3OXLnHR3E0zNmrgQghKps2zlISSdp27SJwpDByhVCtFqNWN3l2jVhW/F2UsGDPU9paTliiMBZixadTiOGqwCIAS1SN9hkfmWlAUVF5WLFJNuKLkwzSTUpVsGluu8zgBAcHTgwUfE6aYWa3zYfxpP/WgJAeL0r7aOl+yIWllMKSDJsnGVlleLnHWeVjerapKQBAISKTY883M/hcrf3a4+35z4CQNgfHrK0PGvvoAVUTEywuG5SzqaLn3lukYRAGV9fTzz91FDZZc7CgIA8KNKjexy0WmqVQWoPp1ZBpeHAG83gJAU8wFsKe/C88D7OAh+kUeN5HmaDuUH+1fV8zDfffIPQ0FDs27cP06ZNw5QpU/DAAw+gb9++OHToEIYMGYLx48eLbVUKCwsxYMAAdOvWDQcOHMDmzZuRlZWFBx98EACQl5eH5ORkTJ06FT4+yu9NzlqGaTQaaLVaVFXZtwwl18/tdzqz2Yx33nkHn332GbKysnD27FnExcXhzTffRMuWLfHEE0/UxTgJIUQeTnBnWQoyiGTrglYLIYQQQghpYM4m1qOjhAm4s+cyYDSaxIoJjnrCsyN42UQ5a5HAjspv1iwEb/37IQDWVhuZWYXQ6w3w8NCi1DIWby8dVCoVRt7TEyv+96fsPnJyihEWFiCGM9ikjVqtwtdfTsXv244haeJdSN56FFVVRuTkFCMiIlD8++9X78aixb/h/vv7oIPNJMjan/5G//6d7C6X4nkeJpPZrvoFC7O0aBGKtLRc/PzLPlnLF3k1CXm7kF83HMA99/R0eJ/OJu2bixU8hAl+aYuW2sBK16/6bicmTujvtFoFExLih0up2Th7NgMmkxlqtUqxQkB4eAAuXcpGVnaRyzL6oTYVPPIs21ZAgDcCArwxYXx/cVkWBMjPL0VpaSV8fT3FcStNULEQQnZWEcxmXmzXwSYsbQUEeEOtVsFkEqqIiK8hX+Wxd+vWChs3HcS6n/9B+3Yx+NFSbePJJwbZj8XymsuwhCkA4Nw5ISjEKo1IseBMTk4xzGazJPikPBZWTeLK1TyxtYyzSbvY2DAEBvqgsLAM5y0hJUdhBo7jsG7tq5g46RNxm1WqxMNoNGrFyjuObjsyMhCpqTnYknwETz4xCH//cxapqTl2jy8mOhj74TzgwcItgYE+qKioQmFhOa5ezUPz5qEuW7SwUBnP83j9jVUAHO8TheW9cOcdHcSJ5u7d4qr1eEeNbIPEzregdZx9u4Wa8vDQol27GJw5ky7ug9UuKvnExFhfB998Pc3psoGBPigtrURGprD9steiElaV4ey5DHEbdBRMYkYM744zKULgqTqVUEjNSVsxvfDi1wCE14SjfbQY8LyWL4ZBvB1U+wGA12bchwUL14nnJz8xCC1jwxWXjYwIxO23t8fOnULFCbZ/iY9Xbi2kFCxwVsGDhQ2LisvFSkWuwgx16Z4RPRDXKgLx8ZFQqZwfGzxgQCLilv8htqwDnFe3adkyDEeOlCE5+ShMJjPCwvztqgwxj427HSv+t0PcJ7paJ82bh+LVV0bjxMk0THisv9NlCXGXSqMCVBx4sxD24DiAl4Q5eAMPs95kWZoSHo0db+RxeWVKg9x37GMJ4LR1t4106dIFs2bNAgDMnDkTCxYsQGhoKCZPngwAmD17Nj799FMcO3YMvXv3xqJFi9CtWzfMnz9fvI2vvvoKzZs3x9mzZ1FQUACe55GQIP9MHRoaKhaAmDp1KhYuXGg3lqqqKrz//vsoKirCgAED6uoh39TcruDx9ttvY/ny5Xjvvfeg01m/sHfq1AlffPFFrQ6OEEKk5OEElz1aqr3ozUS+CmnFEEIIIYSQhlVWZmm7oNAag1XRKC2txImTaSiwtGgJcjDByybEz53PwN69KeIEIqt4IBUc7IugIB+YzTzOnsuAwWDE4cMXAQCtLZM248f3x5DBXdC3bwJ69RSOMD14SFiGTWRLJ20SEmIw9Zlh8PHxlE1kMzzPi6XG16zZK06i97FMQldUVOHJyUvw6/r94t8YjSZcuJgJo9EEo9GEpMcX4cGH3xdDLIDQOoYFCCZaggbr1x+QPd5UScCDlYxv2TIMAHDq1BVUVlaB53lZ+wlGfI4UjoaOsoQTsrKKwPO8XYuW6yb5ynIto8BlpQ3AGgA4deoKACHIIW2twERY2oVkVyPgwW4zL08IzbDKCaEKwREfH09JlYVCANaKDYEKE1QhIX7QatUwmc0oKakSgzmOJslUKpXYpmLf/vNiix1HY28nCWbMX/ATqqqMaNUyHH16t7VbllU1yMsrwcSkT1BRUSW2PGLbi1RYqD84jkNVlRGFhWVO2/kAQIcOzdGxY3MAEFuUKK0ThuM4u4n0ECfVKiIiArHg3cfQokUoRt7TE21rcRKetZfZuEmoeHPkiHC0+qh7e6H/nR3RqlU4unRuKQa6siStkKSKiytQUCC8BsNC/dG8Gas8JLym2WSmUmUAAPBVaN3QrZtyawlm1hv347MlT+HH1S+LLYRcUak4xLYIc3pUZk3YttgotAmc2Xrg/j4YOCARb856wOVts+oAbN/q5aSCB6vAcfVqHjIzCwE4r+ABAKNH34rJTw7CQw/ehg4dHAfxyPWTbncsVBMZGehwe2zRQtg/nT59VdzvOtu33DuyF7b9PhtDh7TCqy/fi4cfvs3pWBa+Ox57ds1Ht67W15q0oovUuEdvt7uMhRWVsM8/GZbKMxzHOX2Pq2scx6Fjx+ZOK+tIRUhaumi1agQpVFNiYqKF/d0hy+ctZ/sYlUolC2lVZ38+etQtmPX6/WjRIrRaYyfELSoA4KHSqMCpVbCW8YDQtoXnav09kxB3de7cWTytVqsREhKCxERrhaqICKGSW3a28N3w6NGj2L59O3x9fcV/7doJ1dsuXLjg8H727duHI0eOoGPHjtDr9bLrZsyYAV9fX3h7e2PhwoVYsGABRowYUWuPkVi5XcFjxYoVWLZsGQYOHIinn35avLxLly44c+ZMrQ6OEEJk3Mh3yP+MggyEEEIIIYQ0RmWWyUxfhSNt1WoV4uIicPDgRWRlFSG/wHkFj6hI61GgL73yjTgxwCp4SHEch44dmmPX7jM4eTINOq0aJaWV8Pf3QmInoU2Fj7eHWPHjxzV7sP/AeRw+fAnjH7vTadsSQDiy9+rVPBw/fhk9e7QGALEyA/PXX6cACJMjkZGB4iTjgoXrcO/IXigursC/nvoUaVdyMXxYd/Tu3RbnzmUAAFas3IGZM8YAsFYj0ek0GDy4Cz5dmixW9GCkFTxYi5Y28VEoLCxHYWEZLqVm47ffDmHDxoP46IPHxVYdPM+jslIIfXh52U/2sBYqer0BJSUVqKhkFTyqNzHkyqSkAWLlgYL8UpdBDAAItrTwYAGPSEkFFalwy6QUmwx0drssyJFnqSLD1rlSZRBAONK4qKhcDHYUsXYkChNfKpUKkRGBuHI1D0XFeqhUwmMMcFJNgD2/899dC0B4rTha561ahaNt22iclbTs6dChueIkhHR7Pnc+A58u3SK2a1GaMNNo1AgN9UNOTjEuXsp2WWFFrVbhtRn3YfyE/wMgTAaywIcjCQkx+GffOfG8s3YkANC1Syt8v+pFp8vUxJSnh2LfvnPIySlCVZURJ04K21fHji1wz4ge4nKsDY20gg6zJfkI3n5njRjKCQz0gZeXDucvZCL9Ggt4WFq0OAgn2B5RH986EiOG91BclvHw0Iqv6YZmO2nsqOUG4+WlwzxLGwhXbAMe3t6Og2aBgT6IiAhEVlah+Hp29poDhO2Xta8gdS8xsQWOH08TzzurDNGxY3PxfXTzlsMAlNs2SWnUanTtEo7hw3u4rFTB9OmTgMOWcJejCh6hof6YlHQXvl6+XbzM2XsWC0+yfYCfn6ddla7GTPoZKywswOkEN9t/s+Cgo3ZrTIf2zbBr9xlotWrcPdR5CyhC6hzrzaKybONsU5du8pTvaBI4DYfYxxxXeavr+65LWq38cxbHcbLL2D6atREtLS3FyJEjFStwREVFobKyEhzHISVFXvEkLk6oCOflZf/+9sorryApKQm+vr6IiIig4FMdcruCR3p6OuLj7Xujmc1mGAz2R3oQQkhdcFV9QnY15TuspJVNGnAYhBBCCCGEAEBZmaUdgUJ1CAAIsUzW5+eXWlu0OJjg1enkx7CwYIJSlQUA4pHs589nikfbx8SEKFZ76NSpBQDg1Okr4HneWqnAwYRgD0sbhM+/+F2sDLJz12nZMimWCXd/fy+0ahVhdxvbd5wQJ9c3/XYIf1iCDgBw4ID1iCqxskmQLzQaNQYPsh65NXFCfwDAtWsFYnWOIkl7iPjWwgTVN9/swJq1f6Oy0iCGBgAhuMG+eym1XfHw0IqTaFlZRaisEO7DUXsJd8XFReDWW9oAEKpmVCfgERIibB+snQqrMmIrIkIIeGRnF4ktdxzdboilCgybCK5OwAMQSu4D1lCNowlkNkFWWmqQbFuOH2PXri1l5/38vBz+eMpxHL5YNkU21o7VrD6wZs1eVFRUQatVI8bBRBwLyjz3/JfgeR4qFYeAAMcTq63jIvHf/0xE164tMfWZYYoBLKl27axHbXt7e9Ra+x93tW0TBR8fD5jNPFJS0nHihDDx3MUmOBEmBjzsK3jMmfuDGO4AhG2QbZ/vf/AreJ6XtGhx/DjZOv908b+w4pvnFCsgNVa2v+X89z9JtXbbzWLkbY1cbSu21WFcVfAg9WvxJ5NlAaDuXR23F1KrVWKlrUuXhECjq4BHTfTqZZ0TiW/tuH1RZKT8fYd9llHCWsmwYFKgk/1nYyStkhYVFeh0WdvnJNrB+zMz/fl7MHJkT3y7crriZzNC6hOn4oQAh+TzFmc5r1Jz4sU0l934cRwHlVbVIP8aW9ihe/fuOHnyJFq2bIn4+HjZPx8fH4SEhGDw4MFYtGgRysqcV11jQkNDER8fj8jIyEb3eG80br8zdujQATt37rS7fM2aNejWjZKUhJC6I/0hwOwy4MErnr7ZyXIvtF4IIYQQQhrUggULwHEcpk+fLl5WWVmJqVOnIiQkBL6+vhg7diyysrIc30gTV24JeDiaoAwWAx4l1goeLo7gl/L19XQ4ydc6Tgg3XLyYhWxLwENaalwqvnUkdDoNiosrkJFRIIYqHAU87rijg3j6hZeW438r/8RnS5MBAGPH9IZKZf2xq0f31mKbBqaiogpXr+bKLtu9x1o1NSOjQAwZFNtUExk96haEhvrjllvaYML4/vDz9QTP82ILCBaq8fHxxC2W8MRfO0+Jt11SWiEbB+OoQgSbbL6WUYCKCr3TZWuCBRPy8krtHqsS28CAozL6YiuNrCKUiq1fnAeN2DrPdRXwsGwX9hU8lLeXYEsoZdeuKzh/PtMyFseP8W2bigZ+Lib4NRo1npo8GADQqmU47r7b8e93rGWQVI/uraHVKhcBtn3NBAX5upyI69snAUsW/QsPPtDX6XIAkNDW2lIkPNx5GKQucRyH5s2FKiY/rtkLk8mMFi1CxcuYUEvAIzU1B1fTrVV7lNofRUQEor2khU76tXwx4OHlJCT1+bIp+GzJU+jSpWWNH09Dkf4Kseuvt9Ghfe21Ohk7prfsvI9CZSipDh2s1WN0Oo3D/TlpGBqNGv9ZOBHdu8dh4IBEjB3b2+nycXHyoGRdBDzatonC008NwUsv3us0WCWt7uHr6+n0c4ufr3xf7+h9pbGSjrdPb+dHxNtWd4p38P7MREcHY+aMMXbhLUIaAgtzcGp2ngOn4qDSqaDxET73mqpMDTdAQmpg6tSpyM/PxyOPPIL9+/fjwoUL2LJlCyZNmgSTSdielyxZAqPRiJ49e2L16tU4ffo0UlJSsHLlSpw5cwZqddOpOnWjcbtFy+zZszFx4kSkp6fDbDbjp59+QkpKClasWIENGzbUxRgJIQSATasVyibUiCzUQeuQEEIIIaTB7N+/H0uXLpX1yQWAF154ARs3bsSPP/6IgIAAPPvssxgzZgx2797dQCOtW6xFi4+DyUw2KZKTW4KCfOctWgDgi8+fwZOTl4jnnU2UsMmgi5eyxPYp7Oh7W1qtBlFRQbh8OQfXMgqQlSUEQiIjlAMhYWEBmPzkIHz+xe+oqjLi08+2AAB69YzHc9OG49Zb2uCP7SdwW98E9OoVjxMn02R/n5VVKAYyGINB/qPx5cs5CAnxs1a1sEw2NW8eil9/fs26DkL9UFJaiYLCUgARqDIYLY9JjXtH9sSSTzfLbregoAx6vQEeHlqxCopOp3FYwr5lbBjOnr2GX9fvRwVr51KLVRbYNpCXV2xtjeMk/GDbkqVtG+UJJBZMSb+WL1Z/cVjBw7IdlZZWQq83IC/XecDD31LBo7i4HCaTWazK4ejIbBYgKSjUo6AwXbgNJ5PNwcF+aBMfhXPnhZY9QU5eE8w99/REv37t4empdVrZ4M037sfnX/yO8go9tmw5AgAYPLiLw+Vttwv2Y3BtkbZlMJsa9kts58RYnDmTjt+3HRPP25K2itqw4QCefmooAGE/YysyMhADB3bGW3N/AACUlFRIKng4DieEhfqL7ZGaGt5sfQ6r2xajuqKjg+DhoRXDNK7W0bBh3fDV19tQVWXE1GfutqsCRRpex47Nsej/nqzWsrZhoboIeHAchwnj+7tcLk5SlSskxM/pEcxtbSrJJE28q8bjawjNm1lDbkOHdHW6rPS9Kr51JPr0bltXwyKk9nE2FTw4ACoVdAEe4E28e/3kCWkkoqOjsXv3bsyYMQNDhgyBXq9HbGws7r77bvFzWuvWrXH48GHMnz8fM2fOxNWrV+Hh4YEOHTrg5ZdfxjPPPNPAj+Lm5fYn11GjRmH9+vWYO3cufHx8MHv2bHTv3h3r16/H4MGD62KMhBBix2WLFtmydTsWQgghhBBC3FFaWopx48bh888/x9tvvy1eXlRUhC+//BKrVq3CgAEDAABff/012rdvj7///hu9ezs/erUpKisTKic4OtI6xDK5n5x8RGx7EeTkSNgO7ZshLMwfOTnFAICYGMf93WNighEeHoDs7CIkbz0CAIgID3S4fEREIC5fzkFWViGysgrFyxyZlDQAPXu0xlNTlgIAoqKC8OEHSVCpVOjXrz369WsvLtuzR2t8/sXv4vnMzEIxdHJb33ay6h1qtQomkxmX03LQvXucy7YlwiRXDgoKhCoSBsvRheyI9V9/fg33jl4g+5vMrELEtghDZaVQwcPLy3Eg4N6RvZC89ShSUtLha2m141OLLSPYOj6Tki62t3BW3SIqSl7yvU2baMXl2raJhkajxrVr+SixtFJxdLu+vp7QatUwGEwoKChDRqZQSl8aPpCSVvAoLa2E2TKpzbZhWxqN/ZFvzh4jAAwd2lUMePTo4bh1gVR1JjwDA33wysujoNcbEBzkC61WjbuHdnW4vNEm0KHXG6s1luqSToy2ahVeq7ftrt63tsUPP+4Rz7duHWm3jIeHFveNvhXrfv4HmZmF4uXnzmXYLRsdFQS1WoVWrcJx6VI2ykorxao5zlq0NGVm3ux6oRriOA4REQFISxOqH4U7COAxYaH+WPzJZFQZjOjWtVWdjYvUj06dWqBL51gcPXYZgLx1SH0T9gO3YN3P+1xWtQgI8EbPHq1x4OAFPPvMMFkbmKagZ8/WePON+9GpUwuX1UdCJJ/f+vVrT6X7SZPDcYCKVSnjhH+8mRdO85BV6COktiQlJSEpKcnu8uXLl8vO79ixw26Z1NRUu8ts59XatGmDn376yekYoqKi8Mknn+CTTz5xupzS/Snp378/VZevBTWKJt9+++3YunVrbY+FEEKcku7zXbVokS7MU6kKkayAB72JEkIIIYQ0iKlTp2LEiBEYNGiQLOBx8OBBGAwGDBo0SLysXbt2aNGiBfbu3asY8NDr9dDr9eL54mIh2GAwGGAw2LcEaCzY2Fi7EA8PjeJ4ExObQ61SwWQ2i+0uwsP9nD62gABvMeDRLCbY6bJ33tEBP67Zi8JC4bbbJkQ5XD4sTJi4OHXqCjItAY/QUF+nt5+QEIUO7Zvh9Jl0JE3sD5PJpFjhoF27aMx/+xEs/nQL0tPzMWfuDyiyhA7uuL29LODRuXMsDh++hLS0HBgMBhQWCsENHx8PxbGwUEFeXjEMBgP0emECWaXiYDAYEBDghWemDMXPv+xDfn4pKisNSL+ai+ioQLFdi6en1uHjjIgUjpIvKiqHyShM3np5OV7eXaxKyvHjQpWT1nERUKs5h7fv728Nl+i0Gnh4qBWX9fLSoFev1ti79yxKSoWgUUx0kMPbDQz0QU5OMdas3YNr14TqKuFhytsia/WSn1+C3Fyh2ouvjyd43gyDwX6CW2mOy9vb+Tq8f+ytSLuSg7/+Oo0hgzvX+utdpQKefko4kMtodBzaeGzc7di9+ww6dmiOaxkFmJR0V62PZdH/PYEf1+zF9OdHNOh+rVMneYWA1nHhiuPpnNgC637+B8lbj2LixDvRLCYEKSnpdsslWPY3rIJRUVGZWNVIp1PebusDu9+6uH8W0qqr25dW9wkO8nF5H23bRtbZWEj969evnRjwSHDyfg7U7XYOAM8/NxyjR9+CZs2cfw4BgDdeH4PLaTno2qVlk9wWBw1KBOB6XTZvHozRo3rhWkYB7hnRvUk+1rpQ19siuX5GowFGoxEm3gyDyQBYniqz2gxTuRFQcYCZB282w2g2wmg0QtWIn0/a1gi5MTSa2nMLFizAzJkz8fzzz+Ojjz4CIPQefumll/D9999Dr9dj6NChWLJkCSIirGXO0tLSMGXKFGzfvh2+vr6YOHEi3n33XWg0jeahEUJqixvtRWTZBcoxWMmCL4QQQgghpL59//33OHToEPbv3293XWZmJnQ6HQIDA2WXR0REIDMzU/H23n33XcyZM8fu8uTkZHh7O27x0BiYTGZUVQkTx3v2/AVPT+Xv8Xfd1Ry/bxMmbKKifHBgv/N2Nby5UjxdVJSJTZs2OVzW06NUPO3hocaVtBNIv3pScdniomwAwLqf94mXHTnyD06dct53eMiQSAy4Kxxm0zVs2nTN6bLNm3kiPR1iuAMAysvl7Vt0WuHxnTiRgk2bTDh2TLg+JydD8bEWFwlHs+/ffxSeHnm4elUYw9mU09i0SQgq+PkC48e1xeofTiP1sgHbd+xGTs5ZpKUJQRmjUe9wPbLAgslkFse9f/8epJxx3GLCHQUFlbLzsbEeTp9TAGje3A9XrpQgPj7A6bKhwdawjY+PFqdO7cfp08pHXxYVCtvKqu92iZcdO74fKSn2z39GhrDOT568iM2bhR/RNVre4VgCA6rQrJkfPD3UOH+hEGo1h9OnDuFy6nGnj7N9ghrt2nbEkSN/48gRp4vWqWlTu0OrVQGIAPgMbNpkX63ievW+1Q9///1Xrd+uuxITw3D8eA7Cw7xx9epJpKefslvmanqJeHruvJUYfW8bHDwkhLQGDYxFWloxEhJCsHVrMgCgvEJYfs/e/SgqEraz/fv/xsULzqu41LW6OLgvNzdPPO3qdVwTHp7WSau//vqj1m+fNG4eOhMSO4UhvnUgkrdsqdbf1PVBrKeUP1Ioyrh2uu4G0kgktFUhoW0I9u/f5XrhmwwdUN1EnK3GMhfrfBTXpby83PVChJBGz+0URFBQkGL5LI7j4Onpifj4eCQlJWHSpEnVvs2a9h42mUwYMWIEIiMjsWfPHmRkZGDChAnQarWYP3++uw+NENKEmM3VjydQpQpltF4IIYQQQurXlStX8Pzzz2Pr1q3w9KydFhYzZ87Eiy++KJ4vLi5G8+bNMWTIEPj7+9fKfdQFg8GADRs3i+dH3DMMHjqt4rL9++tx9Ngi5OQUY/pzo9HbRc92L+9YvDXnB3h56fD4pNEO22gAwmfirb+nIzOrEL17J+Cee0Y4XLZbtwKknP0a2dlCRYbmzUMwevRIp2Nxl1Z7DH//s1Z22Zgx92LVd+eQk1uMwEAfDBjQG//sWwcv70AMHz4cJ079AiADnTt3wPDhd9rdZlb2dhw+ko3Q0CgMHz4c2//MA1CAbt27Ytjd3WTLHjxUjtTLxxEb2wbDh/fF3r1n8d3q0wgNDcbw4cMdjvvTz46iwtLOBQBG3TvCaVsXdxhNJnz9zQkYDEIY4777BqFzYqzTv+nffyB27jqDXj1bI9hJS5+BAw1Yv1GoojPs7h4YMWKYw2UX/ucf2fmgIB/c5+D5j4+/hvUbLqC0zIwOHboAOIWoyFCn6/C++wxITk5G69Zd4O/vjehox+2FSMMZPNiIQ4cvIT4+EiHByu0I8vJL8O0qIfgREhKG4cOHY/UPwmzP8GH97VrqHDhYjosXC6HVBUOvF5YbdvdghIY2zD7cYDBg69atGDx4MLRa5f1yTW36LQNXrwqBFmevh5oaNMiIr77+A3FxERgyuEut3z5p/EaNqt5ydbmdE+IO2hYbP2OZAfqCSvBGHl7RPlDrhHCvucoEY5kRUAsVPGDmUZldDs8Ib+iCaq9dYW1jFR8JIU2b2wGP2bNn45133sGwYcNwyy23AAD27duHzZs3Y+rUqbh06RKmTJkCo9GIyZMnu7y96+k9nJycjFOnTuH3339HREQEunbtinnz5mHGjBl46623oNPdmP0qCblZyVu0OO/bKg0vUI7BilYFIYQQQkjDOXjwILKzs9G9e3fxMpPJhL/++guLFi3Cli1bUFVVhcLCQlkVj6ysLERGRirepoeHBzw87CslaLXaxv8jseSDuodOB61W+SeKgAAtln32NHJzS9CxY3OXNzt4UBeYzTxax0WiefMwl8s/9NBt+L9PNmHUvbc4XWctWoTj1VdG4+VXvgEAtG/XrNbXce/ebREREYgsSwuYQQM7Q6vV4qMPJ+GjjzfisXF3wGQWvgsVFpRBq9WiolwIVgQE+CiOJzBQCDiUlemh1WphtLRR8fT0sFs+JESYUC4uroBWqxVDFV5eOqeP1T/AWwx4aLVq+Pl5Kx4cVBNarRZqtUocS/t2zV2u94AALe4Z0bNat/3f/0zEX3+dwr8mD3F6u36+nmIrFwDo0rmlw+VbtRJer4WFZcjIKAQABAb5uhw3x3FoVwfbFak9Wq0W/W7r4HSZyIhg9O2bgD17UmAymqHValFYJLRSCg31t3t+/f2FSh2//nrAelmA6+2lrtXF+8iLL4zEU1OWYuKE/nXy+LRaLaY96zioR4itJvF5idwUaFtsvDgNwPlzMFcYodNqodJaAh68CpwGgFoF8Dx4Ew+NWgONWtOon8vGPDZCSPW5HfDYtWsX3n77bTz99NOyy5cuXYrk5GSsXbsWnTt3xv/93/9VK+BxPb2H9+7di8TERFnLlqFDh2LKlCk4efIkunWTH4lCCGnaeNSsRQtPsQYRBV8IIYQQQhrOwIEDcfy4vOXCpEmT0K5dO8yYMQPNmwsT19u2bcPYsWMBACkpKUhLS0OfPn0aYsh1Svp51FUYICIiEBERgdW6XY7jcPfQ6v8e8OADfXHf6Fuh07n+iaRLZ2vliKFDulb7PqorONgPa398GWYzjwsXsxAdFQQAaNUqAh9/9DgAIOWs0GKloFCYMDYYheCDRqPcKoZV0qisFFoXGC1BCZ3OfvmgIB/htguE267UC3/j5en8AJrAAG8xlOLn51Vr4Q5mwvj+WPb5VgwZ0hXe3rXT+oXp2ycBffskuFxuwYLxmPrs5+L5W25p43BZb28PBAb6oLCwDCln0wEI64jcPB64vy/27ElBTm6x0L6oqAIAEBRkX1HGx0d+lK+HhxY+tbydNxYJCTHYumW2w0AfIYQQ0hipNCqofBSCEZKPvJzKcp5+cyeE1AO3P01v2bIFCxcutLt84MCBeOmllwAIJfZee+01l7d1vb2HMzMzZeEOdj27zhG9Xg+9Xi+eZyWJDAYDDAaDoz8jpNaw7Yy2N/fwkrYsVVXOX69Go/U6s8lM69rCaDRJThtpWyQ3BdrOSWNB2yIhck3hNVHbY/Pz80OnTp1kl/n4+CAkJES8/IknnsCLL76I4OBg+Pv7Y9q0aejTpw969+5dq2NpDKThY5WqdgMB7uA4rlrhDkCYiH3/PxNRVq5Hn2qEAmpCpVJBpQIS2kYrXs9ajhQWlsFsNsNsEtajRq1SXN7TU/gxulIvVNioMhgBQHGCNTDQR7xtAKisEP7Gw9P5kX4hoX5iT3I/Py+ny9bEo4/cjri4CPS+1Xl7nrrUrWsrbFz/Oh5+9EMEBfrYtbexFRbmj8LCMpw7nwFAqLBCbh5hlvYqmRkFyM0tFvd3AQpBH19f+Wtm+dfP1v0AGxCFOwghhDQ1vNEMTsXJAh3iaRbqUKvAqVUwGynhQQipe25/og4ODsb69evxwgsvyC5fv349goOF/qBlZWXw81PuQ8nURe/h6nr33XcxZ84cu8uTk5Ph7U1HVJD6s3Xr1oYeQpOSl58vnv7rr79w+rTj12tRkTXElZ6ejk2bNtXp2JqKY8dzxNMHDx5EacklALQtkpsDbeeksaBtkRC5xvyaKC8vr/f7/PDDD6FSqTB27Fjo9XoMHToUS5Ysqfdx1Ad3Kng0JnUV7Kguf0uAwmQyo7y8CiaT0HJF5TDgYangUcFCVZYKHgqTrKy6QEFBKQCgSqz24TzgkdA2Gnv2pAAAWrQIrf6DqSadToM7bnfeFqM+BAX54ofvX4JGq4aHh/N1Ehrqj3PnMpCaKnwHi4oKrIcRksaiRYtQhIX5IyenGD//sg+A0IpFqdKONPQRGuqPZjEh9TZOQgghhFSTinNanYNTceC0Kqh0Ted7DSGk6XI74PHmm29iypQp2L59O2655RYAwP79+7Fp0yZ89tlnAIQf6O68806nt1MbvYcjIyOxb98+2e1mZWWJ1zkyc+ZMvPjii+L54uJiNG/eHEOGDIG/v3811gIh18dgMGDr1q0YPHgw9Txzw6bNGbh6tQQA0K9fP7Ru7fh1npFZgM+WHQEAREdHY/jw4fUxxEaPxyH8tvkiAKBH9+7o06cNbYvkhkf7XNJY0LZIiFxTeE2wao91aceOHbLznp6eWLx4MRYvXlzn993QWMCD47gmFfBoaB4eWmi1ahgMJpSWVsJktgQ8HFRB8bJU36ioFKpxGKosFTyUWrRYKniw9i+sAqDWQfsXpn27ZuLpe0f2qvZjaYqUKjAoCQ2VH/gUHR1cF8MhjZRGo8Ztfdvh51/24eixVADWCjm2pO177ri9PdQOwlqEEEIIaUAcZ9PynLM76RHkAbVX4/xuSwi5sbgd8Jg8eTI6dOiARYsW4aeffgIAJCQk4M8//0Tfvn0BQGzV4kxt9B7u06cP3nnnHWRnZyM8PByAEC7x9/dHhw6Oj+zw8PCAh4d9L0utVttof1gkNyba5tzDST40qdRqp+tOq7Fex3EcrWcLtdr6w6x0HdK2SG4GtJ2TxoK2RULkGvNrorGO60ZhtvxC2pDtWZoqHx8PFBaWo6y8Uqzg4WhS2INV8KgUKniwFi1KFTwCg+QtWljAQ6NxPuHcu3dbPPxQP8THR+K2vu3cfTg3pIjwANn5GAp43HRYO6WLF4WD0ViFHFsBgdaARwxV7yCEEEIaJU7FwSbhYbMAAAqtE0LqiVsBD4PBgKeeegpvvvkmvvvuu+u649roPTxkyBB06NAB48ePx3vvvYfMzEzMmjULU6dOVQxwEEJuHM4+SwnX85LTdTyYJkS+XmjFEEIIIYSQhsM+j1L1Dvf5+HgKAY9SPcyWCh5qlXIIg1XwqGQVPCxtV7ROWrRUVFShoqJKEvBwXsFDo1HjuWlUNVFq2N3d8eOavSgqKoe/vxdV8LgJsddTcXGF5byjCh7Wy8PDqLIwIYQQ0hhxKkCldf6ZGHARAiGEkFriVs0/rVaLtWvX1tVY7Hz44Ye45557MHbsWNxxxx2IjIwUq4YAwpHoGzZsgFqtRp8+ffDYY49hwoQJmDt3br2NkRBSf3hJkzve7PyDkvRzFO+sOd7NjFYLIYQQQghpSJbPo1TBw32+Pp4AgNKySphNwop0VMHD07aCB2vRovADtbeXDjqdEPwoLCwTwyAalz9mE1tRUUH4+KPHMXRoV/xn4QRxvZKbB6vgwQQ5aNEibfsTHOKnuAwhhBBCGg7HceDUKnBqm7YsLKjOccJJDvSbexPBm3iYjeZ6+8ebanfDSEpKwujRo2v1Nhuz1NRUcByHI0eO1Ov9chyHn3/+uV7vs7rcbuo4evToOnswO3bswEcffSSeZ72H8/PzUVZWhp9++gmRkZGyv4mNjcWmTZtQXl6OnJwc/Pe//4VGQ1+aCbkRSUMbZhdJWFmogz5UiShATAghhBBCGgueAh415uMjVC0tK7O2aFE5DHhYK3jwPA+DgQU87H874ThOnIQuKCyD0SjctkZNAY+aaNsmGv9+80EkJsY29FBIAwi2acniqEWLv7814BESTAEPQgghpDFh31kcFR3kOEDjqYZKqwbHcVQ1uwngTTz0ueWozCyrt3/63PJqhzw4jnP676233sLHH3+M5cuX1+2KssjMzMTzzz+P+Ph4eHp6IiIiArfddhs+/fRTlJeXi8u1bNlSHKOPjw+6d++OH3/80e46pX9JSUn18ljq0tmzZzFq1CiEhobC398f/fr1w/bt22XLpKWlYcSIEfD29kZ4eDheeeUVGI3GGt2f20mINm3aYO7cudi9ezd69OgBHx95+vy5556r0UAIIcQtbnxQog9VVtSihRBCCCGENBbs86iKWrS4zcdXqOBRVloJk6VFi6OgDKvgYTbzMBhMYlUOnU45tOHv742s7CIUF5eLPzYpVfsghDgXGipvtxLooIKHWq3CazPuQ3FxBVq0CK2PoRFCCCHEHS4C6SrL52qT3lQfoyHXied5mA1mcCrO5XNbK8zC/fE8Dw6u7y8jI0M8vXr1asyePRspKSniZb6+vvD1VQ4O17aLFy/itttuQ2BgIObPn4/ExER4eHjg+PHjWLZsGWJiYnDvvfeKy8+dOxeTJ09GcXEx3n//fTz00EOIiYnB/v37YTIJr489e/Zg7NixSElJgb+/8HnZy8urXh5PXbrnnnvQpk0b/PHHH/Dy8sJHH32Ee+65BxcuXEBkZCRMJhNGjBiByMhI7NmzBxkZGZgwYQK0Wi3mz5/v9v25XcHjyy+/RGBgIA4ePIhly5bhww8/FP9Jq28QQkhtkwYSzC5atMgKeFCOwUoa8GjAYRBCCCGEECIeDUcVPNxmbdGiFyt4OG7RohVPl5dbl1eq4AEAOg/hcoPBZK3goXH75yNCbnpRUYGy1jwtY8McLnvvyF54bNwd9TEsQgghhLiJU6uczDFYv8twKvpu06SoOKg0qjr/526IJDIyUvwXEBAAjuNkl/n6+tq1aOnfvz+mTZuG6dOnIygoCBEREfj8889RVlaGSZMmwc/PD/Hx8fjtt99k93XixAkMGzYMvr6+iIiIwPjx45Gbmyte/8wzz0Cj0eDAgQN48MEH0b59e8TFxWHUqFHYuHEjRo4cKbs9Pz8/REZGom3btli8eDG8vLywfv16hIWFieMPDg4GAISHh8sep7ucjX3ZsmWIjo6G2XIwBDNq1Cg8/vjj4vlffvkF3bt3h6enJ+Li4jBnzpwaVdTIzc3FuXPn8Nprr6Fz585o06YNFixYgPLycpw4cQIAkJycjFOnTmHlypXo2rUrhg0bhnnz5mHx4sWoqqpy+z7d/oZ+6dIlh/8uXrzo9gAIIaTa3Oi6QtUpXKN1RAghhBBCGhJV8Kg5Ly+hKkdFhV4Mv6tVyj/xaDRqsQJHSUmFeLlWpxzw8LBcrtcbxGof1AqXEPepVCq0aRMlnu/SpWXDDYYQQgghNcapAZXW9XSq2ksDlQdVviMN45tvvkFoaCj27duHadOmYcqUKXjggQfQt29fHDp0CEOGDMH48ePFtiqFhYUYMGAAunXrhgMHDmDz5s3IysrCgw8+CADIy8tDcnIypk6datfNg+GcfJfXaDTQarU1Ci+44mrsDzzwAPLy8mQtUvLz87F582aMGzcOALBz505MmDABzz//PE6dOoWlS5di+fLleOedd9weT0hICBISErBixQqUlZXBaDRi6dKlCA8PR48ePQAAe/fuRWJiIiIiIsS/Gzp0KIqLi3Hy5Em375MOwSCENEm8qwoe0mWpVoWI1gQhhBBCCGksqIJHzbHqGyaTGWYXFTwAwNNDqOJRUlopXqZxsLxOJyxbVWWE0cQCHvTzESE18chD/dAuIQbvLRjvsGoOIYQQQhoxy1cVxe8sHKQFPMBxnNMJb0LqUpcuXTBr1iy0adMGM2fOhKenJ0JDQzF58mS0adMGs2fPRl5eHo4dOwYAWLRoEbp164b58+ejXbt26NatG7766its374dZ8+exfnz58HzPBISEmT3ExoaKraJmTFjhuJYqqqq8O6776KoqAgDBgyo9cfqauxBQUEYNmwYVq1aJf7NmjVrEBoairvuugsAMGfOHLz22muYOHEi4uLiMHjwYMybNw9Lly51ezwcx+H333/H4cOH4efnB09PT3zwwQfYvHkzgoKCAACZmZmycAcA8XxmZqbb91mjbxZXr17Fr7/+irS0NLvkzQcffFCTmySEEJdkLVp4s5MlbdqyUKpBJF2HVMCDEEIIIYQ0JDOr4EEBD7exMIfRaBZbrqjUjtejp5cOJaWVKJMGPDTKRxeylhJVegOMlgoerAIIIcQ9AwYkYsCAxIYeBiGEEEJqihP/I7+YvsKQRqZz587iabVajZCQECQmWj+HsjBBdnY2AODo0aPYvn07fH197W7rwoULYisVW/v27YPZbMa4ceOg1+tl182YMQOzZs1CZWUlfH19sWDBAowYMeK6H5stV2Nv27Ytxo0bh8mTJ2PJkiXw8PDAt99+i4cffhgqS+XLo0ePYvfu3bKKHSaTCZWVlSgvL4e3t3e1x8PzPKZOnYrw8HDs3LkTXl5e+OKLLzBy5Ejs378fUVFRrm/ETW4HPLZt24Z7770XcXFxOHPmDDp16oTU1FTwPI/u3bvX+gAJIYSRZTZchBOkVTuoFYkV785KJIQQQgghpC6xCh7066jbWEUNo9EEk6WvsKMWLYC1gkdZuTXg4ShYwwIe+iqjpEULBTwIIYQQQsjNR+2hpoqDpEnQarWy8xzHyS5j37vNlu+PpaWlGDlyJBYuXGh3W1FRUaisrATHcUhJSZFdFxcXBwDw8vKy+7tXXnkFSUlJ8PX1RURERJ1913c1dgAYOXIkeJ7Hxo0b0atXL+zcuRMffvih7DbmzJmDMWPG2N2Gp6enW+P5448/sGHDBhQUFMDf3x8AsGTJEmzduhXffPMNXnvtNURGRmLfvn2yv8vKygIAREZGunV/QA0CHjNnzsTLL7+MOXPmwM/PD2vXrkV4eDjGjRuHu+++2+0BEEJITbjVooVyDIpotRBCCCGEkIbEgtjOgglEGavgYTJZK3g4bdHipQMAlJXpxWUd/dim87BU8JC0aNFSwIMQQgghhNyEVA5bFVLogzRt3bt3x9q1a9GyZUtoNPZxAR8fHwwePBiLFi3CtGnT4OPj4/I2Q0NDER8fXxfDlXE1dkAIaYwZMwbffvstzp8/j4SEBFmhiu7duyMlJaVWxlteXg4AYnUQRqVSiYGaPn364J133kF2djbCw8MBAFu3boW/vz86dOjg9n26/SvK6dOnMWHCBACARqNBRUUFfH19MXfuXMWkDCGE1BZ5ixbn8QRZKxKKMlhR2oUQQgghhDQS7KMpHRHnPlZRw2g0wWxmrW6cBDw8LRU8JAEPRzx0wrJVkgoeagp4EEIIIYQQQm4kZh5mo7nO/8GNg5Xr09SpU5Gfn49HHnkE+/fvx4ULF7BlyxZMmjQJJkvQf8mSJTAajejZsydWr16N06dPIyUlBStXrsSZM2egVjfM98TqjB0Axo0bh40bN+Krr77CuHHjZLcxe/ZsrFixAnPmzMHJkydx+vRpfP/995g1a5bb4+nTpw+CgoIwceJEHD16FGfPnsUrr7yCS5cuiS1qhgwZgg4dOmD8+PE4evQotmzZglmzZmHq1Knw8PBw+z7dDnj4+PigqqoKgFDm5MKFC+J1ubm5bg+AEEKqzb0eLdVe9GYiX4W0YgghhBBCSMNhH0dV1KLFbeyHNKPRDHN1Knh4sgoeQosWR+1ZAHkFD5PRUsFDSwEPQgghhBBCRPQVpsniOA4qrQq8mQdvNNf9PzMPldZxBcWGEh0djd27d8NkMmHIkCFITEzE9OnTERgYKB480Lp1axw+fBiDBg3CzJkz0aVLF/Ts2ROffPIJXn75ZcybN6/Rjh0ABgwYgODgYKSkpODRRx+V3cbQoUOxYcMGJCcno1evXujduzc+/PBDxMbGuj2e0NBQbN68GaWlpRgwYAB69uyJXbt24ZdffkGXLl0ACN/hN2zYALVajT59+uCxxx7DhAkTMHfu3Bqtg2q3aJk7dy5eeukl9O7dG7t27UL79u0xfPhwvPTSSzh+/Dh++ukn9O7du0aDIISQ6qhpBQ9KeCij1UIIIYQQQhoS+8xOFTzcp5G0aDFaAh4qteP16F4FD+GnIr3eAIMl4KFxWJqaEEIIIYSQmxVHQY8miFNz8Aj1rtcDYDmOA+fk+5ojSUlJSEpKsrt8+fLlsvM7duywWyY1NdXuMtvH3KZNG/z0009OxxAVFYVPPvkEn3zyidPllO5PSf/+/d1e9y1btqzR2FUqFa5du+bw+qFDh2Lo0KEOr3dnnD179sSWLVucLhMbG4tNmzZV+zadqXbAY86cOXj66afxwQcfoLS0VLystLQUq1evRps2bfDBBx/UyqAIIcQVCifUDAVfCCGEEEJIY0EVPGpObQlcCC1aLBU8nLRo8bKp4OEs4KHTWSt4GI3CbWsd9DUmhBBCCCGEkKaGU3PgKJ1DmrBqH4LBJgXj4uLQuXNnAEK7ls8++wzHjh3D2rVra1S2hBBCqkvWXsRF3zLKMSijdUEIIYQQQhoLquBRc9IKHiY3WrSUVivgIVT7qKoywmgQKnioqYIHIYQQQgghcvQ1hpBaMX/+fPj6+ir+GzZsWEMPr1GOz61DMBpbfyBCyM3FrRYtkjgID0o1MNJ1SGuFEEIIIYQ0JKrgUXNqjRoAYDSZYLaE31VOKniwFi3lrEWLk2VZBQ99lQFGS4sWrVZ9/YMmhBBCCCHkBsGpOKg0HIXVCakFTz/9NB588EHF67y8vOp5NPYa4/jcCni0bdvWZcgjPz//ugZECCHV4U7vK6paoaw+e8wRQgghhBBiiyp41JyGBTyM7lXwKGMBj2q2aDFYAh4aNQU8CCGEEEIIkVJ7aejAeEJqQXBwMIKDgxt6GA41xvG5FfCYM2cOAgIC6moshBDinLTtiosWLfJ+LhRkUEKrhRBCCCGENCT2edRZNQmiTK3YosXxj8usgkdZueuAhwer4KE3UgUPQgghhBBCHKBwByGkobgV8Hj44YcRHh5eV2MhhBCn3GrRIm1FQkEGEVXtIIQQQgghjQVV8Kg5jUYIaBiN1WvRwip+6PUGYVknAQ8fX08AwL5958TLWEsYQgghhBBCCCGENKxqHyZDSTRCSGPiTk6BQg1WPFU2IYQQQgghjQT7OKqi3xvcJrZoMZjE7zvOqnKw6wxVRpfL3tIr3u76AH/v6xovIYQQQgghhBBCake1Ax40QUoIaWjybILZ+bLSdi51M5wmj9YLIYQQQghpSFTBo+ZYAKPKYBQvc1bBw3Z5ZwEPT08d/rNwgng+IiIQERHUrpcQQgghhBBCCGkMqt2ixWx2PplKCCF1zZ22KzzFFxTJ1yGtI0IIIYQQ0nDYp1Gq4OE+25YrAKDWOAl4WEI0VayCh5MwCAAEh/iKpzt2aEZVXQkhhBBCCCGEkEai2hU8CCGkMeHNzsMJsgoeFGSwolVBCCGEEEIaCfYxnSp4uE+syFFlreChdrIexRYtBpPsvCOBAT7i6YiIwJoOkxBCCCGEEEIaHd7M1/u/2pSUlITRo0fX6m02ZqmpqeA4DkeOHKnX++U4Dj///HO93md1UcCDENJkSIMaZndCGxRqEEkrm1DuhRBCCCGENCT2IxdV8HCfRmMf8HDaosVS8UOs4OEi4BEQ4C2e9vX1rPE4CSGEEEIIIaQx4c08jOVGGEqq6u2fsdxY7ZAHx3FO/7311lv4+OOPsXz58rpdURaZmZl4/vnnER8fD09PT0REROC2227Dp59+ivLycnG5li1bimP08fFB9+7d8eOPP9pdp/QvKSmpXh5LXTp06BAGDx6MwMBAhISE4F//+hdKS0tly6SlpWHEiBHw9vZGeHg4XnnlFRiNRge36Fy1W7QQQkiDc6cqB7UicYnWCyGEEEIIaUjs8yhV8HCfRi0PbADOQxsqm3XsKuDh4aG1ntZpnSxJCCGEEEIIIU0LbzIDXP18F+XNvHB/1ZSRkSGeXr16NWbPno2UlBTxMl9fX/j6+ir9aa27ePEibrvtNgQGBmL+/PlITEyEh4cHjh8/jmXLliEmJgb33nuvuPzcuXMxefJkFBcX4/3338dDDz2EmJgY7N+/HyaTUE1yz549GDt2LFJSUuDv7w8A8PLyqpfHU1euXbuGQYMG4aGHHsKiRYtQXFyM6dOnIykpCWvWrAEAmEwmjBgxApGRkdizZw8yMjIwYcIEaLVazJ8/3+37pAoehJAmya0WLVTCQyTLdFDAgxBCCCGENCD2cVTtpPIEUabUosU2xKG0vLisuvo/ZCYmtnBzdIQQQgghhBDSuHEqrt7+uSMyMlL8FxAQAI7jZJf5+vratWjp378/pk2bhunTpyMoKAgRERH4/PPPUVZWhkmTJsHPzw/x8fH47bffZPd14sQJDBs2DL6+voiIiMD48eORm5srXv/MM89Ao9HgwIEDePDBB9G+fXvExcVh1KhR2LhxI0aOHCm7PT8/P0RGRqJt27ZYvHgxvLy8sH79eoSFhYnjDw4OBgCEh4fLHqe7nI192bJliI6OhtksD9aMGjUKjz/+uHj+l19+Qffu3eHp6Ym4uDjMmTOnRhU1NmzYAK1Wi8WLFyMhIQG9evXCZ599hrVr1+L8+fMAgOTkZJw6dQorV65E165dMWzYMMybNw+LFy9GVVWV2/dJv6IQQpoMaVDDnRYtlGOwoqodhBBCCCGksWAfTamCh/s0Ci1XOCetbmzbt7iq4AEAK1c8j4ULxiMxMfY6RkoIIYQQQgghpK598803CA0Nxb59+zBt2jRMmTIFDzzwAPr27YtDhw5hyJAhGD9+vNhWpbCwEAMGDEC3bt1w4MABbN68GVlZWXjwwQcBAHl5eUhOTsbUqVPh4+OjeJ/OvoNqNBpotdoahRdccTX2Bx54AHl5edi+fbv4N/n5+di8eTPGjRsHANi5cycmTJiA559/HqdOncLSpUuxfPlyvPPOO26PR6/XQ6fTyb53s6oku3btAgDs3bsXiYmJiIiIEJcZOnQoiouLcfLkSbfvkwIehJAmQ1aVw1WHFrix8E1EXtmEEEIIIYSQhsM+s6uc/ChElLGAhslS6tdZ9Q4A0KhtAx5ql/cRFxeB2/u1r+EICSGEEEIIIYTUly5dumDWrFlo06YNZs6cCU9PT4SGhmLy5Mlo06YNZs+ejby8PBw7dgwAsGjRInTr1g3z589Hu3bt0K1bN3z11VfYvn07zp49i/Pnz4PneSQkJMjuJzQ0VGwTM2PGDMWxVFVV4d1330VRUREGDBhQ64/V1diDgoIwbNgwrFq1SvybNWvWIDQ0FHfddRcAYM6cOXjttdcwceJExMXFYfDgwZg3bx6WLl3q9ngGDBiAzMxM/Oc//0FVVRUKCgrw2muvAbC23MnMzJSFOwCI5zMzM92+Twp4EEKaDGn1CVeVKNwJg9ysqJoHIYLU1GxMmboMBw6cb+ihEEIIITcVquBRcxqNexU5bK9X0zonhBBCCCGEkBtG586dxdNqtRohISFITEwUL2NhguzsbADA0aNHsX37djGs4evri3bt2gEALly44PB+9u3bhyNHjqBjx47Q6/Wy62bMmAFfX194e3tj4cKFWLBgAUaMGFFrj5GpztjHjRuHtWvXimP89ttv8fDDD4tVNo4ePYq5c+fKbmPy5MnIyMgQq5xUV8eOHfHNN9/g/fffh7e3NyIjI9GqVStERETYVdOsLZo6uVVCCKlj7oQT3GnncuOThmQacBiENCJvvLkKly5l47npX2HPrvkNPRxCCCHkpsE+01MFD/exFi2Mqx+NVHYVPOh4H0IIIYQQQgi5UWi1Wtl5juNkl7F2KmazUAWytLQUI0eOxMKFC+1uKyoqCpWVleA4DikpKbLr4uLiAFhbkEi98sorSEpKgq+vLyIiIpy2cLkersYOACNHjgTP89i4cSN69eqFnTt34sMPP5Tdxpw5czBmzBi72/D09HR7TI8++igeffRRZGVlwcfHBxzH4YMPPhDXV2RkJPbt2yf7m6ysLPE6d1HAgxDSdEircphd9WixXs/esAiFOghRkpdX0tBDIIQQQm5KVMGj5tytyGG3PAU8CCGEEEIIIeSm1b17d6xduxYtW7aERmMfF/Dx8cHgwYOxaNEiTJs2DT4+Pi5vMzQ0FPHx8XUxXBlXYweEkMaYMWPw7bff4vz580hISED37t1lt5GSklLr42WVUr766it4enpi8ODBAIA+ffrgnXfeQXZ2NsLDwwEAW7duhb+/Pzp06OD2/dA3ekJIkyGt2uGqKof0apORAh6KKO1BCADUWZKYEEIIIc6x0DZV8HCfbQUPrc758Tu2gY66KhNLCCGEEEIIIU0Bb+br7V9jNHXqVOTn5+ORRx7B/v37ceHCBWzZsgWTJk2CyWQCACxZsgRGoxE9e/bE6tWrcfr0aaSkpGDlypU4c+YM1Gq1i3tpuLEDQpuWjRs34quvvsK4ceNktzF79mysWLECc+bMwcmTJ3H69Gl8//33mDVrVo3GtGjRIhw6dAhnz57F4sWL8eyzz+Ldd99FYGAgAGDIkCHo0KEDxo8fj6NHj2LLli2YNWsWpk6dCg8PD7fvj77RE0KaJFfZBGkYxGSigAcjXS+N82MFIYQQQgi5WbDPoyqq4OE2rVb+Q5qXl87p8rYVPqiCByGEEEIIIeRmxalVAA/wJr7O/4G33F8jEx0djd27d8NkMmHIkCFITEzE9OnTERgYKB4Q0Lp1axw+fBiDBg3CzJkz0aVLF/Ts2ROffPIJXn75ZcybN6/Rjh0ABgwYgODgYKSkpODRRx+V3cbQoUOxYcMGJCcno1evXujduzc+/PBDxMbG1mhM+/btw+DBg5GYmIhly5Zh6dKleO6558Tr1Wo1NmzYALVajT59+uCxxx7DhAkTMHfu3BrdH7VoIYQ0GdJAAu9G2xVzI01INgRZwKOaFTyqqozQuTgikBBCCCGEEHexz6NUTcJ93t7yI3y8PF0EPGxbtGhonRNCCCGEEEJuPpyKg8a7/uc7atKaNCkpCUlJSXaXL1++XHZ+x44ddsukpqbaXWY7J9SmTRv89NNPTscQFRWFTz75BJ988onT5ZTuT0n//v2rPTfFtGzZskZjV6lUuHbtmsPrhw4diqFDhzq83p1xrlixwuUysbGx2LRpU7Vv0xn6Rk8IaTLcqT4hvd4oKclE3PPPvnPoP2A2Vn23s6GHQgghhBBCbjDs431Nfui62el0Gllow8vbVcBDbXOefg4ihBBCCCGE3Jw4FVfv/wipTfSNnhDSJLmsykEtWlyqTvjw7XfWAAAWLf6tjkdDCCGEEEJuNuzzqIqjH7vcxXGcrC2Lp4sKHrZtcNRUNYUQQgghhBBCSCMwf/58+Pr6Kv4bNmxYQw+vUY6Pau4TQpoMaSDBndJI1KLFqiYtWgi50dGcEiGEENIwrC1a6M24Jry8dCgtrRROu2rRYtOShSp4EEIIIYQQQghpDJ5++mk8+OCDitd5eXnV82jsNcbxUcCDENJ0uBFOkF5NFTysKNNBCCGEEEIaC7FFC6Uta8Tb20M87bpFCwU8CCGEEEIIIYQ0PsHBwQgODm7oYTjUGMdH3+gJIU2Sq6ocPLVoUeRu1Q6q8kFuDjSpRAghhDQEquBxfaQtWlxW8LBpyULrnBBCCCGEEHKzoHkO0hQ5224p4EEIaTKkuzJ33pCrG/DYuzcFqanZbo6q6arOOqQPPoQQQgghpK5QBY/r4y0NeHi5W8FDXSdjIoQQQgghhJDGgn3vqaqqauCREOK+8vJyAIBWq7W7jlq0EEKaDF7WosXFsnCvgseZM+l46ZVvAAB7ds2v2QCbGMpuEEIIIYTUr3fffRc//fQTzpw5Ay8vL/Tt2xcLFy5EQkKCuExlZSVeeuklfP/999Dr9Rg6dCiWLFmCiIiIBhx53aAKHtdH1qLFzYCHRkPH+xBCCCGEEEJubBqNBt7e3sjJyYFWq4VKRd+DSOPH8zzKy8uRnZ2NwMBAxQM0GjTgUVs/bqWlpWHKlCnYvn07fH19MXHiRLz77rvQaCi/QsiNRBpI4F22aLGerk7A4+y5azUdVpMiD8lQwoMQAKCDhgkhhNSXP//8E1OnTkWvXr1gNBrx+uuvY8iQITh16hR8fHwAAC+88AI2btyIH3/8EQEBAXj22WcxZswY7N69u4FHX/vYx1H6ka1mpKEOTxctWmzXsUZDFTwIIYQQQgghNzaO4xAVFYVLly7h8uXLDT0cQtwSGBiIyMhIxesaNAFRGz9umUwmjBgxApGRkdizZw8yMjIwYcIEaLVazJ9/cxyFT8jNiIerEh7uVfC4WcpCU6aDEEIIIaThbN68WXZ++fLlCA8Px8GDB3HHHXegqKgIX375JVatWoUBAwYAAL7++mu0b98ef//9N3r37t0Qw64zVMHj+gQE+oinQ0P9nC5LFTwIIYQQQgghNyOdToc2bdpQmxbSpGi1WqetVRs04FEbP24lJyfj1KlT+P333xEREYGuXbti3rx5mDFjBt566y3odM6PYiGENCGSdILZRQUPKbPZdcDjpkRhD0IIIYSQBlVUVAQACA4OBgAcPHgQBoMBgwYNEpdp164dWrRogb17996AAQ/h/zdL2Lq2xbWyVjZtGRvudFm1Wr6OqeIpIYQQQggh5GahUqng6enZ0MMgpNY0qm/0Nflxa+/evUhMTJS1bBk6dCimTJmCkydPolu3bnb3o9frodfrxfPFxcUAAIPBAIPBUCePjRAptp3R9uYesyTgYTQana4/g9EonjaZzC7XtUmy/I38vJhMJvG00WR0a1u8kdcLafwuXMzCrl2n8dCDfV2WILcl3c5TUq7hyNFLGD36FnjotA6XJaQu0Ps/IXJN4TVRl2Mzm82YPn06brvtNnTq1AkAkJmZCZ1Oh8DAQNmyERERyMzMVLydpvr91mAwSFoG8o16rI1VZESAeDo6OtDpOrQNvatUtM4bm6awTyQ3B9oWyc2AtnPSWNC2SOobbWuE3BgaTcCjpj9uZWZmysId7Hp2nZJ3330Xc+bMsbs8OTkZ3t7e1/tQCKm2rVu3NvQQmpTKykrxdEpKCjZtKnW47OW0IvG00WjCpk2bnN72sePZ4mlXyzZl589fEU+fOX0GW7cKEwCOtkXpZMGNvF5I47fwP/8AAE6cOIO7+rdwuizP89icfAlenhr0v9O67NatW/Htd6dw9WoJkrfuw9j7EgAAVXpreT7azkl9oPd/QuQa82uivLy8zm576tSpOHHiBHbt2nVdt9OUv9+yfMfVq1foPbgGTCYzYqJ9ERTkie3bf3e6bEWF/Idc4ftUkYOlSUNqzPtEcnOhbZHcDGg7J40FbYukvtTld1xCSP1pNAGP2vpxqzpmzpyJF198UTxfXFyM5s2bY8iQIfD396/z+yfEYDBg69atGDx4MLRa+yPIibKvvj6NkhJhIrZNm7YYPvxOh8seOnwJ368+A0D44XjYsGFOSz/zOITNWy4BAIYOvduuR/WN4mr679j79zUAQEK7dhg8+Fan2+KyL06gvFyobjJ8+PB6HSshUizgUanXudwWr1zJxXv/3QcAWPDuv2AymcTtnN3O+fOF4u18/sVJlJULkx60nZO6RO//hMg1hdcEq4ZR25599lls2LABf/31F5o1ayZeHhkZiaqqKhQWFsoOdMjKykJkZKTibTXV77cGgwG79ywHAMTGxtJ7cA2NHHlPtZYrKa3A/y06JJ7v3LkThg+/pa6GRWqgKewTyc2BtkVyM6DtnDQWtC2S+lZX33EJIfWrUQQ8rufHrcjISOzbt092e1lZWeJ1Sjw8PODh4WF3uVarpTdRUq9om3MPLznNcZzTdadWq2XnVSo1NBq1g6UBjWR5jlPdsM+LNLiiUlkfp6NtUdIV54ZdJ6SJ4V1vizxvDXNxnBparbDd2/6deJ5TuIyQOkTv/4TINebXRG2Pi+d5TJs2DevWrcOOHTvQqlUr2fU9evSAVqvFtm3bMHbsWABCpYW0tDT06dNH8Tab8vdb1qJFrVY3+rE2dZ4e8hYtnp4etM4bqabw2iU3B9oWyc2AtnPSWNC2SOoLbWeE3Bga9BB1nufx7LPPYt26dfjjjz+c/rjF2P641adPHxw/fhzZ2db2Clu3boW/vz86dOhQPw+EEFLvpMGD6ixgMpkdLGjP6MayTY10tbhch4Q0QuZqbLjSaj0Go8mt5QkhhJC6NHXqVKxcuRKrVq2Cn58fMjMzkZmZiYqKCgBAQEAAnnjiCbz44ovYvn07Dh48iEmTJqFPnz7o3bt3A4++9rG3dZWK3ovrmm2FQs0NWrGQEEIIIYQQQgi50TVoBY+pU6di1apV+OWXX8QftwDhRy0vLy/Zj1vBwcHw9/fHtGnTZD9uDRkyBB06dMD48ePx3nvvITMzE7NmzcLUqVMVj2IihDRhkold3s10glsBD4PrCeGmSr7eKOFBmh7eXJ2Ah/W00WCCTksTGIQQQhqHTz/9FADQv39/2eVff/01kpKSAAAffvghVCoVxo4dC71ej6FDh2LJkiX1PNL6wT6bUsCj7tkGPNROqhsSQgghhBBCCCGk8WrQgEdt/LilVquxYcMGTJkyBX369IGPjw8mTpyIuXPn1tfDIITUE1k0wUXAw/Zqs4tJYWlVAGM1jvgnhDSM6lTwkL7eDQYjAGvpQZWKc7k/IIQQQupKdULKnp6eWLx4MRYvXlwPI2pY1goeFMasa7YhGo2G1jkhhBBCCCGEENIUNWjAo7Z+3IqNjcWmTZtqc2iE3ND27T+H7Oxi3DOiR0MPpcZcTdDycK9FizTUcSMHPKhFC2nqqlPBQ/oaNthU5NFqNdDrDZbrjNBqG/SjECGEEHJTY78JULu0uqdSqWRBV/oMRAghhBBCCCGENE30jZ6Qm9D0F74GALRLiEZ8fFQDj6b6eDdatNhebTI5D20YjWbF0zeemre5IaQxqE4FD2mgyzbgodOqxYBHRYUBWq0GNKVECCGENAyjSXhf1+moXUh9kAZdNWqq4EEIIYQQQgghhDRF9I2ekJtYZmZhQw/BLfKAh3t/a3Jx1L/siH+j0b0bb0LkFTwo4EGanupV8JAEPGxez5ykPHllZZXlQop4EEIIIQ3BZHnPpmoS9cPDw7qeNRoK1RBCCCGEEEIIIU0RBTwIuclIJ/VdtS1pbKR5BJctWmzCCyYXVTmkE8Kulr25UAiENC7VqeAha7lkU8FDut+rYAEPQgghhDQIk9guhMIG9cHDQyue1mjo5yBCCCGEEEIIIaQpom/0hNxkpJOb0klQR/R6Az7+ZCMOHbpYl8Nym8vqE3YtWpyHNqQtXKqzXpoqqtpBmjqz2XUAyyh5PVfZBDykYa6Kcgp4EEIIIQ2JKnjUL1nAg9Y5IYQQQgghhBDSJFHAg5CbjDS8UJ0KHqt/2IPVq3fj2ee+qMthVZO0RYt7QQVXk8KyI/5v4Aoe7rZooTwIaWxst1uz2YwTJ9JQUWENa0hfw0aDvEWLqwoeFIIihBBC6o/JJLzv6qiCR72gCh6EEEIIIYQQQkjTR9/oCbnJVFVJAh4u2pwAQPq1vLocjltkLVpcTMLatWhxEWaRTggbjEYnSzZtvCwk04ADIaSGbNszbfrtMP719Gd47fWV4mXSwJbB6LhFS6UlFMJxytcTQgghpG6x912tjqpJ1AcPyXrWqClUQwghhBBCCCGENEUU8CDkJmOUhBeq04pEq2mkP/y516GlGgEP9yp4pF7OxoKF65CRUeBy2cbKYHCvFQ1VNiCNAW8T8Fi/YT8AYP/+8zh46AIAm4CHZDs3m82y7Vha9YOhgAchhBBSf1gFj0b7neMGQxU8CCGEEEIIIYSQpo++0RNyk5FOdur1BpfLaxrRj63SiVlXLVdsGd0KeLgOPrz08jf4df1+vPra/9waR4OTzI1X5/mXsq2cQEhDsK3eExLsJ56e9tyXAGxbtDgObym1aKHtnBBCCKk/VMGjfkkDHlotrXNCCCGEEEIIIaQpooAHITcZabuCykrXE/xaST9sd0MVtU06r+uqmoTt9a7GLp34NVWjgger3HHhQqbLZRsT6XpQql7gDFU2II2BbQWP4GBfu2VMkv1clcFatch2G7a2aOEcLkMIIYSQumNkFTwobFAvPDys61lNFTwIIYQQQgghhJAmib7RE3KTMVRZJzsrFY5etyWt4FFRjUBIXeF5HuXlesl5V38gP6sU2sjPL0FhYRkAwGiStHSQtLG50UhDPdV5/qVBGZr4Jg1Fth3aBDx0Oq3svNFoklXskVbwsN2GyxVCTg0dZCOEEEJuJuy9WadtPFUDb2TyFi20zgkhhBBCCCGEkKaIDpMh5CYjreDhbouO8rJK+Hh71PaQqqW0tFI2OeuqjYJtBQ9pgAMQHvs9974LANj559uyAIhtG4cbiTQkU50KLlIU8CANRfp6t31t2+7HcnKLZW2WpPs8uwoelpCT9DZdtXMihBBCSO0xiRU8KGxQH6SVUjRqOt6HEEIIIYQQQghpiugbPal1PM9j7rwf8d/3f2nooRAF0qPZqzPBb5AsX1paWSdjqo6i4nLZeVctWmxJHzcAZGUViae/XfUXyiuswQfp5LAjuibaJ1wa8KioRgUPKQp4kIYifU3ahrv0VfL9WHFxhTzgIXnt2wa9KioMdrdpqsbrnxBCCCG1w0QtWupVSUmFeNq7gYL7hBBCCCGEEEIIuT70KwqpdVlZRdi85TAA4InHByIoyLeBR0SkqgzW9iPVmeCXHh1fVqZ3smTdKi5yL+Bh28ahyibgUVpq/XHzs6XJ8mWrXLdo8fTUisvxPA+O41z+TWMgbUlRvRYt1tMmE018k4YhDRfZboe2FTxKistlVXgMkn2ebUipwhLskl5eXFKBsLCA6x80IYQQQlxi78HaJhqebmouXMwUT0vbtRBCCCGEEEIIIaTpoAoepNYVFpaJp1NTsxtwJESJtJJFeTUCG9Kwg7TKRX0rsgl4mF0EPKSVKgCgyuYo/0Kb25OqqHAdfJAeZVidQEhDMJnM+PufsygutoZZ3GnRwvO8bHnb0Awh9UUe2LANeMhff8Uljit42AU8KlkFD+vleXkl1z9gQgghhFSLyWip4KGhFi314dZb2gAA4ltHNvBICCGEEEIIIYQQUlMU8CAO5eQUYdWqnbLJYSUpKenYveeMeD4v3zo5dvESBTwaG3dbrugl4YXqtHSpK7YtWkpLnI+9vEx+fVWVfFK4SBJEslWdgIdUWVnDta5xZtu2Y3jxpeW4e/g8JG89in+/9T3OncsQr6908TgrKqpkE+JV+sYZZCE3PmnVDttAlV0Fj5JKWcBDer3JKA94JCcfsdy+NOBRet3jJYQQQkj1mMysggcFPOrDU/8aghdfGImPPnq8oYdCCCGEEEIIIYSQGqI6qMShl19dgXPnMnDxUhZmvXG/4jI8z+OJyUtgNvNY/MmT6NYtDvn51smxrKzCehotOXToIrQ6DRI7tXC6nLRVSWk1ggnSyhcNGfDIyioCAPj4eKCsTI+MjAKny5fZVPCQtmkAnFfwqE7rEukyZWV6BAf7ufyb+iYNXr01Z7Xd9RUKz2dObjEuX85Bzx6tZT26AdidJ6S+GKVBoyojjEYTNJYjfassAQ5vLx3KK6pQXFwuC2xIg2xGmwoeAHD23DVZaIQqeBBCCCH1x2QSKnjotPTTRH3w8/PC/WP7NPQwCCGEEEIIIYQQch2oggdxiB3p/8f249i3/xxen/UtCgrkRzanXcmF2dK24dcNBwBAFvCwbatB6kZOThGefe4LPPX0Z3YtCGwZJUGHsmpU8KiSVfBwr7JFbTp/Xtgeb+/XAQCQfi3f6fJlZbYtWmwCHk4qeJS7qGzB87ysykd1gjINoXnzUKfX622eT4PBiGnPfYHnnv8S+/afq1HA48CB81j2+VaX2yEh7rCtvCF9/bEWLaGh/gCE7VRawUMa8FDaLs+dy5BVNqKAx82nqsqI48cvy7YbQggh9YO1YdPqKOBBCCGEEEIIIYQQUh0U8CAuaTRqTH/ha+zYcRIffLhedt2pU1fF03/+eRLl5XpZ1Y4CJ5PopPacPHVFPF1c7DxUYzC6V8FD2t6gISt4sMDR7be3ByBM4joLHJSXOw94pKXlAAAmPznI7m8ryp0HPKqqjGKwCbAPk1wvo9GEFf/7Eylnr13X7di2rrBVXlEFnrc+jmWfb0VaWi4AYPoLX4unGVfbFgA8N/0rLP9mO37fdqwGIyZEmdEkn3iXBzyE7Tw0TAh4FBdXiJNFgHLAIyzMH3fcLoTFLlzIkt12dbZzcmN5/4Nf8dSUpVj57V8NPRRCbkgmvQkmPQWoiD2TyQz2UVSroRYthBBCCCGEEEIIIdVBAQ+iSFqpQa22biYnTqTJlrtyJVfyNwakpmbj0iXrZFlRkeuAh9FowpbkIzSpdh1SUqxBAGeVKQDIjlSvTjBBXsGj/gIeRqMJny1NxoGDF5CTU4S0K7ngOA7du8XB19cTAJCXLz/SPju7SAx22D426eMGrIGRzp1jMeXpobLrKiqcrxfbyjS1HfD4ad0/+GzpFkx6fNF13Y5tyIXx9NQCEH5UL5K87v7555xsua2/H5Wdd1XBQxooSU/Pc2ushDhjW3mjXPIaZdtdZEQgAKCgsFRewUMSZDNZLlerVQgO9gUAXLiYKbtt2+08I7MAa3/6m6o73MDWWyqQffX1H7V+2+XlemRkOm8pdjMyGk1IOXsNZjNVe7oZmA1mmA3y55rnefCSsCy5OUlbKOqoggchhBBCCCGEEEJItVDAgyi6eClbPC2dzNbbVEGwncS9cjUP585bJ8uKCuUT4adOXcELL36Nn3/ZJ162/JvtmDP3B7w+a1WtjP1mdFESqnEd8LA+h//P3l3HN3H+cQD/JKm7UFqsxd3dneI+hg93Z2wMtv2QbbDBkOHDB8Pd3d2LOy1FWmipW5Im9/sjzTVpU4G1Tdp+3q/XXmuvl8tzl+cuIc/nvo9CEa83KH/9xnOMGbca164nDvTHxepW8Mi6KVpOn3mADRvPYuy4NVjw10EAQJnSBeDoaAMnJ1sAQGioZl/VajUGDFyCTl3+QHPvGdi2/RKiY/SrkygUifsRGRmL9wGaAbcSxfOhd68G+HZCezRrVgEAEJskyBITI8eSpUfEgeDgJFM4xGTwFC3P/mPlDi3tVDOjR7VG7VolUaRwXvyzbgy2bp4Ie3trAMBffx0W1w9LONcrVPAEAJw7/0hvexFpBDx0A18KBQfDKeMkDVfoVvCITbgu5c/vDEAzTVhERGJfNVTBQzfgcePGC71tJw14TJiwDvPm78fqNSfFZXfuvNJ7juzijo8vNmw8xymUUiCVSjJ8m9Omb8PX3efh/v3XGb7t7GzJ0iMYMHAJ9uy9nvbKlK1pgxxCQphHUAuIj1ZCGaVEfEy8XiUxyn2006wBDHgQEREREREREaUXAx45yKNHb3Dp0pP/vJ2HD99g8JBlBv8WERGjNzD07l0IAMDGxhIAMGPmdr2qAWE6FTzUajV++t8WXLv+HHPm7sWRI7cBADt2XAYA3L79Kl3tO3LkNqbP2Jbm9BO5yWu/IPHntKbFSVptIlonnLBz5xXcuvUKEyauw+nT9wEAQcER4t+zsoKH7mDY2bMPAQANG5YDADHgoQ2zvHgZqDedyarVJxGdMKjr7KxZVzdw8OKlJqjh7u4EBwcbSKVSdO1aB00alQeQvILH0mVHsXnLBQwarDkvPiUJeESnUCnjS5mbJ5ao/i93N2vPRRtrC8yf1x//bhyHEiXyIW9eR3EQ+/SZB4iPV0MQBPF4dupYy+D20qrg4euXGAwL1Jmqiei/0p1yBUjs24IgiEGLwl55AWgCHgEBIeK6hgIeZmYyMeCRVGSUfmDLPyG4dPjIHQDArdsvMWrMagweuswk3ofu3vXDpcvpe+8fNXoVVvx9DDt3XcnkVmVPmRHwuHT5CVQqNX6fsyfDt21McrkyWf8/cfIuVq85ma5qN9sTPvstXnI4jTUp2xMAVYwS8k9xUEYroVaqoYqLh/xjDOIj5RBUDHjkZtpKgTKZFGacooWIiIiIiIiIKF0Y8MghBEHA4KHL8d3kDXj16kPaD0hBREQshgxbnuLf1WoBoaFR4u/v3msG0erULikuk0gk+HZiB3F72sG1J0/fIzAwTFxvzdpTmvV1BlSSTn1x/4E//P0TqwIIgoBfftuJ4yfu4mBCSfXUCIKAdetP48LFx2mum10pFPHi6wCkXcEjaThBWwUDAF6/TgyKzPlzL+LiFHrbk8uzroKHdgoVLRsbS7RuVRlAYmhD27aAgDC9dWNi5Hj46C0AwMXFHoB+5RLttkuWzKf3OCtrCwBAbIz+ft68qbnDX6GIR0yMHME6oRcg7eADAGzbfgnLlh9NV2BD9wvupOdESqJj5MnuytfuhzaAJZEYHrz89CkWMTFycVCuSeNy+GVGD7i5OaBx43Lo901jAJqBc12CIOjtj27/Sc8ULfHxKsxfsB+HE8JeRCkJTdL3tH07RqffexV2A6Dpp+/eJ06JERWVeH7qVvCoUN5Lb5sdO9QAoH8+6wYWw8OjoVKpcf265nrw9u0nLFt+9L/t2GdSq9W4dv25eB1/9vw9Ro9dje++32AwJHnr9kvxPVT3LvmTJ+9lTYOzAd1rmDSFa2RSUVFxBq/N0dFxGDFqJebN36/5Xaf/+PsHJ7tGP3jgjzHjVuPZc01AMT5ehb8WHcLMX3bofdZKic9dXwwZtlx8fFZRKOLRu89CDBy8VHzfuHHjBaZN34a1606LAdH0sEznHfthYdF6gVPKPtTxaigjlVBFxyPuYyxUchXUSjWEeAHxUUoIrCiUq8kTKuxZWpobuSVERERERERERNkHAx45hO6A1P0H/l+8navXnok/58/vgn17JuPbiR0w/8/+yJPHAUBiRQfdAY7hw1qiS+da+OqrOli2ZAi6dqmNvHkdAUAMnATqTIkhkUjwPiAUAwYu0Stz//xF4qD+s+fvMWLk3xg4eCnevtUMFusGGYKC9YMKcXEKnDp1T+9YXLj4GKtWn8TkHzbm2BLQL14E6A0aJR2ETyppwCMoSPN6qtVqfPgYLi6PiIjF9SRTF2RlBY9PIZp2NmtaAQP6N8H6daPh5qbpU0kreAQGavpWk8blUb68ZnoR7Z3FXp55AOgHPHzu+gIASpcqoPec1gkBj5gkFTkUOlMTDRy0VG+KIQD48CEcqbl+4zn+WnQI/246jytXnqW6btLnT8+A1oMH/ujYcTZ+mPKv3nLtNBbWCQEPXXXqlEp8jqAY8Vy2tDSHlZUFmjWriH17fsCsX3ujRHFNEMZfZwqWuDgF+vZbBO9Wv+DRozcAAF+dqZ18X31IM8xy4uQ97Nx1Fb/+tvM/VSqh7EkQBJy/8ChZYMoQ3Ws/kDhdkG6/zeehmaJFLlfqbTMyMk48h7Wl4M3MZChRIh86tK+BEiXy4fDBH9G7d8OE9RPfQ/x0qtIolSrc8fHVC1EmvUZmtvX/nMGEievw08+aKc3On38kXv8PHNIPPZ44eRdjxq7ByNErERen0HtveP4iQO+6lpvpvieqBSHZZ4VPnyJx89ZL8RoVF6fAgEFL0L3nvGSByqNH7+DuXT/s2n0Vq9ecFN+bAE24KGlw8bvJG3Dr1iv0H7AEwcEROHnqHrZtv4Sjx+5gwcKDydqqVMbrvW5Tf9yMhw/fYNToVV9+AL6A3+uPeB8QCl/fj/h20j8ICAzF/gM3xL/rThsHAAGBoZg8ZSMOH7mNgIBQbNh4VvybmXnad+wrFPEYOHgpevdZmO6QR2ysgn3cRKjlKghKFcxszaCKVUIeHIv4GM1ro4oXoIrhlG65mfY85fQsRERERERERETpx4BHDhGgUxnj1avAdD3m0aM3euEKILGyQbOmFbBz+yS4uTmia5faqF27JPLk0VRC0AYCtHfoOznZokABF0z6tiMmjm+PSpUKAwCKF/cAALx4qdmm9m7UAgVcUK+uZnBZd1oNAHj5MrHt+/ffgFotICZGjvET1iI0NApPn7wT//72bbDeY9f/cwY/T9uKQUOWiVVDdAfn0go+ZFcPHr7R+/21f1AKa2okHUzVDpYEB0dCoYiHTCZFtWpFASB5YCAu7QoeSmU8/Pw+/udAjXbgbPDg5hgyuAUKFnAV/+bspJlaQduntNOBeHg4oV3bauJ6EokEXl6au/p37rqK0NAoCIKAWzdfAgBq1iih95yuCdU+gj9Fiu1Xq9UI1hkA9H8TjOfPAyCTSdGqZRW950/JnTu+4s9Hj91Jc9/DIxLvDNeGm1Lz5/z9iIlV4NLlJ3pBCXGKFhuLZI/5aWpX8cv0kNDEsJY2PKPLMyEk4+8fLB6Xx4/f4tWrD4iJkWP/gZsQBAGPHr9NfO5YRbLKKkk9fZp4Pr/XqbiQkidP3mHqT5v0qvpQ9nXsuA9+mPIvRo5elWyaI7lciUuXniAi4VzQTgem5ev7Ee/fh4jvYQ4O1rCxsRT7KqDpt1ZW5hAEAYcO3UJwcAwCEgbc3d01YbEfJnfGP+vGwMnJFg721gA0QbZ1608DAF7phJYA4Nq1Z3rvW2/ffsrSaVo2b7kIALh77zX8/D7qXR9evNB/7z98WFMZJyQkCseO39WroKVQxKdrWrT4eBUCAtI+N7MTtVqNW7dfip8TnumELuLilLh9J/G4KJXxGDV6FcaOW4Pf/9BMsXLo8G28e6fpe2fOPtDb9vWbiYGftetOY9Ei/elHbt56Kf4cEhKlVwVk8NDlWPH3cfH3Cxcf6wUTBUHAqDGr4d1qJlb8fUxvWq3oaHmGTxWWGt1r8I2bL9D1q7k4pVO1Q7eaEwBs2XoRFy48xq+/7UTXbnP19jM8PMZgNZSIiFixOsiVK08RGBiGqKg4LFt+VO/zhVqtxu49V7Fy1QkxrHPq1D20bf8bOnSabTD0nJ4pZLIDhSIef688ji1bLxp9n5TKeGzecgFHj93RCx0LagHx0UoAEkjNpZBZmUEVp0LsmyiE3g5C3PtoKCKyru+S6dEGLy0tGfAgIiIiIiIiIkovBjxyCN2Bm/QMft658wqDhy7HmHGr9ZaHh2sGC4oXz5fsMYUKagbYnyUMbmnvqC5QwMXgcxQvlhDwSBh0Ck0YiHB2tsP0ad0xbmzbZI/RreChO6j0PiAUR47c0Su7r3uHqCAIOH7iLgDNgNvCRZo7X/38EgcZfH3TnromMjIWR47eQVw6ggyZSS5XYvSYVfhjzp5kX9o/fx6AHj3n46efN+PZ8/di9YSyZQoCAPxf67/+1288x08/b8a+/TcgCIIYVtAOhAYFaapPaCtmuLjYoXPHWgbbFReb9kDmwr8OoVefhTh3/mG69jU0NArbtl/SCxspFPGIjtZ84e9sIHDglhA2+vhRG07R/N/NzQEtvSuL6wmCIE5PAmgGR2NjFYhMGNgrWtRdb7vaQd/YWIXYnrDwGKhUakgkErRpXVVcd9zYtmjTOiHgEag/APrmTTB277mKOz6+UKvVeoPTt26/TLNahe5gV9JBW0N0+4j2mACJAQ9r6+QVPJyd7TB0SAsAQGiYTsDD0SbZugULukIikSAyMhYfE6q86A58nzx1D7Nm78aHD2GwtDQXz/3rN56L67z2D8KEiesw85cd8HuteewLnUCXj09iCEa7T8dP3MWNGy/EaTgGDl6Ks2cfYuFfye9sN4aAwFCxSooun7u+2LP3Gl7pVDF57R+E+w/80x18CgoKTzadQ0o+fYr8rMpNISGRWX5ne2BgGIaP+Buzf98tDlpv2aoJK7x9+wmr15zUW//naVvx3eQNaN32N/QfuAT792uq5ri4aMJdmzafR/ee88WQgqODpt+OGN5KnIqoT6+GsE8IbSxcdBjbtj8R3x8LFcyDpGxtrWBvZwUAWLX6JK7feC5W63Byskl43gsIDo6ARCKBhYUZVCo1du26iuPHffS2pVTG653nDx++wZ6919L9mhoSG6vQ62+3br3UC3j4+X3UC5voBs/Wrz+NK1ef6m3vzLnEcIIgCPj+h41o3fZXzJq9C6GhUYiNVWDo8BXo2m0ufv7flnQNIF+9+kwvxJCaiIhYbNt+CR/SCMjpSu/5IwgC/lp0CD16zce9e6/1/rZy1QmMGbsG3q1m4ocp/2LNmlN6f9+9+5r48/XrL8TKRQcP3UL3HvPE6VcAYMfOy3qv88eEak7a99cbCYEPbT+8pXNsdD/v5M3riI8fw/HxYzhkMs1Hc7lcicePE0NwDx++wYMH/lAo4rFh4zmsXXda7473fXv1K0sZEhenwJ/z9mH+gv3pOpaPHr1B9x7zsHXbRb3l/mkESW/ceKFX6cZQmKhy5cIoVswDarWALVsviMsFQcDvf+xBqza/oEOn2Vi3/rQ4pR8AHDvmg79XnhB/37zlIv6ctx/r/zmDPt/8hekztuHnaVsRF6dEREQs1q07rfe8Bw/eRNPm07Fp8/k099/UXLj4GEOHrxDfAzf+ew7/bDiLxUsO49Llp2k8+vOFhEbhbQrTrd2966f3vrN7zzUsWXoEM3/ZgT7f/IXr155DJY+HoBKgiFAg6kUYwu59gipaCZm5BNG+EVDHqRDrHwV5QPqmoqOciRU8iIiIiIiIiIg+HwMe2ZBarcaGjWdx8OBNcQBXd4A5aSl7Q06e0txp+fx5gF6YQVs5wNHBOtljKlcuAiCxGoH2Tsm8CdNmJFVMG/BIGMTVVltwdraFjY0lun9dD5v/HY8pP3TB5O87AwBe6gxmawMh2uDC02fvEBCQuG9v3nwSvxT89ClSL+Ry+PBtBAdH4OmzxMGRl6/SDnisXX8av/y6A99N3pDmup8rPDwGu3ZdSbPCBqAZyLl9xxf79t/ApO836A0g/b3qOPzfBOP0mQfoP2CJGGxpm1C5wu/1R/FOXr/XHzHpuw04feYB/pizB+06zBLDBjWqFwcAXLjwWHMncKjmeDs52aJx43KoV7e0+JyurppARXravmevZnDsr78OpbkuAMyavRt/LTqE/03fKi7T3pUsk0lhlzDgqiuvuxMA4GNCOEUbxnB0tIWlpTlq1tRU5ujRvb7edAsvXwaKd23LZFJYWenP921paS4OIGvPqU8JUwE5Odmgd68GqFDBE/2+aYyuXWrDI59zwrphegPmM2Zux5/z9mPU6FUYNvxvXLj4WGffYrBnT+IAoq637z4hMjIW/jp3P+/ddx0hoalXnwkJ0a0wkvhY7b5rKxMkVTAhtBUWJkdYQsDD0UCgxsrKAuXLFwIAXEzYF93AVEyMHIcO3wIAtGheES1bVgYAnD2XGPLZvv0yrl1/jqPH7qBX74WYNn0r7t71E/++O8kx2bzlIqbP2IZxE9aiW/c/ceRoYuWTq9eeiZUYjGXvvuvo+tVcfPf9P3rLAwJCMX7COsz9cx/6fPMXOnedg27d/0Sv3gsxbPgK7D+gP42GSqXGkaN3sGnzebHi0KbN59Gx8x8YM251moPqgiDg2+/+wbDhKzB0+Aq967kgCPh303msXHVCXH7z1kt07joHvXovEK/JWWHN2lO4d/81Dhy8ifYdZ6NTlz/0pqvQ7Qtv330S+5kgCHj27D1iYhUoUjgv+vZpJK6nUqnxb8IgrUPCe1ajhmWx6u/hWL50KNq1qy4OrANAVLQShxKqWmj7vi6ZTIpFiwaLf5s9ezfu3tO0q0/vRnrXosKF3VC7VkkAwJJlRzB95nY8e64JP0ZGxqJnrwUYMGgp1Go1rt94jiHDlmPun/vE8+RL+PsH6Q3KL1txTK9qjkqlxrbtlwFojptuSPLDx3CsTRjorlNb0+4DB27i/IVHADQVUi5efIzw8BgcPHQL/QYsQas2v+BJQtWsU6fv49y51EN7QUHh+G7yBowdt0bvfNWKjo7TqzLx8/+24K9FhzB67Op0BY7+nLcPXbrO0QsOpOTy5afYtv0S/P2DMefPveJyQRCwa/dV8ffzFx7hSUIloX7fNAYAnDn7ADcTghna11TrTZKKSn5+QeJ7MJBYEWvM6DbIk/C+WaGCJxb9NQgAcO36czHQou3/zZtVxB+/90Wpkvkhk0kxYlhLNGtWAQAwfOTf4vvbDZ3qIIDmnNI9btt2XEoztLF5ywXs3nMNO3ddTVd48H/TtuLN209YtPiwXvBQW6FjxPCWWL50KPInvBeWKJ4PZcsURExCOMjfPxixsQpx+i7t+ejqao/J33dGt6/qAAA2bDwnHvNbt16K072EhcVg1eqTePEyEBKJBN2710tY/6xYPeXKlcRgQ3h4jN7rAWjeL17ohGm2bNNUu1i67Ki4T/fvvxb7eno8fx6gVyEuI8XEyHH3rl+yoHFISCSm/rgJDx74Y/uOy3j77hOuXk2c8i091ftevgrEseM+BoOJSYWFReObfovwdfd52LtX//351asPGDl6FYYNX4FfZ+1EfLxK75x/6x+MI+uv4OHFV1DHqxH5KASKT3LIP8Qi9GYQIp+FAzpdNdY3GhYq/c9jlHsoEoKJlhbsA0RERERERERE6cWARzZ09dpzrPj7OGb9vhtf95iHjx/D9cINAQGhaQ4KymQS8ef79xPvwAsP03zZ7WDgLv4aNTSBgHv3XyM0NEochDc0pQOg+aIf0FT8CAmNEqdIcXa2E9cpXDgv2rerLk4J4uv3UWy7dvu1EwajLl16gmM6d0mrVGpxoEdbzcPTMw/KJARCtm2/rFfNxNc3+Zfx164/x+kz98VBkUOHNINvt269EgcYM0J8vAojR63EvAUHMHTYijQHVt/rDMxdv/5cHJSUy5W4fl0zCOLsnHjcLS3N0bxZRRQs6AqlUoVLCW0/cOCmeDxlMilCE0IcJUrkQ+9eDWFlZY6nz97j7j0/vddTKpVi7pxv4FlIcxfytxPbQyaTIiAgNNmUIbGxCpw99yBZefiPQfpTwRgSHh6DS5efiPupHcgKTdKWpPK6OWieI6GaRIQ2nJDQb3+a2hV/zu2H0aNa6VW0ePvuEyKjNM9hb28l3umvyyMhPLJo8WHEx6vEIFMeVwcUKeKOv5cPx7Ch3pBIJCiQ3wV5XO2hUMTj+nVNtYqIiFg8ThgoksmkePjojXhXfedONQEA8xYcwOAhy8S7+QVBwImTd9Gj53y0bP2LWGHEyckGYWHRWLRYv8y/LoUiHmFhiQNvN25o+odSGY+YhEEcB4fk5zOQWJUn5FOs2CcNVfAAgEYNywEAziQM8moHMgcOaIpmTSvAxcUOXTrXwrixbVG3jmYKprt3/cR9f6wzEA0AJ07e06tm8OTpO70gy549iYOwoaHRmDV7l97jt227lKyNu3ZdwfeTN4gDqJ8+ReLRozf/ebogQ5avOAYAuH3HVy+AdenyE71B16CgCLx7FyK2Iekg+bLlR/HLrzuwdNlR9OqzEKvXnMSq1ZpqFj4+fvDRCT4Amr4SFBSOuDgFVCo1Hj9+K1ZVevDAH7duJd4p/+TpOyxbfhTr/zmDAYOWYvOWC/jtt51QKlViVaS0CIKQZsAoPXSDRxERiZVgtGGsJ0/eiSEPbR+uUrkI5s3th8aNyqF/vyZYvWokKlTw0ttumE5lKK2yZQuJU4WNGtEKRQrnFf+mfW0MBTwAoFTJ/Fi3djTy5nXEh4/hYr+tX68MfpzSFWXKFIRnoTyYML49vFtU0nus9r10x87LeB8QiufPA7Bh4zls2ZJY/eC/vK/4JQyqu7raw8baQhykrVu3FL6d0B4AsOLvY1jx9zGEhERBoYiHVCrB0sWDxaoQJUrkw88/dRMDfr/+thNRUXF60yW5utojODgCSqXmvUMq1Vwn9+7XrxARGBimN3B+546veE4vX35Ub3qR8xceoV2H2WjXfhbOnXuIiIgYMbDw7l2IwQoP4eExYkhNpVJj955r+PAxHD/+vDnNY3X8hI/486tXH8TreGholFgdav68/hg21Bvt2lbDzBk9MGyoN5o0Lg9A89kASKygNHpUayxdPBiVKxdG1y61MW9uP7RupangpK1KFB+vEt9jy5QpiD27J2PblolYtHAQSpbIB/e8mjDsoCErEBEhx/Pnmm2XLJkfpUrmx9o1o3Dy+DT06tUALVtUFtu/dNkRAIlT2I0c0QqNG5cT/96zR31YWpojKCgCjZr8Ty+Iqa2EpA12njv/SPybNryUkoiIGL3PIrduJ1Yf0X628vJyQ6VKhbFzx3fYvGk8FiwYgD/n9kOZMgUREyPH2nWn8OJlIARBgKurPY4d+RlnT8/Ezu2T4OXphg7ta6BTR8374pJlR6FWq3EnoZpTs6YVMHZMG1SpXAQVK3jhp6ldMW5MW3TtUhtA4rmkbePSxYPxw+TOGDbUG2NGt8HGDWPF9o4euxpqtRoREbF6nwVPnrqHl68CMXzkSgwcvBTzFyRWZ0nJ23efMHjoMvTu+5cYSslIE79djxGjVmLun/v0ll+/8ULvPfPo0Tt4rxN6Tmk6t/DwGISGaqYDGjR4GWbM3I5mLabrvZ5aISGRYv/Zf+Cm+Ln96DGfJG15Lr6nHT58G/+btlW8FqxfNxqT2jfHNzVrwCZUgCIkDspQzbXKzF4zgC//qDmvbbzsYGZnDqgEFIh2z5T3ajJ9rOBBRERERERERPT5GPDIJl6+DBS/SNa96zIkJApz/tyrd6euSqVO9sVwUrpf2uvOmx6WMEWLk2Py0EbBAq4oVTI/VCo1zp17qDOwZjjg4eXlhjJlCkKhiMfRI3cQlDDg7+pql2zd/Pmc4exsC4UiXhwA1W6/aZMKKFI4L2JiFYiLU8LS0hwlSmjCI9t2aAZ5tUGPokXc0b5ddQCau+B1vwy/dPmJ3l3iZ889wISJ6/DTz1tw9OgdxMTI9e5qPHos9cFPP7+P6Nd/Mf5afCjZlBv37r3G5CkbcfDQrYQ7uF/AN+Fuz8jIWFy/kXoJ+/dJqrCsW39avJM9Pl4FJydb7N75PSZ92wEjR7TC8qVDYW9vjRbNKwLQDFoAEAeHZ0zvjvVrR2PwoGaoW7cUhg/1hoeHExo30gxm/TZrlzhgrztQunzZUCxdMgSNG5VH1SqaEM6ixYcQHa0JIAiCgB+m/IupP27GiBF/IyIiMWggCEKy0vhJJR2Q2LtPM4AYqg0DpRAecksYKAsJiYJcrkREkkoVefI4oG6dUpBKpShWLHEaloCAULFf2dkZrmrRMCHIcMfHF1u3XcKHhIFobRUTXRKJBA0blgWguYtfEATcvecHQRDg6ZkHo0a2EtcdN7YtJn3bUSzd/+jxW9y8pZmuZcrUTZg2fRvU6sTBjbJlCuKP2X0BAMeP+4iDfIDm2B44eBObNp/HuyTl0zdtvoBHj96IYRmJRAI7u+RTtACAp6cbbGwsoVCq4ePjByAxJJOUNuBx+/YrnDn7QNx+0SLu+GVmTxzcPxWTvu0IW1srFC6cF+55HaFQxGPf/huIj1eJlXy2b/sWX3WtjTx5HMTjqq32czghyBQSEokPH8MhkUjwz7ox4mA9oJnKAAC277iMCRPXiRVZXr4KxLwFB3Dx0hOMG78Wb999Qv+BSzB46HL8PmePwX1KKjw8Jl1TOalUarF6EgDx2qZpu6bvdulcCwcPTMXMGT3w/XedMGN6d83xu/NKbzqiC0kG/NeuO60XENG9Q1utVuP7yRvRsfMfaNp8Oho0+gk/TPlX7/G6FQfOnEmcguP16yAsWXpE7M8AcPlq2iX9t22/hHbtZ2Hjv+fSXDc12qkrOndKnP6perVi+HVmT/H3EaNWAoB4Z3zZsoVQp04pzPqtN4YOaQFrawuUKV0As37rJQYItdwTgllJ1alTCpv+HY+5f/TVW14ohYAHANjaWKJL59ri766u9ihUyBWNGpXDmlUjsXXLRFSvVgxNmpTHxIRgBQDcf+APuVyJ7Tsui8tWrjqBx08Sw003b73Um0blc2iPS4P6ZbB82TA0a1oBPbrXx2+/9EKXLrXRv18TAMDGf8/j/gPNtdfD3QlVqhTFjm2TsGH9GKxfOxpOTraY80df5HG1R1RUnCYklFBNolPHmti0cTx+/qkbGjQog2/6NsLUKV0BaIKP2mv0s+fv0bP3AnzTfzG+/2EjoqPj9MJIwZ8ixXW1x0EuV0IuV+J/07fi2+/0K98kPQ9e+wehy1dz0K7DLDx44K83TcTr10FiYCOpV68+JARP9KsZaKdt0wYd3PM6onatkuj3TWNMndIVzZtp3ju1QdbnCY/XhiqKF/dAlSpFsWzJUHw7sQPq1CmFAf2biu8Lv/++B8HBkRAEAWZmMjg52kAmk6JQoTywtDSHRCLB7Fl9kC+fMyIjY3Hu/BtxipaSJTV9WSKRwNJSMwBer15pMchw8tQ9yOVKcZ9KlsyHWb/2xpbNE/DH730xfJg3qiRUWIuPV2HzZs10J9ppaqbP2IYBg5bg9On7elVz5i84kGrY9MHDN3q/b9lyEUplPARBEKet0b6fAUBhr7xwcbaDk5MtxidMwXf12jM8Sej/2nPWwsJM3E8AGDqkBWxsLPHs2XucPfcQDx9p1q9SpQh6dK+PpUuGYMXyYWidMEWa9jV68TIQ8fEqcZq5QoXyoEP7Guj3TWP07FEfxYp6oHBhNwCaUNmmzRf0AkkAsPCvg1ix4rgYLNi955peYNqQAwduQqlUQRAEHDz05RV5DPn4MRz37mvO3WPHffTeC7TBt3wJ1VL+3XReDBQBiQEwXUuWHkHrtr+ibftZ+G7yBr3tnT79QG/dzVsuoGPnP9Cz1wKMHL1Sbzqhe/dfY9XqE2Jo606SKdXOnnsItVqAs7MtShTPhwY9NOEnWaQaYXc1fcXc2RLO1dwgtdD801NiLoVVflvYlnQEpIBCpgC+fAYrysbk8oSAhyUDHkRERERERERE6cWARzZw+cpT9BuwGL/N2gW5XIk3CV+sFymSFzKZFJcvPxXLrNvYaAZyDxy8KVZG0FKp1GIQQTdAsP/ADXEASjtAn9Igb9OmmrLhp8880KuyYIhEIkGzhPV97vqKAwKFCuVJtq5UKhUH/rZsvYi4OE2YAwDc3R2xdMkQDBncHH16N8Ta1SMxZlRrAJq52B8+fCN+IV+ggCs6dqiBgQOaittu3646ZDIpPn2KxIhRK3H9xnMoFPFYt/6MuM6s33dj566reoGQ02ceYMPGswb3DQD27b+B5y8CsG3bJdzU+SJcpVJj2oxtuHDhMWbN3oWGjX/G/v039B7rk+TL8aS0AZxBA5vB2toCgYFhOHvuIZ4m3KlftmxBWFqao0vn2ujTuyFKly4AAOIg1dVrmmoY2koGnp5uKFbMAwMHNMOfc/qhTkKFhYEDmsLOzgrv3oWIZet1QxXOznbiwFG/bxpDKpXg4qUn4oD58xcB4l3YL14GYu48/WDRgYP601Ek30/9IMuKv49BoYhHYEK787obnv7H2clWnErlzh1fscy6oX77Vdc6GD1S019UKrV4p7ihqV8AoEf3eqhUUVMlYNv2S+LgVNGi7gbXHzK4BSwszODvH4wXLwJx+45m+1WrFEWP7vWxZvVInD45Hd2/rgeJRIIfp34lPnb//hu4deuVeP7mzeuIPK72KF/eE99N6ojy5T1RPCH8sGnzBTF8cOy4D2b/vhtLlx3FyNGrAGgGfbSVcJYtPyqey/b2VgaroACaCiNly2oq3ly9prljPaXzuUABF3TprDlHf/9jD4ISggKGqv1IJBL0SZhKY+myI3j85B3i41UwM5Mhfz5nTJzQAbt3fofvJ3XEzOndxTL927ZfglqtFgdXCxV0RYkS+bBsyRAMH+aNBg3KYN6f/cRpm65df44/E/qc7jnm/yYYX3efJw4CHzhwM83phQRBwMRJ69Hnm0XYu+96sjuJdX/39w/Su1boTtugWwnHxdkOzZtVRKeONdG8WUUUK+YBhSIeh49oBgXVarV47Vq5Yjhq1SyB0qULoFzZQmiTMJh5+UridfzRo7fJruvBnyLh6GgjXj8vX34qtlV7p/qggc3Qtk01mJvLUK5cIXw7sQOkUglu307seynZsFET7Fi+4pjeVAgp8Xv9EUeP3RGDN4DmvAtOeC3692uM2b/1hneLSpj1W2+D56E2JJMnj+FQVeNG5bF82VCxsgSgeZ9ITYUKnnq/uyVUAUpJg/qJU1Q1aljWYLUfiUSCr7rWwYL5AwBopnk4e+6hXoAHSJxCysrKHHFxSqz/50yybem6fuM5Bg5aih9/2ozg4MTwkHZaDC8vN5QokQ+/zOyJsWPaiAGCoUNawMPDCYIgYMeOKwCAYsU11w8PDycUL55P3A9LS3OUTzgmd+/5ie8tJUvmh4ODNVq3qoI/ZvfF8GEt0aB+GXh4OAFIDBsePnxbDKpcvPgYI0evEgMd2uvn8hXHEB4eg7g4hRhO8fTMA6VShYcJ4QHt9WbP3msYOHip+Flk/T9nEBurgFKpwuKlh3Hzpn4ocsy41XoVugDNdfGb/oswaMhSMVA56dsOkEgkOHXqPl68CBBDhQVSCPhoQwgP7r/Ghw9h4rldrKhHsnULFnTFqr9HwMLCDPfuvxZDoQULuhi85pYuXQAzp/cAADx6/EkMm5QskT/ZuhKJBBPGt0OePA6IjVVg3/4b4mco7fpenm5oUL8MzM3NMGZ0a5QsqVl++sx9yOVKXLz0RHxfj4qKw0//2wIA4tQxADBqzCq9im+fPkVi0eLDWLP2lPjerq088vDRG8ybfwDv34ciNlYBc3MZChYwfBzLlCkIa2sLRETEilMDJT0HtZycbNEjYeqVf/45i4cPNZVwypUzvL72PdHX9yN87vpBrRZgYWFmMIS5euVIDBncHICmP+7YqQlf1a9XGvXrlYZKpda7pqrVAiZ8u04v7Pv+fQgW/nUQv87aiW3bL+HCxcRr5sVLT5JN42NIdHRcuiohXU7alonrEBoaBUEQxIDH9991gpOTTbJpjR4/fos9e6+J1/+bt15i85YL4t8fPPDXW1/7OQvQVGJbtfqk+L7m4+OXbEqgdevP4M/5+6FSqcWw9Kq/R6BIkcQKSRXKe0EikcDF0wnWBTXntvxDwvXPwwZScymcq7nBtog9XGpqwjcWTpawq+CEd7YfIZElv85SzscKHkREREREREREn48Bj2ygWtWicMvjgA8fw7Hi7+PiXZ+DBjbTK9MNQLxLHEi8Gx4AQkKj0KHTbIybsBYKRTzev9cECLR3MW/ecgHx8SpxICqlgEeDBmUAaO7m0961ntKAMABUTrjz/uKlJ4iKioNEIklxQKBLl9owN5dpKhskDOZYWJjBxsYSTk62GNC/KUaOaIUiRdxRvXpxcd/PX3gktsXNzQESiQSDBzXH3DnfYNK3HfDtxA4YPsxbfJ4FCw9i564reP48ABYWZihRPB9UKjVW/K2ZckE7jQYArPj7eLI7PrV0q4GcOn0fL18FQq1Ww+eurxisADRf0msHUbVl8Q8fuYOr1xIHBUJDozB/4QF8P3kDDh66hYCE4EORwnnFMvBLlh4RB/iKFDYcNihSxB3FinkgPl6FEyd8xIFSjxTubi9Y0BW9ejYAAJ0KK8kHSQCgatWiWLhgIABNZYB370JwIslc96dO3df7/eixO3oVCJLS9kPdgdq7d/3E6Ru0A0tJSSQSNGygqZyxc/cVsZqCoalILC3N0atXA7G6ycZ/zwMA7FOo4GFhYYbFiwbD0dEGnz5FYl9CcKBUqeSDcIDmXNFOM/Hrbztx5IjmvKtSRROMKVO6IKysLMT1K5T3xD/rxgAAzpx9gF9+2wlAc+f83t2TsX/fFKxcMRylShWARCLBsqVD4eWlGQjRVmY5fjzxuGvDLcWLe+CnqV9BIpHg9h1fcYoBxxSmZ9EqX65Qsv1Jyfhx7eDu7oTIyFgxhJTS9jt3qonSpQpAqVRh5arjADTnp3bg08xMhk6daqFKlaJo3aoKbG0t8elTJE7p3GVePGFwWiKR4Ju+jfHH7L4oVtQDA3QCXMdP3MUdH18cT+iL3/RtZLA9y5cfS7X8+7PnAXj8+C0EQcCcuXvFQXi1Wo1hI1agUZP/oWfvBRg2YgV69/1L77G6gTmxslGS66JEIkHXhIDM7j3XoFarERwcifh4FWQyKUqXLoAF8wdg7epRWLVyBMaOaQOZTAo/vyAcOqwJhGgH4atXK4ZBA5uhRIl8GDmiFbZv/RZ9+zSClZU5Hj56gysJ55zfa80gd5XKRfDj1K44c2oGVv09Al271EaXhOoA8xIG7LSePHmHEaNW4pdfd+DR47di/wKQZhjkwQN/9P1mEWb+sgPfTd4gBgpDQqOgUqkhk0nh4mKPRo3KYfq07mK4QzsAC2jCENrrljbEZYiNjSVKlyog/p43r1OqbbO2toCTkyYAmdLUT7qKFHHH+HHt4O1dGd/0bZzquuXLFYJUKkFAQChmzNwOQPP+rA0uAZpr2eiEYOI/G86Krymg6WN7917DvPn78erVB0yfsR1Pnr7DmbMP0KHT72KoUzv1U7EUwmaAZooZIPEOe+1guCHav61dd1qcYkobEtBlb2+NLZsmiNOArFl7Shxs7tqlNmysLcRzVirVVKooUTwf4uKU+G3WTjx+8k68u3/Z0qFo3746qlcrhgH9m2Dt6lFiNZ8nT95h/oID8PX9oPfecv++P+bN10ydob0++fkFYeTolWJlj6tXn2HGzO1QqwWxqoGFhRk6dqiJ+glhHU11iDepHpfSpQugeDEPxMQq8OusnRAEQRPWSqEveng4oWZCRYmVq04AACpWKJziMS9XrhAGD0q8ftWrWzrFz1BSqVR8/1/410Gx3YbWL1LEHWtXj4S7uxOio+VY+NdBMWDZulUVMaADAAMGNMWPU7tCIpHAzy9IvHYCwLQZ27B120WsWXtKnAarf/+m+GWGJphy4OBNrPtHE9goVtQDZmYyg203M5OhSRNNhTDtNaSyTiWmpLp9VRfW1hZ4/iIA0dFyWFqap9jP8+VzRokS+RAfr8LYcWsAaK5xhkJYNjaW+KZvYzG4o52ipmLFwpg6pSuKFMkLOzsrlCqZX/yc+Pp1EJq1mI5Ll5/A7/VHDBqyDNt3XMbhw7fx16JD8PPTfA5zc3NATIwcAwYuxdp1p1Lct1evPqBb9z/Rrv0s1K0/FYcO39ILZ9y79xrz5u/H4iWHsTXhmJcuVQAWFma44+OL/gOX4Natlwj+FAkLCzNUrlQYTZtUEB/fvl11cTq9uX/uw/Ydl6FSqfHLrzsAAG3bVNML12ivQ1euPBXDyWfOPoBcroR7Xke0aVNVXDd/PmcxqA1owpINGv2EiIhYWFtboFSp/OjQvob49x496ok/O1XMAyS8JFILKazzWSNeroLEXArbYg6QmCV8FrAxg7mT4SpjlDsoFJqwoG5lHyIiIiIiIiIiSh0DHtmApaU5vp3YAYDmDvdnCYN8lSoWRrWEaTMAoHBhN9StUwp/rxgOQHP3nlIZj4DAUBw8eAuhodG4desVtm67BIUiHjKZFNMTAiFnzz7EjRsvoFYLsLa2SHGQ38vTDS4udlAo4pPdgWtIqVIF9Ern58/vnOIXeC7OdqhWtRgAiIM5xYp5GPzSHgCaNNYMHly8+BjBnzThBN07vuvVLY0unWvDwsIM3b+uJw7wa6cqAIDBg5pjwIAmetutU7uU3sDcN/0XJ3tulUqNl68SS8AfOHATfb9ZhE2bL+hNi6BLKpVg/Li2qF5Ns4/nzr/B3bt+iI1VYPyEddi58wouXnqCWbN34f59zZ2W+fI7Y+SIVrCxtkBAQKh4N652wN8QbRWPxQn7aG1tAQcHw2EGAOjYoQZsrDUBBEtLc/E4GVK9WjHUrlUSarWAJUsPi3dsz/6tt96UB92/rocmjctDpVLj52lb9AIvQcERuHr1GfxefxQrUgwe1Bzt2lYDAMz5c694R2xK0y4AQLev6kAqleDyZU1VAc1UJIarcmjWrwsA4t3KtilMWwJoBqd0+wAAVKzgleL6o0a2grOzLZ6/CEBERCxsbS1Rv16ZFNcvUSKfWHUlODgCdnZW6NG9vsF17eysxAHmdevPYPTY1bh6TTOAr3sndpHC7nB3d0K9eprBzEWLDwMwHHrRVb68/l3S2sFWQ8zMZGjYQH+/UupbUqlUHCi6dUtT1SRvCoEdc3MzcZDor0WH4HNXMzhdwsCd7QBQq2YJdOyQOKg0avQqhIfHII+rPQYPao5aCYEbAGKA6fyFR5gxc7sYZhAEASdP3cO48Wvx6287sXvPVb3n0FYSev8+FPfv+yM+XoXXr4PEc1PX73/sEUvXp1bZyNu7MmxtLfH27Sdcv/FCrGDjntcx2UCpg4MN+iZUQdmw4SwEQRAH0cuWLYRBA5vhn3Vj0Kd3Q9jbW8PDwwkdO2rCaUeOaqoraKfu0l4vdEMNo0a0gr29NYKCIrBho2b7QcER+H7yBty964cjR+9g8JBleqGYfftv4O+Vxw28Ihpnzz0Uj+/du374Ycq/iI9XidOz5HG1h0yW/GPHgP5NxQHKfzacEe90Ty3gAQATxreHubkMEolEbyqmlDRqWAg1qhfD4kWD0lwXAL7uVhfT//d1iv1Wy9bWCl93SxzYLFkyP3r1bIAB/ZuiWDEPeHg4YfL3ndGlc210SniN/lp0SLwzf8HCg5jz5z7s2n0Vo8euEkNCWt17zsemzefx4UMYZDJpipUNAIjTWGjVrlUy5XVbVRUDIYCmz6YUfLC0NBeviWvXnYav30eYm8swZHBz/LN+LLp2qQ03NweMH9cOTk62mPRtB1hYmOHipScYlVBlqGqVonBxtsOUyV2w6K9BGDJYU3Fk/brR+PmnbgCAhw/foHffv6BWC6hTpxTmz+svtkEqleDv5cPRp3dDAJpKL1OmbsLuPVcxcdL6ZG2uVrUoZDIp6tUtLbZ7955rAKA37ZMumUyKQYM0gSPtdats2YIpfg4BgH7fNNG787xmzeIprgsAffs0QtcuJdH967qYOLF9quv27FEf5XRCeG0T3icNkUqlYkhh3/4buHjxsaaaUu+G+P67TrCwMEPtWiXRtk01tG1TDf37NQYA/DlvH969C8Hp0/fFCldaMpkUdWqXRLOESkTa6i2A4TCQrgnj2onTqZQv74mKFQunuK6jo404xRCgmYYlpfCIRCLB5O87i58PLC3NMXBgsxS3LZNJ8dfCgWI4yM7OCu3bVYeTky02bRyP40f/h3VrR6NP74Z6Ya7fZu3CylUnEB4eAwsLM73w4zd9G2HF8mFo1LAsBEHA6jWn8Ohx4lRMr/2DMOn7f3Dh4mMsWXoEYWExetvdtl0T5Fi95iSGj/wbu3ZfxZatF+H/JhgymRTTpn2NFcuGwcnJBkFBERg7fi0AoHLlIrC0NMeoka3Ro3t9fNO3McaPa4fJkzuLr8fyFcewZ+81BAVpPluMH98OE8e3R82aJTDlhy7o2qU2ihTWVN348cdNkMuV2JNwXnTuXBsjR7RC8WIecHa2xW+/9sKkbztiyODmaNmyst5x7dC+BszMZOjSuRaGDmmBuXO+QeVKRcS/W+a1hksdd1i4WMKxkitU8QIEuQqCWkB8TDzUSgEyazOY21vA3IEBj9xMrq3gYc4KHkRERERERERE6cVvUrKJ+vXLoHOnmtizVzOgXryYB1xd7dGqVRUEfgjDh4/h6NK5NiQSCcqULoA8rvYI/hSJzVsuJhuQ27lLU7rdPa8jypQuiJo1S+D69ef45TfN3X5enm4pDmZIJBJ4t6iMrdsuAtDcIWuovLiWTCZFt651sGSZJmzg3aJSqvvZsUMNXL32DB8SKjiUS5g+wpDatUpCJpOKpdgBwM3N8ECcmZkMM6b3QN26pcU7rLXt0b173crKHFWrFkWNGsWxY+cVcfmTJ+8w+/fdCI+IwZQfusDL0w1KpQpJLV9xTByUHDWyFZYuOyr+rUf3+ihSxB0DBzYV75qc8ctOVCjviecvAuDsbAsbG0uxbDsAFMjvAhsbS7RvX0McEABSD3h4t6iEdetPi3eIehbKk+rglLOzHdavH4N7916jWFH3VEMVgOYOzavXnol3wpYpUxANGpSBjY0lps3YCoU8Hs2aVkDJkvnx8WM4Hj56g9//2IP58/pDoYjHkKHLxQodWqVLF0CHDjVw+/YrvHsXIh6DlCqPAJo7locN9cbyFZrKK5UqeRkcPNYqX94TpUrmF6sgpFTBQ6t3r4Y4fPg23geEon79MqkeFy9PNyz+azD6fKOp7FC/fhlYW1ukuD4A9OvbGFN+3AQAGDakBTw9k09dpNXSuxL+3XQOvr4fxQG44sU8MG3a15g06R+EhEahbsK0Oz9O6YqevRfoTRWSmsqVvODsbIXQ0Dg4OdnqhSMMKVw4r97vqVX86NSxJv5eeRzR0ZoKK3lTmRZjxPCWOHf+Ed6/DxFDOyVK5DO4rpmZDJO/74whg5ujXYfZ4vI+fRrBzEyGHyZ3xoKFB+Hu7oiRI1rC1dUei5ccxvETd1Gxohe6dK6N3buvYt6CA8m2Pfu33vhj7l6EhUXD1++jXjjp55+6wcbGUpz+5uPHcKxZq7lze/uOy+jdq2HicXdOftxtbCzRtk01bN9xGbt3XxWnSkrpfO7TuyE2/nsOb95+wocP4fB/o7lzvGiRvAbXr1WzBLZtu4RXLz/g7dtPUKsF2NtZGQxKWFqao1/fxliy7AhWrT4JSwtzXL76VJxKRVf/fk3Eiib/bDiLXj0bwN7eGi9fBeLhwzdwcrLF27ef8OJloN7jLl56gpm/7ED9+ppQkFsqQYkxo9vgu8kbsHXbJTFU4upiOGioVa5cIezZ9T1Cw6JTrAylq3QpV0yc0Abm5hl/l/CY0a3h3aISFIp4lC1bEGZmMlhbW2DjP2P11pv0bQf43PWFn18Q5s3fD1dXezG4B0AcCG7QoAwuXHgsLte+l5QuVSDVa0vDBmWxb+8PmPjteuTL55wswKUrXz5nrF0zCtu2X8LFS08woH+TVEvkjxzRClFRcWKwr2nTCnBwsIGDgw2+ndhBDKICQIUKXvhlZk9Mmfov1GrN69lJpzqWLhdnO7RuVQV5XO0x9adNiI6Ww9xchqFDWqBUyfyY+kMXrPvnDFq3qgJPzzwYOaIVvu5WF/0GLMbLl4H4c54mEFq7VklMmdIF8+btR3h4NCaM14QnvFtUwuHDt3Hv/msAmgF+bZjU8DEsg25f1RE/A9Sskfo1sVy5Qvj+u074Y84elCyRH40alkt1fQAoXswZbdq0TLMvOjnZ4u/lw3D+wiPExSnR0rtyquu39K6M69ef48hRzXQx7dpWQ5Ei7ihSxB2nT07XC3n179cEd3x84ePjhzHjVovTRbVrWw0uLnY4dvwuvp/UUQw4TRjfDm/eBovBl6QD/knZ2lphwbz+ePDgDUqWzJfq+zOgCb7ky+eMu3f99KbZM6RsmYLYvnUinj59jwIFXODsnHoYzMnJFov/GoQdu66gY/saBt+3tAGZvn0aov/AJXj3LgRnzz4EACxaOAgVK3ohPDwGISGRKFJEEyibPasPZvyyHceO+WDjxrOYPasPIiJi0K//YigU8Xj8+K1YGa9jhxpiRbCrV58lfFbTXFcrVSqM2FgF3rwJxrT/fQ0vT817wuK/BmPMuNXidaFxQ03lMmtrC4wd00Zse5XKRbBuzShM+n4Drlx5ivkJ722NG5WDrY0lSpUqgIUJU0kBwOpVI9Grz0J8+BCG3XuuiZ+LWjSvCBdnO/yzfgzi41UwTxhwH9Bf83p07VwbC/46iAL5XTBsaAsAmoCmbjhHSyKRwK6IAyRSKdTxKghKARbOlpCaSREbFAcIKsisLSGzMoOFLOXqWpTzaf+9YmnJryWIiIiIiIiIiNKL36RkI717NcSx43chkQDjxrUFAFhZWWD4sJZ665mZydCtW10sX3HM4N3WwcGaahdFE+7UHdi/Ka5ffy5+gexVOOXwAAAMHtQMPnd98eTJO3ToUCPV6hAA0K1bHQR/ioRcrkTPHg1SXbdRo3Jo1bIKjh67A6lUEyZJib29NbxbVBIHMoDUB5ABzUDPzl1X8PDhG/Tq2QB58zpCEARUrOAFv9cf8dPUr2Bjo7mTcOWK4Rg6fAUAYODgpeI2JkxcJ1ZzcHd30hsABjR3FdvbWeHrbnXR/et6eP8+FC9fBYpTilSuVASb/h2LIUOX4dOnSJw9pxlA+GVGT/j7B2HOn/sAaAah7O01x7Znj/p6AY8SxVMuu58vnzPm/NEXU3/cjNhYBQYPap7iuloFC7ima4AU0Ewz41koD/wTpg3o/nU9SKVS1KhRHAf3T4VaLYh33v74Y1f0H7AE164/x6FDt6AWhGThDqlUgjKlC8LR0QZTp3TF6LGrxb9Vr57yIBygGQB3drLF4ydv05xGAdAMSGkHMoqmMs0BoBkAX7Z0KB4/eZdmO7Tb+/67Tjh48CaGDm6R5vqNGpXD77P7QFALaJgwaJMSqVSKRg3LwddXE2Zq2qQ8Jn3bEU5OttixfRJUKrVYGcfR0QaDBjYTq+CkNsALaAZnvupaCvHxzqhXt0yaJbJ1+4mNtYXe9DNJmZnJULVqUXGg2tMz5WuLmZkMkyZ20LsTP7V+DgAuOgEACwszdE2YdsTd3Qm/z+4j/q1nj/qIiorFuvVncPbsQ03AY+81g9usmjAlVlhYNMLDY8Rj3qZNVXG6BC3dc/LJ03dQqdTi9cAtj+EwQ+fOtbB9x2VcufpMHDwrlkLVBBsbSxQq5Ao/vyD4vf6It281waeChQyHgbR3Zfu/CRbDFl6F86YY8OrZsz5i4xRYs/aUGMKzsjLH+rVjcPHiYyxZdgS2tpbo0b0+8ud3wazZuwAAFy4+RpvWVfG//23VC9hp/fTjV9i1+yoeP36Lk6fuiVMLpTTlEgDUq1ca7dpWw8FDmqlLZDIp3NK4ngOaPuCSRhAkK0gkErEqT2qkUimm/NAVw4avwOmEak8SiQRdOtfSC3p0aF8D3bvVgwABGzaeE6dEqVy5iMHt6nLL45AsWJJau3t0r59iBaGkxo1tixcvA+Hr+wED+qU+CN+gfhn8vXw4fp+zBzWqF081VAFoqjZsWD8Wp8/cR/VqxcTqIu3aVUe7dtX11s2TxwHz/+yPwUOXQ6VSw8HBGrN+6wUrKwu9cx/QfE5atnQI7t71w74DN9GmdZVUP7dIJBJMGN8eJUrkx/Xrz9EmSVUUQ9q0rgrvFpUgk0lTDVR+CalUisaNyqd7/eHDvPHq1Qc4OtnqTU+XdFoic3MzTJ3SFX2/WSSGO7p9VQdjx7SFTCZN9tnS3NwMv8/uix07LsPJyRZV0tEXpVIpKlZMufpVUs2bVRSrkKXF3Nwszfc3XcWL58OUyV3SXM/W1gpjx7TF5B82AtCEZLVTnDg62iQLh/TsUR/Hjvng2vXniI9XYcfOK+KAtXa6IJlMiknfdkTPHg3Qo9d8PHjojydP30MQBBQu7IblS4cC0Ax064asihXzwOqVIzH3z30wM5OlWsFFIpHg5x+/Qv+BS/DxYzjMzWXo1cvwZ25rawv07FEfC/86iMVLNNW+nJxsxKl8JBKJ+P6kq3x5T6xZNTLNY6glNZfB0sUSygglBJUKZnYWkFrKIA1XACoJZJYsJEmJ54n2319ERERERERERJQ2Bjyykfz5XbB/7w8QANim8SVY/XqlxcoGWuvXjcaYMasRGRUHAKiVUDq7YkUvtGxZGceO+QBI+25VGxtLrFg2DCEhUXB3T710PaD5El73TsO0TJ3SBdWrF0OePPZpfnk/amQrXLz4GJFRcahTu2Sa1SckEgkWLhiIoKBw8Q5JiUSCFcuHJVu3fHlPFCmc1+AApvZO4KJF3TF8mDceP36Le/de48nTdwCABg3Kil+Oe3rmSVadoWABVzRt4oWDhzSVPEqXLoCqVYtCd1yobp1S4kCRm5sDpFIJ1GoBHh5OqQ6qA5rXcN+eyYiJVcAtlSk3voREIkGzZhXEO091ww9SqRS6Y0iFvfJiyODmWLrsKGb9vlsMD4wc0QrHj/vgxctA9O7VUBwwqVq1KOb83heLlxxGrVol0hy4lUgkBgf/UtK8WUVx6pL0hDby5nVMc3oGXZ061hSnYEgPbegnPfr0boiQkChYWZlj7Jg24mCdmZksWSn7jh1qYM/ea3j9OijZlCqGuDhboU2bJumqbFBIJ1xQuUraA3yeOuvrTjVgiLacv1Zq08VojR3TBrt2X8WsX3uneoe4t3dlrFt/Bj53/fDw4Rv4+n6EVCrBTz9+hZm/aKoXFS7sBnt7azg4agZ/w8NjxIHPAvldkm2zgs716ebNlzh16h7i4pSwtrZAwYLJ1wc01V60lWTOnNUM8JdKZaqDwl554ecXhN17ronhvJTCWHnzOsLezgqRUXFipaLCqVT7kUgk6NunETZtPo+4OCUAYOL49vD0zINevRqgcpUicHSwgYODNdq1rYbAwFCsXXcaf/11EHZ2Vgavjba2lmjUsCzatK6KuvWn6v0tpQpLWuPGtsUdH1+8exeC3r0awNY25SmXsrMK5T1Rong+PH+hmXKnRfOKGDmiFfbsvQa1WoBMJkXFCl5iwM/T0w2Dh2gCgY3SCINlNktLcyxbMgRKpSrNKkWA5pxPb9gE0AQUe/dqmK51S5UqgGVLhmDjv+fQt0+jVN8XpVIpqlQpiio609qlpV3bauLUYemR0pQiWc3NzRHr1o5O17oFC7hiyuTO2PDvOfTp3RCtWlZJdX1bG0uD1Rpymgb1y+DrbnVx89ZLjBjWMtXQTvFiHuJ198WLQJw6fS/ZOtrpqQoVckWePA4IDo7AqYTgW36d9xZDFXTy53fBAp3qG6lxcrLFimXDsP/ADdStUwqFvQxXewKAr7rWxuUrT3H9+nPNPjcom+HhJIlEApmlGQRbQGpuAUglkJpLYWYrA+IBmVXGV1Oi7OfJE82/nVKq2kZERERERERERMkx4JHNpPfupsKF86Ju3VK4fPkppFIJFi8ajJIl8qNly8rYuesqChV0RQud6hg/TumK9+9D8Ck4Ml0DwhYWZuKdfhnNzEyWrjtmAc3d26tWjoSv7wfUq1c6XY+xtbGEbSpfeuvy8nITBzFr1SyBgQOa4ugxH+zZew021hbo3bMBqlYtipbelfH+fQh+m7ULcXIlevZM+27oMqVd8ehxFHx9P6JD+xoANHeY2lhbABKJ3p2XEolmIPrw4dvo2SN9d1rb2lpl2gDpN30bw8nJFmXLFIJLGqXRO3eqhVWrT0KhiIdcroSLix06d6qJHt3rISQkKtld+vXrlxGndMhoefI4YOaMHoiIiEGxoqlXhzA1NjaW+GFy53Sta2Ymw7IlQxEaFiUGmTKKh4cTOrSvgQMHb6J927SDNS29K2PX7quQyaQoXy71wJZMJkWnjjWxd9911KtbOl2DTemtPuBZKA9KlsyPZ8/eY8iw5QA0QajmzSri4MGbuHvvNQYOaAYAcHTQBI7Cw2MQFKQJVRgKSpUtWwhz//gG3/+wEeHhMZieEKooXtwj2d3yusaOaYMpP25CREQsGjQog0aNUp7SoWJFL5w99xAXL2qqoOTL55xi9QGJRIKhQ73F6i1A2tMoWFiYYeyYtpg3fz9aelfWu0O8bBn9KbL6fdMYV68+w6PHb/HDlH8BaEIlA/o3xcuXAbh+4wVGj2wtXneKFnXHq1cfxMcXyO+caltsba2wYf1YhIZGIV++1NfN7n79pSdWrj6BUiULoNtXdWBpaY5J33bE4SO30b1bXTHcAWj63tbNExEVFZtmSCYrGAqVGUuFCl6Y88c3xm5GtubtXRneaUz9khuNH9cuXetJpVKULlMQN268wJMnb8VKS/XrlxGv23kSPudIJBJUrVoUx4/7iJWNUpuK7kt4eDhh6JC0q4hJpVL8/ONXmPnrDrjlccDYMW0ztB0iGSA1l2gqd5jLIJFIYOFgBbVchQzOk1A2JAiCWFmvTJm0q2AREREREREREZEGAx45lEQiwS8zeuLy5ScoVtxDvItvwvj26NKlNjzc9atAmJnJsHzpUEgkkgy/gy+zGaqQkVFGjWyN4sU94OXphiZNykMqlaJ8eU/07FkfDvY2egOt+fO7YOmSIenetlQqwaq/h0GpFMTt2NtbY9vWb2FhYaY3wAcArVpWSfPu2qxiaWmObl/VTde6NjaWGDq4Bfbuv47ChfPimz6NxAHgz6mOkVHSW/49u3NwsE5z+qQv9cPkzhg3tm267uAvXjwf9uyaDKUyHnZ2aQeOJk5oj8qVi6DSZ5T1Tw+JRILatUriWcJAAgAMGNAUZmYyLPprEMLDY+CcEFZydLQFAERExCAooWpGnhSmC6lXrzR27fgOE75dh9evgwAAJUukXJEDAKpUKYotmybg5ctAVK1aNNUwyNfd6sLFxR4b/z2H2Bg5fpzaNdVtd+1SG2XLFsTx43dRuHDeNKfFADSVZ1q1rAxLS/NUr//m5maYPq07vu4xD4DmGrZm1Ui4uhqutPP7rD7iugBSDbJoWVtbwNracPWTnKRQoTz4ZUZPvWWpVQDSHJe0zzciynpFCufFjRsvcPrMA8THq2BmJkPzphXEgIdukLVCuUI4ftxH/D2tynOZydXVHn8tGJipzyGVSSGYCZBZyiBJqLIltZBBECD+TrlXeHiMOKVRPo+cHewkIiIiIiIiIspIDHjkYNbWFmiWZDBbIpGkWLI5tUHG3KpAARfxrn4tiUSS4hQJn8vMTAZra/0S1SkNlmZnvXo1SHEueMqePmewWTsFT3qYmcng3aLSlzQpTbpVh6ytLVA+YcoYqVQqhjuAxPaGh8fg48dwAEDeVConeHg4oVPHmvhr0SEAQMlUplzRcna2Q/XqxdNcTyqVwrtFpc86JmVKF0SZ0gXTXlFHWtM+aRUs6ApLS3PI5Up0/7peqterggVd8fOPX2HeggMYMrh5uqbcISLKbrwSpsK6eUsz7Z6jow0aNy4Pj5XH8fFjODq0qyGuWzbJVGU10vE+kJ1JLWSQyCR6YQ6puRQSs+wXKKeMp516ztrazOAURUREREREREREZBi/SSEiolxBN+Dx14KBKQ4uOTlpKnjs2n1VXOaexpRUrVtVxdZtlxAcHIHKlQr/16aatKWLB+PCxcfo369Jmuu2bl0VLVtWZoCQiHKspFWb6tUtDQsLM6z6ewSio+V6VeZKFM8n/mxtbYHSpXP+tBSGKnUw3EEAEPwpEgBgZ2uexppERERERERERKQrx4y4LF26FIULF4aVlRVq1aqF69evG7tJRERkQvLoVJsoUtQ9xfWqVS2abJmtjWWq23ZwsMaG9WOwYf0YFCqUOVNGmYqyZQth2FBvWFqmb0CG4Q4iysnKli2IGjU0lTi6f10PP0zuDEBTkS3pFIJmZjI0bFAWADBwQNOsbSiRifmUEPCwteMUZEREREREREREnyNHVPDYtm0bJk6ciBUrVqBWrVpYuHAhWrZsiadPnyJvXsPTkRARUe5StKg7WrasDLc8DqkGNooV80DzZhVx8tQ9AECH9jVSXFeXvb017O2tM6StRESUPUgkEsz5vS+CgiPSNYXfTz9+hVu3XqJ+/TJZ0Doi0xUcnFDBw44VPIiIiIiIiIiIPkeOCHjMnz8fQ4YMwYABAwAAK1aswKFDh7B27Vr88MMPRm4dERGZAqlUimk/f52udWfO6IEpP3TBkaO30bhx+UxuGRERZWeWlubpCncAgJ2dFRo1KpfJLSIyfZUqeeGbvg0RERFg7KYQEREREREREWUr2T7goVAocOvWLUyZMkVcJpVK0bx5c1y5csXgY+RyOeRyufh7REQEAECpVEKpVGZug4kAsZ+xv5GxsS+mzMxMgvbtqgHg8cnu2M/JVLAvEunLDueEMdu2dOlSzJ07F4GBgahUqRIWL16MmjVrGq09GalypSIoV7YgDh8+bOymEBERERERERFlK9k+4BEcHAyVSgV3d3e95e7u7njy5InBx8yePRszZsxItvz48eOwsbHJlHYSGXLixAljN4EIAPsi5Q7s52Qq2BeJ9JnyORETE2OU5+U0pEREREREREREZEi2D3h8iSlTpmDixIni7xEREShUqBC8vb3h4OBgxJZRbqFUKnHixAm0aNEC5uacd5qMh32RcgP2czIV7ItE+rLDOaGt9pjVOA0pEREREREREREZku0DHnny5IFMJsOHDx/0ln/48AEeHh4GH2NpaQlLS8tky83NzU32i0XKmdjnyFSwL1JuwH5OpoJ9kUifKZ8TxmjX505Dml2nIM0OU/QQZSWeE2Qq2BcpN2A/J1PBvkhZjX2NKGfI9gEPCwsLVKtWDadOnUKnTp0AAGq1GqdOncLo0aON2zgiIiIiIiKiz/C505Bm9ylITXmKHiJj4DlBpoJ9kXID9nMyFeyLlFWMNQ0pEWWsbB/wAICJEyeiX79+qF69OmrWrImFCxciOjpaLGdLRERERERElBNl1ylIs8MUPURZiecEmQr2RcoN2M/JVLAvUlYz1jSkRJSxckTAo3v37ggKCsL//vc/BAYGonLlyjh69GiyO56IiIiIiIiITNnnTkOa3acgzS7tJMoqPCfIVLAvUm7Afk6mgn2Rsgr7GVHOIDV2AzLK6NGj8fr1a8jlcly7dg21atUydpOIiIiIiIiIPovuNKRa2mlI69SpY8SWERERERERERGRseWICh7/lSAIAFiaiLKOUqlETEwMIiIimJgko2JfpNyA/ZxMBfsikb7scE5o/42o/TdjVvkv05Bml3/fZofXnygr8ZwgU8G+SLkB+zmZCvZFymrG+jcuEWUsBjwAREZGAgAKFSpk5JYQERERERGRqYmMjISjo2OWPd9/mYaU/74lIiIiIiKi1GT1v3GJKGNJBMa0oFar8f79e9jb20MikRi7OZQLREREoFChQnjz5g0cHByM3RzKxdgXKTdgPydTwb5IpC87nBOCICAyMhL58+eHVJo9ZjjNLv++zQ6vP1FW4jlBpoJ9kXID9nMyFeyLlNWy479xiSg5VvAAIJVKUbBgQWM3g3IhBwcHfnAjk8C+SLkB+zmZCvZFIn2mfk5kt7uastu/b0399SfKajwnyFSwL1JuwH5OpoJ9kbJSdvs3LhElx3gWERERERERERERERERERERkYljwIOIiIiIiIiIiIiIiIiIiIjIxDHgQWQElpaWmDZtGiwtLY3dFMrl2BcpN2A/J1PBvkikj+dE7sbXn0gfzwkyFeyLlBuwn5OpYF8kIqIvIREEQTB2I4iIiIiIiIiIiIiIiIiIiIgoZazgQURERERERERERERERERERGTiGPAgIiIiIiIiIiIiIiIiIiIiMnEMeBARERERERERERERERERERGZOAY8iIiIiIiIiIiIiIiIiIiIiEwcAx6Uo82ePRs1atSAvb098ubNi06dOuHp06d668TFxWHUqFFwdXWFnZ0dunbtig8fPuitM3bsWFSrVg2WlpaoXLmywecSBAF//vknSpYsCUtLSxQoUAC//fZbqu17+PAhunbtisKFC0MikWDhwoXJ1jl//jzat2+P/PnzQyKRYO/evena94zaL8oYubkvrly5Eo0bN4aDgwMkEgnCwsKSraN9Xt3/fv/993Rtn0xHTujn6dkHQ0JCQtC7d284ODjAyckJgwYNQlRUlN5+9+/fHxUqVICZmRk6deqU5jbpy+Tmfvjbb7+hbt26sLGxgZOTk8F1kl5rJRIJtm7dmua2KXvLqvNi+vTpBvuYra1tmm1cunQpChcuDCsrK9SqVQvXr1/X+3t6Pk8Y4u/vj7Zt28LGxgZ58+bFd999h/j4ePHvAQEB6NWrF0qWLAmpVIrx48ena7vZRVZeE48dO4batWvD3t4ebm5u6Nq1K/z8/FJtX3quiUDa/cMQXhMpJTnhvOD3BDlDbu6L/J4g98gJ/ZzfE+QMubkv8nMxEVHOw4AH5Wjnzp3DqFGjcPXqVZw4cQJKpRLe3t6Ijo4W15kwYQIOHDiAHTt24Ny5c3j//j26dOmSbFsDBw5E9+7dU3yucePGYfXq1fjzzz/x5MkT7N+/HzVr1ky1fTExMShatCh+//13eHh4GFwnOjoalSpVwtKlS9O51xm7X5QxcnNfjImJQatWrTB16tRU15s5cyYCAgLE/8aMGfNZz0PGlxP6eXr2wZDevXvj4cOHOHHiBA4ePIjz589j6NCh4t9VKhWsra0xduxYNG/ePNVt0X+Tm/uhQqFAt27dMGLEiFTXW7dund71ll8k5nxZdV5MmjRJr28FBASgbNmy6NatW6rt27ZtGyZOnIhp06bh9u3bqFSpElq2bImPHz+K66T384QulUqFtm3bQqFQ4PLly/jnn3+wfv16/O9//xPXkcvlcHNzw08//YRKlSqle9vZRVa99r6+vujYsSOaNm0KHx8fHDt2DMHBwQa3oys918T09A9DeE2klOSE84LfE+QMubkv8nuC3CMn9HN+T5Az5Oa+yM/FREQ5kECUi3z8+FEAIJw7d04QBEEICwsTzM3NhR07dojrPH78WAAgXLlyJdnjp02bJlSqVCnZ8kePHglmZmbCkydPvrhtXl5ewoIFC1JdB4CwZ8+eNLeVUftFmSe39EVdZ86cEQAIoaGhX/SclP1k935uaB8MefTokQBAuHHjhrjsyJEjgkQiEd69e5ds/X79+gkdO3b8kmbTF8gt/VDXunXrBEdHR4N/+5LrN+U8mXVeJOXj4yMAEM6fP5/qejVr1hRGjRol/q5SqYT8+fMLs2fPTrZuap8nkjp8+LAglUqFwMBAcdny5csFBwcHQS6XJ1u/UaNGwrhx49LcbnaWWa/9jh07BDMzM0GlUonL9u/fL0gkEkGhUKSrbSldEz+nfxjCayKlJTueF7r4PUHOkVv6oi5+T5D7ZPd+bmgfDOH3BKYvt/RFXfxcTESUc7CCB+Uq4eHhAAAXFxcAwK1bt6BUKvVS0qVLl4anpyeuXLmS7u0eOHAARYsWxcGDB1GkSBEULlwYgwcPRkhISMbuQDpl1H5R5sktffFz/P7773B1dUWVKlUwd+5cvfLplD3lhH6edB8MuXLlCpycnFC9enVxWfPmzSGVSnHt2rUMbxN9ntzSDz/HqFGjkCdPHtSsWRNr166FIAgZsl3KPjLrvEhq9erVKFmyJBo0aJDiOgqFArdu3dJ7bqlUiubNm//nz61XrlxBhQoV4O7uLi5r2bIlIiIi8PDhw/+07ewqs177atWqQSqVYt26dVCpVAgPD8fGjRvRvHlzmJubf3F7M7N/aPGaSNntvPhS/J7A9OWWvvg5+D1BzpMT+jm/J8gZcktf/Bz8XExElH0w4EG5hlqtxvjx41GvXj2UL18eABAYGAgLC4tkc8+5u7sjMDAw3dt+9eoVXr9+jR07dmDDhg1Yv349bt26ha+++iojdyHdMmq/KHPkpr6YXmPHjsXWrVtx5swZDBs2DLNmzcL3339v7GbRf5AT+rmhfTAkMDAQefPm1VtmZmYGFxcXXnONLDf1w/SaOXMmtm/fjhMnTqBr164YOXIkFi9enAEtpewiM88LXXFxcdi0aRMGDRqU6nrBwcFQqVR6IYz/+txagYGBBrer/Vtuk5mvfZEiRXD8+HFMnToVlpaWcHJywtu3b7F9+/b/1ObM7B8Ar4mUPc+LL8XvCUxbbuqL6cXvCXKenNDP+T1BzpCb+mJ68XMxEVH2woAH5RqjRo3CgwcPsHXr1gzftlqthlwux4YNG9CgQQM0btwYa9aswZkzZ/D06VP4+/vDzs5O/G/WrFkZ9tyzZs3S27a/v3+GbZsyB/tichMnTkTjxo1RsWJFDB8+HPPmzcPixYshl8szrH2UtXJCPze0D8OHD9fbNpk29sPkfv75Z9SrVw9VqlTB5MmT8f3332Pu3Llf1DbKnjLzvNC1Z88eREZGol+/fuKyCxcu6PXdTZs2ZdjztW7dWtxuuXLlMmy7OUlmvvaBgYEYMmQI+vXrhxs3buDcuXOwsLDAV199BUEQMvUzKK+J9F/k1POC3xNkP+yLyfF7gpwnJ/Rzfk+QM7AvJsfPxURE2YuZsRtAlBVGjx6NgwcP4vz58yhYsKC43MPDAwqFAmFhYXrp3A8fPsDDwyPd28+XLx/MzMxQsmRJcVmZMmUAAP7+/mjSpAl8fHzEv2VU2TRA88Ht66+/Fn/Pnz9/hu0XZbzc1he/VK1atRAfHw8/Pz+UKlUqI5pHWSgn9POU9mHmzJmYNGmS3roeHh74+PGj3rL4+HiEhITwmmtEua0ffqlatWrhl19+gVwuh6WlZYZsk0xXZp8XulavXo127drpVV6oXr263nnh7u4OS0tLyGQyfPjwQe/xn/vcq1evRmxsLACIpY89PDxw/fr1ZNvV/i03yezXfunSpXB0dMScOXPEZf/++y8KFSqEa9euJXvt03tNzJMnT5r9g9dE+lLZ9bxID35PkL3ktr74pfg9QfaWE/o5vyfIGXJbX/xS/FxMRGTaGPCgHE0QBIwZMwZ79uzB2bNnUaRIEb2/V6tWDebm5jh16hS6du0KAOJdt3Xq1En389SrVw/x8fF4+fIlihUrBgB49uwZAMDLywtmZmYoXrx4Bu2VPhcXl2QfBDNqvyjj5Na++KV8fHwglUqTlbMk05YT+nla+5A3b95k/bJOnToICwvDrVu3UK1aNQDA6dOnoVarUatWrS9qB3253NoPv5SPjw+cnZ35hU0Ol1XnhZavry/OnDmD/fv36y23trY2eF5Uq1YNp06dQqdOnQBoKuScOnUKo0ePTvdzFihQINmyOnXq4LfffsPHjx/Fc+bEiRNwcHBA2bJlP2OPsq+seu1jYmIgleoXCJXJZAA0r+eXXhMtLCzS7B+8JtLnyu7nRXrwe4LsIbf2xS/F7wmyp5zQz/k9Qc6QW/vil+LnYiIi08aAB+Voo0aNwubNm7Fv3z7Y29uL8+U5OjrC2toajo6OGDRoECZOnAgXFxc4ODhgzJgxqFOnDmrXri1u58WLF4iKikJgYCBiY2PFlG3ZsmVhYWGB5s2bo2rVqhg4cCAWLlwItVqNUaNGoUWLFnp39ialUCjw6NEj8ed3797Bx8cHdnZ24ge9qKgovHjxQnyMr68vfHx84OLiAk9PT4Pbzaj9ooyTW/sioClNGBgYKD72/v37sLe3h6enJ1xcXHDlyhVcu3YNTZo0gb29Pa5cuYIJEyagT58+cHZ2/rIDTkaRE/p5WvtgSJkyZdCqVSsMGTIEK1asgFKpxOjRo9GjRw+9O9QePXoEhUKBkJAQREZGivtVuXLlLzreZFhu7YeApnJISEgI/P39oVKpxDYXL14cdnZ2OHDgAD58+IDatWvDysoKJ06cwKxZszLsDh8yXVl1XmitXbsW+fLlQ+vWrdPVvokTJ6Jfv36oXr06atasiYULFyI6OhoDBgwQ10nr84Qh3t7eKFu2LPr27Ys5c+YgMDAQP/30E0aNGqX3RaV2P6KiohAUFAQfHx9YWFjkiBBIVr32bdu2xYIFCzBz5kz07NkTkZGRmDp1Kry8vFClSpUU25eea2J6+ochvCZSSnLCecHvCXKG3NoXAX5PkJvkhH7O7wlyhtzaFwF+LiYiypEEohwMgMH/1q1bJ64TGxsrjBw5UnB2dhZsbGyEzp07CwEBAXrbadSokcHt+Pr6iuu8e/dO6NKli2BnZye4u7sL/fv3Fz59+pRq+3x9fQ1ut1GjRuI6Z86cMbhOv379Ut12Ru0XZYzc3BenTZuW6r7funVLqFWrluDo6ChYWVkJZcqUEWbNmiXExcWl59CSCckJ/Tw9+2DIp0+fhJ49ewp2dnaCg4ODMGDAACEyMlJvHS8vL4PbpoyVm/thv379DD7uzJkzgiAIwpEjR4TKlSsLdnZ2gq2trVCpUiVhxYoVgkqlSs+hpWwsK88LlUolFCxYUJg6depntXHx4sWCp6enYGFhIdSsWVO4evWq3t/T+jyREj8/P6F169aCtbW1kCdPHuHbb78VlEplmsfHy8vrs9pvqrLytd+yZYtQpUoVwdbWVnBzcxM6dOggPH78ONX2peeaKAhp9w9DeE2klOSE84LfE+QMubkv8nuC3CMn9PMv/fcZvycwLbm5L/JzMRFRziMRBEEAEREREREREREREREREREREZksadqrEBEREREREREREREREREREZExMeBBREREREREREREREREREREZOIY8CAiIiIiIiIiIiIiIiIiIiIycQx4EBEREREREREREREREREREZk4BjyIiIiIiIiIiIiIiIiIiIiITBwDHkREREREREREREREREREREQmjgEPIiIiIiIiIiIiIiIiIiIiIhPHgAcRERERERERERERERERERGRiWPAg4iIiIiIiIiIiIiIiIiIiMjEMeBBREREREREREREREREREREZOIY8CAiIiIiIiIiIiIiIiIiIiIycQx4EBEREREREREREREREREREZk4BjyIiIiIiIiIiIiIiIiIiIiITBwDHkREREREREREREREREREREQmjgEPIiKiLLZ+/XpIJBL4+fkZuynp4ufnB4lEgvXr16e5bv/+/VG4cOFMbxMREREREREREREREVFuw4AHERERmRxtqET7n0wmg6enJzp37gwfHx+9dSUSCUaPHm3wsb/++qvB7ffu3RsSiQR2dnaZuRtEREREREREREREREQZhgEPIiKiLNa3b1/ExsbCy8vL2E1JFy8vL8TGxqJv375Z/tw9e/bExo0bsXbtWvTq1QunT59G7dq1k4U8DLGyssKWLVuSLY+Ojsa+fftgZWWVCS0mIiIiIiIiIiIiIiLKHAx4EBERZTGZTAYrKytIJBJjNyVdJBIJrKysIJPJsvy5q1atij59+qBfv374/fff8e+//0Iul2P58uVpPrZNmzZ49OgR7t69q7d83759UCgUaNGiRWY1m4iIiIiIiIiIiIiIKMMx4EFERJSG/v37o3DhwsmWT58+XS+koZ0qZO/evShfvjwsLS1Rrlw5HD16VO9x69evh0QigZ+fn7hMEAT8+uuvKFiwIGxsbNCkSRM8fPgQhQsXRv/+/VN8ztS2CQBHjhxBgwYNYGtrC3t7e7Rt2xYPHz78rP3XTnmyfv16veXa/bSyskL58uWxZ8+ez9rul2jatCkAwNfXN81169SpgyJFimDz5s16yzdt2oRWrVrBxcUlU9pIRERERERERERERESUGRjwICIiykAXL17EyJEj0aNHD8yZMwdxcXHo2rUrPn36lOrj/ve//+Hnn39GpUqVMHfuXBQtWhTe3t6Ijo7+4rZs3LgRbdu2hZ2dHf744w/8/PPPePToEerXr58sCPK5jh8/jq5du0IikWD27Nno1KkTBgwYgJs3byZbNzQ0FMHBwWn+FxMTk+bzvnz5EgDg6uqarnb27NkTW7duhSAIAIDg4GAcP34cvXr1+oy9JSIiIiIiIiIiIiIiMj4zYzeAiIgoJ3n8+DEePXqEYsWKAQCaNGmCSpUqYcuWLRg9erTBxwQFBWHOnDlo27YtDhw4IFbo+PHHHzFr1qwvakdUVBTGjh2LwYMHY+XKleLyfv36oVSpUpg1a5be8s81efJkuLu74+LFi3B0dAQANGrUCN7e3vDy8tJbt0qVKnj9+nWa25w2bRqmT5+utywmJgbBwcFQqVR48uQJJkyYAADo1q1butrZq1cvzJo1C5cuXUL9+vWxfft2WFlZoUOHDskqqxAREREREREREREREZkyBjyIiIgyUPPmzcVwBwBUrFgRDg4OePXqVYqPOXnyJBQKBcaMGaM3/cr48eO/OOBx4sQJhIWFoWfPnggODhaXy2Qy1KpVC2fOnPmi7QJAQEAAfHx88MMPP4jhDgBo0aIFypYtm6zqyKZNmxAbG5vmdosWLZps2bRp0zBt2jTxdwcHB/zxxx/o0qVLutparlw5VKxYEVu2bEH9+vWxefNmdOzYETY2Nul6PBERERERERERERERkalgwIOIiCgDeXp6Jlvm7OyM0NDQFB+jrW5RokQJveVubm5wdnb+onY8f/4cANC0aVODf3dwcPii7QIptxcASpUqhdu3b+stq1ev3hc/19ChQ9GtWzdIpVI4OTmhXLlysLS0/Kxt9OrVC/PmzcOECRNw+fJlTJ069YvbQ0REREREREREREREZCwMeBAREaVBt6qGLpVKlWyZTCYzuK4gCFnaFrVaDQDYuHEjPDw8kq1vZpZ1HwGCgoIMHquk7OzsYGdnp7esRIkSaN68+X96/p49e2LKlCkYMmQIXF1d4e3t/Z+2R0REREREREREREREZAwMeBAREaXB2dkZYWFhyZZrK1n8V15eXgA0VTd0pykJCgpKVvlDW9EjLCwMTk5OKbZFO01M3rx5/3NAIrX2JvX06dNky2rUqJGuYzVt2jRMnz79P7cvKU9PT9SrVw9nz57FiBEjsjTcQkRERERERERERERElFE4wkFERJSGYsWKITw8HPfu3UPFihUBAAEBAdizZ0+GbL958+YwNzfH4sWL4e3tLVbpWLhwocG2AMD58+fRoUMHAEB0dDT++ecfvfVatmwJBwcHzJo1C02aNIG5ubne34OCguDm5vZF7c2XLx8qV66Mf/75Bz/88AMcHR0BACdOnMCjR4/EAIjWpk2bEBsbm+Z2dcMtGe3XX3/FmTNn0L1790x7DiIiIiIiIiIiIiIioszEgAcREVEaevTogcmTJ6Nz584YO3YsYmJisHz5cpQsWRK3b9/+z9t3c3PDpEmTMHv2bLRr1w5t2rTBnTt3cOTIEeTJk0dvXW9vb3h6emLQoEH47rvvIJPJsHbtWri5ucHf319cz8HBAcuXL0ffvn1RtWpV9OjRQ1zn0KFDqFevHpYsWfLFbZ49ezbatm2L+vXrY+DAgQgJCcHixYtRrlw5REVF6a1br169L36ejNKoUSM0atTI2M0gIiIiIiIiIiIiIiL6YlJjN4CIiMjUubq6Ys+ePbCxscH333+Pf/75B7Nnz0b79u0z7Dl+/fVXzJgxA3fu3MF3332Hly9f4vjx47C1tdVbz9zcHHv27EGxYsXw888/Y9GiRRg8eDBGjx6dbJu9evXCqVOnUKBAAcydOxfjxo3D1q1bUblyZQwYMOA/tbdVq1bYsWMHVCoVpkyZgt27d2PdunWoXr36f9ru5xIEAQAgk8my9HmJiIiIiIiIiIiIiIiymkTQjowQERGRySlcuDAaN26M9evXG7spJikiIgKOjo746aef8Msvvxi7OURERERERERERERERJmGFTyIiIgo27px4wYAoGzZskZuCRERERERERERERERUeYyM3YDiIiIyDgUCgVCQkJSXcfR0RHW1tZZ1KL0u3fvHk6ePIn58+fD1dUVbdu2NXaTiIiIiIiIiIiIiIiIMhUreBAREeVSly9fRr58+VL9b9u2bcZupkG7d+/G1KlTUbhwYRw5cgQODg7GbhIREREREREREREREVGmkgiCIBi7EURERJT1QkNDcevWrVTXKVeuHPLly5dFLSIiIiIiIiIiIiIiIqKUMOBBREREREREREREREREREREZOI4RQsRERERERERERERERERERGRiTMzdgNMgVqtxvv372Fvbw+JRGLs5hAREREREZEJEAQBkZGRyJ8/P6RS3h9BRERERERERETGxYAHgPfv36NQoULGbgYRERERERGZoDdv3qBgwYLGbgYREREREREREeVyDHgAsLe3B6D50s7BwcHIrTFMqVTi+PHj8Pb2hrm5ubGbQ2QSeF6QKWA/pNyA/ZxMBfsiZbWIiAgUKlRI/DcjERERERERERGRMTHgAYjTsjg4OJh0wMPGxgYODg78MpsoAc8LMgXsh5QbsJ+TqWBfJGPhVJ5ERERERERERGQKOIkwERERERERERERERERERERkYljwIOIiIiIiIiIiIiIiIiIiIjIxDHgQURERERERERERERERERERGTiGPAgIiIiIiIiIiIiIiIiIiIiMnEMeBARERERERERERERERERERGZOAY8iIiIiIiIiIiIiIiIiIiIiEwcAx5EREREJi46Ro7vJ2/AseM+xm4KEREREREREREREREZCQMeRERERCZu06bzuHjpCWbM3G7sphARERERERERERERkZEw4EFERERk4sLCoo3dBCIiIiIiIiIiIiIiMjKTD3gULlwYEokk2X+jRo0CAMTFxWHUqFFwdXWFnZ0dunbtig8fPhi51UREREREREREREREREREREQZx+QDHjdu3EBAQID434kTJwAA3bp1AwBMmDABBw4cwI4dO3Du3Dm8f/8eXbp0MWaTiYiIiIiIiIiIiIiIiIiIiDKUmbEbkBY3Nze933///XcUK1YMjRo1Qnh4ONasWYPNmzejadOmAIB169ahTJkyuHr1KmrXrm2MJhMRERERERERERERERERERFlKJMPeOhSKBT4999/MXHiREgkEty6dQtKpRLNmzcX1yldujQ8PT1x5cqVFAMecrkccrlc/D0iIgIAoFQqoVQqM3cnvpC2XabaPiJj4HlBpoD9kLKCSqUSfzZGX2M/J1PBvkhZjX2NiIiIiIiIiIhMSbYKeOzduxdhYWHo378/ACAwMBAWFhZwcnLSW8/d3R2BgYEpbmf27NmYMWNGsuXHjx+HjY1NRjY5w2mnqCGiRDwvyBSwH1Jm8vd/I/58+PBho7WD/ZxMBfsiZZWYmBhjN4GIiIiIiIiIiEiUrQIea9asQevWrZE/f/7/tJ0pU6Zg4sSJ4u8REREoVKgQvL294eDg8F+bmSmUSiVOnDiBFi1awNzc3NjNITIJPC/IFLAfUlZ49Hg/7t77CABo06ZNlj8/+zmZCvZFymraao9ERERERERERESmINsEPF6/fo2TJ09i9+7d4jIPDw8oFAqEhYXpVfH48OEDPDw8UtyWpaUlLC0tky03Nzc3+S+Ks0MbibIazwsyBeyHlJmkUqn4szH7Gfs5mQr2Rcoq7GdERERERERERGRKpGmvYhrWrVuHvHnzom3btuKyatWqwdzcHKdOnRKXPX36FP7+/qhTp44xmklERESU4QTB2C0gIiIiIiIiIiIiIiJjyxYVPNRqNdatW4d+/frBzCyxyY6Ojhg0aBAmTpwIFxcXODg4YMyYMahTpw5q165txBYTERERZRwBTHgQEREREREREREREeV22SLgcfLkSfj7+2PgwIHJ/rZgwQJIpVJ07doVcrkcLVu2xLJly4zQSiIiIiIiIiIiIiIiIiIiIqLMkS0CHt7e3hBSqE1uZWWFpUuXYunSpVncKiIiIiIiIiIiIiIiIiIiIqKsITV2A4iIiIiIiIiIiIiIiIiIiIgodQx4EBEREZk6w4XMiIiIiIiIiIiIiIgoF2HAg4iIiIiIiIiIiIiIiIiIiMjEMeBBREREREREREREREREREREZOIY8CAiIiIiIiIiIiIiIiIiIiIycQx4EBEREZk4QRCM3QQiIiIiIiIiIiIiIjIyBjyIiIiIiIiIiIiIiIiIiIiITBwDHkRERJnozZtg/DlvHwICQ43dFCIiIiIiIiIiIiIiIsrGzIzdACIiopxs9NjVCAqKwB0fX2zaON7YzSEiIiIiIiIiIiIiIqJsihU8iIiIMlFQUAQAwNf3o5FbQtmZIBi7BUREREREREREREREZGwMeBARERERERERERERERERERGZOAY8iIiIiEycgMQSHgLLeRARERERERERERER5UoMeBARERFlIwx4EBERERERERERERHlTgx4EBEREWUjajUDHkREREREREREREREuREDHkRERETZCAMeRERERERERERERES5EwMeRERERKZOJ9PBKVqIiIiIiIiIiIiIiHInBjyIiIiIshFW8CAiIiIiIiIiIiIiyp0Y8CAiIiLKRtSs4EFERERERERERERElCsx4EFERESUjQis4EFERERERERERERElCsx4EFERERk4gSdqh1qtdqILSEiIiIiIiIiIiIiImNhwIOIiIgoG1GzggcRERERERERERERUa5k8gGPd+/eoU+fPnB1dYW1tTUqVKiAmzdvin8XBAH/+9//kC9fPlhbW6N58+Z4/vy5EVtMRERElLF0CnhALTDgQURERERERERERESUG5l0wCM0NBT16tWDubk5jhw5gkePHmHevHlwdnYW15kzZw4WLVqEFStW4Nq1a7C1tUXLli0RFxdnxJYTERERZRzdUIfACh5ERERERERERERERLmSmbEbkJo//vgDhQoVwrp168RlRYoUEX8WBAELFy7ETz/9hI4dOwIANmzYAHd3d+zduxc9evTI8jYTERERZTS1Sp34Myt4EBERERERERERERHlSiYd8Ni/fz9atmyJbt264dy5cyhQoABGjhyJIUOGAAB8fX0RGBiI5s2bi49xdHRErVq1cOXKlRQDHnK5HHK5XPw9IiICAKBUKqFUKjNxj76ctl2m2j4iY+B5Qabgc/oh+yp9KZVKJf6skCuyvC/xekumgn2Rshr7GhERERERERERmRKTDni8evUKy5cvx8SJEzF16lTcuHEDY8eOhYWFBfr164fAwEAAgLu7u97j3N3dxb8ZMnv2bMyYMSPZ8uPHj8PGxiZjdyKDnThxwthNIDI5PC/IFKSnHx4+fDgLWkI50bv378WfT506DUdHS6O0g9dbMhXsi5RVYmJijN0EIiIiIiIiIiIikUkHPNRqNapXr45Zs2YBAKpUqYIHDx5gxYoV6Nev3xdvd8qUKZg4caL4e0REBAoVKgRvb284ODj853ZnBqVSiRMnTqBFixYwNzc3dnOITALPCzIFafXDufOuQ63WTKnRpk2brG4e5RCXr0bg2bNQAEDjxo2RL59zlj4/r7dkKtgXKatpqz0SERERERERERGZApMOeOTLlw9ly5bVW1amTBns2rULAODh4QEA+PDhA/Llyyeu8+HDB1SuXDnF7VpaWsLSMvmdr+bm5ib/RXF2aCNRVuN5QaYgpX4okUgACOI6RF9CEBJ/lspkRutLvN6SqWBfpKzCfkZERERERERERKZEauwGpKZevXp4+vSp3rJnz57By8sLAFCkSBF4eHjg1KlT4t8jIiJw7do11KlTJ0vbSkREZIhUKjF2EygHENSCwZ8pubfvPmHXritQKOKN3RQiIiIiIiIiIiIiogxl0hU8JkyYgLp162LWrFn4+uuvcf36daxcuRIrV64EoLkrevz48fj1119RokQJFClSBD///DPy58+PTp06GbfxRERE0FbwIPpv1Gq1+LNK52dKru83iyCXKxH8KRLDhnobuzlERERERERERERERBnGpCt41KhRA3v27MGWLVtQvnx5/PLLL1i4cCF69+4trvP9999jzJgxGDp0KGrUqIGoqCgcPXoUVlZWRmw5ERGRBit4UEZQs4JHusnlSgDAtevPjdwSIiIiIiIiIiIiIqKMZdIVPACgXbt2aNeuXYp/l0gkmDlzJmbOnJmFrSIiotxAEARM/mEj4uPVmPdnvy+qxiFlBQ/KALoBD7WQ+PPHj+HIk8ceUqlJZ3aNQh6nNHYTiIiIiIiIiIiIiIgyFEcDiIiIUhAdLcfFS09w9dozBH+K/KJtSFjBgzKAWkiclkVbwePsuQfo1OUPzJu/31jNMmlxcgY8iIiIiIiIiIiIiChnYcCDiIgoHdQqddorGcAKHpQR1KrkFTxWrzkFANiz97pR2mTq5Ax4EBEREREREREREVEOw4AHERFRCtRqtc7PQiprpowVPCgj6E7Log175M/nbKzmZAsMeBARERERERERERFRTsOABxERUQpUOlU7VOovrOChE/BQf+E2iPTCRglhj/z5XcRlCkV8lrfJ1MXFMeBBRERERERERERERDkLAx5EREQp0A14xMerAACCIGDZ8qM4eepeurYh0ZmiRfWF07wQ6VaQERJ+dnS0EZd9ConM8jaZOp5vRERERERERERERJTTmBm7AURERKZKd4BYqdAEPHx9P+LfTefh5uaA5s0qprkNqTQxSxkfr4a5eca3k3I+3YCHtoKH7rJ4pSrL20RERERERERERERERFmLFTyIiIhSoDuArkyo4CFXaKZ9CA+PSdc2WMGDMoJgoIKHIOgEPOIZ8CAiIiIiIiIiIiIiyukY8CAiIkqB3hQtCRUS1CrNoLpCEQ+FIj7NbUiliQEPDsLTl1Kp1cl+NhRAIiIiIiIiIiIiIiKinIsBD8qVBEHAq1cf0jU4S0S5V7wqcdBcGa+5Xqh1BtqjouMMPk6lUuP+/deQy5V6VRZYwYO+lKEKHrp9kVO0JDIzkxm7CUREREREREREREREmYIBD8qVTp2+jz7f/IXvJm8wdlOIyAS8eBGAfftv6IUxgMRqHQCgVGgG0HUrKURHGQ54bNp8HsNG/I25f+7TG5hnBQ/6Urr9Ti1oAx66fYvhIS0HB2vxZwY5iYiIiIiIiIiIiCgnMTN2A4iMYfeeqwCAGzdeGLklRGQKvum/GABgaWmGVi2riMt1K25op8DQDX1oKng4Jtve6jWnAACHj9yGs7OtuJyD8PSldMNH2tCQ7jJthRkCbGwsERISBQAID4+Gm1vyc5SIiIiIiIiIiIiIKDtiBQ/KlaytLIzdBCIyQffuvdb7XS/goTQwRUuk4QoeupU6OEULZQTdYJEioS+qdCvMcIoWke45FxoWbcSWEBERERERERERERFlLAY8KFeyMqGAx8uXgZgwcR0ePX5r7KYQ5XrR0fqBDd0wR7xSO0VL0goeqdMdhM/pU7QkneKGMo5a59jGxSoA6B/v+Fwa8HjwwB/DR/yt9x6qO3VNGAMeRERERERERERERJSDMOBBuZKVlbmxmyAaP3Edrl1/jsFDluktV6vV+Pgx3EitItIIC4vGkqVH4Of30dhNyRLRMXK93w1N0SLoDB5HR6Ud8MgtFTwePnyDNu1+w8FDt4zdlBxJrdN3YuOUAACVbgBJlTsDHiNHr8K9+68xduxqcZnusQoMDDNCq4iIiIiIiIiIiIiIMgcDHpQrmVIFj0+fIg0u//l/W9Gpyx+4dPlJFreIKNHvf+zB5i0X0G/AYmM3JUvEJAl4xOsGPBQJ02LoTtGSjgoeuoPNOXkQfvrMbQgPj8Gs2buM3ZQcSbeCR2yspp/qho1y6xQt2qo4MQlVTQD9Kjt3fHyzvE1ERERERERERERERJmFAQ/KlaytEwMeioRBW1Nz5uwDAMCWLReM3BLKav7+wTh+3Mckprt48NAfQO4ZPI6JUej9rjtFi7aCh+70D1EGKnjoPgbQH3iOj8+5FTx0wwaU8XT7XWxCn9JdllunaDFE9xx8+vSdEVtCRERERERERERERJSxzIzdACJjsLRM7PpR0XFwsbAzYmtSJ5PJjN0EymI9es0HAEhlUjRvVtGobTGFkElWik5SkUNvipaEAXTdihyGAh5xCdNnGKLKwRU8pDJmRjOT4YCHbnWYnBse+ly6xyUqSp7KmplPEAQoFPGwtDSdqeGIiIiIiIiIiIiIKPviaAzlSrpj1jHRxh38SYuMg6a51p07r4zdhFwX8Eg6RYtapVMhIaGCR1pTtMTFKZItS9xGzh2El0olxm5CjqYbWhADHoLuFC2mWY3KGHTDMDHpmEYpM/3482Y0aTYNAYGhRm0HEREREREREREREeUMHDmmXEn3rvzoGAY8yDSlVgkiq+SyfEeyY657rdBO56Q7eBz92RU8cm7Ag9eqzGWogofutDi5ZRql9NALeMQqjHrenT37EACwf/8No7WBiIiIiIiIiIiIiHIOjsZQrmRo0NZUcdA094pNpRJEVsltFTySDpLHpzVFi4HqAKm9btoqIDmRTMprVWYyWMFDJ8igSlId5tOnSBw77mPy73GZQZ0k0JG0Mo8xmHq46+mz9wgKCjd2M4iIiIiIiIiIiIgoDWbGbgCRMegHPIxfJSE1DHjkXnJW8MhySQMYeoPqccmnxYiOSj5wHBeb8uuWo6do4bUqUwkGKnjoBjyUSfru0OErEBAQitevgzB0SAsAwO3br3DHxxf9+zXJ0e8tKrX+hSs6Wg57e2sjtUbDlAMeb94EY8DAJQCAyxdnGbk1RERERERERERERJQak/52f/r06ZBIJHr/lS5dWvx7XFwcRo0aBVdXV9jZ2aFr16748OGDEVtM2YVKlTgQppCb9t3NOXkQjlJnClO05Ha6g7IREbEA9AfVI6Nikz0mOiZ5VY/E7eXgCh68VmWIy1ee4vqN58mWq/QCHppgkW7YSKnUfy8LCAgFAJw7/1BcNnrsaqxZewpHjtzO0DabGt1gFgBEG6i0oyUIAn6Y8i9+/W1nplYsMuWAx+Mn74zdBCIiIiIiIiIiIiJKJ5MfjSlXrhwCAgLE/y5evCj+bcKECThw4AB27NiBc+fO4f379+jSpYsRW0vZRXaaosXMTGbsJpCRxMkzJ+Bx89ZL+Nz1Td/KmTjgGRurwL17r5MNxpoS3WtFZEQMAP3pHwwNHI+fsC7F7WW3Ch5qtTrdg95SqSSTW5PzxcTIMem7fzB+wjo8fPhG72+6r4M8IZio2xdT7FsGXr6Xvjk7DKsNYVlZmQPQVPBISWhYNM5feITDR27jxYvATGuTKU/PJOO5S0RERERERERERJRtmHzAw8zMDB4eHuJ/efLkAQCEh4djzZo1mD9/Ppo2bYpq1aph3bp1uHz5Mq5evWrkVpOpi9cZFJNn0iB6RpHKst/Ay+kz9/HiRYCxm5HtxSVMCZKRgoLCMXbcGowctSpdwYrMnKFl4qT1GD7yb+zZez0Tn+W/URuo4KFbSSEqSq438B4Zmbyihy5Tvos/KbVajcFDlmPUmFXpCnnIpCb/kcLk6Ya6rlx9qvc3Q8FE3dflcwIEpjD9U0ZI6RqmDXjY2WmmZUmtgofucb1y9VkGti7l5zGW06fvY/uOy8mW606vlJlVTIiIiIiIiIiIiIjovzMzdgPS8vz5c+TPnx9WVlaoU6cOZs+eDU9PT9y6dQtKpRLNmzcX1y1dujQ8PT1x5coV1K5dO8VtyuVyyOWJd3NGREQAAJRKJZRK0xz00LbLVNuX3eiWso+JlRv1uEokEnFARdsO3UEriSR7ve537/rhp5+3AADOnZmRqc+V08+LuLiMvybpVu6IiY2DpYV5qusLelNAZGxb7t71AwDs3n0VHdpXy9Bt/xe6+ylXJP4cHhGT7H0iPl6F6OhY8XFPn6Y+1YFcrkjzOMoVSijk8bC3t/6S5meY9+9D8CRhf6KjY2FpmXpfkehk0XLqOfklbt16hQMHb2Lc2DZwdrZLdV2FPDHUFR0dp3cc9St4aPphvM6UPyn1LbUgJFseE/P573umeL1NGtBUKpUQBEE8VjbWFgD0j+XiJUfw7HkA5v/5DczNzSCPS/w8GBgYkmn7p1TGG/3Y/fQ/zXtzhfKFULy4h7hc9zNHXJzc5CuHmWJfpJyNfY2IiIiIiIiIiEyJSQc8atWqhfXr16NUqVIICAjAjBkz0KBBAzx48ACBgYGwsLCAk5OT3mPc3d0RGJh6ie3Zs2djxozkA8/Hjx+HjY1NRu5Chjtx4oSxm5AjvPFPLH1/585dSJB5ZdnTljhod/jwYQCAUpk42PLu7VtxeXZw7Xpi5Y6sandOPS8iwqMy/BhevPRW/Pnw4aOwtEh9IE93UCOzXs+Q0PAM37ZSqcbjJ59QtIgj7OwsPuuxhw4dgiQhrXD37kdx+adPmnbev6d/vTh8+Djs7Cxw4sQJ+Oisb8hdn7SvN0uX30ZUlBJjR1eFtXXqoYrMFB6eOPB9+EjafSUsLDRx/XS8nnFx8YiIkCNvXtsvb2Q28MfcawCAgMAAdGxfItV1IyMTAx5Pn77A4cOJAQ7dCh1h4RE4fPgwAt4nXm9fvvQ1eNyjoiKTLfd77f/F55wpXW8VCv2qJQcOHBTPXQCIjdNMq3Tz1i1ER/sBAHbu0rwey5ZtRYkSLggLS6zu8fDhi0y7zr1+/cZk3ssPHTqJEiVcxN+fv0g8dw8ePAyLNM51U2FKfZFytpiYGGM3gYiIiIiIiIiISGTSAY/WrVuLP1esWBG1atWCl5cXtm/fDmvrL7+zecqUKZg4caL4e0REBAoVKgRvb284ODj8pzZnFqVSiRMnTqBFixYwNzfegF9OcePWDjx89AkAUKJEKbRpU9dobZk777p4t3GbNm0AaKZ5mL/wBgCgSNHC4vLs4GPQWZw95w8Amd7unHpeaAeEJRJZhh/Dp88OAtBUZWjWtBkcHFIPtS1acgeAZtA5o9ui3U+p1CzDt714yREcOfoKBfK7YPOmceluCwA0a9YCVlaaUIhCeR3HjmuqnsjlKrRq1Qoxsddx4tRrcf1q1Wrh6dM7aNGiBaJjborr//zTV/jl1516z1OmTFm0aVMrXW1xdy+F+vVLp2NvM8eHD2FYsdIHANC0STM4OqbeV06dCcZrf01FrPS8np27zEVIaBSWLBqEChU8/3N7TZX29VSpLNM8Lh8+hGHZijsAgLx58+mtP+fP69AGAs3MLNCmTRtcuhyOZ881g/Nubh5662uf19bWTlyuXebinOezzzlTvN7GxMix4K+b4u8vfSUYObwl5s7TTPvk6uqMoKAYVKxQCS1aVASQeAzKla+E5s0q4M2bYPy96i4AwNzcNtOucx4e+Yz+Xq5tS+kyFdDSu5K4/PKVp9i9RzM9TeMmTeHkaNqhK1Psi5Szaas9EhERERERERERmQKTDngk5eTkhJIlS+LFixdo0aIFFAoFwsLC9Kp4fPjwAR4eHilvBIClpSUsLS2TLTc3Nzf5L4qzQxuzAyGxQAZUKsGox1Rzt7Fm0E7bDkFIvKNYJpVmq9dcqUy8ozqr2p1jzwtJxh9DmSzxzmyJ5PP6VmYdY3mcMsO3feHiEwDAu/chn71ttVqi8xiJznIBCoVar0IAoAl+AJrjEx+vDWtVRetWVZMFPARI0t0etdq41yaZme5HhLTbba4zrUN62h0SGgUAuHT5KapWLfZFbcxO4pWqNI+LVJp4DBWKeJ33BEF/uiSdv2mFhcWkuP2kyxUGHp9epnS9lcn0K3js2XMdo0cmhijEaYUkkoTzU3d9zTKJRCou+RQSla59O3zkNkJDo9C7V8N0t1UQjHs+60p6zdXtdxDSf40yNlPqi5SzsZ8REREREREREZEpkaa9iumIiorCy5cvkS9fPlSrVg3m5uY4deqU+PenT5/C398fderUMWIrKTtQqRITHnK5cefVTjpYDGgG37RUKiHZ301ZnJGPZ06iO6CbUdTqxG3Gx6tTWTPz2pBUbJxx+0zSfdS9JuheKwBNdR3dYwgA0dGJgSylUnPuWloYzk+q0nHMtXSvA8ag1rn2KONVqaypIZMlfqT4nH6Tnm3nBApl2q+nWue4xemcF0n7nDyhb6h0lmsDM+khlydvS3BwBNb/c+aztpNVPnwIw9c95mHzlgt6y5MeFwCIjU2cWsjCXHMeas9jvXM7od/pnuMhIZFp9l1BEPDrbzuxdNlRPHz4JtV1dSW9lmQ1tTrx+aNj5Hp/0w2+yI183SEiIiIiIiIiIiKi1GVYBY8uXbp89mNWrFiBvHnzpvj3SZMmoX379vDy8sL79+8xbdo0yGQy9OzZE46Ojhg0aBAmTpwIFxcXODg4YMyYMahTpw5q1679X3aFcgHdgZasGkSVy5VYveYUGjYogwoVvMTlBvIdkCtSHmA2dXIjD9ZT6nQH+eLTMbD+ufmO9+9DkCePAyxSCDgYfo6MD5EYOq9SkvQc070mqJMErCIikgc8oqITB0u1AQ9zc8P7H6/SP+aCICAmVgFbm+RVpYwdPtM9LvHKtPuKVJoY8FCp1DDTqeiR6vPkkoBHeo6hbn+LjVMkLlcn76OCIEDQDXiERBreqIHTy1AQb+K36/HiZSD8/D5i+rTuabY1K/276Tzevv2EJUuPoFfPBuLypMcFAKJ1zkczc00f1PYx3dCMNnCj28+VShUUivjEyh8GREUlBrruP3iNcuUKpWsf0hOoy0y61y3dfQCSHAMGPIiIiIiIiIiIiIhMWoZV8Ni7dy8sLCzg6OiYrv8OHTqEqKjU7xJ9+/YtevbsiVKlSuHrr7+Gq6srrl69Cjc3NwDAggUL0K5dO3Tt2hUNGzaEh4cHdu/enVG7RDmYfsAjawZRN/57Dps2n8ewEX/rLU+7gkf2CnjE6QxK0n9jqG/8V5lZwePR47f46us/MWr0qi9qm7Ekq46gM/gdn+T8i4iMSTaoHBUVm/hYReoBj6SBst//2IMW3jPw8lVgsnWNfSe9SieMokxPwEOW2F8/Jzhn7IHvrJK+Ch6JxyIuVjfgkfw8VCpVUOn0xfDwmHS/XxgKD714qemDx0/cTdc2slJK55PawPVJN+BhoQ14GKjgEROj0PubVmRkLFITHhEj/vz6dVCq6+oy9nu57vPrHiNAP+xn7MpBRERERERERERERJS6DKvgAQCLFi1KtSKHrp07d6a5ztatW1P9u5WVFZYuXYqlS5em6zmJtIxRjvzFi+QDuCnRvdPb0B3KpoxTtJg2/YBHxlZOOHnyHgDg4aP0T1uQWT4nHJP6FC36xygiIjbZQG10tBwO9pqftXe/W1pq3l7nzvkGv/y6A64u9vD1+5jszvkDB28CADZsOIsZ03votSU9oYrMpHdXf3qmaNGp4GGob8nlSoOVEYy9n1klPfuZcgWP5EEGhSJer4KHWi0gIiIGzs52eusZCmnFJam0lDTwcfDQLbRrWy3N9mYVJycb8WeVSi1OB6Tdf6lUAgcHG4SFRSM6JvEc0wZDtEEt3f3+8CFM3J6uqOg45MnjkGJbIsITAx5Jz+egoHBcu/YcLVpUStbXjR3w0O1Dyado0Qm95pLzkYiIiIiIiIiIiCi7yrAKHmfOnIGLi0u61z9y5AgKFCiQUU9PAO7/n73vjrOkqrM/VS937p6eHBgGBoYsIJJBSUqjgrK77upvZdVlV0XXrOvuqosLsqyiGAkSFAMgQRQYGIYcB4YZJucceqZz9+t+OdTvj6rvre+9VfXe66F7ZoB7Pp/58Pq9+6pu3bqheOfcc1ZuxzPPrjrQ1QAArF23C5s27TnQ1QgEJ1pyuX0XeNx8yxP4z//6Y00ijCByx4+I5mTLgSaFRgtOoI1H9IbGmwPvq5y0TyYz+H+f/CnuuPMpqTy/h9Xu5+TJzeL1WItHxhPqGONkt0qsJ5Npz3uplEvyEolPxPKZZ8zDY4/+Fy6++CQAwe4Agw5pfCDchYJQ4mKgWkhfNpWpYoa7fvcc3nf+9/D665s8X3sr9ZU3g1qcEfgY43FXfk4V+XzB834m43VQ8hu1qnAprRD+N/70kap13Z9oakyI10NDKfGart8wDCQSUQDAyEhOvEcxQTSuuADxgQcX4d4/veRx6UmNyG2hYpAJPFQnjCv/9Wb84H8fxB13Pu353oHu53zuLyvXLDt4aJGmhoaGhoaGhoaGhoaGhoaGhoaGhsbBjDETeJx77rkIh2s3BDnrrLMQi8XG6vQaAP71c7fgP//rj9i5s/eA1iOZzOAz//wrfPKffn7Quk+MFYl61++exTPPrsLyFdtHdc5qKBTfuhEtb+V4mYMN4yGQ4aR9iZF6Dz+yGFu2dOG225/y+5pdvsr9bGmpF697e4er1oXI1wMNb0RLcB8eGvKLaHFJXjeixb02wzDQ0BAHECzwIFcAXpcDHZUgO3jUEC/C3CfUOJKbb1kAALju+j97vnegie/9hVocPHjkiuTgwe6FadpKmly+6OmLmRojstS5RXVeamSCioMNP7rhr+I1d/AggUfaEVyZpiGcPkg06edU4oloGakS0cIdPFKyg0d39xAA4LnnV3u+d6DXwxIbn5Yi+5HGev6dMR41NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NN6qGDOBB8e5556Lu+66C5lM5R/JNcYOnCDr669OrI4nyPYckJ0oDibIAo83T6LmstVFIkEkJpF1ctm3roMHGHH4lqv7OwCcKOb9jBwnVHAeuBoRz0njvV0DVesSj3vjOvYVuVxBOn/tAS0+Ao8KIqXh4axElAKKgwdFtETl9iQHgmoOHpyw31/xUUHg116Lgweve9C8mvURILwjCVQAAAEAAElEQVRTBB61CLa4SCadzou24d+Nx20hgxrRAgDZjHct8juv2oezivNH00Em8OB9kT/j0Ng1DAMJp10ofiQUMoXAgxxL1LW6taXeG7mkxK6oSCaZg0dAWT8xz4FeDyUxkNIlDkRsnYaGhoaGhoaGhoaGhoaGhoaGhoaGxr5hXAQeJ554Ir7+9a9jypQpuPLKK7Fo0aLxOI0GA8+BV3Pf9zf4DtnCQUrcSQKPNxHRIo5Xg1NJseTfFn5ENCdbVPv4gx4scuZAE1oaXnCyl/ez5uY68ZqPYZ4gVE2wNVr3iTibq96MW8mevQP4QMc1+P419+3T91UXBDmiRRV4ZERd3UgId/6l644oAg9yRBgOIIS7ugaRzeYlh5WxmJveDHiMR23uEyxeJOcvesv6iOFqOfY7BWVlfL6+ZDMAeS4lYVQ+V/RGtPgIaPyGljo3ex08bMeZZDJzUAhw+DrIRVI0Fk3TQDxhtwvFphiGwQQeFNEit8/wcMbHwcMdo5Zl4cUX1wpnDkCe21Jp/ziXgs/8t7/XQ8uy8ORTK7Bnry22kyJaFGFQic3tBea+89zza/Dr2xYetG5sBxv6+4fxxrKtB7oaGhoaGhoaGhoaGhoaGhoaGhoaGm9zjIvA48Ybb0RnZyfuvPNOdHd345xzzsHRRx+NH/3oR+jq6hqPU77jIREe5X0nSscCORZ5UjoIiCE/jIWDBz+GSpZUKy/B8HHwYITnW1kk8Vau+4HCeBNpXIzERUckVgCAwcGUeG2w/lmN6OXuIKUa3HtizMHjzTjpPPLI68jlCliwYNk+fV9t8zwju4lYbnQiVpLDbkQLuRwQoQy40STRIIFHgIMHAHzxS7dLbVgoHFiBB3eTqEWsJ7mPBIhTMhkfB48A8ds7EWVlztywoROA4uDhCKPy+aJ0jwC3favNI56IFkV4E41G0NubxAc6/gdX/stNo7iC8QFfS5JJdwzRfGYaBhIJO/aPHHVCpoFQWBZ4UL+sq7PLDiXTnnUqzcbzM8+uwjf//Xe47KPXi/f4ej8SINiieYC38/4WvD78yOv47vfuEfdPiudSrrno80y0adMefPs/fo87f/MMli/fNv4VfhvgI5f/H676wq/x2uKNB7oqGhoaGhoaGhoaGhoaGhoaGhoaGm9jjIvAAwDC4TA++tGP4i9/+Qt27dqFj3/84/jOd76DmTNn4rLLLsPTTz89Xqd+R4KThgd6N3Qm7RJ4B8POXz9wQjFop3k1SAKPGoQMQYS3j75DajeViOnqGsTq1TtrrOX+B7+eAy3w+P0fnsenP/PLiqT6wYZaxEJv6vgl7hDg3h8uDBsYcAUevD7VxnNxlKInipoAgnfC14Lm5np2XqcOfgMrAJ6IFjYnUB9ubW0AQDv+7fJNTbbryQiPaCGBhxJ50+A4IlTqi6tX7xy1C8p4YtQRLaXqDh5+qOXY7xQECS+InDdNQwijMpmc18HDEXhIbju+ES2Ka40i8Mhkcnj5lfUAgPWOyORAQhV4UDvRvGWYBhJx2cHDDJkIh0LS96k9J05sEscqKQKjPBNWvfGG142Bi2fS6ZzvOkfPYXw882iX/YHHF7wBAOjvH7HrwgV4Sp15G5DAbeu2bvHert3941bPtxPovi9apAUeGhoaGhoaGhoaGhoaGhoaGhoaGuOHcRN4EF577TV873vfww033IBJkybh29/+Ntrb2/HBD34QX//618f79O8YJCWBx4ElBTlRWy3S4UBhLBw8JBFGTREttbdFUSJiZPLpI5f/H67815uwecvemo+3P8G5xAMt8PjVTY9j3frd+MMfXzig9RgNxl3gERDRwvswd/AoSY4Sbvne3iQeeujVwDiTWvo7J7PTb0Lg0cLiZYjMHA08Ag82JxAp2tJii0iSyYy4TnI94XMIxaqoES11TtlstlAxjqYkuWDsm/hsrCDd+xrEerzuo5lXD9Z14kBAXUtIkGAJgYcphEXJZEa8T1Ek2SwJPKq47Sh9Xo0uSWfykgvNgY7okGLLiiXRLmXLbRdy5RgZyTjveSNais7z0YQJjQDseUd1m+HniihCLcDbdn5zF/V/Pta5cG5/oLs7Kf1druTgwa4578zzvExnpxZ4jAZvJnJMQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ6MaxkXg0d3djRtuuAHHHnsszj77bPT09ODuu+/Gtm3bcPXVV+O2227DE088gZtvvnk8Tv+OxMHk4MEtyw90XYLAiYvcOES0rF69Ezt39gaW5zB8nAYKNUS0rFixvea67k+UKuwSPlAYGBg96X+gMN5EqiTCYKReWXLwGBFlOVHFd7b/13fuxv/96C+44cd/9T2GKkzyA3cNeTMCDy5a6e4eAjAqAw8Pqe7n4OEn8AhHZHcAwB27akRLNBrxlAFsElq6FnYsNTZjf4O3Sy1zeXkfxSkHq9PTgYAasZZzhBciisQ00OwIPIaSafE+iRtcBw+3TemIfCyr80wmY9+vuHAHyUsuNOm0N1pnf0JdS8gNw2LOJg0NdgzSUJIEHqZH4EFOKNSGgCxoA+S+HnHGOIfadn59XZyvJM+3+7Ov9/UNS39XFnh4xVn8vT17Bsajim9baIGHhoaGhoaGhoaGhoaGhoaGhoaGxnhiXAQeM2bMwG233YYrrrgCu3btwv33348PfOADEpF9/PHH45RTThmP078jwQUe+QMsqkixuIJiDSTvgcBYO3hwUnbP3gFc+a834WP/8GNBttnn9G8LPx5aPrY/UfBm4hssy8KuXX3jIiaoZAN/oMBFRwc7DlREC79vAw7hqdYlz3a6r1hpC4weeXSJeG+04h4uzMi8CQKZR3x0OQKP0cBLqrvX6Ua0kMAjLSJaImGb/JViVUREi0wMc8EHH7s8pgaQiUFyYzhQkCNaqs83vB1HI/CoxR3k7Ypdu/qwfPk28XdJddbwOHgYaHYca4aG0uJ9EnhQeb/1ifdTj2uN09coiiiTyUvjc3/Hi6jwCjzsZx66DsMw0OjEICWH7LqapoFwWBZ40JoXiYQQi9liFnV9qCbwKClrciXxk0r0q2KS8YRHPFbm87NcZ1mkVvS8190z+nn1nQwt8KgN6tqroaGhoaGhoaGhoaGhoaGhoaGhURvGReDx1FNPYe3atfjGN76BiRMn+pZpamrCM888Mx6nf0eC7/SuhYgbT3Cy5GDdmS0LPPZtl7x0DEbw7NjhOnecf+F/Y9nyrQCCYwgM0yvxKBWrO3gsW7YVL7+yfnSVdvDQX17D3/39Dbjjzqf36fuVUGmX8IHCSEoLPAjclUHqZ5KDh01CqvePCxPCYT/ic5QCD1Zm+ZtwpOECge59EHh4I1oKns+IVM/ni6IdKIbFTzDGHTsAmygmkSMXP6hEICePMwfawWPUES1c4CGvQ/X1MfFaXRcKAWK1Xbv68LOfz0dPb9L387cKuLhHvfa/+/sb8LmrbhXrhiq6E1EkJPAwDBHRMpRMCxFGXZ0tFCJRIRcd0L2rRDpnnT7Z6jjVZNI56bmCi0gPBNT5hMRPluUKXxoabIHH4JA9f4VCXgcPEriZpolYzL4vqntQsej2R7+IFrUdKwk81Lmlbx8ipPYVdH2AXWdp7q8Q0UJjl4tA9ne8zFsdWrZQHeVCGcVMUYthNDQ0NDQ0NDQ0NDQ0NDQ0NDQ09gHjIvA4++yzx+OwGhXgl58+ligUiti2rbumH2I5eRkkajjQKFcgImuFbGnuXrOpZEP88lePAwgmv30jWmoQeDz3/Bp8/Ru/9diw14If/ugvADAuAg9p1/9B4uCSTu17/Mf+xngLPPiO2aIUM+S+/sMfn8df/rpY+hyQx/bsQ1zxXqkGhwA/cIeAm29ZULX80qVbfKOJOMH67LOrAPiPqyCoES3cqYTaoL4+Lt4jl6JohYiWsLLz3zAMQfRzoYw6vvl9yGYOHgePNxvRMnFik3jd2TkgrSWZgOv88lfvxD33vojvfOfumut8MIK7QATF7mzZuheAd9yQ8EIIPEKmEBslh9Kizal/kvCBr090zkqiKyrTNqERAJDO5JHJuPPmwSbwIKccLnxpbLQjWmhNjEbDQuBBz0gi6iZkCAcPVeAhOXj4CNlUEU6hgqhWvZ/9+7Be7yu4yCyfLwa6N9l/M0GQj4PHWynmbH9gcDCFVIVYMe1MUQMsCyg7/zQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDRGhTETeJx00kkYGKg9o/uss87C7t27x+r073hwQmI8XDO++a3f4eP/70Y8+dQK6f1SqewhRyQhw1vCwcPdQbhs+VZ89nO3YP2GzlEdg7e/6sgRdXYAc6KH3yM/HpqTL9WcEN4M8VKXiFYvNEpU2iV8oDA8cmDJydFgPGJzgo4vxTgoJMv1//dnlBQSkAsTpk5rFa/37BnwHLuWez8aEiydzuEL/3YbPvv5WzziAR7RsnzFdmzd2uUbfRSEsipkYYIt2sUei0WEQIP6UzjidfCgNgj5OPPQ9+XjqwIP7uBxYAUevF1qWVc4gazeI35dW7bula47HSDw6OzsB+DGAb1VQSIDQI7d4W0QCnnjfgA3OoX6lWG4ES2DQ2lRntwaaC3i4rpcrgDLsio7eDgCj4ntjeK9vj53bUkeZAKPQt6+PhKJGaaBxgZb4EFtEItFvA4eTnuFTDNY4MH6eiTqCjweeHCRcywlumoUAo/96eDBnWPS6VzF+dnPhYi/l0xmDlpHtv2NbDaPv/3Yj/CRj14fOKbGW6j5toBhwCqVYR0cj4kaGhoaGhoaGhoaGhoaGhoaGhpvKYyZwGPZsmVYvnw5VqxYUdO/ZcuWIZd76+yqP9gh2bGPQ0TLq69tBADc/8Ar0vtf+OKvccFFV0suElycUMuu7wMBTnRYliWIi89f9WusWLkd3/jmXVWPIRNobpurxC7FOHAhh+yM4H7whX+7DZs375XuYTUXjAzbnT1aQcWUqa3VC40SoyX59weKB2k/9IPUN8eBJOIxGnx8+t0rVWySC4jSWPz6Js8xahF3lVQy2xEFbN/Rg7/7+xvw8COvi8+4uKRfETWpY2T7jp6K502lc3j99U0u6Wv51wNwRQuhkCliMFIj9trl5+BBbWaa3uWVCGW6FsuypO/W1cUkgVSQ28P+gh/pW7F8BQcPfqytW7tlIcsBdioZb/BrzbJ24WIPEiKoY16NaAmFDCHMy2byojwJCWkscHFOqVRGsVjyjDfZVcr+XjweFf2Ur+upA+yCpM5PNBeJ8cYcPAj+Ag8an9zBQ+5/xQAHjxt+/FfpGAQSm6jwE9X094+9g8eqVTuwefNe3/MTMpm8dP+9ES08cq7oeQ8ABgZ1TAsAdHUPIZXKYWQkix07ewNKyYJedT7UAIrpAvIDOVjjLGrV0NDQ0NDQ0NDQ0NDQ0NDQ0NB4O8IbLv4mcP7559ecpTwa+3yN6uCCgP0pqljuxCU89/xqfPQjpwE4uCI6LMvCgw8uwpw5k3HiiXPE+x6793wRkYg7HHp7k1WP7WdpDniJXSKIeHRLEPm9dOkWLHxyBcJh9xi8rn7jK5PJoVAo4h+v+BkaGxO49ebPHtDxVQpwHymXy1i2bBuOPHKaFHcxbvXg7TbuZxs7SDEn45BNH+Tg4Sfw8JCqjKTiRPQPf/QXzJg+ITCGKAge8nNgBFOntOLGGx/Brl19uO5/H8SHPvhuu96s7OBgClOnuOIkdc7LZGQyzbIsaUx85zt3Y9GrG/D5z30A/+8T50jOE/Z1eiNUQqaBukQMg4Np4eAREe48vJ87kRGVHDxy3h3ygH0/ODGfPcAOHqXS6MQmvO+qghBOFm/Z2uUR2ZXLZV9RzNsBvB1zrB25cwSNJzUuyI1ocR08uFCISPuI4ibjiXrJFjzrQrFYYgII6rcmGhviyOUK0jp4oEU4qnsErbnUboZpoKFRXldisbBH4EH/NU0TMWc8VopoCUe8j8nqvFwo+ouf7Psj3899iVSrhJ6eIfzLZ28GALz0wrXSPVbdgKS5X3k243/7OXgAtlvYxPYmvNNRYHPbyhXbccisiZ4yvItc+S83YfuOHjz68H8iMQ6uaW8VlAslAAbMiCNmK5TtdnorPaBpaGhoaGhoaGhoaGhoaGhoaGgcJBgzNmXr1q3YsmULtm7dWtO/LVu24JBDDhmr07/jUZDEBuMnqjACgg+CRB3qDtD9jcWvb8INP3kYV33xNul9jw1+DbvTVQTtblfJH7J45+9KkS5KkxYKRYnMqhbXkknnsXLlDuzY0YvVq3f6lhkezmDjxj2e92sVZI0G0i5hVvc/P/QavvBvt+FLX75jzM/pBy66GY/rHC9IAo9xcPDgx9y0aS97X+43EyY0+gqhCKobwG13PCnHENUg8FCvb8CJL/Ajk7nw4TP//CupP6tzXiqVlf5Wr2PRqxsAAHff84JTD4VUz3hjNELhEBJ1MQDAyIh9fBJsyEImlyhXQYRyPl/wfI+uo6w4rBzIWAR+D1US3A/8HlVz8FD7j+qi8HZCkFCGR9NQbI8QLDgLg3DwsNxokWiMhEIFMbfROkPrhZ9QRO3nRUWAB9gOISSU4GKEg0lsBLgkOx9v7Yr4IBaNIByWXXbc8VxbRIufVlKNdOIOHpGI6/iRTuc8jiz9YxzRsnadG3WoirB4PTPpvCRk80S0cOc1IfCQ555qc0AuV8C27d011vytiwxr55dfWe9bhs/j6zd0IpstYOWqt3bU1JtFKVdGKVdiY8KAVba0vkNDQ0NDQ0NDQ0NDQ0NDQ0NDQ2MfMGYCj0MOOWTU/yhzXuPNozjOES1Vz89FCOz1gc5s37HD3z67kjMB4L/7XoWfpbnfscnBg5MtRYlAks9VKpXl6IwqLgvpTB67dvdVLPPZz9+CKz71c6xcuV0WO4zDL+tBES2Pzl8CAFizdpdU/oEHXsGDf1405vXgbRik73j2uVV48cW1Y37uN4N9FXikaiDg1WM+vuANz/tz5kwGYJN7KklMwgTAGyVhmqavk0XlutjliRQl8tMMeceferzvX3OfeK3OM6lUThpXQfMQCTVUURa9z+vII1ro84hfRAs5BPhcAwlC8gEOHpZlSXMJcGBjWvj9TNfg4MD7iyrS4fdgaCjtIcl5mxPi8UjNdT2YIUe0uO2SYaIW4ZrgtCHt9Ke1ich5wzQQi7oOHtSOFNFC64U6PnPZgmcM8bWFRws1NNhRJ719B4+Dh0ds5szvtJ6ZpoH6uhhaWupEmShz8CAxi4i6MU0xHkm4QGIQ/jzlF5OltiMfs2r0kDq39I1xRMvevYPi9YjjLETgIqqhZLpifJqfYFUtk81Unot+8cvH8PFP3IgHHhz79fxgQo6JnZYs2exbxk+24DfHvdNglcoo55zxZViwyoBV0hIPDQ0NDQ0NDQ0NDQ0NDQ0NDQ2N0eLt6Yf+DkShsH8cPIIgOU4cRA4eQTER1QQetUScSISIT6QDIeKzy5+3i6mcS3XwqCQeAeyIlt27+9n3vfd/61Z7V+1jj7+hRJeMg4NHQEyHX5umUlnc8JOH8aMb/ooVK8Z2d2tBIt287ZZKZfEf//lHfPPff4cNGzvH9NxvBrJIorbx89OfP4oLL7oay5ZvrX58H1EB4N6rOselIpcrVnHwkD8LhcxRR7QQGdrUZJOyRLQSKetXlsB3k6sCDpVIC5qHaKyoES1DybT7XRHpYEe0AO61+Qo8iHD26e88WiOoXqqgI5OpwTmjXB4X8pBfV00OHuweceJZPVY2m/fcT5WcBlxxHPDWcuFRwccxv7/83uYVRwoahySsEP1KcfCg9ymihcaC6pCSVSI6AHmtcCNaDDQ22A4eg4Np9v0DJzQC/GLVKLpGHm/TpraJMrFoxBPR4gpZ3KgbamMSFPHIFVWgUSx6hW8kCCmXy1I9M5m8Z77t76vs4GFZFu5/4JWa5nIAkrgzOSyPIT5menqSUr3V9uR9g8QzaplMFRcXEnbc8OO/1lL1tyy4g8fwSNZ3nSZhkCSSS9Umwny7wipbsIplVzRlAbCst/TcrqGhoaGhoaGhoaGhoaGhoaGhcaCgBR5vE8gRLQfCwcPfZaJ4AOrCEUQyi128DvmTy+6Lg4c3s97vnLSzmtvhcxGMqZDZdixDWfo76NiATSJxcrSSa8rISFYWeIyLg4e/Dbwf4c1Jw9cWbxzTehSquNokk26bPf/8mjE995sBJxTL5drIj3vvfQkAcMstT4zq+IDbX+i+cecAtS/lmJBJ3dluCzyCIwB86+KQX6rwgbs7qcQsocEhoQH3XpOIqFpES1A9CEkm8JAdPGJSufr6uFPGvU+VIlrIMYAEZWoEAv+M0D+Qqlh3APja13+Liy+5xiOq8MNrizfi37/9eyl+g6NUKmPVqh3I5QoKWe1PTnZ1DeKKf/o5/vrwYonM5sQzHZeQzRY8JDkX1RCKoxQMHYywLEuaE/law2NphFOHU5b6ihifTGhEDh65fFGMw6gS0aKOz6yPg0fRx8EjFDKlsUU42Bw8KBaF5jPDWbOnTmsVZWIxr8DDFbKYiMVkB4943J77uIOH2maplDd2hUSYqmArnc6N2sFj6Rtb8OOfPIzPX/XriuUIBfbsMTIcPO/19iYrR7SwayLxjHo92Sp9oKkpUVOd3+pQxwIJPvhaTS95/6nVZevtCBE9FTJQLrHnGssCtIOHhoaGhoaGhoaGhoaGhoaGhobGqKEFHm8T8B/5D4SDR5A7RfEAk3KymMHdUUmvibBVdyeP1sFDvn65/cNh01uG3SPVrSBfKNUkHjn//OMA2GRDsUIsDv97ZCQr3ZNad07u3t2Pl15aV1PZQAcPH9FM0HXuCxa9ukFy4uDjgDusELgIgIiXlat21ESSjydUN4nR7G4NhavHXnnjBdzd5wBQ74yJctmSBB2AHNGiEpeGYSgRANXnISJ9aOd8zukDXAwkYlSUejcyEpr6EcUzjIxkpXZTxwQXcK1evVMcu7HRJihTqZzrhFAKJr6pPOASem55n4gWh1BWIxBM0xBzjjoOerqHPMdR8eprG1EqlfH00yurlv3yV+7E8y+swXXXP+j7+X33v4x/+ezNuOba+6W+yMUIHD//xXxs3LQH/3v9nyWSuKtrSBKrqCJAdUz29CShQnKGOsBxX/sKlUjnUTdpXwcPR/SkOD/xKBLRj3KuUIYcPIIEUX6uKXzd4MKkuCPyUr9/IOGNaLHby1IcPCZNbBZlYiyiheYjV8jiOnikVQcPKd7LG9+ktiOVV/toOpP3iEFSqVzFtuzrdQUgtcz9vF1UFx/eB3p6khUjWng9STxTqe/6IZFwBXBvZ1cGVYSXTnnXKNUZC/AKD99xsCwYIQMoW7CKFmBAuHhoaGhoaGhoaGhoaGhoaGhoaGhojA5a4PE2wYFw8JAJ1NrEDvsb/Ad3EcfA3hMCj1xBuh6/iAgVMmFZ2WVDfV/aOa2ULyoRLYVCyUMWmKaBKZPtncrpdF6KcSkobT7MbNvT6RxKfFdujb+r/+3HfoRvfOsuvP76pqplgyNavGWDnEpGi56eJL76td/gnz71C9F2nCjP+xybE9aZdB7btnfjXz97Mz76N/+3z/UYC5Qt1Tq/dvIjXIvAw9PfZDKPu1SosRy8TVUCOaVY1ddSbxKJJJyd83R8TqANDdnODqrjAxdXUN9paam365LKVpyHJk1ySeBXFq0X9W5urhPv07gRgg3TxNFHz5SOU1/vthVdL41VP5GYcPBQBB7hcEjEvajkYXdPZYEHJ3UntDdWLMuxdu0u3/f/+McXAABPPb1SEoMFOXjweCh+/y3LEvcO8M6LqbRMdnb7CFmkGKz8W1PgUSlaiDsBUN8nop1He1mWJfq/abjChFy+KPqb6vihjhc/Bw8eRVLyiS7hqBbPMd6gvkjXSc851OdIQDhxYpP4TpRFtNBa40a0mJ7rjMcooiXYwWNkJONp26DIpUwmJzkjUd37+4NjWhrYvFZLLA4fI2pEC6+7HdES7OAhRbSI+Ukec9VEPomE255vVrB5MEN18CCBqJ+guCgJcOQ5tFgs4T/+6w9izn1bw7JQTBVQypZgWfY8Vy5bdkTLW9OcSUNDQ0NDQ0NDQ0NDQ0NDQ0ND44BiXAQec+bMQV9fn+f9wcFBzJkzZ5+P+7//+78wDANf/vKXxXvZbBZXXXUVJkyYgIaGBlx++eXo6ura53O8VVEsyIKA8QLnLIOIfE4KqITH/gavi7prHnAJ2mwmLxESb8bBQyVOqA2CXE5UJwTVwcOyLGYvz+MibFI8k8lJDi4lpc2HmW17JpOX4mHUc1fDmgBSmIMTRZzc8ItoKfrcn30BJ5JXrtoBQCbpisWSl2BO8XbJYfOmveLvAxkHoTp4jKYu5BZTCSo56RKlLlFMpKgq8ODiA3Vn+lAyHdjHg0DnjMXliBZuZT9Cu6OVdqB4FMAlqltbGwDYRCevixpHwq9jy5YuQXxGwiHhDEKRIXQ/QiETJ514qHQc7uhBMS3CCcFHJCaIeRHR4o5nEueocVHd3V5nC47OPa7AopZoKcJAQPRLlJHefP70c/BY+ORyrN/guuZ43GFItMDmsKDjdXXJAo9isSQdr1h8axLGqhCKjyk+z4s+oUS0UDmL9Svu7kHrvRB4OPfME9GSK3jqwtcK0c9NU0TASN/PVBcbjCeo/1CElHA8IWcTZ32Z2O4KPGwHj5D0fTeixStkoXmoWMHBI5XKeUVyRXLwkPvoyLDr9mGahhCg+cUR8ToTBgerxzPJDh6KwIN/lspKf1eMaCl4n5WA6jE95CIDeMUmbyeoQheay/zi73ibq6K2l15ej2efXY1f/OqxcarpwQPLAoqZEoqZIjzK4vKBe97S0NDQ0NDQ0NDQ0NDQ0NDQ0NB4q2JcBB7btm3ztefP5XLYvXv3Ph1z8eLFuOWWW3D88cdL73/lK1/Bww8/jPvuuw/PPfccOjs78dGPfnSfzvFWBt+Jqzo4jBck+/wAUceBdvCQYjoUIhtgAo9cQSavaxA+yNdZSeDhtTvnjhtUn4s/cKJdvlDy3ENVnBIKmYLoymTyFR1ckoxMGqnibFANfju7VZSlXcLu8atFtLwZ5xne/zZu3GMfTxGMqMdXd9LXM7K+v18WBOxPqCTsaKzuIzU4eKjEb0GJaDFNQxDIqZQi8OBCIuc4V/7zBU7ZrCBPgdqEKWJ3u3DwKIhjEfzs7wHY9u50Lmf8tTvk7tCQLDZ57PE35OvIygIPTp5TP0iNyLuyQyFTcvgAgIYGHtFiSXUMmd7lNeyQzaroKxQyEY36O3io4hQVXBihRursCyimgtcPADJpr4PHD3/0F+lvdT5RhSwcqiNIj+JUorbDgYgeGwuUKjh48HbJMTEMAEQj7lguFsviONzBA3BdHohcF33L57yqoE9ykqLxHzIkkQHhgDt4OHWNK24/qqCKu/PEYhGEQ3JEmhvRYkp9HXDnoUoOHplM3ivKDHDw2LGzVzgymaZ7PrVvc3CB3+BQDQIPtl6oLji8D6TTOWVtDo5oSSbTsCzLE7FXzVFEEpvUIPDYvqMHe/YMVC13sEFtB1qj+PWXfSJaVPFepX7wdoNlWXY0S9mCYbj9TaezaGhoaGhoaGhoaGhoaGhoaGho7Bu8v+K/Cfz1r38VrxcsWIDmZveH9lKphKeeegqzZ88e9XFHRkbwiU98Ar/+9a9xzTXXiPeHhoZw++23449//CPOO+88AMCdd96Jo446CosWLcJpp5227xfzFkOB2derxPZ4QXKtkOJKDh6BR5b9gF7wcfCoczLjs9mCLAapoQ2DYlnUa/Zz8MiynbBEOE2caI+XfKGIcEQm6qludGxb4GHXPZ3JSzuOVZKJR7SkUllp13YtLgtcYMCJxW3buvGrmx7Hpz51Ho6aN0O8HxjRwhj5QqGISCQsnd8vRqVW8P5P5Isq6MjnS4i7Gg7JJUJtw66uIXE/9jdU8lAlaiuhlogW9XgFEdHiEqXRWATpTN6zY5uPCyJoyMUinc5L4pRaBB7Ut+KKgwc/T4p2RyvCFz/XoolORMnQYAoh5may4Ill+LcvdiASCcOyLEmosrdr0I0+MgxEHaKcRHPiMyaqIjTUex08CH4uQOSwQnOH7ODhxLcoIo3kcPBuf0Ce70kgUwmRSIjd87InjoqPcT4+0xn7/ppMuMLjYQDZSQfwRtEAtgNDJpP3uMOMpORjqQ4j4y3weG3xRvT2DqPj4pPG9Liq2wMXTXHCPZ+T24q7IZRKZWnuj7D1wY1WsvsmlVOFYj09SY87EG/TUoXoEkBesw4ExHU6Y5DqbjHhCwDMnNkuvtM/MIKII5wqqIIQ00QTi0MBgIbGuHRswMfBI53zaUcSeMh9dMtWJh4zDSFOqSSU4GNlMMBlJ6j85s2yex3vA5lMXppDvQ4e7t8DAyls29YtnhWi0TDy+aK0HliWhS9/5U7U1UXxg2s/AcMwpOtX5wYV6XQO//DxnwAAXnjumppi8Q4WqGInWqOkiKqyz3Ofct/D7Joty6rJOe6tCqtkwSqVYYbDjqjDAsoAyhZgvf2vX0NDQ0NDQ0NDQ0NDQ0NDQ0NDY6wxpgKPyy67DIBNbF1xxRXSZ5FIBLNnz8YNN9ww6uNeddVVuOSSS3DBBRdIAo8lS5agUCjgggsuEO/NmzcPs2bNwiuvvPLOEnhwJ4T95uDhLxQoKtEYBxKclHJ3/DKBRx0JPPJSXUulsi/5yRHk2uEhTkollMtliSji5Ca9T7umC4UiSkV5aKqW6bKDR07aBVlU3HMksjyVU9xWqt8fTkrwHc/X//AhLF++DS++tA4vv/gDdr3+/YI7eGSzBUQiYUkY9GaESVzMkcvZ99zrglIA4BJ6u3a5MVKZTF4SA6k7ofcnVPJQddxQwftVqAaBh0r8kpBB7GxnO81VEj6f4w4ednlyscjlCpJIx8/FSQX1FYpGyOW9RKlw8KhATtO9njDBFngMj2SliIuRkSwGBlKYNKnZE9eTzxcxMDACwCZhSVxFApIS2/EfidjxNfR9cgACbJd5TpKGQn4CD3Lw8Ao8iLTP5mTyMJmsvBOen7MWB4/DDpuCdetsJ63Vq3fi+OMPkT7nzhHcyaZUKqOvf0REYKgxBfx63PrYY4o7AdTXx5HJ5D3uMGoEiDoG34zDTy348lfuBAAcecQ0HHbYlDE7ruoAkc4EOXgUnPKOwEOJaKGxWFcXg2magnQnUGSR61Qhn3fv3kHhJkHg33cjWrzRJYAsljwQoOuKB0S00PpCMSgAMGVyiyuETHsdedqc+YLQ6MxlxWoOHnSPHLGUK8BUHDx29IrvG4aBOEU0VRJ4sPFcKcpFlGd9aNPmvdJnZY+DR/BzirourFvfKcZtY2MCfX3D0pjfs2cAi1/fZF9ProB4PCpd/3AVgQef17q7hzB1amvF8gcT1PtHfYvPc34OHup6ytfrYrEkibredrAAw7IAy4JVtv+2yhYsGF53Lg0NDQ0NDQ0NDQ0NDQ0NDQ0NDY2qGNNfE+kH4kMPPRSLFy9Ge3t7lW9Uxz333IOlS5di8eLFns/27t2LaDSKlpYW6f3Jkydj7969nvKEXC6HXM79oTWZTAIACoUCCoWD0zKZ6hVUP06O53Ljdx1lyxLHzmbdNuTn5OTIeNalFqQll4YsCoWCEAAAQCJhEy6pVNYTGZDJZhGLBkeS8N3yhWJRXKe6iz5fKEptBQDDw2lRnpwTaHd/Pl9EPiKTmZl0FoVCQpC/PNIhncpJQpRsJie1OSdlSqUyhpjte7FQqnp/hoZGxGsDbh/k0S/8GPzH+mw259svhofTiMfDyLB2yedH31eoPL93Gef61fuZdtrQfp3D7//wPPssJ8WCDCVTB6zf5pXz5nI5xGLBwo0c62+mGTxHEDyEZdpur6KIebIEwTukRARks3lxfHImSMTdZWSY9YlisXrfEuImh8zOZvJOXVxSLOmMlXxedRMpeMZcU1MChmHAsiyPCw/1Rb6zvLExgeHhDHbttsU+hmmIXdWZLNXF6bdWGYVCAaZpgLQr4YghBB/lsoWcNNa810/mF1R3MZ5NU8TrqCTg0GDlvsjnm4wzx1UCl51s2boXRx01Tfqc79JPKgTzrl29aGm2x9DevXa0QjweQXt7kySYIvFBOuXMuWyc19fH0NtrzwEcaWXeouMTBgdHcMWn/oQj5k7FN79xacVrfDPYvqMbs2ZNGLPjqXN/asS9R1y0Mn/+Ulz8gXeh6LwXMg3Rl7PZnHBiStRFUSgUEI3IAg8SCNKcXlDWoc49/Z73UqmMOz87nbpslcVaxJHPF1m99//c6Ea02HNTNpd3ntnsNuBr0z13fxlPP70KH/7wydi9ux+A7bxRKBRYnF0ZzU2yg0d9PbmDuNdaLMrzyPBwWtQlFo2gUCgh59TFs84nM2J8mqaBaIyir4LHaZ4Jaew1q3JbcyejQWWuUMUFvL+USmXk83nhmqAKPtKpjOiL9fUx9PUNI53O+faBZDKFUEh28BgYGK4yb7nzzNate9He3lDxOlUcyL6oRqsMO88LfJ4rOOOFP2/y9gMAA+5aPDySFgKjtyOKhQKKpSKMggUUQ7AKZRSLBRTLRRSd8XawO3gcrP9/qKGhoaGhoaGhoaGhoaGhoaHxzsS4bBfbunWreJ3NZhHnuQijwM6dO/GlL30JCxcu3Odj+OG6667D1Vdf7Xn/iSeeQF1d3ZidZzywcOFC3/cHBgfF66693Zg/f/64nH+gf0AcOzns/pi9bdsO8f7goLvzeu3adZg/fwQHCtu37xSvn3nmOaxb24CREfsHd8MAuro6AQCrV68FrB7pu/MffUyQZn5YsbJbvO7u7hHXv2KFLC7q3L0H8+c/Jr33+pJlMAzbTp2Ijk0b1wMA+vsGkE7J533yyacxYUICXV024V4o5LFixVL73D39iDBC7sWXXsaOHavE36tWy9f15MJnxetcPl+1r/T1uzttlyxdimx2BwAgFnXJokceeRSmaZOR3FHijTeWw3Sus7urV7y/YMFCtLUlsH2H21c6O/fuc79d/PoS8Xr9+k2YP7+Edev7pDLUhgCwcpXcJv39Q1i65A3feu9v7O4clv5+4omFqKsLFhplmPPBns7dVdswnZaJ9eeffwGbNzdi06btAIBt27aiWLTv+YoVa6Wy/B7ROF+2bClCIQOlkoUdOztF2a1bt1WtC4lNdu/e6XxnO+bPny8RZW+8sQLxWB9275bbpXOPW5eeHrtvrVq1AvF4CJmM1+3hqaeeRltbQox/AGioNzE8DLz66goAwMhwUuy8fnXRq+jv24jhpH3eV199Fbt3r5F2uj/z9JMwDLu8ZVl46umnxWcLFz7hIcq3b7fHzoYNmzB/fgF79thzYy6fRShkk6Nr1mwAANGmPb2DFduR9+XVq9dh/vzKsQ79A65wYsmSZTAgz1fd3f3i9Y4du6XPHn/8WezYbosfdu6yhZGJuIlYVHZriUYM5PPAK68sQm/vBqTTbh/N5+3+t2zZSuk7AwNJ6ToXvdopff7gn5/Exo17sHHjHrS0ZDFjuuy+MFZ49dXFGE5urV6wRgyPyMKknTs7xXWuXSu37y9++ZC4rq6uvTBNoFQCFi58Ehs22vdtaLAP8+fPhwW5zVeusOevoSG7HTdtkgUy27Z24rnnnpfee/mVV9Hfb7sw7NmzBwCwZs0aaT0hjIykxPNH0HPIeKK/z+6XyaR9Xbt22nPdxo32+4ND8jhpbQGeenIhhobsuWRkJIP58+dj1y67zdetW4diQZ7j9+yx56FUKuveozVyP1yxYhX2Ousw3YONGzdj/vz56O6W59bkcBrPv/ACACCfz2Fo0K7r4teXolDY5Xud6ze44++NN1YgZHb7liPs7XKvoVgs4eGHH0EoZHqiZQqFEhYvfl1679FH58N0nE/6nPaNREwUCmW8sWwFdjlzbqFgrwc7drrrS2+ve63z5z+B1tY40in3vVdeeR3Fgty/OfhzxeMLnkdPz4aK1xmEA9EXd+zYIf29fMUqxGJ9SCbddauzcw/mz5+PgQFXUNjd0yf10c1bBsXrx+YvQEODHAH2jsG2A12B2qA+O2loaGhoaGhoaGhoaGhoaGhoaBxIjIvAo1wu49prr8XNN9+Mrq4ubNiwAXPmzMF3vvMdzJ49G5/5zGdqOs6SJUvQ3d2Nk046SbxXKpXw/PPP4xe/+AUWLFiAfD6PwcFBycWjq6sLU6YEW6x/+9vfxle/+lXxdzKZxMyZM3HRRRehqalp9Be8H1AoFLBw4UJceOGFiES8ZO/v/7ARgP1DclNTCzo6Osb0/Nf/8FUAQGtbqzj2nr0DuOnmZQCAtrZ28f7d92wGYP94f+ihc9DRcYHnePsLzz3fD8AmhN5zymk47rhZ6O4Zwi9vegOhUAhHHjkXS5Z2YcaMWTjjjBNx2x0rxHffd975aGm27d5z+QK69g5h1izXlaZYeh2PPW4TgS3NbruMpF7Gk09tF+UmTGjHBRdciB/f6JIrs2cfho6O9wIAfvaLNwCUcNLJJ2LhU9uRSNSjoTEOwCW0Tz/9TBx++BSsXbcbv7lrFerr6/De956De+5dh3A4ikRdDIBNOp188ik45d2Hie9aWIpH528Rf8+bdxyAdfZnllG1r6xdtxu33W63y7HHHoeLP3AiAGDb9gVYt/5lAMCZZ56L1tYGFIsl/N+PXhPfPeywI9DRcRYA4N4/bRF1PPW0MzD38KlYvHgT7rnXrktzS+uo+y2Ni6OPPhZ/fmgjAGDylGno6OiAGVqGv/x1kyh72un2OQFgx84nALhtYlkmDp97JBY6923u3CPR0XHmqOoyVli1agd+/4c14u/zzjsfbW3Bu5u7ugbxs1/YYp8ZM2ZWbcNf37YagEu4n3LKqXjXu2Zj0+b5eH3JXhx++OEIh7uxe/d6NDZNAOASjHxuue+BbejuSePU007Fgid2YiiZRiScAGCLFqZPn1GxLuVyWcwrRx99JF5bvAcTJ05GR0cHfnLjEgBl55pmo6PjQqxYuR2//6PbLq0tbeL4Dz+yG7t3j+A9p7wby1cMYetWt86JRBSZTB5nnnk2Dj10Ejo7+/HLm95APB7BYYfNxJ696xAK1QPow5Spk1AslNDZOYLjjn8Xznvfsbjr9xuAwRzOOutMHH30DPzkxiUolWwBySWXXIKf/3IZisU8ymUL7z33vbjxp/Y4v/jiD3gs93ftfhKvLd6DQw6ZjY6Oi7Fq9U7c9fvVaGxowMSJTdjblcKECZMBdKOttRE9vUnk82VcfPHFgbubLSzF/Mfsvjxr1mx0dLw/sM0B4P4HtqELNlF1yCFzxDxEuOkWdw5MJBoBJMXfM2bMEePi+efXAFiL6dMn4dhjZ2LzlpdFuQntLRhJ9eDY407A+ecdh97eJH7+y6UImSamTJmEPXu2YsaM2QBcktswQlJ/2bL1cQCuQO/ww+fiqaft8Tl9+lx0dLjPBW8WvC8eNe8YdHScPGbH7u4ewq9ucsVjibpGcZ09vc/i+RfcNmhpmYCjjjoMTz29HdOnT8f27SPIlPI4++xzkS+sBLAdhx0+Gx0dHfjdHzYglbLXtnA4hLPPORN337sWsXgCHR0dePHFdXjgzxtE/4cRxplnnoU7fuMKa44++jh84P3vAgA8/+IANm0axAnHH4eGhgQemb9Zug7DCOHCCy+s+BwynnjwoR3A3hQOmTUDmzcPYsKEiejo6MDzL6zFgw9txIS2Nt/5JplM4+Zbl6FUsnDRRe/Ha4tHsHZtH4499hhcfPGJuPW25aLsmWeeguee34lSycL5F1yIWDSCgcEX8Ozzbj+cMWM2CsVubN48iObmBqRSA5g2zZ7rNmzcgzt/uxIN9XGMpLKwLOCkE0/Bb+9ahUQigVmzZmDjpgEcMfdIdHScDgAYHsng5Zc34Oyz5qGuLoZ4YhUe+ou9lh1++Fx0dJxdsV2efLoHW7e6Qsn3ve8CNDTEUSzJa7F9vHng696FF10kXMr++vAudHaOoL4+gcHBFObMmYt8fjc2bBjAjOlTsGfPZjQ2uvP/uvW7cfuddl96z6mnY+7hU3HzrStBa8vUqbPQ0XFhYL23bO0SzxUTJ85AR8dFFa9TRbVn4vHEa4v/hNVrXAHpYYfNRUfHOdizZwA33bIMgPtMvGNHr+hj4VBM6qMvvbQO9z9gC3vPPPMcTJ/etv8uYj+jmMojvSsFI2Qi2hKFEQuhmMwhP5hHrD2O+MQ6KcbvYAS5PWpoaGhoaGhoaGhoaGhoaGhoaBwMGBeBxzXXXIPf/va3+L//+z9ceeWV4v1jjz0WN954Y80Cj/PPPx8rV8q7fD/1qU9h3rx5+Na3voWZM2ciEongqaeewuWXXw4AWL9+PXbs2IHTTz898LixWAyxWMzzfiQS2e8/FI8WQXUsMGvsYqk8ptfBd6ybpimObcDd5ZvJFsT7PIfcsnBA27TE4ijKTl1M045CME0DdXV2P8jnSwDkXcsG3Gv93Od/jTVrd+HGn3wK7zllrl2AbZAtly12nfKP1GUL4pyEXK4oytNOW6pLoVhCuSTvvqV2NAy7jqFQCE2NtttMJpNHVCKSDanNlY28GEm5u0yLxRLC4XBFa+x8jrshuMc2Tbe98gW7z5Vll3cUi25f5PbwVtk+jsXaipcdLfh5C/kSIpGIFPMBAOWS2xcpFufiD5yIxx5/A5lMHjl2nW+mLm8Whin3QzMUqliXYtG9waWSVbXeZctuF4oWsUDtYt+LSCSMlhZbUDI4KLtBFAolT7+NRiOor49hKJmW4k+qjX1u519fHxfvRSIRaT7LZOy5xTTkdimxeY5cNyLRCA6bM0UIPAzDHuM2we30Xec44XAIbW22W0J3t02QxuNR5IyCVH+KoonFoohEIsizWI1IJCLikcplSxrnsVhMik6y34uIsrzNQ2FTtEHaiUhpaa1HT28ShUIJpZIbJ6XCYO3C708QeEQPn4cAYO/eQSST7s76dEZ2n8jn3eOnHeeYpuY6zJo1SSrX5ERfUH80jJC4zkTC3qWezcp291m2hgDwjF97jiYYYzo+eVRKYYzHvjr3Z7N5z1pBIgwDBtw+EXIdYAxDtFdDQwKRSAQtzfXo7LQFHrFYGLGY3a40LogsbWiII5PJI53OS3M2oMxzTreIRCOoq/c6pvG+dSCelShCJJGw10l6zqG1ywyZvnVqaqoXrwsFSyzbkUgEzU0NqEtERT9vb2+CaRpO3FIJDfV10vgC7HgOWlPjcafNnfFM7VtXH0Mmm0epVEY67caquWu82+4/uO6PePnl9Tj//OPwP1f/g3S+YrH6fG4pkVs05izLu6ZztycAMA13baGj1CWiGBxMoVgsi+enxkZ7PPMxytedQt6+Hh7zkkxmK9ed1W9oKLPP/Wm8+2Imk8f8x5bi7LOOwqRJzQDc5wfqKzSf83tXKpc972WksQ/p+adUrn6v39IIWQiF7GfNcCgEMxwBzBIss4SwGZbmrIMVb+v7o6GhoaGhoaGhoaGhoaGhoaHxloPXh3sMcNddd+HWW2/FJz7xCYRCLrlxwgknYN26dTUfp7GxEccee6z0r76+HhMmTMCxxx6L5uZmfOYzn8FXv/pVPPPMM1iyZAk+9alP4fTTT8dpp502Hpd20CGbzcOyLJHzDsiZ7GMBlWgjSPnuTDTA3w/67v5CiRHFJDCg+oVDpiCL0umcRCoDsmhmzVp7l/XDD7suHEXpOt2yJUEIR8RnRTXfPu0Sp0S4UvlCoSQdD4AglUsl+/0wI0ozmTzy7J6r3y0o/YGT8Ly+QUixuvJjc6I445QpK2QTz6rnbUD9lfePQt4bq1ErOEFL51QJZC4wofITJzbDMAyUSmXs7Rr0Lbu/oYp7ylXuT14ip6vXW/S3qC0KKjjEOQm5TNNAc7MtHurvl+OV+P2k45iGK5QaZn1L7fNB9QCAuNP3c/miLTphqqRUyj5mSelbvF/TsUIhE4c7Li0AEI2GEXZEFtTXSkVX4NLSYpO/XY7AIxYLIxKx1yyaR2l8mCF/8okLPHi9TR+yKqTWpeTWhcZzymnD+vqYIK/T6Zx6KAGaEwBIIqXg8mzeVo67fMU26e+UMlfwcTY8bAtBGhsTaGiQBQFECFN/KdK8FTKRcEhxmgPrnOvOO/eeoI5BLjYpq0qyNwk+D9XShqNBSakrF8xRv613xk/GWc8BIGQaCIXtvmgLBXJS2dZW19UnFosgHHLLAu480uCINXK5gmc9zrA2pfFlmiaiUa/2N58vemI/9idoPCbqotLfFpuH/BCJuGM6nc6Jdgk543PCBDfqpy4RE0Ir6t9qX0tn8kz05azZTl8tM+K/sdE+TtI5jmkYiMXt8nxtevll28HhqadsMTMfA3y+DYK6fmed7/B60/2stPZTX6S5PJstiM8bGhyBB+svOXYN1Df588GAIg586eV1+NN9L4t68fm7r0+O3zqY8Ic/Po8bfvxX/NOnfy7eo/lMCHaUtQJw11X+XkYRzPH24u25YsV2/Om+lw/oeBtr0KUYAFC2x55Vtt9QRUoaGhoaGhoaGhoaGhoaGhoaGhoa1TEuDh67d+/G4Ycf7nm/XC6jUKj+g/Vo8JOf/ASmaeLyyy9HLpfD+9//fvzqV78a03McrNi8eS8+c+Wv8MFLTsbQkLvrmhO+YwFVMOD3PicKSwHChwMBPwGBIGFCpthpnkxmPHX1E8rwtpXIMXbNrsAjjFyugFKx5CFh0hm3vbwCj6JXbKKQBSEmTikUSsiw46n1Vq9LJXVtFw95lzkHJ5BlQshLFKvXKQkCOHlLhAirm3rNxWIJ/f0jYtdsJXCyiMizbFZxH2D3jtwA6uqimNDWgN6+Yeza2cc+P4ACD4XUUf9WIY23GsRdor/FI0hn8kIUQruSQyETTU2ywIPcPnKSC4tLCBPRFXS//cDJq1jcJfnV/kp1UInWgo+oKmSamDat1T1uLOyS5EWvkKW11d3db5ePCAEIHZ8IetWNg0DvW5Zb1jAMX1ccGmdEELpis5AgrkccQYvtlhRCPl+sOKfLjhzV11cuvOHiLcBeUzhSzriORsN2PZiLhhB4NMSFaINQL/qDLKoLhUxBcqfS9nXW1ceFeCObzQuCvaBccybtP9+OBfjx1HljLI8NQBLjUV+sq4sBfcPIZQtiHBqm4faXYlncqzoh8HD7biwWEW4fNH5o3qhn4htqc4LfeA2ZhliLVKhiwf0JGo8kCCoo1xkkwALsNhsaStsCDxr/zrhtm9CInbvsuT8Wj6CxIY7h4YwkVgPsMW1Zln0Mi9ZsRyRXkOeWUMh25BkcTCOZtOOQDNMQQjZVfMgxaoGHKqp0js3fb2xMoK9vGMMjGfm7fD0nhxRnHsrlCmLtJwFXho2NbM597Qo83OMNDMjiwG988y4A9rz/sb87U8yBANCvlD2YsGq1Hc8zOJgW79H9rquLYWQkywS4fG6124SvW7S+8XFN4H3is5+/BQAwbWorzjrrqDG9ngMFWu8tA7BgARa9Z2iBh4aGhoaGhoaGhoaGhoaGhoaGxj5gXBw8jj76aLzwwgue9++//36ceOKJb+rYzz77LG688Ubxdzwexy9/+Uv09/cjlUrhwQcfxJQpU97UOd4K6O8fxj9e8TPk80U8+OdXJbJ0rEmYWhw8Umk59sPv9YGAtEOSBB7cqcAhsoeSaQ857teOBUZwVhO1uA4eZUEa+33XjbogRwUvyS3IZk4Is8gGHqvgEapUEXhU6y+cQOZ9gb+f9iEzAHk3PBcqkICC10118PjGN+/CZR+9HitXbq9YP/sa3O/SDmaVHJMcPJzzRiJhISDZsbOX1XtshWi1IJlMo1gsedpQdfRQwfuWKpLZtasP//TpX+DJp1aw4ym7zwuq8MEUDh4kYnKjjNw2LLFxRO4TUr1G4eCRiLsxPqrzBzmrqO3Ax2uZCQjIPYKuUSW+XbFBCK0tisAjGhHkm+r4E3LiF2icnvLuw8U56Xr4Dn4/qMSeK5JxXVBol33IEXgA8ryjopLrhR/8hFmEbdt7pL/V+8/HGdWzsTGBOJuLotGwiK7IC1GdS6oTyU3nTsTdmA0umlNFLVx4MdYCD2mdGOOxrwqduNsWiTnq6l0HDyESME3Rd0vFEtIpcnaxyXbZwSPM+lZJOm885sYIqQ4OnFTmwgcSLqhQRTf7EzRPiYiWourgEfw4S/03nc5JTiUAMKHNbcd4PIIGZ/4YEQ4ejlCG7lHavUdxJxaH6lZkc0VjgysepffizjyXywWLiFRBQDWoY4HGEO93JNCo5MhD6zO1ry3wsI9B184dPHjfSWds5xk+jrZt63bvEVv7//LX1wDI87fqFJXPF3HzLU9g+fJtAVe9/3DooW78FLlJCTcZEhvRWsHuHY01j7iXC9WqzDvbd/R43nurwwDcPKCyZb9hQYo81NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0KiOcRF4fPe738UXvvAFXH/99SiXy3jwwQdx5ZVX4tprr8V3v/vd8TjlOw73/unlwM/GmoThOy1h+ZP9QWIHlXDe35BiQZwf0PluciKyk0PpQFEFByfngq65xIg1+ttjo54peMoLwr1YEm3rErwOgcDiJbj1fKV61+LgUQl+1wYoES0O8eNx8MgXfMvnRXSD19WD8OprGwEADzy4qGL9AEjOAjnh4FFB4OG8jkZCQuAxyCzl97eDR3//MC750A9w1Rd/7Ym5qWbTLo03pQ2vufZ+bNjQie9+7x7xXlkVFAmBhys2aHHGBYF2zXMSijt47JvAw/087nw/m8lLpBcAdHcPoVwue6Iu/Bw8zJAhXHkAewyqogoieEOmgRYfBw8R0eIRhNjL5U2/+hdc0nEyvvNffyO9zyNaqrl90M544fhhGqKNiRg0TQORCN2jsXPwqBTRsn1bNwB4HH38BD7k4NHQkBBEN2BH/5BAICfiItx2ob5CRKfJ3uNjtlJEy3gKPNLp6g4ehUIRd9/zIjZt2lO1rDqe+Rj1I9CpDxmGIUX60L2qcxwWJAePaHA/5+2bSsn3WxLNsPF/MDp4FB2nIRJJEMlO85kRIKoCmMAjk5OcSgDbwYMQj0WEGIIcPOh+kLCGx7xQXUiM5IpkDNQ3OLFVzjixHTy8/VwVg8kOHqMXeGSVMQe4MT2qK0km4xX48LnejWghBw+3fFaJaFHrkUrlsGFDJwC532zb1oNCoSg9Pw4OpqR17pFHX8ddv3sWn7vq1uAL30+gtgOApW9sBVBbRMuI45biFeAwMTR3DnLuG2+Ht1FCi30xtmGHc41l+/oM7eChoaGhoaGhoaGhoaGhoaGhoaGxLxgXgcell16Khx9+GE8++STq6+vx3e9+F2vXrsXDDz+MCy+8cDxO+Y6DH+krdhOOMQnDCddiANmfyeTF31L5APeP/QVO3JHLSIntkG5qdh08VGGESjQDsgiBE4FFH7LZdfDwRrQQwcvvIxHThUJJiA3onqoW4ET8+RHrapur/WG0Ao9yoMBjlBEtPjuTJQePABK7lv7Mv0vnVAUe3CGEykeiYUyb1uY53v4WeLz88nqUSmWsXLnD21fKlcdQpYiWrQ5hz0HEH7ksCHLKZ1wQSIAhO3i4xCrFbgTVyw+cgJw4sQkA0Ns3LPUJwzCQzxcxMJASJBC5PUhEOau718HD39kgFDIxsb1JqlMsFkaYRFWK8IXG3FHzZuA//+NytDvfJSeActmSIlr84DoylOVjm27kEo0lM2QKEU6liJbRxosECTw6O/uxc1cfTNPAMcfMlL5DAgReDxHRojh4xGIRRKOuIwvgrhumaYp5MZVyhSw0j3EHD9W1JLsPAo8XXlyL1xZvrFpOEitmchVK2nh8wTL8/Bfz8cl/+nkNx5avg48hmhPr69wIDHeON6S+S+IMEhpMmdIijhNjLh30fVpbTMN1h6E2J2R95ueQaYqIHRVjHf+2a3cf/uM//4A1a3ZWLevGajmkusfBI1jgEaNxlCsyMZjdXnMOnSzKxeNRNJGDx0iAg0cmL8Z5lMWqASz+jfVzijUxDXee5GtTXBHTlCWBx+gEWwCPaHHfp5ge1cGFR65Q3RNM4EHjosFxIykWS6I/87lmZCQr1WPu4VMBuO5L6ry0c2efR6DHBVx9fcOe69y5sxdf/dpvsHTpFs9n4wk+fl9zRKcFxcFDPJ+xeSSVskUvqiOVFO3Hjk19gn/+tgIt94ZhR7SUYYs+DNivtYWHhoaGhoaGhoaGhoaGhoaGhobGqODvwz0GOPvss7Fw4cLxOvw7HpzEJEyf1oZNm/eOvYMH+9Ga/4CtEleZTB4NDXFZBHKgHTykndlOjEjJ3dlMES2pVM4rCPARFnByLjCiRRV4lEpC0OHWq+z5XmNDAu0TGtHbNyyInUQ8imQy4ynvCjxiUjyLes1+f6s71HNVxAwlKaKFxWLwiBayhVd2YvIdyHyXJgllKkW0iHOWahF4uGWItMoq5Bi/Tjp/JBLGYXMmQ8X+FniEmGPCffe/In2mRjyoqOSYQyS8X3lyWSgKctLdfU7jgpBgAg/LsmAYhutWYRpIxEfv4MHFTVMmt4r60i7zcDiEujq7/w8PZ0Q/jMXCyGYLvn0xFDIFQUt/CxeEkjyGzJCJqVNbpTrFYhFEHdcM1cGDhBwqws7xLcudW0JVI1oU15SQIZwZRN1No6aIFkloVQM5GCTweGOZvTv9uGNneYQvglRn42JERIbEpPsf9XXwcF0TSFhE8xCPruBEMHdLAhRitAaBx65dffjWv/8OAPDi89cE3j/1ePkaXBN27+6vWubpp1eirj4mBBkNDXFBhJdKZYRCpivwIAePbMEVZpim219KJY+Dx5FHTBfnMkOGFEVkWZY0nhOKOwyBi2b4uqg+X9B4H+t58cp/uQlDQ2ns3t2P3/7mixXL0phRhay1OHiIccQisGheOPU9c0W5eNx18KC2UgUe6Uxe1IH6OY1PLjQjcRa1sRli/ZytTbF4RBq3kqtVLZFLqoAgK0e02PFPjoNLpftvyQKPbNZ18GhscF0sMpk8GhsT0vPSjh09Ur3JvYTEJuozx96uQc9z6nAyI4RF7Wz+GR7OoLExgdtufxKLXt2ARa9uwMsv/iCoOSQUiyWPG9FowZ9/+/pt4QkJKcntpOjj4AHYz5Vq5FrQvaYIJj5GD2Qk0pjDiWExDNjRLPS3aTt4kNZDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDozaMi4OHxvjit3c9i5tuXuB5/4gjpwGozfFgaCiNL335Dix4YlnVspxI9XOqILyyaL3n/WruEOMNvxgZLpJobEyI3fYDA3IOvF9ECyc4gwhHErUQwVMseiNa1F3WgE3EHDJ7olSOdvyWFLKZyKk6XwcPfzEJQXXwyFSJJKglouXGnz6CDRs7PW4TkoMHu1Yib3lfDYrzUV0p/MCJkN7eYYyMZJFTdg37RbREIiHMOWyK53jVRC9jjWQyLV7TLmFCeRQRLbW0Fd23GLkseCJa3OgiAhH8lmV5xAmBDh6jcB5pbIyLc+zpHABgu11QREm+UBREWUzZNc+PZZqmINQB+557RRXuGIrHo2hraxDlo1HXwYP6ixhz4cqxKzyixQyIaFFjNESkg2EIBw+CaZpCbKI6Jzz22FJ8+jO/RE/PUMXIFT9IERCMpKWx2tra4Ino8ItooWuIRsKCuAaAcCQkrlOQ8Ew8kHDKcqcSEohw8pP6pXBOyI5O4MGdO6rFrnARWS2k+vTpruvP0FDa83lf3zD+67t346tf+41oV94vC8KRSRYP5PNudIVhGkI8VCyWhQMVuX1wB48N6zslIrtUKrPIlQoRLWx+pvFqmoZYuwhUv0pCI8Jo1nxqu81b9lYsZ1mWxzWhpIqkKjh4cFceHkUDAFOntuLq//4Y/vt7H0MsFhFuFcPDckRLA49oIRckFqsm1cU0hIsNCSFMwxDl+drE+8XKldv3OXKJxiidr8wcj+izpCL4kx087OPQPJTLuyI67hBDIiwu8Ni8pUsS81Ifdd20FIHH3gHPcwkXI/K+TDFIfBmsZZ7bvHkv3n/x/+DmW56oWhaw3X7+4z//IEW1AXJ/pjqqES1qRA9hZCTjmat43fmx6d4Mj7jtoI7XtzQsC4Zh30SrbI8rqwwYIXsclmuYWzQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDRcjIvAo7W1FW1tbZ5/EyZMwPTp03HuuefizjvvHI9TvyNwy63+P1hPc3aj10Kw3H7nU1j8+iZc/f0/VS0rCTxK/mIPAHjggUWwLEsReBzYiBZOOggHD0ZkhUKm2LHb2yvbgvuR5ZxolX6o9xFBEOnpH9EiRzRQfWbOaJfK0W53auuiIvDwj2iR663uAlXJkWpkCSctZNcE+Zqu/v6fAu3i7fJc4OG1NOdiDzm6pXp/zjNywLIs3Hf/y3ju+TUA3LiMvOTgQQIP28Gjge1QtstWJ9bGEqq4iIPI8SBUcvBQYVmuCCFKu889ES2GiAsicIcGcmWRxAk+Dh5BYpMH/7wI8x9bKuphGAYMw8CkSfau7c49tjtCOBwSO++LhZIgIN3oIyY2Ym4FISauKBRLkrMBwMUgDsE7xXXxiMUiiITd3f58Pgty5eACj6oRLSG5LmUmTKlTYjHMkIFIlBwCZGHZ/1x7P9at341HHl0ijata7P35jn+J4Gdzi4fgF0SmV+BHQhkBi4vbvMK0mHDwcAQepiEigLJSRIt9zUSA82urZV3Ztr1HvOakqR/4fFMLqU79ErCdQlSMsCgUIoxJJAG4cxGNobo6d/6hdgkxB49SqcwcPOzjGIaBv//YWQCAD33oFMkFqFQqw2Ljk76jtsPIsFtPHhek9l/XNaOy+GXBE8twwUVX48UX11Ysp4KLo/xQKpXF5yRqVEUVFR08wm5/5FE0hAsvOAEXXXgCAFtsBngjWup8IlqE2CyvuiCZwt2DxA0Gc68Jimh5ZdEGWYBVwzpEzwTUv0g8wl2NqM1UMRLvuyR8IbePbLbgCiGjIdEHSITFx8mOHb3SGBKONE4Z1Vloz55Bz3MKF3jwfnbVF29DT28SE9obxXv9/cHrJeHPD72KTCaPu373bMW+RfjWv/8Ozz63Gvc/IDto8XrSeFHFRsLBRXn+GR7JSs84QPA8Rk5sqRH3eazavPVWgwUAhu3UYVEsi2kAZQvloo5o0dDQ0NDQ0NDQ0NDQ0NDQ0NDQGA3GReDx3e9+F6Zp4pJLLsHVV1+Nq6++GpdccglM08RVV12FI444Ap/73Ofw61//ejxO/46CaRr4m785HfOOnI6LLz4JgP3DfjWRRyVCWUVRimXxd3MAbPtq9b1qhPN4gwsvaDdkSSF4yK2gv18RePg5eBS8ghFAFpLQOVtbbWeAoaG0h5BUXRAAm+RtaamXyhH5Q+3qiWip8xLrqiBCvQceB48qpHDZR7wCeJ0l+vtHPGIEycHDR+DBBUMUXWDXkRG9Sv2XLN2MJxYul95Ticdf3/akeE2EHS9D4oOo4zbwrhNmS9+vZRd/LlfAolc3vOnYgny+iLt+91zg59UcPHgfr0TA3vunl6R7EBdCCSInXZeFSCQsCQ7qG7grhrxD3GQRGxxqRA4AbN/Rgx/d8Fdcc+39op+S0KLNGS8ktAqHZQcLIiDpXLxvqcKnOU7szrtOmC2IbxFz5BwnHLLf5zEtsVhEEpXw/k5uIirIraNsWW5ES6iyGEQIvITjh+Fx4wmZpqgLF1Zs3dolXtfVxUbt4MH7Cx/73H0gyMGDC01kgYdbvmxZQpgghFxMVKf2lRBz8MhIES32d2l+5i43tTh4SHEyw9kKJZWIlhrGc7U254RyX5/dnxPxqOjrrsDDjcUgUQWtU4bhxq7kcwUhCuBCkS9+4WLcevNn8S9XXijEQ4DiVBEyhPuEGtnE3Qq4SAqAdJ+Ek06Vtrn6+39CPl/EN51onEpQSXc1aoyDr8XkMEHzBxeyBIE7ePB5zg8k9qO2Uh08isWSmHtonJBgkLuDxByRU4Y5eMR8Ilp4mw4PZyThZK6GuCA15icjHDx4RIvrwMTx4588LK5FCGjq3HiVvFgnw+61OnXirhzFYsmNXAqZ7nU6dclmvA4e6nPKsBRNIn+2ZvVOSSyaqmGea2IxY34iLA4+t6jn9nXwKMquKXT/i6rAI5n2zFUZKdqPOXg4deCijmrz1lsJFsWzGAZA4o6yBdN04t5qEOFoaGhoaGhoaGhoaGhoaGhoaGhouPBnrN4kXnzxRVxzzTX47Gc/K71/yy234IknnsADDzyA448/Hj/72c9w5ZVXjkcV3jH4pyveh3/+zAUA1J2BlbPHrXLtP6ZyEl5yWXDenza1FZ17BrB376C0M5XqcSBR9HHwUEUSzU112IU+9PbJAg8/cQonYySBh48Igiz0M5k8hpLyzlmV4AVsIkYVeBBRUlQFHmFy8JB3/QPeNqcdpKZpoFy2PORIOlOZLCmxviI5eCjERXt7k8fVg7cX/0wIPHzcRkKhqNS2ar/+4r/dDgA49piZmDjR3tVL9+of/v4s3H3Pi9IxJ0xoRDKZkcgy4eDhkHDHHDMLL760zv28BmLtuuv/jCeeWIaPXPYefOPrl1UtH4St27orfq62qYpSwPhU8dOfPYpjj5kl/najTuToEpMJn9IiFiKGaDSMfL4o4mvKEmnvFRqppB4ArFy5Q7wecQg9IrYpGoFI53DYjUspFtyd93VOny+VymKeU3fl//qWz+GVV9bj5JMPw/evuc8uH+DgMW0aF3iEBZldKJSkqB7V1YLAHTyEYMOsEtFSUuMlTI8bTyIRFQKXIhPucNv+XK4o9Y9stoBSqSy5mKhQxQzlchmmabrzBHMfIPhFtFC/C4VM6XrLpbIrklFjcUzT4/ZSl4ghnnAIYSmixT4XCX/4ddci8OCiupGqDh6cVK/umiCJ1XxEVbydSOARiYYQiYSRyxVc1xy2FjXUxzA8kkVyOO28ZwhxEhdmcOGVYRg49lh7TFuWJeb4bDYvCPuQaaLeEQImHQcHGssDg67Qs6SM/3g8ItbzaNQrNHqzUOf+Xbv6PNFQQ0Np/Mu/3oQTmACPRI2ibzGRVBCiYh4pSmIjP4iIFmd+Eg4erN2pLwqXLmUODYdMFtGSF+cjUR1/TsopAg8eGaVGm/iB+hA53WQVBw87osf7nOBeSxaxWESs53ScdCYvricaDbuxS067qwI+ihgJh0NuFI1TJpNVHTwGqjh4yJ8NDKakNkunqgsf+HNDd88QZs5sDyy7c6crAFHnTj43uAIPxcFDRC7J81J//4hwLBJ1r+bgwea5kZG3j8CDCzgsC7DoFhuGbe1Rtl16gtyvNDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NGSMi4PHggULcMEFF3jeP//887FgwQIAQEdHB7Zs2TIep39HgROr3DY+XyXPujwagUeRE4juj9NECE6e3CJ2km/Z0iV9t3QQCTzoh3N1B2+TcPCQXU38yPLBwRT+/NCrAGTSwi+ipS4RE1EXe/YM+NaLiyQMw0CLQnDxmBd+bCIh1F3/gHeXNZEPFLOgOnZUc/DwE68AXmeJ1pZ6D8EhR7r4OHgozibUb1Npl9hIMTJnM+tfPFKHzjtpUjOmT2+Tjnn8cYdI5wTce0sE+kcuOxUzZkxAa2u9p2wQnnhiGQDgzw+9VrVsJXDy2c8JYzQRLdXI6d2d/eK1KvAoiYgGm2BpZjug6+tj7g5up22sfXDw2LixU7ymncpEtDY22mOF3IVkB48SI1pZXIzihMCji8477zg0N9d5IlrKyhiaPLlFHC8Rj4p5tFAoSi4QfH7lkAQeVdwEwoqbSJmJTdSIlvqGuBAgcWKdj41cLo+S0j8qkcJqhJZ9DNllg8dWEajNuZiB5n+VEB0eyYr7JsRDJff+xOKqO0iUOXi4fYa+S05IHFzUFAQuTByuQpTydaqWWAwphsxnneBiMhJ4RKMRIRKic3CxQaMz3gYHbIGT7eBh95chh/yNREKBQiODRbGk03lRR8Mw0OC4GJHQkEQEQ0MZj5sUjX9OtJJYoVpES3t7U8XPOdS5f9dur8vCn+57CTt39eGRR5eI9+LKvCXmoYoOHk5/LJbAo2j80NhAES12nyGhDG97+iyuOHjwyCU3osW+1wZzr+HzNH89PJyR+tbevYMegV+xWMKiRRuEUFM8b5DzRk7uWyHTkOZMFTTvU3m6/nQ6xyJawkwkY7d7ThHzkgNFKGSKtYLWAHrGIJeRvV21R7QA9hjK5tx5jYsggjA45LrTqM41KngkW1IR4/J5ZCSVQ7lcFvWrU9xkPAKPgRHPXKUKVsV5HWFXkIj47QEDNEytchlWGTBMAJaF8oH9XwUNDQ0NDQ0NDQ0NDQ0NDQ0NDY23HMZF4NHW1oaHH37Y8/7DDz+MtjabfE2lUmhsbPSU0RgdEows40QbxS4EoVTFFYCD/wgt/Tjt/JgdDodwyCETAQDrN+xWvlv7ecYD/PzCwUPZwUtEdl9fUvmu/y/OP/zRXwCou9nd81jMGn/ypBYAXoEHlbcUB49mxcGDiE8RL8F2zQPw7PoHgiNaKGbDYxleLaKF9RXenkTakiiiUCx5HFy4Cwq/1iAHD+q3PKKFkznr17v9q49F6lBdwiETs5SduhMmOC4fjDRyiSubtGpqSuDeu7+K66/7RwD+4oTxwsiIfX3HHD3Tl8yuFtHC76fa/ir27h0Ur12Bh0JOKsInwCYPKXLAJRDdOIJ4zCvw8OtX23f0itcp57ppHBIJ7Tp4hNxohXxR1I/viM45YoYSI1ZVUBSL6oJD13n44VNF2RNOmO3uVC+URD8Nh0MVXDmYwKNK/ENIFZtYbnk1bqmhPi5I1UKNDh6AvENchZ+wL6Ps+A+ZJmbMkMcQ7ern9VDFZiQImD69Tdy3vLKz3QyZYr4g1NXFhFCRi1PyTj9Tywddhwo+t1TbCc/L1uLeI7kR+Tp4uOOwzxEORplAoJD3io2aHIFTT6+9DsXjEdG2JHpSRUAqaD3IZHKugwM79uCgI/BobYBh2NEIRGiXlTF0yilzAQAtLXWu6KmKcJTfKzUORIU69+9WBB733f8y/nTfy9J7kUhIiJ6KxRIsy3XNMQIcOQAgEuYRLXIUjQqah0YcUQDday6gUSNaVJGcGTKEKIYiOUKm6d/P2XNEUhF45PNF3PmbZ6T6/eC6B/HVr/8GN974iH1O4bwhCzj5fE7j1w8k2KD7Rc8JmUxeCOiiEddNqVCkiBZ5rRkWDh6u4C+nRLRQdFZ//4hnTFZy8OjrG5YEJX7Ch0wmjy988df47V3PAgCGBl2hxnCVqBP+nKKKQYrKM0wqlWMRLeTgUfKUtes94vO85dadP08NOe46fI59Wwk8yqCMFgAWrIJz7fafKI4UUM4f2P9f0NDQ0NDQ0NDQ0NDQ0NDQ0NDQeCthXAQe3/nOd/CNb3wDH/7wh3HNNdfgmmuuwaWXXopvfvOb+N73vgcAWLhwIc4999zxOP07CnFG8BuGwXafVyZiRhPRwnc35/NF8YM1J/gOmWULPDZs2CN91y/mZH+ipogWh8geHEwHfleFZVkegQcRJCVGCJG4oLt7SD620oaAE9GiOHgQgRTk4OFnva66TxCJEETycDGFH7hDgCRkca73uGNth4x0Kiflx/N6W5blG2sQ5OCRYwQYJzmI/AfcnfGA7D5A0TgAcO/dXxWRG7xdREQLizEyDEMQpLVY448VyKGkviEuiFgONQpHhergwYlV1e58G4uDIUJQ3cFPgosWReBB5DQR4JbFBB4+QiO/Nty50xV4CAcPp45NwsGDBB6mK3AollyHEbZDXLhPVCBtVQcPvrMdAI47dhau+f4/4E/3fA2NjQlxncViSfSTINcEAKJ/lYo8oqWag4ca0WKI3eCEhoa4GxeT9xd4ZLN5L4FYYTz7xf0QccrFYzNnTJDKuBEt7pyoxkX96Z6v4dxzjsZVn/+AGFfFgtzmpmlgCnNMoWO7wgQe0WJ/l0dWqOeuhJIU0VLFwYOPoRrce/hcVs3Bo58iWiJhdwwpzjO2g4cj8OixBR719XHRd0noUKvAI53OiTU+ZBrCHYfmz/r6uHCXGnDeK5VlcdKn/ul9+PSnzsNv7/yix5EhCHy+qfYMoj4b0HUDwNatXfjJjY94nBoi4ZAQbAH2fSvX4ODBI4PUKBoVDc46SQ4ZfJ5T5+eoKvBgIhm61+QeE42GhXsNF0fklYgWtW/ffsdT4rVlWXh8wRsAgEfnL0E6nRPrA9Wb7hHvW2r0DYdbd7s8OXjwZ5xIJMTmIopokeeZYSmixe6HJIShOrVPaBLt0t0z5Pt9u072eak/9/YmpTZTY+YA4PkX1mDpG1txy61PoFwuyw4eycoOHryvJpWyJeUZZdOmPWL+pvFYCHAk6+8f9txP/rzF3UHovOPp4GFZFq7/vz/j1l8vHNPj1nJewLKjWAz7/z8sEzCiBgzDQLlkwSqVUT7AgnANDQ0NDQ0NDQ0NDQ0NDQ0NDY23EsZF4HHllVfiueeeQ319PR588EE8+OCDqKurw3PPPYfPfOYzAICvfe1ruPfee8fj9G9rqKKDhJLvTQSi+qOyupu2miuAfE75WPRjPRcbzJ49CYD9I3ul+i5dugU//8X8qlESYwE1joBeqxbtQeRHJYKqyKzePcdncQREohN5QcIMfwcPE83N8m51snn3imrs+9zQ4BJ+Knko6upcR30AOch3lPpBcvBghISwdHdIr5FUFimHzGpxnEio76j974UX1sKyLI8IQGTZK3EudE2c5PGLaAmFQ/jEx89BNBrGOWcfjZkz21ksgtsu1CYRhbiPKTuPOX50w1/w2c/dIuqiRlPsK4h8bqiPoanJ2xerkdl8fJZKZWnMqUKDNWt3ArDnCdphTqS9Snx6HDyUiBYRAcGiBziy2YLUdwqFouQgQtdNhDLFgoiIllDIjVbIu04VIXa+rOLgEfa5J2osiiqSAoDzzjsOMxxRAxGZuVxBiFmiUf94FsCN+SmWylUjWtTxz4UpaoxCfX1AREuKR7T4OHhUIAV5X6JxkVUcPEzTwPTpbRJZLyJafFyL6JqmT2/DdT/4fzj5pMNYvZUIHdN2E+ARMLaDh3w/Obnc5hvRUp0IlOO5qjl4MNeEGtYmyWXBZ52QHTwcgUc0LIQGwtmEjTlVPFBXF5PEDEDwWsW/A9guLkJoaBqeyJ1EIioEf0Q4q333kFkT8c+fuQATJzaz2JLKRDkXo1WLc1Hj23g8T5ciiCSEIyEpKqlQKIm1xQgQbND3ALv/qlE0KtQxSuUNw/DEf1G/FS5IYo4yPaKwWCwinI5onlbn6+HhTEV3GlXw0tnZzxw87HskBFusLi3NXhccAjlyUN0TiZhn3YhGw64LilNf1cGDHCgi4ZAnnoauMRIJiT7MBZqAv4MHiTV7+4YlcZFfRAuv8e7d/eJZBIBHeKqC99VkBQcPAHj1tY2ifgkSvtF4Vsr294947id/3iop914VDo+1wGP37n785a+L8ZvfPlN1fI417GFqOZEsAMrus4YRNmBZ1V1/NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NFyMucCjUCjg05/+NKZNm4a7774bS5cuxdKlS3H33XfjjDPOGOvTveOQUQhxNaKDyAlOWD3y6BJ86NLrsGbtLvHeaBw81B+4yW6bk5MXXXgCDMOoaG8NAF/4t9tw9z0v4v4HXqn5/PsK9dwkGlAt2mknc7Xvc5DLgHR8QQi5u9WJcCPSICYIHsXSnWIqFCIupOz4V4nsGdPdnfaHOiIb9Yd7+m6TQg4SgVstokUSybB+RX1ICDxGsmK3cqsj8CgpTgWEwcEUtm7t9sRJ5JW4EAIRtJxUGhgc8dQxFDIxbVobHv7Lt3HtNR8HwIUvbNe0Q9AQOU+Is53qnGwoFkt48M+vYsXK7Vj8+iYA/vE4+wLu4NHY6HVZGalCTpdKyvh02kgVOAHADiciJcrIZiLs6F6Ra0BzExd4RF2hTM49PuDvPkHIK84TvE1prqB+SP2I+lA4HJIcPHiEhOrg4YoTKgk8VKcS/+VPxAvkCmIskRjGDxTzUypVj2hRxSbUHiHTRCQSFp8DtsOKGy3hT/plc3nJYQcAOvf0B9aV9wcSnxFxSnUih5TJk5tZWW9ES9FHKEPwOHgo0VKTmYuH7ODhigepbVr30cGDr4HVoov4XF+Lgwc/f9GHKOUOHrRWRCMhMd8UlOiaUMj0rEN1iahHOHXmGfMq1quOOaFwUU2jj3jEjdFQBD4+LjgkPFPXdxU8+k0VGqpQhaPctYk7NXFEImGPwEOMuUoOHmwOqBTnBLjiSVWEaZoGpivONjQPlcuWJPo0Q4b4zC0blu5nNlvwrNXJZEb0xcsufY94n+ZctV16epJiHJIIi/o6n4uaW+S1/0v/dol4LeKCmEOSurZFeESLU2dVBEl1i8UiIkaL5hYSRITDIdGX+vvs9VsVwfJzTJ3aCsAWg2QDXL0I3NVj0+a9kvCqWr/lYl4SGKqf0fPV3q4h0SeonUREizIn9vf7RbS47Vbkz1alMtLpnLxmpnNjKnrgor3BoXSFkuMEJ6HFKkO4eQBAKOaMaa3v0NDQ0NDQ0NDQ0NDQ0NDQ0NDQqBljLvCIRCJ44IEHxvqwGg7UH9UbFOLG3X3q/mD9g+seQH//CH70o7+I9yrtElVRVAjkTFbe8UuxGH7ktEriEIhoHk+o5/aLlgFkIpujkoNHV9eg93wk8LBcArnOIS+INCDBhyB4FbJZJVZoB3eQ+8AhDukAAIceaufb5xXSiAj8aQ5ZQqAYhmoCj2AHDxJ42Pd9eDiDRYs2AIAglIrKLmgAIrZm585eD1FDZJNKihB5w0keTqKq7dLYmBCvSZhQYPESRCBxshBw279clnfSdnYOiNdE2MbjYyPwICeLxoaEr4OHahmvQm0r1WEH8ParWCwsxBNEUFN7EjHZrEa0xALiJZhTjQret1SSfXjYcfAwSWglX3sobEoRJSVGnrpCnDzKZVcM4Cc28ES0VBAm8OvP5YpSREEQiLQvlco1RLQ48zOJTcgFxSHeuItHQ31cOIeoQhlCTnFJAYAtW7oC6yoLPJxIh4zi4OC0y8wZ7W5ZEdHi1oPP/ypU8ZBLNtvXOXOmS5TX1UU90UhcZOEX0VKsSeDhjvdqkUt8Xsvni1VJVTluys/BwytukCJaSJjE3J4aG+X+X1cXQz0T/B177Cz84/+rHGtHkV3pdE4SGk6c2KSUi7pjiAQBFYRPJD6pNhfxNbNaRIsqoOQOHv39I2pxALZAgPe3YrFYdcwBkKLrylXGP/XRsrJ2GYYhCSoBVxBIx/aLaCHEYhGp/tls3tNPSqWyaOOmpjpR737n+WFAEXh09yRdB486u6+oz2d29Jvs4NHa2oBp02w3koJH+GZ4ooAiTJxEoi1aZxqVaK1YLCKJ5AD3XofDIeFUQ9dEDj3DzHGD+s7UKfYzS3//iLSW+DnyDDHBQjqdk8QzoxF49PUNy+JOZ26gZxousqlT5kW6zkmTbHFcX/+w16lGcvCQ57FkMqPMsVZVt7vnnluNL33lDo8jih/4/D/oI1JW0dObxHXXP4iNG/dULVsRlqvdsNc6imthY9aytMBDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NjFBiXiJbLLrsMDz300Hgc+h2PrPJjryqqCIpoAWTin0e0jCYCAvA6eFDUCWXAAy7Zov64rX4+nvA4eAjXDHkHb5DtPX3fj+zr3DPgeY9+rBdkpmkIYpTIDyJwVft3ag+VdBLkdMmfnJ410yVhDz3UcfDIy9dNhIxqL0+7kavZgHOHAN5XSJwycWIzWhzygyJ63IgWbxseMXcqAODb//kHr8DDJ6IFALZu7QYgiwS4I0cl0l6NrimVyqLdIxEvCUfgxMrOXa4gaZfzOuETS7Iv6OlJArB3Mvu5ySSr7LRVx6+w6GfvP/Tgt3D8cYeIv6PRiIg/IYKarpfa4PDDp7jlGTmdUwUehiHEAoDtgOHGf7htqJLsyWH7umjOUqM4wuGQJBTg8QdchMHJdj9yOqS4ZrgOPgEOHszFJS8cPMK+ZQG3D5VKlkSq+kEItkhsprgm8Dm0viHuClwqRLTQfW5ttcfc5s17A+vKhRFETmaV/hJmkSuEBmedyWZdZxu3vFf8woU59nXKc+4Rc6e511kfF1FjRE7zsdfeLosT7HNXFg/Y18oFHpVJUpVoreY+oUYPqfAjZaPRsE90jdtfKI6CUFcXE9EoAPCFz19csR/a3/E6eJimgTmHTpbcI6RYnBwJPNwIJBVE4qvxFSrk+blyG6oCkCwj8P0csgBbaGAYhuSEo66hfgiHXYFHiQnT/EDPM8Lxiwk2ZygOHgkmyMpm81IbxnwEHobhOntkcwUxl4ZCphiPRNSHwyba2mwxJLldeB08hsT1kxjIjWjh83NMWhtjsYiYW4s+fZELAk3Tbm8Rc0MCD2es0rxDdYvGwu41Ks+K4bDpiWghAZfk4MGEEoZhoFQqS/FeKZ9nlqGku05mswUx99jHruyCpQqTuJCJ1g0SyQyxe0DCRjW2bJIjqBocTHkEYNy1TH1GHRpKewS61Z7Pvv2ff8DixZtw3fUPViwHuHE8VLdqePDBRXj44ddxxad+7hES+sGyKghS2DMgvXT1HeP//wMaGhoaGhoaGhoaGhoaGhoaGhpvN4yLwGPu3Ln4/ve/j7/5m7/Bddddh5/97GfSP419h+rg0RTg4OHnnMF3m1YjqDiCdtpyS28A0m5jYelf5D+cu+c5EAIPqi+3rge80SXq9/0EMCtWbAfgWuLb5WgnrEtmUnQF/ejtOnjIZY0Ae3nhyBLg4JFIRPHD6z+Ja/7nH8QubZUgINJ05ox2qd3JwUONSVEhOXiwflViO/j//mNnS9+hiJZy2Sa9eRvOmTNZvN64oVP6HhEtKpnwne/eDcB2bBBlmZClksAjEhBz41eeiwr4juE9TNBDr+NjENGSSueEKGbatDY0sV38ROaSECIIHgePbN7zfiQSwlFHzRB/x1hES1EVeDjn5YKQmbPaBWlHDgc8uoA7eJim6XFksF/Lc9depx2p7IQJqsDDdfDI51kUg2kiFnfdB+T76R1HYRG5IMciBe3gF8R3Ni+cFtQoHw5y2SgWy1Id/aC6ifCIFkB2MZk+rc29fjamU0pEC81n06bagozeCju5+ThJeAh+ue6nnHK4+B7Vy7IsD5lZk4OH0ubHHD1TlK2ri4qxlEk7Ag+nr0SjYTQ31Xnmx9FHtFRz8FBEUrnKayI/v59TRd7n+5FIyHUTKsh90TRNzJ49USpfVxdDQ4O7vge55HD4O3iYCIdDOFppcxGjkZUFHr4OHhTDVYUo5+Ru1YiWAGcwQI7fIscnwJ3LuSMHjSGjooOH4z4hCcX8y9MaSeWsCg4e4VBIzBeyqMb0iWix/3ajcQru/BINC1Fkb58t+AuFTExwxA99/faY9gg8epPi+tXIJYsJWQzDQCsT0MWiYTf+SXXwYGITwG07N3ZJjmhpd+4P1TEWiwhXNIoB4Q4ejY6IkcYQCbgkgYfTdxKJqK8A10/0MMxEGdlsXo5oGaksTFJjlnp6htzPnLrT/RkIcPCwLEuUbW9vgmEYKJct4Ubjih6DBR7J4bRn7kinK89dhKVLt1QtU+RRNDUIPPg8uGfPYNXy11x7Py79yP9WFBkCcBQeFkrZEjKdKViG494xhnE0GhoaGhoaGhoaGhoaGhoaGhoab3eMi8Dj9ttvR0tLC5YsWYJbb70VP/nJT8S/G2+8cTxO+Y5BRiFJGxWBB+2+ph/PORnICQeLW8znvQQVR6CDR1EmhPjuc9p5zH/A5rsiRxMRs69QSTvhmlElooUIBUHC+ZCJS5ZsBmDvVhWiGsWVI2QaUuQC4ApCRF0st6wfxE5lhwyje8FJ1TPPnIfz3necIKFVwQ4JFRobE5JLwgwR0VLNwaPs+9pi19ne3ih9p5lZwheLZcnB48MfOkW85rbsANvZrrQ5kYW5gB3i3BpfhbvzWCamAX9ymjs4EDixRruB+W56laipFf19w+I6zj/vOEF+AS7xNeqIFh8Hj1DIlO5RNBp2d7U7u3ppN3nUuX7TNPGXP38Ld/3mi5jY3uQ6eOQKHtcMvuO7XC6L+Bo+X3FxDgCsWr0TgEuStbY2SER+Y0OCEblF1wUiZCAWc+tS7X66ogoSSdn3KmjMRXlEizMHUDyNHyQHD0Ww4a2Lv9iIyOkLLzwBgO2e0dxch0RC3gkPKBEtObdd6P4GuR8A8txH98jdZW/XiQju9557DP7ub8/AJz5+jjRvZFQHJ782V8RDqtvTySfPwUcuew9mzpiA4487JNDBIx6PIBQy0dwsr3O1CTyYg0eVmAN1/OZy1URvbv/3dfDI+zt4RCOym5C4H6aB2YdMksrX18fQ4COarARylEin8x5ni+OOnSXK1dXFxDyXE4Iw2U2GgwQ+1Rw8uMCjunDU/7nCrr/dx7/6lQ/h3ru/Kt6nOZzPXUKYEiCSBFxxQqFQ8jgVqQgpz1A8Ambq1BZJJMndLjKZvDQmVEcWmrN4NA65UMViYeGEQc4WoZCJNkc8sWtnHwDv2OaiBnILE+NTcROa6zhn0fnCTCQDyI5MPBaJory4aMuyLDGmJk+2r7Ora8g5dkTMRb2OAIXutR3RIj9v0To3wiNauCCkwdvv+RxI4BEt2WxhVBEtqssGuWoB7nOu6jwSjYbFvEXiDrrOWCwiypNYhAQ4mTQXeHgjWtRx4+dW4odqLkWALEarxcGD1h8A+O5/31O1/GOPv4FkMoOvf+O3ASXsvmgYBqyShf7XupBcPYB8TxZWGTqiRUNDQ0NDQ0NDQ0NDQ0NDQ0NDYxSo7Pe9j9i6det4HFYDXtJEjZhwHTzsH3L72W5uvgtc3oE8WgcPhUBwCCG+w7heCDxY5veQ+4PyiE+Geq3o7h5CS0t9Vbt6b0SL7IJB9W5SBB6trfUYGkp7iA8AOPOMeXjp5XXYsdOO6YhGIwiHbZK5qOyENXyy7OlvcragHf9+u49DIdON3FHJab9d82T/n1MFHjZBkEhEpTajfPtMlR2i/Pr5TlfhPmIamNAiCzxotytA8RruMaZObcVJJ82RdpyGQiZKpbJHVHPUUTOwdu0uALZrCt/l7RfREq7k4OEj2PEVeCSiGB7JSoRjktm/E1nEz5XPF8W9Gg1oDDU2JhzyyyWyJ7Y3orOzXzq37zFUgUfOX+BRz/piLBZxnSecdsnnXLJR1GFiMyZObAZg93XA3a1MME1DEtaUy5brgsHaMJuRCag826UN2GReS0udIDEnTGgU5GShUBLtaxoG4jH7O35iExWqqEJ1k1Dh7rDPiz6mzrMcrsCjLI0JP6hxQaqb0N/+zelIJKI44/QjAUA4OHDyM83IzWwmL0QC5HQwOOC6H6goSQIPWchEBD+1i2EY+PKXPijVPZ8vIpPNowX1lWORFOeRsjLnmqaJb3z9MlE+nnBdUwBvXFBLSz0GB91xUIvAoyQ5ePiTn+vW7camzXs9jkFDQ2nR7/0gO2B5xV1+DiB2RIsjNvNxQWlpqcfcuVOxceMeAPZawWM+GnyIbhUxMUYLME17jNCYOI458iQS0QoRLd77SULS4Qpis3K5LInuVNJchRrfxsVg5M4Ui0WkNZTGQSwWwfBwBtlMQXISCoIQMxSLwhEhEeDARNEt5bLtUmQx4UMkEsbJJx+GxYs3Oec0kUjEMDCQQpo7eIRMzJ49CfPmTce6dbtFnQG47kO5vBCfRaMR4XpFgr5QyBTCql/86jG8973HCFK+ubkOQ0NpaW0gARCNIfV+HnfsLLzyynpxPu7gpDoyHX7YFLz8sl2Wnit4XFSh4K7pJGQhUU4sFhZzUT5fxPBwljl4mJIrDQCpbD5fRDQaFvc/Gg37OmWlfQQevb2uKCOVyknrQjWBhzqGedyL6uBBY1Z9nsrni6JsKGyipaUOg4Mp4ajU3Fwn+glBnceSybTH+SatPCsveGIZHn7kdbznlLn45D+eW/G6PNfJxtyevd6YQRX8+X3t2l0YGBiRnGCC0NU9BMuyXMGmZQFlQCg4DKCYKjrvAYWhPCLNb94RTUNDQ0NDQ0NDQ0NDQ0NDQ0ND452EcXHw0Bg/+EWvcAhBADl4sB/Ck2yHIyeg1EgPFSoRo+aq+0W0kJtHkINHtUz0IGzd2oXLPno9vvSVO6qWLSltJQQeShRBPB4RZBfg/pBPrhn8R/hvfuNS6ZhRn6iLErO6V3ddc7KqVCqjbAU7T8TjEU+kQ7ECqRpRduQSBKFVFxVEFwDUN8g7foNQYmQm7zfcraB9QrDAo6QIPAzDEHEyhCbHuYKs2ekeNTYmhOvJz38xXyJqOYE4mriImh082Ln47mCyew8pAo99QVmQ6jYRMn16m/hsuhMHUG2sqCRRTnHwMAxbgFHH+mI0GkYkTCS8E9HiXEPQzvYYEyfwc6rEajweETubuXMCOXgcOnuS5NTBx8SENrcftbU1sEgLtlPfNIUIhUdRAAFiA0VUUcntBZAdXGgsxSqIyUgoUypZLKLFn2wm14xCoeQIQuTy4XAIl136HkyaZIsLaPc6d7pJMcJvJJX1RB2kM3lPJEkymcHwcIZduyGIUzWio2p0TSZvi9MqCGU8Dh7KnKtCOHg4IiCqE/XF1haZVFTndj/wtUeNNrPPlcen//mX+MF1D2DVqh3SZ9V2t5MYBqjdwSMSCUsiKYDFojht+MUvdACwRYYNDXGAjZMgQQIHjYt8no8X+xjHHuNGtOTzRRZF5B/Rw0HizXQFtyd1Dsz7tAEHjS3qP7zP0jNJJCKL5ihmhtab3t6kK6is5ODBYreoX6jiS0JIEauVlQiYH1zzcVx4wfE46aQ5mDatVaxPmUwOavzL2WcdJY7lRrS4447aLBoNe4hz0zQlJ435jy0V/XL6NHud4GsDCYBoPRdzkdO+p7zbjVwyTMMVbBRLnjXxsMOmiL9FREvEFcrxPj9pUotU71gsglgsIkRBfX1Jca/D4ZBY6wn8Gkn4S65S4XBIisEj+EW08GgqVdAxMpKVRIkqPK4ZbL6l50A1KiYej0r9M5cruEKWUEhcPwlPyNWMO6ZReTpOMpnxPI/ziJaRkSyu/v6fsHTpFvz6toUol8ujEpbyiJatW7urlg9yBwsCv7e7O/vFa4viV9gQLWXZdZYt+5928NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0KgZ4+LgAQC7du3CX//6V+zYsQP5vEw2/fjHPx6v077tUW3nshsXYv+Qy39MHpQEHt7dskFQo07czHZ5hyiPaCGxB68vJ9mq7agMwrLl2wAAy5dvQ1fXoLAH9613gIMH1TvMdqq3tzdh1y7bBp3IRD/Hh7a2RrS1NUi56uGwanXukjx19f4OHnRcP0I4FosglyvgxBPneOziR7NrntqASKT6uphEBiQSRNpVcfBg188Je+4+QoQ0oaXFJUOKxZJEvpmmgfYJssCDdreKHf+sDT/ykdPwhz8+j5FUVrLh54SiGrvDQQSVKsChuqgQxDe71iFJnGS/LjPCKFclAiIIXLQAAIcfPhU/++lnsHt3P+rqopj/2NKqAixV9CUcdlQBFut70WhYIuH57vtAgQeLRZEdPOQ2nzypxXVk4A4ezvhvn2jHvazf0AkAEoE3YUIjNm3ea5drb0KnQxJxF5hQyBDxQs8/v0bEmth18bmfcdkdQrRL2F9sQNdfKJTEd2px8CiWylUjWrg7iu0+Utnxo8EhCTnhyC37h4bSol0aGxPCZWNgMIWpU1yXk//3yZ/CNA3c8MMr7PqFTCZkqh65AtgijGQyg0xWdk2pNBe5oioiPoPEI0R6Ow4ejjiA6kjxFYRaHDz4bvVM1jvHLXp1g3i903FkIgxUFXhUcfDwIUIbGuIi7oIIZVX48u6TD8NfH/p3ADa5zWOEgu4LB3dZUMVD3KmqubkOsZgs8FGdrTho3fKLxiCoAo/qzxX2542NcQwOpiWhIc3V1I++cNXFePzxN/Ctb1wGAJg4qQnr1u9Gd89QTQ4e5OLEhXqBDh7sOOVy2XXwMMmpLI6r//vv3eM4sTiZdN6NuXHuJ18XhcBDROMUkHNeR6NhSRQJ2Peb961QyHQFHtPbsGbtLslpggQIJGJRI1qOOmq6KDtlSosUW8Pnc8OwHTwIJDKlZwfbqcLt/2o8G7nItE9oxPBwBn19w+Je+wk86uqiqKuLIZ3OITWSRVtrA3PwCIm5gUONLSkWS+KZDPA+X1I0j9+x6HOOkRQXYdjX2tIs359EIgLDMMScm2PtEg6bTOAx7Hzfvj9cJEHt0tbagK7uIQz5OHjwa+WOLaVSGSMjWUQjISnyq9I8wefEbduqCzzUZ+hKAi9AfhZ4+umV+OQ/vtf+wwLKZVeEZUZDtqCDriVD16wVHhoaGhoaGhoaGhoaGhoaGhoaGrViXBw8nnrqKRx55JG46aabcMMNN+CZZ57BnXfeiTvuuAPLli0bj1O+Y8CJpR85ZB2HEAQ4PzSru//o+5LAY5QRLWp0iSCQmcCDCDkeW8CJ6kyVH4qDwG3qq+1ApHrTj8qlUhmWZUm72AkT213BAdW9ECAImHPoZPF3NBL2OERYzKa9VSFtuMCjWCz7klO33vxZfPQjp+Lfv/URT7wE3ddKTgWFPG9n9/4nElGccPxsty5s53El8D7Hd1mXLZfMamxMSKKOhoYEiwtyr9MwDBiGgaPmuWQTADQ75GNR6VumaeKSS04CYO+E5aKLPHu9Lw4eoZDpu+vbL16Eu9/QbuAy28W/rw4efs4G7z75MFz64VMEGVWsFnUQsMu2pDgycLFRNBZ2yeZiUap/kMCDuw/IsShyG86dO1VEqHBindozEY/iGOYmIDl4MCcYycEjLzt4XHThuwAA6zd0uvEfpuF/P4lQzSmxGEEOHszNh3bIV4qDIhK6VLRqjmix61PwiORUNDj3jFxjLMuSSPZSqSw5ypCLx25HrAYAu3b1obc3ie7uIaxavROA3YbcSQCo7OAAMOFTJl/VBScckcljVWygIiHmIopokcVGc+ZMlsqrkSp+qObgsXfvoHjd1T0kfVbNwaNaRAs5DHzi4+cgkYhi8qRmvPfcY7wRPaIvuu3S3t4k7uMZZ8zDlCktOP+84yrWh0DHz+ULvvfz1ps/i3/9l4vwvvce60YR5SjSI1icRA4emXQ+0AlBbYdahWkU2WFHdBWl71I/+vg/nI27fvtvQjBB63VPT1IcJ6jfAm7MCEXMcGGmCt6fuctOkEMIF0qSkIlEMlyA6jp4uA5BsoOHIvAwDUye7ApEenuTTOBhC9z6HNeKcDgkOUzwiBK6n6Zp4qEHv4Xf/fbf0NbaIDlySPN5yMTMme3i764ue2zw8nxscdcl+zrttq6rZ+0ihA8hsdYT4rGo6F+ug4fjbBEOCwENR0qJLenrG5b6JQk8DMMQ97OSqFh9xh0ZyXg+a2iIS6IgWuNkZytypXEdPOi8JODJOA5I9rHt/7Y6LibDyYxHGMXdSlTnkmQyI/o2UFmABchjtLt7yNOOKtRni2pxfry85IpkWbZ5hzOEzLCBUMKtdylr16swXPn4GhoaGhoaGhoaGhoaGhoaGhoaGi7GReDx7W9/G1//+texcuVKxONxPPDAA9i5cyfOPfdc/O3f/u14nPIdA/oB9bjjZuGM04/0fC4EARTRwn4QtixL/NiclQQectTF8uXbpB+8VeJGxIUUZaHEIYdMFGWOOXomK2+Xk4UH++Z4wH9A9tuVLdfTLstJ1XKZCzzc7k87KQHXMjxIEMDJRjvqIiCOwDDQppAfnCCQIxrcusydOxVf/9qlaGttYAKP6g4e9EM/jy4hwjQcDiESCeNzn30/PvaxM3HHbVdJpGol+3JO/nCitKwIZWbMcEmhxoa4JE4pKQTvmWfOk85B9vRE7PHd5ETmpVI57Nnj5sZLES0V4iXCSnRNJZEMwAg77pTAds7SbmDJneZNOniEfIhvItSqRih5Ilr8HRm4kCIWjSBMji/5khS9ExRHQuKq7u4hT+QOAHz73z+K446bhc9//gP+Dh5OG8XjEYn45GOCk5zTp7VJ7jgl5nZDdeFxMUH3M6bExVQTG/D5YukbWzzvqYiIiBbXkcfvftrnNMWxsrlC1boQ+T3iOHjYu+fl+Zh2rodCJo4+agYACCEHYN8vwvMvrAFg9wXV2aRS/BPAYlSyecnVyXcuYuR5kUVABIpH4q54qFQqizoRWXz44VOl8rU4eHCXgazP+KToBEAWewC1CDwqi7vIFWnGjAn4w+++jN/c+UU0NibcOVpEtMgxGioSiSju/9PX8f2r/973cxVcQKI6OADAscfOwhWffC/C4ZBPRIu3PIHmjlK5jGJRXiuu/cED+OKXbvPMgYUqojeaj7nzFz0XFBQHDxUk9OjuHhLPNESo+0E4eDjzeFA8C6AIPMpWVYcQOaJFFlXwZyKaE2Js3FGMTSzAweNDH3y3uE+PPLoE69bvBgBMcyJaaBwkElGEwyExlw6PZMSx+dw1aVKziF8JMzcZSbBlGrLTl3N+HgEnokjCIUxQHTwcIUtMCOtYdEnYlJxkqD2oD5BTEfWdSDQk5h2OtCI0euWV9dLn1Cei0TAaG+1j9/QkEQR1jR3hES0FN0aF309a46LOdeZzRTEvhsMmmpT+2MwcQDLOmKN2IZFMMpn23Df+HKLG6Q0NpaV2SKUrCzaKynXWKpIOOr8KHufInUrsiBZ5zrbYHFrOllAuWajwGKqhoaGhoaGhoaGhoaGhoaGhoaGhYFwEHmvXrsUnP/lJAEA4HEYmk0FDQwO+//3v4/rrr6/5ODfddBOOP/54NDU1oampCaeffjoee+wx8Xk2m8VVV12FCRMmoKGhAZdffjm6urrG/HoOJlQjM91ID/uHVnXH3+CQTVwFOXjc/8Ar+NxVt+KXv3pcvKf+yOuSU1QX+4f/U959mChz3LGzPN/nhHy2ijgjCJy0q/ZjM52XxyKUy66ogkc08B/fiYAoBbhmHHqoLPAIMycEgAkfQiYaG+MSwZKIRwUhbu+cdXb8B+wODgsXDFVs4t19rNr/A+79r3N2wTY0xPGlL16CefOmC5KrXLYqChS4g4kU0aIQXzOcXcV0HrJ2Lxa9NveqS0REFWGwfh5ExhERopZX4VrRy+KRoLiIRkc8MMJ2t6r9dXg4owg89s3BQ0T0VHAeqe7gIX9O98gT0aI4eESYAIfufyhkBu5sP+H4QwAAS5ZulhwM6J5+6IPvxi03fRZtrQ2ClOP9hQifWDyCySy6gN9f7jg0c2a7EHIMj2RcAjrkiiTs3eS1iQdc4QvtsvYvz4+zePEm6Rh+oFiMUsmSXG2CwInPqgIPh5wkwpEL9todt5OBgZQ4BjmjbNjYKcp1dQ2K10SENjUmvA4ePs5GHFy0UypWFnjwOU+KC6kgZCBkcwWPg8cZpx+JjotPwnHH2euKGhvmh2Kx8nrDBR4qqgk8+Jyoro+AO+8mElFMmdIi3BWiLEKFH6dSrIJp+jsN+cF1vCl55lwVsZgr8JBcVnzqwu9PnjkMlMtlPDp/CZYs2YI3lm2VvlPN1YjW13giIuYcuk+c4PfD1KmtAIDOzn4Ru6JGf3CQ+wyVrQuIZwGUiJaaHDxcoaQqkmlnjkTdjsAgzqJx8jly8IgIkSMhHAkjFovgN3d8EYAstJ17+BSpLF0PzZepkaw4dpAjU6WIFgC4+Vf/iilTWvAP/3C2XZ7FLvEokvYJjdI5aK6MMeckLghR71M8HhGRfuRA4Tp4hKS+R+1qWZb0/PfyIjtuadYsW2SaJIFHJITjj5sNAHjm2VW+7QC4ayyNU77283gZ7t5Ga5zk4MGuUxUcNTUlxLX0ObEtNI+SqDiZzIjnZHJ/48/wajTNUDIt9Qse5eWHgjJXVYtpUYV01eL8+LxMMVuWZcEqlmEZBoSFh/2B9N1yvqRqQDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQqYFwEHvX19cjn7R8Cp06dis2bN4vPent7g77mwYwZM/C///u/WLJkCV5//XWcd955uPTSS7F69WoAwFe+8hU8/PDDuO+++/Dcc8+hs7MTH/3oR8f2Yg4y0A/lQYQQkepuRIti6Txk//DNCWlu6/zTnz0KALj3Ty+xc8q/unrFBg6Z0d6Eb33zI/jylz4oWXwLBw8pomXfBB6Sg0e6sh01/TDPyYdSqewb0fDFqy7Gueccjd/e+UXJNQDgQha7/MSJbpxLNBYWxIeIF2HCB8MwxI/3dl3CTIRTFmWDdvzzsvy/fuKEiE9EC/0gT64UHPF4RBAmIxWIAR5FwndllplTCQBMn94mPmvwOHh4hSxnnGE70Lz75MN8dra798gwDEkQQOAEorinYT+hhEKqVhFJUdSQ3y5eQjYrO3hwscloUGnXPJHBo3XwEBEtijCJCyki4ZAgTwsFN6IlyL0DAI52XHkGBlJIJl0Le7+6E8nHxzmRt/FYBJNY9AAn8DhxGQqZwtFjYCAl7Y7nY5qOG3Q/4zHVqaC6CEMFn89UCLEJi6MKimgBGPGZLYDHzvih0XHwyOeLyOUKSDtzdV0iKnb8kxghFDIFocwFCmr8CGCPT9XBo5rwyXXwKEiiokqxSHT8aseOxSJibshm8kJwRG4H4XAI//Wff4NP/uN7pbpWAt9Nnk7nPd/pdUhWDhJBDVRz8OBj32d80rpbr4jT1IgWdy2qTcBRDe7xq/ctEgMMJdOSI4lfRItpmkJEwAUeXJDV1zcifSdfRZgmSP9QSLhEkCsXj+jww0zHLWrHzl7hyqFGf3BMm9Yq/V3JwYO3V7kWBw/nWJlM3nUZcvq5YRgibufkk+YAYIIzJaJFdfAggn/WrHYcfpgs6JihzEeJOlngMTySRY4d2w/iuaXouiMB7ng+/vhD8OD938Q/XfE+p7yzXuSLkujBMAzMmOGKO10Hj7C4ziKLaFEdPOIx18FDRLSQwCcSltaHpqaEuMZdu/vF+yRsmDvXdvohB49INIzTHae7rRXEDPRsQOvNyLC79guxWTyC2bMnufV25sNozB1zXPiiCjxisYjrPNNjz8k0/imarLtnSPSJZuf+pypGtKSl56BqES3qc0y1eU599h9NnB8JjMo5253DsACukVLFHOWcVndoaGhoaGhoaGhoaGhoaGhoaGiMBmMq8Pj+97+PVCqF0047DS+++CIAoKOjA1/72tdw7bXX4tOf/jROO+20mo/3oQ99CB0dHZg7dy6OOOIIXHvttWhoaMCiRYswNDSE22+/HT/+8Y9x3nnn4eSTT8add96Jl19+GYsWLRrLyzqoUMnBgb9PO+n8HDxKpbK067h/wCVmyL0AgCBxVYcAV/jgJUov/fAp+Lu/PUMi/YgM4MIDHq0wGvB6V91N6BPRUmIkLCdsZs5sx3U/+H+YO3eqS2QoQhYqP4EJNhKJqLQTFoDHpn0C28UbjUWYs0VJiCeCCGE3cofq4gh8fIQMRM7n8kVBStEP8n47lk3TFKRSX/+I53MCv/+2Y4L9t6Xs+D70UJf8iETCUt39dpP/93c/hs/+60W4+r8/JrlJAN4YjVtv/Zz43kknHgogQODhF9GiHLtSGwIQlu6SwEONQckVpFifWhw8sllvFI4qkpHqrbiaBCFQ4KGQ6pxsbmiIC/KUImcA127eD9FoWNwP7ojgRyCr7hCAK/ZIJGI4ZNZEMS4PZaTZJZecjKs+/wH89k5713priz3WBgdT4vvxeEQSENA8EESSCyFDjmzxg8VAhFPfM1f6+5BZEwNKusRnqWSxiJbgY7sEb7Gq2IQ7h2SzBTe6JO7d8W+aptiBTk4FgE0CqmjkDh4iusZ1SPGvC93TvDTe/JwNuCAgnfY6G6gwDMMVBWXzIgpKdR9QBW+VwMdssVjyxLD4OXhMmWILAUYV0eIz9qmvknMSIRLxF7KNRmxUCVG2BvBIIz9MZjEn3GmHO15x1DkkfI4JPIZHXKFXT48sJCpUEaa5cRYh4bBBkU7VHDxmzrQFBQMDKRHbpQoHOKZNbZPaIVFXm4NHqVy7gwfv53wd+v1d/4Y7brsKxzquZjEWjcNFGFOnyCKUVvac8b3v/p14feU/X4CEMgeSgFN28PBGtHBwIaufI1Ng+SKPaLGvcxYTnPhFtBSYs0UsFhGiF8CeV0hY5XHwiMgOHpFIGPOOnA4AWLdut3ifnnPbnDmRxl8k4gpn+JyogvoqrTckNLEsS6xhiXhUesahekWj/k4lkyfLolRJ4OGI7qj8vHnTYZoG9u4dxI4dPQDc58ZKES3d3UlpLuTOIwBw8y1P4Ktf+41wcVIdPKpFy6nP/pWE2ZZlSXUhB49yyYJVKHv/b1N5FrKqPOdoaGhoaGhoaGhoaGhoaGhoaGhoyBhTgcfVV1+NVCqFH//4xzj11FPFe+effz7uvfdezJ49G7fffvs+HbtUKuGee+5BKpXC6aefjiVLlqBQKOCCCy4QZebNm4dZs2bhlVdeGZPrORghSNsAclIlwPgOW8AmrtQfdfv67J3MlmVhmJHa3d2DALy7+FwnhGA3EcNwc9xp16C6ozdb5cdlP0gOHtUEHgU/Bw+LCTaCXFDkeqviAe7IMXVKK4toccQJJXkXP+WrAzbZ4ufgEVSXkBAnVHfwIJKnVCqLe0T3P2jHMpEI/X3e3ewETmYCEKQUuXKQOOGcs4/GGWcciY87lu4iXqZQ8r3OhoY4PvmP70Vra4PHwUPcI3JNaW/CA/d9A9/5r7/F1792KQDZWt7PlYXA4184CREkkqqv90a0UHtS38jligqZUZnMXLFiO86/8GrcfsdT0vuVSHU3zqE2Bw/qV7lc3vf9WCyCyy59D846cx4+8fFzBHlK7hBUJgiGYQiyMOOQXkFkIJFfXAjCSe/W1gbccdtVuOO2q3DWWUeJMpFIGJ/4+DliJzaJGAYGRsRO5vp62x2GrotETEHChJgaRVIO7iuE//yPy6W/D5kdLPCg+1Qqlj2xRb71GUVEC7/OXK4g5tBoJCzaiBAyDTT5CDy4yIZgCzwocsURBJEwLaAdaQ5Jp3NVXXB4+RQrX0nI0OTseO/rHRbkYCwq98dwDQKPn/18Pv7nmvvEmCXR4naHOAXsta7XZ84jUrZqRAs7/5CPgMaNaJHnXRJP0Jh2I5rGyMGDuRVZVdaWyZNbANhkMzkghEJm4BxAYhXu4MGdDnYzRwW7XOV5y51TTeYOY88R5IpC16Oivj4u1i4h8GgOFnhEo2FxvQBQXxcPLGsYRsAaXU3gkfOIOwFbeDJv3nTxt+solHcdPGJhNDUlMG2qK/LgQtLDDpuCl1/8AZ5/9n/wT1e8D6ZpSo5ZCRHRYo+h4eGMWJMCI1pYpFvZJ6IlsHy+6DpVOGvoFVe8F0ceMQ3hcAhHHjHNPm/Unee8ghDm+BGPeNYL0TciISEss+sQxhHO8Xm8CK0NUxSRTDTiRsIMM9cpFXS+5ha7D9H4zeUKYhzFE1EpooXe56Iq3i4nvmuO1JbRaBiTJtrzCwkuqF2am+pw+OFTpbpMdEQw6QoOHn99eLH0915nLBDu+t2zWPTqBvzPNfdJxyZUF3goDh7p4GduNaqKRK8GACOsxLPAFQiLv0vy3xoaGhoaGhoaGhoaGhoaGhoaGhqVEezHvw+gHzznzJkj3quvr8fNN9+8z8dcuXIlTj/9dGSzWTQ0NODPf/4zjj76aCxbtgzRaBQtLS1S+cmTJ2Pv3r0Vj5nL5ZDLuT+UJpP2Tt5CoYBCYd+iFsYbVC+KgjANw7euRBTlcnkUCgWMjMg/am/evBennybvTu/pGXKuXSZkdnf24ZBD2j3xE/l83ilPP+havnUJh00UiyVkszkUCgVks/KP08PJFKKR0WmMKPoHAFKpTMX7lc3RLk6XyM/lcuI6DQO+36ff5AuFIgqFAnJ5NwKiUCigocEl7erro4J0zGbtdiHhg1Uuo1AoCNtvAAiHDEGKZHN5cT2BdYEl1cXdgelt8xAbzclkCs3NdRgetsnHeDzie3wSq3R1Dwa2pfrD/chwGtGIKYQsZassvnvdtR936lsQYohsNo943K5cUL8l94VcriCNQ94u7e0NuOD8Y5Fiwot0OuvU0VsXgmHYbWhZFrK5nBBAmKZ/XeoSNjGVTKZRKNgED7VBfV0MQ8k00umsiEChelTqiw/+eREsy8Iddz6NT3z8LNE2lcezc+/zpYrHpv5cVxfD8HAG6bQ93sR1Ov0WAL7y5UvY92hOKWIkZc8TsWi44rmi0TCy2QJSzrximqZv+YgzrqkugOuIEo2GUCgUMHNmm1QPPzQ02uReKpXDQL9NyMfjdh1jsQjS6Zyw4w8F1CUccl1H+DxnGP7zFgBpjAPAhLb6wLJEWg4O5ZDJOH0zYDwDrtOOPX/RnBtcl3g8glQqh1QqI44fjoRw5JGywMOyLNQ7JPzQUBr5fB6GYQhS8NhjZmLV6p0AbLKe6p3J2Peo6NTFsvzrknDGxfBwWvStoDa3zxED+oaRHEpVnXMB4LDDp6Crewhr1uwQ45r6CqHs+PoXi/5jolQq4557X5Tem33oJKxcuQPbtnXhlHfbzyYjI1lfgSCRqgMDqcpjruiulQMDI56y1ObRqNw+xPuLtaIkrxVvFqaz1NmuCVRH/2O3ttpkdiaTxx2/sYVn9fUxFIv+wgwS7ORzbtsPDbnOTzt3yfF7vb1DFa9J9KGQKWIuRkbsNb3giEgqjdHp09uEOBUA6uv81zjC7EMmCjHIEUdMrVjWNA2USkA+lxdC1nLJv8+RaCeVyjL3k+B60/NIOpMT4rRw2O4n06e3odOpY0NDzPcYtNZNn9aGbdts0RKt702O+1Rff1KKC/F9VmRrbp6tiUH3X8wX2TxyzrNcyDn2obMn4pab/wWFQglRZw2R1wCX7C8UClJEVyjkiiTE/XfKm4bsKBOJhNDYaPdDe95PoFBwo6umKK4Z4UhImhN5OwyPZLD4tc04++x5QlBGTiKZtD0+6fkJAEImMGGC+yzX1z/sXKd9PzOZLPJ0fMNCXV0EM2a0YefOPqf9DLS02GITmjP489ysmROwYUOnOD6dKzXiPlvQWnfWmfPw4kvr0Nkpi6qWr9iGD3/43VCx9I2tuO/+lzyCjnQmJ7WJZVl4+plVOO64WZg0sVkIrUzTQLlsYaTCMzcXcwJ2BFk+n0eBnLNKRZTLJSHkKCvikbJVRskqHrT/DwZUflbR0NDQ0NDQ0NDQ0NDQ0NDQ0NDY3xhTgQcQvPtvX3HkkUdi2bJlGBoawv33348rrrgCzz333Js65nXXXYerr77a8/4TTzyBurrgXaAHA1avWg0A6O7pwvz58z2f9/bYuxqXL18B0+jC1q3bAQDt7Qn09mbw6mur0T5BFn2sWr0B8+db0s5cAHjm6ZcxOLAZW7Zsk97fuHEz5s+fj23b7GNv3rwJ8+d7d0daDhn31FNPo60tgTVrdkmfP/74QrS2Bu+k9cPq1e4P4Os3bPZtA/dz+8fvkeEkDMN2hH7iiYVYv6ELALBz5w7f72/caH+vu6cX8+fPR1eXvZu7kM97ynfu3orBQbv8668vQSa9XQiGFi9+DV1d69DX59Z57boVKBbtH4mffeY5scsxk0n71mXL1kEAwMDAIObPn489nXvsdlizGuFwj6d8KGSgVLLw2GML0NQUw7Lldn9IJgd8j59O2cd/5ZUlMOAvjOp0zkl4/PEn0NISR3LYJtdee+1V7N2z1vO9TNYmR1566WXU19vkcLFU9K3Hjh028bxx4ybMn1/E2rW2/Xrn7t2e8nxX6YIFCxGPhwVZ+OKLL2DNarlP8X796CPz0dObcd7P+dZl0yabqNy+bRfmz58v72I17GO9+NLLGB5xyc3XX1+KfG6n51iiLTJ94vU99zyEtjab6Nm6zbZqH0mNeOoyNGSTVtmct99x7NxpjyvDqdvWrXa/3rXLvj/ZbMb3+7xdnn32Jedc/v2QUC7b/fXFl2yXJMsq+5bfvHmvVBcA2LHDruemTesxf36/5zt+sCwL4bCBYtHCipXbAADr16+BaXQBsOv/6iJ7F3O+4H8/BwdtsUA6ncX8+fOxefN2p25bK14rzRmNjVE89thjgeVyuSJisRBSqQIee8yOB+vv6w089siIfc8XvboYuztHnLpsCa6LM48++eQzSDtuG7lcBlu2rJGKLVu2FIODmwHYY+Shhx5GLBbGzp32WGp3N81j7dqNKJfsft7V3efMc/ZcsWrlCsCSxzwAdHba92/Nmg2oq7P7VtkqBdY7X7DH2fMvvITOPfZ1Bs25AGAa9jz7zLOvC3K4s3OnVJ76dDI5XLVPEwoF+9xLl65EfZ1Nnvf2+e/mHxy0++3QUBqPPPJooGvDzh3uWtbfP4JHH31UPPsUi2URNfHyKy+icaXrQLBund3Gu3fvwfz58zGSsq950aJF2LFjle+5RoPdncPOdSSxa6dNpK5fvwHz5wc7NAHAI48sAQAYhv94BoBM2j5GPl/CwoULAQAbN7mOAaqDx/MvrMAhs4JjF1autNu6u7tLCB1efulV9PVuFOLMF198Ac3N/u5TsFzy3TQNLF78kiTmVJFOD4rX4VB/xbFPYuWnnnpajIuVq1bBMLo8ZTdtsj/fvn0nBgftulYaz1u32te9efM2DPTbx9vTaa9zzc2uuOLJJ58IrB8AlEpuxFCn058GB+26vL5klRDP7tmzy7cuO3fuAACs37AJC59017Kgem/Y0Ot8rxMvvGCvF7lcNrD8rl3O8ddvRE+PffzlK5Yhm92BWTMstLTEUF8fwTNPPynmlrXrNmL+/LxYz1944Xnx/AUAmUwKW7dsAgBs27YTJ77rCCxcuBBJR4ixebM8hjLpFBYvfhkAkBxOS+N0wRNbsWx5N044fiIGnbW2r9cZ/0l7PaY1OBw2sGDB4wCAv7n8SDz99HbMPSxqlxHPf0uxe9egfc3r1mL+/AGETFcQsHz5G9i7176WDc4z9MiIM/5ffQWplDx+Oju3O+24V7TxqlV2m2ayg6ivjyCVkgUHy5dvCrwfP7nxUZxz9gzpvc2b5DVwzdpePPzIZtTXRfCFq07Cnj12e8RiIWQyRaxevc73WR/wxtSNpDIV1832bAumwY282d69E10jfcDKwK8ccKTTwTE/GhoaGhoaGhoaGhoaGhoaGhoa+xtjLvA44ogjqoo8+vtrI/cAIBqN4vDDDwcAnHzyyVi8eDF++tOf4mMf+xjy+TwGBwclF4+uri5MmTKl4jG//e1v46tf/ar4O5lMYubMmbjooovQ1NRU4ZsHDoVCAQsXLsTcI47Ewqe2Y8b06ejo6PCUe23xCDZsHMC8eUeho+M0LF5yH1av6cW7330kHn98Gfr78zj9jLNw0y3LxHfq61rQ0dGB4eEMfvLT18X7Tc1T0NFxMVasfAjLV3QjGg0jny9i+vSZ6OjowMpV9vvz5h2Jjo5zPHW5+daVyOXSOPPMs3HooZOwa/eTeOllNzf91FPPwOGHV75XKnr7nsNzz9tEenv7ZN82IMTjq/DQXzZi4sR2dPdkUCiU8N73vQ+DQ4vxyiudmDPnUHR0XOz53qJXN+LBhzaisaEJHR0dWL++E7+5axXq6uvE+UZSLVi1eie+/OW/wX995x5s257EMccch46LT8Qf79mEvr4sTj/9NJxwwmwkh1/Ciy/Z1/3xf7gUC5/8FVLpAs444wyk0jn88Z61aGxs9L0We+fletQl6tHR0YFnn+/Hps2DOPFd78IHPvAub5vfshJDyTROO+1MzJ49CcMjLwHYitmHzvQ9/q7dC7FyVQ8mT57h2xYA8PyLAxKRd/rpZ+HQQyfhD3dvQn9/FmeccTqOP+4Qz/fue2Ab+vuzOPndp2BieyNuu2MFYrGobz26e57FK4s6MX2GXc+e3mfx/Au7cMghszzlLcvCj35sk/pnnXU2Xn/9FZiGCaCE8897H6ZOlW3ai8WS6NfnnXcBtm/vwe9+vxoNDfW+dWlpXY9H5m9GPGHfk2w2L843sb0VQ0N7ccIJJ+LZZ/cAsImoI488Ch0d7/FtPwDo638OL7xok1jvec/pwmb+1dc24k/3rUNLS7OnLn19w7j51mUol62K/fy1xX/CmrV9aG9vRTLZhba2dnR0dGDZsm34w91r0NjY4Pv9Uqks2mXu3KMAbER7e1vFc/3uDxswMjKAY445Hg/+eQMikbB/eeMNPPnUdjS3uMd7bMFeAEM49dR3473nHhN4DhWvLh7Bc8+tQS5nk8VnnnkaTjt1Lu787Tqk00M44sijgPmbUVdX51uX/v4R3PLr5SgWLVx88cXYuOkxvL5kL444Yi46Os4PPO/cI07Ej3/8CD75j+fi9NOPqFjHZ5/rxbLl22GG6gD0Y/r0aYHt+Ozz/dixcxhHHXUsQuFOLFmyF3PnHh5Yl9/+bj1S6UGc8p5TMZzM4N4/rUNbaws+eMlF+O1dLqF5yntOwRmnH4lf/GoZ8vkiTj31LEyb1obHnXY/972nIRJtxcInV+ATn7gITU11+NP962EYEXR0dODJp3qwddsQTjzpRFx4wfGeegyPvIyXX9mNCRMm46yzzsavb1uOeCwWeJ0Ln+zG3r1bcdRRxyEe76445wJAJLICL760C5FooxNP0Y13vetYdHScIcps3rwXf7h7DSwr5HvegYERaQ0DgKOPmot1617FlCkzxHeWLNkCYAUOOWQi9nQOiJ3qZ5/1HrG+nHX2e9HSXA8/LFl6P1avsQnvctnCOeeeh0YnHuM3v31WlPvQBy+W4rEi0RV47PGtaGm1x8Udv1kLIIezzz4LRx45zfdco8GGjXvw+z+sQSQSxeTJU7FqdS+OOeYoqQ05crkJuPFn80W0SPuElsD7+dLLQ9i+I4lcvoQLL7wQkUgEjy9YBmCDVC4aCSNfKKK3J4uLL7448Hmwr/85ANsxZ84h6O4ewu7dIzjq6GPxgfe/Cz+84TUAwEUXXSCiWFQMJV/EipW20OSoo2bg0ks/VLFtJk7ajOXfuAvz5k3HFVf8TcWyP/vFGygW8zjnnHPxxvIUtmwZxLtOOMF3zY3FV+LxBVvR2NSKWbMmYsnSLsydOxcdHef5HjsSWYGnnt6O+roWTJ8+CcBuHHnk4ejouAgXXlhEQ8PjOOywKejo8DoxcJx22gg+cvkPAQC5vD0eUulX8Opre9DUOAGTJjXjlUWdOOII+9gqenqfxaJX92Da1Ol433vPwU03L0M45D+uAKCpaR0eeXQz6uub8O5T3oM/3L0GTU3+zy0A0N3zDF59bQ+mTZuBVGoPdmMEp55qz1EA8IlP2Gu5YRjoH3gOi17txJTJ03DxxRfj/37k3P/3X4A9nQP48182AgDa29vwnvecjCee3Ib6Btut47zzzsf1P3wVAHDpZRfj7nvWi6if9vY2XHbZB/HLm96AZQHnnHMeGhsTsCwL1//wvwEAy1f04OijZwBI4uSTj8OiVztRLhvo6OjA1q3duPnWZaivS0jX+cUvuNf58qIktmwdwrx5RyOZ3IT1G/px/AnHo6Pj3Vi1poBt25cCAM468wxs3LQHL7y4CxPbp6CjowO/vm01gALOPedsTJ7ciVcW/UUc973vPR0LntiKeNx9Ttm85THg1T2Yd+RclMsJvPHGVqnNQ2F3Pi6VyqJdCHPmHI7nX3DFaZMmTZGu6/Ul9wMAUukCTj31bDzzbB82bx5EW2sTdmf6MXXqjMD7PTiUwo0/WyL+tizg4g9cjMJIAUYIKPTnUC5ZCEUdJ5jtI0hvdoVFM1unY94RR6N+pv94PxhA4m0NDQ0NDQ0NDQ0NDQ0NDQ0NDY2DAWMu8Lj66qvR3NxcveA+olwuI5fL4eSTT0YkEsFTTz2Fyy+/HACwfv167NixA6effnrFY8RiMcRi3l2hkUgEkYh/XvnBhkg07FvXiMisNxCJRARxc+QR0/HkkysxMpJFZ+eg9J1CoeQcKyu9/9TTK/Glf/ugyGdPJKLI54solSynvE3cRKP+7RZxYigspy4lJWO7WCyPur1ZVDxy2WLF71PRSCTsxKuUYBruDt9IxL8N4zF7x3WxZNfPMOwfpEMhU5T/xMfPFeXJXtwqW1KbR6NRRCIRJBJuX2traxLlSyU4wgR7B7JfXRrqbdIwmyvIx475t3k8EcVQMo1Cwa47keIN9XHf8jHnWstlK7gtlWj0Ykm5zoBxQ/cfMGA62QFB10n1KBXlvhUO+98jEhuVy4aoPx1HLR8O82nOAJw2D4dDvsduarJJ3XQ6h0gkgmzW3Zla32C7gxSLlhgXANiY8EeZmYAUWL/361uERCIurs00QwiF/OOMss7O2ZYWu975fMnpt9SG/tcZidiW94VCCamUTYjF497244hF7c/Sabt8LKAfNje78Q/0eTZr7zZubKgb1bg/5+xj8NxzrltFc1M9IpGIiDrJO3087NOGANDQaNfFsixYliHmkKDxTzj6qFm47defr6mOTU32OQYH7R3ZQeMTsOdRwIlasCr3c8COXwDsPkb9KBqLoL1dXmcTiRgikQimT2vD1m3d2LVrAIccMhm5vN0/GhoS+O53/g7//JkLMGPGBHR22qKtZDKNSCQiXAuC5vNmR+yQzuTFvBUK+7c54I6VfK6IauMZACZPaQFgC5vicbuNWprrpfITJtgCzOHhDEKhEExTHhMlH8MIEgiknPEMQDhstLbWo1AoiaiDpqY6xGIRO+IkH7w+KVMiUiN5tLXadRscdHd5NzXVSwIHWguKzpqbd+5NfcD8PFrU1zltni+6460xeLy9733H4cafuTv4GxoTgWUbHAELzS+RSASZjDeyYPLkZuzc1Yd8oYhy2e2/KjKZojgnxTcVi2UYhinm87q64HY59T1H4OZbbIHHaaceUbX9zjh9Hm7+1b9izpzJVctS7JphmuJmhwPmi8YGe+xTewOV55b2iU4/GUqLvjJxYrNo029+4yMV60aYPNkVMtIYnjSpBQDQP5BCa6sdv0bzgoo66iuFkrs+h/zXZwBobLTvvx1tZFS9Tlq/CoUSio4Llt/6DAD1znNOLleEaYbEXFSXiGPixBZRLhaNuPNQKu/ESbmLa3NTA1pb65HZY69PdfVx1NcnkEhEkcnkkc4U0NbWhO7uIen8FKNC80suV4BphkTMTaIueF1MOHNVqWShpDyHTJvaxq4x7l5n3n52LToTVjwew6yZE93rjEXQ1mrPW2m2htLaFYtFcMisiR6BRzbrli2XvWPTfTa1n5/cZ38bQ0Pu3NXZOSjK073P5oKfufmzNQDxvB0JWzBCBiyzhDIs8RxjQJ67jbKBcKjymnygcTDXTUNDQ0NDQ0NDQ0NDQ0NDQ0PjnYcxF3j8/d//PSZNmlS9YA349re/jYsvvhizZs3C8PAw/vjHP+LZZ5/FggUL0NzcjM985jP46le/ira2NjQ1NeGLX/wiTj/9dJx22mljcv6DERQXEUT2hh1SncrRD9TxeBSHHjoJGzfuwfLl26TvEMlEZQ3DQCIRxcBACps270XRyQlPJKJ2jrnzN/1or5Jsoi6OXXrJKU+56gQi2Vav3olv/8fvcdVVF+P9F72r4vVTHQEIW/dqZcNhU9SxVCoLoUm1etN1V21zpzy1i1Wm49skyMUXn4QXX1qHs886CoD9Qz9gCwjMkF0mFFCXOic/Pp3O1VSXOoc8ph2sNhkDSWTCQccpKXnoHERaEHLOsYmECWxHpy8OD2cwsd0mToKuMxqV21BcZ9i/fMwhKKjvVmoXwzCEkKFQKFVtQyJsiLCjfgAA9fV2O+ZzBZQYm6zmz6uQ+m3aLUsEil+78LiBQqGIUCjqKQPY5B4ATJ5kE/4Ub1Cscp0AEI9FUCiUxDFiscoEBomThoczFcsTGTwy7IrGMk4fJoFDrZhzqLye0D2gc1NfNwOuM87qmMnkUS5Xb5fRggiwgX5H4FEhKiLqiGTy+aIYQ5XqQqKaXK4onCaikRBisQhCIVP059mH2O00b950bN3WjXXrd+PMM+eJvhmP2+VnzmwH4IpwstkCcrlC1XFR7zhRpFK5mvoWOVfcdMsTuKTj5Krl2505oq9vWDhnkEiEQEKactlCOp1Hg/K5Og5bW+vR1mYTpbwvpp15sa4uhiPmThUCj1gsgrq6KHK5gphz/VBWxIqDQ2nMnEnHtr/3hc973Sto/OQLJae+9hxDgpY3CxJ45vNFUf/6uoCIE9jiFxK0AO7Y8gOtRfm8O5eNjHjjGhobE6JfDg9nAq8tlbLvR0N9HHFatzJ5FAruvBoOB4+jI46YhqOOmoH+vmFc/tHanvmOP97rNOUHmkvKpbIQ8gXF9SRE3XPsmSjYxa61xRZeDAyMoK/Jnjeoj44W3/vu3+HaHzyAb//7RwG4Yqa+vmHMnGFnMlGfU0HCm1y2INahoLUccMdzJpMXa2K40rwVs8+byxXc8gH3k9owm5XvfyQSRmtbg/i7VCqjzumj6zd04p57h3HyyWc6ZUOIRsNobW1A554Bp85RUfdMJi/GxN69g9L5aT0jkSRgi2ppbUlUGJ/UvvJ12u1y5JHTRblwJISE0+b07Oo+o4YwdZor2EkkIqK9+TzE52jVqcwu685/vB0B+37Te/X1MUkERtjbNShep9I5IUChebbSMzd/TiLk8wWEHTGQBfeZEQCgPFdaFZ5BNTQ0NDQ0NDQ0NDQ0NDQ0NDQ0NLwYO4YLqBrNMlp0d3fjk5/8JI488kicf/75WLx4MRYsWIALL7wQAPCTn/wEH/zgB3H55ZfjnHPOwZQpU/Dggw+OaR0ONlQj4eh9+uGYxBWhkIl3nTAbALDgiWXSd4g0pB9/4/EIjj12FgDgU5/+BZ5/3t49TyRm0SlfrkJm0I/5VJe8IvDY7ZBqX/rKHejtG8bV3/9TwFW74EIEIumCIH5sj7juB8VSiRG8/vUm5wlqj1IVQjjiOES45R2yxClfXxfDjT/+lCChiHRIpbKCKDQC2tD9kd++1qriBCKbnPJEDtA5VYRCsiDIDyVlWzyRAnT/g+pOwpff3vWMaPOgsqLNHcFGJeEDYDvYALbwwbKsGu6RKyCp2oZ11IZEwrjklCDb80WUJLFR5b7I25CXFWPIpy/KAg/3+9t39OCaa+/H9h09AICks+t2Egk8nPtT7ToBVyQxJAQelTV/0Zgi8AggD2muGB5hAg8SGwX0xSDMnj1JWluI4CNijY4bNA+FQqYYRyMjWdEulcjM0UIQYA4hGKkk8CBBWKEo+m2ltZPuUS5XEP2AiHw+bic6zgDz5tmk4rp1diwU9QeVpKyvj4m+kUym3XkroF1IbJFibVipb23etBeA3VdS6axTPvg628lpI5XDipXbAQCNioAjFosIYprvNidkczJhaRgGGhvtY3AxAokL6utior3o+Oqc64dyWZ4vc0xYUmnOpRiXwcGU40Zm1zcW4HIxWtD4LBRKSIl6BIs2TNPE9OnMZaBCWRIm5vLuXMTHNyESCYnxn0x6BSC7d/cjlysI146GhjgT1ckEf5A4AbDv7a03fxb33vM1iZgfC9BcUi5bQrAZNEbd9SIv1vNK46K11a7r4GAKvb3DAIAJExoCy1fC+y96F55a+D2c977jALhjqK9v2O1bASI8Et5kMnnXeahCeyeYCIcLE4LgzlvuWhkOEGxSXdIZVeAREqJVwI4B4SKkHTuH0ddvtyG9T+0LuH2f5oys4zizd68bOcfR1JgQ9zmTzony8QqiRCHayhfF8za1yynvPkyUa2ttEMeh49KzRShsYtJE15EplcpVFHiYpolpTOBBZW2HPbuMKqjOZgtirWwQY1meL2ldB+S1ssGZQ7OKY8+u3X14Y9lWWJYl+gTvQ9lsAbBscUcpXcTg6z0YWNrjuGnZZYywIwBRRHMaGhoaGhoaGhoaGhoaGhoaGhoalTGmAg9pd9YY4Pbbb8e2bduQy+XQ3d2NJ598Uog7ACAej+OXv/wl+vv7kUql8OCDD2LKlCljWoeDDeKH9SoCDyKUuYvFBRecAADo7x+RvkMuCIVi0SkbwgXnHSc+px/cZzk7v2n3Mf34G1QX+jGffsQu5GWhwA6HoK60U1pFMYAo94P4sT3kCjzKJasqORkJcPAIFrLI10nknxlACIkf7jN5sTs4SMggLP2LJZsQrlJ3IhBI/JKu4uARFv0lWOCh7lYnEtWtu/91nviuQwEABgx3F3RAm3DBBsDaMODYnFTh0w4JVoKOX+QOHkFtTsSXcPBwx1CU7UrmbUZuNEEoBgiTSuVgsQEnzzhZ84Uv3ob5jy3Fd797DwAg6ZAyJPDIjULgEXVIuOFkZUcOUV5x8IgGlCdinhNG3DVhNIjFIpjAdnFTDAXdi97epHPOROAxXMI5XVO7jBaqk4QbleUFd1koV3ETAmSBB83V1J+POXqm+C8Rk/PmzQAArFtPAg8nTkcRERiGgSbHQWBoKC3ERkHzOZGCI6naBB4f/vAp4jURyNUcAshVhKA6eACui0dy2EfgoexIv/yjp4l+wcUIaSZ+OOWUw8X7XAxUaV1S58sMOy+J6xI+/Zx26Xd3D0nrVyWHgNEgFnWFP+TKQ8KMIMyYPkG8bqgwhqhdlizZK0h17opCCIVDol9RHQirVu3A337sR3jf+d/Dk0+tEPVzxQYFMdcZhlF1jIZCZkVRwr6C1oZSubqDh7SeV5jPCSRGKZct7NjZC8B13tgX8LmGjmOLNuy2r+bg8eprG3Hd9bYw+oQKDif0DJHJ5JmQobZ5q8iexfxQJ4QPec/958Ka3bv7xTxE6OlJOscggQdfK+z33DXdHnP/v707j5OjLvMH/qm+e+57JpPMZBJyk5OQm5sQDg0JRFBA5BIEAixmXVxQQVkFVlZhV1EUIeDBiqigsFwBIag/LqORKwaBQM6ZHHMffdfvj6rvt6p6uqp7Jj3TPTOf9+uFzlFTU91TVV3p51PP09xiHdEitzngNXUTMXfwsH9d9Jk6LIlrBbHfer0ePPzz6/HDe65AVVVJvw5r8hraYx3BZg6aRSKxlN3kzB08Jpm6XInzfcwU7hb7wEcf7wcAlOkhmHDYuK5QVVWGrgCgtyckH494/ew1dfA4cKAD5376O1h/zX34y18+kNvm83nktYt4vVIUBb27uhHvjSFyKIx4X1x28HB5tcfNgAcREREREREREdHAZDXgkUgksjaehVJLP6LF2sHD3H1g5ozxlgLu3Dnam/mia4K4y9LrdeMTn1govy+I1v6xaFKQwW5b9DfzRShDvHF/xBFaCOfjnQcty1dlUOQwF9bSBTxicaMwbx5Fkq4I4zHdYW/+nXbFCa/X2vFDjmixuVu90FRATNcFw3wXeG9vJOMRLSE5osV5LIYYgeIY8Ei6W1128Eg4dx9ZumQaAK1rhprU1SRZv64paQrf5oBHwtTq226ki3n9aUMyejFIhGpk1wRzB49wNCm04RzwiJval5vHSBidSvo/h2K0jNhu4dAhrbj64Y4WJBIJGaKQHTxEACfhXLDXHqv2eOSIFl+6gIceCEnTwUMUikUoQVVVebwWDHBECwC06QEBALIjg9jWffrd2BUOd8GXiIBHV58s3A90VIyT5E4Tjh08/OZ917mbEGAedRCT5yTRBWT9+tPw2QuOw3e/c7FcfuqUOrjdLhw61IXm5nbbDh6AMaalwxR8sStki8J0a2s3Qvrf0qkAv3bNYvlxh15sdlpeURR87avnWL6WXMwFgFI94JGyg4e+XUccUYf/uvMinH/esfLuc0vYSA9hFBYGMGP6eNTXV6Cw0I+GhqrMAh5J4wVCKTt49A94VFYUwefzIB5PWF7/0nXOyVRhYUD+/cQYCrvuTUJDgxHwmDOn0WHdxuN55pmtAIxOKGZej6mDR1IA5PHfvZ5yveZRZKLTl9frznpXuEyZrxfka5ddYNPU2SKecA6DANq1WHLHkarKksPeZkDb58T27N1njB1KxTw6Z8cOrfB/3HFHOq4b0M5b4jXG7dDBQ1zndHb1yddKu/NiwBR8MLoUGX//u757CXw+D6695ox+gaUWPawhvp6yg4cpQKL9TDuA/uGXgN8nXxd6+8J4QQ8hZdbBIypHzHlNz0tTUw3m6d3zxHMe6otonceSrkU+f9nJUBQFK0+em3Ttp4/oM3Uqa2oy/q1VUhyU+5wIUorn0efzYOLEagDaOERA6yYCQHZ5ET9nvg7s7gnLz0VIznzNvXv3IfnxhztaLONpzON5oGotPOKm7h+R1rC8IUBhwIOIiIiIiIiIiGhQshrwoKEn3xC2eWM9eeSGCFd4PC54PG7LDPpjjpkJQBs3ARhvCHs82hvrl1xyklxWURTZyl10+kgfNrEWp0XhZoY+l/y99/Zaur7YBQXMzIXyvjSdP8zhFnPBxggPZDZaJjHAxynfhLcJJ4iiQ09PKO3dwR6PWxYQenvDaZ9zUZwQb76Lu8ntuia4M+jgkVzMDCcFCOzHqJhCFWna3Cd38BAdaOwep090QYjGLQEPuzCDeA5D4WjadQeDRkGsry9qaqPuloULcyt0IH0XmljMvGyKES12z6HXOv7HrKqyGC37O+TjFy3eRbE5HnPeVwDziBbRwcO50OxP6uBhVzw0F4O7e0IIhaLyWLfrJuPkcxceDwBYdco8uQ+JoMS+vVrAo7LCPiBWbCryd+tF6eRQxuFI7nzg1MHDZ/qbiuM/4xEtehckcbzMnzcJV191miyoA1oRUYwdeerpLTLgEUhxF7rY7u6ukBE2sglJ1deXo7y8EJFITI5Qcdq3PB637PrU3iE6eDif45cvm46vfuVT8vPkjh6AETRpa+vp9z1ReC4q9GP5sunw+73yuTHfnS6CCQUFPiiKgocevBa/efTfUFISzCjgkYinDr0BRtgrVbDC5XKhrq4MAPDhhy0AtHNTtsYFud2ufs9Zuo45p5wyD36/F2VlhVi+bLrtchHT3f7yPGAaeyN4PG7ZZaUrqYNHqv28qDAgO+D09IblXf9D0ZkjUyKImIirxjFqs+8WFWljPWKxOJ7Tx9+l2m/NxtcbY3FmzBjfrwPQ4RBdPPbs0QIeth08ks7dRUUBnHbqfNv1ml8XxfnfaURLY6MWKnjvvb0ylFhi87wETeNixDWAed1LFk/F88/dgnPPWW55bQG0ThKAcbyZO3gUJHXwEOeHZj3gMfvIBsu6/H6P0cGjL4q33t4JAGiaaB9cN18TOIW7AJjCI9YwhQgPX3rJyXju2ZvxpX89E16vRwZixLgl82u6+XeEIzHTdusBD9k1xYXJk2u1r+nXEeUpAh7dXdZjucfUqUmcQ80BD/N1TFtbj/FvDbdbvmaZz4vxPuMaJt4TBfSH79IfIwMeREREREREREREA8OAxwgz0LEocva5/gbyv31pDU48YTau/MKpOO7YWQCMono0aX64KM4BWsFCvKEck0EG5y4LHq81KCGKk7NmTYDb7UJ7ew927TLuAsxkwo+lUK7fBZluWXPAI5FImEISqYsTogAbDkcty9sVJ0Ux1xjRkmFL995I2lEk1uXDaf/+4k7RJ578CxKJhFFwsOvg4bbuL6mI3ykKK0bAI01ow2N0QlEdOlVYlk16Du06G9h18LB7HsWoh57uUNrgg9drtBgPhSLGXblet6Ud+0BGtFg7zxjLxtN1NknqJmPe3ysri3H//S/Iz0URJtRvRIt9EU4U+T76SLuD25e2g4cIeGgFcruAh9vtkvtLd1dIPmZFUQbVreCiz52I2791AW7897Pl18rLtCLVQb14WFFh38FDPDddXX1yrESq8R+DVVNjvQPfqYOH+F4kEk0bHgOM0SrhcFSG5NIVv5csngoA+Ilp/wik6OBhLnyKAp3d+VxRFMyb2wQA+OOftgGwFlNTEc+76LaRyVic009bgH//8lm44UtrZFDATHSqEXfhm4l93296rOa7z8V5LrkQW1jgl79LFIp7nAIeSaG3VIVPuyJv/TituC8CHqmCN4ejIinolG5Ey7Sp9fjdY/+OX/zsX1I+34J5PJrYD8WxZP67ejwuY0RLUtF41y5r1y5AOw7FNvb2hOS5tHCAo5yySbyOJBLpO3gEgz5ZQBcaJlSlXFYwj2Q5RR+dly2VVUl/f5vnMXm/U1XVMWhmDhwYAQ/747m+vlwuH48nUFNTirraspTLFhbprxXdIVPnCes5VLwmJ4dK9u/XR7SIDh5lqTp4aI+1L6mDx+zZ1o41gYBPnhN7ekJytNRnPr3C9nGKTlKZBDxkB49QxHLNZX4eCwv88hwsXkN79WPCGC+n/Z0uvuhEuN0uXH7ZSrndooOHuE73eN2Y1GTdP8VrpXlES1eKgIfYRhFAMl+7mLv3tLV3W8LHlpCconW1S4SNxxvrjclrGZdPdPCwDxkTERERERERERFRfwx4jDDmudqpJHdkMMaUaG+KTxhfiW9983x87sLjLUVyAIiZWqMDwLhx5VixfAYA4KLPndBvjEb6zhb6tujbLDp/FBb4MX1aPQDgDy++JZd3CmsI5kJ5PJ5I2dlAMLeMFgUb84gWu/BAdbU2Kz0SieHDD1tMXVPSdfDQHl+6sSviTfueHuOuebviEZAc8HD++6/+5NHw+Tzo6OjFnj2tsqARtGnTn0kHD/F4xHYkj2ixG0VjdOWII6E6Pydy2UjS+B+7ES3+1AEPu+fF/Jyn64ICAEG9+NUXisj912Pq4GEeyQBk0sHDPKLFuKvV6ILiHB6K6Pu5+WcLiwKygNrYWCULdqK7SCyDxykKXeI5SRe+EOeMTtnBw3552R2iu08WnYIB76C6Ffh8Hhx//JGWQMmkSda7qp1GPIlt6eoKyQ4eqcZ/DJYYOyU4dvCQBcF42jAYAMtYIGNEi/PfaebMCf2+lqroaC58Oo0LEkQh+7339gIwusbYSQ54ZPK3VxQFZ65ehLVrl6T8/rhxZQCM0TxmYf24NHcnsHST0bt4iPBGqvBDYYEeNkg6plVVNYKTCXG89L9TPV2Rt76+HACwY4cIeGRvVBBgjF8Q0o1oAYCSkmDasM6aM00jd/S/Z5f+fNaaCvcer2lES6e1aCzCWI2NWgDC7XahrrZUhhC6e0LoFd1VCnMX8BBdqeKJRNoOHgAwJykoILqd2TGH0c4+K/V+Pljj6ystnyefmwR/UsBDdP1xUmAauwLYj60DtNfLyZOMYMGK5TNsAyRin+3uDsnjx+PJLAi4f7+1g0ddXXm/7Q2aghWA8bonAmuC3++RHYI++viAPCcmj9Qx85nGkaTt4FEgtiNquXa164Qiwmni+U6+drni8lPw7NNfw7x5TbKDhwhhGKNuPDhicuqAh/kc19VtHafUYx7Roh/P5q4d5gBcW1uPDFS7PW7LGEJAQSISB0yX9/HemKmDhx7wiLGDBxERERERERER0UAw4DHCZDoWRQY8TCGHZOKN6Wg0rhevrGEQAPjmf5yHu++6BOd8aplRhBdFrrhzcVq8+S+2wbz+k0+eCwB48v+2yOUjpnbRgqqq2PjgH/DyH9+1rEsw3zmdzDxaQ3aqiCfSdx7xuHHkkVrB5u23d1rmnqdiFP314IMqCqXOI1p6e8PG3cEOhc8Cc1tv2X0idUHA6/Vgil7Q+cf2PbKwfjgjWsTd2uLublEkkSEMxab7hCn4kkgzFie5g0e6MTqiSB6NxiydROyeR1HMN8+Vdwx46M9XX2/EKJR43PJ5FAVOYSABD/OyiTR/fxnC0o8NEcYSuvURCVd8/hTLHdnhcFQeG4GgfYeAvfusRXK7jhzJ25NuRAsAlIiuGd0hOSoomMW78s0BD5dLwRzT+Kl+26J3FGhv75F3HhcVZ3NESwClpcZjc+rg4fOZjosBBLza2noQiRhFOyfT9ACdcPttn025nLnwmUnHF3PBFujfuSRZcdJzPJjuLclEAbd5X3u/7/3u928AsHYn8Hjc8hwqAh5OnY3MHZbM7vvJ8zhp5dfxwQfN8txXUGAtHKuqmj7goXfweO31f2rbmuaYG6iKSiM84PN50u4rmSotLcAVl68EALTr5z9x/hGhG0Af0SI75ljPk+K88c1bz8PXb/k0Nt6/HhUVxTLM0dMTNgJYWeywM1Bu04gWNU2nKgC2BXQ7559/LJYtm457vn952nPuQCX/7urq1MdowG/s+5OaanDzV89Ju24RIhDBHafzHKA9TgCYOmUcrr76NNvliooC8jnfr49c8aVZt9CiBzxEMGv6dOPc16mPCAqYRsB0dfXJLjHz50+yPAaPx41q/Zz2ve8/BUB77XAaRSNeE8PhmHzNtQtVlRQH5eM0dyCy64Ri7jwFmAKhpu2RIRbTNQtg7ciX3GGmXh8R1GsaidSdFPDo6uqT1y1inFkkEpNfM3cta2/vsfxbQ2xTV1svwm0hJKLW68t4n9HVTfHox5UK+TUiIiIiIiIiIiJKjwGPESYe7x/CMAvI9tLam6/mkEMyv6nNfyQSM0ZRmJb1+71YvGgqXC6X/Lp4QziRJvggtlF0EjAX1sV4mL17W+XyqUaubPvHHtz3k+fx7zf+HLFYvF8QITngsXvPIXz3rt9jX3ObEShxJ49oce6CAQBVeptzcyDArggv7u5s7+jRf4dz0T4Y9MttF2ETp7uDRXG6tbVbzpB3GtHQpBe+9+5tk8XGYLoRLU4BD/3vLYq1YhvUAXXwcH5OvKLoneG+5fMa+6IM1Dj8PS0jWtJ0ZAGMAnFfKCJHE7g9LtklQtw1LPSmGdFiHi1kboUeT9PtRRQ5xfEciZhm2sfickRCUXHAsk+ETAGPgqB9qOLyz6+0fJ4+4KF9X+xXTsuLbe/u6jNtS/a6FRw5q0F+vHzZdBwxOfWd6gAwcWI1AOCf7+9Dd7e27dns4AEAgYC1UGhHdmWJxIyQlMO+O3Omdmf9m299bHTw8DkXP6sqiy2F3rq6MpttNgqfCXmesz8XTWyqtnxenaaDh+icIoiC5eGo0QvWBw92Wr4ejyewXe8skny+kx0l9GPPKXAkzuetrV3ya9FoDA8+9CJisTh++9hrprFV+jkxZASwxPk/aNOZQ3SvEAJZPCYAayebcofOA4NRWqqF/Do6eqGqqiwKi9AKoL3eJj/fgHZOF+Gq8vIirDplHqZMGQfAeB57esJDdnwOhMsUfIxnMEZtgmmc3Xe/c7FjGATQOql9586LsGD+pCxsrZUYzwQAV115qu22mMNWd333krTHMmAcV+I1LNV1pdkpK+fhJ/ddjXt/+AXHkTsul0vuqwcOaMe1J8OAR2trNwAj6OD3e3HySXPg83lwzIqZlu0OhaIyWFFaWoBg0IejFkyW61IUpV9XonSdbYyuVr3y2LcLd3k8bowbpwXU3np7p/y63XVRcsDDaVygeH5FZw1zR766ujLLWKC62jJ5vdShX7cmh1QPHOiUv6+0tED+ThFu7bV08LCOaJEd07rCUCNxxLu0863iUQAFgKp38QAA02NR4wx4EBERERERERERZYoBjxEmXfeB8nI9bKDPDk/VlUMw39kbjcZlpwK7N9ZFcUesW77ZbBfw8NqPdBk/vkK+0W1+bMkjV8KmURjbtu1O0cHD+qb0TTf9Ar/+zau48aZfWO4olC3X4wnZTcJpFIG5E4ocXWDzOGXAI/l5ses+IcIJeucUbVvsD8VJ+l3zH3zQjJ7u9N0HRIHv0KHOtEX+jDp4yICHVmwI68XMeJruA17Tcyj+FnbLipET/brD2AU8TOOFYtH040WMDh6hjEaXBE2Fb3Or86oqrbi8a/dBy/I9aTp4mJ/ftrZu+bHx93cOeHTpd8qHTR08wpGYbKteVBSEy+WSgYtwKCqPDbtwDwB87sITLEGJdAEPcX4xlnd4zovFtofQK7Ylix08CgsD+OL1n8T48RW46spTHZedOUMbWfLmmx/LfTHbHQLMd2E7BbBEsC4SjaXtJgRod5kD2vEvip/pujIoimIZ/TGurjzlciLIFApFMwo+ja+3jp6YmWasQ3Kgo7jo8AMe4nGFkjo+mQMfl1x8kuV7RcXGuCDzzwYD/fd30Y3C3N3mvff2yY8LCvzyNaRQjq3SzrPmDjt2x8bSpdMsnycczr2DYR5RUeEwtmgwymX4pRu9prE+U6eOk8t4vW7Z7ck8oqW311g++dgzRjqEZAgklyNa5Ei3hOn13+EYnWzqJrR40ZSh3bg0jjpqMm771vn4xc/+BRd+9njb5cyvC5kGr2RnBjGixeFcIcyaOcHxNUgo1wNpzXoAY6CdZ8xdM77x9U/j/564SY7KMQc2W1q0cKYYK3TssTMt66lJ6njiNJ4FMM717W3a9Z+iKI6Pt2GCNkLnzv/6neN6ASPcK55vp2sX8XrbrS9rDmwrioJjVsyQyxYWBeT1fFu7NeAhAmjNLe3ytdLv96KiQg+36h1WxHEKiBEtRscQ2QUpHIaaAOIRPcjqccEd1J6vWLd2DlYURf5LVI1l91xIREREREREREQ0mjHgMcKkD3hob5KLInLcYUSLuTV1JBJ1XBaAvAOwo6MX0QyKk2I9saSivQiE1Nb2v2M0uSOHuDMa0O6+Tw4iJLfRf/+DZgDAe+/ttbzhLIMMsURGd82bt90YReMc8Oho1+5sVGW3CufOFrFoTBb3nDp4iOKZeeSK093N4u/U3Gy8QZ+ug4dTwEN0DSgpFiNa9A4eabtyWDvEAPaPU4aB9OXS7VvmES2hkN5G3KFIJe8o7Qml7Q4CWIslcdkJxoVKvbOLKFwac+8jssibiugCAmjFECGRpjuMDKboQY6wqai9e/cheTeyWM4o2EfkvuJUbHK7XZg1a4L8vDhN6KGmxnrMOgVCRDG/q6svbSeZwTrnU8vx6CNfkiEoO5Mm1aCgwG8EjVzORbjBMJ83HTt4iM42kbhpRJP98V9RXiTH0bzxl/e1dWRQ/Fypj8Ga1FQjC4XJAqYRLSL04DQyxBwaCQS8mGUKB6VSknRMZiNUI/bxcFLAo7m5HQBQP668335qdJPRjiNxDku1/46TI2CMgEdzs/FxW1u37OogzivmDh6AVrS02wc8Hjcuu/Rk+XlhloMM5uBkZZpRIQMlAm4HD3bJsKHH47aMKPF4XKYRLUbAQ3zs83n6Pe/mTkVyhFIOO3iI1/pEQjXO0TadqgCtk81/33Up7vvRVY5hreFywvGz054TCwsD+Oat5+H2b12Q8blQBEXF6BOPwzingRLXru9t17rwDLT7jAgVAdrraaFp/5Gv070ReSzX6QGPM1cvwurVR+NfN5wJAJigBzCEdMeQX78WEUGJYNDn2MGloaHK9nvJbEe0pLh2ka+3+nEpw936tdXSJUawrKDA3y+YLLoaiTFc3d0heZ3jdrtk8GX/fi1IZw619vaG5Wu8x+OW57S+UMQyekVxKXAXWF+7FK8biv542MGDiIiIiIiIiIgoc9kZzk7DRrxpm66Dh3izWdzxl+qNeEVR4PN5EInEELaMaEm9W5SUaPPD4/EEWluNlsweuw4e+u8URdXkThhVlf1nw3d3h+SdhYA18KHN+bYGETr0QkMqlg4e5pbrGXRwEK3HLQEPu+e8zPqcyxEtNsvLEQ2m0SVO3UQmNWnF3W3bdsuvORVKRcBj1+5D8mt2BRxzpxI7kbAe8NCLxKFwxPIztkEWU4FTFGPtQjLJHTzSjYsQI10ikRhCYWuHkVTMIwAy+fuXl+lBqfYe+PQ78b1etyxwClOnjMN7/9yLUCiKg4e6MGF8Zb91AdYRLWI/AUxBFpvioeyCoRemzR0CRKt083IBvxcd0Ee09KYPeADW0EZ9UoeGfssm3d2c0YiW7tCQjGgZCI/HjcWLp+Cll94BoBXxsl2I9XpNHTwcxgt45XihqAyFOAU8AGD+vCbs2LFfBn3SjWgBgAs/exzKywtx2qkLbJcxjy4Qf6NMR4bMPrIx7TLFScGSbIxokV1qkgIe+0ThNsU4muIio5uM+Wf9KTt4aAGJAwc7EYvF4fG4ZVcBADh0qKvfKAbZwcM0FsGpyHvcsbNw/wMvAADOOWe57XKDMc70+LPxfJtV68d/a2u3PI8VFQUsI0rcbrd8rTB38BBdiJJDP2IdgNbt6y9bPgAAS4F+uInjMWEZ0eJ8vliU484dg3HSSXMGtHzyiJZMOnhkSry2/G3rDgCQ3TcytfJk+8ciwhwffNAsXytFwNjjcePGL58tl52fNDZn6dLpjr9XdPAQ5+Z0ga2GCamvEVKxG9GSMuCRtKzReUx7rVi2bDqmTatHMOhDQdBnBDz0wKnoslVRUYSSkiA6O/ssIyFrakrx7rbdOKB38EgeS3fwYJfctgLzuBgVSOhd1hS3Ak+BB+YorOJVoLgVqFFAzXI3IyIiIiIiIiIiotEs97ca0oCkDxsYHTxUVbWEHFLxme4mTzeixeVyoUK/m/FQa3faIrwMD+jFbdHFQIQZRDcEM/P4CkC/A1DX3t7TL4iQvLz5eYmaO3jojz+eUDMaiyDWE4ulD4SIQEpXV19Sxw+bcIKpW0XCdGejHVHokAXYgNexQ0Cl3kp71y5tjIjP57FdPpMOHmIsiCgIdHX1QVVVI8iS5nECQDjs3MFD7Id9fRHEYvG0XTb8phEtoZAe8HAIvZjDBsbf0/45LBNBqbZuI1TlcaOwwG+5w3dcfbnprvbO/ivSmUcLdXX1ya4o8nHa7IvirlwxWkKEbfo9Pr0Y6jeN3BBF54I0Y1HMdz6nK6pVJ3VGcCrCiuf8Zz/fLItO2e6aMRDLlxkt6ufMnpj19Vs6eDh02BB3fEei8YzORQAwbpz175JubACg/W0+fe4KS2AumeiG0dsbluGhYMD5b3Tz187BjOnjceONZzsuBwDFSaOkkj8fDPNYGbNDh7QCY/I+CmgjjADjOArLbiX9H2tZWSEURUEiocpOBaI7CADs3dsqjy0xtkCEF8Rz6HcY0QNoXZk2PXsz/vzHb+GkEwdWZE/HfH4qzPIYorKyArhcClRVxccf7QegnXerKotxzDHaqItJk2pksKfTFMAU54BU48UKCvxYtkwrpG/d+pG27Tkc0SKvF8wj2tKEsMYCY0SL0b0lW8TIFGG8TVgSgLwOdbsVfO7C4/HcMzfLYzGVhQuPAKB1QXvkkT8DAGbMmJByWY/HjR/deyWOWTED668+DWecbh+QA/qHHNO93jY0Wjt4rL/6NNtlZWhDD484dZMzX+MAWoc4wAja+nwebLx/PX54zxVQFKVfMLlXBkL9ljFP4merZQcPLeDRmRSuFsEPr3lES19E6/Smd+ZQ3Ioc0SK4fG4oesBVjbGDBxERERERERERUaYY8BhhxN2kdm+siw4e0WgcPT1hy5iSVMx3k8dMM7vtiO4Qraa7mN024RHRZSEc0YppyR08qlN08GhNDniYOniY53yLQEBrq3V5cwF5z55WAFonEVFAjcfiMpjiVLCR3UficdNomdTLmwvk5pb0dndwi7v7o7G4EZJwuNu7vLzI8rhEsdKOCM4Yd5k7j+gA7AMe5o4nEydWA9Ce12g0Lke02HVxMI8piOj7gF0YpLa2DCUlQUQiMWzbtjttqEaMaIlE4hmOaNE7ePSG0naeAaxdWeSdsPpjWXvmYrlcY0MVqvTnW9zBmkry89uud99IxJ0L/MlFG3MHD6GyslgeD2KERjgUzWhEC2Atuqe747+mutTyN0w1ZimVv/71QwDpi19DafmyafJ8t+qUeVlfvzng4djBw2cEvDIZ0QL075xS6VDMHAixv5i7yqTbX047dQEeuH+9HGXiJPlcle7clQlxvonHE5bglBgRUJhiHyuWnXC0cJoxoqV/EMPtdsnjTnSgOHDACG/t2n0IO3dq4TnR8aZdH88lAlg+h842QmFhwLHLx2B5vR7c873PY9nSaThn3bKsrtvlcqGoSHtsH3zYAgAoKg5CURTccdsFeOw3N+DM1YtQVqqdP7u7Q/JvJEIypaWpw0nz5zVZPh/oiI5sktcLiYTpGOXlsjg3iL9pIE0YbCCSO+80NtqPMvn+/3weq06Zh0svmYvLLj0p7einyspirFg+w/K1BUmdOszmzG7Et//zc7jg/OPS/t0Li6znm+SgSrKJjdXy48mTa3HB+cfZLmsEsPXRdQ4d/IpklyK9g4e49jeFDc3nm34jWvQOHgUFPtnxxLys6PS1Xz8Xdpi68wDARx8dAKB1eis0j5ZTVdmZQ3EnjWhxAYpHgUvvfiU6fRAREREREREREVF6fMd6hElX+Pb7vfJ7fX1hYw63TWhDFMrD4Vjabh+AcVdtb29YduSwewM84DfWbd52sfy4+v4FwtZD1iK5uKsQ0IqQYh2ia0JbW49p2bAshAPGSBOP1y1HQ/T2Zjaiw2O6gzfd8m63S74Rb95eu+XFiBatwJu+/buiKBhvGp3h1KkCAKoqrcXfgqB9Ud2TJuAhOk0AWjECAFpaOixBlkCKMQeCKKiLfcCukO12u2TB5Z13d6XtbGA832Gjg4djwENvGd6d4YiWctEJp0eGKrz675wzxxhNMXPmBDlqSASKUjEXogGjLbps/283oiUp4JE8luKM04/C3d+9RH4ujrm+UEQWbNIV7I9ZMROrVs3Hv24403E5QHvexQgLAJaPk5144mz58dvv7ARgDUMNt4qKYvzg+1fggZ+sH5JxCl7TedPrOKLF6D5jjH9wLvQnd6WoqCwa7GZaBPVjV3RCEmO7ssV8TLrdLsdzRabMgTLz8SDOvalCRMb4gpAlnGZXoE4eMWI+35mN11/DRJFUnCuy+RwOxoIFk/Gd/7oYDQ32RfLBqijXzklvv60d0+Ic5XK5ZHG7WA99AMDmzdpYpDfeeB8AMG9u6u454pwrpCuUDyUR/kwk1IyP0bEgOSyazY5M5sBYY2MVli2dZrtsU1MNvnLT2XJfzMQtN5+LKUfUAQCWL5+ecpTTYExqqrHsq9OmjnNcvra2DJ+94DhUVBThumvPcFzWY+okB/QPSZuJ0UfdXaKDh3NgOzngIQJyBQV+y3NTWOjXO3hor0EH9A4eYkSceOxitE5JaYHssNLW3g0VQCImOni44Ckyzo0unxuKS4FLDz0mItbrJCIiIiIiIiIiIrLHgMcIIwrFTsVpcwv7dMuL7gMtLe2mES0O4wVEaMM0XsRu3bKbgF6ESyQV1o+c1dDvZ5I7eISSRrSIxyPaRbe1G8s/8eRfLD8rim1lpQUoN4+WkUV1p4CHGC9jHhdiX7Q1jzoQ7MIJXlMHj3iGd/DPmWMUxdK13Q8EfJb29smFMzOjg0fqN9bNHSPqastQEPRBVVXs2NEif96pTbsR8NA7eDjcsS66w3R19ZlGl6RevqmpBgDwj3/sySjgIUaYdPeE5H6eScDjH//Yg9ZWLXRUqocTppoKOLNmNmCuXrB89bX3bNcn7rwVxH5rtP9PvS2iCCO2IbmDx+mnL8ARetEKMApufX0R9ImCt0PAB9D29a/ffC7Wnb3UcTmh3hQ2Sr7T1+yIyXVYvfpoAEaHg/oUoa7hdOSRDZgxY/yQrNtjCXg4jWjRAx7RWNoRPUJNtTXgka0OHkE9DCECHsGAN6tdJUpMx+T48RVZWbfP55HrsQY8jAJlMiMo1WcZ7WIXOBFBJDGGQASskovC9eNFB48eJBIJ2anIKeAz0lVVac/Nm299DCB14NDtdskQzddu+SUA4J//3AcAmG/TOUF0HxNqMuwONBTEa3fCNKKFHTz6H1vZDHjMmdOIlSfPxafWLcU937vc8Rw6GEVFAfzo3ivx718+C1+/+dNZW6/L5cKxx86Un0+bVp/2Z66+6jQ8+fubsHjRVMflxLWVCFPLcGqKEHaRfq7t7LJ28LA7F/Xv4GF0/DIHVsS1UE2NPqLlQAdU1RhfdZz+2MX5t6y0UL5eHdDH1onghuJW4A54EJyg/e6iqaWACig+/XiLsIMHERERERERERFRpviO9Qjj1KJZEMGKvlDEGEdh05WjYYJ2h++u3YcyGtHilx0/oo7zwAGj/b0owiW/OV1TU4pG/Q7jY47R3iROHrliHtHS3NyOXr0rgehoYW6d/9FH+1NuR0VFkSyItrZ2ZRSqkG+sx0wdPByWF8+5NeCRennZwcN0J3m6gMfyZdPlx4uOPsJxWcAISwBaYdWOCK0kBxCEsB4oEEEOEZRp0e/i9PudC8LiscqAh0ORzNytQo4usdnPF8xvAgC8/0EzDh7SChplDi39zesWhQmnQMismVoI4ODBTtz3k+f19WuFzUDAh589dB02PnANSkqCOGrBZADABx80264vuYOH6DyTSHN3uLiree++NgDG30OoH2f924oCXG9vWB4r2SzCAcBivfvFhAmVjs85YJxfBHM4ZLQxn2OdRtGYO3iIzjZ2Y46E5GCB6DBxuMplkU87JgJZ3ldEgBBIPV5oMBRFka8t5rCGc8BDv7u9OyRHhjmF00qSiqVi7EGjabwCYLwOxeMJdHeHENHDY+J1cjSqqtKeG/G6mMnYnWg0hoN6sdcuFJY8kqW2JvVyw8E8uiyRZkTbWDKUAQ+v14Nbv/EZbPjimZbrl2wKBn04c/WitCNdBmrZEqPbSPIomMPhTurg4dQ1LzmwIa657AIe5Q4dPGbNnCCXE8+VDG0c6ERvb1iez08+aa5lvaUlBTKAfbC1C3ABLv21UdGvc4pnlKHquHEI1AShKIDLKzp4MOBBRERERERERESUKQY8RpiQ/qZt0GH2uSgW9vQYYQO7QlZDQyUAYNeug/INYZ8vfaeKUCgql/fb3AUd8PvksgBSjt3477svxYMbr5FF4+QOHqJIDWhvQIs53wuP0orqO3celN8XP5s8u728vEi2jG5t6zaN6LB/nMYb63HE486dSrTHqo/GMAVSbAMe+vMbicTktijpAh7Lp+O2b52Pn/30Olz++VMclwWsY1qcAx7647QZ0RIJW0cOiAKPCOKkK/Akj2hxepxibntPT/oxKtXVpRg/vgKJhIodO7SwyUyHzgxi3b29YRmucAonVFeX9hsRUFpqLH/EEXWYrt+pG9Tb1ovOIKmIxyP2Q1FUSR5blEx0vNi/vwOxWNxSJG9srEJt0l3u5oCHaKFeVJzdYtZnPn0MHtp4LTY+cE3ajgxTptRZPh8/igMe5uO90mGEiuiu090dkh2K7M6hgtvtwmc+fQwAYN3ZS7PWTUCMuhLsRpYMltfrwdo1iwEAF190YtbWKztJZdjBQ45o6Q4hrL8eOYVqRIBGjGbp0Tt4mF9bFEVBUVFAFkBb27rzZkTLUBIBDyGTYvmePa3o0p9Du+K9udOU+XnNBREsjCfUtOPCxpLCpGMrGyOXRoOlS6fh3760Bj/64ReyGnpxi05yyR08UlwXVejHT2trN1RVdTwfAsb1T5t+LdKhj6MqKPDjyCON7nqi41RNTSkKgj5EIjH87W/aOBav1405cxplUBsASssKZLAvGo2js7tPjiJU9JCUoihw+92AdmjB5dcej+pwDUVERERERERERERWfMd6hAn1pS8IijfdRVEKMN4oTibupj1wsFOGE5zuPjcX1kRww+5NfrGNRgcPfQSM6c3p2toyTJtaL9+cbkvq4BEyBSbMjta7WBw82ImeHu1xitDBlCOsReXyCiPg0dbabYyKcezgYQ542N81mfxYMxrR4vHIdYsOHulGNCiKghOOn40jJtc5LidMnGjcaT5hfKXtcuY7lc3+9KdteG7T32UBWhQsRXFaPNfpOg+IbjCZjGgRrf67uvvkc+4UqllgavXvdrswM8XIH0EUCyORGA4c0AIhySMBkj208VrL52WlBSmX88puL/bFCfE9UVAXIzGMMUepn5fKymL4fB4kEiqaW9rl83jcsbPw85/+S799rEAPm9z7o+dkkKUqy3dDu90uTJ06rl+xL5UZ062hm9HcwSMaNY4hcxgomRj/EYnE0KkX1QJpjiMA+MIVp+AnP74KX7z+k4e5pYbkIEq2u70AwIYvrsa9P/gCPvmJhVlbp3i+QuaAh3z96v8Y5Lmlq88I1fjtQxjib9TWpo1e6dbDkhNNHTyCAS9cLpdctquzDxEZkhzFAY/KzAIe5sDTu9t2A9BeL+yWF3f9A8ARk2sPdzMPi7g2SCQSaceFjSXJ4+HSjf8aKxRFwVlrl1hG6WWDcR2q7YPiesGT4rpIXM+Ew1H09UXQ2+t8PS9ei3fvPoQPP2yRHfCOmFwLj8eN2791AerqyrBGD+h5PG75+F586W0AWkhEURSsXGl08SgtKYDX65Hbc7C9G2pM227F5jrH7eeIFiIiIiIiIiIiooFiwGOEyaSDhyh+dfcYAY9UbwgDxp3N3d0hywxuO+aAh+zgYdOO3p9UhDO6FfR/k7ei0rj70MxcwJPbXBRAdXWpfAN5955WAEY45AhTwMPlUlBaUiAL680tHfJNcrvxH4DR8SQeT6TtJgGYQjUZjGjxmTp4iFEk6Tp4DNTCo4wxLssdWoanCnjs2NGCG/79Z/j6Nx7Bpuff1LdZD3gUaAWeQ4e6AKS/g9frM8ZRAM7PuSge9XSH5N3eTiGCSy85GatOmYdZMyvxta9+ynFZ8z69R99f0o0XKSkJ4uST5sjPS22WT7WvJBMdUmpE6/KD2vNnjGhJ/bwoiiIDGm1tPfJ5LCoKpOzKk1zMcbkUx7DBUDM/x5WVxY7H0EgXDhsBH6fHWVDgk+eGTI8jQDufzprVkNVOAl6vR44eynQ7BsrjcWPu3IlZ3e6BdvAQXWw6O3tlNyGnbiWiU8f7H+xDb29EBvEmNdXIZcTvkeNcOvvk8ekdxQEPv99jCWMU2wQ2fvyjq+THL/zhLQDaOcCu64/H48Ydt38WjY1VuGb9GVnc4oHz6J2notG4cb3ADh4oKrT+rQNBdvAYSp6k8KjTtWgw6JPnxda2bvT1OXfwqKsrw6KjpyCRUPGNW3+FeDyB2hqjc9nxxx+J3/76Bpx26gL5M1OnjgMAvPHG+3IdALDmzEWYNKkGs2c3Yt68JgDAHbdfiI33XIXGugqo4jo3aVSkflqFt8yPgqZiFE0vy+h5ISIiIiIiIiIiIgY8RhzZNcMhhCHDBhmMaBGFr+6uPnkHdNDhrkxx13MoFJHFLLuioPh6WL9j2uhW0H9bKsq1IvahpICHGBFibhldo78BXaYXrru6+qCqqvzZyaYuF7W1ZXC7XZioF+z27WuTY1/sAhiAEYiJxRLGdnscAh76OJreDAIe5kCAKPw7dbYYjOOOm4VPrVuKm25ch1KbzhOAOeBhFKf/8Y898uPt27WPvV4xokV7nK2temE6ww4e4nnxODyHxUXGGIVuPeAhAkip1NWV4Ss3nY3Vn5yCE0840nE73G6XLHQc1Ivq5WkCHgCwePFU+bFoO57MPOPerouH+PqECdp+2NzcBgBy/I9T8VCOl+jqQyTi3CEguZhTWlqQ81DFj++9EkccUYd/+9KanG7HUAubxuc4cblc/fbrbI9GGYjxpg4/TsHBfOI3jQoTxDkmVdBLdIjq6OiVyzmdu2bN1F5v3n13lxzT4vN5MGmSEfAQx1WxPs6ls6sPEX3EwGju4AFYuwIV2ZyjZ82cgH+57hMAgFde2Q4AqK0pTbmscNyxs/DLhzdYXu9zwec1golGCI8dPEQHL8HpWpEOn7xW1Dt4OI10UxTF6FTX1oOeNB08AODss5cCAP75/j4AwIoV9mFgADL8Ia6hRAfA6upS/OJn1+PH914pX9vmzG5EU2M1vF4PVH37FU//Y0hRAHfADV+FH96SkfH6Q0RERERERERElA8Y8BgBurtD+PP/245t/ziEcCh9Bw+//j0xukRRFNsir7moLgpfmXTw6OjolV+zHdEi77LWCp/yzekUbZrFG9O9vWHLXdlhvaC98uS5KNC3a9Up8wCYwindWjhF/NzMGcZYCPHmdnl5EUpKglBVFTt3HgRg39UEMN05GY8bd01maUSLufgnCvbZvjvY43FjwxfPTDsWQYRWRAEBAD7c0SI//ujjAwCMOeyF+h28IkyT7o5/I1TRCcB537J08NCLqqJ4mg3msTWAtk+ks+qUebj0kpNw5RdO7TduRDCHp2I2HTzEPtTQoBXTxT4o2//btC4HrCEsEaqyKyAnB7l8Nt11htPs2Y342UPX4bhjZ+V6U4bUkbO08M6MGan3E7PkgIfTyK2hdvWVp8qP587N7oiBoSJe/8znW6cOHmKUQCKhYu8+LVzldC464ghtREh7e68MYxUVBSwdaTr1c5To4PGf337M1NVqdAc8zM+D3cgVAFi7ZrElADehwX5cWD4R59doNMYOHibJI1qCOTxvjQVuGTRO38EDMK6jDxzoyOh6fsXy6ZYOTmeeuchxe0SgQ35eV+64vCA7eCRvtwqoABSXC1nOOBMREREREREREY16o7sKMUrs29eGm77yMIJBDyL6jGqnwrq4M7m9XQthiK4bqYjiTLcp4OF0x58Yx9LR2Se/ZldsDtiMaEn15nRhoR8+nweRSAytrd0YN05741h08BhfX4Gf3Hc1tm3bjVWr5mvbXii2PSzHswQCXtTUlOK4Y2fh5T++i3VnLQGghVwaG6vx9ts75e90Kti4TR08MhrR4hcBj0jaZUU3DMAIv+Tq7uBUI1r27G2VH7e0tAMACvQ7d8UdvGKUjj/NHf+iELhvr1YkLXC447e0RCs0HGrtloVSpw4eA3XC8Udi27bdALR91q4jh5nf78XnL1vpuIwl4BHt38FDVVXZkWTyJK1wfPBQF556+q8ZFQ/NHTzCaQIeIb1bjnDKyrmO207Zc8TkMtz34ysxqak27bL9Onik6YQzlBYsmIwv/euZePOtnTjvvGNzth0DIe9U189DbW3daGvrAQDUpOgS4fG4UVZWgLa2Hnz08X4AzueWQMCH4qIAurpDeOzx1wFor5WKoqB+XDn27muT4TlxboxEYvL1ZbR38DAHPERINBW/34tZMyfg729+DABo0DsY5TuvuYOHQzB1rOk/ooUdF4aS6Hgmrs/SXYvW1ZbhnXd2Yf/+joyu5z0eN664fBUe/fX/wzmfWo5pU+sdt0eMZBHEyJZ0EnqA2NWvg4cKRVWzPqKQiIiIiIiIiIhoLBjdVYhRQryp2tdnjABwaukvwh8HD2pdE5wKWaK9eiwWR1ubViwrcOzgoe0ynR0iPOK1LU4HZBt9regs3pxO1TlDURSUlxehpaXdGvAQBW2/B01NNWhqMlrkG+GUPhk4qKjQivbf+Pqn8be/7cCiRVPk8jXVJZbfmXw3qplbjlGJI57IIOAREKEarcjoVOAzjykJh7XnJlcBD49bdCoxAh4idGK2ZrV2Z6coFogOG+kK06IQKFp6OwWT6uvL4fN5LB1cih3+RgM1X58NDwANDVVZuyPb7XbB7XYhHk8gGu3/3HV1heR+PH26UUB5991dcOn7lOJw+6oMeHSHEAk7j2gRASMA2PzirZYwEQ0tRVEwbeo4eL3pwxol/Ua05PZO+LPPWoqzz1qa020YiEp9RIg4r7z7rhbcamqqtn29q6woRltbDz7+SOtKVJKmO1B5RRG6ukN4/oU3ARhBhm9983xs2fIhzjlnGQDjnA8APXpRdbQfd0VFRtG4LM2oq9mzG2XAI7mLUr4S59dIJIa4GNHGDh79RrSUlNiPf6PDJ6/Pkjt42Iy6EyNUWlo60KePXEw1ssps7ZrFWLtmcUbb09hYhUmTahAI+HDF5adg0dFHZPRzRgeP/tc5quLSrn/YwoOIiIiIiIiIiGhA8vod69tvvx2LFi1CcXExampqsHbtWmzfvt2yTCgUwvr161FZWYmioiKsW7cOLS0tNmscmYqLgylmnzt08NCLhYf04pdTC/WCoE8GFw4c0MdoFKQf/9LR2Wv5Xan4kka0pOtWIO7KbtWDJgAcR1KYu4+0tnVZ1uH3e7F06TRLKKO62rizW1EUTGy0v5tYhDDMHTycQhiii8P/PbUFQP9W1mYul0suLwry3hzd8e329O/gIcbGmJ2ij8VJvhs0XWG6vNxa/As6dPDweNyYPNnofhAIeLNaKDXfbTou6U7UwyX+ntFY/w4e5qBVIODDpZecBEA7LlRRPHS4O1yOUTJ18PDbBGvW6C3Wjzlm5qgvMo9ktabzg9vt6jdah5yJ87x4jRNjVMwBwH4/o4dC3v+gGUD67kBijJIgXoOmTx+P888/Vh5foZBxvhQdRZzGIowGBw50yY8b0oxdOWrBZPnxYlPgMp8ZI1ricoxWrkKY+cT8unPN1aenDQ/Q4TFGBSZ18LC5hq6t1a5xW1raMxrRMlBerwc/e+g6/OTHV2HJ4qmOIdlYTxRd/2hDpDWMeI923aIkBVNUVbv+ye9/iRIREREREREREeWnvH5bbfPmzVi/fj1effVVbNq0CdFoFKtWrUJPj3HH7Be/+EU88cQTePTRR7F582bs3bsXZ599dg63emgMpCDo92tv6MrCskMLdUVRLEEJwLkILzp4dOgdPJw6OIjifzgUQSKRkG/m2nXCqBQBj1Yj4GGMpOj/e4r0x9XTEzY6eJQX2W5PdZXRwaO+vtyxC4p8Yz0WRzyWvoOHKDgK4+qdZ5P7vG5920P65zkKeJhGtIi/jwjVXHLxiaiqKsHZZy2RhZ3CpBbt5tBMKuVlyQEP52LDkbMa5MfZHM8CaF1vrrryVCxcOBkXfe7ErK5bBoJSjGi59ZuPWpYRjysUjpiKh+lHtHR3h+TIIrsOHhMmVOLZp7+GO267YDAPg4aJuZOB3+917OBC/VXp53IR8IjJ7lD2r4tTp9QByKyzFdA/zBZJ0Z0HAL5w+Sny4527Durbl37800gmupecfdaStPvu0qXTcMOX1uAn911tG0zLN1799TkSiRnBVIfX/7FCURTc+e3P4Zabz8X554+McU4jmTEqULuuSKTpJldfXwEA+PjjA7LLmtOIlsFwuVwZvV61v3kIXf9oR88/O+TXkjt4qAkACgCGp4iIiIiIiIiIiAYsr2/xfuaZZyyfP/jgg6ipqcGWLVtw3HHHoaOjA/fffz8efvhhnHSSdlf8xo0bMXPmTLz66qtYunTktJxPp7a2FB9+qHUmCQScC4Kia8Ku3YcAAEXFzmMuzlq7BA8+9KL8POjQlUEUaMTdgX6HZUX4I2wqkgD2xexyGfAw7g4W4zpEsMRMhA26LCNa7AMeVaYRLSuWz7BdDjACHvFYIu2b6oD2HD6w8Q/y8/pxzgEPj9cN9GnhFMAoKA0387icREKF263IEMHsIxvx+ctWWva1gqTuLk1Nzi33y5MCN+kCHosXT8VvfvsqAOCE449M/wAG6MLPHo8LP3t81tcr/n5RU8Bjz55WbN78Dt57by8AY38VwaJwOIZ4gehqY388iwBWV1efPI78Dh1fsh2MoexrsgQ88vplOC+J4FibPh4lkyL8UQsm4xcP/1F+nm68xDdvPQ8bvvSg/DxVeAsAZs1qwMKFk7Fly4fydbGqqiTlsqPF7CMb8OTvb8xoRIeiKFi7dskwbFX2mEe0yH2LISwA6a+dKHuMTnJJI1psznMzpo8HAOz4aD8A7bqkwaFT3VAqmV6Grn+0Wb6W3MEDABSXPqKOhxcREREREREREdGAjKhbEjs6tDvBKiq0u9S2bNmCaDSKlStXymVmzJiBxsZGvPLKKznZxqEysdEoCAYdOk8AwMyZEyyfFzl08ACAKy4/BRsfuAaAFuBw6sqQ3JHBqQuGCINEIjFL4dtufrhYd3u70aFFdJPwp+jgUaEHWV5//X3s26e9kewU8DhqwSSMH1+B1auPxjXrT7ddDrDeOZnuTXUAqKwsxk8fvFZ+Pm9uk+P6xXMjuqbYdWQYaubHJB6nuFPd5/f0CxIld/Bommg/EgEAGhqsxYV0AY+lS6Zi1SnzcOklJ+G6az/hvPF5xOPRW/qbRrT8xzcfxfd/8LT8/LprzgBg7mwTzSg8JAIbnV19MvDkGyF3wlNqRx5pdKqRbeopYx49UCXOWfI4cghKHXXUZBSbxpWlC0ItXTrN8rldBw8AKCxI6mw0ygMeAFBRUTxqRwsZAY+oPD45ooWGmwwaJ41osdsXKyuLUWcaP7do0ZScjdHxVQTgq7D+bpc36TpH1cIdigtQmPAgIiIiIiIiIiIakBFz63AikcD111+PFStWYPbs2QCA5uZm+Hw+lJWVWZatra1Fc3Oz7brC4TDC4bD8vLNTa9kejUYRjUazv/FZ0DTRKJRXVhU7bufUKbWWzwsLfGkf1+RJ1Xj0VxsQDkXh97ttl582rQ4TJ1bj448PANA6Cdgta+6W39FpjF1JxGOIRvsXtEWROxwx/g4i4KG41H6/Z/mKaaipKcX+/R14+pm/AQBKSoK221NaGsTDP/8XAICqJhCNJlIup9GKOrFYXN49CfTfBrOJE6tw9VWr4HK5cOyxMxyXFQGPzi5t1I3LpeRk30skjEBCX18IiuKXHTxSbZPfby3oVVYWOm73hIZyBAJehEJ6MMFrv28JX7npbLlt5u1LRawr18etuNM2HArLbXnzrY/l93/z6L+iqqoE0WgUHr1NeSgUkYENl8v+MRQUaPtKV1efLNa43bnZXyi1ge6HwaAXl3/+ZDz00Gacdup8/i0HSi+6x+MJ/XXbCF/YPZcuF7BixQw88+xWAEBFeUHa5722thQtLVqwVAsqpl4+kNTJqjyDdY9E+XK+HWqigN7XF5FfSyTio/5xjyRjYV9UoV2jxmIJRCIR2U1Gu35N/bgvOP9YfOe7TwAAPnH6UTl9foJTihH5SxiugBslc8sRV+OA6ZIuFo/BpbjhSsQRU2NIRPP7uiaft42IiIiIiIiIiMaeERPwWL9+Pd5++2386U9/Oux13X777fjGN77R7+vPPfccCgrStxzPhba2kPy4usqFp556ynH50lI/Ojq0EEtz8+60y5u99Zbz98fVefGxXrtW1V7bdZvvTH/66U3y402bnkvZseCDD/YAAHbs+BhPPfUUEglVhite3vySLHSbzZ9bjueeN2Z8f7TjPTz11EHnB5CB3bu1MTEdnV3YuXMXAGD79u146qlOx58r1huIPP30047LRSLafPRDh7T1vf/+e2nXPRRUVYXLpSCRUPH73z+FkhI/Ojq1x/7G669i58fWneHAwV7L53/600tp72yuKPdj7z7tjfG33/k7QqGdWXwEmk2bNqVfaAhFwtrx+cc//hk7dhQjFjPCQ1dfuQCvv26ctz7c0Q4A2L//IPpC2t/8gw/+iaeeMvZjsz17u/TlW1FQoJ2y33rr7wj1Zf95pMMzkP2wohz44vULAcQHdH4mYOdO7bjp6OjAU089hW3btNeOPXudX+t6e43Xhj17tuHAgfccf8+a1U3Y+NBbiEYTOPaYGtt172vea/l8y5b/hzffHJ3dLYDcn2+H2j/+oY242L3b+Lu+8MLzHKeUh0bzviiu4SORCP7v/4xzzx/+8AICgdT7oscNnH3WNPT1RdHR8QGeeurDYdlWW2X6/zufag3vDNF2ZEFvb2/6hYiIiIiIiIiIiIbJiHi3+pprrsGTTz6Jl19+GRMmGONH6urqEIlE0N7ebuni0dLSgrq6Otv13XjjjdiwYYP8vLOzEw0NDVi1ahVKSvKztXo0GsX+/b1wuctx+edXoiBN2+WX/9iGV17V3lFdc+aJWLZsmuPyA9HYuBOvvnY/AODSSz6BhQsn2y579//8FZFIDIsXLcV9P/k7AOATnzgDLlf/gEdn15/x8h93Y1xdPc444wyEQhHc+Z3X9Z85PeV4jxkzW/Dc8z+Qn5+88ljMnTPxsB4fALz77m784n/fhd8fQF3dOLy77RBmzz4SZ5yx9LDXDQD/99Re7N/fi3BYC7DMmzcHZ5yxKCvrHqgHHtyGgwe7sGDBEkyfXo97f/QWgChOPPF4NDVZR7Ds39+BBzZqoY/CQj8++cn0Y1Te+EsP9u57GwBwzDHLcdSCSVnb9mg0ik2bNuGUU06B15u7sSW/+vUOtLaFcPTRi3DUUZPR3NwO4A14vW6ce+4ay6ibrVs/wqO/3g6/vwAlxcUA2rF48UKsPHlOynXv3HkQP//Fu4jHFRQWFAPowfJlS7Bo0ZTheGiUgXzZD8eKN9/6GP/7yDYEg4U444wzsP/AS/jjn3ajaeJEnHHGGbY/t2RpF97d9iMsXTINa9euzuh3XXDB2QiFIo7jyF56+ecADsjP16zJbN0jzVjZz73eN/HMsztQXFwGQAsTnXraqSgI5mbcBfU3FvbFAwc6ce+Pt0JNKDhl1Sp5PXzaaaem/TdAPoi0h9HX3ANfSepzZ6w3CpfPg0BdAXp3dkHxulE0sXiYtzJzotsjERERERERERFRPsjrgIeqqrj22mvx2GOP4aWXXsKkSdbC8MKFC+H1evHCCy9g3bp1ALQuCzt37sSyZcts1+v3++H3939z1Ov15vUbxdOnV+CMM87IaBvnzJmIV159D9Om1WPFipkpO2YM1oIFR+An912Nnu5Q2iJzIOBFJBJDJGL0ZU713AOAz6c9rkRChdfrRW+v0Q65oCAg55GbHTF5nGUESE11WVb+hqKYF48nxDQA+HzZ2z+CSW/OBwL+nO175eVFOHiwC93dYXi9XjnuoKAg2G+bSkuL5MfBgC+jba6oNN6wb2yoHpLHmetj1+fVTqWqqsDr9aK9Q+vQUlVVAp/PWtwoLAoCAMKRGPr0/bakuMB2+8vLtee8pyeMkD7SJVgQyOtz1ViV6/1wrBDHlHitEAEqj8ft+PzX1Vbg94/fOODfl+5veuCAtfA32veB0b6fB/QwqTjfAkDAn7vXaLI3mvfFgB4oiicSUGBcw/v9mV175VrCE4fH7YHHbfNPTbcKl9cLn8+HiMcDxe18/s61fN42IiIiIiIiIiIae/I64LF+/Xo8/PDD+N3vfofi4mI0NzcDAEpLSxEMBlFaWorLLrsMGzZsQEVFBUpKSnDttddi2bJlWLo0O50WRqrPXnAc5s1rwqyZE7Ia7hBmzZyQfiEAfr8XQB96erRW007bIgIcsbgWBolEovJnUoU7xM/4fB4Z8KitLctou9IR2xmLxRGPa+M23GlGkQxEMOlucJ83d+38RYCgra0bgBY8AABfinb05i4qbpu/SbKebmO8UF1d2WA3M6+J/TOqjxQSz2VFeVG/ZUWb/3A4gr4+7bhI1Z1GKNIDIaqqyvVqxxXR2CTOz+LcLP7fNQSvdZn41Lpl+Padj+fkd1P2icBeOGQEPMxdmIiGg8dtXGP19UXkx15vXv/TLXNiiqMCQMnNuZuIiIiIiIiIiGikyut31H74wx+io6MDJ5xwAsaNGyf/e+SRR+Qyd911Fz75yU9i3bp1OO6441BXV4ff/va3Odzq/ODxuLFg/qScF4ID+u/v7R1AwCOmFetE0MDvc34ze+LEavmxL82ymfLogYto1BTwyDDQkIlAwPp38WZpuwejvLwQANDW1mMJtKR63s1/P/E3TWft2iUAgBXLZ4zaIpmxv2j7bEgvxqQKbgT8+t3hoSh6e7XlnNqt+3weeRyLoFS6Y4JoNBNhu0Qiof+/qn89N5c0Z64+GhUVWphr3LjynGwDZY8IN5o7eLiyGPAkyoTHY5zPRMDD7XYNSWg7lxSXkuf/GiUiIiIiIiIiIso/eV0lVMVsDAeBQAD33HMP7rnnnmHYIhooMeokk4CHVy+Sx6J6B4+wfScJs6/c+CncfsdvcNmlJx/29grlZVqxrrs7hL6Q8cZ6tgT6dfDIYcBDf6xt7d2IRo1ROnZ3iQaDPvT1RXDkrIaM1j9ndiMe+d8NqKkpPfyNzVNej3XfFeGk5CCP+WvhcEweF8EC+w4eAFBWVoiWlnb5ebaCTEQjUXIHDxH0yFUR3uVy4acPXYdf/vJPOHP1opxsA2WPeO0LhYyuCaOtqE75zxKo1QMeoy3cqbi0gMdoDf8SERERERERERENldH1TiHlHRHOEJ0KnApwHtNYFACIyA4ezl1IGhur8MMffOGwt9WspCQIn8+DSCQmC+vZLB4md3bw+nI3oqWsTO/g0d4jO1AARuAm2S9+dj02PvgHnKV35shEQ0PV4W1knpPhJL3gLAqD/hQBD9GNQ1VVdOvja5w6eABAZUURAx5EOlH4FMGOeFwLg7py1MED0MYxXX3VaTn7/ZQ9ooguuiYoCgvQNPzMownFOLdcdnvLBlVVkYiqcPtc0DL82nGlKEAGmX4iIiIiIiIiIiLSjex3CinviW4FvX0DGNES17sg6O3Rc1HMVhQF1dUl2LOnFXv2tAIAggHnLgsDkTw6J5cz1StMI1pE5wm322UpLpjV1ZXhxn8/e9i2byQwj/QBtPErQP+/MwAUFPgQCHjlMgBQkGKUi1lFZbHl82DQORBCNJq5RAePmLWDh9vNIjwdPhF6FOdzjmehXHC7XVAUBaqqok8PSY/0cGciqiIRiWuBKRUi36H9PwMeREREREREREREGWPPaRpSosDdk8GIFrcIeOhFO9HBw5eiSD4caqqtI0VE0Scbkjt45HRES7k+oqWtW47FGW1twIea+PtFIlpoQ4STAin2XZfLhcbGasvXkkf2JKusKDJ+l8+D4uLAYW0v0UhmP6KFlzR0+KqqSiyfczwL5YrHo+17optMLsPAWaGqcPvcUBMJmBp4EBERERERERER0QDxXWsaUqLA3aOPonA7FODEG9nJI1pydcdiTa014CGCENlQUJA/I1rKTR08RBvwXIVqRioR2BGjiER3DrvgRqNpZE11dUnaAmKlqYNHRUURxwXQmCZeR+IJ7ZZvY0QLjws6fD6fR74uAuD5lnJGBDraO3oAAL4cXitmg5oAFI8LahwAVPDQIiIiIiIiIiIiGhwGPGhIicJ0c3M7gMxGtIi2++FI7ka0AMCE8ZWWz7PZwWPZsumWESj50sHjwIFOAEB10h3M5KywUOuo0at3qgmFtKCHGFGU7JhjZsqPx9WVp11/bW2Z/Liyoth+QaIxwK6DBzstULZUmzp4uRkcohxpmqh1+3rnnV0AAJ9vhIdvVUBxAaqqz2PREx4MehAREREREREREQ0MqyE0pOrrKwAAu3YdBAC4HAMe2veiMa1zh+jg4c9RN4nx4yvkx263K6tjMSaMr8Qxx8yQn+ey7XZFRRHcbhcikRjeensnAKCqmgGPgSgs9AMAenq0TjUhfUSL3b676pR5+PINZ6GsrACXX74y7fqbmmrkx+ZuHkRjkQhyiGBHIiE6ePCShrKjxvQa6HTdQjSUZs2aAAD4+98/AgB4vSOvg4eqn5+1UIcKxeOC4laABIwRLQx4EBERERERERERDQjftaYhNV4PeLTs7wCQpoOHW3vjOiY6eIRzO6KlYYIxRiMY9GW9Tftnzz8OPp8HxUUBVFZmb/zLQPn9XsyYPh4A8PwLbwKwFrcovYKgHvDQO3iE5YgW+3DSmjMX4aknv4qFRx2Rdv2TTAGP2qTRQURjjRjFkkioSCQSiOtBD45ooWwxd/DgfkW5MnVqPQBg7742ACMv4KHGVcR6YkjEVKhxQHErcHndUKAFPjj+iIiIiIiIiIiIaHBy1zaAxgRzFwwAKCjw2y4r3riOxeIAgIg+osWfo4DH9On1qKosxsFDXVi+bHrW1z9rVgP+74mbEI8nEAj4sr7+gZg5awLeeXcXdu8+BACoZsBjQApkBw894JGmg8dAFRUFsGrVfOzadRCXXnJyVtZJNFK53UaRM5FQkYhrd4i72cGDssT8GsjO/Dtt2wAAH5VJREFUMJQrExurLZ93dvblaEsGRwHgLvBAjSaguBUoLhcUj6J9Q01allkPIiIiIiIiIiKijDHgQUOqoaEKgYAXIb2jQUGBfZDB7bF28BAjWnLVwcPjceOOOy7ECy+8iYs+d+KQ/I7CwuyNfTkctTXWrhAlJQU52pKRSYxo6dU7eIj9PZDF8UJfv/ncrK2LaCRzu41KYDyekKNaXG5WCCk7akyviU6dx4iG0sSJ1oCHuMYYMRQFLreCaFiFy6XA5Yae5FAAVbWOZuHpm4iIiIiIiIiIKGN815qGlMfjxnR9/AcAFBbYBxo8Hm13NDp45DbgAQCzZk7AtdecgZKSYM62YThUV1k7dmSr88RYITrT9OodPEKig0eOO7MQjUbmgns8bh7Rwksayg7zayLHSFCulJYW4JgVM+TnIyngoQBQ9PFGCgAkVCgeBYqiQHHJrxIREREREREREdEgsBpCQ8483kR0OkjFo3fwiOsBj3BYC3gwbDD0qpICHrkM1YxEhXJESwgA0NcXAQAEg9x3ibLNHOSwjmhhwZCyIxg0wnncryiXvv2fn5Mf9/ZGcrglA6O4FS3Q4XEBigI1oUJxuyy5DmaniIiIiIiIiIiIBocBDxpyxx4zU34sOh2k4nFrAY+oCHhEtC4IDBsMvepqBjwOR3Gx1uHl4KEu9PaGZdCjKE9G8BCNJv06eMTFiBZe0lB2eL1u+TH3K8oXosPdSODyuqF4XHD73FAUQI2rWkcPBQC0/xfdcVxeN8MeREREREREREREA8B3rWnIVZtm2Tu1OjdGtGjFukg49yNaxoqKymLL53zOB2ZSUw0mTKhEX18Ef/zTNvToo1oKHDrWENHguEwdFeKJBBIc0UJZ5vUar4EudvAgGjDFo8Bf4Yfic8Pl07p4KG4FimLq3KF/4CnywVvCkXZERERERERERESZYjWEhlyhqWuHGF2RihjREovFoaoqIhER8OCYi6FWEPRZRuH4GfAYEJfLhQXzJwEA9u5tRW+vFvAoZAcPoqxTFEV28YjHE4gnOKKFssvcwcPN4BDl2JdvOAsAcMOX1uR4SwZCAVRAcQHuoBeKW+viAUD+61PmPFyA4nGnXAsRERERERERERH1xyouDStR+E7FY3pzNx5PIKKPaPH7uZsONUVRUF5eiObmdgAM1QyGGHOza9chOTKi0GEkERENntvt0sIdsQQSHNFCWeaxjGhhcIhya82Zi3DSibPlOLiRRtHHsqgJVQt5KAp4VBEREREREREREQ0eqyE0rMbVl9t+T4xoAYDf/PZV2cGD3SSGR3l5kfyYI1oGrkYfRfTRR/sBaKGZYJAtx4mGghibkUgkkNA7eHCUBmWL1xQ4dRotRzRcRly4Q4EcwaJ43VA8Clxe7Trf5VG0BXhoERERERERERERDQqruDQs7vn+5Xj22a249OKTbJcxhwpeeultBINa9wOfn90khkN5eaH8mAGPgaup1gIeH+5oAQAUFvpZGCQaItYRLXoHD47SoCzhayBRdqiqCpdXga/MD8XtgqqqUDxuuIIeKOyOQ0RERERERERENCh8B5uGxYL5k7Bg/iTHZbxeD2bPbsTbb+9EZWUx2tt7ALDQMlzKy4wOHn6GagZs8uRaKIoiO89wPAvR0BFhjngigYQe8HCzgwdliXlknJvBIaLDpgBQXArUuAqXR0Ggwg93gNf3REREREREREREg8F3rSmvrDt7KQCgs7MPYb1QzoDH8LB08PDzOR+omppSHH30EfLzgkIGPIiGirmDRyKuj2hx85KGssPrNQU8uF8RDZiiT2GBqnXxgKKPZFG18zWSA3nM5xEREREREREREWWM71pTXinRZ4x3dvXJTggMeAyP0tIC+bGfz/mgTGyskh+Pr6/I4ZYQjW4ejmihIWTu4MHgENFgmBIbqvapy6VAVRUZ9hBZDyIiIiIiIiIiIhoYvmtNeUWEDDo7e2XAg+NChod5pAhDNYNTV1cuP54+fXwOt4RodBNF90RcRSKhVQk5ooWyRVGMfYkdPIgGQZH/owU8oAAuBQr0VIfChAcREREREREREdFg5f271i+//DJWr16N+vp6KIqCxx9/3PJ9VVVx8803Y9y4cQgGg1i5ciX++c9/5mZj6bCVlOgBj45ehMNRAOwmMVwKCgPyY6+Xz/lg1NSUyo/nzGnM4ZYQjW7WES16Bw8W4mkIMDhEdBhEhkNv3CEoLgVqAsY3iYiIiIiIiIiIKGN5Xw3p6enBvHnzcM8996T8/re//W38z//8D+6991689tprKCwsxKmnnopQKDTMW0rZIAIevX0RtLZ2A2A3ieFSWGh08OAdy4Mzb+5EBAJeLFk8FYuOnpLrzSEatVx60T2RSMgOHi4W4mkIKNyviAZHHjp6ysNljGdRXIDLqy2guBVL+IOIiIiIiIiIiIic5X3l/PTTT8fpp5+e8nuqquLuu+/GV7/6VaxZswYA8NOf/hS1tbV4/PHH8ZnPfGY4N5WyoKQkiIYJldi1+5Ac0eLzcUTLcJg/fxICAS+ammpyvSkjVnV1KZ568ivweNyWFv9ElF0ihBaLJxBPaLeBu10MplH2MfBINAhiOotpDIuiGF93+z1Q3NonLp8LUHmcERERERERERERZWpEv5u2Y8cONDc3Y+XKlfJrpaWlWLJkCV555ZUcbhkdjqVLp1k+9/vzPoc0KhQW+PHUk1/Bj++9MtebMqIFAj54PO5cbwbRqCbCHK2HuvDhhy0AAJeboSrKPheDQ0QDpiiKNoYlrgJ6lyUj4aFYprKIZYmIiIiIiIiIiCgzI7py3tzcDACora21fL22tlZ+L5VwOIxwOCw/7+zsBABEo1FEo9Eh2NLDJ7YrX7cvmxYtOgKP/toI6LhcY+Nx5wO3W4GqJhCNJtIvnAfG0nFB+Yv74fAT41ju+eEz8mtqIsG/wRAaq/u5ooy9x5zvxuq+ONLE4lEkoglABRS/AsSAaDyqTWyJjqzxR9zXiIiIiIiIiIgon4zogMdg3X777fjGN77R7+vPPfccCgoKcrBFmdu0aVOuN2HIxWLWcMGLL/0Bfh87IpC9sXBcUP7jfjh8YrE+AEBzc7v82muvvYY9e97N0RaNHWNtPz908CCeeuqpXG8GpTDW9kXKnd7e3lxvAhERERERERERkTSiAx51dXUAgJaWFowbN05+vaWlBfPnz7f9uRtvvBEbNmyQn3d2dqKhoQGrVq1CSUnJkG3v4YhGo9i0aRNOOeUUeL3eXG/OkFNRi+/e9SQAYPUnz+DIC0pprB0XlJ+4Hw6/fc0B/PRnmy1fW3HMchw5qyFHWzT6jbX9/D/vfA0AMG5cHc4444wcbw2ZjbV9caSK9kahxrQRLS6fC54CL6I9WicMb+HI+ruJbo9ERERERERERET5YEQHPCZNmoS6ujq88MILMtDR2dmJ1157DVdddZXtz/n9fvj9/n5f93q9ef9G8UjYxmyoqjKCNoGAH4oycto40/AbK8cF5Tfuh8Nn7twmANaAh0tx8/kfBmNtP/d4uF/lq7G2L440Lr+ChEeFGonD5XHD4/UCXm3Elts7sv4Jyv2MiIiIiIiIiIjySd6/u9bd3Y33339ffr5jxw5s3boVFRUVaGxsxPXXX49vfvObmDp1KiZNmoSvfe1rqK+vx9q1a3O30XTYZs007sJmuIOIiMwmNlb3+1pbe08OtoRGuxkzxud6E4hGJJffDSWmIhZNAPqlvKcg7//pSURERERERERElPfy/l22v/zlLzjxxBPl52K0ykUXXYQHH3wQN9xwA3p6enDFFVegvb0dxxxzDJ555hkEAoFcbTJlQU1NKTY+cA0KC/t3WiEiorGtrq4MPp8HkUhMfm3WTBbiKXs2PnANXn31PXzm08fkelOIRiRFUaAqqv6J8TUiIiIiIiIiIiI6PHkf8DjhhBOgqqrt9xVFwa233opbb711GLeKhsP0afW53gQiIspDbrcL48aV4+OPDwAA/uW6T6C6ujTHW0WjyfRp9bwOISIiIiIiIiIiIqK848r1BhARERENVFlZofx40qSaHG4JERGloigAFHbuICIiIiIiIiIiyiYGPIiIiGjEKSkJyo+Li4MOSxIRUU4oChSXoic9iIiIiIiIiIiIKBvyfkQLERERUbKiwoD8uKqyOIdbQkREKSmAO+CB4mHAg4iIiIiIiIiIKFsY8CAiIqIRJ6Gq8uPy8qIcbgkREaWiKAoUL8MdRERERERERERE2cQRLURERDTiRCMx+bHH487hlhAREREREREREREREQ0PBjyIiIhoxIlE47neBCIiIiIiIiIiIiIiomHFgAcRERGNOGeftQQAsHjx1BxvCRERERERERERERER0fDw5HoDiIiIiAZq6ZJpePgX16N+XEWuN4WIiIiIiIiIiIiIiGhYMOBBREREI1LTxJpcbwIREREREREREREREdGw4YgWIiIiIiIiIiIiIiIiIiIiojzHgAcRERERERERERERERERERFRnmPAg4iIiIiIiIiIiIiIiIiIiCjPMeBBRERERERERERERERERERElOcY8CAiIiIiIiIiIiIiIiIiIiLKcwx4EBEREREREREREREREREREeU5BjyIiIiIiIiIiIiIiIiIiIiI8pwn1xuQD1RVBQB0dnbmeEvsRaNR9Pb2orOzE16vN9ebQ5QXeFxQPuB+SGMB93PKF9wXabiJfyOKfzMSERERERERERHlEgMeALq6ugAADQ0NOd4SIiIiIiIiyjddXV0oLS3N9WYQEREREREREdEYp6i8FQmJRAJ79+5FcXExFEXJ9eak1NnZiYaGBuzatQslJSW53hyivMDjgvIB90MaC7ifU77gvkjDTVVVdHV1ob6+Hi4XJ5wSEREREREREVFusYMHAJfLhQkTJuR6MzJSUlLCN7OJkvC4oHzA/ZDGAu7nlC+4L9JwYucOIiIiIiIiIiLKF7wFiYiIiIiIiIiIiIiIiIiIiCjPMeBBRERERERERERERERERERElOcY8Bgh/H4/brnlFvj9/lxvClHe4HFB+YD7IY0F3M8pX3BfJCIiIiIiIiIiorFMUVVVzfVGEBEREREREREREREREREREZE9dvAgIiIiIiIiIiIiIiIiIiIiynMMeBARERERERERERERERERERHlOQY8iIiIiIiIiIiIiIiIiIiIiPIcAx5EREREREREREREREREREREeY4BjyS33347Fi1ahOLiYtTU1GDt2rXYvn27ZZlQKIT169ejsrISRUVFWLduHVpaWizLXHfddVi4cCH8fj/mz5+f8nc9++yzWLp0KYqLi1FdXY1169bho48+cty+d955B+vWrUNTUxMURcHdd9+dcrl77rkHTU1NCAQCWLJkCV5//fW0j/1b3/oWli9fjoKCApSVlaVcRlGUfv/98pe/TLtuGrlGwzHx8ssvY/Xq1aivr4eiKHj88cczeuzZelyUHWN5X/zxj3+ME044ASUlJVAUBe3t7f2WEb/X/N8dd9yR0fopf4yG/TyTx5BKa2srLrjgApSUlKCsrAyXXXYZuru7LY/74osvxpw5c+DxeLB27dq066TBG8v7Iq+JiYiIiIiIiIiIKF8x4JFk8+bNWL9+PV599VVs2rQJ0WgUq1atQk9Pj1zmi1/8Ip544gk8+uij2Lx5M/bu3Yuzzz6737ouvfRSfPrTn075e3bs2IE1a9bgpJNOwtatW/Hss8/i4MGDKddj1tvbi8mTJ+OOO+5AXV1dymUeeeQRbNiwAbfccgv++te/Yt68eTj11FOxf/9+x3VHIhGcc845uOqqqxyX27hxI/bt2yf/Y4FldBsNx0RPTw/mzZuHe+65ZwCPPDuPi7JnLO+Lvb29OO2003DTTTc5Lnfrrbdazs/XXnvtgH4P5d5o2M8zeQypXHDBBXjnnXewadMmPPnkk3j55ZdxxRVXyO/H43EEg0Fcd911WLlypeO66PCN5X2R18RERERERERERESUt1RytH//fhWAunnzZlVVVbW9vV31er3qo48+KpfZtm2bCkB95ZVX+v38Lbfcos6bN6/f1x999FHV4/Go8Xhcfu33v/+9qiiKGolEMtq2iRMnqnfddVe/ry9evFhdv369/Dwej6v19fXq7bffntF6N27cqJaWlqb8HgD1sccey2g9NDqNxGPCLNN9OFuPi4bOWNkXzV588UUVgNrW1jao30kjz0jfz1M9hlTeffddFYD6xhtvyK89/fTTqqIo6p49e/otf9FFF6lr1qzJaDspO8bKvmjGa2IiIiIiIiIiIiLKN+zgkUZHRwcAoKKiAgCwZcsWRKNRy52jM2bMQGNjI1555ZWM17tw4UK4XC5s3LgR8XgcHR0d+NnPfoaVK1fC6/UOensjkQi2bNli2T6Xy4WVK1cOaPucrF+/HlVVVVi8eDEeeOABqKqalfXSyDDSjonBytbjoqEzVvbFgbjjjjtQWVmJBQsW4M4770QsFsv1JtFhGg37efJjSOWVV15BWVkZjj76aPm1lStXwuVy4bXXXsvq9tDgjJV9cSB4TUxERERERERERETDjQEPB4lEAtdffz1WrFiB2bNnAwCam5vh8/n6zeOura1Fc3NzxuueNGkSnnvuOdx0003w+/0oKyvD7t278atf/eqwtvngwYOIx+Oora09rO2zc+utt+JXv/oVNm3ahHXr1uHqq6/G9773vcNeL40MI/GYGKxsPS4aGmNpX8zUddddh1/+8pd48cUX8YUvfAG33XYbbrjhhlxvFh2G0bCfp3oMqTQ3N6OmpsbyNY/Hg4qKCp5z88BY2hczxWtiIiIiIiIiIiIiygUGPBysX78eb7/9Nn75y19mfd3Nzc24/PLLcdFFF+GNN97A5s2b4fP58KlPfQqqqmLnzp0oKiqS/912221Z+91XXnmlZd0D8bWvfQ0rVqzAggUL8OUvfxk33HAD7rzzzqxtG+W30XpM3HbbbZZ179y5M2vrpqHBfbG/DRs24IQTTsDcuXNx5ZVX4jvf+Q6+973vIRwOZ237aHiNhv081WM4nOsQyg3ui/3xmpiIiIiIiIiIiIhywZPrDchX11xzDZ588km8/PLLmDBhgvx6XV0dIpEI2tvbLXcstrS0oK6uLuP133PPPSgtLcW3v/1t+bWf//znaGhowGuvvYajjz4aW7duld/LtJV0VVUV3G43WlpaLF83b9+tt96KL33pSxlvq5MlS5bgP/7jPxAOh+H3+7OyTspPI/WYyMSVV16Jc889V35eX1+ftcdF2TfW9sXBWrJkCWKxGD766CNMnz49G5tHw2g07Od2jyHVdUhdXR32799v+VosFkNrayvPuTk21vbFweI1MREREREREREREQ0HBjySqKqKa6+9Fo899hheeuklTJo0yfL9hQsXwuv14oUXXsC6desAANu3b8fOnTuxbNmyjH9Pb28vXC5rAxW32w1AayHt8XgwZcqUAW+/z+fDwoUL8cILL2Dt2rVyfS+88AKuueYaAEBNTU2/NuiDtXXrVpSXl/ON7FFspB8TmaioqOhXMMrW46LsGav74mBt3boVLpcra+d7Gh6jYT9P9xhSXYcsW7YM7e3t2LJlCxYuXAgA+MMf/oBEIoElS5YMajvo8IzVfXGweE1MREREREREREREw4EBjyTr16/Hww8/jN/97ncoLi6WM8RLS0sRDAZRWlqKyy67DBs2bEBFRQVKSkpw7bXXYtmyZVi6dKlcz/vvv4/u7m40Nzejr69P3nk4a9Ys+Hw+fOITn8Bdd92FW2+9Feeddx66urpw0003YeLEiViwYIHt9kUiEbz77rvy4z179mDr1q0oKiqSb35v2LABF110EY4++mgsXrwYd999N3p6enDJJZc4PvadO3eitbUVO3fuRDwel9s8ZcoUFBUV4YknnkBLSwuWLl2KQCCATZs24bbbbsvanY+Un0bDMdHd3Y33339f/syOHTuwdetWVFRUoLGxMeV6s/W4KHvG6r4IaCMMmpub5c++9dZbKC4uRmNjIyoqKvDKK6/gtddew4knnoji4mK88sor+OIXv4jPfvazKC8vH9wTTjkxGvbzdI8hlZkzZ+K0007D5ZdfjnvvvRfRaBTXXHMNPvOZz1g62bz77ruIRCJobW1FV1eXfFzz588f1PNN9sbqvgjwmpiIiIiIiIiIiIjymEoWAFL+t3HjRrlMX1+fevXVV6vl5eVqQUGBetZZZ6n79u2zrOf4449PuZ4dO3bIZf73f/9XXbBggVpYWKhWV1erZ555prpt2zbH7duxY0fK9R5//PGW5b73ve+pjY2Nqs/nUxcvXqy++uqraR/7RRddlHLdL774oqqqqvr000+r8+fPV4uKitTCwkJ13rx56r333qvG4/G066aRazQcEy+++GLKZS666CLHdWfrcVF2jOV98ZZbbnF87Fu2bFGXLFmilpaWqoFAQJ05c6Z62223qaFQKJOnlvLIaNjPM3kMqRw6dEg977zz1KKiIrWkpES95JJL1K6uLssyEydOTLluyr6xvC/ympiIiIiIiIiIiIjylaKqqgoiIiIiIiIiIiIiIiIiIiIiyluu9IsQERERERERERERERERERERUS4x4EFERERERERERERERERERESU5xjwICIiIiIiIiIiIiIiIiIiIspzDHgQERERERERERERERERERER5TkGPIiIiIiIiIiIiIiIiIiIiIjyHAMeRERERERERERERERERERERHmOAQ8iIiIiIiIiIiIiIiIiIiKiPMeABxER0Qh08cUXY+3atcP+ex988EEoigJFUXD99dc7LtvU1IS77747o/WecMIJcr1bt2497O0kIiIiIiIiIiIiIiIabTy53gAiIiKyUhTF8fu33HIL/vu//xuqqg7TFlmVlJRg+/btKCwszNo6f/vb3+KDDz7A4sWLs7ZOIiIiIiIiIiIiIiKi0YQBDyIiojyzb98++fEjjzyCm2++Gdu3b5dfKyoqQlFRUS42DYAWQKmrq8vqOisqKtDZ2ZnVdRIREREREREREREREY0mHNFCRESUZ+rq6uR/paWlMlAh/isqKuo3ouWEE07Atddei+uvvx7l5eWora3Ffffdh56eHlxyySUoLi7GlClT8PTTT1t+19tvv43TTz8dRUVFqK2txYUXXoiDBw8OeJv379+P1atXIxgMYtKkSfjFL35h+b6qqvj617+OxsZG+P1+1NfX47rrrhvU80NERERERERERERERDQWMeBBREQ0Sjz00EOoqqrC66+/jmuvvRZXXXUVzjnnHCxfvhx//etfsWrVKlx44YXo7e0FALS3t+Okk07CggUL8Je//AXPPPMMWlpacO655w74d1988cXYtWsXXnzxRfz617/GD37wA+zfv19+/ze/+Q3uuusu/OhHP8I///lPPP7445gzZ07WHjsREREREREREREREdFoxxEtREREo8S8efPw1a9+FQBw44034o477kBVVRUuv/xyAMDNN9+MH/7wh3jzzTexdOlSfP/738eCBQtw2223yXU88MADaGhowHvvvYdp06Zl9Hvfe+89PP3003j99dexaNEiAMD999+PmTNnymV27tyJuro6rFy5El6vF42NjVi8eHG2HjoREREREREREREREdGoxw4eREREo8TcuXPlx263G5WVlZYuGbW1tQAgO2v8/e9/x4svvoiioiL534wZMwAAH3zwQca/d9u2bfB4PFi4cKH82owZM1BWViY/P+ecc9DX14fJkyfj8ssvx2OPPYZYLDaox0lERERERERERERERDQWsYMHERHRKOH1ei2fK4pi+ZqiKACARCIBAOju7sbq1avxn//5n/3WNW7cuKxuW0NDA7Zv347nn38emzZtwtVXX40777wTmzdv7rfdRERERERERERERERE1B8DHkRERGPUUUcdhd/85jdoamqCxzP4S4IZM2YgFothy5YtckTL9u3b0d7eblkuGAxi9erVWL16NdavX48ZM2bgrbfewlFHHXU4D4OIiIiIiIiIiIiIiGhM4IgWIiKiMWr9+vVobW3FeeedhzfeeAMffPABnn32WVxyySWIx+MZr2f69Ok47bTT8IUvfAGvvfYatmzZgs9//vMIBoNymQcffBD3338/3n77bXz44Yf4+c9/jmAwiIkTJw7FQyMiIiIiIiIiIiIiIhp1GPAgIiIao+rr6/HnP/8Z8Xgcq1atwpw5c3D99dejrKwMLtfALhE2btyI+vp6HH/88Tj77LNxxRVXoKamRn6/rKwM9913H1asWIG5c+fi+eefxxNPPIHKyspsPywiIiIiIiIiIiIiIqJRSVFVVc31RhAREdHI8OCDD+L666/vN34lGz766CNMmjQJf/vb3zB//vysr5+IiIiIiIiIiIiIiGgkYwcPIiIiGpCOjg4UFRXhy1/+ctbWefrpp+PII4/M2vqIiIiIiIiIiIiIiIhGG3bwICIioox1dXWhpaUFgDZ2paqqKivr3bNnD/r6+gAAjY2N8Pl8WVkvERERERERERERERHRaMGABxEREREREREREREREREREVGe44gWIiIiIiIiIiIiIiIiIiIiojzHgAcRERERERERERERERERERFRnmPAg4iIiIiIiIiIiIiIiIiIiCjPMeBBRERERERERERERERERERElOcY8CAiIiIiIiIiIiIiIiIiIiLKcwx4EBEREREREREREREREREREeU5BjyIiIiIiIiIiIiIiIiIiIiI8hwDHkRERERERERERERERERERER5jgEPIiIiIiIiIiIiIiIiIiIiojz3/wEL9nnocTa2ygAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ From 5cf952271a12cd01b67c4cdfbd3030843a298c70 Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 09:51:46 +0300 Subject: [PATCH 04/25] feat: add lstm strategy --- .../backtesting/strategies/lstm_strategy.py | 69 +++++++++++++++---- 1 file changed, 57 insertions(+), 12 deletions(-) diff --git a/scripts/backtesting/strategies/lstm_strategy.py b/scripts/backtesting/strategies/lstm_strategy.py index 17d47d8..d68c580 100644 --- a/scripts/backtesting/strategies/lstm_strategy.py +++ b/scripts/backtesting/strategies/lstm_strategy.py @@ -1,15 +1,60 @@ -from .base_strategy import BaseStrategy +from tensorflow.keras.models import load_model +import joblib +import numpy as np +import os, sys -class LSTMStrategy(BaseStrategy): - def __init__(self): - super().__init__() - # Load your pre-trained LSTM model here - # self.lstm_model = load_model('path_to_lstm_model') +project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '../../')) +if project_root not in sys.path: + sys.path.append(project_root) +print("Before loading", os.getcwd()) +def load_lstm_model_and_scaler(model_path='my_model.keras', scaler_path='scaler.gz'): + print("After loading", os.getcwd()) + model = load_model(model_path) + scaler = joblib.load(scaler_path) + return model, scaler - def buy_signal(self): - # Implement LSTM prediction logic here - return False # Placeholder +def make_lstm_predictions(model, scaler, df, seq_length=60): + data = df['Close'].values.reshape(-1, 1) + scaled_data = scaler.transform(data) + X_test = [] + for i in range(seq_length, len(scaled_data)): + X_test.append(scaled_data[i-seq_length:i, 0]) + X_test = np.array(X_test) + X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) + predictions = model.predict(X_test) + predictions = scaler.inverse_transform(predictions) + return predictions - def sell_signal(self): - # Implement LSTM prediction logic here - return False # Placeholder \ No newline at end of file +def run_backtest_with_lstm(df): + lstm_model, scaler = load_lstm_model_and_scaler() + predictions = make_lstm_predictions(lstm_model, scaler, df) + + initial_cash = 10000 + cash = initial_cash + position = 0 # 1 for holding stock, 0 for no stock + for i in range(len(predictions)): + predicted_price = predictions[i] + actual_price = df['Close'].values[-len(predictions) + i] + + if predicted_price > actual_price and cash > actual_price: + # Buy signal + cash -= actual_price + position += 1 + elif predicted_price < actual_price and position > 0: + # Sell signal + cash += actual_price + position -= 1 + + # Calculate metrics + final_value = cash + position * df['Close'].values[-1] + gross_profit = final_value - initial_cash + metrics = { + 'initial_cash': initial_cash, + 'final_value': final_value, # Add any transaction costs if applicable + 'number_of_trades': position, + 'winning_trades': position if gross_profit > 0 else 0, + 'losing_trades': position if gross_profit <= 0 else 0, + 'max_drawdown': -1000, # Calculate this properly based on your strategy + 'sharpe_ratio': 1.5 # Calculate this properly based on your strategy + } + return metrics \ No newline at end of file From 48dc5e146ebf7638049e8a2b2b270602782b1630 Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 09:53:00 +0300 Subject: [PATCH 05/25] fix: update sharpee from int to float --- backend/schemas.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/backend/schemas.py b/backend/schemas.py index d86d801..351b505 100644 --- a/backend/schemas.py +++ b/backend/schemas.py @@ -82,7 +82,7 @@ class BacktestResultBase(BaseModel): total_trades: int winning_trades: int losing_trades: int - sharpe_ratio: Optional[int] = None + sharpe_ratio: Optional[float] = None class BacktestResultCreate(BacktestResultBase): pass From e5fee37c476647646585ed11b006d82f9047712c Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 09:53:16 +0300 Subject: [PATCH 06/25] chore: update readme --- README.md | 132 +++++++++++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 125 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index 6e3a831..d5f6ea3 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,14 @@ -# Scalable Crypto Backtesting Infrastructure +# Scalable Stock and Crypto Backtesting Infrastructure + +## Table of Contents + +- [Installation](#installation) +- [Usage](#usage) +- [Project Structure](#project-structure) +- [Endpoints](#endpoints) +- [Kafka Integration](#kafka-integration) +- [LSTM Integration](#lstm-integration) +- [License](#license) ## Overview @@ -56,7 +66,20 @@ pip install -r requirements.txt ``` ## Project Structure ```bash -├── data/ +├── backend/ +│ ├── main.py +│ ├── models.py +│ ├── schemas.py +│ ├── database.py +│ ├── auth.py +│ ├── requirements.txt +│ ├── README.md +│ └── scripts +│ ├── backtesting +│ ├── init_data.py +│ ├── kafka_config.py +│ │ ├── main.py +│ └── init_db.py ├── scripts/ │ └── download_data.py ├── tests/ @@ -66,13 +89,108 @@ pip install -r requirements.txt ├── requirements.txt └── README.md ``` + +### Set Up Kafka + +If you do not have Kafka installed, you can run it using Docker: + +docker run -d --name zookeeper -p 2181:2181 zookeeper:3.4.9 +docker run -d --name kafka -p 9092:9092 --link zookeeper wurstmeister/kafka:latest + +Alternatively, follow the [Kafka Quickstart](https://kafka.apache.org/quickstart) guide to set up Kafka. + +### Configure Environment Variables + +Create a `.env` file in the root directory and add the following configurations: + +- KAFKA_BROKER_URL=localhost:9092 +- SCENE_TOPIC=scene_parameters +- RESULT_TOPIC=backtest_results + +### Initialize the Database + +python -m scripts.init_db + +## Backend Usage + +### Run the FastAPI Application + +uvicorn main:app --reload + +### Sending Requests + +Use a tool like Postman, Thunder Client, or Curl to interact with the API. + +### Endpoints + +### Health Check + +**GET /health** + +### Create Indicator + +**POST /indicators/** + +```sh +Body +{ + "name": "Simple Moving Average", + "symbol": "SMA", + "description": "A simple moving average indicator" +} +``` + +### Read Indicators + +**GET /indicators/** + +### Create Stock + +**POST /stocks/** + +```sh +Body +{ + "name": "Apple Inc.", + "symbol": "AAPL", + "description": "Apple Inc. stock" +} +``` + +### Read Stocks + +**GET /stocks/** + +### Create Scene + +**POST /scenes/** + +```sh +Body +{ + "period": 20, + "indicator_id": 1, + "stock_id": 1, + "start_date": "2023-01-01", + "end_date": "2023-12-31" +} +``` + +### Read Scenes + +**GET /scenes/** + +### Perform Backtest + +**POST /backtests/{scene_id}** + +### Read Backtest Results + +**GET /backtest_results/** + ## Contributors - Abubeker Shamil -- Addisu Alemu - Michael George -- Sheila Murugi - - ## License This project is licensed under the MIT License - see the LICENSE file for details. @@ -85,4 +203,4 @@ This project is licensed under the MIT License - see the LICENSE file for detail - Rehmet **References:** -backtrader, Freqtrade, Vectorbt, Kafka, Airflow, MLflow, CML +backtrader, Freqtrade, Vectorbt, Kafka, Airflow, MLflow, CML \ No newline at end of file From 1cd03f83ddf9fb7e759ac9410be2202a1178406d Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 09:54:38 +0300 Subject: [PATCH 07/25] feat: inegrate mlflow to backtest runs --- scripts/backtesting/main.py | 220 +++++++++++++++++++++++++----------- 1 file changed, 152 insertions(+), 68 deletions(-) diff --git a/scripts/backtesting/main.py b/scripts/backtesting/main.py index ae24e62..e3be56f 100644 --- a/scripts/backtesting/main.py +++ b/scripts/backtesting/main.py @@ -8,76 +8,160 @@ from scripts.backtesting.util.user_input import get_user_input from scripts.backtesting.analyzers.metrics_analyzer import MetricsAnalyzer +import mlflow +import mlflow.pyfunc def run_backtest(config): - initial_cash = config['initial_cash'] - start_date = config['start_date'] - end_date = config['end_date'] - ticker = config['ticker'] - indicator = config['indicator'] - - # Fetch historical data - try: - data = yf.download(ticker, start=start_date, end=end_date) - data_feed = bt.feeds.PandasData(dataname=data) - except Exception as e: - print(f"Error fetching data: {e}") - return - - # Initialize Cerebro engine - cerebro = bt.Cerebro() - cerebro.adddata(data_feed) - cerebro.broker.setcash(initial_cash) - - # Add strategy based on selected indicator - if indicator == 'SMA': - from scripts.backtesting.strategies.sma_strategy import SMAStrategy - cerebro.addstrategy(SMAStrategy) - elif indicator == 'LSTM': - from scripts.backtesting.strategies.lstm_strategy import LSTMStrategy - cerebro.addstrategy(LSTMStrategy) - elif indicator == 'MACD': - from scripts.backtesting.strategies.macd_strategy import MACDStrategy - cerebro.addstrategy(MACDStrategy) - elif indicator == 'RSI': - from scripts.backtesting.strategies.rsi_strategy import RSIStrategy - cerebro.addstrategy(RSIStrategy) - elif indicator == 'Bollinger Bands': - from scripts.backtesting.strategies.bollinger_bands_strategy import BollingerBandsStrategy - cerebro.addstrategy(BollingerBandsStrategy) - else: - print("Invalid indicator selected.") - return - - # Add analyzers - cerebro.addanalyzer(bt.analyzers.SharpeRatio, riskfreerate=0.0, _name='sharperatio') - cerebro.addanalyzer(MetricsAnalyzer, _name='MetricsAnalyzer') - - # Run backtest - results = cerebro.run() - strat = results[0] - - # Print results - print(f"Initial Cash: {initial_cash}") - print(f"Final Value: {cerebro.broker.getvalue()}") - print(f"Sharpe Ratio: {strat.analyzers.sharperatio.get_analysis()['sharperatio']}") - - metrics_analyzer = strat.analyzers.getbyname('MetricsAnalyzer') - metrics = metrics_analyzer.get_analysis() - print(f"Return: {metrics['return']}") - print(f"Total Trades: {metrics['trades']}") - print(f"Winning Trades: {metrics['winning_trades']}") - print(f"Losing Trades: {metrics['losing_trades']}") - - return { - 'initial_cash': initial_cash, - 'final_value': cerebro.broker.getvalue(), - 'sharpe_ratio': strat.analyzers.sharperatio.get_analysis()['sharperatio'], - 'percentage_return': metrics['return'], - 'total_trades': metrics['trades'], - 'winning_trades': metrics['winning_trades'], - 'losing_trades': metrics['losing_trades'] - } + with mlflow.start_run(): + initial_cash = config['initial_cash'] + start_date = config['start_date'] + end_date = config['end_date'] + ticker = config['ticker'] + indicator = config['indicator'] + + # Fetch historical data + try: + data = yf.download(ticker, start=start_date, end=end_date) + data_feed = bt.feeds.PandasData(dataname=data) + except Exception as e: + print(f"Error fetching data: {e}") + return + + # Initialize Cerebro engine + cerebro = bt.Cerebro() + cerebro.adddata(data_feed) + cerebro.broker.setcash(initial_cash) + + # Add strategy based on selected indicator + if indicator == 'SMA': + from scripts.backtesting.strategies.sma_strategy import SMAStrategy + cerebro.addstrategy(SMAStrategy) + elif indicator == 'LSTM': + from scripts.backtesting.strategies.lstm_strategy import run_backtest_with_lstm + return run_backtest_with_lstm(df=data) + elif indicator == 'MACD': + from scripts.backtesting.strategies.macd_strategy import MACDStrategy + cerebro.addstrategy(MACDStrategy) + elif indicator == 'RSI': + from scripts.backtesting.strategies.rsi_strategy import RSIStrategy + cerebro.addstrategy(RSIStrategy) + elif indicator == 'BB': + from scripts.backtesting.strategies.bollinger_bands_strategy import BollingerBandsStrategy + cerebro.addstrategy(BollingerBandsStrategy) + else: + print("Invalid indicator selected.") + return + + # Add analyzers + cerebro.addanalyzer(bt.analyzers.SharpeRatio, riskfreerate=0.0, _name='sharperatio') + cerebro.addanalyzer(MetricsAnalyzer, _name='MetricsAnalyzer') + + # Run backtest + results = cerebro.run() + strat = results[0] + + # Log results to MLflow + mlflow.log_param("initial_cash", initial_cash) + mlflow.log_param("start_date", start_date) + mlflow.log_param("end_date", end_date) + mlflow.log_param("ticker", ticker) + mlflow.log_param("indicator", indicator) + + final_value = cerebro.broker.getvalue() + sharpe_ratio = strat.analyzers.sharperatio.get_analysis()['sharperatio'] + metrics_analyzer = strat.analyzers.getbyname('MetricsAnalyzer') + metrics = metrics_analyzer.get_analysis() + percentage_return = metrics['return'] + total_trades = metrics['trades'] + winning_trades = metrics['winning_trades'] + losing_trades = metrics['losing_trades'] + + mlflow.log_metric("final_value", final_value) + mlflow.log_metric("sharpe_ratio", sharpe_ratio) + mlflow.log_metric("percentage_return", percentage_return) + mlflow.log_metric("total_trades", total_trades) + mlflow.log_metric("winning_trades", winning_trades) + mlflow.log_metric("losing_trades", losing_trades) + + return { + 'initial_cash': initial_cash, + 'final_value': final_value, + 'sharpe_ratio': sharpe_ratio, + 'percentage_return': percentage_return, + 'total_trades': total_trades, + 'winning_trades': winning_trades, + 'losing_trades': losing_trades + } + +# def run_backtest(config): +# initial_cash = config['initial_cash'] +# start_date = config['start_date'] +# end_date = config['end_date'] +# ticker = config['ticker'] +# indicator = config['indicator'] + +# # Fetch historical data +# try: +# data = yf.download(ticker, start=start_date, end=end_date) +# data_feed = bt.feeds.PandasData(dataname=data) +# except Exception as e: +# print(f"Error fetching data: {e}") +# return + +# # Initialize Cerebro engine +# cerebro = bt.Cerebro() +# cerebro.adddata(data_feed) +# cerebro.broker.setcash(initial_cash) + +# # Add strategy based on selected indicator +# if indicator == 'SMA': +# from scripts.backtesting.strategies.sma_strategy import SMAStrategy +# cerebro.addstrategy(SMAStrategy) +# elif indicator == 'LSTM': +# from scripts.backtesting.strategies.lstm_strategy import LSTMStrategy +# cerebro.addstrategy(LSTMStrategy) +# elif indicator == 'MACD': +# from scripts.backtesting.strategies.macd_strategy import MACDStrategy +# cerebro.addstrategy(MACDStrategy) +# elif indicator == 'RSI': +# from scripts.backtesting.strategies.rsi_strategy import RSIStrategy +# cerebro.addstrategy(RSIStrategy) +# elif indicator == 'BB': +# from scripts.backtesting.strategies.bollinger_bands_strategy import BollingerBandsStrategy +# cerebro.addstrategy(BollingerBandsStrategy) +# else: +# print("Invalid indicator selected.") +# return + +# # Add analyzers +# cerebro.addanalyzer(bt.analyzers.SharpeRatio, riskfreerate=0.0, _name='sharperatio') +# cerebro.addanalyzer(MetricsAnalyzer, _name='MetricsAnalyzer') + +# # Run backtest +# results = cerebro.run() +# strat = results[0] + +# # Print results +# print(f"Initial Cash: {initial_cash}") +# print(f"Final Value: {cerebro.broker.getvalue()}") +# print(f"Sharpe Ratio: {strat.analyzers.sharperatio.get_analysis()['sharperatio']}") + +# metrics_analyzer = strat.analyzers.getbyname('MetricsAnalyzer') +# metrics = metrics_analyzer.get_analysis() +# print(f"Return: {metrics['return']}") +# print(f"Total Trades: {metrics['trades']}") +# print(f"Winning Trades: {metrics['winning_trades']}") +# print(f"Losing Trades: {metrics['losing_trades']}") + +# return { +# 'initial_cash': initial_cash, +# 'final_value': cerebro.broker.getvalue(), +# 'sharpe_ratio': strat.analyzers.sharperatio.get_analysis()['sharperatio'], +# 'percentage_return': metrics['return'], +# 'total_trades': metrics['trades'], +# 'winning_trades': metrics['winning_trades'], +# 'losing_trades': metrics['losing_trades'] +# } if __name__ == "__main__": # initial_cash, start_date, end_date, ticker, indicator = get_user_input() From 2625c9d5e108b1afdce2b5988655c7f1e06728b3 Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 09:55:08 +0300 Subject: [PATCH 08/25] feat: add sharpee and max draws --- .../backtesting/strategies/lstm_strategy.py | 39 +++++++++++++++---- 1 file changed, 31 insertions(+), 8 deletions(-) diff --git a/scripts/backtesting/strategies/lstm_strategy.py b/scripts/backtesting/strategies/lstm_strategy.py index d68c580..47a3c58 100644 --- a/scripts/backtesting/strategies/lstm_strategy.py +++ b/scripts/backtesting/strategies/lstm_strategy.py @@ -6,9 +6,8 @@ project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '../../')) if project_root not in sys.path: sys.path.append(project_root) -print("Before loading", os.getcwd()) + def load_lstm_model_and_scaler(model_path='my_model.keras', scaler_path='scaler.gz'): - print("After loading", os.getcwd()) model = load_model(model_path) scaler = joblib.load(scaler_path) return model, scaler @@ -25,13 +24,32 @@ def make_lstm_predictions(model, scaler, df, seq_length=60): predictions = scaler.inverse_transform(predictions) return predictions -def run_backtest_with_lstm(df): +def calculate_max_drawdown(portfolio_values): + # Calculate drawdown + peak = portfolio_values[0] + max_drawdown = 0 + for value in portfolio_values: + if value > peak: + peak = value + drawdown = (peak - value) / peak + if drawdown > max_drawdown: + max_drawdown = drawdown + return max_drawdown + +import numpy as np + +def calculate_sharpe_ratio(returns, risk_free_rate=0): + excess_returns = returns - risk_free_rate + return np.mean(excess_returns) / np.std(excess_returns) + +def run_backtest_with_lstm(scene_parameters, df): lstm_model, scaler = load_lstm_model_and_scaler() predictions = make_lstm_predictions(lstm_model, scaler, df) initial_cash = 10000 cash = initial_cash position = 0 # 1 for holding stock, 0 for no stock + portfolio_values = [cash] for i in range(len(predictions)): predicted_price = predictions[i] actual_price = df['Close'].values[-len(predictions) + i] @@ -44,17 +62,22 @@ def run_backtest_with_lstm(df): # Sell signal cash += actual_price position -= 1 + portfolio_values.append(cash + position * df['Close'].values[-1]) # Calculate metrics final_value = cash + position * df['Close'].values[-1] gross_profit = final_value - initial_cash + returns = np.diff(portfolio_values) / portfolio_values[:-1] + sharpe_ratio = calculate_sharpe_ratio(returns) + max_drawdown = calculate_max_drawdown(portfolio_values) metrics = { 'initial_cash': initial_cash, 'final_value': final_value, # Add any transaction costs if applicable - 'number_of_trades': position, - 'winning_trades': position if gross_profit > 0 else 0, - 'losing_trades': position if gross_profit <= 0 else 0, - 'max_drawdown': -1000, # Calculate this properly based on your strategy - 'sharpe_ratio': 1.5 # Calculate this properly based on your strategy + 'total_trades': len(predictions), # Example, adjust as needed + 'winning_trades': sum(1 for r in returns if r > 0), + 'losing_trades': sum(1 for r in returns if r <= 0), + 'percentage_return': returns, + 'max_drawdown': max_drawdown, + 'sharpe_ratio': sharpe_ratio } return metrics \ No newline at end of file From 5eb9917fe6283a8abdbd46053bfc48ac0e2ae49e Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 09:55:24 +0300 Subject: [PATCH 09/25] test: experiment --- notebooks/kafka.ipynb | 22 +- notebooks/lstm.ipynb | 891 ++++++++++++++++++++++++++++++++++++++---- 2 files changed, 821 insertions(+), 92 deletions(-) diff --git a/notebooks/kafka.ipynb b/notebooks/kafka.ipynb index 3c2e1aa..d857dc1 100644 --- a/notebooks/kafka.ipynb +++ b/notebooks/kafka.ipynb @@ -43,17 +43,17 @@ "metadata": {}, "outputs": [ { - "ename": "NoBrokersAvailable", - "evalue": "NoBrokersAvailable", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mNoBrokersAvailable\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[1], line 7\u001b[0m\n\u001b[0;32m 4\u001b[0m broker \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mg3.10academy.org:9092\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m 6\u001b[0m \u001b[38;5;66;03m# Create an AdminClient\u001b[39;00m\n\u001b[1;32m----> 7\u001b[0m admin_client \u001b[38;5;241m=\u001b[39m \u001b[43mKafkaAdminClient\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mbootstrap_servers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbroker\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mclient_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mmy_client\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\n\u001b[0;32m 10\u001b[0m \u001b[43m)\u001b[49m\n\u001b[0;32m 12\u001b[0m \u001b[38;5;66;03m# Get the list of topics\u001b[39;00m\n\u001b[0;32m 13\u001b[0m topics \u001b[38;5;241m=\u001b[39m admin_client\u001b[38;5;241m.\u001b[39mlist_topics()\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\kafka\\admin\\client.py:208\u001b[0m, in \u001b[0;36mKafkaAdminClient.__init__\u001b[1;34m(self, **configs)\u001b[0m\n\u001b[0;32m 205\u001b[0m reporters \u001b[38;5;241m=\u001b[39m [reporter() \u001b[38;5;28;01mfor\u001b[39;00m reporter \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmetric_reporters\u001b[39m\u001b[38;5;124m'\u001b[39m]]\n\u001b[0;32m 206\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_metrics \u001b[38;5;241m=\u001b[39m Metrics(metric_config, reporters)\n\u001b[1;32m--> 208\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_client \u001b[38;5;241m=\u001b[39m KafkaClient(metrics\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_metrics,\n\u001b[0;32m 209\u001b[0m metric_group_prefix\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124madmin\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 210\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig)\n\u001b[0;32m 211\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_client\u001b[38;5;241m.\u001b[39mcheck_version(timeout\u001b[38;5;241m=\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mapi_version_auto_timeout_ms\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m/\u001b[39m \u001b[38;5;241m1000\u001b[39m))\n\u001b[0;32m 213\u001b[0m \u001b[38;5;66;03m# Get auto-discovered version from client if necessary\u001b[39;00m\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\kafka\\client_async.py:244\u001b[0m, in \u001b[0;36mKafkaClient.__init__\u001b[1;34m(self, **configs)\u001b[0m\n\u001b[0;32m 242\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mapi_version\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 243\u001b[0m check_timeout \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mapi_version_auto_timeout_ms\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m/\u001b[39m \u001b[38;5;241m1000\u001b[39m\n\u001b[1;32m--> 244\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mapi_version\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcheck_version\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcheck_timeout\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\kafka\\client_async.py:927\u001b[0m, in \u001b[0;36mKafkaClient.check_version\u001b[1;34m(self, node_id, timeout, strict)\u001b[0m\n\u001b[0;32m 924\u001b[0m \u001b[38;5;66;03m# Timeout\u001b[39;00m\n\u001b[0;32m 925\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 926\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock\u001b[38;5;241m.\u001b[39mrelease()\n\u001b[1;32m--> 927\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m Errors\u001b[38;5;241m.\u001b[39mNoBrokersAvailable()\n", - "\u001b[1;31mNoBrokersAvailable\u001b[0m: NoBrokersAvailable" + "name": "stdout", + "output_type": "stream", + "text": [ + "Topics in Kafka cluster:\n", + "docker-connect-status\n", + "_schemas\n", + "scene_parameters\n", + "__consumer_offsets\n", + "_confluent-ksql-ksqldb-server__command_topic\n", + "docker-connect-offsets\n", + "docker-connect-configs\n" ] } ], diff --git a/notebooks/lstm.ipynb b/notebooks/lstm.ipynb index 3207302..996bcea 100644 --- a/notebooks/lstm.ipynb +++ b/notebooks/lstm.ipynb @@ -2,9 +2,21 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'nixtla'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[22], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpandas\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mpd\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mnixtla\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m NixtlaClient\n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'nixtla'" + ] + } + ], "source": [ "import pandas as pd\n", "from nixtla import NixtlaClient" @@ -12,7 +24,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -20,124 +32,841 @@ "df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short.csv')" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 1. Instantiate the NixtlaClient\n", + "nixtla_client = NixtlaClient(api_key = 'nixtla-tok-31lvshOqu4BTxxhJJY9Y6oxZQHciSZYElRgwsh5Btg60GK5JG3imcfbbUhdSIOyV2HSadFlgdJTpDsJb')\n", + "\n", + "# 3. Forecast the next 24 hours\n", + "fcst_df = nixtla_client.forecast(df, h=24, level=[80, 90])\n", + "\n", + "# 4. Plot your results (optional)\n", + "nixtla_client.plot(df, fcst_df, time_col='ds', target_col='y', level=[80, 90])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 3. Detect Anomalies \n", + "anomalies_df = nixtla_client.detect_anomalies(df, time_col='ds', target_col='y', freq='D')\n", + "\n", + "# 4. Plot your results (optional)\n", + "nixtla_client.plot(df, anomalies_df,time_col='ds', target_col='y')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pip install statsforecast mlforecast neuralforecast hierarchicalforecast\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from statsforecast import StatsForecast\n", + "from statsforecast.models import AutoARIMA\n", + "\n", + "# Prepare your data (assuming a pandas DataFrame)\n", + "# df should have columns: 'unique_id', 'ds', 'y'\n", + "df = scene_data\n", + "\n", + "# Initialize the forecaster\n", + "sf = StatsForecast(\n", + " models=[AutoARIMA(season_length=12)],\n", + " freq='M'\n", + ")\n", + "\n", + "# Fit the model\n", + "sf.fit(df)\n", + "\n", + "# Make predictions\n", + "predictions = sf.predict(h=12, level=[95])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting tensorflow\n", + " Using cached tensorflow-2.16.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (4.1 kB)\n", + "Collecting absl-py>=1.0.0 (from tensorflow)\n", + " Using cached absl_py-2.1.0-py3-none-any.whl.metadata (2.3 kB)\n", + "Collecting astunparse>=1.6.0 (from tensorflow)\n", + " Using cached astunparse-1.6.3-py2.py3-none-any.whl.metadata (4.4 kB)\n", + "Collecting flatbuffers>=23.5.26 (from tensorflow)\n", + " Using cached flatbuffers-24.3.25-py2.py3-none-any.whl.metadata (850 bytes)\n", + "Collecting gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 (from tensorflow)\n", + " Using cached gast-0.5.5-py3-none-any.whl\n", + "Collecting google-pasta>=0.1.1 (from tensorflow)\n", + " Using cached google_pasta-0.2.0-py3-none-any.whl.metadata (814 bytes)\n", + "Collecting h5py>=3.10.0 (from tensorflow)\n", + " Using cached h5py-3.11.0.tar.gz (406 kB)\n", + " Installing build dependencies ... \u001b[?25ldone\n", + "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", + "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25hCollecting libclang>=13.0.0 (from tensorflow)\n", + " Using cached libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl.metadata (5.2 kB)\n", + "Collecting ml-dtypes~=0.3.1 (from tensorflow)\n", + " Using cached ml_dtypes-0.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (20 kB)\n", + "Collecting opt-einsum>=2.3.2 (from tensorflow)\n", + " Using cached opt_einsum-3.3.0-py3-none-any.whl.metadata (6.5 kB)\n", + "Requirement already satisfied: packaging in /home/abubeker_shamil/Scalable_Backtesting_Infrastructure_for_Crypto_Trading/.conda/lib/python3.12/site-packages (from tensorflow) (24.1)\n", + "Collecting protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 (from tensorflow)\n", + " Using cached protobuf-4.25.3-cp37-abi3-manylinux2014_aarch64.whl.metadata (541 bytes)\n", + "Collecting requests<3,>=2.21.0 (from tensorflow)\n", + " Using cached requests-2.32.3-py3-none-any.whl.metadata (4.6 kB)\n", + "Requirement already satisfied: setuptools in /home/abubeker_shamil/Scalable_Backtesting_Infrastructure_for_Crypto_Trading/.conda/lib/python3.12/site-packages (from tensorflow) (70.1.1)\n", + "Requirement already satisfied: six>=1.12.0 in /home/abubeker_shamil/Scalable_Backtesting_Infrastructure_for_Crypto_Trading/.conda/lib/python3.12/site-packages (from tensorflow) (1.16.0)\n", + "Collecting termcolor>=1.1.0 (from tensorflow)\n", + " Using cached termcolor-2.4.0-py3-none-any.whl.metadata (6.1 kB)\n", + "Requirement already satisfied: typing-extensions>=3.6.6 in /home/abubeker_shamil/Scalable_Backtesting_Infrastructure_for_Crypto_Trading/.conda/lib/python3.12/site-packages (from tensorflow) (4.12.2)\n", + "Collecting wrapt>=1.11.0 (from tensorflow)\n", + " Using cached wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (6.6 kB)\n", + "Collecting grpcio<2.0,>=1.24.3 (from tensorflow)\n", + " Using cached grpcio-1.64.1-cp312-cp312-manylinux_2_17_aarch64.whl.metadata (3.3 kB)\n", + "Collecting tensorboard<2.17,>=2.16 (from tensorflow)\n", + " Using cached tensorboard-2.16.2-py3-none-any.whl.metadata (1.6 kB)\n", + "Collecting keras>=3.0.0 (from tensorflow)\n", + " Using cached keras-3.4.1-py3-none-any.whl.metadata (5.8 kB)\n", + "Collecting numpy<2.0.0,>=1.26.0 (from tensorflow)\n", + " Using cached numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (62 kB)\n", + "Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/abubeker_shamil/Scalable_Backtesting_Infrastructure_for_Crypto_Trading/.conda/lib/python3.12/site-packages (from astunparse>=1.6.0->tensorflow) (0.43.0)\n", + "Collecting rich (from keras>=3.0.0->tensorflow)\n", + " Using cached rich-13.7.1-py3-none-any.whl.metadata (18 kB)\n", + "Collecting namex (from keras>=3.0.0->tensorflow)\n", + " Using cached namex-0.0.8-py3-none-any.whl.metadata (246 bytes)\n", + "Collecting optree (from keras>=3.0.0->tensorflow)\n", + " Using cached optree-0.11.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (45 kB)\n", + "Collecting charset-normalizer<4,>=2 (from requests<3,>=2.21.0->tensorflow)\n", + " Using cached charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (33 kB)\n", + "Collecting idna<4,>=2.5 (from requests<3,>=2.21.0->tensorflow)\n", + " Using cached idna-3.7-py3-none-any.whl.metadata (9.9 kB)\n", + "Collecting urllib3<3,>=1.21.1 (from requests<3,>=2.21.0->tensorflow)\n", + " Using cached urllib3-2.2.2-py3-none-any.whl.metadata (6.4 kB)\n", + "Collecting certifi>=2017.4.17 (from requests<3,>=2.21.0->tensorflow)\n", + " Using cached certifi-2024.6.2-py3-none-any.whl.metadata (2.2 kB)\n", + "Collecting markdown>=2.6.8 (from tensorboard<2.17,>=2.16->tensorflow)\n", + " Using cached Markdown-3.6-py3-none-any.whl.metadata (7.0 kB)\n", + "Collecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard<2.17,>=2.16->tensorflow)\n", + " Using cached tensorboard_data_server-0.7.2-py3-none-any.whl.metadata (1.1 kB)\n", + "Collecting werkzeug>=1.0.1 (from tensorboard<2.17,>=2.16->tensorflow)\n", + " Using cached werkzeug-3.0.3-py3-none-any.whl.metadata (3.7 kB)\n", + "Collecting MarkupSafe>=2.1.1 (from werkzeug>=1.0.1->tensorboard<2.17,>=2.16->tensorflow)\n", + " Using cached MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.metadata (3.0 kB)\n", + "Collecting markdown-it-py>=2.2.0 (from rich->keras>=3.0.0->tensorflow)\n", + " Using cached markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /home/abubeker_shamil/Scalable_Backtesting_Infrastructure_for_Crypto_Trading/.conda/lib/python3.12/site-packages (from rich->keras>=3.0.0->tensorflow) (2.18.0)\n", + "Collecting mdurl~=0.1 (from markdown-it-py>=2.2.0->rich->keras>=3.0.0->tensorflow)\n", + " Using cached mdurl-0.1.2-py3-none-any.whl.metadata (1.6 kB)\n", + "Using cached tensorflow-2.16.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (219.0 MB)\n", + "Using cached absl_py-2.1.0-py3-none-any.whl (133 kB)\n", + "Using cached astunparse-1.6.3-py2.py3-none-any.whl (12 kB)\n", + "Using cached flatbuffers-24.3.25-py2.py3-none-any.whl (26 kB)\n", + "Using cached google_pasta-0.2.0-py3-none-any.whl (57 kB)\n", + "Using cached grpcio-1.64.1-cp312-cp312-manylinux_2_17_aarch64.whl (5.3 MB)\n", + "Using cached keras-3.4.1-py3-none-any.whl (1.1 MB)\n", + "Using cached libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl (23.8 MB)\n", + "Using cached ml_dtypes-0.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB)\n", + "Using cached numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB)\n", + "Using cached opt_einsum-3.3.0-py3-none-any.whl (65 kB)\n", + "Using cached protobuf-4.25.3-cp37-abi3-manylinux2014_aarch64.whl (293 kB)\n", + "Using cached requests-2.32.3-py3-none-any.whl (64 kB)\n", + "Using cached tensorboard-2.16.2-py3-none-any.whl (5.5 MB)\n", + "Using cached termcolor-2.4.0-py3-none-any.whl (7.7 kB)\n", + "Using cached wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (86 kB)\n", + "Using cached certifi-2024.6.2-py3-none-any.whl (164 kB)\n", + "Using cached charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (137 kB)\n", + "Using cached idna-3.7-py3-none-any.whl (66 kB)\n", + "Using cached Markdown-3.6-py3-none-any.whl (105 kB)\n", + "Using cached tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB)\n", + "Using cached urllib3-2.2.2-py3-none-any.whl (121 kB)\n", + "Using cached werkzeug-3.0.3-py3-none-any.whl (227 kB)\n", + "Using cached namex-0.0.8-py3-none-any.whl (5.8 kB)\n", + "Using cached optree-0.11.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (283 kB)\n", + "Using cached rich-13.7.1-py3-none-any.whl (240 kB)\n", + "Using cached markdown_it_py-3.0.0-py3-none-any.whl (87 kB)\n", + "Using cached MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (29 kB)\n", + "Using cached mdurl-0.1.2-py3-none-any.whl (10.0 kB)\n", + "Building wheels for collected packages: h5py\n", + " Building wheel for h5py (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for h5py: filename=h5py-3.11.0-cp312-cp312-linux_aarch64.whl size=1860102 sha256=acdd9caee3257bdfec4eff99bec32737509b6551e6d4f65c74e2f78acd3ce1a7\n", + " Stored in directory: /home/abubeker_shamil/.cache/pip/wheels/b1/82/d4/0204e13ae16555a246e115db9078ab3858f1c9f9239de1b610\n", + "Successfully built h5py\n", + "Installing collected packages: namex, libclang, flatbuffers, wrapt, urllib3, termcolor, tensorboard-data-server, protobuf, optree, numpy, mdurl, MarkupSafe, markdown, idna, grpcio, google-pasta, gast, charset-normalizer, certifi, astunparse, absl-py, werkzeug, requests, opt-einsum, ml-dtypes, markdown-it-py, h5py, tensorboard, rich, keras, tensorflow\n", + "Successfully installed MarkupSafe-2.1.5 absl-py-2.1.0 astunparse-1.6.3 certifi-2024.6.2 charset-normalizer-3.3.2 flatbuffers-24.3.25 gast-0.5.5 google-pasta-0.2.0 grpcio-1.64.1 h5py-3.11.0 idna-3.7 keras-3.4.1 libclang-18.1.1 markdown-3.6 markdown-it-py-3.0.0 mdurl-0.1.2 ml-dtypes-0.3.2 namex-0.0.8 numpy-1.26.4 opt-einsum-3.3.0 optree-0.11.0 protobuf-4.25.3 requests-2.32.3 rich-13.7.1 tensorboard-2.16.2 tensorboard-data-server-0.7.2 tensorflow-2.16.1 termcolor-2.4.0 urllib3-2.2.2 werkzeug-3.0.3 wrapt-1.16.0\n" + ] + } + ], + "source": [ + "!pip install tensorflow\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "!pip install scikit-learn -q" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "def create_sequences(data, seq_length):\n", + " sequences = []\n", + " for i in range(len(data) - seq_length):\n", + " sequences.append(data[i:i + seq_length])\n", + " return np.array(sequences)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import LSTM, Dense, Dropout\n", + "\n", + "def build_lstm_model(input_shape):\n", + " model = Sequential()\n", + " model.add(LSTM(50, return_sequences=True, input_shape=input_shape))\n", + " model.add(Dropout(0.2))\n", + " model.add(LSTM(50, return_sequences=False))\n", + " model.add(Dropout(0.2))\n", + " model.add(Dense(1))\n", + " \n", + " model.compile(optimizer='adam', loss='mean_squared_error')\n", + " return model\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def train_lstm_model(model, X_train, y_train, epochs=50, batch_size=32):\n", + " model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=0.2)\n", + " return model\n" + ] + }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ + { + "data": { + "text/plain": [ + "'c:\\\\Users\\\\user\\\\Downloads\\\\ten_academy\\\\week9\\\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading'" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "os.getcwd()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "os.chdir('..')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "def prepare_lstm_data(df, target_column, seq_length):\n", + " data = df[target_column].values.reshape(-1, 1)\n", + " scaler = MinMaxScaler(feature_range=(0, 1))\n", + " scaled_data = scaler.fit_transform(data)\n", + " \n", + " X = []\n", + " y = []\n", + " for i in range(seq_length, len(scaled_data)):\n", + " X.append(scaled_data[i-seq_length:i, 0])\n", + " y.append(scaled_data[i, 0])\n", + " \n", + " # Convert lists to numpy arrays\n", + " X, y = np.array(X), np.array(y)\n", + " \n", + " # Debugging statements\n", + " print(f\"Length of scaled_data: {len(scaled_data)}\")\n", + " print(f\"Length of X: {len(X)}\")\n", + " print(f\"Shape of X before reshape: {X.shape}\")\n", + " \n", + " # Check if X is not empty and has the correct shape\n", + " if X.size == 0:\n", + " raise ValueError(\"The sequence length is too large for the dataset. Reduce the sequence length.\")\n", + " \n", + " # Ensure X has the correct number of dimensions\n", + " if len(X.shape) != 2:\n", + " raise ValueError(f\"Expected 2D array for X but got {X.shape}\")\n", + " \n", + " X = np.reshape(X, (X.shape[0], X.shape[1], 1))\n", + " return X, y, scaler\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Length of scaled_data: 31\n", + "Length of X: 11\n", + "Shape of X before reshape: (11, 20)\n", + "Shape of X after reshape: (11, 20, 1)\n" + ] + } + ], + "source": [ + "\n", + "# Example usage\n", + "df = pd.read_csv('data/binance_btc_usdt_candlestick.csv', index_col='timestamp', parse_dates=True)\n", + "X, y, scaler = prepare_lstm_data(df, 'close', seq_length=20)\n", + "print(f\"Shape of X after reshape: {X.shape}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Length of scaled_data: 31\n", + "Length of X: 11\n", + "Shape of X before reshape: (11, 20)\n" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ - "INFO:nixtla.nixtla_client:Validating inputs...\n", - "INFO:nixtla.nixtla_client:Preprocessing dataframes...\n", - "INFO:nixtla.nixtla_client:Inferred freq: h\n", - "INFO:nixtla.nixtla_client:Attempt 1 failed...\n", - "INFO:nixtla.nixtla_client:Attempt 2 failed...\n", - "INFO:nixtla.nixtla_client:Attempt 3 failed...\n", - "INFO:nixtla.nixtla_client:Attempt 4 failed...\n", - "INFO:nixtla.nixtla_client:Attempt 5 failed...\n", - "INFO:nixtla.nixtla_client:Attempt 6 failed...\n" + "c:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\keras\\src\\layers\\rnn\\rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(**kwargs)\n" ] }, { - "ename": "ConnectError", - "evalue": "[Errno 11001] getaddrinfo failed", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mConnectError\u001b[0m Traceback (most recent call last)", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_transports\\default.py:69\u001b[0m, in \u001b[0;36mmap_httpcore_exceptions\u001b[1;34m()\u001b[0m\n\u001b[0;32m 68\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m---> 69\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m\n\u001b[0;32m 70\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_transports\\default.py:233\u001b[0m, in \u001b[0;36mHTTPTransport.handle_request\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 232\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m map_httpcore_exceptions():\n\u001b[1;32m--> 233\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_pool\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreq\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 235\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(resp\u001b[38;5;241m.\u001b[39mstream, typing\u001b[38;5;241m.\u001b[39mIterable)\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpcore\\_sync\\connection_pool.py:216\u001b[0m, in \u001b[0;36mConnectionPool.handle_request\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 215\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_close_connections(closing)\n\u001b[1;32m--> 216\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 218\u001b[0m \u001b[38;5;66;03m# Return the response. Note that in this case we still have to manage\u001b[39;00m\n\u001b[0;32m 219\u001b[0m \u001b[38;5;66;03m# the point at which the response is closed.\u001b[39;00m\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpcore\\_sync\\connection_pool.py:196\u001b[0m, in \u001b[0;36mConnectionPool.handle_request\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 194\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 195\u001b[0m \u001b[38;5;66;03m# Send the request on the assigned connection.\u001b[39;00m\n\u001b[1;32m--> 196\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43mconnection\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 197\u001b[0m \u001b[43m \u001b[49m\u001b[43mpool_request\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\n\u001b[0;32m 198\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 199\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ConnectionNotAvailable:\n\u001b[0;32m 200\u001b[0m \u001b[38;5;66;03m# In some cases a connection may initially be available to\u001b[39;00m\n\u001b[0;32m 201\u001b[0m \u001b[38;5;66;03m# handle a request, but then become unavailable.\u001b[39;00m\n\u001b[0;32m 202\u001b[0m \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[0;32m 203\u001b[0m \u001b[38;5;66;03m# In this case we clear the connection and try again.\u001b[39;00m\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpcore\\_sync\\connection.py:99\u001b[0m, in \u001b[0;36mHTTPConnection.handle_request\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 98\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_connect_failed \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m---> 99\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\n\u001b[0;32m 101\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_connection\u001b[38;5;241m.\u001b[39mhandle_request(request)\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpcore\\_sync\\connection.py:76\u001b[0m, in \u001b[0;36mHTTPConnection.handle_request\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 75\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_connection \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m---> 76\u001b[0m stream \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_connect\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 78\u001b[0m ssl_object \u001b[38;5;241m=\u001b[39m stream\u001b[38;5;241m.\u001b[39mget_extra_info(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mssl_object\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpcore\\_sync\\connection.py:122\u001b[0m, in \u001b[0;36mHTTPConnection._connect\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 121\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m Trace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mconnect_tcp\u001b[39m\u001b[38;5;124m\"\u001b[39m, logger, request, kwargs) \u001b[38;5;28;01mas\u001b[39;00m trace:\n\u001b[1;32m--> 122\u001b[0m stream \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_network_backend\u001b[38;5;241m.\u001b[39mconnect_tcp(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 123\u001b[0m trace\u001b[38;5;241m.\u001b[39mreturn_value \u001b[38;5;241m=\u001b[39m stream\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpcore\\_backends\\sync.py:205\u001b[0m, in \u001b[0;36mSyncBackend.connect_tcp\u001b[1;34m(self, host, port, timeout, local_address, socket_options)\u001b[0m\n\u001b[0;32m 200\u001b[0m exc_map: ExceptionMapping \u001b[38;5;241m=\u001b[39m {\n\u001b[0;32m 201\u001b[0m socket\u001b[38;5;241m.\u001b[39mtimeout: ConnectTimeout,\n\u001b[0;32m 202\u001b[0m \u001b[38;5;167;01mOSError\u001b[39;00m: ConnectError,\n\u001b[0;32m 203\u001b[0m }\n\u001b[1;32m--> 205\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m map_exceptions(exc_map):\n\u001b[0;32m 206\u001b[0m sock \u001b[38;5;241m=\u001b[39m socket\u001b[38;5;241m.\u001b[39mcreate_connection(\n\u001b[0;32m 207\u001b[0m address,\n\u001b[0;32m 208\u001b[0m timeout,\n\u001b[0;32m 209\u001b[0m source_address\u001b[38;5;241m=\u001b[39msource_address,\n\u001b[0;32m 210\u001b[0m )\n", - "File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python310\\lib\\contextlib.py:153\u001b[0m, in \u001b[0;36m_GeneratorContextManager.__exit__\u001b[1;34m(self, typ, value, traceback)\u001b[0m\n\u001b[0;32m 152\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 153\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgen\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mthrow\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtyp\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalue\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtraceback\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 154\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[0;32m 155\u001b[0m \u001b[38;5;66;03m# Suppress StopIteration *unless* it's the same exception that\u001b[39;00m\n\u001b[0;32m 156\u001b[0m \u001b[38;5;66;03m# was passed to throw(). This prevents a StopIteration\u001b[39;00m\n\u001b[0;32m 157\u001b[0m \u001b[38;5;66;03m# raised inside the \"with\" statement from being suppressed.\u001b[39;00m\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpcore\\_exceptions.py:14\u001b[0m, in \u001b[0;36mmap_exceptions\u001b[1;34m(map)\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(exc, from_exc):\n\u001b[1;32m---> 14\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m to_exc(exc) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mexc\u001b[39;00m\n\u001b[0;32m 15\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m\n", - "\u001b[1;31mConnectError\u001b[0m: [Errno 11001] getaddrinfo failed", - "\nThe above exception was the direct cause of the following exception:\n", - "\u001b[1;31mConnectError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[5], line 5\u001b[0m\n\u001b[0;32m 2\u001b[0m nixtla_client \u001b[38;5;241m=\u001b[39m NixtlaClient(api_key \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnixtla-tok-31lvshOqu4BTxxhJJY9Y6oxZQHciSZYElRgwsh5Btg60GK5JG3imcfbbUhdSIOyV2HSadFlgdJTpDsJb\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 4\u001b[0m \u001b[38;5;66;03m# 3. Forecast the next 24 hours\u001b[39;00m\n\u001b[1;32m----> 5\u001b[0m fcst_df \u001b[38;5;241m=\u001b[39m \u001b[43mnixtla_client\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mforecast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mh\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m24\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m80\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m90\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 7\u001b[0m \u001b[38;5;66;03m# 4. Plot your results (optional)\u001b[39;00m\n\u001b[0;32m 8\u001b[0m nixtla_client\u001b[38;5;241m.\u001b[39mplot(df, fcst_df, time_col\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mds\u001b[39m\u001b[38;5;124m'\u001b[39m, target_col\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124my\u001b[39m\u001b[38;5;124m'\u001b[39m, level\u001b[38;5;241m=\u001b[39m[\u001b[38;5;241m80\u001b[39m, \u001b[38;5;241m90\u001b[39m])\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:60\u001b[0m, in \u001b[0;36mdeprecated_argument..decorator..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 58\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnew_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m argument duplicated\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 59\u001b[0m kwargs[new_name] \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(old_name)\n\u001b[1;32m---> 60\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:60\u001b[0m, in \u001b[0;36mdeprecated_argument..decorator..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 58\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnew_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m argument duplicated\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 59\u001b[0m kwargs[new_name] \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(old_name)\n\u001b[1;32m---> 60\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:1304\u001b[0m, in \u001b[0;36mNixtlaClient.forecast\u001b[1;34m(self, df, h, freq, id_col, time_col, target_col, X_df, level, quantiles, finetune_steps, finetune_loss, clean_ex_first, validate_api_key, add_history, date_features, date_features_to_one_hot, model, num_partitions)\u001b[0m\n\u001b[0;32m 1227\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Forecast your time series using TimeGPT.\u001b[39;00m\n\u001b[0;32m 1228\u001b[0m \n\u001b[0;32m 1229\u001b[0m \u001b[38;5;124;03mParameters\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1301\u001b[0m \u001b[38;5;124;03m predictions (if level is not None).\u001b[39;00m\n\u001b[0;32m 1302\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1303\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(df, pd\u001b[38;5;241m.\u001b[39mDataFrame):\n\u001b[1;32m-> 1304\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_forecast\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1305\u001b[0m \u001b[43m \u001b[49m\u001b[43mdf\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1306\u001b[0m \u001b[43m \u001b[49m\u001b[43mh\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mh\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1307\u001b[0m \u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfreq\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1308\u001b[0m \u001b[43m \u001b[49m\u001b[43mid_col\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mid_col\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1309\u001b[0m \u001b[43m \u001b[49m\u001b[43mtime_col\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtime_col\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1310\u001b[0m \u001b[43m \u001b[49m\u001b[43mtarget_col\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtarget_col\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1311\u001b[0m \u001b[43m \u001b[49m\u001b[43mX_df\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mX_df\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1312\u001b[0m \u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1313\u001b[0m \u001b[43m \u001b[49m\u001b[43mquantiles\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquantiles\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1314\u001b[0m \u001b[43m \u001b[49m\u001b[43mfinetune_steps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfinetune_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1315\u001b[0m \u001b[43m \u001b[49m\u001b[43mfinetune_loss\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfinetune_loss\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1316\u001b[0m \u001b[43m \u001b[49m\u001b[43mclean_ex_first\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclean_ex_first\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1317\u001b[0m \u001b[43m \u001b[49m\u001b[43mvalidate_api_key\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvalidate_api_key\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1318\u001b[0m \u001b[43m \u001b[49m\u001b[43madd_history\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43madd_history\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1319\u001b[0m \u001b[43m \u001b[49m\u001b[43mdate_features\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdate_features\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1320\u001b[0m \u001b[43m \u001b[49m\u001b[43mdate_features_to_one_hot\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdate_features_to_one_hot\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1321\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1322\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_partitions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_partitions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1323\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1324\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 1325\u001b[0m dist_nixtla_client \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_instantiate_distributed_nixtla_client()\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:730\u001b[0m, in \u001b[0;36mvalidate_model_parameter..wrapper\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 725\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m model \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msupported_models:\n\u001b[0;32m 726\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m 727\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124munsupported model: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m 728\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msupported models: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msupported_models)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m 729\u001b[0m )\n\u001b[1;32m--> 730\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:748\u001b[0m, in \u001b[0;36mpartition_by_uid..wrapper\u001b[1;34m(self, num_partitions, **kwargs)\u001b[0m\n\u001b[0;32m 746\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapper\u001b[39m(\u001b[38;5;28mself\u001b[39m, num_partitions, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 747\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m num_partitions \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mor\u001b[39;00m num_partitions \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m--> 748\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs, num_partitions\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[0;32m 749\u001b[0m df \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdf\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 750\u001b[0m X_df \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mX_df\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:976\u001b[0m, in \u001b[0;36m_NixtlaClient._forecast\u001b[1;34m(self, df, h, freq, id_col, time_col, target_col, X_df, level, quantiles, finetune_steps, finetune_loss, clean_ex_first, validate_api_key, add_history, date_features, date_features_to_one_hot, model, num_partitions)\u001b[0m\n\u001b[0;32m 954\u001b[0m nixtla_client_model \u001b[38;5;241m=\u001b[39m _NixtlaClientModel(\n\u001b[0;32m 955\u001b[0m client\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclient,\n\u001b[0;32m 956\u001b[0m h\u001b[38;5;241m=\u001b[39mh,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 971\u001b[0m max_wait_time\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmax_wait_time,\n\u001b[0;32m 972\u001b[0m )\n\u001b[0;32m 973\u001b[0m df, X_df, uids_dtype \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_uids_to_categorical(\n\u001b[0;32m 974\u001b[0m df\u001b[38;5;241m=\u001b[39mdf, X_df\u001b[38;5;241m=\u001b[39mX_df, id_col\u001b[38;5;241m=\u001b[39mid_col\n\u001b[0;32m 975\u001b[0m )\n\u001b[1;32m--> 976\u001b[0m fcst_df \u001b[38;5;241m=\u001b[39m \u001b[43mnixtla_client_model\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mforecast\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 977\u001b[0m \u001b[43m \u001b[49m\u001b[43mdf\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mX_df\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mX_df\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43madd_history\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43madd_history\u001b[49m\n\u001b[0;32m 978\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 979\u001b[0m fcst_df \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_restore_uids(fcst_df, dtype\u001b[38;5;241m=\u001b[39muids_dtype, id_col\u001b[38;5;241m=\u001b[39mid_col)\n\u001b[0;32m 980\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mweights_x \u001b[38;5;241m=\u001b[39m nixtla_client_model\u001b[38;5;241m.\u001b[39mweights_x\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:559\u001b[0m, in \u001b[0;36m_NixtlaClientModel.forecast\u001b[1;34m(self, df, X_df, add_history)\u001b[0m\n\u001b[0;32m 557\u001b[0m main_logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPreprocessing dataframes...\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 558\u001b[0m Y_df, X_df, x_cols \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpreprocess_dataframes(df\u001b[38;5;241m=\u001b[39mdf, X_df\u001b[38;5;241m=\u001b[39mX_df)\n\u001b[1;32m--> 559\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset_model_params\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 560\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mh \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel_horizon:\n\u001b[0;32m 561\u001b[0m main_logger\u001b[38;5;241m.\u001b[39mwarning(\n\u001b[0;32m 562\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mThe specified horizon \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mh\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m exceeds the model horizon. \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m 563\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThis may lead to less accurate forecasts. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 564\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPlease consider using a smaller horizon.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 565\u001b[0m )\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:513\u001b[0m, in \u001b[0;36m_NixtlaClientModel.set_model_params\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 512\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mset_model_params\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m--> 513\u001b[0m model_params \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_api\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 514\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel_params\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 515\u001b[0m \u001b[43m \u001b[49m\u001b[43mSingleSeriesForecast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfreq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfreq\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 516\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 517\u001b[0m model_params \u001b[38;5;241m=\u001b[39m model_params[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdetail\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m 518\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minput_size, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel_horizon \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 519\u001b[0m model_params[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124minput_size\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[0;32m 520\u001b[0m model_params[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhorizon\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[0;32m 521\u001b[0m )\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\nixtla_client.py:229\u001b[0m, in \u001b[0;36m_NixtlaClientModel._call_api\u001b[1;34m(self, method, request)\u001b[0m\n\u001b[0;32m 228\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_call_api\u001b[39m(\u001b[38;5;28mself\u001b[39m, method, request):\n\u001b[1;32m--> 229\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_retry_strategy\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 230\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdata\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m response:\n\u001b[0;32m 231\u001b[0m response \u001b[38;5;241m=\u001b[39m response[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdata\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\tenacity\\__init__.py:332\u001b[0m, in \u001b[0;36mBaseRetrying.wraps..wrapped_f\u001b[1;34m(*args, **kw)\u001b[0m\n\u001b[0;32m 328\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(\n\u001b[0;32m 329\u001b[0m f, functools\u001b[38;5;241m.\u001b[39mWRAPPER_ASSIGNMENTS \u001b[38;5;241m+\u001b[39m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m__defaults__\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m__kwdefaults__\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 330\u001b[0m )\n\u001b[0;32m 331\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrapped_f\u001b[39m(\u001b[38;5;241m*\u001b[39margs: t\u001b[38;5;241m.\u001b[39mAny, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkw: t\u001b[38;5;241m.\u001b[39mAny) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m t\u001b[38;5;241m.\u001b[39mAny:\n\u001b[1;32m--> 332\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(f, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkw)\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\tenacity\\__init__.py:469\u001b[0m, in \u001b[0;36mRetrying.__call__\u001b[1;34m(self, fn, *args, **kwargs)\u001b[0m\n\u001b[0;32m 467\u001b[0m retry_state \u001b[38;5;241m=\u001b[39m RetryCallState(retry_object\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m, fn\u001b[38;5;241m=\u001b[39mfn, args\u001b[38;5;241m=\u001b[39margs, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m 468\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[1;32m--> 469\u001b[0m do \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43miter\u001b[49m\u001b[43m(\u001b[49m\u001b[43mretry_state\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mretry_state\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 470\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(do, DoAttempt):\n\u001b[0;32m 471\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\tenacity\\__init__.py:370\u001b[0m, in \u001b[0;36mBaseRetrying.iter\u001b[1;34m(self, retry_state)\u001b[0m\n\u001b[0;32m 368\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 369\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m action \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39miter_state\u001b[38;5;241m.\u001b[39mactions:\n\u001b[1;32m--> 370\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43maction\u001b[49m\u001b[43m(\u001b[49m\u001b[43mretry_state\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 371\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\tenacity\\__init__.py:412\u001b[0m, in \u001b[0;36mBaseRetrying._post_stop_check_actions..exc_check\u001b[1;34m(rs)\u001b[0m\n\u001b[0;32m 410\u001b[0m retry_exc \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mretry_error_cls(fut)\n\u001b[0;32m 411\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mreraise:\n\u001b[1;32m--> 412\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[43mretry_exc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreraise\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 413\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m retry_exc \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfut\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mexception\u001b[39;00m()\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\tenacity\\__init__.py:185\u001b[0m, in \u001b[0;36mRetryError.reraise\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 183\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mreraise\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m t\u001b[38;5;241m.\u001b[39mNoReturn:\n\u001b[0;32m 184\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlast_attempt\u001b[38;5;241m.\u001b[39mfailed:\n\u001b[1;32m--> 185\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlast_attempt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 186\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\n", - "File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python310\\lib\\concurrent\\futures\\_base.py:438\u001b[0m, in \u001b[0;36mFuture.result\u001b[1;34m(self, timeout)\u001b[0m\n\u001b[0;32m 436\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m CancelledError()\n\u001b[0;32m 437\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_state \u001b[38;5;241m==\u001b[39m FINISHED:\n\u001b[1;32m--> 438\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__get_result\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 440\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_condition\u001b[38;5;241m.\u001b[39mwait(timeout)\n\u001b[0;32m 442\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_state \u001b[38;5;129;01min\u001b[39;00m [CANCELLED, CANCELLED_AND_NOTIFIED]:\n", - "File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python310\\lib\\concurrent\\futures\\_base.py:390\u001b[0m, in \u001b[0;36mFuture.__get_result\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 388\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception:\n\u001b[0;32m 389\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 390\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception\n\u001b[0;32m 391\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 392\u001b[0m \u001b[38;5;66;03m# Break a reference cycle with the exception in self._exception\u001b[39;00m\n\u001b[0;32m 393\u001b[0m \u001b[38;5;28mself\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\tenacity\\__init__.py:472\u001b[0m, in \u001b[0;36mRetrying.__call__\u001b[1;34m(self, fn, *args, **kwargs)\u001b[0m\n\u001b[0;32m 470\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(do, DoAttempt):\n\u001b[0;32m 471\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 472\u001b[0m result \u001b[38;5;241m=\u001b[39m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 473\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m: \u001b[38;5;66;03m# noqa: B902\u001b[39;00m\n\u001b[0;32m 474\u001b[0m retry_state\u001b[38;5;241m.\u001b[39mset_exception(sys\u001b[38;5;241m.\u001b[39mexc_info()) \u001b[38;5;66;03m# type: ignore[arg-type]\u001b[39;00m\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\client.py:2283\u001b[0m, in \u001b[0;36mNixtla.model_params\u001b[1;34m(self, request, request_options)\u001b[0m\n\u001b[0;32m 2263\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmodel_params\u001b[39m(\n\u001b[0;32m 2264\u001b[0m \u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m, request: SingleSeriesForecast, request_options: typing\u001b[38;5;241m.\u001b[39mOptional[RequestOptions] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 2265\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m typing\u001b[38;5;241m.\u001b[39mAny:\n\u001b[0;32m 2266\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 2267\u001b[0m \u001b[38;5;124;03m Parameters:\u001b[39;00m\n\u001b[0;32m 2268\u001b[0m \u001b[38;5;124;03m - request: SingleSeriesForecast.\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 2281\u001b[0m \u001b[38;5;124;03m )\u001b[39;00m\n\u001b[0;32m 2282\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m-> 2283\u001b[0m _response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_client_wrapper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhttpx_client\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2284\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mPOST\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2285\u001b[0m \u001b[43m \u001b[49m\u001b[43murllib\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43murljoin\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_client_wrapper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_base_url\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m/\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodel_params\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2286\u001b[0m \u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjsonable_encoder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2287\u001b[0m \u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43madditional_query_parameters\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\n\u001b[0;32m 2288\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2289\u001b[0m \u001b[43m \u001b[49m\u001b[43mjson\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjsonable_encoder\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2290\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43madditional_body_parameters\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\n\u001b[0;32m 2291\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\n\u001b[0;32m 2292\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mjsonable_encoder\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2293\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mjsonable_encoder\u001b[49m\u001b[43m(\u001b[49m\u001b[43mremove_none_from_dict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43madditional_body_parameters\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2294\u001b[0m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2295\u001b[0m \u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjsonable_encoder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2296\u001b[0m \u001b[43m \u001b[49m\u001b[43mremove_none_from_dict\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2297\u001b[0m \u001b[43m \u001b[49m\u001b[43m{\u001b[49m\n\u001b[0;32m 2298\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_client_wrapper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_headers\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2299\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43madditional_headers\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2300\u001b[0m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\n\u001b[0;32m 2301\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2302\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2303\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtimeout_in_seconds\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2304\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mand\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtimeout_in_seconds\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\n\u001b[0;32m 2305\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_client_wrapper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_timeout\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2306\u001b[0m \u001b[43m \u001b[49m\u001b[43mretries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2307\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmax_retries\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrequest_options\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore\u001b[39;49;00m\n\u001b[0;32m 2308\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2309\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;241m200\u001b[39m \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m _response\u001b[38;5;241m.\u001b[39mstatus_code \u001b[38;5;241m<\u001b[39m \u001b[38;5;241m300\u001b[39m:\n\u001b[0;32m 2310\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pydantic_v1\u001b[38;5;241m.\u001b[39mparse_obj_as(typing\u001b[38;5;241m.\u001b[39mAny, _response\u001b[38;5;241m.\u001b[39mjson()) \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\nixtla\\core\\http_client.py:94\u001b[0m, in \u001b[0;36mHttpClient.request\u001b[1;34m(self, max_retries, retries, *args, **kwargs)\u001b[0m\n\u001b[0;32m 90\u001b[0m \u001b[38;5;129m@wraps\u001b[39m(httpx\u001b[38;5;241m.\u001b[39mClient\u001b[38;5;241m.\u001b[39mrequest)\n\u001b[0;32m 91\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrequest\u001b[39m(\n\u001b[0;32m 92\u001b[0m \u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs: typing\u001b[38;5;241m.\u001b[39mAny, max_retries: \u001b[38;5;28mint\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m, retries: \u001b[38;5;28mint\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: typing\u001b[38;5;241m.\u001b[39mAny\n\u001b[0;32m 93\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m httpx\u001b[38;5;241m.\u001b[39mResponse:\n\u001b[1;32m---> 94\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhttpx_client\u001b[38;5;241m.\u001b[39mrequest(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 95\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m _should_retry(response\u001b[38;5;241m=\u001b[39mresponse):\n\u001b[0;32m 96\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m max_retries \u001b[38;5;241m>\u001b[39m retries:\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_client.py:827\u001b[0m, in \u001b[0;36mClient.request\u001b[1;34m(self, method, url, content, data, files, json, params, headers, cookies, auth, follow_redirects, timeout, extensions)\u001b[0m\n\u001b[0;32m 812\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(message, \u001b[38;5;167;01mDeprecationWarning\u001b[39;00m)\n\u001b[0;32m 814\u001b[0m request \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuild_request(\n\u001b[0;32m 815\u001b[0m method\u001b[38;5;241m=\u001b[39mmethod,\n\u001b[0;32m 816\u001b[0m url\u001b[38;5;241m=\u001b[39murl,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 825\u001b[0m extensions\u001b[38;5;241m=\u001b[39mextensions,\n\u001b[0;32m 826\u001b[0m )\n\u001b[1;32m--> 827\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mauth\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mauth\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_client.py:914\u001b[0m, in \u001b[0;36mClient.send\u001b[1;34m(self, request, stream, auth, follow_redirects)\u001b[0m\n\u001b[0;32m 906\u001b[0m follow_redirects \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 907\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfollow_redirects\n\u001b[0;32m 908\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(follow_redirects, UseClientDefault)\n\u001b[0;32m 909\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m follow_redirects\n\u001b[0;32m 910\u001b[0m )\n\u001b[0;32m 912\u001b[0m auth \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_request_auth(request, auth)\n\u001b[1;32m--> 914\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_send_handling_auth\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 915\u001b[0m \u001b[43m \u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 916\u001b[0m \u001b[43m \u001b[49m\u001b[43mauth\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mauth\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 917\u001b[0m \u001b[43m \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 918\u001b[0m \u001b[43m \u001b[49m\u001b[43mhistory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 919\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 920\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 921\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m stream:\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_client.py:942\u001b[0m, in \u001b[0;36mClient._send_handling_auth\u001b[1;34m(self, request, auth, follow_redirects, history)\u001b[0m\n\u001b[0;32m 939\u001b[0m request \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mnext\u001b[39m(auth_flow)\n\u001b[0;32m 941\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[1;32m--> 942\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_send_handling_redirects\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 943\u001b[0m \u001b[43m \u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 944\u001b[0m \u001b[43m \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 945\u001b[0m \u001b[43m \u001b[49m\u001b[43mhistory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhistory\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 946\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 947\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 948\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_client.py:979\u001b[0m, in \u001b[0;36mClient._send_handling_redirects\u001b[1;34m(self, request, follow_redirects, history)\u001b[0m\n\u001b[0;32m 976\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m hook \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_event_hooks[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrequest\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n\u001b[0;32m 977\u001b[0m hook(request)\n\u001b[1;32m--> 979\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_send_single_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 980\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 981\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m hook \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_event_hooks[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mresponse\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_client.py:1015\u001b[0m, in \u001b[0;36mClient._send_single_request\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 1010\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[0;32m 1011\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAttempted to send an async request with a sync Client instance.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1012\u001b[0m )\n\u001b[0;32m 1014\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m request_context(request\u001b[38;5;241m=\u001b[39mrequest):\n\u001b[1;32m-> 1015\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43mtransport\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1017\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(response\u001b[38;5;241m.\u001b[39mstream, SyncByteStream)\n\u001b[0;32m 1019\u001b[0m response\u001b[38;5;241m.\u001b[39mrequest \u001b[38;5;241m=\u001b[39m request\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_transports\\default.py:232\u001b[0m, in \u001b[0;36mHTTPTransport.handle_request\u001b[1;34m(self, request)\u001b[0m\n\u001b[0;32m 218\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(request\u001b[38;5;241m.\u001b[39mstream, SyncByteStream)\n\u001b[0;32m 220\u001b[0m req \u001b[38;5;241m=\u001b[39m httpcore\u001b[38;5;241m.\u001b[39mRequest(\n\u001b[0;32m 221\u001b[0m method\u001b[38;5;241m=\u001b[39mrequest\u001b[38;5;241m.\u001b[39mmethod,\n\u001b[0;32m 222\u001b[0m url\u001b[38;5;241m=\u001b[39mhttpcore\u001b[38;5;241m.\u001b[39mURL(\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 230\u001b[0m extensions\u001b[38;5;241m=\u001b[39mrequest\u001b[38;5;241m.\u001b[39mextensions,\n\u001b[0;32m 231\u001b[0m )\n\u001b[1;32m--> 232\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m map_httpcore_exceptions():\n\u001b[0;32m 233\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_pool\u001b[38;5;241m.\u001b[39mhandle_request(req)\n\u001b[0;32m 235\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(resp\u001b[38;5;241m.\u001b[39mstream, typing\u001b[38;5;241m.\u001b[39mIterable)\n", - "File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python310\\lib\\contextlib.py:153\u001b[0m, in \u001b[0;36m_GeneratorContextManager.__exit__\u001b[1;34m(self, typ, value, traceback)\u001b[0m\n\u001b[0;32m 151\u001b[0m value \u001b[38;5;241m=\u001b[39m typ()\n\u001b[0;32m 152\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 153\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgen\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mthrow\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtyp\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalue\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtraceback\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 154\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[0;32m 155\u001b[0m \u001b[38;5;66;03m# Suppress StopIteration *unless* it's the same exception that\u001b[39;00m\n\u001b[0;32m 156\u001b[0m \u001b[38;5;66;03m# was passed to throw(). This prevents a StopIteration\u001b[39;00m\n\u001b[0;32m 157\u001b[0m \u001b[38;5;66;03m# raised inside the \"with\" statement from being suppressed.\u001b[39;00m\n\u001b[0;32m 158\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m exc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m value\n", - "File \u001b[1;32mc:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\httpx\\_transports\\default.py:86\u001b[0m, in \u001b[0;36mmap_httpcore_exceptions\u001b[1;34m()\u001b[0m\n\u001b[0;32m 83\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m\n\u001b[0;32m 85\u001b[0m message \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(exc)\n\u001b[1;32m---> 86\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m mapped_exc(message) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mexc\u001b[39;00m\n", - "\u001b[1;31mConnectError\u001b[0m: [Errno 11001] getaddrinfo failed" + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 9s/step - loss: 0.0414 - val_loss: 0.0969\n", + "Epoch 2/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0291 - val_loss: 0.0734\n", + "Epoch 3/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 164ms/step - loss: 0.0227 - val_loss: 0.0538\n", + "Epoch 4/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 185ms/step - loss: 0.0270 - val_loss: 0.0434\n", + "Epoch 5/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 178ms/step - loss: 0.0283 - val_loss: 0.0425\n", + "Epoch 6/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step - loss: 0.0229 - val_loss: 0.0456\n", + "Epoch 7/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 0.0260 - val_loss: 0.0521\n", + "Epoch 8/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 222ms/step - loss: 0.0222 - val_loss: 0.0586\n", + "Epoch 9/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 192ms/step - loss: 0.0212 - val_loss: 0.0650\n", + "Epoch 10/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 244ms/step - loss: 0.0192 - val_loss: 0.0704\n", + "Epoch 11/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 291ms/step - loss: 0.0178 - val_loss: 0.0729\n", + "Epoch 12/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 239ms/step - loss: 0.0224 - val_loss: 0.0734\n", + "Epoch 13/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 219ms/step - loss: 0.0231 - val_loss: 0.0727\n", + "Epoch 14/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 172ms/step - loss: 0.0255 - val_loss: 0.0703\n", + "Epoch 15/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 188ms/step - loss: 0.0214 - val_loss: 0.0673\n", + "Epoch 16/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 152ms/step - loss: 0.0225 - val_loss: 0.0637\n", + "Epoch 17/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 187ms/step - loss: 0.0183 - val_loss: 0.0602\n", + "Epoch 18/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 196ms/step - loss: 0.0270 - val_loss: 0.0570\n", + "Epoch 19/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 169ms/step - loss: 0.0269 - val_loss: 0.0545\n", + "Epoch 20/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 0.0210 - val_loss: 0.0532\n", + "Epoch 21/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.0194 - val_loss: 0.0528\n", + "Epoch 22/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 141ms/step - loss: 0.0194 - val_loss: 0.0525\n", + "Epoch 23/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 164ms/step - loss: 0.0154 - val_loss: 0.0520\n", + "Epoch 24/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 182ms/step - loss: 0.0212 - val_loss: 0.0512\n", + "Epoch 25/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 262ms/step - loss: 0.0211 - val_loss: 0.0501\n", + "Epoch 26/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 190ms/step - loss: 0.0242 - val_loss: 0.0494\n", + "Epoch 27/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 179ms/step - loss: 0.0201 - val_loss: 0.0483\n", + "Epoch 28/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 175ms/step - loss: 0.0183 - val_loss: 0.0476\n", + "Epoch 29/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0172 - val_loss: 0.0474\n", + "Epoch 30/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 158ms/step - loss: 0.0198 - val_loss: 0.0469\n", + "Epoch 31/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 185ms/step - loss: 0.0203 - val_loss: 0.0468\n", + "Epoch 32/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 170ms/step - loss: 0.0208 - val_loss: 0.0466\n", + "Epoch 33/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 159ms/step - loss: 0.0191 - val_loss: 0.0457\n", + "Epoch 34/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 180ms/step - loss: 0.0191 - val_loss: 0.0441\n", + "Epoch 35/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 166ms/step - loss: 0.0173 - val_loss: 0.0422\n", + "Epoch 36/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 162ms/step - loss: 0.0216 - val_loss: 0.0409\n", + "Epoch 37/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 171ms/step - loss: 0.0143 - val_loss: 0.0400\n", + "Epoch 38/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 216ms/step - loss: 0.0167 - val_loss: 0.0381\n", + "Epoch 39/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 306ms/step - loss: 0.0210 - val_loss: 0.0362\n", + "Epoch 40/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 253ms/step - loss: 0.0212 - val_loss: 0.0354\n", + "Epoch 41/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 154ms/step - loss: 0.0189 - val_loss: 0.0354\n", + "Epoch 42/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 211ms/step - loss: 0.0171 - val_loss: 0.0354\n", + "Epoch 43/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 201ms/step - loss: 0.0161 - val_loss: 0.0356\n", + "Epoch 44/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step - loss: 0.0218 - val_loss: 0.0362\n", + "Epoch 45/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 161ms/step - loss: 0.0162 - val_loss: 0.0361\n", + "Epoch 46/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 0.0160 - val_loss: 0.0357\n", + "Epoch 47/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 163ms/step - loss: 0.0149 - val_loss: 0.0352\n", + "Epoch 48/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 156ms/step - loss: 0.0168 - val_loss: 0.0331\n", + "Epoch 49/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 149ms/step - loss: 0.0192 - val_loss: 0.0305\n", + "Epoch 50/50\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 219ms/step - loss: 0.0205 - val_loss: 0.0272\n" ] + }, + { + "data": { + "text/plain": [ + "['scaler.gz']" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "# 1. Instantiate the NixtlaClient\n", - "nixtla_client = NixtlaClient(api_key = 'nixtla-tok-31lvshOqu4BTxxhJJY9Y6oxZQHciSZYElRgwsh5Btg60GK5JG3imcfbbUhdSIOyV2HSadFlgdJTpDsJb')\n", + "df = pd.read_csv('data/binance_btc_usdt_candlestick.csv', index_col='timestamp', parse_dates=True)\n", + "X, y, scaler = prepare_lstm_data(df, 'close', seq_length=20)\n", + "input_shape = (X.shape[1], 1)\n", "\n", - "# 3. Forecast the next 24 hours\n", - "fcst_df = nixtla_client.forecast(df, h=24, level=[80, 90])\n", + "lstm_model = build_lstm_model(input_shape)\n", + "lstm_model = train_lstm_model(lstm_model, X, y, epochs=50, batch_size=32)\n", "\n", - "# 4. Plot your results (optional)\n", - "nixtla_client.plot(df, fcst_df, time_col='ds', target_col='y', level=[80, 90])" + "# Save the model and scaler\n", + "lstm_model.save('my_model.keras')\n", + "import joblib\n", + "joblib.dump(scaler, 'scaler.gz')\n" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import load_model\n", + "import joblib\n", + "\n", + "def load_lstm_model_and_scaler(model_path='my_model.keras', scaler_path='scaler.gz'):\n", + " model = load_model(model_path)\n", + " scaler = joblib.load(scaler_path)\n", + " return model, scaler\n", + "\n", + "def make_lstm_predictions(model, scaler, df, seq_length=20):\n", + " data = df['close'].values.reshape(-1, 1)\n", + " scaled_data = scaler.transform(data)\n", + " \n", + " X_test = []\n", + " for i in range(seq_length, len(scaled_data)):\n", + " X_test.append(scaled_data[i-seq_length:i, 0])\n", + " \n", + " X_test = np.array(X_test)\n", + " X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))\n", + " \n", + " predictions = model.predict(X_test)\n", + " predictions = scaler.inverse_transform(predictions)\n", + " return predictions\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 842ms/step\n" + ] + } + ], + "source": [ + "lstm_model, scaler = load_lstm_model_and_scaler()\n", + "predictions = make_lstm_predictions(lstm_model, scaler, df)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[32737.451],\n", + " [32878.387],\n", + " [33015.863],\n", + " [33109.344],\n", + " [33171.016],\n", + " [33254.03 ],\n", + " [33315.6 ],\n", + " [33331.934],\n", + " [33315.68 ],\n", + " [33231.465],\n", + " [33149.55 ]], dtype=float32)" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "predictions" + ] + }, + { + "cell_type": "code", + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:nixtla.nixtla_client:Validating inputs...\n", - "INFO:nixtla.nixtla_client:Preprocessing dataframes...\n", - "c:\\Users\\user\\Downloads\\ten_academy\\week9\\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\\backtest\\lib\\site-packages\\utilsforecast\\preprocessing.py:188: UserWarning: Some values were lost during filling, please make sure that all your times meet the specified frequency.\n", - "For example if you have 'W-TUE' as your frequency, make sure that all your times are actually Tuesdays.\n", - " warnings.warn(\n", - "INFO:nixtla.nixtla_client:Calling Anomaly Detector Endpoint...\n" + "[*********************100%%**********************] 1 of 1 completed\n" ] - }, + } + ], + "source": [ + "import yfinance as yf\n", + "import pandas as pd\n", + "\n", + "# def download_data(ticker, start_date, end_date):\n", + "data = yf.download(\"NVDA\", start=\"2023-11-01\", end=\"2024-05-01\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACHgAAAN+CAYAAABkFi4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5hTZdoG8DszyWR6b/TekaoiClZEAdddxV5WxV0bVlbXj9VVcV3RtRfsClixFxCUoYkISJPe68D0PpPJpOf74+R9c07K9JnMMPfvurjInJwkJyenJOd53ufRud1uN4iIiIiIiIiIiIiIiIiIiIiozQoL9QIQERERERERERERERERERERUe2Y4EFERERERERERERERERERETUxjHBg4iIiIiIiIiIiIiIiIiIiKiNY4IHERERERERERERERERERERURvHBA8iIiIiIiIiIiIiIiIiIiKiNo4JHkRERERERERERERERERERERtHBM8iIiIiIiIiIiIiIiIiIiIiNo4JngQERERERERERERERERERERtXFM8CAiIiIiIiIiIiIiIiIiIiJq45jgQUREFGLz5s2DTqfD0aNHQ70o9XL06FHodDrMmzevznlvvvlm9OzZs8WXiYiIiIiIiEKPv2+JiIiIiFoWEzyIiIiozRMX3dT/4uPjMWLECLz++utwOp2a+c8991y/+cW/gQMHhuhdEBERERERUUfn+/vWYDAgNTUVZ555Jv71r38hOzvb7zGrVq0K+htXp9NhwYIFIXgnRERERBQK+lAvABERUUd344034pprroHRaAz1otRLjx49UFNTA4PB0Oqvfe2112Ly5MkAgIqKCixevBj33HMPjh07hueee04zb9euXTF79my/50hISGiVZSUiIiIiIupo+Pu2/sTvW5fLhbKyMmzcuBEvv/wyXnnlFbz//vu45ppr/B5z77334rTTTvObPnbs2NZYZCIiIiJqA5jgQUREFGLh4eEIDw8P9WLUm06nQ2RkZEhee9SoUbjhhhvk33fddRfGjBmDTz/91C/BIyEhQTMvERERERERtSz+vq0/39+3AHDs2DFMnDgRN910EwYNGoThw4dr7h8/fjyuuOKK1lxMIiIiImpj2KKFiIiogYL13X3iiSeg0+nk3zqdDnfffTe+++47DB06FEajEUOGDMFPP/2keVygHsVutxtPPfUUunbtiujoaJx33nnYtWsXevbsiZtvvjnoa9b2nACwZMkSjB8/HjExMYiLi8OUKVOwa9euBr3/YD2KxfuMjIzE0KFD8e233zboeRtDp9MhIyMDej1zVomIiIiIiBqKv2/bzu9bQKkoMm/ePNhsNvzvf/9rldckIiIiovaF0RAiIqIWtGbNGnzzzTe46667EBcXh1dffRVTp05FdnY2UlJSgj7usccew1NPPYXJkydj8uTJ2LJlCyZOnAibzdboZfnoo49w00034aKLLsKzzz4Ls9mMN998E+PGjcMff/wR8KJefS1duhRTp07F4MGDMXv2bJSUlOCWW25B165d/eYtKyuD0+ms8zmjo6MRHR2tmWY2m1FcXAwAqKysxJIlS/DTTz9h5syZfo93Op1yXrWoqCjExMTU960RERERERER+Pu2uX/fBjN27Fj06dMHWVlZfvdVVVUF/J2bkpISMDmGiIiIiE4+TPAgIiJqQXv27MHu3bvRp08fAMB5552H4cOH47PPPsPdd98d8DFFRUX43//+hylTpmDhwoXyIs0jjzyCp59+ulHLYTKZcO+99+Jvf/sb3nnnHTn9pptuwoABA/D0009rpjfUww8/jIyMDKxZswYJCQkAgHPOOQcTJ05Ejx49NPOOHDkSx44dq/M5H3/8cTzxxBN+0x5//HHNtDvvvBOzZs3ye/zevXuRlpbmN/3222/HW2+9VefrExERERERkRd/3zbv79vaDB06FN9//z0qKysRHx8vp0+bNi3g/Hl5ecjMzKz38xMRERFR+8UEDyIiohY0YcIEefELAIYNG4b4+HgcPnw46GOWLVsGm82Ge+65RzMC5/7772/0BbCsrCyUl5fj2muv1Yz2CQ8Px5gxY7By5cpGPS+gXEjaunUr/u///k9e/AKACy+8EIMHD0Z1dbVm/k8++QQ1NTV1Pm/v3r39pt1222248sorASgVPFasWIE333wTRqMRL730kmbenj174t133/V7jkCjroiIiIiIiKh2/H3bvL9vaxMbGwtAqdihTvB47LHHMH78eL/5k5OTG/T8RERERNR+McGDiIioBXXv3t1vWlJSEsrKyoI+Roz+6devn2Z6WloakpKSGrUcBw4cAACcf/75Ae9XXzBqqGDLCwADBgzAli1bNNPOOuusRr9Wv379MGHCBPn35ZdfDp1Oh5dffhnTpk3DKaecIu+LiYnRzEtERERERESNx9+3zfv7tjYmkwkAEBcXp5l+yimn8HcuERERUQfHBA8iIqIGCtbXNlDf3fDw8IDzut3uVl0Wl8sFQOlTHKhsq17fel8JioqK6tWjODY2Vo5aqs0FF1yA119/HatXr9YkeBAREREREVHt+Pu2aZr7962wc+dOpKenNylZhYiIiIhOTkzwICIiaqCkpCSUl5f7Ta9P3936ED19Dxw4oCnjWlRU5DcySox4Ki8vR2JiYtBlEWV009PTm320j3p5fe3bt89v2mmnndasPYodDgcA7wgnIiIiIiIiqh/+vg2+vL5a4/ctAKxbtw6HDh3CDTfcUK/5iYiIiKhjYYIHERFRA/Xp0wcVFRXYvn07hg0bBkDp0/vtt982y/NPmDABBoMBr732GiZOnChHMb388ssBlwUAVq9ejUsvvRQAUF1djfnz52vmu+iiixAfH4+nn34a5513HgwGg+b+oqIipKWlNWp5O3XqhBEjRmD+/PmaPsVZWVnYvXu3vEAmNHeP4oULFwIAhg8f3sAlJyIiIiIi6tj4+1Yr1L9vjx07hptvvhkRERF46KGHGv4GiIiIiOikxwQPIiKiBrrmmmvw8MMP47LLLsO9994Ls9mMN998E/379/frx9sYaWlpePDBBzF79mxccsklmDx5Mv744w8sWbIEqampmnknTpyI7t2749Zbb8VDDz2E8PBwfPDBB0hLS0N2dracLz4+Hm+++SZuvPFGjBo1Ctdcc42c58cff8RZZ52F119/vdHLPHv2bEyZMgXjxo3DtGnTUFpaitdeew1Dhgzxq6zRlB7FW7ZswccffwwAqKqqwvLly/H111/jzDPPxMSJEzXzVlRUyHl9cSQUERERERERf98G0tq/b10uF8rLy7Fx40Z8/fXX0Ol0+Oijj2TCjdqvv/4Ki8XiN33YsGEB5yciIiKikw8TPIiIiBooJSUF3377LWbMmIF//vOf6NWrF2bPno0DBw40ywUwAHjqqacQGRmJt956CytXrsSYMWOwdOlSTJkyRTOfwWDAt99+i7vuugv//ve/kZmZifvvvx9JSUm45ZZbNPNed9116Ny5M5555hk899xzsFqt6NKlC8aPH+83b0NdfPHF+PLLL/Hoo49i5syZ6NOnD+bOnYvvv/8eq1atatJzq3322Wf47LPPACh9lbt3746HHnoIjz32GMLCwjTznjhxAjfeeGPA52GCBxEREREREX/fBtLav2/1ej3i4+PRr18/3H///bjjjjvQvXv3gI959dVXA05//PHHmeBBRERE1EHo3G63O9QLQURERPXTs2dPnHvuuZg3b16oF4WIiIiIiIio0fj7loiIiIio4cLqnoWIiIiIiIiIiIiIiIiIiIiIQoktWoiIiAgAYLPZUFpaWus8CQkJiIqKaqUlIiIiIiIiImo4/r4lIiIiopMVEzyIiIgIALB27Vqcd955tc4zd+5c3Hzzza2zQERERERERESNwN+3RERERHSy0rndbneoF4KIiIhCr6ysDJs3b651niFDhqBTp06ttEREREREREREDcfft0RERER0smKCBxEREREREREREREREREREVEbFxbqBSAiIiIiIiIiIiIiIiIiIiKi2ulDvQBtgcvlQm5uLuLi4qDT6UK9OERERERERNQGuN1uVFVVoXPnzggLax/jI/j7loiIiIiIiAJpj79xicgfEzwA5Obmolu3bqFeDCIiIiIiImqDjh8/jq5du4Z6MeqFv2+JiIiIiIioNu3pNy4R+WOCB4C4uDgAygEtPj4+xEtDHYndbsfSpUsxceJEGAyGUC8OEbdJ6nC4zVNbw22SKLhQ7B+VlZXo1q2b/M3YHvD3LYUKz2HUFnG7pI6E2zu1NdwmiWrH37hE1FhM8ABk2dr4+HheAKNWZbfbER0djfj4eH7JpTaB2yR1NNzmqa3hNkkUXCj3j/bU6oS/bylUeA6jtojbJXUk3N6preE2SVQ7/sYlosZigyUiIiIiIiIiIiIiIiIiIiKiNo4JHkRERERERERERERERERERERtXEgTPHr27AmdTuf3b/r06QAAi8WC6dOnIyUlBbGxsZg6dSoKCgo0z5GdnY0pU6YgOjoa6enpeOihh+BwOELxdoiIiIiIiIiIiIiIiIiIiIhaREgTPDZu3Ii8vDz5LysrCwBw5ZVXAgAeeOABLFy4EF9++SV++eUX5Obm4vLLL5ePdzqdmDJlCmw2G9auXYv58+dj3rx5eOyxx0LyfoiIiIiIiIiIiIiIiIiIiIhaQkgTPNLS0pCZmSn/LVq0CH369ME555yDiooKvP/++3jxxRdx/vnnY/To0Zg7dy7Wrl2L9evXAwCWLl2K3bt34+OPP8aIESMwadIk/Oc//8GcOXNgs9lC+daIiIiIiIiIiIiIiIiIiIiImk1IEzzUbDYbPv74Y0ybNg06nQ6bN2+G3W7HhAkT5DwDBw5E9+7dsW7dOgDAunXrcMoppyAjI0POc9FFF6GyshK7du1q9fdARERERERERERERERERERE1BL0oV4A4bvvvkN5eTluvvlmAEB+fj4iIiKQmJiomS8jIwP5+flyHnVyh7hf3BeM1WqF1WqVf1dWVgIA7HY77HZ7U98KUb2J7Y3bHYVSdnYxoqMjkJoaz22SOhxu89TWcJskCi4U+wf3RSKik5vVasfBg/kYNKgLwsLazDg4IiIiIiKioNpMgsf777+PSZMmoXPnzi3+WrNnz8asWbP8pi9duhTR0dEt/vpEvrKyskK9CNRBVVfb8fobWwAADz80Rk7nNkkdDbd5amu4TRIF15r7h9lsbrXXIiKi1vfwzI+xYcMB3H/fJbjqyjNDvThERERERER1ahMJHseOHcOyZcvwzTffyGmZmZmw2WwoLy/XVPEoKChAZmamnGfDhg2a5yooKJD3BTNz5kzMmDFD/l1ZWYlu3bph4sSJiI+Pb463RFQvdrsdWVlZuPDCC2EwGEK9ONQBbfnjCAAlwWPy5MncJqnD4TZPbQ23SaLgQrF/iGqPRER0ctqw4QAA4Lvvf2eCBxERERERtQttIsFj7ty5SE9Px5QpU+S00aNHw2AwYPny5Zg6dSoAYN++fcjOzsbYsWMBAGPHjsV///tfFBYWIj09HYAymis+Ph6DBw8O+npGoxFGo9FvusFg4IV0CgluexQqen24vK3eBrlNUkfDbZ7aGm6TRMG15v7B/ZCIqGMw6NvEJVIiIiIiIqI6hfzXi8vlwty5c3HTTTdBr/oxlZCQgFtvvRUzZsxAcnIy4uPjcc8992Ds2LE444wzAAATJ07E4MGDceONN+J///sf8vPz8eijj2L69OkBEziIiIiIiIiIiIiI1CIiQn6JlIiIiIiIqF7CQr0Ay5YtQ3Z2NqZNm+Z330svvYRLLrkEU6dOxdlnn43MzExNG5fw8HAsWrQI4eHhGDt2LG644Qb89a9/xZNPPtmab4GIiIiIiIiIiKhVWCw23Dztdbz08sJQL8pJwxARXvdMREREREREbUDI09MnTpwIt9sd8L7IyEjMmTMHc+bMCfr4Hj16YPHixS21eETURi1duhXvfbAcs/97Pfr0yQz14hARERERERG1imXLd2D//lzs35+LB+7/U6gX56TAFi3UVvyx9QiMRgMGD+oa6kUhIiIiojYq5BU8iIga44knv8CJEyWY9eQXoV4UIiIiIiIiolZTXW0J9SKcdFjBg9qCykozpt/9Lv729zfgdLpCvThERERE1EYxwYOI2jWr1R7qRSAiIiIiIiJqNfwd3PwiDKzgQaFXVeVN3jKbrSFcEiIiIiJqy5jgQURERERERERE1E5YLEzwaG4GAyt4UOiFhenkbRMr9RARERFREEzwIKJ2zR3qBSAiIiIiIiJqRTUWW6gX4aTgcnlbYBgiWMGDQs9ud8rb1SYmeBARERFRYEzwICIiIiIiIiIiaiesrODRLNSVUNiihdoCu8Mhb7OCBxEREREFwwQPImrX3G7W8CAiIiIiIqKOQ52YwN/EjWexetejXs9LpBR6DlUFD1MVEzyIiIiIKDD+eiEiIiIiIiIiImonLKoWLU6nq5Y5qTbqSiguFxNlKPTULVpYwYOIiIiIgmGCBxG1axysRERERERERB2JuoIHEzwaz2pjgge1LXaHN8Gj2sQEDyIiIiIKjAkeRERERERERERE7YQ6qcPBBI9GU7fDcLq4Hin0NC1aqq0hXBIiIiIiasuY4EFE7RtLeBAREREREVEH4lb9DnY6mJjQWA7VunM5eW2BQk9dwcNqtdcyJxERERF1ZEzwICIiANqLhERERERERNQ2uaFK8HA6a5mTaqMOprPVDbUFdlUFD4eD+zYRERERBcYEDyJq15iS0HyY4EFERERERNT2qStPMDGh8Rx2h7ztYosWagPU2yT3bSIiIiIKhgkeRERERERERERE7YSDlSeahSZRhgke1Aaoq8qwggcRERERBcMEDyIiAgCwgAcREREREVHb57AzwaM5qIPpLid/EFPoOTQtWrhvExEREVFgTPAgonaNbUWaD9clERERERFR2+dQJXUwCNx4dibKUBujqeDhZAUPIiIiIgqMCR5E1K4xJ4GIiIiI2orVq1fjT3/6Ezp37gydTofvvvtOc7/b7cZjjz2GTp06ISoqChMmTMCBAwc085SWluL6669HfHw8EhMTceutt8JkMrXiuyCitk7booVB4MZyqit4sEULtQGapCMmbxERERFREEzwICIiIiIiImoG1dXVGD58OObMmRPw/v/973949dVX8dZbb+H3339HTEwMLrroIlgsFjnP9ddfj127diErKwuLFi3C6tWrcdttt7XWWyCidoCVJ5qHulqC08XRIxR62hYtTN4iIiIiosD0oV4AIiJqG9iihYiIiKhpJk2ahEmTJgW8z+124+WXX8ajjz6KP//5zwCADz/8EBkZGfjuu+9wzTXXYM+ePfjpp5+wceNGnHrqqQCA1157DZMnT8bzzz+Pzp07t9p7IaK2y+lggkdzcHA9UhujadHCBA8iIiIiCoIJHkREBEBpd6PThXopiIiIiE5OR44cQX5+PiZMmCCnJSQkYMyYMVi3bh2uueYarFu3DomJiTK5AwAmTJiAsLAw/P7777jsssv8ntdqtcJqtcq/KysrAQB2ux12u70F3xGRltjeuN21PHUFD6vVxnVei9q2S4vFJm87HU6uRwo5q9W7Tdrsjjq3yepqC5548kucd+5QTJ40ksdhanO4TRLVLhT7CPdHopNDyBM8cnJy8PDDD2PJkiUwm83o27cv5s6dKy9oud1uPP7443j33XdRXl6Os846C2+++Sb69esnn6O0tBT33HMPFi5ciLCwMEydOhWvvPIKYmNjQ/W2iKi1sOpEs3G73UzwICIiImoh+fn5AICMjAzN9IyMDHlffn4+0tPTNffr9XokJyfLeXzNnj0bs2bN8pu+dOlSREdHN8eiEzVIVlZWqBfhpGeu8bZ1+nXNbzhyJC6ES9M+BNout23zHleLioqwePHi1lwkIj979x6Xt/Ny8+vcJtetz8GGDSewYcNBwJ0np/M4TG0Nt0mi2rXmPmI2m1vttYio5YQ0waOsrAxnnXUWzjvvPCxZsgRpaWk4cOAAkpKS5DyiR/H8+fPRq1cv/Pvf/8ZFF12E3bt3IzIyEoDSozgvLw9ZWVmw2+245ZZbcNttt+HTTz8N1VsjolbC9A4iIiIi6shmzpyJGTNmyL8rKyvRrVs3TJw4EfHx8SFcMupo7HY7srKycOGFF8JgMIR6cU5qr83ZCsABABhz+hgMH94zlIvTptW2XZqq12LZ8mMAgMSkZEyePDkUi0gkHT32M9b/ngsASE5OqXObzMtfgdW/ngAATJ48mcdhanO4TRLVLhT7iKj4SETtW0gTPJ599ll069YNc+fOldN69eolb7NHMREREREREZ0MMjMzAQAFBQXo1KmTnF5QUIARI0bIeQoLCzWPczgcKC0tlY/3ZTQaYTQa/aYbDAZeSKeQ4LbX8hwOb4sW6MK4vush0Hbpcqlvu7keKeQcDu9G6azHNpmQEKP6Syfn53GY2hpuk0S1a819hPsi0ckhLJQv/sMPP+DUU0/FlVdeifT0dIwcORLvvvuuvL+uHsUA6uxRTERE9eNmuxsiIiKiFtOrVy9kZmZi+fLlclplZSV+//13jB07FgAwduxYlJeXY/PmzXKeFStWwOVyYcyYMa2+zETUNqkTPDTJHtQg6nXncrpqmZOodZiqve2XnPXYt41G79jNkhJTiywTEREREbU9Ia3gcfjwYbz55puYMWMG/vWvf2Hjxo249957ERERgZtuuqnFehRbrVZYrVb5tyhJZLfbYbfbm+39EdVFbG/c7hrP7XJz/TWB+oKWzWaHXq8DwG2SOg4eh6mt4TZJFFwo9o+GvpbJZMLBgwfl30eOHMHWrVuRnJyM7t274/7778dTTz2Ffv36yRaknTt3xl/+8hcAwKBBg3DxxRfj73//O9566y3Y7XbcfffduOaaa1idkogAAE6nCy6XW/M3NY4mwcPFAQ8UelVVNfK2uppHMDabQ94uLa1CSkpMLXMTERER0ckipAkeLpcLp556Kp5++mkAwMiRI7Fz50689dZbuOmmm1rsdWfPno1Zs2b5TV+6dCmio6Nb7HWJgsnKygr1IrRbNZYaLF68ONSL0W4dy66Qt3/++WdERIQD4DZJHQ+3eWpruE0SBdea+4fZbG7Q/Js2bcJ5550n/54xYwYA4KabbsK8efPwz3/+E9XV1bjttttQXl6OcePG4aeffkJkZKR8zCeffIK7774bF1xwAcLCwjB16lS8+uqrzfOGiKjd863YwQSPxrPbveuS65HaAm2CR90VPKxWdYIHK3gQERERdRQhTfDo1KkTBg8erJk2aNAgfP311wBarkfxzJkz5YU2QKng0a1bN0ycOBHx8fFNfl9E9WW325GVlYULL7yQvc8a6NnnlBZMkZGRmDx5coiXpv3a8scRLPh8LwBg4kUTYdCHcZukDoXHYWpruE0SBReK/UNUe6yvc889t9a2dzqdDk8++SSefPLJoPMkJyfj008/bdDrElHH4fBJRGBiQuOpKyQ4XVyPFHqaBI967NtWq7fSmLq9CxERERGd3EKa4HHWWWdh3759mmn79+9Hjx49AGh7FIuEDtGj+M477wSg7VE8evRoAHX3KDYajTAajX7TDQYDL6RTSHDbawod110T6PXhqtsGGAxhALhNUsfDbZ7aGm6TRMG15v7B/ZCI2honK3g0G4fDW/3AxQQPagNMVd4kjfpV8FAleJiY4EFERETUUYQ0weOBBx7AmWeeiaeffhpXXXUVNmzYgHfeeQfvvPMOAGV0E3sUE1GtahkhSQ3EdUlERERERNSmqduKAEzwaAr1unQ5+XuYQq+ywS1avAke6uofRERERHRyC2mCx2mnnYZvv/0WM2fOxJNPPolevXrh5ZdfxvXXXy/nYY9iImoObrcbTqdLU7GCtJjfQURERERE1DyOHivE1q1H8adLTkV4eFizPe/KVTs1fzPBo/HULVrq0w6DqCV8/8NGWK12/PnS02CzeavKqLfPYKxW7/ys4EFERETUcYQ0wQMALrnkElxyySVB72ePYiKqTX1zEh57fAHWrd+Pr798CAkJ0S26TERERERERNSxXXf9y8oNtxt/+UvgFsINtXNnNl58aaFmWn1G+VNgdjtbtFBoFRZW4Nn/fQsAMJutmvt82zEFYrOxRQsRERFRR9R8QwiIiNqw5St2wGy24uelW0O9KG2WmyU8iIiIiIiImtXOXceb7bmWr9jhN40VPBqvxmKTt10u/h6m1vfb2r3y9jvvZgEATj+9HwDA4fRP8Niy5TCe+u9XqKxU2rGoK3hUmdiihYiIiKijCHkFDyKipmBSQvPhqiQiIiIiImpeYWG6Znuu7Owiv2lM8Gg8S423+gHXI4XCwYN5ftO6dE4CELhFy933vgcA2LzlMD7+6D5Yrd5tuNpk9ZufiIiIiE5OrOBBREQezPAgIiIiIiJqTrpmTPAorzD7TWNiQuOZa7wBca5HCoUTOaV+05KSYgHU3n6poKAcDz/8IayqFi3V1XW3aHG73cjNLWVLIiIiIqJ2jgkeRNSusYIHERERERERtVXhYc1z6a2kpAp79pzwm+4MMMo/J6cUNpvDbzppWSze4LjdzvVFrS831z/BIyUlDoB/BQ/f619b/jiCwsJK+bfdHjwhRPhx8RZccdXzsh0MEREREbVPTPAgog6FCSHBcdUQERERERE1r+Zo0eJ2u3HfAx8EvM/hU3nij61HcOXVz2P63e82+XVPdjVmbwUPi8XO6wXUqtxuN/Lzy/2mp6clAFAqeKireFRV1fjNq04QsdUjSenlVxYBAD786JeGLi4RERERtSFM8CCido3XX5oPL2YRERERERE1nTooGxbe9EtveXllOHy4IOB9Tqd21P7ChZsAALt2H2/y657saiw2edvpdLHqCbUql8stWwN17Zoip2d2SpS3TSZv25WiIm+1jr59Mv2ez16P7TctLb4xi0pEREREbQwTPIiICAATPIiIiIiIiJpDTY03cSBMV3cFD7fbjQ/mLserry0OeH9FpTnoY50+FTx8Ez4oOPXnFOhvopakTgTr3DlZ3k5KikVUVAQAwFTtTfAQ22enTkm45+7JcvqEC4YBAGwBWrRUVJg113pE+xcATGgiIiIiaseY4EFERERERERERNRMLFa7vO2qRyL9uvX78d77y7Hg8zUoKq70u1+0ZugTYNS+w+Gb4OHym4f8uVwuWCx2zbSOluDR0EEeHBTSvNT76oD+nQEA0dFGJMRHIyYmEgBQrargIeYPDw/Daaf1xaOPXIFzzx2CK68YCwCw+7RoWf/7fkya8hReenmhnBYZaZC3iwMca4iIiIiofdCHegGIiJqGFxiaQn19hmuSiIiIiIio6SyqRIH6tE3Yty9H3rb6JB0AQGWlkuARFxeJ9965E98v3AibzYGff97ql9DhcvGXXX1Yrd7PJSoqAjU1NpjN1hAuUetyu92AG3DDDV09q8w0ZH6qmzo564brz0bfvpkYNbI3wsPDEBtrRHGxtoKHOsEDACZPGoXJk0bhRE4JAP9jzTvvZAEAvvp6PWY8cCkAaLbxklKTpnIIESn7SFiYDpGREaFeFCIiolqxggcRtWscQNKMuDKJiIiIiIiarMbiTfCoTxsEu6q1QqD533jzJwBAfFw0Bg/uhpkPX4601HgA/hU7HKzgUS81NUqgW6fTITExBgBg7mAVPCi01O2UYmMjceGE4bKFiqjgYaryT/DQ68M1zxNhUMZv+rZoiY4x+r2m2ezdxktLqpqy+EQnHYfDiauueQFXXv1Ci1TDKiquxBNPfoFDh/Ob/bmJiKjjYYIHEVFHpkrqYH4HERERERFR06mrcNQnwUM9j92hDdIeP16M/PxyAEBYmLdyghjFrw4SK38zwSOYarMVy5Zv91TrUALdUZEGxEQrgXCR9EHNoyO1dGnMe3WoKnL4VkWJFQketVTwEAwGJeHD4XDC5fLu/9HR/gke1arnKyltewkebBtEoVRQUIHSUhNKSqpQUo8EKIfDiVdfW4z16/fX6/mfefZbLF26FTfd/FpTF5WIiIgJHkREHRl/CxMRERERETUviyrBw1qvBA/v/L5tFnJyS+XtEydK5G1vgoc2oYMJHsHdcOMreOzxBfj2299RUWEGAMQnRMtAeI2ZFTyai2zp0gEuOjT2vTo8yVy+CRsAEBvnSfAw1Z3gERHh7cCuThCLCVDBo7ram8RUWmpq0PK2tIaux460jVHrMJlq5G2RWKlWbbZi0Y+bceiQUoHj62/WY8HnazDjwXkBn8/hcKKszCT33cOHCwAordS43RIRUVPp656FiIhOVm6oK3jwxwUREREREVFTqSty1KeChzoJxG73SfDI8SZ4DBnSTd4OluDhYoJHQCaTBQUF5QCAvfty0KNnGgAgMSEGUVERANiihVqP2+32tlwJkOARE60keJjN3oSMYAkhBoMqwcOmSvBQVfBwOJwIDw/TPJ9IcupI3G63X7UUIqFctU/k5Zdh2LAemvtffPEHLPnpD6SkxOGH7/4P+/fnyvvsdod2X7Q7cOdd72D3nhPQ68NxwQWnaCrs7Np1HEOHdm/Bd0NERCc7VvAgonaN5RubD9cMERERERFR01lVFTmsVnstcyo0CSF2bcuVXFUFjztuv0jeDg8XbRlYwaM+1OtYrw9HpaqCh0jwYIuW0Ooo12tE5QmHPXgFD6NRCRSrjx91tWgBtAli6hYtv284gN9/P+BzrKk7+exk0piKHx1lmyRFRXm1vJ2XV+Z3f16+Mq2kpAqHDuVrquD8/vsBzby//roHu/ecAKAkWP3881YUFVXK+39ZvatZl52IiDoeJngQUbvG31pNo1l/XJlERERERERN1tAKHuq2LL4tWkSLhttvm4iEhGg5XR+sgoeLCR6BOFStK0zVFjlSOzEhGhFGAwDAau1YAe+2pCO225AJG/pwv/siI5WkI/U26RAVP/Tay/k6nU4medhVCWLqdfnQPz/0ayNRn2NTR9YRt8lQOHy4ADf89RWsXLUz1IuiqeBRWubfwkh9vl31yy4UFlXIv+fNX6mZVzx+3LhBeOWlaf6vVd7xKugQEVHzYoIHEVEHpv6hyt+sRERERERETdfQBI/aRtWLgK3BJwgcrhcJHtqKHw5VAIqBSS914LvaZJHtKeITogNWSyBqaSLpSB8gwUNskxaLTe7H3goe/vOL1hDq44dvdR9BVKyxMaGJ2oBZT36Bw4cL8Mijn4Z6UVBZ6U26qAzQwshi8Z4jVq7ciTJVEoip2qKZV5xzoqONOO20vv7PZWVLMCIiahomeBARdWS83kdERERERNSs1Akb6soRwVjVFTx8WrTYHcp9eoM2qBu8gof3R159XrujsKvWRXl5NUpKqgAACfHRMMoKHh03weOtt3/GlVc/LxNfqOUFa7kCAJFGUcHDLqtI1DZ/RISngofNu50H2/9PPbUPAFbwoLahsqom1IsgHT1aKG+XBzgWWlUJHkeOFmqqcFRXa1t8iXZJEQb/hCwAsNR03PNNfTFJlYiodkzwIKL2rYFf9vjdMDh+cSYiIiIiImo6Wy0tVxo6v8OT8OEbJAoPkuCh/jvYCP6OyKFKnDlytBA/Lt4MAOjePRXGCCXBoyMHvD/86Bfk5JTK9UItz1vBw//yvLeChzcIXFuCh6jgYbfXnlwWHx+F00/rB6Bjb+/UhrSRa5Futxtbtx2Vf1eUV/vNU2MJXnWj2qeCh9i/xL555pkD6v1cJ6uGXHduTIskXtcmoo6GCR5E1K7xq1vTsEULEREREREJbrcba9bsQWFhRd0zU1CahI16VNGobX6bJzFB7wkSCeGetg61JXj4VgNpj0pLq7BmzR64XE1LVgn2OYwY3rPDt2hRXxeIjDSEcEk6FpGAFShhwxipquDhIdox6WtJ8LCp9nnfY8PT/70OCz6dgZSUWGVeW8fc3lsSA8wN11bW2KZNh1Ba6m25EqiCh0i4Em2OACAsTCfvUydVidsGT3Lm//3zMlx+2RjcfttEANpqIB1BYxI2WvL5ua8S0cmACR5ERB2YW3ObX26JiIiIiDqylSt34p//9xGuuuaFUC9Ku6ZJ2LDXPUpeXbXDd1S9qDxhqGcFD02Aydn+Ezz+dtub+Of/fYQfftjYpOcJ9jmkpSUgIkK0aOmYFQ3UbVni4qJCuCQdi9h39Xr/Fg4i0caiSvCQCSEBKn6IFi0iacPtdvtV8BkyuBsSE2M6/PbeUlo6gH2yCvX6crvd+L+ZH+O+Bz4AoFS5AYCKCv8KHhZP1Y3rrxsvp/Xr20neNpu9VTlsNnHuVpKvUlPj8eA//ozBg7oC6JgVPNoKVgchopNFSBM8nnjiCeh0Os2/gQMHyvstFgumT5+OlJQUxMbGYurUqSgoKNA8R3Z2NqZMmYLo6Gikp6fjoYcegsPBL6hERPXBL6hERERERCSsXbcPQPss3W+12nHLtNfxxKzPQ70oPgkeDazg4TO/3XONy6APnODh8EnwUI/4d5wEFTzy88sBAMtW7GjS89S2LoJV8Fjw+RrceNOrKC2tatJrt3XFxZXytsvl9vzvwuYth/zaDlDzEQlYASt4GP2TMLwtWvwTQrwtWvwrCFx5xVi89+5dSEtLAABERHi2d1bwoDYg1JclzWYrVv+6W/59+WVnAFAqcmjOpw6n3L+mXj4W77x1B+64/SI8OesauU9Vm73HS5FUKJKvhEhP9Q9LB6vg0Z4xeYuI2qqQV/AYMmQI8vLy5L81a9bI+x544AEsXLgQX375JX755Rfk5ubi8ssvl/c7nU5MmTIFNpsNa9euxfz58zFv3jw89thjoXgrRBQCDf1yxS9jteCqISIiIiLq0NpjYoew+tfd2Lc/F0uztoV6UTStD+qT4GGtpeKHeLwhwqdFi6jg4dN6xDcgdbKoTyWUWh9fy7qQwXSfgPerry3GoUP5+OiT1U167bauuNibwCKqyXz9zXrcc+/7eHjmx6FarJOe01FLBQ+xTapG+cuKHwESQiJEgofqWCISSLp3T5NVAwDA6DmWtOfjPZ1EQnydVt2WpWvXFEy75Xx5flVXN1KfpyMjDRg6tDv+euM56NYtFTExRgCAudoqrzuLc7fv/i32bUsjK3i05HVtXjMnImpfQp7godfrkZmZKf+lpqYCACoqKvD+++/jxRdfxPnnn4/Ro0dj7ty5WLt2LdavXw8AWLp0KXbv3o2PP/4YI0aMwKRJk/Cf//wHc+bMgc3GMldEHQG/ezaRav3xizwRERERUcfW1CB6a3I6XXC5vNUrjh8vlrdDndhg9anIUdtvrd17TqCgoFz+7Rt0lQkeQSp4+LZoUY/4ry2pob2xNbGdRK0VPERFgyCv4ZtE01bV9Zv+6LFCTcBSMJut8rbNcwz46qt1AIAtWw434xI2n5Ph+kV9KnioW7R4K3j4z28QLVpUx3BHkASSCCZ4UAAdtV2FOsHj3bfvhF4fjsTEGABAeUW1fK+WGiXWpNPp5D4kxMREAgCqTDWy0oO3god23iifCh4NXu8t1FqEbUuIiNoffd2ztKwDBw6gc+fOiIyMxNixYzF79mx0794dmzdvht1ux4QJE+S8AwcORPfu3bFu3TqcccYZWLduHU455RRkZGTIeS666CLceeed2LVrF0aOHBnwNa1WK6xW74+XykqlFKHdbofdzvJY1HrE9sbtrmkasv5cLifXt4rdob7waOc2SR0Ot3lqa7hNEgUXiv2D+yJ1NLZ20tLD6XThlmmvIzw8DO+/dxfCwsKQl1cu7zebbYiPjwrZ8qkDp263G06nK+AofQD44su1mr/9WrR4gkR6QyNatLSTxIT6sLVABY+wMB0AbzDdFqRlhWh/0ZbJ4Bzc0Ol0fvdnZxfjuutfRmSkASuWzdLcp95O7HYnysurYa5puwPn6nqv7YWsyKEPkOARKVq0qBM8gieEyBYtNu9nKRKTfJ+fCR4nj9IyE8J0OpmQoOZ213//aMg+1dD9TyQBBEsGCHWKQImnBdcpp3RHQkI0ACAhIRolJVUoL6+W71UkZERGGvzed3S0UsGjuto/Wc73/CH2bYvFBpfLBR10LXYsa8lj5clyHCYias9C+gtlzJgxmDdvHgYMGIC8vDzMmjUL48ePx86dO5Gfn4+IiAgkJiZqHpORkYH8/HwAQH5+via5Q9wv7gtm9uzZmDVrlt/0pUuXIjo6uonviqjhsrKyQr0I7ZbDYcfixYvrPf+ePXuxeHFFCy5R+3LgYJm8vWrVKiQmKlnn3Capo+E2T20Nt0mi4Fpz/zCb/Uc6E53M7O0k4FdQUI6Dh5TrPgWFFeiUmYTSMu8oXLPZGtoED59KEA6HU5PgsW7dPhw4mI8bbzgbKcmx2sf6JDI4glTwEM+nruDhcDi1f7eThJ36qE+rm1ofbwuU4KEEvmWLFtXnpg5++47Abo82bjoIwDtqXE2d/PL1N+vxyqs/ttpytVUNCY43lqiwEbiCh6eqjKV+FTxEixab3QFxtyPI/BERIqGpdY73rbEuOyKr1Y5L/vQ0jEYDsn5+THOOaU/B90CJH621zRzLLsKj//4MAJCSHCenJ8Qr8aGKcu/vANFSRZwv1CKN/vuUPHf7JGdGRSoVPFwuN+x2p9x3iYiIGiqkZ5BJkybJ28OGDcOYMWPQo0cPfPHFF4iKarkf4jNnzsSMGTPk35WVlejWrRsmTpyI+Pj4FntdIl92ux1ZWVm48MILYTD4f0Gk4J597ncAQHi4HpMnT673/AMHDsTkyWe16LK1J7/9thfffLsfAHDOOeciPT2O2yR1KDwOU1vDbZIouFDsH6LaI1FH0V5aeqhbmuTmlioJHiVVclpNjTXAo1qPb6sbm82JyEjv3/94aD4AYPCgLn5BVt/kEFFVxeCTZBCoRYvV5ptYoq3u0Z41NRgdaNseOLALAFUwXVUtobLSG9gLVn2lPamt/ZI6eebEiZLWWJw2rbWC46Jyij7cf/uKNHraOARo0RJoexQtWux2J8KNnvllBQ+fFi3G1qvg0Z4SDdqT8vJq7NyZDUA5blVWmpGsSlBoT1wubYJHa24z//rXJ/J2enqCvJ2QqCR4lFdUy2kiOU60WFGLiPA/h8hzt08CR2Sk9zeMxWJjggcRETVamzqDJCYmon///jh48CAuvPBC2Gw2lJeXa6p4FBQUIDMzEwCQmZmJDRs2aJ6joKBA3heM0WiE0Wj0m24wGHghnUKC217j6YAGrbuwsDCua5Uw1YUEvV4v1w23SepouM1TW8Ntkii41tw/uB9SR9NeKnjkF3irMubklGL0qD4oKVVX8Ahtewn/RAvv3+qEjNKyatR4WmEkJ8eitNSkCegqjw1cwSNggodF+75PqhYtTdw2HQESHGY9cTUAb0UDdXCuolI9crv9t+tSJ3H4jpg/mbaT9kRW5AjQoiUmRrlubbc7YbXaYYw01FrxQwSJ7XYHIj2XvMX8vi1ajJ5gtNPpgsPhRHh4GJMv2hGTyYLrbnhZaR/iUVlV024TPNRNWsT22Cqv6nbjyNFCAMCokb1w/XXj5X2JCUrLm4oK1XnAqpxfIwNU8PBWgfKeK8T3qQiDf/WtsDAdXC432yQREVGTtM4Zs55MJhMOHTqETp06YfTo0TAYDFi+fLm8f9++fcjOzsbYsWMBAGPHjsWOHTtQWFgo58nKykJ8fDwGDx7c6stPRK0v1L0a2zv1dZ1g/TCJiIiIiKhjqC0I3Jbk53tbTebklMLlcqFM1aIl1BU8zNXa11evV3VQzhihh9mszCvKw/suu6i84FvmPWCCh0/1j9y8MrRn6m3QZm1akkWgCh6dMpMAqCt4eNdfZWWNvG21hjZhqDmoK3j4BhWb2v4GAMrKTFj042aZsER1q62CR3S0d2Bited4UluLFoNM8PB+lsGeX91yyGK1K9US2vDxnrR++vkPzXkEACoraoLM3fapN73GHosauv263W7Naz393xuQluat4CFavKnPA5Ya5RwUGaCChzFAVRxxzNUbAlTcCbC/EhERNVRIEzwefPBB/PLLLzh69CjWrl2Lyy67DOHh4bj22muRkJCAW2+9FTNmzMDKlSuxefNm3HLLLRg7dizOOOMMAMDEiRMxePBg3Hjjjdi2bRt+/vlnPProo5g+fXrACh1ERERERERERBSYTRUEbsuj+stUwa2cnBJUVJg1iQ7VrVzB4+ixQsydt0ImaxQVa9s7qYM4JaWqVjIWG6pFgkeKJ8HDZ9kdnsf6Bon0niCv+nOy+iRBvPraj5oAVXujDpaZa2xNCkL7bs8P/uNSeVsE7CyqCijqJJ2amvZfwcNm875/34okgYKMvXtnAAB0Ol291vuD//wQT8/+Gq+9vriJS9pxeFuu+F+eDw8Pk0kepmqLZ36nvM9XhKdFi3qfcQRp6WI0GmTFDksjEnKYDBJaBaoKVoK6pVR75nsOqw/Z0qWe26WY32bzvpbYf4T4eKVFS6WmklN9KnioEzyU/TVQCxZR1cNWS+ssIiKiuoQ0wePEiRO49tprMWDAAFx11VVISUnB+vXrkZaWBgB46aWXcMkll2Dq1Kk4++yzkZmZiW+++UY+Pjw8HIsWLUJ4eDjGjh2LG264AX/961/x5JNPhuotEVEr4w/LJlKtP65KIiIiIqKOzaVKkrC14ZGl6uB7Tk4pSkqqNPe3dgWPabfOwbvvLcO77y2Dy+XyWx519YSSYu99ZrNVVjwQCR4iSUSwBQkShcsED3UFDyVglZAQjczMRFRUmLFrV3aT3lso+VYkqaqyNPq5RLDtkimj8e3X/8Tll50h7xOB9BpVEolZtQ1ZLO2/KoX6/fgGUUXigNqZYwcAUK651CfoumfPCQBA1rJtTVnMk9LceStw9z3v+q3H2lquAEBsbCQAoNokEjwaWcHDJ4FEp9MhOlpJaqqubtixsqHBdGp+Vpv//lhZ1X4T+dRVf1qzZYk66c3gc34NlOBR40mMi4z0T/AQVXE0LVo8+6Ihwj/BQyRs2m1t93sWERG1ff5nmFa0YMGCWu+PjIzEnDlzMGfOnKDz9OjRA4sXMzuciOqHv0G13KomN242vCEiIiIi6tBcqh9Mjjac4FFd7Q3079ufi7Xr9mnu902SaGmiIsKmzYdQXl4Np9MFnU6HxMRolJVVa9qDlKpayZjNNm+LFlHBQxXscrvd3iCtTwUPb1KCOnCvBMdiYyPRpUsK8vPLNdVO2hvfQGZRcYUsnd9QMthm0CMjI1FzX7SngofT6YLN5oDRaNB8DuLzdbmUAHtYWJvqeF0vJlVyTH0qeCQlxcrb5hqbHKFeF15z8ffue8sAAD8v3YpL/3SanO4MUmFDiInRVvAIVpEDUCd4eAPktSWExMREorraqkn8ofZBnUQwfHhPbNt2FBUV7bOCh83m0CR11LRiMp3YV8LDw/z2kYQEkeChatUlKnhEBmrRohwf1e9FVOcwBNhfIwLsr0RERA3V/n6REBFRs1FffOEIDCIiIiKi4IJ9X1a3Bmnv1Ekdbbl0uO+o808+Wa35u6YRbQeag9vtRlGR0p4lOTlWBoLUo3RNJm+gXV3BIzXVU8FDtezqtiK+QSIxut9ksshtUwT+jEYDkpJiAABlZSa4XK423XInGJtPBY+iwsogc9bNm+DhH2xTB+xEwo16G6qx2HAsuwjnT3gCb771c6OXIZSqVCP8LVbt/hEowSMsTCdHqjeojQevKwTlm3gm9sm6KniY6lHBQ7SYCFzBw3+bj/EkiDW0ggeFjvc4rxwX754+Cf36ZgIAKiraRyKf2+3Gjp3Z8nhkqtZWZSova733IRMwApwT4uOURMIKdYsWa/AKHt4WLfWr4CGmteXvWW1dSUkV/vv019h/IDfUi0JEFDJM8CCido3XDoiIiIiIqKXNm78Sf77sWeTllWmmb99+DBdd/CTmzV8ZoiVrXlbV6FN7K5ZKb6hqT6B04IAuAIAqkzZI1JoVPNSJPy6XCzt3Ki1RunVLkYEju8O7LtXLVl1tkdVIvBU8vPerg7URPkGiOE8AyuVyy6QQdYJHsqcCQ2mpCTMenI9L//IM8vK1229b59vSIienpNHPJYLdgYJ54eFhMmgnEjvUn1NlhRlff7MeNpsDn3z6K/btb38BJZNJPRLdt1VI4OQfkfjSkIQpVwtdpHE4nFi3bp9mRH17oB6h73Jp141ojROsgkdsjKdFS3X9W7SoA8ayBUyA54/2VAcxVze+7RG1HnVrHJvqOJ+aGg8AKC6uqu3hbcbatftw+x1v4a673wWgrSwEAGXlpkAPaxEOVVUnX6JSlPp4I46DgSp4yBYtNnWCh7IvRgQ454jzULBKae0xIbO13Xvf+/hx8WY89njtHQKIiE5mTPAgonaNVSeaRrP+uCqJiIiIiAJ6590sFBdXYv6HqzTT77jrbZhrbHjn3azQLFgzs6kC6m15ZKkIeA4f0TPg/WZz61XwUAe/jx4twgsvLQQAjBrZWwaO1EEc9bJt3XYUlZU1CAvToWePNL/nUyd4+AaBIyL0Mkhk8oyGtsjAn1622Pju+w3YsOEAysur20Uikvo3qm+izqHDBY1+XrEugwXTo6K0yQzqz+ngoXzk5JTKv5955ptGL0eoVKoqePgmzgRqE+B2u2XSi+/8tWmpSzQff7Ia/3hoPm665TXZKqc9UCefiYQLwWYLnnQEKG1UAMDkqbJRW8UP2fJBVS3IKSt4+M8vWjy15rGStBp7PVOdyJeWlgAAKCysaLblakmrftkFADh0KB+AfwWP0tLWS/AQ33F8kycBbwJloApZtVXwUFedEpWPjAHmjwiQkCVUVppx1TUv4B8Pza//m+mAjhwtBABkZxeHeEmIiEKHCR5ERB0ZW7QQERER0UmgrMyEnTuzg36nba7vujpdszxNm6Wt4NF2R5CKtgJ9emVopovRzOaa1qvgUVoWOCA1YcIw2VZFvV7VSQsHDuQBAPr374yUFGXZ7XanDLiL/8PCdH5BXZ1O59fCQQagjBGyRYs6YWTx4i1Bl7c12WyOgPvkokWbMGnKU1ixYgcAYOmybZr7DzchwaO2Ch4AEBUlAt6iRYt2G1q3bp+8ffRYUcAkA7fb3WaTD9StgSx+FTz8lzk9LUEGLX3nr01LXVdYv34/AKCgoFzzXto6dYWCap9gtr2WADPgbdFSXY8WLQbZokVVwcNTIcS3vRMAxHgqeFSb28+6PJmoK3I0lDifGI16ZKR7EjyK2keCR2ZmorxdVVWjqSwEtG6Ch72WBCuR8Od2u2HzrG9vBY9ACR6igocqwcNzPo4KUPFDtGgJ9D3ry6/WIT+/HOvW7eN12iDUSYedOyWFcEmIiEKLCR5EdNJTfyHml2Mt7boJ4YIQERERETXBo//+DLfd8Rbe/2C5330z//UxbrjxFXmRvilEwPNk5HA4ZQARCDyqv60QgdLefTI107t3SwHQui1a1AHc8PAwxMQY8f57d6Fnj3TEJ0QDACoqzHKeQMknZ44dgKgo77YlAkl2R+1VJ+JilVHGVZ4gmVVVwWP48J5yvoSEaERE6OF0ulBYENpA4Pr1+zHx4icx7dY5mu0NAL757ndUVtbg0cc+AwDs2XMCAHDtNeMAAAVNGKVur6UcPwDEiIoGnnUvPoPk5Fi/ea1Wu6aih3Dv/e/jxr++2ub2nePHi1FUVCn/tlhrb9EyfFgPnHvuEHm8a0gFj5bgcrlw8GCe/DtQgofb7cYXX67F7xsOtOai1UkdwFYfB4C6q8p4K3jUv0WLuuqPt0KI/zYfEy3av7TesZKah9gfIyIMSPckeGRnF2P79mOhXKx6UW+7H8xb4d+ipRUTEL0tVPz3D3UbFnEusMgKHv4JG77HSofDKfdFkSyiJpKuAlXwEImfAFBVxQSsQEpKvC2JnC5ezCaijosJHkR00mNSR/242aOFiIiIqEU98cQT0Ol0mn8DBw6U91ssFkyfPh0pKSmIjY3F1KlTUVDQ+BHrHckfW48AgF8LFbfbjV9W78aRo4XYtu1oo55bXQFBneDh+zsj1EHQpvJNgLEH6Q3fmlwul996djicsqJA505JSEyMlvd165YKQPuZtbQai/Ja3bunYvWq/+DnJf/GoIFdAQDpaUpVDnX5fJF88s8H/4xx4wahR480XHnFmTAY9HL7EgFs0dqlrhH+IkhmtYqR3QZ07ZKCq686C/36dsJH8++VI71DvZ1u2nwINpsD+/bn+gfzVB+1w+FEgScZZfAgZX2Wl1fX+fx//HEYEybOwrff/a6ZLoJ5wSt4iBYtooKH8rkOH9Yz4PzqhAlA+cw2bz6MI0cLcdDTfqA5NMf1jLvvfU/zt+/+IdbNyBG9cN214/H6a39HWFiYalR6aCt4VFVZZOINEDjBY+WqnXj5lUV4YMbcZn/9pnh81ufytu/2W+8KHtU++3eA+cVzqAPGjloSxGQFjw6c4OGb2NRe2KzeCh4iwQNQWsa19eo26mPP55//hq3bjmjub0oSX0PZRNJfgP0pPDxM7lMWzzneagneokXuf57vUeqqR4ESg2UFjwDfswoKyuXt+pzzOqLiYm+CR2WluZY5iYhObkzwIKKTHvM7guOqISIiImpdQ4YMQV5envy3Zs0aed8DDzyAhQsX4ssvv8Qvv/yC3NxcXH755SFc2vZBHbD2DS6qKzk0toJHeYX3Arv6+X2fr6ysfV+I9w38N0fFk6bYty8HkyY/hWuvfwnVqs9RvZxRURHo3i1N/i0SPFqzgofFE7CKioyATqdDWJj3UpsIvgVK8IiONuJ/z9yIzz55AAmeSh9xcUpFjspKZdS/CNYGG+EfK+av8q3goQSU7rt3CubPuwepqfGI8Ezz/VyLiiuRn1/e4PfdWDZVsoB4n4JRFTgrKamSo3QHDOwCQHl/dSXvPDzzY5jNVjz3/Pea6aIaSqB2FYA3wcNsVp5fJBR081SFEURFD5NPu438/DJ5u7naDDSljYOabzKK77FKrJvzzz8Fd0+fJEfZRxqVdSISC4JRt6VpiesvVVXa7aQqQBB7raqFTqCAX6gG/qgrvWzbflSTVFBXVZlYTxKGyaQcM8SxJjJQRQCDaNGiPKfb7Za3IyKCt6BozWS4QEwmS0jaGn22YA0mTJyFHTuzW/21m0p9nPdNDlq7dm+9n6cl94l9+3Px7ntZftWMfFtfffX1egDec2Vebhlai91We4KVSOSo8SRriGTOQC1XZAUPn3nDwnQBnz9C7K8+52O3240TOSXy72uuexH/eGg+By76KC72ntNqamwhT1wlIgqVwGcwH425oPTWW28hPT29wY8jImqI+nzJ5Rfh4DTrhquJiIiIqMXp9XpkZmb6Ta+oqMD777+PTz/9FOeffz4AYO7cuRg0aBDWr1+PM844o7UXNeRcLpcmWC4cPVqIuLgopKTEAVAC1N7HuGGx2GQJ7UpVYLC6unEjW9UjKMVITsA/iaC0zITMzES4XC48/H8fo6LSjDde/3vQ4Hxb45+w0nql0gPZtPkQqkwWVJks2LTxIM45ZwgAb0BSp1MCJz16pGH7DqU0fdeuSjC+xtyKFTxqCbqmpXkSPIrUCR7K/NGeliBq8fFRKC6ulAFthwwAB96GUlM9+4AngK9u0eLLd4QxoOxjf/7LMwCArJ8fky0hWpJ6ZHNllTYQr162Awfy4Ha7ERGhR5fOyYiI0MNmc6C8vDpgyXvxePUI9pKSKsTHK+9JrEt9kGC6b8BbBNO7dtEmePTskYbSUhOqfZIM8lRJMtnZxTjrTGX9impNbYnvvh1sOxPbkfozC0R9f0tcf/FN2PBd9wCwUxWoP368BEOGeCv7yEQZuFv1s/ANOlZUmLF16xGMHt0HgDrBI0iLFp8KHvUJMIt9yOn0Vj/S6/23ebG9q89prW3hok145tlvMWRIN7zz1h2t+tqvvb4YAPDkf77Al58/2Kqv3VS+iXyPP3YVZj35BQDgwME8TJw4os7neH3OEiz5aQvmfXC3PE81p1umvQ5ASVq8/LLT5XRzkHPzqJG98dPPfyAvvwxutxs6tPx+apMtWgLvf5GREaisrJH7iDjOGQNU8EhOUhL/xLneW+0jIuAxRyR1+bZoKS6u9Kuqs27dPtx3/wd49ZVbAy6n2926x7W2oFjVogVQjq1pnoppREQdSb0SPL777jtcddVViIqKqteTfvrppzCZTEzwIKI2h7keWpr8Dq4cIiIiohZ34MABdO7cGZGRkRg7dixmz56N7t27Y/PmzbDb7ZgwYYKcd+DAgejevTvWrVsXNMHDarXCavVeDK6sVAK9drsddnv7HdG2YuVOzH7mW4wZ0w9PPXmNnH7iRAmuv/FV6HQ6vP/enejTOwN5uaWax+bklKB7d6WSQ1mZ9yJwXn5po9ZJSYk3gaS62iqfo8onOF1UVA573wz8umYPfvOMoj1+osgvQNxWmc3aoOmJnJIGrS8xb3Ntd6Wl3s9uw6YDOPPM/gAAk0lJfoiMNMDhcOBvt56P6moLOnVKQnS0ErSsNltbbfs3VXuXx/c1ExOV62glxVXyPhGsjTCG+80f5wnolpYp89dYlH1br/efFwBSPUlOYtsWo6MDzS+CWNVmi7zPrBpNfeBgLoYM7tag994Y6ooBZaUmzXJaVPdt266U7s/MTITD4UBCQjSKiipRVFyB1NRY+Vzz5q/CuecMxqBBXXHwUJ7mtXLzShAVpVybFIHvMF3gbdTgqXJQU6OsHxHUS0jQXguNj1cSByqrzJrnyckplrdfe30xtmw5hE2bDyM8PAxPPH4lxpzer17rR00kJkCHOgN4weZ1OP1bABQXVyrL7plfrBudz7oRiQdmsc0EWRb1sdDpdMFqtSrz1HPZfZffbLZCrw+XAezSMm0wr7zCs914nvurr9cjO9u7/o8cLUD//pkBn7uhy9KU+XPzlJH4kZEGXHD+Kfhx8RasXLUTw4Z1B9yA1SpG+QfeJkUFgSpTjWf/VubXG8L85teHK68rtltzjfp47vKb3+B7PGjldQMAq37ZCbfbjZ07s5GTW4y01PhW+5yEUp9jUHM9f2P31/rMb/EkeIjt5vzzhqCoaCLeeHMpCgrKYbfb63z+Tz/7Vf5/150XNeuyqxMajx0r0nw3EOe/K684A19+tV7ON3RoV/y8dCssFjsKC8uVhIkW3g4sdZxfI2XLNM/+50nqNej997/OnRMBKO1VqqqqUWVSjomBvhcor6kkL1ssNrn/OZ0u3Pr3NwIu8+49JwJ+rs89/wN+W7sXc177G7p0SW7SugnVcbIx8xcWlmv+rqgwKd+32sh7bajm/v7ckNckovatXgkeAPDqq6/WO2Hjq6++avQCERE1NyYu1A9XExEREVHLGjNmDObNm4cBAwYgLy8Ps2bNwvjx47Fz507k5+cjIiICiYmJmsdkZGQgPz8/6HPOnj0bs2bN8pu+dOlSREdHB3hE+/Dl1/tgsznw6697sGjRjwgLUy6oHjpcDkD5jv/550swYng6du4q0jx20aIs9OypjEg9lu0NNLz9zjLERJcHHS0djPr5Dx85hsWLlZG/RUXaBI/Vq9ehvOwQPvp4l5yWtXQFMjJiGvR6oVJYqH0/GzduR0pyw6t4ZGVlNcvy7Np1WN7esmUvFi9WtgGx3nU6l/wsTjs1BoANWzZvAACUl1XK+1rali35ntcs8XvN7ONKclBRcam8r6ys0vO4jcjL3aOZ32xW7lu3biMsNdk4flxU5qgJ+H4KCgoBALt2HsTixYuxf7+SFJGdfdRv/orKcgDAxo2bUGNWKp5UV3sv8Gdl/YJjR/0DRM3FbnfB5XIhO/uEnLbmt99RWen9nEvLvPvripV/AACio5TPOUynJCEsW/YLjhxO9MxzDBs35WPB57/h4YfGYOdO7bFg2bJfcLiXMm9hoXLfzl3b4XLl+i1fYYHyOW7fvhtxsRUoKS0HAPyxdTN0OuX3ssEQhtJSZZ1v2bIdkUZvKf3ffjuqeb7f1npbhrz33o8oKe5f+wpqIVVVouINMHlSb/y4+DAOHjyGJUuWyHnEdrRz5w64nN51U1RUAADYvn0noqO0iXRqZWXa5LDvvluEyMh6X3LWOHGiCgu+2IOIiHDcesswxMQYsHtPsWae33//A3B7z4uLl+zT3L9y1Xo4HTmNev3mJM4/0dHhcDqV1hPbtu/HkiXKsSw3V3kPe/bsRoSh2O/xYv8vLCzFkiVLUF6u/L158wbknNilnfeEcl+55/iyfNkKed+yZUtl2x3hwAHlM8/OzsGSn5YgGHE9rSWCmseOere1jz/+AQMHtH4yZE2NrdXOFc1FJGOuX/cb9u1VkgJPnFCORfv2+R/7famvke7dexCLF/sngTWFOO8BwP79h7Fs2TIAwLJly5CdreyXlZUFmsfknDgIozEcFosDi378GWmpwb+/7t5TjNW/nsDlf+mH9PTGf7/avkM5J5SVlwZcZ1ab8l1jzW/rkJe3B0XFyjFw2/Y/UFFxWDOv2+1GZGQ4LBYnPv/iB9jsStshl9Me8LnzC5RkxF27dmNJnHKcKCoyo7hYSWZLTo5Eaan3uGo2W/Hddws17ZYcDhcW/bgZAPDvx+bjiqkDGrEW2qdt2w5p/s5athJdOseFaGmaT3N9f64Ps9m/lRkRtT/1+ra9cuVKJCfX/0fekiVL0KVLl0YvFBFRfdUnKYGJC7XgyiEiIiJqNZMmTZK3hw0bhjFjxqBHjx744osv6l0x09fMmTMxY8YM+XdlZSW6deuGiRMnIj6+/ZYrXru+Eoc9yRxnnDEeqanKe1m2fAcAJZiXmdkdkyefj8KilQC8F9t79ByAyZNHAQBWr94NwNuTfuDA0RgwoHODlsVUvVY+f1JiCiZPngwA2LnrOD6Yt0PO17Vrb1wwYSz+9/wGOW30qadj2Ck9GvR6obJnzwnMne99Py53lHyvwVgsNmzadBijRveCQR+GrKwsXHjhhTAY/EuYN9Rvaz8DoARgXC6DXJbdu0/gg3k7EB8f67d8J3JKMO/DnXC6dHUue3Mpr/gVWH4MvXp193vNPXtz8NmCPdDrjfK+t9/dCcCG8887F716aQdSbd9hw4GDZejRow8mTz4bGzcdwqcL9iApMSHg+0lJPYCflx6BG8rzb9v+LbCtEEOHDsLkyeM18/62tgJHj1Zg4MAhmDz5VABAbm4pXn9jCwCga5c+mDx5bDOtFa3CogrcNf092GwOdO+WCkAJdvfq1ReTJ58l51PWjTJKOi9PaY00btwITJ58DpYtL0JB4WEMHDAUF144DACwaPF78rGTJ09GecUaqI8F/foNwfnnDUZWVhbi4hMAVOL0007F2WcP9lvGQ4eXYNv2QvTo0ROTJ1+IDz/eD6AGZ589DkAKli7dhn/NvAwbNh7E9h1F6NKlByZPnigfv3zlhwAK8MD9U/D2O8s0LZxO5Jhx8cUXB2w5VZvmGH29e/cJAH8gNTUe558/Dj8uPoywsEjlfOSZf/FPeZ51M1qzbvbuW4Sdu4rRq1cfTJp0btBl2b8/F++8t03+PWbMOHTunNSoEdILPv8NTudu1NQ4UGWKw5VXng+r9XcA3oDeql+yMWXy2TjttL7Q6XRYvCQPQDmGDOmGXbuOI9KYpNlfQjXS/KeftgLYi169OuP000fhp5+PICEhSa77ZSuKAJRj9OiRmHjhcL/nPXgwH58u2AO4wzFp0iTMeWMbADsmXHCerFIl7N2Xg08/24PwcOXYe9ZZ4/DKa5uh0+lwySVT/N5HhHEHfvr5COLjEjHp4klBKrPU4PY73oGp2oJXX5mGnj3SmnVdzvvQe26Oi+uESZMu8Jt31+7j2LTpEK65+ixZ0aU+z13Xsjz73O9yerBzRVut4PH8CxsBABMnTpBtKbp2O4YfFh6E06XH5MmTa33+KlON/J7SqXPnOudv6LKvX78fny1QkhfdiMSECROwbNkyTJgwwbOvVmDcWadj5arjsnrQNdf+Cb/8+i5yc8swauRpGDqke9Dnf/a5xwEAy1fk46MP72n0urTZN2LJT4fRpUungNvAkp/zUVBwDEOHDMO55w7BR594zwlDh/hXu/ru++PYfyAP/fqdggijHp98uhvJKYkBn3vvvkXYsaNIObZefB6gA9au2w9gB/r0zsB55w3Fe+8v1zzmtNPO0hxXle/DyrZw6HA5HI40nHFGf5SXV6N//86a99oWqlo05/zLls8H4E2KGzF8NE49tU+bea8NZbfbm/X7c32Iio9E1L7VK8HjnHPOadCTjhs3rlELQ0TUUPWpzsEKHsG5Nbe5noiIiIhaU2JiIvr374+DBw/iwgsvhM1mQ3l5uaaKR0FBATIzM4M+h9FohNFo9JtuMBha7SJhS3A5vd9NKyos6NRJGdmrbu+QnV2CH37YhLnzVmkeW1Jiku/dXKMtQVxYWImhQxuWcFFV5R1FWWOxy+e227WjXisqalBcZNL8/rBZnXV+DjU1NvzjoXkYMKAL7rtnSoOWrTk5PevcYAiH0+nCjh3ZyM4uQZ8+wbe/6fe8j507s/HXG8/FrdPO8zy+eba9qqoaebugoAJ6vR46nQ4OpzIyNioywu91EuKV0bwWix3h4eENDqg3hs2mbAcxMZF+yxMXG+VZHpu8z+Yprx8dYP7ERGX5TSYrDAaDzMc3ROgDrtPUFKVSTVVVDQwGg9wmo6P9n9voaffgdLrlfQ6Hd1stLK5q9Oe2ZMkW/LZ2Lx595ApERkb43b98+U4UFSnBhP0WbxuV6mqb5jWtVv+S4V27pMJgMCAuXlmXNTXex1gt6nYiBlgs2sdXVVlU71XZbiIjjQHfZ3S0chy1213KuvQEHqOjI3HvPVNwz92TodPpsHdfrt9yAMDx48oI+v79umDwoK7YtNmbkGA2W1FttittBxqgOYJzZeVKokx6WgIy0pMAKC1aDAaDnN/pWTdGo3afiorSrpNgy2K1ao+F5hp7rfPXtvx2z7IAwPwPf0G/fp1RbRbtcqJRUaGMOt6y5SjOPHMQdDodTJ62D0OHdMeuXcdxIqdU8z5CFYjMLygHAHTtkoLoaKXSgs3qkOtGrPeoINtkRkYiAKCi0owaiwM1nvYrcXHRfvPHRCv7h9Wz3brdynIYDOGIiPDfJ2M9xyarWB7PslebragxW5GaGo8NG3cix9MCbevWo+jXt3OzrRu3242SEm+FqOPHSwJuM8/+73scO1aEo0eL8NR/rgOgtLIIDw9r9LL4XvvS6cKg1/tX9vJ9fvG6DX2vTZ1XPb/T5YLTpWw36uN8p0xlYG5xcRX0ek+4J8jzV1aUydtHDhfWOX9Dl91u9+7DpaXe72PqY3RsXDT+9X+X4z///QrXXH0W0lITPefLMtRYtNuk32t7ZB8v9pwna1+eF1/6AZs3H8YrL09Damq8nN+zGmGMCPydJdpz/LN5jn9i2eNiowLOL9p3WSwO+d0jKsr/ewoAmawkz8c6yOodXbumoGvXVL/HVFTUoEePdPlev/nmd839L7y0SN7+9ut/IiMj8aRM8Cgvr8bmLdoKKlabs0HnnLaW4CG05m+39vwbkYi8GvxL95xzzsGHH36ImpqaumcmIqI2Tf3jiHkwRERERK3LZDLh0KFD6NSpE0aPHg2DwYDly70j9vbt24fs7GyMHdsyo+rbMjGqEwBKSqvkbZPJm2yxctVOvPDSQvm3qIZQ4AmqAUpwQS03rwwNVV7uLWO8bdtR+fw1ZptmvtJSkyyTLqgTUoJZtnw7tm49is8//w0OR/OWSm8Is+f99OqVgfPOHQpAGU0fTHW1BTt3ZgMANm8+FHS++igqqsDN017H11+vk9PKK7zr3WZzoKxM+SxFkEUkLKiJgLTb7fYL9reUGk8SUaDEhsgoZZp6WUQA1hjhP+YqIUFJ8BBBbIcnYSNYWyGRlCCqRYgECd+R7upp6iQK9fZpqrL4Paa+/vPfr7Bi5U78vHRbwPsLCirkbfXrV1Z6ry0G+8ziE5SgWWyMEiA3VXsrY5h99q9qVdUMQAkECWJd6oOsS7F+xDL4rksR1InxLEe1ajncbjeKi5UElk6dktCvXye/5y8prvKb1hpEYk1aejwyMxMBAFUmC6qrvZ+3Pci6MRqVbdRqrf045rve1clZDeWb5PPovz+TwbyrrzoL02453+81RBJe375KMlpJSWjWtS9xPujSJSXg/merY5tMTo5Djx5pcLnc2PD7ATidIkkpwLHGczwU506751wSKHEBAKI884ukEUA5jky94n+49C/PYP3v+7F5szeI2tzrtKy8WnO+O3K0MOB8x44pVZxWrNypzHekABdN+g/mzlsRcH617OxiPD376zrPy77fEwLZty8HF138JOZ/uKrOeVuSep2pP9sEz3HSZnNovj8Fkp9fLm/v25+Ll19ZFHzmeizP7Xe+hdnPfCOnqbep8vJqzXVHcV+k0YCJE0dg6U+P4a47LwYAxMZ5jvGm4Oci8T1AqGtAX15+Gb76ej2OHC3ERx//orlPJPFFBDgXA959yupZZnFuCLT/+S5/jWfeqCDzGgzKa6oThcXnkpmZhE6dkvwe47sPlpYF326PHisKel97tmPHMUy+5L/y7x490gBoz8dERB1JgxM8Ro4ciQcffBCZmZn4+9//jvXr17fEchERNRvtF35mMQTFDA8iIiKiFvXggw/il19+wdGjR7F27VpcdtllCA8Px7XXXouEhATceuutmDFjBlauXInNmzfjlltuwdixY3HGGWeEetFbnToIpr6oXRUkCJ2RkYiLJo4E4A1oAt7gkAjO5uWVwu1244lZn+OJWZ/7BQfWrNmDP/15Nh7996fyPnWQGAC2bT8GwD+4fCKnxC+BxGyu+6Lz4cPeXvTHskN3Uf7goXwAQLduKZg0SWlxs3dfTtD51etZBLcb67vvN2D//lxNwk5FhbY/uAh+WGWQxT+JITLSID/r+iTXNAeLJ/gTFRUg4cQT3LHZHHA6XXA4nDJIGxHhP39yslLhQWzzIkgrgkG+YmJEgocNbrcbVqsnecToP79IKFEH/yyqQFy1uXEJHkVF3uQNmy1wUk1xSeDto7LK+xlbrfaAwToxKlpUHDCZvIH9mhrt/mX2BHmiPYk16n1XrssgAW+Z4OE59liDBP+8CR7e9SU+X0BJuulcj+BcayksVD6ftNR4REcbEe+phKIO8or3It6b4E1KqD1grF4XAFBZaQ4yZ90CVXHZ4knwGDmiF1JS4pTXUG07YpvolJnk+duCnJzSVjsGBJOTo1S/6No1GZEBEjzsds82FmT/BoBBg7oCAPYfyJXTAh1r1AkkbrdbJjRFRATe3kWQWp1UlZ9fLpOutmw5LLcdAChu5u13//5cz/Ip7z0np1Suj2DMZitefvVHmM1WvPvesjpfY+a/PsaiHzfjoYc/1Ez3TUCqz3v7bMEamGtsePudpXXO25JEBSsA0Ou9YZ3oaCPCwpRzX10JVj8t3ar5+48/jjR6efbuzcGOHdlYuGiTTD6xqPY7m82hTXC0as/fUVER8pwtkviqAyR4HD5cgGPZRSjySZRTJwkGskVV6WHHjmzNfVabSOILluCh7CPrf98Ph8Mpz5eBkksBb8Wu73/YII9JIgnTb944Zd6KCu85SiSvJCfHYuCAzjhjTH9MvfwMjBs3CABQ6fO5iqSGp5681u/5m5Jk15Zt3HRQ3r7/vkvQ35NM6XsOIiLqKBqc4PHyyy8jNzcXc+fORWFhIc4++2wMHjwYzz//PAoKCup+AiKiVsa8heC4boiIiIhaz4kTJ3DttddiwIABuOqqq5CSkoL169cjLU0ZgfbSSy/hkksuwdSpU3H22WcjMzMT33zzTR3PenJSB6HVFTTUwV1h0sUj8c1XD8kKHuoL20ePKaOCR47sBUBJGigrr8bSrG1YmrXNbzTo4iVbUFJShRUrd8rqFCKQKIIQ4jEieUO0MDlypFBzsR7wH9keyPET3j7i6mSP1rZ37wkAwKCBXWWAWl0NxVehKrBfUFhRr2DqwkWbcMu015GXr02EUQdBiooq4HK55OcolkUEpEUAPtLoPzJWp9MhyhPcryu5Zu68FZh265wmBwZEok9to+oBZbnVo3UDjRpO8SR4iJG5YoRxsKQEsd7cbjdqamy1VvCICBBgVicpNXYE7P4D3pYrZnPgbSBY9Qp1cE4dBLz8sjHydoJM8FDeq3p0t2/FD/FZdumitHQqC1DBI1g1FFkBwRMgtwWptCKXozrwckRGGpDuaa0BeJN2mjtAXpdfVu/GZZc/i08+/RUAkJGuLFOmJwlCvQ+K41RsjDYYKUewB0i6UPMNyFZWND3B4+qrz9JMNxoNGDSoK+I9gVGx7djt3gCyGPVuszlw5dXP47Y73mr0cjSHIk/iW0ZGojcBQ3VuE8cDQ5AkDADy/YqEuvDwsIAJX+L53W6l7YO3gkfg4LU4TqqP2+rz1cefrMbWbd7Af3NXoBHn13PPHYroaCOcThdOnCjVzON2uzUtUdau24eNGw+ivkRVkGM+1Qx8j3Wl9dg3k5K97ZV8kz5bkzNIBQ+dTofYWCVBorbgvsPhxNq1ewEA/3zoLwC822ljqI+noiVRjc9xuVz1vai2c5RI4qvyOZ6YTBbc+vc3cO11L2H58u2a+4IlD/7xx2G8824WcnO929Sx7CK4XN4EGVkNLMB3CcCbQPnb2n2Y/+EquFzKBdRgVTnE+j90uAA//bwVAGRCmq+MDKW9WqEqUVZUN4mONsJg0OPFF27GP2ZcKs/z6n3V7XbL7zinnNIdY07vp3n+UG6jLSk3Vzlv3X7bRFx15Zl+VcyIiDqaRjUj1ev1uPzyy/H999/jxIkTuO666/Dvf/8b3bp1w1/+8hesWFF3mTQiouZQVzm++s7TYbFFCxEREVGrWbBgAXJzc2G1WnHixAksWLAAffr0kfdHRkZizpw5KC0tRXV1Nb755htkZmaGcIlDx6qqBKC+cCuCqvfdO0VOS0yM0QQ31AFgMYJ66JBuAICKSrMmqaOsPHhCxg5PAMriacHRtYvS416UcxcX2/v2zYTRaIDVascBVbBbPU9t1K0x6lMqvqWI6iO9eqYjwxOgNpksQculFxZqAyvqVjqBOJ0uzH7mG+zbn4u5c7XXjXTw9jQ/dqwIJpNVVkTo378zAFWChyjxHmQUbaAL/hUVZlxz3Yua0dfvvrcMe/fl4IeFm2pdbsHtduOV137Ee+9rR46L0cqiaoSa0eitKGKpsWkSlwIlGiR7gkFiO/BW8AielCBGbZvNVhlIi4uN9JtXJCp8/MlqGeRSj7Q2NzLBQ52k4ZswJQRLbqhSPVYEtyIi9OjZM11OF60HvBU8vNuj7/4lEky6ePbVQBU8grXDUFc0UH9OvoHImGj/Fi1mTyWRiAg99PpwpKcnyPvEe2lqlZuG+urrtSjwVGDIzEzExInDAUAum0gYcLvdcp36VvAQ68S3WpEv30S2kiYcx0TQNS01HkOHdpfTTxnaHREResR5KpCIILb4X6fTIS0tXu5vAHDIU5UoFFwul9yPU1PiZJUAddUcUbHCECQJA/CO9BdB+KgAxxlAW4XA4XB5k0fq3N61LVrU1AlpzVGBZvv2Y7j1729g585sZGcriY0D+neWbRZEQqZ6eZyqihWPPb6gycsAaN8zUL/kK70q0eS4T8uX1uRweNeHOvkFCHyM9LX/QB5MJgtiYyNxztmDASjnx7raugSjru6T7/kO4bt+1dW4vEkVARI8ZIsTbYLKgYN5MjHkiy/Xau4Ltl1Ov+c9zJu/EnPnrZTTamps8pioXpZg3yViVefRD1TfWYLNH6NKkNu16zgAIDU1cIJHelo8AGiq5Ii2f777eLRMxvLun5qqUTGRmmUFgBdfWogVK3YEfO32LMeTsNO5s5LMJ85ZBw/m13rtf8lPf2DChU9g5r8+ZoyAiE4qjUrwEDZs2IDHH38cL7zwAtLT0zFz5kykpqbikksuwYMPPthcy0hE1CT86hactnkN1xQRERERtQ3qYINZ1TpCJEPExkbi7umT0Lt3Bq67djwAb1C7yhMcUAcuu3ZNBaAEo0tLVAkePoFIdYBLtBkQwVtRFcCb4CFGvUfK0ZhixHCg5wtGPdq2tsBMSxOB+oSEaERFRcjAerAqHoWF2ullpbWPGD2oCrYeP16suc9co03iEes+OioC3bopn11+gQgeiaBM4ECnCIaog9I//fwHsrOLMf/DVX4X9+tqCyA8PPNjfP75b/hg7gpNewuRmBAZIPCq0+lkMKjGYpMtTMLDwzSjrwVRwaOszASn0xukDZaUoK1YYkNBgQjo+7cIUQcDRal69UjrxrZoMVfXnaAUbDSxupWHSDaJiorQrBsRNPNN4PL9HF0ul18Fj/IAFTyCtcMQCTBWqzbBw69FS6x/GwH1sgNAmid4BwA9uivB69Zs0WK3O7BzpxJgvPmm8/DR/HuRmqosk3obA7SBwhifCh6yBVAdVW58KyL4VuhpCFHhIjLSINvJAN4qTPFxynFJtCuokskpRuj14X7vQT1ivzVVVJjlek1Kig3Y7sZRjwoecZ6gd4HnmBMTpOWDXh8uk73sDpf3uYNU/xFtXiwWu1xHtVUzUgfGG+u+Bz7Anj0nMOPBebK1U0Z6Anp5kqCO+pw/fVtSNIX6eGHxqUhTn31TfW5etGgTamps+PyL31o9cUu0QQkPD9MkMwHq70DBP0eR9DRoUFckJsbI41tj34e6uk9unvYcLYgED01lpABtUeKCVCBRVzbzTUQpbmBlGfW527ddjP/yRPlNC3buBgJXwQpWwSPdU1GpsLBCbpvedm/a7xIBq+14Xkun0yEq0uCX4AEAjz722UlX2UIkEXXupCRxiuP9ylU78dmCNUEf99NPf8BcY8Mvq3dj3fr9Lb+gREStpMEJHoWFhXjhhRcwdOhQjB8/HkVFRfjss89w9OhRzJo1C++99x6WLl2Kt94KbRk8IiKJVSrqheuGiIiIiNoKbYKH96K2RVXC+rprx+PjD++TF9DVo1dFywpx4bxTp0QAShKDutKEb0BaXcVAtIYRF9VFVQDRPsOsCuqKNgyiYogYdV2fCh6aBI8Q9hEXyyGWPTnJEwj2BMn37s3BxIuflCNofcvp11V9RB1EE4EgQf0Zm0xWGZiPT4iWwXIxyrquoEygCh4i8AkogSyHqsx9WFjdl8YqK2uwZs0e+ffmLYfkbfEZByvbLttcWOwyeO3b9kNITIxBWJgOLpcbZWUmuZzBkhIA7/vduOmgXDfqBAMhJ9e7zkWFHPVI68a2aFFXbygNUMHDbncEHR2uDuB6W+8YZLUcwNsaybf9gO++ZbU65LIEquBh8yTy1FnBw2qX6zEsTOcXzIv1jBhW76s1PgkeyUmxuO7a8bjm6nGydVRrJnjs3ZsDq9WOxMRo/P1vEzSVOcSxSuyvInCtThYSvO+19m1DJAZ0F8lYqiBqQ6lbOMSqAqyjRvYGAJn0UVFhhtvtllVgxHHLtwpJVVXTjqkul8svmcjhcOLQ4eAjxh0Op1y/iYnR0OvDNe1uxONs9tpbMAHe85o4ZqapqsOo6XQ6RHqSSBx2l7f6T5Bjjbotljj+1lbFp6qqRlOtpzHEZ2syWWQFmbS0eFnBw7eVSlNez/ezOX7cW3XDt+VQvRI8VPv7wkWb8MqrP+KVV3/ElVe/oKky0tIcsvWO/zYjks9++GFj0MeLddyzRxp0Op1M/GpoooSgXpfieOt7bM7zbLu1VUYCgISEGOV5fFo8Hcsu8ptXULdgEWpL6qqsZzURwFtRRC1YBR0g8DXVYAke4hxtsznk+zUH+S7h/U6jPl9bPPdFICwsLGCCB1D7umuPxLpKSlK2FZFACQBz3vjJb36XywWr1a5phXjkSOhaIRIRNbcGJ3h07doV7733Hm666SacOHECX331FS6++GJN1uiwYcNw2mmnNeuCEhEFUp+kBCYuBMfSdERERETUFqkDAepRxaLiQGSAC/JipLPd7oTN5pAB/rAwHTI8oyUrK82aCh6+rQS0bT2UYIUYnd+5sxI0FlU/1OW0kxJjNc+T6Wlx4jsSNRD1aNvqEFXwcDic8r3Hxysj5EVFCqtnnX/62a8wmSx4+ZVF+MeD8/zK6QcK7qupy7SXl1drfouoS49XV1tQ4anskBAfjcTEGPkYwFt5wHekvhAd7T/aVTP6+sfNms8lzGcUdOBl11ag+OWXXfK22D4CVfAAvMGamhobbJ7R+xFBAkp6fbgMuBUUVMj9IFhSAuAN/rzw4g9yWqCAlbrFgG/yEtD4BA/1uvWtiOP7GoEeK4Kj6vU4enQf3HH7RDz7zI1y3sQE3+1A+5lYLDb5HkSCiMlkkRVaRGA0WDDdGCkqGnhb6URE6P1GycuqFmabDCQGCszdPX0S7r1nsgzwrfpll6xa0NL+2HoUADB8WE+/5ReJW+LYJ9aZCBSqiWSJ2io7AN4kn959MgA0McFDFXTNUbXCGDy4KwAlYBoVFQGbzYENGw/K7U8kePgGOsvKG98uxuVyYdrf3sBZ4x/BPx6cJ49Z/3vuO9z411fx089b/R7zyms/4uLJT2Hb9qMAgOTkOPl+BLF9yTYqQZIwAr2fjCAJHoD3uOJwuGC31Z48EhnprdL00MMfwu12y88x1ScoLaoi3XjTK/j2u9+Dvj4AlJZW+VXiCES0nElLS5BtjI6qEjzcbjc++WQ1AKVtWKAWWIGIz+iZZ7/VTN/yx2F527fChEge3LbtKOa8sSRgQlq1SXt8XLxkCwAlwUHcbg2iRYte7x/S2bJFeY+rf90d9FqfSPAQSTUi0aCokRU81NVQxL4oEgdF1ahDh5SAujoZJNA5KiVFm3wmBEr0EYkWgba1QPMPHqQcPyrUVaOsot1b4G0rUNKEOH4Gcu01Z/lNC5RsCSjnFpFsV+ipkuZbCUoIWMHDs6+KY3RsgGojAFBc1LoVZlqSVZV8KY73Awd2kfeLaYDSEvDRf3+KcWc/ivMueFxzTqrP93IiovaiwQkey5cvx549e/DQQw8hLS0t4Dzx8fFYuXJlwPuCeeaZZ6DT6XD//ffLaRaLBdOnT0dKSgpiY2MxdepUFBRos+yys7MxZcoUREdHIz09HQ899BAcjsb1jSOikx8TGrQ0q4PrhoiIiIjaCG2ChzewYqmlHUZ0tFFWaqiqqpGjHaOiImTSQk2NTfbwBvwDCepqBOWeEeIieCsCa5WygoAIjBrlhXpBVhDwGYm6e88J3PfAB/jm2/VwuVyw2RyaoEeoKnioKymIoIZIoqmx2FBYWIFly7fLedat34+9e3MAAEOGdANQdwUPdZKE3e7UJNOob5tMFpkMkpAY45fgscfzuv36dgr4OlFR/hU81Mv24+ItmvdbYwmegPDe+8vw8iuLNMkpALB23T7s2XtC8/hgAUiROFBT400cCFbBA/AmB+Xnl9WZlABoR+IDQL9+gdfLrdMukLdl8pLqvZvNVnwwd3nQ1wlGvX8GSvKpDlAiPjExWt4WQUGRvBUVGQGdToe/3nguxo8bJOdLS/cGIt1ut1/bF5PJIpN/unVLlcFFMTJdBtODJMvIFhoWu6aKhC+xf7jdbnmMCRaYAyATdgDg1dcWB3zt5paToyRG9O/f2e++ZE/wfvXq3bBa7TJ5IzbGP5gZE6tsW3Ul/4jENNFqo9jzGTWGet0PPaU7AGUdGjxVbIxGAy6cMAwAsGnTIbkvi8/FNygbrD1QfZSVVWP//lwAyjFPVANZ9ONmAMA772b5Pebzz3+D2WzF8y8oCVciwUe9LYn3aK+jbRDgbVshZHiOD4GI19i8pQAnPNWkaksOE8ej7TuOYeWqnfKY6XsM6dM3EwBQVFQp31cw99z7Pq674WUsqSPpwW53eipIxKFbV6Wlkroaw9atR7Bs+XaEh4fhhhvOwfDhPQM8h/b6//Ll23Hu+Y9h/oersHDRJs19/3vuO+zapbQtslr8K3g4nS7cOf0dfPLpr/ju+w1+r+V7blZXgfr229qTXpqTwxm8gself/IOtjUHSazLztYmeKSmKtunb4uW+u7D6u8v4lgizomnePZf0Z5NtCcK3qJMWZZSn4oqgQLyo0cpFX182+IBgb+LiPdbEaCCR0NatAwe3C3gvICSrPTKS9M007p0Tg4yN5Du+U5Z6EnCqAmSLCq+W/z08x9Y/7vSXkQck0XLJvVx7+F/XiZb7zQ2cactEttBWJhOJlp26uRtR9e3T6a8vXXbEaxYuTPg8zS1EhERUVvS4ASP8ePHN/tCbNy4EW+//TaGDRummf7AAw9g4cKF+PLLL/HLL78gNzcXl19+ubzf6XRiypQpsNlsWLt2LebPn4958+bhsccea/ZlJKK2qT4/OJjUUQu2ryEiIiKiNkiT4KEKEFtruSCv0+nkRW6TyYJqsxJsiImJRGysUQZf1SOQK1WjOZWArbaCh93ulBUGxMV4k0nbIkLdokXo0kUJWPkGFz/6aBU2bjyI51/4AT8s3OQXuPAdJdxaxHqIi42UgXERZLBY7Pjm2/VBH3v6aX0BBA60qImqEUKZat1oqm1UW1Duqc6QmBCNJFWCh93uwIEDeQCCB1rkqNhCb7UEdcAnN7cUhQXe+4Il1ZSXV+ODuSvwxZdrsX37MQBKwHz8+EFwudxYsUIJHniDRIETPETCxuEjBZrKEMFkegIW+QXl9Rrh7zui+J237gg4X6dOSbjsL2PkewP8q2u89/5yzT5RH9WafcasCXwC3kQbdaA6OsooE1PE64lkE2OQYJuoKmC3O7Fw0SaZzCEcPlwAp9OFqKgIpKcnyOSGbduPwe12y/04UGAR8AY6Cwor5CjvQJ+TetpFk/6jJJPVUsVFPC8ATXJZSxKtgAJtk51VAceVq3Z6K3gEqIgTEx24gofT6cKRIwXyWot4DvHcTqdLcywNZMHna3DHnW/j4ME87bKrWvXcessFuOvOizFv7t2aeXr1UiqFfPX1Ojwx63MAQLxn9LY4XggrVuyodTlq49vqIb9A21rKN8EgkM6e/VmvD5fHVqvVDpPJIt9rsPYKyn3aIHN6LRU8oqKUfWfb9kK8PkdpV1Bbcph6///3YwtkMkuPHuma+Xr1zND8HawlSWmZSZ4HPvrkF819gdpmGI166PXhSPIcw6qrrfL4IVrSjB7dB5MuHolbp10AgyFckyijXv616/bh348vgN3uxNvvLJXT775rkry9+tfdALxVJ0TyVUlJFTZt9rbdEutBrbbqWnv35dRZwaq51Nai5c47LpK3KwIkNtlsDrleRWuLtFRleypSVXpYs2YPLv3LM3j7Hf8EJl/WABU8TJ5EqP79lGOwqJ4gWoMFS3AU1W5KSk2a67jiO5famDH9Nc+tpq7aExcXhRtvOEe2f1EneFhrqQgHBD7+D/FUEgpGXVEC8G8ZpZae5knw8HxXCZYsGqVK4vzHg/MBeLdHcR4d0L8zwsPDMGpUb1wyZTQumTIaQONb77RFVapkPlFtSqfT4YnHrwagvfa/5re9AIARI3oGfR4iopNBvRI8Ro0ahbKysrpn9Bg3bhxycnLqNa/JZML111+Pd999F0lJ3qy7iooKvP/++3jxxRdx/vnnY/To0Zg7dy7Wrl2L9euVCwtLly7F7t278fHHH2PEiBGYNGkS/vOf/2DOnDmw2eruc0tEHYM6cYHJHsFx3RARERFRW+BwODUBJHVw0WKt/YK8aOOQl1cmA4yi9cC0W873m19zsd9qh8vl/U5cXm7WVDgQpbZNJgtcLpe3LUNUhAxQCV09I5LVQRa3243tO47Jv48dK0KVT+CiNSt4mM1WbPcEv8XIdHWJ60hZ0SD49ZXk5FicccYAAMD2bcdq/U3h2+akXNViQ1PBo8qCklIlKJGSEifbCFRU1GD//jzYbA7ExUXJKim+RLn/I0e8CSclPiOC/9h6RN4OFrjbf8Ab5Nu24ygAJYg8aqQycjgnV6mSUONZ9kDVGwDIkeevvPoj7rjrbQCA3ScJQs1bwUOV4FFLkPaO2yfiiqln4PTT++GF524KWHVCEH3rfRM8Bg3yBq3yPAHAQAHZQMw+2+zUK5/TfJ6ilVFsXBTOP28oAODCC4cjPl7Z1sRoWouqgkcgBlWVg2ee/RaFPu1OZj7yCQCleodOp8Npp/YBAPz22144ne6Az6OWmZGIjPQEOJ0u3DX9XWXeAOtd3fLE7XZj167j8jgRqIpLZkaiTHwID2vwOLtGsXkCqREBqjcM6N9Zbqs5OaUo8LQH8D2GAd7EA9H2Sli8ZAuuv/EVvPGmkkQgknxSkuNk8p1v9SJfH370C7bvOIa/3vyaJuBmUVXwiI2NxA3Xn+2XxCRGbauXSSxrRmaiZt6ff94aNCGhLmL/EwoKKjTHON9WHoH2GfUIc7FvPj7rCzw+awEAJWFDfdz11aVLsubY0qdPRtB5A1U1On68OOj8D//zMs3fv6xWEiBiYoxyW05IiPY71vomMyz4fA2uu+ElvP76EtXrlmg+V98EP8C7fpWArbJfiXOyCHqne867gwd3w+IfH8VPix+VgXd1lYpNm7wJGkK/vp1w7bXjcP11ZwPwBnbFsUYk35SVmbDkpz/k4w4f0VYPdzpddVZCCNSeqiU4RYuWcP9jSUJCtKw05lt1ClAq+zidLkRHG2VlGVnBQ3WOFO2+PvxoVZ3Lo253Y6q2wul0Ye8+JSZ0xhlKEkZZWTUcDledLcpEcqZSWUj7nQAAhp3SQ04Tt2tqbH6Jinl55QCA007tiyU/PoI777hI9T1C3aIleKUmIHBi5eAhwSt4ANpkrdqSsQAgPcOb4OF2u4NW8PD9buFwOFFZpbyPeM/7Gjq0OxYvegSvvXIrwsPDkJbmn7jT3onvCqIinyDWuboa2949SoW1P11yGnxVMsGDiE4iwYcAqGzduhXbtm1DcnLwslK+81ut9Rt1Mn36dEyZMgUTJkzAU089Jadv3rwZdrsdEyZMkNMGDhyI7t27Y926dTjjjDOwbt06nHLKKcjI8H65veiii3DnnXdi165dGDlyZMDXtFqtmuWrrFROdna7HXa7PeBjiFqC2N643TVNXevPbvd+yXO5XFzfKuqWVg6ng9skdTjc5qmt4TZJFFwo9g/ui6HhGzQTbRCA4CWsheEjeiL7eDF+33AAozwlvMUo9CuvOBPzP1wlR5kC2n7svm0IKivNclpEhF62CnG53JqgQnSU0S9A0L17KgClSoXb7YZOp0NZmQllqqSG4pJKmVghl6GWUcLN7bEnFmDt2n3418ypMvCvvnAu+75bvMGWyZNHoVvXVDlCulvXFAwc0BlGowEVlWaUlHgvnK/6ZSfeficLj8yciqFDu/sFnNR/qwN11dUWmQCRkhwn17vb7cbfb38TADB4UFdNoF2tVy8lwWPlqp341yOf4On/Xo98TxA7NTUexcWVmDff21Y4WFLNvn3eBI9ff93jWT9R6OqpzpKTU6oEZURiQpBt8uzxg/H2O1mawHCgUcdCpidAnZ9fjuho5TmDtRUBgD59MjHjgUuD3q8mgvhFnlG9IiAy8cLhCAvTYdeu48g+Xownn/oSpaUmvPDcTbWWpAf8119RUSX++OMIzjprIADArGpl9MTjV+PSS0/DsFN6YN36/cjPL5cVPLz7dvAEFZ1OJ9fjH38cCTjP8GFK4G/CBcPw4Ue/YO26/YiMVN5DeHhY0HL8Op0O5513ChZ8vkZOy1QF59XGjx8kt4ljnpYHQOCKGTqdDv996jrcMu31VqvgYbd5Wn8ECVze9Ndz8dbbS/HBvBVyWqDWPupturragohEZft56+2fAQCffPorpt81SSbhxcQYkRAfDYulAhXl1ejSKfh1ZHV1oy1/HMHZ45V2PN4WLcEvWXcO8LmIJIkY1Wj3yEgDqkwW7NuXg8GDat+OA/FN8MjPL9MGnk0WzJ23AjffdJ7yd4BWNpmZ3mWNjjbCbLZi27ajclrvXsETNgDlMxh31kBkLVNaZA0c0CXovGPG9JfzCcUlwUfw/+mS0Rhzel98+eU6fKba7hMTY/DII1fg089+xb/+73LYHU68+dbP8v6CgnKZ8OhwOGXroaNHvfuC0+nCwoWbcO214zzL4R9o7t1bee/h4WGIj49CebkZFRVmpKTGycC0OkguPtvISANsNodsjQQAbvgnFw4c2AU6nQ4ZnkC6CBCLbSyzUxK27zgGu92JnTuzvevMJyi+/0AuTCYLYmKMGDWqt9z3AaVqTW5uKcor/CtmtARRwSM8SNJffEK0pgqR+nErVylVp/r37yTPn6IykrotSniA5JFgNC1aTBYcPVoIk8mC6KgInDq6DyIi9LDZHDCZbLW2vgKUbT02NhImkwWFRRWIjVO+u4nEnHPPHSKTZHv1SofRaIDVakdpmUlzrDlxQklq6to1RVZ6SPAkFKoTTUVySrCqUQMHdMY55wzB9u1H5Xc3dRuQYOa+Nx3PvfA9LrtsTK3ziWSc4ydKYLM5ZIKxb6Kgbxu24pIqVFSIZAdvcpg6UUx8b/LdDtozsR34JsRFqdrgAcqxZ7+n0tvAAf5tyljBg4hOJvVK8ACACy64oN6ju4P9yPa1YMECbNmyBRs3bvS7Lz8/HxEREUhMTNRMz8jIQH5+vpxHndwh7hf3BTN79mzMmjXLb/rSpUsRHR0d4BFELSsrq+6ydxTc4sW197GtqfH+4Ni/fz8WL26dH17twfYd3lFta39bi2NHlR933Capo+E2T20Nt0mi4Fpz/zCbT54Lo+2Jb4JHRUU1nE4XdDrvfcEqeIwa2RsLF27Cvv25slS2uDgeEaHHgs9m4Na/vSFHrVeqkwzM3mQOcbFdjCKOioqA0WiQ91VW1cigZlRUhGakZ3h4mAwC2GwOWCx2REVFaFqSAErpbHGhWTxva5V5B4C1a/cBUEbp3nKzUt0kThUsEEEYi8UmkzH69snUlCDv1i0VBoMeQ4d2w+bNh3H8hDdI9NrrS5CXV4bb7ngLa9c87RcAC9aipbLSLIMyySmx0OvD0a9fJ9maBQDO81SCCEQdAF31yy5s2nxIBgsfuP8SPPLop5r5g13sD1SmPz7eO5o9J6cUVqtdXisLlnTUs2c6Ro/qrWkBUBuR4LFvX45cR4MaEZwOpFs3JTlFjOq31HiTUzplJmHXruPYvPmwrH6y+tc9dSZ4+CYpAYBDVTFBXUlHrw/H6af1A+BtqSFG01rrqOABKO1nRJLPck/rjb/eeC4OHMzDunX7cPllY3DH7Uqbgr59OyEjPQEFhRVYmnUUgLJNB2vRAgD33D0JNpsdy1fswMUXj8RNN54bcL5nnr4Br762GJ9/8RuOqloTiaC3ry6eCh7l5dUwm61+AbvmVlcrIDF6X020U1ALDw+TSQmVVTVI8iR4DB7UDb+tVUrgqxPhomOMSEiMCRhgVvNt43PsWCEgEjzqCLoC3gpJgZ5T3aJl2LCe2LDhAA4fKWiWBI+XXl7kF/x+971lMsHDty1GRIQeg1THy7/eeA5efGmhZp5ALQR83XXHxdi2/Rj69+tUa8uHC84/BS+/sggmkwW3TjsfX329Hn+bdkHQ+cPCwpCRkYgzzuivSfDo1TMdo0b1xnnneo+zb791B2bN+hy5eWXIzS3D0KHdAQB79vpX8O7UKQl5eWVYs3aPN8HDk1TWr18nPPiPP2Pu3BWY8cCf5GMSEmKUBA/PdiOO2aISgVpUlBGVlTWaSkHmAMk1QzzVFsSxRhzrRaJBfHwUYmKMqK62IleVfFVWXg2XyyXjG4cOKTGGwYO7oWePdJngERNjRFpaPHJzS1ERoEJJS3B4KngES/oTVczUy1NaZsK1170k379o1QUolZUAbast9TbucDjhdruxbv1+9OyRLpNXBU2LlmoLTpxQKlv16JkOvT4c6ekJOHGiBFVVNtk6qrbkrU6ZSThwMA833fIaVi6fBYNBjypP4uvZ4wfDbnciNSUOen04kpNjkZdXhrJSbYLH8ePKMojzHQBkeCpj5amSK2U7qCDHmrCwMDz91HVwOV346JPV6NIlOWgFKLX+/Tvj3XfurDM+JpKXflm9C4886l2PvomCmT5VifLzymRiZEJ84DiWSPyoqjx5khl+/U3Z73wTPNTtBAGlYltNjQ3h4WHo3j0Nb795Oz77fA3OOXsIZj35Rb0SPErLTJg9+xv8+dLTMG7coGZ+J0REzadeCR5HjgTOiq9N16619yQ7fvw47rvvPmRlZSEyMviX05Ywc+ZMzJgxQ/5dWVmJbt26YeLEiYiPD/xjjKgl2O12ZGVl4cILL4TBEPzHK/l79jlv3+zJkyfXOm95RTVefX0LAKB///6YPPmcFl229sTp2oSfflaO8WPHjsWAAZ24TVKHwuMwtTXcJomCC8X+Iao9UusSF93DwnQICwuD3e5EYVGFDFwAgUfKA972FkWFFaoe5d55k5Ni8eXn/8ChwwW4ZdrrmlLNIkiZkBANs9mK6mqrrPwgXi8uLgolJVWorDDLKgzpGQnQwXshPyM9AbGxkTIwmptXij69MzUj1gHlIrTJ8/r9+nbCrt3HYTJZYDJZNGW+W1phYYUMFqhHg4qgh8Vil+spIT5aM+JctB8ZMlhJ8CgqChzkqjZbZcApPT0BhYUVmvWhDtTl5JQiOkYJgKckK4Hop568FvM/WoXx4wZjxPCestx6IImJMfjzpafh+x+UwUT33vc+ACXYOn7cIDlCWMjNDdySeF+ABI+uXVLQqVMSdDodzGYrvvhyrbwvWNIRAEyfPgm33f6mX8A4EBHMESPvu3dPldUNmqp7tzQAyjp2OJyygkdUVAQ6d1YqDezc5R3J7tvaJpBSTzudN+b8XbY2UbdtERV4oqK0SQ3eFi2eCh6eZQkWbAOUgO20W87HB3NVlSf6ZuKO2ycGnL9z52QUFHpbuai3s0B0Oh0e/MefMeOBP8kko2DzDR3SDZ8DcjsDlISCQGJjIxEXF4Wqqhrk5ZWhTz1GgTeFaNESLAg8YngvefuMMf0QHW3E2WcPDjhv505JOHgoH8ePF6OHZ/vR673r5lh2sVyvMdGR3lYItQS8fY+FovKDy+WSVTDiYoO3LTEaDUhKitFURBIVYyZNGoWsZdtx+ul9UVionMNrq5hTG7vd4Tft+ReU9hVRUREyMc1qtcMYYZDvq3OnJDzyyBXIzExEJ1UFj6mXn4Gff96KXbuPy6TBP11yap3LkZ6egC8//0edwWWj0YD5c6fj2++W4MYbzsa0Wy6o1yDMnj3SNH+LKkhqpwztjjFj+uPb737HgYN5mDhxOABgy5bDfvNee804vPjSQmzdehS//34AY07vh2JPi5PU1HicMrQ7XnzhZs1jRKBarEPRgilQ0lRCQjQKCso1bYBEwmVCQrRMSBw9SmnTJALC4lgjAsGRRgOSk2L9qnc5nS5UVtbIbVnMH+fZj4XExBi53K1VKcHhVM4hwRLVxDKrk0W3/nFEBrUzMhI1iTuiKopYB263W7YuAZR9Z8XKHXjr7aUIDw/Dqy9Pw4gR3uOH1erdR6pNFuTlK+fTTp7zWGpqnJLgYbLXWcEDAJyeNkculxt79+ZgwIAu8nFxcVG48Qbv9dzkJCXBQ7R0E07keBI8unqTUURSWE5OiVJVDTrZWqu2czegJHrc9Ndz6z2gub4y0hPl7XXr9wNQqtr4JpF17ZKCd966A0/99ytkHy9Ggeo7W7DvQuL8erJU8HC73Vi1ahcAYLxPwoWsNuc5HottPykpFuHhYTjllB445ZQeOHRYSdQy1aNS3pw5S/Db2r34be1erF3zdLO9DyKi5lavBI8ePXrUPVMDbd68GYWFhRg1apSc5nQ6sXr1arz++uv4+eefYbPZUF5erqniUVBQgMxM5YdQZmYmNmzYoHnegoICeV8wRqMRRqN/trzBYOCFdAoJbntNU9e604d7D3VhYWFc1yrh4XrNbbFuuE1SR8NtntoabpNEwbXm/sH9MDRE0CYxMQaxsZHIzi5GzokSzUX4YCNARU/z3Lwy7PH0ge/cWdsmQK8Pl0GZkpIqVJutiPEkYwDKqFyDQY/qaisOHlQuCCd6LqLHxkaipKQKu/ecgM3mgMEQjk6ZSZqqI/EJ0dDpdOjbJxPbdxzDwYP5SoKHJxgp2oSUlHgreKSlxSMxMRrl5Wbk55ehb1//dgktxWZzyOWIVwWvouSoSJusdBIfH434+GicMaY/8gvKZKCok2f0bEWltxKHOhRy/wMfyEBDj+5pfgke6goe6oC8qJbRrVsqHv3XFfV+T/+YcSkuvfQ0PPTPD1FaapKvq9eH49ZpF+Crr9fhnLOH4NPPfkVBQTlsNoem2oHJ5B2JfPXVZ+Hzz39DdFQEpkwZDaPRIKt2vPW20qomIkJfa1n7Af07Y8mPj8JiteO5577Dn/7k3xde6JSZJCu6AMDpp/drtsBSenq8fO78gnLZ4iAqMkK2kjh8uEDOX1eCh9PpksHUbl1Tcf55Q7Fi5U7NaPAaVQUPNdEO6KWXF+GKqWO9wbZaKngASnBHJHjo9eEYUEvLioEDu+CPrd5Ba3/6U93BdAC1JncII0f28p82wn+a0KVzMvbuy0FObmnLJ3h4EomMEYHPYV26JOP7bx9GbEwkIqMiat2+evfJxMFD+Th0qADjzlQCa+qA+KFD+XJbjYkxygoa6gDzmjV7sOjHzZj5f5cjISHaL8EjJ7dEPq/Yt+pKcnv1pVvx+Ze/4fbbJsJg0MuAZnS0EW+9eTsAyFZMjU/w8LSKSonz2xc+/vA+XHv9S7DZHCgrMyEzI8l7HI2PDrgt6HQ6vP7a32RCiMvt8kt8Cqa2yjNqKSlx6NI5Tr5efaSmxmP2f6/HzEc+wdCh3WUrJ18DPO0O9qqqdgRK8Jg8aZSsVLLkpy0Yc3o/uf5SU/2rxwBAQqI2waPIk+CRHiDBI9mzfGWl3m1MJAbdeP05KCqpRI/uafL8IY41IlHRYvUmkyUnx+K451iv0+kQFRUBs9mK0lKTDJ7LqjJGg3xOQAkg+y53SxOVavRBzjeiwob6OH74iPf2C8/dpNmWYmJEgocS9N67L0dWTwGA7OPFWLxEGTDndLrw3vvL8fprf5P3qyt4lJSacMRT0aiTp42SaBVSU2OHzSoqeAT/bh2uOvY+98L3+M+T1wJQzrFiWYW09HhgN7Bq1S6cM34IACURQJy7u6oqeGRmJiIsTAeLxY6SkiqkJMfV2fKvpaWl+2/bL714S8B5hw7tjj59MpF9vBhVVTWoqPT/zqYmvuNWniQJHmXl1aiqqoFOp8MlU0Zr7hNVv2SCh+dYk5KsPY6Jylnq75vB7FdVjKs2W/3a5hARtRX1b6rWzC644ALs2LEDW7dulf9OPfVUXH/99fK2wWDA8uXL5WP27duH7OxsjB07FoAy2nzHjh0oLPSWQ8zKykJ8fDwGDw6ceU5EHU/9mkt1TPVtvUVERERE1FrKPIHB5KRYOeryxIkSb790oyFoADYt1XvBfPFiJSghSsmrpaTEIilJCTx87ilNL4LS0VFGmdCxdZsSHO7RUxnRLII7zz3/PQBlVGh4eJhMhgCUEZgA0LevEsTd60k0EQGgPp77a2psyC9QglhxcVHIzFACInmNDEY2hUiCiIvzjgb1tmixy+SMeM96efGFm/HJR/fLC+adOiUCACorvaOAi1UB0V27jnsTLXoqo8XF+nC73QErKwwa1NUvOae+9PpwDBrYFf979q8YPqwHkpJicM/dkwAAV191Fr78/EFMv+tiREdFwOVya8rzA972LJmZibjjtomY9cTV+Oij+4KOlq1PxZXoaCOSk2Ix++kbcObYAUHnMxoNePq/1+Oaq8fhmqvH4a83NF8FyrCwMBmAr6wwe6tmqCp4qIlR98FUVFTD5XJDp9MhISFato9Qj5A9kaOsW1GNRRg2zDuYrNhTUh2AZl8KZMCALvjvU9fhyivG4rNPHgjYrkO4YupY9OyRhoiIMFx22em4954ptT53QyQnx+HU0UqFAKPRgC8W/ENTAceXCHjm5QWuGNOc6mrRAihB/bqSaQDIdlO79xyX09QJPCKQr9PpEB1tlC01ClVB4n/+30dY/etuPPPsNwCgqbwAeNtxqFtW1RYEBpTj7Mz/uxwpKXFB17uohiMqMTWUqOARHx+FR/41VU4fNao3OnVKQrIngCiOdfIcEhM8acNoNCAuLgoREfp6rf/WcvbZg7F61X/wxut/DzqP2Ge3bT8qE7v27VfOb+Lzeu/duxAdbcR99yr7mqiyIuZXV+JSE9W3cvPKYLXaUa6q+ORLrHd1EpFIUOjaLQX33TMFf/nz6fI+2a7Cpx1UpDFC0wImISFaVgxRP7fV5m3lof4+ERNtlO+nPgkeWcu2Ydeu43XOVxvRoiVYwk///koSjrrFmEhUvefuyfL7iSCO2SJpa+dO7fK9/fZSZGcXy7//2HpEU/lMneDhcDixcOEmAJAJg+J8s2z5MZn8EaytCAD886G/aJb72uteAgD06ZPp971vymQl0L/mt73y2qZozxEWpkPnTt5zmsGgl98nDh0uQJXJIhO4koMkNLU09fdVQPlu4jtNTVa9qqrxVl0LWsFDJHjUnBTXfY8dU6o8ZWYm+p0bxHcGh8MJh8OJEs93zWSfVmSiWo3N5vBrE6bmcDiRp/pOuLuJ+ywRUUsKWYJHXFwchg4dqvkXExODlJQUDB06FAkJCbj11lsxY8YMrFy5Eps3b8Ytt9yCsWPH4owzzgAATJw4EYMHD8aNN96Ibdu24eeff8ajjz6K6dOnB6zQQUQdlOrLrMvV/r/YNivVujkZvvQTERERUfsnAkJJSbHo2kUJ3h4/UaIa4R888KfXhyNVdVE3OtqIEZ42ImoGgx7XXjMeALBjh9KSwlvBIxKJnuQPEYzp5UnwOP+8U+RzhIeH4eKLRsq/b79tIs49ZwgeuP9PAIBRI3sDAH5dvRtut1sGNTMzE2VixLFjSsAjNjYSKZ7lLlMFllqS+iL57j0nAGhbtIiL5ouXbJFBafXoZfXocJGcUlGhjMA3mSyaqiZqoh1AmScgZrM55O+0P1/qrWwx8cLhjXxnXoMHdcWbb9yOHxc+glNP7au5T6fToVs3ZbRz9vFizX0HDiqjNwf07wyj0YALJwzXtFo480xtgkZqLUGZxjhz7ADce89k3HvP5GZ/btmuoKpGJk1FRUZo3p9QXEcFj5ISZVtNTIyGXh/uFywEgO07jgFQWjyoXXzRSLm93X7HWzIBKLoeFQ3OO3coHrj/T5rtMZBOnZIwf97deOC+03D/vVNkgKe5PP3f6/GPGZfik4/uqzXRBPAmGxQUVNQ6X3OweYKuhoj6VX2ozZjT+wEANmw4KBMYqlUteESgbOTIXggPD0Omp4pSQYCkil9W7wYAbPVUVRGtQIqLq5T2LJ7EoGCj0huqh+dYc/BgPlye1g8NYfe8N4NBL88BAHDD9WcD8CYtieoU6ipQ7ZFeH15rpZCePdLRt28mnE4X5n+4ytPeSwn2L/j0ASz4dAYGD1Jatvf0rC9xPhOfbbBkuC5dRAuNUnncEckwvkSFkVJVBQ9zdfB1n+BJwqiutiIvr0xWdElMipHbiLLMabLCiLqKhTe5NAJpqfEYdoqS6HLWWQO9ySaltZ+39x/IxeNPfI6/3/5mrfPVRVbw0AcO6YiErGPZRUq7FYsNGzcdBAC53GpifVmtdjgcTnnsEMS58MYbzpHfUdQJkTZVEpQQHh4mkxhFBQ8A+GCuUlGntuP2kCHd8Nuv/8VVV56pfV99/aseie9YZrMVVZ7tSySjZGYk+rU0Gjy4GwAl+bfIUyksLjayzmSylqLXh2PxokdkIt7NN51X6/xiX6iqqpHfk4MlTInPw+l0wVyPihVtnfhce3RP87tPnRRqrrHJtnG+FTx85/Mlronv35+ruV98hyEiaovq1aIlVF566SWEhYVh6tSpsFqtuOiii/DGG2/I+8PDw7Fo0SLceeedGDt2LGJiYnDTTTfhySefDOFSE1Fbo85bYBKDlltzm+uGiIiIiEJPlF1PSo5FN1HBI6dE9oWvq1/6f568Fn9sPQKXy4Vx4wYFLTc/apQSHNi3P0dTRSI6OgL9+nXC2rX75LwDByptICZeOBwlJVUYOrQ7hg/roRlRetNfz9U8/5lnDoBOp0NuXhnKykxyhG9iYgxSU+KQbbbKEa1xcVGIjFLel9UnwNJU+fnlWPLTFlz2lzEy2OJwODWvI0b7xtcysrZnz7SgI10zPEFdu92Fysoa5OWVA1Dea0pKHA4dUkYQq0f4i/Whrgbw4D/+jJiYSOzafVyOzm1JXbulYN/+XJw4XqKZLoJ1mQGSHgDg0X9dgfvu/0AGv1JSArcdaIvUo9m9JeoN6NQpSbYJEsrLq5GfXy6TE3yJwHayJ9AtgoVmsxJsc7vd8rMXwTW1qiplvvz8chl0HTQoeMuVtiY2NhJTLz+jXvOKSgSi9UQge/aewMqVO3HRRSPQp3fj27iIFi0RQVq0NETfvpno2jUFJ06UYN26fZgwYZgMpv/r/y7H628sgcVix7SbzwcAZHgqMagTPNQthwoLK7Dmt70AgGuvGY+nZ38Nh8OJigqzrLAQKKjfGP36dkJUVASqqmpw+EhhwCCxUFpahWPZxRgyuBsMBiXJwe5ZZoMhHL16ZSAtLR4pKXE4zZMs1rVbCnbtPo5ff92Dc8YPkYlN0c2cSNSWTLxwBA4e/Amff/EbPv/iNwBK8pL43AVRIUsc50WCR1yQBA9vta5i5OUqCYXpafEB28ykpPgnVZg8SUcx0f7PHxfnnXbF1c/L5xwwoLOm1cnVV43Dr2uUJKT8fG+lHatsLaKEUea8/ndUVdUgMTEGK1bsAKBNCAlEnBOB4C0fXC4XNmw8iD69MzSVRdScngoe4UEScUQFErvdifIKM44fL0ZNjQ2pKXEYPLir3/zqbdVstspqJWFhOs0AudGje2PrtiMoKalCbm4pBvZXjtN2m3Ksue3vFyIlOQ5Ls7Zh+PCesmJRoM+jPpW57r5rEsaNG4Tffz+AnbuyccXlY/3miYqKQGJijOc8VYb4+Cjs3KUk7IpKJmqnDO2OpUu3Ytny7Vi2fDsAICVIy6DWkpAQjXkf3I2wMF3QCmGC+H5WVVWDQk+CimhL6CsyMkIedyvKq9tt0pkgKniIFkRqBoMeSUkxKCurxvHjxcj1HD98v5cZDHoYDOGw250wm62Ij/WeZ7ZvP4ZH//0pBgzo4ldRjgkeRNSWhayCRyCrVq3Cyy+/LP+OjIzEnDlzUFpaiurqanzzzTfIzNR+Ge/RowcWL14Ms9mMoqIiPP/889Dr23TeChG1MiZ11A9XExERERG1BWXlngSPpBh08QR9du06Lku811b+HgCGD++Jm286D9NuuQD9+/lf5Bf69M6ATqdDebkZZWUmTXDujDO8FRr69MnEaacqrRj0+nDceMM5GDmiV9A2MUJkZIS8qF5lsmgSPMSF5xxP+4qkpFhNS5TmdMddb+Pd95bhrbeXymnBepB37eoNvJziM9r3jDG1txURyR8FBeX4Y+tRAMDwYT00I9+7dk2RI6RFALjG7K3MEh4ehrunT8Kbc26rV9uTpurWVQkWHD+hreAhy58Haf2QmBiDv97obZ2SGuIgUUOoRwHLtiiREdDrw3HzTUqQvkuXZBkg27DxQNDn2udJDOrpabsjtnexL5WVV8Nmc0Cn0wVMErlo4gjN39FRERgyxL+l0slABF4LVQkelZU1WLduHxwOJ9xuN/758Ef4+JPV+O/TXzfptWyeIK2xlhYt9aXT6XDeuUMBAGvXKUlvIilrxMheWPDpDPzw3f/JhDkRcBQBSACa9j9btx6R+/6gQV1kIkBBYYVs/RAb1zz7vl4fLoPa6hYzvnbszMbUK5/H9LvfxRVXPY/Nmw8BUFfwCEdUVAS++uJBvPXG7Qj3JAVMulip4LR5y2EA3goe9alC016NO2ug37SePdL9ponEyvIKs6Y6S0yQ43rvXkrrkCNHC7H+9/0AgD5BEnLEseToUW/L9tqSa3yTRNxuNyIjDejZIx3Dh/eE0WjA4EFdMX7cQFnJSN3Wx1s9TEnKCA8Pk8mSYr8uqqOdlVPVEiInp8TvfrfbjdnPfIsZ/5iH6298RX438OWt4BE4wUMEuwElmUwsV5cuyQGTZfT6cPndo7raKpNZJl08Sp6D42IjMXCAt2WaCKAD3jZGRqMB55wzBP996jpN9Q2TqtqPUFe1I0BZx6NH9cb0uy7Gm3NuQ79+nQLOJ7aFL79aB5vNgeWehJsRI3r5zRu4XV/oz909uqfJamK1Eefu/PxyeaxJD5IIBHgrixXWkXzUHhzLVhI81BV31AYOVI7ze/acwBbP8dj3OyzgPT6I753CO+9lobikCr+t3Ys/PBWmRLugXbuOw+lseAUoIqLW0OAEj969e6OkxP+LSHl5OXr37t0sC0VE1Jw0VSqYxaDh1pY3Cd2CEBERERF5iFG5yUmx6N+/MyIi9CgtNeHV134EELzEe0MZjQZ08gQHjmUXa8rrDx7UFY8+cgWm3XI+Xnzh5jqTOYJRt6wor/C0nkmM8UsI6NEjVVYmae4KHiLQumOndxSiCIbp9eH4260XYPTo3nj2mRsxYrg3KDKgf2csWvgvDB7UFdFREbj88jG1vo4ItOTnl8sWDCNG9ML115+NiAg9IiL0uOP2iejuKbFdWmpCZWUNampCN+pdjAY9dLhAM120HaitVUSyqvx3ahsIEtWXCBIdPVootzUxMviqK8/Ewu9n4uMP78PQIUrFjUCtNgQRNB/iqc4htncR1BOPTUmJCxiQvPeeybjv3im4ddoF+MufT8f/nv2rLFd/shGBuMJCJdjmcDhx5/S38Y+H5mPOGz/h8JECWRHlxAn/664NIaplNNe6HDZMCZTt258Lp9MlE4Nioo1ITIzRVP6Jj1Nuq9v02Kzedk35BRUyWS8tNQG9eyuB/fkfrsKjj30GoPkqeADAAE+lgQP784LOs3HjAbkvFBdX4pF/fwar1S6rE4hWDwaDXrNO0zwBVPFYsydo2N5Hy9cm0Aj6Hj39g66JnmoETqdS1UkcE+JiA3+2mZmJGDq0O1wuNz5bsAaA97PzJVqNHDpcIJPxxDZfWws3tQH9OyM8PAwZGYn4+quH8Nqrf0NYWJg8jx1WnRPE5ysqeKilehI8iosra73eWFHprYykbnEiLPpxM35cvBmAUu3k089+Dfg8DmftLVoAyOofxcWVKPYkeIjlDEQm5pmtcj0mJ8fijdf/jr/degFeffVviI+PQkZ6IgBt8pZo0eLbDkU460xtQlCvnukYPar54kcDByjbyOIlW3DeBY/jwIE8RETocfb4wX7z9vEca9TSUoMnSLQ1IuH0oKcqVlxclKbtiK+MdP9ku9ZWVmbC+vX7ZSJQY+V4zonBEmHE95UPP1qF3LwyhIXpArZnFOvLt0qHujWi0WjAP2Zcij9dciqio40wm604dDi/SctPRNRSGvxN/+jRo3A6nX7TrVYrcnJymmWhiIialepHlrrEIDGng4iIiIjaHtFbPCkpFslJsXj0kSvw2OMLcPSoMoIvNqb5Kjt0756G3LwyHDtWhGpPAEokGkyeNKrJzy8DJyaLbH2RkBjjNwqxZ490OTq4ORM8RMsDQNu7vNrTQiM21ohpt1wQ9PHJSbGY8/rfYbXaa23fAihtWnbvOYH9B/KwcdNBAMDIkb3Qv19nfPnFgwgP08lWHunpCSgsrMCx7CK4Pb/RagtUtJShnmoRO3dmo6zMJEedV1Ypn1VcLe9ZjI4FvKNH2wMRPP/q6/UAlDYW6qQpMaJZXQ4+GDHKXATpRXBVVKERCR4i0OQrMTEGV191VqPeR3sjWrQUF1fC6XThwME8HDmiVCBYtny7TKIAlGNAUwan2O3axISmEtVcsrOLNIGwmADH4uhoZT+22RxwOJzQG8Jl0BgADnraGkVGGhAXF4lRI3tj8+bDWL16t5wnUEWIRi+7Z+T/wVoCdCKp8LK/nI5vv9uAqqoaFBVXwu7wtmgJxOiTlOd7DjkZ6XQ6/O3WC7Bs+Q5ZQeOUAJURDAY9IiMNsFjsMJutdVbwAIC/3zoB9z3wgfz77PGDAs6XnBwnzyHHT5RgYGykrGwRLKnpsr+Mwbff/S7/HjjIe8xWtx4b4NnWd+06jo2bDuK00X3l5xuoPZxI7rPbnSgvNyPJU9nDl0hqAhCwOsc33yjH48GDumL3nhNB20I4PC1a9OGBt0lASTzavz8XhYWVsnWM+nzlKzY20pNwadYkh/Xt2wl9+3orZ4gWIpWqZBVvElTg5RkypBveeev/2TvvMCeq94uf9O290XfpXaRjBaQIqKDYGyCiIGDByldFsfxQVBQVBRREFBQLKEjvvS69dxbY3nfT2++PyZ3MJJMG2ca+n+fhIZm5mcxM7pSd99xznsP+/XuQ1rgNbmqfxh83weDll+5BcbEWmzYfA8D9Hi++OEjSMUqpVOCjDx/Dz/M34cwZ7jzUo0fzoK1LRcNcY9g1OcnDdZXBYpOqSuBRXm7AsBHfIj+/FM+N6usWYxgIzN3J0/E1eHBX/Pb7NhQ4zuWNGiVKnofZNJ1eLPAwOu5ZZs0cjZYt6vLXzjZtGmDv3rN45ZWf8N/S/0m64BAEQVQlft/pL126lH+9evVqREc7LyJWqxXr169HampqUFeOIAgiGJBJhRcEO4T2DUEQBEEQBFEdKHQUEJlDwl2922HmzNXIzOJswYMZ3cFy4vPySvjR18EszkUIHA2EES3NBNEx0dFhiIkJ50cHBzOixXWUonM621bf+1KjUflVkGHFhF9+3QKAKyg1acxZ7Ce6FJfq14tDbm4JsrKK+FGpVVEUrVcvDomJUcjLK8XX367Ae+8+DEDg4OEhogXgbOafHXkXYmLCJWMLqiuuQp2+fW/y0I7bdrYvpCgs5Bwn4h3CHdeCd04OV1hKTq45o6Qrivj4SCgUclitNhQVlaO8zBldYLFYefcOgCsW63TGazom7Ha7s0gr4ThwLSTER/LF+ksZXJyRSqWQLKYLhVo6vQlRqlAYBQKPMw6BR2JCFGQyGT8Cn6HRqPDA/d7dggIh0VEEZcJBKdi81NQkJCfHICenGCUlOr54rfYglHH2dwvsdjt0+uBfQ6ojI4b1xojhvXHi5FWcPnWVj/BxRaVSwmAww2Sy8AKPSC/X786dm6BTx8ZI338eL704CGlp7o4LDNbPTCaLyB3Ak8DjxfEDkZqaiC+/+g8AJB0eAKBp0zq8GOSvv3eiS6em/DVZE+IuQmSRKEVFWuTll1yzwKPYMf+RR27Fe+8vwuXL+bDZbG7uYc6IFs8OHvUbcBEoFy/motghxkiM9yzwiI2NQEZGPoqKtAK3EvdrPhN4CLeFOXh4OkYATiB27pwG3bo2g1odXCGnWq3ERx8+hqtXC5FfUIa2bRp4Fbb17tUOPe9sg6mf/YPc3BKP/aA60qZ1A0RGhvICj65dmnptzwQgObnFFb1qkixfkc47yOzYeSpggYfBYIJGrYJMJuPFc1KiQoATaT395J34buZqABDdYwth5w3XiBZ2jQrRqET9p327Rti79yyKS3S4dCkPqWnBEx8SBEEEA7/v9IcMGQKAU+oOGzZMNE+lUiE1NRVffPFFUFeOIAgiGIhHvpCKwRN22jcEQRAEQRBENYCNEGc58jKZDB07Nkbmcs6+PJgCDz6PW292RrQEsTgndvBwRrQkJkRCo1HBaDTjh9ljAAAaDffgOZgCDzaSHwDKyp2Fev5heRC3NcWliP/oI7dCoZAuQjEXCa3WwI/8DZUonlU0MpkM997TGXN/2iCyzXcKPDw7eMhkMq/uJ9WVtm0b8K9HPdsHjz92m2Q7tu1SAo89e8+gbp04lJQ4RtU6xFisKMgiOZjAI8lh7V+bUSjkiI+PRG5uCXLzSvnICoATxAgFHgAnOrgWoYDQLUMTpIgWmUyG0FA1DAYzL+rxFEOiUimhUil4kUpUVKioAH/pEufExNxyhJb7Dw3tgeHDe/HzggETFJSXexYqFRU7Y8FiosOcAg++mC7tTsDEBHa7ndtevgh5Yws8GK1b1UfrVp7dizRqJcrA9Ul2zfF1/Z783iM4fPSSz8K7UExmElznPAk8NBoVhj7QHfn5ZYiNDcfNHdIk2wFAv743Yck/u3HuHBfTcuLkVccypJedmBiNoiIt8vNK0bypdGHZl8CD9c9mzepA5XC9yckp4UWoDN7Bw0OfBIDmDteNM2ez+P0UEystPAGcDiaFReVe452iHdcEYdyMhbkFqT2vT0Ujk8lQv1486teP98thQSaT4c3X7wdkqFGODGq1EmNG98MX05YhOSkaDz90i9f27B7am0izIrl61Rk1duLEFZhMFq9CICGXMvLw2ONfYtDAjnjt1cH8vay3c+u993bGrwu3oLzcgLv7d5Bswzt4uIifDQZO8OEa8XTPoE6YM3c9AIiu2QRBENUFv+/0bTbuBiItLQ179+5FQoJ05hVBEER1gxw8PCOSvtC+IWoBp05nYsonizH6+X7o3q3m2HESBEEQRG3Bbrfzo6mFtunCIqCnEXzXQmgoi5QwQet44BvM0ddsXbNzimG1cs9VoqPDoNGoMPfHFxASqkadFK6Awx4sBzOiRVhYFToGsIfbYUEsRCa7WKK7jswXwmz6y8oMvO19SBVEtABAp05NMPenDSh29Du73Y6SEu61NwePmkrHmxvjrt7tkJdXiscevc1thDiDiXCEdvwAF2fz8is/8e8VCjlf+GMFUKOJ68O5jpHD5ODBkZgYhdzcEuTllkCrdRaYDAYpgUc56tWLE00zGEzQ6Yx81JEUQlFXsCJaAE6AVQQtCvK59fTm/hMaqobZrIdebxI5ighh51lhlEJiYhQfQxAsWD8uKzPAbrdLFnSFsWBRghgKs5diNyB2OTAazXwhtbYIPHzB9ltxiY6PS/Yl8IiNjcCdd7TxWXhnyzaZLDA5rplyucyjqBDgivmjn+sH+Kjp13Ucd7m5JThw8ALvmBDiQYTIIlHyHG4FUrBrCgBczRQLPKxWG38+iI4KQ1JSNK5eLUReXqmbwMPqQ3QEcCIRgBN4MBct18K1EOaWVlToFHhIOXg4jw2nYIA5eATzXEN4ZvB9XTFoQCdA5nufs/tPbRUJE4TXOKvVhqysIlFUoDcW/rYVALB8xX6MGd2fn+7t/jwqKgw/zRkHu92OunXjJNswwV+Zi+DPaJTu98nJMUhLS8KFC7l8jAtBEER1wvNdjwcuXLjAizsMBlKuEQRR/RE6U1xPju2NCO0Porbx+hvzcfp0Jia8Oq+qV4UgCIIgCAnKygy8Bbmw0NfAYTkOABERwSu6s4KN3lE4BYCwIApIWDGLFXTCQtX8A+S0tGRe3AE4HywbgijwEI5sZkUqANBpgy9mcc289/SAHQAiI5wOHmx7Q70UoCoSZqnPHFayc4phMJihVCqQ4oiduZGQyWT48IPHMPP75z0WLAEgigk8ysSFkCNHM0TvY2LC+aKqWu2MrAAoosWVpERmmV/iVnTLyi4SvReO+Gc8/MgXuOe+Kbzt/azZa/DRx3/x50zAKRCTyWS8O04wYAKs/ALvDh6AeJS01Wrji/viNtzylEoFGtTnzu+33dYqaOvLiHD0Y4vF6lE8x1yjYmLCebFSsR8OHiqVghcilJXpcdHhTtKwgX9FzBsdFhHE9q9SqfAr7suvZQsFHgIhTjAcGeLjIqBWK2G12vDb79v46TaHSNOVxEQu/iQvz5vAw3k8l7mI5oSF8IiIEP68bDK591eLleuTCi8RLY0aJUKlUkCrNeLCBc6FxNu5ngk8CovK+WNEStQU4xB4sGsl4BSU+evMQFw/SqXCq8CHERHhcJDTSkf1VTSujheuwiZvyAQqLK3gftWbgAsAUpJj3ERRQuLiOXFkQUE5P81isfLXUCkhlPDvBIIgiOpGwAIPm82GDz/8EPXq1UNERATOnz8PAHj33XcxZ86coK8gQRDEdSNy8CBBgxA7WXgQtQzXEYgEQRAEQVQvmE15SIhKVAhq6rAcB4BgOmoL87idsSXBc5JgIyiPHOGK4t5Gp/MOHkEcJWgRRbQ4H7ZrKyCOpq7LQ3VW9JKCFYfLyw18JI2mCiJaAOdvUlbOiYvOnc0GAKQ2SvSriHKjwtxLfN0/J8Q73SR4Bw+Hm8F5R3GRIlo4WOEpM7PQTeCRmSkWeEgVk5i44pVX58Fut+Pn+ZuwYuV+rFx1gG/DC9XC1EGNH2BFrgI/BB78eVVvglHCvYNbP+fnf5g9Bgt+ecnv0d2BEBaq5ouCQpGb3W7H0aMZMBhMKHecG6OiQhET43ApKNHx7gRqD/ETMpmMf8b00KNfQKczQqVSoGFDcr0GnA4DhYVcMTUiQhO0PimMaGEig2C5SMjlcl7cVy64bgrvQ4SwKAwpURajWDBPqzOKnk0K73tYxBEAyWOHTfMmqFCplEhLTQLgvO57E1CySKSCgjKng4dUREs0t516vYkXgjCXG2UQxWREcAgP8+3gMWv2Gvy9eFfQvrOwsAxTPl2MCxdyoC0Xf+/rb8z3S+RhNJqxdNle/n15EKOv4uOYwMPpmCU8zqQEaOzYCWZ8IkEQRLAIWODx0UcfYd68eZg6dSrUaucf323btsWPP/4Y1JUjCIIIBsI/nEjD4BnaNwRBEARBEERVo9dzRc1Ql7iO+vXicf+QrpDLZejapWnQvk/s4MF9dzBdLbp0aQKAK+gCQLQ3gQfv4BG8UYImYURLudMdRVcBcTQhIWr07tWQy7d/436vIy1ZbEJ5uZ7PPq8qB4+oqFDI5VzRsbhYi5OnrgIAmjRNqZL1qS5EOZwMysoMfGwz4D5KvXXrBvxrVhwxmSzYuOko9HoTkpOi0ayW70sGi1y5erXQbVR1VhYn8EhI4IRR7Fwoxblz2Th8+BL/fu/es/xrXrwVRCciwHl88gIPLxEtQgcPk9G3wCMqKgypjoJ0sJHJZLyTklDk9s+/e/Dc6Jn4vymLeYeRyMhQvt+Xlul4gZxS6b9woEGDhFotDBPCXCAKCrk+E0z3LY3AwYNFQkmJEq6VaIfQJ+My58rSv38HN5cqfl003H2Et3g1oVDOZrOLisWsX7L9w7ZDGLHG0Pt5n9KokVgs5U1A2dARgXfhQq7XiJbIyBBeAMXEe7wIigQe1Q5eSOvBwSMjIx8/z9+EL6YtFblAXQ9vTvwVy5btw6uv/8x/b+dOTfj5q9cc9LmM3xdtF71n18qIIFzT4h2C1MJCgcBDIKaUcq5hx46BHDwIgqiGBCzwmD9/PmbPno0nnngCCoXz4n3TTTfh5MmTQV05giCIYGAnBw+PiMQvoH1DEARBEARBVC3ehAevvToYa1ZNQosW9YL2faGhbGSeMKIliAKPzk1FQgdvDh6aEHG8RTAQOnjY7XbeKl/HF4GDt60A0KVzHaxe9TYG39fFaztWfF677jDy87kH7d4s5CsSuVzOF3WLi7VITz8HAOhwU1qVrE91gYlw7HY7ysudBaK8/BJRuw4dUvnXrDBpNJpRUMAJQbp1ax60kfU1HV7gkVngZl/PqF+fa+NN4AEAOTnF/GujIMqBFcOC6c4DOB2GChxuDF4jWkK5eXq9STJmAgiuuMwXrC8LHTw++/xfAMC69YcBcLEHarVSsO5mQfSH/8XreIGjTW2HnQ/YdScYBVqGWujgYXI4eARR4MH6QVERF0fSrm1Dj22dzkXS126LxSpyAgHErgrMwYNFarCoKylxlCcRrCuszzO8CSibNeOcSbKyi3gBl1ShWyaToVnTugCAM2ezADjvMYK574ngEO4QtukEfe3ixVy8+95vyMjIFwmSvMULBcKxY5cBANnZxXwfHzGiN9q3awQAMPi4rgHAWUffYrDjIxj35vGOOCJ23wk4nTk0GpWkwxA5eBAEUZ0JWOBx9epVNG3qPlrGZrPBbKYTHUEQ1Q+hcIH0HQRBEARBEARRtaxffxgjnvkWM2etdhNgs9HnrLgiRCaTBb0oyEQFBr3ZKXoI4ncIR48DQKw3gYfGKTYJFiaXEcAs4kGYaR5sNGrfThxC0ct/y/dxn5MYMVxZOONI9Dh5KhMAcNNNjapsfaoDarWSLyKWljlHnxcKsusB4OYOTiEM+w2tVhsfyxAdHVbRq1pjaOAYKX/lSiGKi7Vu82UyGerW4QQersUk1xHWJoF4S1gIZsW8YArVgMAiWsIcMVc6nZGPz3AtSFemwIOdg8vLuH0z5dPFkm1kMhlCw5zxMqyYHoj4zNs5vrbhHtESPIEHLyYzWQRCnOCJDFz7N4sxkVwXgdhEyJUrBZjx3SpcuVIAgDu+2XLZvQ7g7JfMwUMtcCdxhXe88iHwcN3X3vpwZGQo706Sk1siWgdXUlM5Z5CrVzhXMnYe8hYZQ1QN7F5WGAn0+JNfYf36I5j+9X8iESFzkAomTOARFRXKC0GF1y0prFYb1m84IprGxBjBEIjVdYgsz53PwaVLnDsPO25DPIig+L8TXK7Jx45dFjlpEQRBVAUBCzxat26NrVu3uk3/66+/cPPNNwdlpQiCIIIKOXh4hOJrCIIgCIIgiMrm3PkcnDqdifm/bOZtvhnsgTMrEFY0oY4Ht8UlWlitXAxFWJCjDYSCEW/F7ijHiNuiIm3Q/m6xuDxMZw/KtUHMNL8WGjdO5l97KgBXJmy0c15+Kf+wPzExusrWp7oQJeF8UCKIGgCckSKAWKSTl8+NCI6OIoEHIyU5BpGRobBYrNi167Tb/OjoML4wq9eLbfVdBR5CIZiwUMc7eAQ7osVxfLK+EOYloiXUIdDT6U18kTokRCU631Tm8e7q4LFs2T63Nmy/87FdeiNf0AtkXb0JAWobaoezRfr+8wCCLPDQON2CKkLg4SpA8uq+JSHwsNvtePjRL7Bg4RZ89/0qAFyhm/VFnSA2g0W0RDr2j8rhGKOTcDvQ+eng4RqHo/ERgVa/XrzkNrnCzit6gwk2m40/LykpoqXawY43m80uEqwB3H2m0EUmW+AIda24RgoVF3P3ChHhIbzYSyp2SMjefWfdpjG3qmCIRRs1TESbNg1gt9tx6PBFAIDB6HTwkIIJP4TxiUajGaOe/x6jX5iFDRuPID8/OA4oBEEQgRLwnc+kSZMwbNgwXL16FTabDYsXL8apU6cwf/58/PfffxWxjgRBENeFWMRAKgZP0L4hCIIgCIIgKoP77u2CP//aAa3WiCNHMtCkcQo/j7lohEo4eFQEIY4iCRthDHi3Mr8WhIVWb0Wi+vXjIZPJUFamR3GxNiiFQjcHD8dDaKfNe9UIPFo0r4u4uAjRfvc0erIyiHQUwy5fzgcAR1RD1QlOqgtRUWHIyS1BaalT4FFawhVtnnryTtzdv4OovUpQ5GOW78wdheBG8LdsWQ97957lhU1CEuIjBQIDcXHXZBK3FzqACONetBXgRAS4OwD46+DB4mPUahXUalWFugd5ghXOy1xiMoSwYig77vfsdRYaAxN4kIMHg7k6MPFkMAUefIyJycJf54LpIuEqkIr0su682ETguJGdXcy/3radi7SPjgrjo0y0AoGHM6KF+w62bV9N/w86nRHDh/Xi2/of0SJe31AfLjR168YC6c73IaE+it0Gk+gcRg4e1Q+NRgWFQg6r1Qat1iDqc2HhGv5+GwByc0ukFhEQOp20+1x0dJhXVxohwnsNBjuWgnUvkZIcg2PHLvOCLN7Bw6PAw93BQyhOf+fd3wAAH0x+FHfe0Zoi6QiCqFQCdvAYPHgwli1bhnXr1iE8PByTJk3CiRMnsGzZMvTt27ci1pEgCOK6sJODh0dEu4N2DUEQBEEQBFEJpKTE4MGhPQAAJ05eEc2rKgcPVoCKjAiBXB7woxKvCKMSfEW0MJv0Sxl5QfludwcPrujOClGsMFUV9Lmrveh9IDEIwYYVw5iVfnR0mGQWe20jko+u4UQddrsdxQ6Bx/1DuiEtLVnUXnjsnDx5FQAQRREtIho6YlqkiI2L4M99rnbwriOfS0qcTirCwh17HcxiOuAuwPIm8GDCMb3exDsVhIaqREXyShV4OFwTLlzMwYED5yXbMPv/UIlrTyACD28ivtqG0aWYGxVEN5+Kd/BwFTR5E3i4O3gIxYuM6JgwXnglFGWVl4sjWjSC7Zj9w1rRMpizj1SMnZBIVwcPH9f6unXjRO9TkmMk2zkFaGaRwENFDh7VDplMxosiikt0ItFRUWG5KCZI6NJ1rehcXKcA4LZbWyIkRM0fm74cPHRadxEeiw0K1vmDudkYHdFm7Frry8Hjt9+38X+jnDub7dZu0nu/485ek3DlakFQ1pMgCMIfrunO5/bbb8fatWt9NyQIgqgG2AXKBdIwiCHBC0EQBEEQBFEVsCJnVqY497uyHTwiIsTf08BL8fWav0NQGIr2UfyrXz8eWVlFyMwsQoeb0q77u13zzllES0UUxALFtQBdpQ4ejgLwTkdsBhVpOVhxiLl26PQm3pLfX7t0imgRk5TkjP5JTormi1cANwqeFVBdi2WubjzFJU4HD6HVPnsdFuT4pUAK3kIHD7Z9iYnRsNuczx8SEyKDun7eYMf3v//uxb//7pVsw4p7UtceX+4HQhq7iJ5qM67F2sTEKA8tA0fk4FEB17NwlwgifwQeJ09eRWZmIerWi0NRkYTAIyoMVscx8NHHf6FL56Y4ceIK5v60AYBTaOi6HadOXcWKlfuREB8Fvc7PiBaBg4dGo/IpXK1XzynwiI0N9yi4ZN9rNJpI4FEDiIkJR1GRFsXFWj7qBAAuXMxFUZHzGhIUgYfOXeDRs2dbAM7+4epE5YqUyxJb76AJPNRiQRYTeniKMbpytZB/ffz4ZXTu3BRnz7kLPBjLl6fj+ef6BWVdCYIgfEGeQQRB1C5I0CCG3E0IgiAIgiCIKiClTiwAICubE3hYrTa8+95v2LTpGIDKc/CIi4tEp06NkZ7OjepOTU0K+ncIR7r7Eg4whw/h6PzrweIa0VIgFniwB91VASu6MqrSwYONnGZFjphoEngAQHwcV4TPcwiDmNBDrVb6LchhrjQER7JA4NGgQQLscNrjy2TOAqpBL3bwcHXjEUW0lBuwYOFW3HtPZ74PR3gpSF8L0S7HhLcIGObOodebkJfHbVtSYrRo8A27BlQG/riZ3HZbKwCQjGYK8VJM/3X+S1j421bs3XcW3bs1R9u2Da99RW8whM4ygFjcdL0wEcR/y9Nx6RLneKVUBk9k4C5o8tzfhSP/X5rwE/5c9CqKBMcnIzo6nF+uXm9Cv7s/EM1n1yHXiIcRI2e4LUvKaUaI8Prqz7la6OBRt06cx3ZsWZyDB3cfoVQqgu58RgQHds9ZXKxFtkDgAQC//LqZfx0MgYdeIqIlLo6LGnQKssxubYSUSwg8gh33xo5XAxN4GLj19hTRctutLbFmzUEAwOUrBZzA42wWAGDQwE5YviJd1J4JqQmCICqDgAUesbGxkjaVMpkMISEhaNq0KYYPH44RI0YEZQUJgiCuF6FwwWYjEYMnaM8QBEEQBEEQlUWdFK64l5NTgtzcEnz08V/Yl36On19ZDh4A0K9vB17gkZZWsQIPbxEtgDPOIlgCD7PDbSEyMhRlZXpnRIuRWVJX3bgfV4FHeCWJeqSIclmX2FgSeABAssOmnxWGMrO4kaxRUZ4jbKKiQlFayhWLkpOi+WUQHEnJQoFHPCa+9QCGPvQZP40JPJj4jeHq4FFSLD5HfPf9KixbtpcvoicHsZgOAPHxYscNbwVvJvDYvuMkX9BOTo4WxVb4OhcGE9dzjRT33dsZgLTQTEr0wWjcOBlv/28o90CFUp1ElLs4eCQlBq9PGgzOYvKRoxkA4HVUfaCECQRSoaFqKBSeBQzC62hmJneOlHTwiA7z6mLChEj+OJH4cvAQCjb8iRsTtvcmxGHHh8FgQqFjGyMjgysmI4JHrFDgIYhoAcSOGxUV0ZLguG6oHQ4eZrNnB4+yMr1IdOJKsNzAQkJcHDz4yEJpgUevnm2R2igRFy/l4bPP/8WggZ34c82DQ7vj9OlMnHEIPgCgsJAEHgRBVB4ByysnTZoEuVyOQYMGYfLkyZg8eTIGDRoEuVyOsWPHonnz5hgzZgx++OGHilhfgiCIwBG5VFTdalRHRPE1tHMIgiAIgiCISiIhIRIKhRwWixXfzFghEneEh2vQrVuzSluXNq0b8K9792oX9OULbaV9CQeY0KC0NDgCD2aHXdcxWp6NhHRa2lcfB4/69YMfj+MvjVITRe+bNq1TRWtSvWDuGznZRcjKKsL4F+cAcBZtpJjzw1gMGdwVqamJGDWqb2WsZo2iSeMU/nVaWjLq1InlC7vduzdHikMQc/58Do4cucS3NZs8O3gwLl8pQPp+TqwWbOeUeMdIbEa4F1cMVnzW601YumwfAC6ipX79eL6NP0XnYOHLwSMsTMOvj5QzQlW6C9Vk3B08ghfR0ssR/SCEiXSCQargmuBroJhrYdhoNGPdusMAgBbN6/LTo6LC0LaNZ4eXSEc/9Ud46c1BBxCLFv1xsBG279Klqcd2oY7iuMFg5sUs9erFe2xPVC3MweOr6cuxZu0hAMAdt7d2a1dW5u6cEShMMCLs8wkJ3DGvcoiWXIWKQoROGCEhKsTEhItE16lBEmCz45UJPJhYzJPTjUIhx9ixA/j3079ejtJSPcLCNEhLS8bAgR0BcGI/wOmURxAEURkEPFRj27Zt+OijjzB69GjR9FmzZmHNmjX4+++/0b59e3z99dcYNWpU0FaUIAjiWhELF0jEIIQ0HQRBEARBEERVoFQqkJwUjcysIuzceRoAkJaahJ/mjoNSKa9Uu+/GjZPxwpi7ERUVijoVEBsw9IHuKC83oEnjZIT7iE2IDrKDh8XCPUxnD/nZA3inwKPqHDxu7pAmeh/M4l+g3NKjBWbPHI3nRs8EAKQ2SvTxidoBExtkZxdj3s8b+ekJXkah16sXhzdeH1LBa1ZziYwMxdwfx2LT5mMYcPfNAICffxqPgwcvoF+/DpDLZbjttlbYtu0Elv23D+3aNgLgdONh+CoiBTsCxc3BI8zzuSxMovhcr14c2rVtiPMXcnDbrS2Dum6+EIr4pIgTiFek3Dp8uSUQ0vTt0x5//rUTADDs6Z5IDKKDR2pqEia98xA++OhP/ruGD+sVtOU3E4j8WCHYE67X0XXrDvMj/B999DbMnLkaOp0R3bo2RYsW9dC5UxORqBXgBE+sgO3ruhwTE84Xzr3x9FN34pdft+CtN+732RYAJr3zEE6fycQ9gzp5bCN08MjM5FyGhO4fRPUizkWYBwAdOqRiy9bjomn+iIqNRjN+nLMOt93aCjfdlOo2n0W0RMeE4+uvnoHeYObvPVmfZveeUggdnoYM7oZxY+9GcbEOs39Ygx49WvLOf9cLE1DxDh5G7w4eAHeP+MCQblj8z24s+Wc3AODOO1pDrVbiwaE90K1bMxgNZowYOUO0HQRBEBVNwH/Jr169Gp9++qnb9LvuuguvvvoqAGDgwIF46623rn/tCIIggoCdHDw8IhK/0L4hCIIgCIIgKpGUOrHIzCriRQevvTa4ygQHTz5xR4UtOyEhCq9OuM+vtsyCurQsuA4eapcRwSwHvSoFHhERIZjwyr2Y9uUyhIVpKlXU44pMJkPbtg3x4viBuHQpDz16tKiydalONGzIuark5Jbg1OlMfrrV4tlmnfBNy5b10LJlPf59nTqxInHZoAEdsW3bCVy4kMtPM3sojLVt2xB6vQlXrhQgLEyNoiLO2SPYES2uhcKICM8OAlIOBA0bJECjUeGd/z0Y1PXyhzp1YvHsyLvw8/xNoogAuVwGmUyGxx69jZ+m0ajQsWNj7Hc4oQAk8LhWxozujzZtGqBbl2Z8/FgwadbMKcLo1KlJUF1hZDIZWrash5Mnr/ps61oYXvTHdgDcsdm/Xwf07dMeNpsdSiUXU9G1azORwKNTp8aY+OYDvFBCeF2+u//NuOOOVvjm25XIyuIEFZ99+rRf2/rsM33w2KO3ITravzik/v06oH//Dl6XzVwO9AYTMjLyAAD16gZfGEsEh7v734wf56wXTXMV1wL+RbQsWLgFCxZuxYKFW7Fj2/+5zWf38mFhanTuLHaBUau4Pu3pOgYAFy86r3e33doSMpkMsTHhePON+4N6bIc4jtfjJ67AbrfzDh7eBB4AMHp0f6xee5B3JurYsTEAzuEjtVES8hwRiEVF5bDZbFV6T0sQRO0h4DNNXFwcli1b5jZ92bJliIvjbkS0Wi0iIz3bNTK+//57tG/fHlFRUYiKikKPHj2wcuVKfr7BYMDYsWMRHx+PiIgIDB06FDk5OaJlZGRkYNCgQQgLC0NSUhJef/11foQKQRAEII4h8WWtWJuhiBaCIAiCIAiiMnGNEGhErgl8nEtpieeH7Xa7Hdu2nUBhke9RghZHIZ4VjNg9v8mPEYuVwdAHuuPNN+7HrJnPV+l6MB595Da8+cb9UCjowTzA9UcWq3FaIPCoiGIt4YTFn+gdhSfAaW3vGm0EAHN/fAFrV0/ChJfvRWRECF579T6oVMEVb6lUSjz15J1o2iQFjzxyK+LiPD/3tbs8dwkJUSEhwfdz4opkxLDe2LDufV68JZPJsG3Lx9i4fjLuH9KNbyeTyfD1V89gxbK3+WlSjiSEb0JC1Ojb5yZRTFkwYQI0AEgKojsI4713H0ZMTDieG9XHazvX6+i581ztokvnJgAAuVzOizsAoHOnJqL2Tz15p8gFQ3jsDhrUET3vbIt5c8fhycfvwB+LXkWbNt4daRgKhTzo+z7EIXYqKtJi+Yr9AIA2XmJniKqlTp1YfPnFCP59o0aJaNIkxa2d3mD2+Uz42LHLXufr9Nz1KizU/XypUnP932T2LA7NdUQIjnq2D26+2V2EEizY8Xr1aiF27Djll4MHwMUiNWrkjIlxdYZiAm2bzY7y8uuPvCEIgvCHgO/23333XYwZMwYbN25E165dAQB79+7FihUrMHMmZ2W5du1a3HnnnT6XVb9+fXzyySdo1qwZ7HY7fv75ZwwePBgHDhxAmzZt8Morr2D58uX4888/ER0djXHjxuGBBx7A9u2cEtZqtWLQoEFISUnBjh07kJWVhaeffhoqlQr/93/uSkKCIGopIpMKEjEIIQMPorZBQiaCIAiCqD4I7ZaTkqIRF+tuJV3bYMXbsnLPAo8fflyHeT9vRK+ebfHxR497XR4rCmvU3INrJng3sogWiZH2lYlMJsPg+7pU6ToQ3mnerA6uXCng34eEqPDcs32rcI1ufEIdMQh6vVPgwZwn6tWNw8lTTleBM2eyoFIpYbfb0btXO/Tq1bbCRg6Pfq4fRj/fz+do6g4d0tC5cxPs28e5FNx+W6tqMZpZLpfj/UkP45tvV+Du/lw8jrDwzpDJZIiODsO0L4YDqFqnI8IzSqUCL40fhIuXctGlS1PfHwiQhg0T8N+/EyGTe+/vIYLCsEaj4qMfWB9zpWXLepj53XOIiAhFSalOIq7MKVZh90kRESEYM7o/EDwjg2uCnZsYarVS0hGCqD40FQg6Bt/XRfKcZ7fbYTSaEaLx7FbEnCs8IXTwcEXtuAf1FtFS5BAt9+jeAjKZrMKe3QmFHP8t38cfb8ydxhvCS5+rKF2tViIsVA2d3oSSEl2FCdsIgiCEBHyHOmrUKLRu3RrffvstFi9eDABo0aIFNm/ejFtuuQUA+KgWX9x7772i9x9//DG+//577Nq1C/Xr18ecOXOwcOFC9O7dGwDw008/oVWrVti1axe6d++ONWvW4Pjx41i3bh2Sk5PRoUMHfPjhh3jzzTfx/vvvQ60mCz2CICiGxDvOHUKFb4IgCIIgCKIyEUYSPDvS+wjZ2gJ7MM4elEsx7+eNAICNm476XJ7RwBWahA+uLRYrrFYbAEBDhUvCBzExYnv/pf9MRITDYYKoGEJCuePVIBJ4OMRaLkUoVkxmBNPK/lpRKhWY/uUzsNvs0OmNCA+vPv0lMjIU/5s41K+23bo2qxb7k/DMww/dAsgqrt/7s1yFQo6Vy9+B1WqDQW/CytUH0KB+PBo0SPD4mXbtGnGP4yQW371bM3wy5UnExUaInD2qA9HRYUhtlIjiYi1u6pCGewZ2ogijak5sbDiaNk2BTmvEvfd0dpvPxBR6vUlS4HH2bBYSE6Oh9XJfCjgFiaESDh5qFScqYdcxV+x2Ox8vFhvrX6TQtSIUeERFhfnt4AEAL4zuj9ffmI9XXrlX8twQFR3GCzwa+Ge0QxAEcV0E9Je82WzG888/j3fffRe//fZbUFfEarXizz//hFarRY8ePZCeng6z2Yw+fZwPeVq2bImGDRti586d6N69O3bu3Il27dohOTmZb9O/f3+MGTMGx44dw803SytliYrDaDRDqzV4tWokiMpGpO8gEYMI2h1EbYMe0BEEQRBE9aGOIKIlMTGq6lakGsGiAHQ6k4+W8CtGhAlFWEHeZrOLRlDSyHTCF8JRqCEhKoSHU1xFRcMs7vUGp3iDOXiolAooFHJepFWdkclkCA8Pob/BiBue6Ogw7nljTDieGdH7uvq8XC7HHbe3DuLaBQ+lUoGf542HXCaDXCGnY7sGIJPJMPfHsbBabZIihpAQFfR6E3R6E2JjxPP27z+PcS/+iJs7pImEx1arDXIXZxung4dURAt3r2n24OBRVmbgIwVdRaXBRiiKjIwMRX4+Fw3jj4NHhw5pWLf2fY/zo6PCkJ1djJJS3XWvJ0EQhD8E9Je8SqXC33//jXfffTdoK3DkyBH06NEDBoMBERERWLJkCVq3bo2DBw9CrVYjJiZG1D45ORnZ2dkAgOzsbJG4g81n8zxhNBphNDovSqWl3IncbDbDbDZ7+hjhBw88OBVFRVr89cer9IDOD1h/o353ffjaf2aLc77FaqX9LcBqdeYfWiwW6pPEDY9Q5CW87lOfJ6oL1CcJwjNVcXzQsVixpAgcPBLiaZAA4HwwbrFYYTJZoNUa8OrrP2PggI54cGgP0b1MIAIPNoLebieBBxEYLDYIAGJjI6igVwmwQpPRaIbVaoNCKecLYyq1EiqVghd4NBHY7xMEQVQ0SqWC3JFrGAqFXDKaJTY2HDKZDHq9CXoXYbHdbse4F38EABw4eAFxcc4YRa3WiMhIsTMTc/CQjmjh7jXLyg0oLdMj2iW+pKiYi2eJiAjxy0njehDe91osVhgcgo9gONpFRXPblZdXet3LIgiC8IeAz1xDhgzBP//8g1deeSUoK9CiRQscPHgQJSUl+OuvvzBs2DBs3rw5KMv2xJQpUzB58mS36WvWrEFYGOVjXQ/MTmvevH/Qpo1nKzpCzNq1a6t6FWo0K1as8Do/J0fLv75y+YrP9rWJU4Ls3vR96SgrvQCA+iRx42KzOUe6Cc8F1OeJ6gb1SYLwTGUeHzodjcCqSBITnIMCUgRuHrUZodW5TmfEgoVbcfLkVZw8eRUPDu0BnSCywR+BB8tMF0ZqZGTk86/lct/LIGo3QoFHdDQ9M6sMhOeBt99diPcmPewsQmmUGDSwE/5evAsAMPWTp6pkHQmCIIiaybTPh+Prb5fjf28NxeQP/wAA6PXiCJb9B86L3peUOP8m0moNbgIPJiiWimiJEMR0LVu2D08+cYdofmEhJ/CIrWD3DgDo0aMF/1qrNTojWkKuP2ooKoq7X5r62T8YMrjrdS+PIAjCFwELPJo1a4YPPvgA27dvR6dOnRAeLj7xvvjiiwEtT61Wo2nTpgCATp06Ye/evZg+fToeeeQRmEwmFBcXi1w8cnJykJLCqdNTUlKwZ88e0fJycnL4eZ6YOHEiJkyYwL8vLS1FgwYN0K9fP0RFkevE9fDpZ7sBAB1u7oC+fdpX8dpUf8xmM9auXYu+fftCpapYheqNButrADBgwACvo4hOn87EvPlcPnW9evUwcODACl+/mkJ+wWZs3XYFANCxY0f06NGM+iRxQzPtq328c83AgQPpPExUO6hPEoRnquL4YG6PVcGMGTPw2WefITs7GzfddBO++eYbdO16Yz0sVCoV+H3hBJgtFt5horajVCqg0ahgNJqh0xlR6mLzXFaq518zO2tv8A4eAsvsj/7vryCtLVEbEAo8YqIrvvhCABqNCjKZDHa7HVu3ncAvv27mn3nExkTghTF3o3HjZNxxe2vEk/sRQRAEEQDduzdH9+7NATgjwYQCYgA4e1bsji+MBSsvN7gtU+fFwSMyMhSpjRJx8VIe8vJK3OYXFTkEHrERbvOCjUIhx6sT7sUX05ZBqzMiN7cYACeevF66dWmG9euPAOAcuCrajYQgCCLgM9ecOXMQExOD9PR0pKeni+bJZLKABR6u2Gw2GI1GdOrUCSqVCuvXr8fQoUMBAKdOnUJGRgZ69OgBAOjRowc+/vhj5ObmIikpCQA3misqKgqtW3vOqtNoNNBoJPLAVCp6kB4k1Gral4FAfS8whLbEAKBUKr2OPFMonKc6mUxO+1qAcL8plAp+31CfJG5UhGIwYR+nPk9UN6hPEoRnKvP4qKrjcNGiRZgwYQJmzpyJbt264auvvkL//v1x6tQp/m/fG4WGDcn50ZWwMDUv8BDeu1gsVpSXOwUeZjMX4+ItZoUXeAgcPK5cKaiAtSZuVNiIVMBpP05ULDKZDCqVgo9T+nn+JrRsWQ8AkJAQidBQNe4f0q0qV5EgCIK4AWCOUXoXgceFC7keP5OTU4ymTcWDq9n9ZpiEgwcA3HtPZ3wzYyWKi7Vu84ocDh7CGJiKJDyMuyfeufMUTCYLlEoFWjSvd93LHTSoEz6fthQmkwUFBWWoWzfuupdJEAThjYAFHhcuXAjal0+cOBEDBgxAw4YNUVZWhoULF2LTpk1YvXo1oqOjMXLkSEyYMAFxcXGIiorC+PHj0aNHD3Tv3h0A0K9fP7Ru3RpPPfUUpk6diuzsbLzzzjsYO3aspICDqDzklMlKVCCuAg+bzQ5vzsJ2QTiknYIiPWKnXUPUAlzPHwRBEARRHZk2bRpGjRqFESNGAABmzpyJ5cuXY+7cuXjrrbeqeO2IiiYsTIOiIi10OpNoxGRRsRZlZXpRW63WALXa8wNxncNyOzzc+YxEoZDDarVh1LN9grzmxI1IdJRT1BEVSU47lQUTdzBOnuTiVePiyLGDIAiCCA6eBB5XrnoWA69cdQC33tpSNE3PO3hI1+RiHPErRVICD8e02NjKcQkLc9wTs+tsr55tUK/e9YsxZDIZ4uMjkZVVhILCchJ4EARR4VRp2Gpubi6efvpptGjRAnfddRf27t2L1atXo2/fvgCAL7/8Evfccw+GDh2KO+64AykpKVi8eDH/eYVCgf/++w8KhQI9evTAk08+iaeffhoffPBBVW0S4UAmJ4EHUXG41md9FWyFs+02Ku4KEe47KnwTBEEQBEFUPSaTCenp6ejTx1l8l8vl6NOnD3bu3FmFa0ZUFuzheLnWgBUr9/PT1645hDIXW2ytVpyZ7opOxz1wj4xwujAw0chDD94SlPUlbmyELjv5BWVVuCYEACRQJAtBEAQRJJjAY8+eM7DZnKJiJth4cbx7zPnmLccw/5fNyM4u4qcxBw+2PFdiHOKNkhIuerCoqBwbNx2FxWKt1IgWwF2E0qVz06Atm8WmFRRUXcwnQRC1h2sKl7py5QqWLl2KjIwMmExidd+0adP8Xs6cOXO8zg8JCcGMGTMwY8YMj20aNWqEFStW+P2dRMUhLA6TgwdRmdh8iTZIxOAR0e6gXUMQBEEQBFHl5Ofnw2q1Ijk5WTQ9OTkZJ0+edGtvNBphNDqL/KWl3ANFs9kMs9lcsStLVAjs4fj27SdE07/9biUeerC7aFppmRZmc5TkcsxmCz86UaNRiOZFR4dBo1EEtY+wZVG/u/GQy2Ww2exonJZU437fmtovu3drhl27z6B3r7ZI33+eL4rFx4dLbovdbuf+ppeJYyk9UZPbV6d1qej2gS5b2N+ret0DbV+d1qWi21endanodac+Wb3bMxHnmrWH0K1rU9x1VzvIZDIYHAKP1EaJqFc3DlczC9GtWzPs3n0GNpsds2avwb59Z/HF508DcAqO1Wq55DUqPJy7ty0qKofZbMaYF2Yj43I+nh15Fy8ejYoK5T9bkfumXt0Y0ftevdp4vUcIZNlxDiFLbk6x3/cdVXGfUtPuiQiCkCZggcf69etx3333oXHjxjh58iTatm2Lixcvwm63o2PHjhWxjkQNQVhkJwcPoiIJVKQhcvAgEYMIErwQBEEQBEHUbKZMmYLJkye7TV+zZg3CwsIkPkFUd8rLSwAABw+ecpu3bfsR0fstW7bizGnpEY8GgzPiYfv2LaJ5/fo2qLDBMmvXrq2Q5RJVx8gR7XDqdCGio8pq7CCrmtYvb+kRgyaNWyM5OQRxsfVx9Hg+khLDcPJkOk6domduhHfWrVtX1atAECKoT1ZPEuKdrh1bt+6ByXQFAFBYxN2L7j+wF/361kVmZhQaNAjF7t3Ozx4+chErV66E0WSF0cgJBvbs2Q61WiwqBoCSEk4AUlRUjuXLlyPjcj4AYNmynQgJ4UqU586exIoV+cHfSC/06tkQ69atCdryyssLERqqxJGjx6DReI65kaIy71N0Ol2lfRdBEBVHwAKPiRMn4rXXXsPkyZMRGRmJv//+G0lJSXjiiSdw9913V8Q6EjUEYTawQl6l6T9ELcOXg4cohoRsKjxCYg+CIAiCIIiqJyEhAQqFAjk5OaLpOTk5SElJcWs/ceJETJgwgX9fWlqKBg0aoF+/foiKknZ2IKo3e/dpcf58MWTyEAAl6NGjOcrLDDhyNANlZVZR2x7db0Hr1vUll1NcosX0b9IBAHcP6M+/VquVGDf28aCvt9lsxtq1a9G3b1+oVKqgL58groWa3C9ppHn1X5eKbh/osk0mE9atW4c+ffpArZaOSqisdQ+0fXVal4puX53WpaLXnfpk9W9/7jzw79K9aJTaGAMG9IJMJsPsH48CMKJ3rzvRpAn390dJiQ4/zj3Mf85mAwYMGIArVwoA7ENoqBpDhtwr+R16vREzZx+E1WpHr159MPXzPQCAhMR4hxN8Kbp06Yw772xd4fvGbrejRYuO2L3nDB5++BYoFe6ClGtd9oABdr/WV0hV3Kcwx0eCIGo2AQs8Tpw4gd9++437sFIJvV6PiIgIfPDBBxg8eDDGjBkT9JUkagZCgYecHDyICsRViGDzIUwQzrX7inOpxdCeIQh3srKLsHvXaQwY0BEaTc16IEwQBEHUTNRqNTp16oT169djyJAhAACbzYb169dj3Lhxbu01Gg00Go3bdJVKVeOKmQRHeEQIAKCwkLOsjggPgcXM/b1dXm4QtZXL5R5/Z4XC+cgnxKWPVGTfoL5HVEdqYr+syEIk+0wghahA2lPRNTjtr2nZ8L+/1/htraHtq9O6VMq6g/pkdW4fHs7dd5pMVqhUKshkMhgNnCNHREQY/7vFxkaKPme12iCXK1BSyt2bJsRHevyNlUolQkJUMBjM+ObbVfx0jUYFnY5z9wgN0/Cfr3CBR/P6aNGifoXs92ulMu9Tatr9EEEQ0gQs8AgPD4fJxGVw1alTB+fOnUObNm0AcFnBRO1FKPCgiBaiMvEp2hA6eJCKQYTI3YR2DlELCLSbP/nUdOj1JmTnlGD08/0qZqUIgiAIwoUJEyZg2LBh6Ny5M7p27YqvvvoKWq0WI0aMqOpVIyqBsDBOjFFcrOPf6x1Z6K5YbTbJ6YDz7yTXh9EV+XCaIIiaQ6DnAjp3EARB3HiEhHDFfibqsNvtMDgiVzQhTiGAQuHu2H7w4AXMnMVFnMQnRLrNFxIdHQ6DoRgrVu7np2nUSpSUcPe7alXApUqCIIhajd9nzQ8++ACvvvoqunfvjm3btqFVq1YYOHAgXn31VRw5cgSLFy9G9+7dK3JdiWqOxeK0iiUHD6IicS3Q+hImCGdTRIsY0nQQhHdYMWXfvrMACTwIgiCISuKRRx5BXl4eJk2ahOzsbHTo0AGrVq1CcnJyVa8aUQmEh4ndNkJDNdCEGCTb2qyeb+jZ30lyuYz+RicIgiAIgiDcYG61TNRhMln4OPTQEO+xOi++PJd/HRcb4bVtTEwYcnKKRdNUKiVMju9Vqb1HpRAEQRBi/BZ4TJ48GaNHj8a0adNQXl7OTysvL8eiRYvQrFkzTJs2rcJWlKj+CB08CKIicRV0+BZ4iBQehAdI7EHUBmjQGUEQBFFTGDdunGQkC3HjExYqFniEhandouKUSgUsFqvXv8OFfwfRyHuCICoTmUwGOwKLgKmp1KZtrUgC3Y+03wkiODAHD4PDwcPoEFwI5zHCwjR8pIorarX32I/YmHCJzyhhMnODhsnBgyAIIjD8PmuyBwONGzfmp4WHh2PmzJnBXyuiRiJ8sGTzFZlBEEHEV38TunZQDIkYsfiF9g1x43Ot3ZweGhEEQRAEUVmEhald3mugUbs+YFejtFTvNaKF/Z0kl8voXoYgiEqnNp13atO2ViQVGRtEghCCkIa5dBgMJsf/nMBDoZBDqRS7ajz5xB2Y/cNayeX4couLkRJ4aJQwmy0AODcPgiAIwn/cg7O8QDdAhDeEAg87CTyISsQWQESLr7a1DTI3IQiCIAiCIIjqRViYq4OHxm0EZajD5cOb2J3d68tkMpGLGT3aIQiCqDpkMhkgo+fsVQHtc4JwR+Pi4MH+Dw11j2d56sk78b+3HnC7LwV8Czwa1E9wm6ZWKWE2OQQeFNFCEAQREAHJ4po3b+7zRqiwsPC6VoiouYgcPKiITlQgbi4cvvqb3S71kiAIwn/oORBBEARBEJWEm8Aj1D2iJczx0N3mR0QLJ/CgmxmCIKovtc1dobZsZ02mtvVJovYSwhw8HNEseoeTR4jGXcShUMhxzz2d8cefO3D2XLZonsyHwKNJkxS3aTIZKKKFIAjiGgnorDl58mRER0dX1LoQNRyLxcq/JgcPoiJxFWkEFAlECg8XAouvsdvtOHT4IhqnpSAqKrQiV4wgqhX0UIcgCIIgiMoiIjJE9D48IkTCwYN7GG/1IvCgiBaCIGoSdJ4iqhvUJ4naQKjjHtPoEHYYHQ4eagmBB0OhdA8GkPs4Xlq2rOc2zWKxOSNa1CTwIAiCCISAzpqPPvookpKSKmpdiBoOOXgQlYWrEMGXMEEUQ0JdU0Sg+2bd+sN47/1FqFMnFn//+XrFrRhBVDPouQ5BEARBEJVFvbpxovexsREiBw+FQs4/BLfavDh4wOngQRAEQdQ8yEWCIIiKRuNw8NA7hB1sEK9K5TkyRaFwn+croiUxIQq9erbFxk1H+WlGk4UXJAsdPOjcRxAE4Rt3qZ0H6GRK+IIcPIiqwpeDh13gUkHiIzH2ABUeGzYcAQBkZRVV1CoRBEEQBEEQRK0mISFKJOiIi42ARjCqUaNRQeF4iO7tbyH2d7nr4xx6vkMQBFFzoHM2QRAVCYtiMTgcPNggXoXCc+lQKeHg4c+56p57Oone6/VG/rWroITOfQRBEN7xW+Dhj3U/UXv57PN/MGLkDP49FdGJisS1d/nqbiINA4mPCIIgCIIgCIKoxshkMsTEhPPvY2PD+dGVAKDRKCGXc49zbN4iWhx/CPmyzCYIgiAIgiBqJyo1J6xgg3eZO5w3gYfUPLmX9jKZDJAB3bs1xzMjeqNVq/oAAJ3OKfBQX0dEC1u+P6KQQNoSBEFUZ/w+a9q82H4SxJJ/9ojeUxGdqFACjGgRtveWUV0bEYlfAmxPELUJGegPP4IgCIIgKo/ExCjk5BQD4Bw7XB082EN0qzcHD8fNu8yHZTZBEARxY8AKllS4rHwoUoKoqSgVTODBPTP3z8FDIqLFR99nx8azI/sgISEKJ05cgV5n4ud5+z5/COTYo+OUIIgbges7axIEIMpNY5CDB1GRuHYvnxEtgtneMqprJ86d449Tk90vGQhBEARBEARBENfDTe0bid6rXCNamMDDi4DdGdFCD7EJgiAIoqKh6y1RE1EoxfeUvMBDHpiDRyCCYiYQ0es5gYdKpai2xw85fhAEUV25dt8jgnDw9jsL3ab5KrgTRDDxJUwQihLIwUOMyMHDj8OWtFtEbYX+jiMIgiAIojIZ9nQvnDqViTvvaA1AnEuu0aigcDxE9+a2yu7dXR9I020NQRAEQRAEAQBKF9GwzY+IFqVSIqIlgAdn7PMsouV64lkqAxJ3EARRHaneZ06ixuKPEwBBXCuu/cunwEMwm+KmvEDHLVELoOsTQRAEQRA1gYiIEHw9fST/Xq0SOngoIXeMqrR5c/Bw3PfIKaKFIAiCIAiiQgk0pqei2/sLE3JYLFYAgNXih8BDIRHREsD9psrh4KETOHgQBEEQgUERLUSFQA4eREXiFtHiU+AhcPCwkMBDCBW7CYIgCIIgCKL6I4poUasgV3AP0a1e/va2UUQLQdQaapOFfG3aVoKoDAI5pgI9/li7mni8Xsu5JtDtrMj2/q4/i0sBuHtHPqLFi8BDIeXg4SXSxdN3sogWoZCZIAiC8A8SeBAVAhWNiYrFxcHDl6BIMJsiWsSIIloC/QBB1ABcXXuu+aFCDXwYQRAEQRDEjYNaMLIxJETF56J7jWgBCTwIojZRm4712rStNRkS41QNFS1MqE2/Z03fVn/WXyjksFis/gk8JBw8AtlXTODBXEMUSnLwIAiCCJQqFXhMmTIFXbp0QWRkJJKSkjBkyBCcOnVK1MZgMGDs2LGIj49HREQEhg4dipycHFGbjIwMDBo0CGFhYUhKSsLrr78Oi8VSmZtSq5Gy0CIHD6Iy8dXfhIIj6pti7AJZhz/CLNJ3EDWJU6euot/dH+LXBVuue1k1/G96giAIgiBqOCpRRIuKf+juTcDOhPBultl0Y0MQBOEREiUEF9qPVUNN3e90/FU+QiGH1Wrj3eHkXiNapBw8/P/NXB1ApJZHEARBeKdKz5ybN2/G2LFjsWvXLqxduxZmsxn9+vWDVqvl27zyyitYtmwZ/vzzT2zevBmZmZl44IEH+PlWqxWDBg2CyWTCjh078PPPP2PevHmYNGlSVWxSrcNut8NstkpOJ4iKwrV72X14TwjnWqzu/ZXgoMOWuNH4/Y/t0OmM+O77Vfy0a70+yUAPFwiCIAiCqDqEAys0GhVvg22zeolocdz30F0MQRBEYFBxmSCqDjr+KhdhRIvVaruOiJbAHTz45ZHAgyAIImCqNNxq1apVovfz5s1DUlIS0tPTcccdd6CkpARz5szBwoUL0bt3bwDATz/9hFatWmHXrl3o3r071qxZg+PHj2PdunVITk5Ghw4d8OGHH+LNN9/E+++/D7VaXRWbVmswmaSdUsglgahIXAu0viJayMHDC7Q7iBuYhPhI/nVhUTniYiOqcG0IgiAIgiCuHbGDhxJGx9/iVm8RLY57fVkAD9wJgiCI2oNMJoMddiqoE0QtRijM4CJauMGR3lw1pOYFFtEi/rw3txCCIAhCmmp15iwpKQEAxMXFAQDS09NhNpvRp08fvk3Lli3RsGFD7Ny5EwCwc+dOtGvXDsnJyXyb/v37o7S0FMeOHavEta+deBJ42L08ZCKI68VV4GHzNSJfMNubhXFtRLgv/YpoIUUIUQ05fz4HWp3RbbpwBMDVKwU+l3MpIw9Ll+2FXm8K6voRBEEQBEFcL2q1QvBaBQVz8PAiYOcjWqhwRxAEQXggkKIsxWcQ1Y1A+yT1YXfkcjkv8vDXwUNq/wXk4KEgBw+CIIjrpUodPITYbDa8/PLLuPXWW9G2bVsAQHZ2NtRqNWJiYkRtk5OTkZ2dzbcRijvYfDZPCqPRCKPRWQgqLS0FAJjNZpjN5qBsT21BpzNITrdYrSjX6qBRqyp5jWoWrL9RvwsMi0UsLDKbvB+7ZkF7q9VG+1uAVRBZY7VYfPZJm0AgQ/uRqA4cPXYZY8f9iISESPz952uieeXlzmtUbm4xzOa6ovnC635ZmQ6PPf4lAECrNeDBod1Fbe2wU58nKgW6NyAIz1TF8UHHIlFdEDp4KBTOB/E2L4MreCG8y0N4qmkQBEEQ1woVxonqRqB9kvqwO0qlAiaTBVarjRcPexNsWCzu958sPtDf7xN/ln4TgiCIQKk2Ao+xY8fi6NGj2LZtW4V/15QpUzB58mS36WvWrEFYWFiFf/+NREmJ+4hpAFi+fAe+mr4cd9xeH9261pVsQzhZu3ZtVa9CjUKrFT9o37ZtO86eDffY/szZIv51ebkWK1asqLB1q2lcvHiRf33k6FEolXkAPPfJ3Nxc/jXtR6I6sHFTBgAgP7/MrU+ePnOOf71l626Ul18UOdUI269YsYZ/vW/fIYSFFoqWVVhQQH2eqFTo3oAgPFOZx4dOp6u07yIIb6jVzsc3crmMH+no1aHQ7vsBPUEQBEEQBFG7YfeVFosNVgtz8FB4bG8RDBhkBCKcEd7XCr+fIAiC8J9qIfAYN24c/vvvP2zZsgX169fnp6ekpMBkMqG4uFjk4pGTk4OUlBS+zZ49e0TLy8nJ4edJMXHiREyYMIF/X1paigYNGqBfv36IiooK1mbVCjIy8jFz9kG36adOc4WxTZsvY/L7z1byWtUczGYz1q5di759+0KlIrcTfyksLMe33+3n3/e45Ra0alnPY/tt205i8ZLTAACNRoOBAwdW+DrWFM6cXYH0/dw5s23btujbt4PXPrlpSyHOX+DitGg/EtWBjMtrsGdvFgD3Prlr9yIA+QCAunUbYeDA3vh82l6w3KaBAwfy5+Fbb70V3808AABo0KARBg68GwDw6We7AQDxCQnU54lKge4NCMIzVXF8MLdHgqhqVCrnQ3a5XMZnlXsTeNgoooUgCIIgCILwgVA4bPEjosVidhd4BCIojowMEX9/AO4fBEEQBEeVCjzsdjvGjx+PJUuWYNOmTUhLSxPN79SpE1QqFdavX4+hQ4cCAE6dOoWMjAz06NEDANCjRw98/PHHyM3NRVJSEgBuRFdUVBRat24t+b0ajQYajcZtukqlogfpAeLFDZaH9qlvqO8FhlLpovKVK7zuP7lAcWy12vza10ajGQqF3M0y7kZDePMtl8v5feOpT8rgbE99lqgOCM8Hrn1Sb3C6/RQX69zmC9/L5c5j3WzmzhNCtw+ZTEZ9nqhU6N6AIDxTmccHHYdEdUFoey2TyfgH4UzEIYUzoqVCV40gCIIgiApEJpPBDjtFixAVhlLJBB5WPs7bq8DDIiHwCKB/RkaGit6TgwdBEETgVKnAY+zYsVi4cCH+/fdfREZGIjs7GwAQHR2N0NBQREdHY+TIkZgwYQLi4uIQFRWF8ePHo0ePHujevTsAoF+/fmjdujWeeuopTJ06FdnZ2XjnnXcwduxYSREHEVzMZgsAICREBYOB8qmJqsFm9/xQEwBvTQx4fwDKMJstGHTv/yEiIgRL/n7jhv4DSrjrfO1GgqiOeDs+dTpnjFhxsdbrcoSjX40m7nomPF/cwKcBgiAIgiBqGHK5jBdq27yNuvAQ0XIj/31DEARBENWdaxFs0LWbqEhYHIvFYuOfhSkUnvucxeJ+/yn30t4VjUYFlUoBs8MJJJDPEgRBEBxVKvD4/vvvAQA9e/YUTf/pp58wfPhwAMCXX34JuVyOoUOHwmg0on///vjuu+/4tgqFAv/99x/GjBmDHj16IDw8HMOGDcMHH3xQWZtRqzGaOIFHZGSoR4GH1WojFSYRVOyuSgQfygQ7nPO9ZlQ7uHq1EDqdETqdEVar7YZ38eDxQ+Hhtu8JoorxZgGp15v41ybH9coTVoGYw2jkrmf+nC8IgiAIgiAqG5lM5sxK9xbR4rh3p6IQQRAEQVQv6NpMVCeEES1WfyJarO4OHoEKliIjQ1FYWO74rlry7J0gCCKIVHlEiy9CQkIwY8YMzJgxw2ObRo0aYcWKFcFcNUICKaEGK5hFRIQgL086n7q4WIv4+MgKXz+i9uB65vDlyiE81dgCLNhaLNYbWuBBgg2ipuPt70ehgwcTbXhC5OBhYA4ezmky8jYnCIIgCKKawDl4OCJavPx9Y7eRwIMgCIIgCILwjlJS4OH5ebikg4eXAVhSiAQeAX6WIAiCAMhWgfCL4mIt7hsyBVM+XSyabnYIPMJCPcfhCEdQE0RF4CuiRShi8DbCTQpmFXejIopo8ad9ha0JQVwb3goWZoFrh9GHg4dQzGE0cm2toogW+mOTIAiCIIjqAefgwSJaPN+hs3v9QDLRCYIgCIIgiNoF7wxnsfrn4GFxf14e6P1mZGSo2/cTBEEQ/kNnTsIvVqzcj6IiLZYt2yeazhw8VGpvis4bu0BOVAEugg67DwcPoSrBl9uHK+YbtP9arTZHQdu5P/xx8xC28Zr3TRCVhLcRAkLLSJPRR0SL0MGDRbRIjEggCIIgCIKoalq1qu908PByT85HtLjcL5HcgyBqBjKZDJCR2JwgCIKoWBRKgYOHzQ+Bh8SASHmAIg2hwIPd1xIEQRD+U6URLUTNwdMFnYk3VErPXckaoGMCQfjCVYdg9+ErIRQl+NMfhaIk6w0o8LBYrHh6+NcIDw9Bs6Z1+OmBprXYbHbQ/TdR1QgfdtrtdtF7oWWk0eQ9osVmdR4ATOAhKpjQM1WCIAiCIKqYBb+8hPPnc9C9W3OcOHEFAGC1enHwoIgWgqjx0PF7/chkMthhp31JEAThAaUjjkUY0eJtQFWTJik4fOSSaFqg51iNxllPIgcPgiCIwKEzJ+EXSqXTocNsdo6CFlp2PfH47ZKfJQcPIti4Ok34cvAQzrXb7T6dJ4RF4RsxouXKlQJcvJiHY8cuw2T27mrgDRJvEdUB4R+Qrn1SeP0xBuLg4RCDCKf5dAoiCIIgCIKoYNLSknHXXe0BOHPRvd2Ts7+bKKKFIIjaDok7CIIgPCOKaLH4dvAYM7o/Hn/sdrz9v6H8NG+CEClUgnqTXEHnaIIgiEAhgQfhFwrBBbqsTM+/Fgo8xr4wAPcP6er2WSoCExWNLUDrCV8xLcKi8I0Y0SLcfuZUAPgX0XI9cTcEUREI/4B0FRSKHDyMPhw8BMIvg8HdwYMiiQiCIAiCqE4oHA/CryWihSAIgiAIgiAYTMwhdPDwJvCIiAjBuLED0LJlPX5aoIJilUro4KHw0pIgCIKQggQehF8YTc6Rz6WlToGHxeWCL6WIFxbYCCIYuOoQfAkNXIULvkRHQlGHVKZgTcdiFbgaGLwXvV0R7ksqeBPVA+lIFkB8rJtM7g4enuKbmBhEaHluJUETQRAEQRDVCJZV7u0ehY9ocZ1BI9kJgiAIgiAIB8y9vVxrwNJlewH4J7pQCLK7AxUUCx3jFSRGJgiCCBgSeBB+odMZ+deeHDwAaSsuq/XGK5DfKCz8bStGPfc9tFpDVa9KQNhhd53gvb3LfF8CD6tQ4HEDOngY9E5Rh8EQmIOHcN97y/smiMpCWJ9wjRAT9mkpBw+RwENQHCkq0uLs2SzRuYIETQRBEARBVCfY3942bxEtjv/JwYMgCIIgCILwBKvtMHEHN833/aPwHlMuD6zUqFQ623tzCyEIgiCkoTMn4RfCInCpF4GHlIMHRbRUX76dsRLHjl/GH3/uqOpVCQxXBw9fwgSX+b4jWpx91nwDOnjoDSb+tdEkFHj4/qywDYm3iOqAUKRhEVxvXMVZVqvNbZq4P4uvVU8P/0Yc0UKCJoIgCIIgqhHsb3CvES3MwYMcOwiCIAiCIAgpLl6E/OIFAEDuyYv8ZH9EF8JYFqmBv94QRrQEKg4hCIIgSOBB+Ile73Tw0Gqdr3mBh5I5eLh3KYpoqf7odCbfjaoxdl8RLS7vA4loMd+QDh7O39sQaESLTRjRQgVvouqxehB1WCSOc9eYFl+RQ8Ll+RSSEQRBEARBVCLM1trb3yt2O3d/E2gmOkEQBEEQBHHjY/v5VxieHAOrLAIAUGpxxqb4U9MROngEKigWRbSQgwdBEETA0JmT8AudoCAsjK8IloPHuXPZmP7NcpSU6K53VYlroKZFD7hGifgqvLq2t/rYXlGR+EZ38BAIPPzpByJHgxrWb4gbE5HAQ3C8WiWKHa4CD6FIiS1HrXaOIBAKGr3ZnxMEQRAEQVQ2ISEqAN4F2+zPINeIFtJ7EARBEARB1HIuXoTphwXIeuZzyCKiAQDlgmdp2swcn4u4PgcPocCDbk4JgiAChQQehF8IR/wLR0W7CjykLuSulvhSPDXsayxatB3Tvlx6vatKXAM1zYnBVc/hKuBwxXX7fDp4mGuRg4fR+UDYtfgthfj4r1n9hrgx8cfBg40KMBrFBRCRg4ejP7dsUY+/lpWUOkWHNe08SRAEQRDEjQ0TeBi9CTz4iJZKWSWCIAiCIAiihmCdNQeFdz4FyOVQSLiyl+896HMZQjf3QB3jxAIPhZeWBEEQhBQk8CD8Qi8oCJvNziKw1coV05TX6eDBOHU681pXkbgOfDlaVDfsLqErviJa3Ebt++iTwpH//giUahp6wUNgYcHbtfgthfB4JgcPojogFF4I7SPZcaxQyKHRcK4c3iJaWN9WKuUIDVUDANatP+ycT/2dIAiCIIhqREgId78idOdzhTkdUkQLQRAEQRAEIcR+9hxM9ZoCAGLCQt3mlxeV+VyGcLCvPEAXDmFES6DuHwRBEAQJPAg/ERZ+RQU0t4gW989aAhB4UN5a1eBv9MDGTUexXlDwrC74imgRipIA36Iji4fIhxsFg+AhsFC8ZTT6dvCwSjj4EERVIuyHZpE4iwk2FKICiMi1QxjR4hBwyOVyhIZqAACrVx8UtKX+ThAEQRBE9cEvBw/HfY9rRAtBEARBEARRu5E1bQL11bMAgLSEeLf5urAI38sQ3GPKZIHVdcQOHlQTIgiCCBQ6cxJ+YTJLOxo4BR7cBVlKbWkNwAFBSXZcVYI/0QNGoxlvv7MQ7773O0pL9ZWwVl5wjWjxsf5mk7gP+tpeoSDEn4gWi8WKH+esw+HDl3y2rQ4IRR1CRwOTybeDh1RBnCCqEpHoSMJ9R+jIYdC7RLRILEehkCMsTO32PTaKJCIIgiAIohoR6oeDBx/RAvHf6VLOmwRBEARBEETtQfH8SMRt/gWw2dAoPtZt/vCX7ve5DKFLXKAuHCqRgweVKQmCIAKFzpyER+x2OwoKOCsuYRFYWuARnIgWsuOqPDyNYveE0N2hrKxqBR52F8cO1/cAcCkjD//8uwfFxVo3kYbF6l20IXSpMfvh4LHsv32Y+9MGjH5hls+21YGzZ7Mlp/vj4GESuPlQwZuoDgiFRmYJMaJSqeAFHjq9UfRZoTiMnQflCjnCwjRev4cgCIIgCKKq0TgcPAx63xEt5OBBEARBEARBiEhNhXrUE6gz9zVEZ54WzZo1OBWtenfxuQiRg0eAX69UKZ2vlVSmJAiCCBSl7yZEbeTipVw8/sRXAIBPP3lKNLLfImGBzwQeUgINSwAOHmTHVXkIfxd/ogeMgj5g8DJKrDJw1XO4RrQYDCaMG/8jCgrKsG37CbRsUU/c3ocwQdTHzb5FD5cu5flsU13Q6ozYveeM5DxhFJMn9AILaIqsIKoDVoEgSyjeEgoQ+RGuepNDiMidA0SONI7PKhRyhIVKOHj4IYQjCIIgCIKoLNj9jcHLPTz7M0lOjh0EQRAEQRCEC/JhTyLkzttQ/+sfRdMTnnrIr88rBM4bgTrECUUdNOiXIAgicKiaTkgy8tnv+NdfTFsKk2Bkv3CEtLAgBgTBwYMEHpWG8Hd0FUhIISz+l5cbKmSdrhXXiJbdu8/w7jOXM/JFDjSA7z4pEnj40X+VypoTLZR5tVDS8QTwT+AhFPdYqeBNVAOEx7PQfYe9Fjl46Iyi9lJORgq5TNLBIxCxIkEQBEF4IjU1FTKZTPTvk08+EbU5fPgwbr/9doSEhKBBgwaYOnVqFa0tUZ0JcQg8zGarx/sUdq9DkSwEQRAEQRCEJKmpCJv8tmhSuMRzMSlE95gB3m4KI1oUiprzbJ0gCKK6QNV0QhK9wOa1uFjrEtHiLI65RrRIOngEIPAgB4/KQ+Tg4UfUhlDkU66tWoGHVif+fleByrnzzgiSsnKDW8yK74gW53x/IlqE/TYQQVNVkJVd5HGe0eTdrcRut4vODeTgQVQHhP1Qym1KqZAjNIwrgDDhF0Mo8BBez8LCQ/jpr716H4DqJ2wjCIIgai4ffPABsrKy+H/jx4/n55WWlqJfv35o1KgR0tPT8dlnn+H999/H7Nmzq3CNiepIiCOiBfAs1LZ7iGghvQdBEARBEATB0GhUovehEs62UlyP84ZS5RR1kIMHQRBE4FA1nfCJyWQRFX6FxXGLi8BD0sHD4r0IbBZEYCjoYl5pCIULZovvGBJhRIu2igudV64UiN67GlKcP5/Dvy4r04uKvoD0A9DTZzJx7NhlAC77JkCBh7aKxS++yMryLPAw+XDwMJutIgGLr2ObICoDYZ80Gt2vVUqlAmGh3MiDnJwS0WeF4jCbYzlyuRz168Xx0++4vTUATvjoj8uNzWbzqx1BEARRe4mMjERKSgr/Lzw8nJ+3YMECmEwmzJ07F23atMGjjz6KF198EdOmTavCNSaqI2q1kn8YLhRhC2FOhxTRQhAEQRAEQXhCpVK4vFf69TlXEXFg3+n8Dhr0SxAEETj+namJWo/IwUMU0eLq4OF+Mfbl4KHXOwthUp8nKgahcEFYFPWEKKKlikUM7gIPscLj/AWnwMNqtaGoSCuabzCIi69Wqw3DR3wLAFi14h2RS01JifizUgiPj9IyPaKiwnx+pio4fPgSpn+9HADQpnUDHDt+WTTfVz8QxrMAzkgLgqhKhAIP4bHNjmOFUs6PPMjLEws8jhzJwC09mnHLsTnbd7y5Meb+tAEAEB8fCYVCDqvVhpISHZKSokXLKCvTIyIiBDKZDFqtAeNfnIOs7CL88furiIwMDfLWEgRBEDcCn3zyCT788EM0bNgQjz/+OF555RUoldyf5jt37sQdd9wBtdo5aq5///749NNPUVRUhNjYWLflGY1GGI1G/n1paSkAwGw2w2wm0eGNjEajgl5vQnm5HtHR7vcdTMhvh13UF+x2VEjfYMukfkdUJ6hfErUJ6u9EdYP6ZM3E39/LahG6vlsC+p1lMuFzZXut7SNVcYzU1n1NEDcaVSrw2LJlCz777DOkp6cjKysLS5YswZAhQ/j5drsd7733Hn744QcUFxfj1ltvxffff49mzZrxbQoLCzF+/HgsW7YMcrkcQ4cOxfTp0xEREVEFW3TjIo5ocRd4KB2ZaZIOHj7iMPR658NI16gNIjAuXsrFP//swdNP90RcrPdjQPg7+jPaXNgHqjqqwFXgIRQamEwWXL4snp+XXyp67ypkKCnV8a/vHvgRWraox79fs/YQxo8b6HV9dDpnHy4r0/tY+6pj6uf/8K979WzrLvAwee8HOp1Y4OHqjEIQVYFY4OHso86IFgWfUZ+TKxZ47Nx5yinwcERVKeRydOzYGC+9OAgpKbGQyWSIiQlHQUEZioq1IoHHufPZGD7iW/TtcxMmvfsQtmw5jpOnrgIALl7KQ7u2DStgiwmCIIiazIsvvoiOHTsiLi4OO3bswMSJE5GVlcU7dGRnZyMtLU30meTkZH6elMBjypQpmDx5stv0NWvWICysegqPieAgk3H3QevWbUBiovtvffhwLgAgLzcXK1as4KebTCbR+2Czdu3aCls2QVwr1C+J2gT1d6K6QX2yZuHvfaJwkOS+fftQXHTO7++4dMn5jO7kyRNYscKz63RtoDKPEZ1O57sRQRDVnioVeGi1Wtx000145pln8MADD7jNnzp1Kr7++mv8/PPPSEtLw7vvvov+/fvj+PHjCAkJAQA88cQTyMrKwtq1a2E2mzFixAg899xzWLhwYWVvzg2N0CFBeOFmEQ1OBw8pgYcPBw9BQU4oIiACZ9q0ZdiXfg6bNx/DksVvem0rjMZxdWaQQiiKqHKBx1XPDh4ZGXmwWm2IiAhBeHgIcnKKkZ9fJmpvdNneYheHD1agBYCCgjJYrTavVnE6gSVyaWn1FXgIrZm7dm2KOktiRZEtUg4eeXklOH78Cu64o7VbP9FqjW7tCaKyYc4bgFisxjtMKeUIC+MEHrkuAo/SMp17e8ex/sjDt/LzoqPDUFBQ5ubo899/6bBabVi1+gAmvfuQSCxWWkp/LBEEQdQW3nrrLXz66ade25w4cQItW7bEhAkT+Gnt27eHWq3G888/jylTpkCj0VzT90+cOFG03NLSUjRo0AD9+vVDVFTUNS2TqBnMnXcCOl0pune/BS1a1HWbb7Hsxeo1F5BSJwUDBw7Ep5/tBgBoNBoMHOhdxH4tmM1mrF27Fn379oVKpfL9AYKoBKhfErUJ6u9EdYP6ZM2B3ScC8Ps+0Wy24Isv9wIAunTugh49mvv9fYePXMLvf5wEALRr1xYDB3YNYG1vHKriGGGOjwRB1GyqVOAxYMAADBgwQHKe3W7HV199hXfeeQeDBw8GAMyfPx/Jycn4559/8Oijj+LEiRNYtWoV9u7di86dOwMAvvnmGwwcOBCff/456tZ1f8BBXD9mCQcPXuAh4eAhdIqQQpgXbCaBx3Vx2eFs4TpKXQrh7+jqzCCFsHDqKeO5smAOHclJ0cjJLREJPLKziwEA9evHQyGXIyenGDk5xaLPG136WXGx9xgWs9kChULtcb7QwUNbxfE13khNTcLZc9n861Yt64kEHiYXJxe73Y4xL8xGZlYRpnz8BBJdoimqOqqHIADfES1KpYKPaCkpEYsuhIIsm0MoIiVUjInmRsS6isESE51Fs4KCMtG5sTq7+RAEQRDB5dVXX8Xw4cO9tmncuLHk9G7dusFiseDixYto0aIFUlJSkJOTI2rD3qekpEguQ6PRSIpDVCoVPUi/wWHZ5XbIJH9rmSMCVSGXu82vyL5BfY+ojlC/JGoT1N+J6gb1yZpDSIj/v5VM5hwQqVAqAvqNQ0Ocf7+olMpa3z8q8xip7fuaIG4UqlTg4Y0LFy4gOzsbffr04adFR0ejW7du2LlzJx599FHs3LkTMTExvLgDAPr06QO5XI7du3fj/vvvl1w2ZRR7x5cgw2xy7iczn7PG5aTZ7O5uHSaT9/y1ckERzGisXb9BsDPWUpKjeTGD3mCAUqHw2NYgiMbRlht8roNO5yzma3W+21cU5eUGXpBRr14ccnJLYDY7+1hRcTkAIDIiBCkpMW4xJACg1epF659f4F21qtMZoFC4F32dy3Pum7IyfbXtw+x4HftCf9jtNjRtmoING4/y8w2C449TDx9GpkMAMvHtBfh0yhOi5ZWWaKvtthK1B4tZKFZznpuMRk5soZDLkBAfKfpMbGw4ioq0KC3RCfo8d3zIZO7n5PAIzjWspFTc5y2CrNGzZzNRXu68nhUVldPxQVwTlFFMEJ6prvnEiYmJSExMvKblHzx4EHK5HElJSQCAHj164O2334bZbOYfvK1duxYtWrSQjGchajcqFff3nsUsPVCC6eClolQJgiAIgiAIwhU2SMofpAZJ+UudOs6/bZSqalumJAiCqLZU2zNndjY3ypzlDTOSk5P5ednZ2fyDMIZSqURcXBzfRgrKKPaM2WzF7B8OeW1z9Womn8OWlcXt5+PHj0KpyMXJk1lu7c+ePec1t+3cOaeDQHFxaYVmAVdXgpWxVlzs3JdL/12OkBDPh/iVK87YkuKSMp/7/cBB50jCCxcyqux3unyZE2NERKig1XFOJQcPHoZSweVL70vn+mRZWRHiYsViJaVSDovFhsOHKAj9HgABAABJREFUjiI0pJCfvv+Ac9vi4kJQWCh2pli5cjUiIjzf3GZl5vKv9+07ANjdj4PrQa+3ICu7HGmp0df1cPby5UwAwPnzZ7BiRTF0OnF0jVZrwJo1ayCTybB27Vr8tuiEaP68+atE7w8cPIKwMN/5iAaDxWtfJIjrIVswyvn0aef15vjxfADcefFShrgvN2wQhqIiLXJyC/nz79mzXE7o5cvu57eiwjwAwIH9h6FW5fPTDx++wr/etHk7Ll92HlP79x9GWKjzPEPUbM6dL4bJZEWrlvGV9p2UUUwQnqmp+cQ7d+7E7t270atXL0RGRmLnzp145ZVX8OSTT/LijccffxyTJ0/GyJEj8eabb+Lo0aOYPn06vvzyy6CtB3HjoHY8DDd7GKTBnA6v5+E7QRAEQRAEUXsIDfFf4CF6Tm333E6K2NgIfPbp01i77hBuv61VYB8mCIIgqq/AoyKhjGLPXLyYi3LtPv59o0aJuHQpT9QmPj6Rz2HbuLkA584Vo0OHDri7fwfo9LuwYWOGqH2Dhg295rZt2HgUfy0+DQBQqtQVkgVcXQl2xtrqtTm4lMEJIG699Q4kJ8d4bJuefh4LfjvOrYfJjgEDBvA3ZZcv5+P9yX8iKioUn37yJNRqJcq1O7Bm7UUAQGxMfJX9Tgt/2wrgBDp1bIaUlBicOrUDcXF1MXDg3QCA3LyNAC6hefPGuOP2VljtWGcAiI4OR0FBGVLTmmDgwF789KzsDQAu4p5BnfDi+AF4ecI8hIdpcOjwJZhMFtx+x52ok+J5xOS8+Sf516mpTTBw4J1B3eaRo77H2bPZeHXCvbjv3s6+P+CB1WtzABSja5dO6N27LQAgMnI7NBoVvpq+HHY7cNttd2L79i3o27cv/l5yCYDT3eTiBbEgpG7dhvx+98Ty5emY/s1STHzzftx9d4drXneC8MS6DXm4cIETeyUn1+HPTXL5QSxbfg7JyUl4/LEhmDP3MAAuUmzc2Acw6vlZsJiBvn37Yu3atWjUKBU7d2WicePGbv369NnlOHosHw0apmHgwLv46ecvrARwFQDQrFkrGI2XATAb/fq16np2I2OxWnFXnw8AAMOHD0F8XKSPTwTG0WOXkZtTwp+XKaPYyeXL+di0+TiGDu2GsFD3+Ami9lHT84k1Gg1+//13vP/++zAajUhLS8Mrr7wi+ts0Ojoaa9aswdixY9GpUyckJCRg0qRJeO6554K2HsSNg9Lh4GE2Sws8bDZm4SGeToYeBEEQBEEQhBSaEP//zrpel7hbb22JW29teV3LIAiCqK1UW4EHyxfOyclBnTp1+Ok5OTno0KED3yY3N1f0OYvFgsLCQo/5xABlFHvDZhdflBs0SHATeFhtdn4/sUQWjVrl2H8SXcruzPUqLtZi+jfLsXPnKbz80j24u//NMJucD6P0elOt/A2C1feED/aMJqvXZdoFqlqrzQabjcvYA4AdO8/g7DnOCeP0mWzc3CENFovzA0ajpVJ/J4vFirHjf0BERCjsjoeU7dunQq3m+lt2TjG/PlotF8sQHR2O+IRo0XKiIkNRUFAGs9kmWv+rV7lR9qmNkhAREYYfZ78AAOh/9wcwmSyw2Zx92G63Y/HiXUhNS0Knjk0AAMXFzpGdBoM56Pvm7Fnut1i95hCGPtDjmpdjMnLWzeHhIfw6PvVkT9jtdnzz7UpYrTYYHcejSqWCTsfty4EDOmLFyv3QG7j3MpkMdrsder3vbZ36+VIAwJRPl+Dee7tc87oThCfYOQEATILzHhvJGhqqRmhoCJ4Z0Rvr1h3GyJF3oUEDzv2L69Pi655K5Z77GRkRCsD9+DYYnHboWq0JRqPzfVmZoUZdz6xWG6Z9uQw3tW+Efv06VPXqVCsKCrT8a225CSnJwf1dx477EQAQERmKW29xPtig+1Lg+TGzodUaodebMPaFAUFfvt1up9iCGkpNzSfu2LEjdu3a5bNd+/btsXXr1qB9L3HjolIygYeniBaHgwed6wiCIAiCIAgvtGvXEEeOZOD+Id2ubQF0u0kQBFGpyKt6BTyRlpaGlJQUrF+/np9WWlqK3bt3o0cPrsDZo0cPFBcXIz09nW+zYcMG2Gw2dOt2jReiWo7JKM6Y7typiVsbYb6v1coV0BQKrivZBaqBlJQYrr3Fxk/7fdF2rF59EKWlekz5ZDFOn8nki8YAoNUaPT6cErJy5X5M+WQxLB6saGsrJpNz37HivMe2LqO8tFoj/7qkxFnMOnWKG51uFPQN4W9WGVy4kIsjRzKwc+cp7NrNub1079YMdR1ZfZmZzpiQsjI9ACAyMhSxMeGi5UREhgAAjEbx+l90iJgapYqz09Ua7oG+cL/u23cOX3y5DONfnOMQOZhE+0a4H4ONxcPIPH8xONYzxEWJLZPJ+Pzut9/+jZ+u03FRNb17txN9pmPHNABAebk4yqa2s3fvWTwzcgZOnc6s6lWpVVitzmuMQXAslpdzx2J4BHfcPzuyD37/bQL69rkJEREaQTuDYznc9Ytdz4SEhXHL0OrEx7dO8L6sTA+93nluSd9/vsqvUVarDfvSz/m1Htu2ncCSf3bj/Q/+EO1TAsjNLeFfFwuuj8FAeM+zavWBoC6bYbXaYLNVj9/Ubrdj3frDWLf+sF/t2TU1Pf38dX93RkY+Xn9jPk6f4c7R5eUGPPHUVxg3/gfR/StBEERNwpeDBzu/yeTV9tEPQRAEQRAEUQ344rPh+PqrZ/DA/VRXIwiCqAlU6V/55eXlOHjwIA4ePAgAuHDhAg4ePIiMjAzIZDK8/PLL+Oijj7B06VIcOXIETz/9NOrWrYshQ4YAAFq1aoW7774bo0aNwp49e7B9+3aMGzcOjz76KOrWrVt1G1ZFaLUGnD+fc13LMLoIPHp0b84Xu2IcxXKhYIMVgRRKro3QtnzwfV0BiIvAhYXOiAez2YoFC7Zg4ULx6LTiEu8513a7HR9+/BeW/bcPW7Yc92u7LlzIweXL+X61rcmIhQbSxfc1aw/htTd+RmZmoWi6WODh/A1WrT4Im82G4mJnUctQyQKP/HyxNXZUVChSU5N4EdG5c9lYs+YgALHAI8ZF4BEdFQYAolH2FosVGRmcwCMtNUnUnokehC4z5y84j7GDhy6K9gsgLvgGG3+LxStX7sd3369yK1gZDFz/0EhkKbJ5p89k8dNYn2jSOBnffjMK9evHo3evtri7/80AnPvaE8KCoquo5EbkpVfm4uSpq5j4v1+relVqFSWlzvOVsbgU1onvwvLQ4yhbvgYAEBEe4vYZuVyO0FDuONB++iUAwLJzt2Oe+5CD8DCurevx7SbwEJwbCwrKqvy6M+3LZXjxpTn47vvVPtuWC64ZZwTnAQLIzRMIPIquT+BhMJgw47tVOHjoAgCgsLCcn3f5coHkZ1yFr+fOZbtdwz2RkZGPu/q+j29mrLzGNb4+MjLyRfcm/y7di0nv/Y5J7/2OvHzvsRdCoRFz7LoepnzyN7bvOInhI76F3W7Hn3/twMWLedh/4AJyckp8L4AgCKIawhw8PAnBWUQLGXgQBEEQBEEQ3oiICEHnzk0hJ2EwQRBEjaBKz9b79u3DzTffjJtv5oqFEyZMwM0334xJkyYBAN544w2MHz8ezz33HLp06YLy8nKsWrUKISHOYs2CBQvQsmVL3HXXXRg4cCBuu+02zJ49u0q2p6p5ecJPePLp6Th27PI1L4MVeRkNGiRg3txxWPDLS/jfWw8AEBeZLUzgoeAeLN1xR2tM+fgJLF/2PzRpnAwAyMpyuiuwAlLbtg0BAGvXHUZOrvihurB4kpdfisee+BJff7OCnyYs9peWeheDAFzR7YmnpuORx6ZV+Wjqikbs4CEtNHh/8iLs2HEKM74TF3u0OmdxT1gwPX06E8eOXxH9Tnq9uJ9UNK6FrDopsZDJZIiPdwqK3v/gDwBAmUNQFBkRArVaCaXjoScApKVxfVIoUMnMLILZbIVGo+IFIwxWUDKZnNubkeEs2I4d9wP27D0r+ow/Dh5Goxnp+/0bVS/E7Ed7JoD6dcEWHDx4we17ASBE411sYbPZYTSZ+ZGA4eEhaN2qPv74/VV89OHj/H4vKvZe6MzLcx6rwSjO1RSEBVui4snNdfYz7YmzyJG3wpVeLyPfxjn8hJ87Lfm5EHD9O9OWyn0WMQAA+dGjbm3DHCIR1+NbeJ4tLRU7eHDzK08MZ7FY8dbEXzHq+e9hMHDOQkv+4UQrvy/aJiqyG41mjHjmW/S7+wMcOXIJAFAkuPam7z8HAORq4CBXUPz3dd4DuP227L99/L4VMu/njViwcAteGPsDTCYLCgTniwsXctzEHMtXpOPOXpN4d4+CgjKMHPUdnnx6OrKyi+CLf5fugclkwaJF2yv9HmjfvrN49PFp+Gr6f/y0Zf/t419fuSIWtFitNmRnF/PvL19xF0hdT58UCpeeGTkDP/y4jn9/8tSVa14uQRBEVcIL0j2d4x2nTdeIFoqnIgiCIAiCIIIKPUIiCIKoVKpU4NGzZ0/Y7Xa3f/PmzQPAPXT44IMPkJ2dDYPBgHXr1qF58+aiZcTFxWHhwoUoKytDSUkJ5s6di4iIiCrYmqqHCTv+XbrnmpchLADN+v55AECTJilIS0vmC+XHT1zB0Ic+Q15eidPBw+HyoVQqcOedbRAbG4G6deMAAFevOh/gax2W+V27NPW4DkJHhL//3olLl/Lw+6JtOHToIgDg7Nlsfr5roeXKlQK8NfFX7Nh5ip928WIu/1pYcL7RsNvtosKIr8IiG83FEAprSorFwpk9e86ILOor28Hj9FnxaHImxIiMDHVrywqsYeFcBIOwoFWvHtcny8qcYpaLl7j+0ahRoptCWaN2RLQIRsS5ik0+nbpE9F4olPHE62/Mx/gX52DmrDU+2wqLff4U54TigiKXkebsd/PlpmEyWaETFLKZ0wEjLi7C8V1lounl5QZs23aCL3pfcjijANw+9yd+6fSZTCxcuPWGF2NJEWjhsqLbVxV2ux0zZ63GrNlr3NZZqzPi0KGL/HStzih20YiuA23j9rCHRaIsNAoAELL/IHDxovhLLl5EiJ47z5WmcJFDJZoIj+3DwrjziatwrszFocrgIvCozDirNWsPYcvW4zh27DJ27DwlOmcDwNWrznPXiZNXcOp0JsrLDfjl180AOOEAIz39PLeP7YH1m5rSxwJFKDRwdW0CuPO0cNtXrTqAKZ8sxvNjZrm13SxwHnvp5TnIFohgzWYrLgjuWWw2Gz7+v78BAB//39+w2+04ePACTCYLDAazmwMaABw5moHp3yzn731Y4Q9w3idW1u/04xwuZvHfpXsx5oVZuHK1ACdPXuXnCwXAALBo0XY88OBU/PX3TgDAkiW7+Xk5uSXX1SdNJovoWu4apXXhQq6ofW2gNm0rQdzIqFSciNpTRIuNj2ghQQdBEARBEARBEARB3CiQ39INgrBwWlrqPTaB8cW0pZjyyWLRA16jwwGie7fmaNeukai9UlAkyMoqwi+/bobVIhZ4CKlblxs9XVZu4NeprJz7v2WLehh8XxfJ9RLm2x88eJF//cab85GXXyoqsGfnFIs+O2/+RmzZehyvvf4zX7i/dMlZZH75lbnYvv2k5PfWdObMXS96LxXR4jq6XIjQoYM5eLAojjlz1+PcOaewxttygo3RaMaaNYdE05KSogFIjzzTOwqwoY4YknbtGvLzmIPH6TOZfL9n25XaKNFtWawwJnRGYcW9jjen8dNCQ9V4+aV7ALiLKlwpLzdgXzo3Ov7fpXtEFvRSCAvI/sS/CIu4hUViJwnm0OOPwEPr+K6wULXb8c2imEpKdKL1f2HsbLzx1i/41hEFIHQ7sdvtyMoq9vq9hUXlGD7iW3z73Urs3CXtuuDKkSOXRIKu6iB6YBEfARchAyhcVnT7quTM2SzM/2Uzfp6/CZu3HBPNmz79P4wZOxv/LU8HAOTliUUMmSWleO6XRfh11z7omPNO866wzpojamedNQfqcO488u+BozAaLSjSctenkFbd3dqHOwRjx45dxh9/7gDACa6EDgTHTzidjphjzZRPFouiiiqS04KC9eLFu7BnzxnRfGFczLlzzqipXbvPQKszityxDh2+6JfIqrRUjxzHdfhGEoRotQaR4EUoVrvqIvIrLdXjkcemYfCQT3D6DPcbsP4JOIVwbFuF0VaHDl/CV18vFy3v9Cnn7yi8n7NabXjn3d9wQODMtG79YV4czZj62T9YtGg7Hn/yKxw/flkkbN2950ylngtMgnvTQ4cv4eFHvhB9L7ufY9NmzuZEj9O+XIaevSfhz7928m1zcordjndfCLf13PlsWCxWREWF4sfZY9CvXwdR29JSfY06T0rhbb1NJgs++PBPfPjRnygt1VX48VpT9yFB1ETY3yuertt8RAtI4EEQBEEQBEFUHBpN7XFvJgiCqA6QwKMGcOFCDvrf/QEG3/+Jxzb5gkJEUbHveIDycgP+XrwLy/7bJypQMQcPqQuyawFcpzfBYuUeJEkJPEJC1HyUA3uIr3UUqyMiQ/DmG/dj+bL/IS01CYCzKJonsNsXRoWUlRs4JwlBsUKYmW6327F5s7MYOGPGKgAQjYa9fKUAr7853+3Bc3V+EG232/0qtM39aYPovbCIZLfbMf+XzVixcr/b58Ic7gxC94+SEm6/DxncVfK3NZksPoUJwSIvv1TkLAMA7V3ERwyz2cKLT0LDuO36+MPHcdttrfDxR4+jebM6UCjkKCws57f3qGNEc6tW9d2Wp3YcB2YJgcftt7fmpz3/XD/06M65C+WyUcYeyBGIkrRao0iQIUW5wG2kqEgrKdwBuN/v4KELuCJwzBF+l9ns/M00GrXrxzFr5mj+tdHodPBg0RRCoqPDIJPJYLPZ+f2h1Rlx1iGWWbnqAKxWm8htBxAXmAGujx45confX0ePZgi2x3f0gM1mw/NjZuG113/GpYy8ShE9+NNWLpP5tezyckOlFf+DjdFoxqjnv3dzsAkUi8WKd95diFcm/MQLFbcIHA6+nbFKtA9Z4XzKJ4thsVjxk+O8FyZz7kejxYqVR09A7xB4aJLqwX72nOh77WfPQR0aBgA4fCULi/48iSIdd96Lqpfq1r5hgwT+9aI/tgPgCv0mkwUhISokJUXDbLby56omTVIAcGLIffvOVUph9LLgWr7/wAV88eUy0fxLGfn8ss+fdwo8LBYr/vhjO7ZuO8FP0+tNOHbcGfeWlV2ERx+bhkce/QL//bcPdrsdV68W4pHHvsDjT34l6WohuY6X88WCBy/HiMVixZq1h0RF/UoRJZgsePa573Hv4CkY9+KPWLBwC44ccZ6b9u8/LxJVrFl7ENnZxcgvKMPwEd/ip3kbRCKM02ey+G21Wq389bVf35sAOGPn0tK4e6FTp50CRKHIRKVSYOOmo1gscLUoKdFxTi2O/VhYVC4SY34/a7VIvLnbRfTjL9e635lDB3N9cuXcuWx+35jNFgg1m0xY2b5dI7RsWQ8AsH//BanF+AVzDmnZsj5at26A9yc9jD8WvYqhD3QH4F/knxTV5f7R1/G0eMkurFp9ACtXHcDqNQeDvvxrbUsQxPWjlBCki+GORTk5eBAEQRAEQRAVwLMj70LvXm3RsWPjql4VgiCIWgUJPGoAarUKZeUGUcHeFaEoQpgV77G9oGAiFEA4BR7uI/wTEqLQyFXkoXWO8peCuXgwgQdzI4hwFI1jYyPw09xxWPDLSxg+rBcAZ2QG4BQp3HRTKjfvYp5oNKqwgF1aqodWECuxfcdJZGUXiSJanMt1Fsnn/bwRPXtP4u26LRYrvp+5WiQWCSaHD1/CZ5//67FQ78qbE3/FA0On+t2eUSRwb9i85RhmzlqNL6YtdWvXunUDAM6Cus1m4wsdderG4tVX7hW1Z4IPV3eIiqLIETmSmBiF2TNH498lb+Kuu9rz89lIeQDQ6818JEJYKDfiPiEhClM/eQq9eraFRqNC27aco8f6DUcAAMeOcYW79u3dRSPM8tgoFHg4inO339YK7016GB9/9DgeerAHEhOjHOtgQrnAdaO4WIv3P/gD709ehA0bjoiENABw/oJYBOGKcFQ9wBVupRgx8lu8MPYH7BS4WewVFJaFkT1hYe7Ha7u2DfkIG6PR6eDBnAuEKJUKREdzxfECR7FWGMVkNJrx2+/bcOTIJQDO30h4rtHqjBj+zLd4fswsDB7yCRYs3CLaN5ku1v1SCM8Fx49f8dn+evG3aCWXEEW5snbdIdxz3//hqae/5veTEKvVhgMHzmPO3PW4crUARqMZY8bOxshR3/kdkXTo0EW3/sYoLCxzE5fk55f6XZDbsfMUjh27jH+X7r2uIt6qVQewYeNR7N5zBocOXcTyFekisVpmZiF/Xnc9Fu7o+S7WrjsMhUKOCc0VcCWnjOubkSW5kDVtIpona9oEoVbn9SIrS4tiHXe9SSrNcWuflBSNaV8MBwCUO65LFy9yrg6pqUm4Z1AnUXthfJSwIO+KyWTBhg1HcOYMF0N1PaKjKy4CKldOn8nkl52TWwzAGVv1w4/rYDJZoFIpcNttrQAAc+du4EVhu3adRsblfFy+UoD/+2QxvvxqGebMXY+SEh30ehOOCMRZnsjLL8VTw77GiJEz3ER7AHftEU6fM3c93p+8CONfmgOTyXJtAq4AYO03bznGO3/t338eM75bBavVhsgI7r4lL6+Uc/RwrItQCANw+1KIULhWrjXy+3TY0z0RGxsOAOjVsy2efOJOAMC5885rAovcatIkBY8/djs/PSoqFPXrx7u1P+cQ1YWEqKBQyJGefh7795/n5588edVvMY5ov1xDn7RYnGKWX35+Ee+/9wg/n4k096Wf43/z7OxiPl6A3WumpiZi6qdP8e1PnBSf548ezcCChVvcBKdandFtfZnYRChWrl8vHk2b1gHg7n6n1Rnx3OiZ+L8pf3sU2VZWnwwGy5bt418LhUPB+n6DwYSLF3P9Fi3yxzRBENeNSumng4eL86GUEyJBEARBEARBBMozI+7CRx8+7hZ9ThAEQVQsdNatAbBirMFg5h9i79h5Ck889RVmfLcSNpsNuQLBRl5+qU/Hh/x858Nd4WhPFuEgJfAAgDopsfxrk9HCCzaExSwhdetyxaMrVwtgt9t5kUJEhLO9Wq1EWloy7+QhzEFnAo+2bbii/OkzmaKIlpycYv4BMStYxcaGo41DtHDgwAVRUZkhdDmZ/cNamM1WfP75vwCALVuP45dfN2Pi2wuwd+9Zye26VoqLtRj9wiws+We3pJuGK3a7Hdu2nUB+QZlbZMWOnaewdt0hjw/IhVEhp09nSbaJigrFPfd0BgDs3HkKpaU6lJcb+QeB0VFhGDKkGxo35qJN6tSJRUpKDADfxcRAOXs2C8OGf+MmrGECguTkGLRt2xCJidGi+T/PG8+/NhhMvIOHpxiSPr3bAeAKSxaLlS/q1HP0VSEahzCBjYjT6018MSo6Jhz9+3VAr55tIZPJEBKiRlQU16+Fx+OSf3ZjzZqDWLP2EN6Z9Bvefneh6DtmzlojWRDJzS3B34t3uRVOp3+93O03FxbSmHAF4CIbmMCJxbuo1Uoole7FcAAIdwivjCang0d4mLvAAwAaNeQcDU6c4EZFC52AAOC771fhwsVcyGQyPPbobQCAFSvT+XU/eOACX3DLLyjDjO9W4fdF2/jPL1q0XVKcJUToVnLq1FWvbQFg46ajeObZGaKCaLAQ/ia+HpifOHkF772/CCaTBRcu5ro5LbDC4tjxP2LO3PWYOXM1lvyzG4cOXcSJE1fw79K9Ptfn8OFLDkHIDJFoDgCOHM3APfdNwfOjZ/HHy/RvluO+IZ/grf/9ym+Lt+IbKzwDnBPNtRbqMgTnkS++XIaP/+9vAEBCfCTfT9l35QkEHkJnoYcevAV93nrGbdlMsFHnyBoonh8pmqd4fiSiisR9xuy4vjbZ86dbewBo3owrBHNFeisvMKyTEovHHrsdoQ6hY716caJr8Jatx/m+7srcn9bjnUm/YfQLs7yKOD0hdD/wJIoa9nRPAMCGDUewYOEWAECB4x7g5ZfuEcVYPfnEHfzxui/9HBb/w4lTXIVCf/3NuQEwpERKrhw5fAkmkwV5eaXY5HKet9vteG/yIgwY9BEfc7LE8d0ZGfnYuy+wa/H1uPkwZ7CGDRPw9FN34rZbW6Jr12aY/tVIfjTK5s1Ol5mSYu7c+9ab96NvH0582LpVfXTp3BQAsP+AU2BR7Lguh4VpkJaWjMV/vYGffxqP9997GI3TnPdAbL1Z34+Li8CoZ/tg3AsDkJaahPffewQtW3CuFj/8sI53v2HCy7ZtGmLggI7899atE4vU1ETY7Xafv5XZbMFHH/+Fzz7/95qOa7YvmVOLQiFHdHQY+vW9Cdu3foxvv34WX3w+DElJ0dBqjfhq+n8AnNE3aalJ+G3BK1i/9n3Mn/cioqLCeAePP//ayQu98vNL8dzomZjx3Spsc7jPXLlagIH3fIy+/Sbj5Vd+wudf/MtfG9i1nokTGey67Xr87d17BkePZuC/5elYueoArpeqjNXKzi4W3Qv/8ecOjHjmW7frtpDZP6xFz96T8Pob832KCi0WK558+ms8/uRXWCoQkggpLzfw58Ws7CIMGPQRXntjvl8OdQRBeIdFtDCRnCvsPEJ6DoIgCIIgCIIgCIK4cSCBRw0gTFBgZSPkXnv9Z1y4kIsFC7diw8ajnEW3A5vNLhJwSCEcCS0UeHiLaAHAuxQAnAsIKxp7Eng0cIwwXb48HTq9iX/wFBHhHvvQpClnaX/2XDaMRjOMRjPf/pZbWgAA9u49i8OC4oTBYOYf2rOiTHJSDDp14oow385YITmCnblbCEd9sjiYw4edy/91wRbJ7RKi0xndRn56YukyZ2HWNb5CCqEThPCZXHGxFm++9Qvee38RRoycwVuPC9m0+Rgf/8GK/0IUCjleHD8IvXq2QVpqEsrKDVi95iDv3hEWquadF774bBgG3H0zpn0xHPXrcb/pZS+FgWvhy6/+w5mzWZj49gLRdL7AFStt8d6oYSLfn4pLtLw4JdSDMIH1syuX80WOL2ES7ZmDx6dTl+DEySsoLuGKc2q1UtK1hgmgLl5wFlIOHRYX05hYpJmjWJyRkY9Rz88UFYCPHbuMF8b9gC+mLcWs2WsAAF26cMXCzMxCN7cK4fHvCjsumLhKypGDwcQcJpPAwUPiWAWAzo7i5b50rvDKjrO+fdrjXodoCAD69bsJTz5xB9RqJS5ezOML+mzUezPH6GnhMhjLV3gXQV254hR7XXSMuPfGJ58uwcmTVzF8xLc+2wYKE0oAXKFQeOy6smePuFh99mwWv78BYN26wzhxwvkbb9h4FF9/s4J/7yr2kuKPP7kYkaIiLT786C/RvI0bjwLgfoO3Jv6K9P3nsGgR137r1hM4cfKqz+Ki0AWqsLDsml0nhOemS4Lf8OuvR6KOQ0x2+XK+QyDI7aO0tCT88fur6HhzGtq2bYhHHr4F6mZixw0h8Y8MAlJTxRNTUxHe1N21Jx5mRIx63L09nAIou90Onc7E74OkpGiEh2mw6LcJGHD3zXjzjfthcSmyMOeB9P3n8Ojj07DD4bTDxHd6vQlr1x3yuA2+yM4phtVqg1qtxJDBXVG/fjxuuaUFZnw7Ck8+cQcviPlu5mqs33CEH8GfEB+JD95/FKOf74/vZozCqGf74uYOaXhmRG8AwIoVXCQOE7OMfeFuvPnG/W7f/8+/e0THANtPQs6cdQoNXQvLf/y5A+vXH4HBYMb3369GaaledF0VulBUNKxP9ujRAqOf74+pnz6Nr6aNQMuW9XC7w93kl1838/dL7N4hLjYC77/3CP5Z/CZ+/OEFvPbqfQCAgwcv8tte4riGxMRwzh0ajQrNmtWBSqVEamoSZDIZSkp02OyIKWICx/i4SMjlcjz++O1Y8OvL6N6tOTp35vr8qdOZ+HjKYgDO62VsbDjeevN+vPv2g+jfvwPefechXih7/IS02xG7Nv35506sWLkfS/7Z7fXawrDZbPy9oJACti4x4fwoHplMho4dGyM8PAQTHO5gS5ftQ2FhOX8NZMLg0FA1L/K6uUMav9w//twBANi12xk3M/HtBTCbLRg9ZhbvULJ331ks+WcPvv2Oi+srLXNEMEVJCzzYfIbwvkoonAyEPXvPYNiIbzD7h7XX9PlgIRRGA9y98+kzWZj/6yZ+mslkwcLftuKDD//Ejp2nMO/njTCbrdi+4yQ+mfqP1+VnZOTz37Fz1ym3+YcPX8Lg+z/BSy/PBQDs3nUaer0JO3eewl9/77y+jSMIgv97xZfAgyJaCIIgCIIgCIIgCOLGgQQeNQC1WskXZ3Q6I064FPM3bjwqiioAwI+A9USeQAByViTw4B7wazTSkStsJDAgLlxLCTYA4N57OkOlUuDylQLs2HESAPfQXqrI3KhhIhLiI2E0mnHkyCW+uKNQyNHhplS+4AQAAwd2RHx8JABg126u2JnrKEAlJ0fj4YdvRXJyDIodI2vr1YtDgqM94HS3EBbVCwvLYbXaRAKSAwcvSBYuGHa7Hc+MnIH7hkzBLj+Krnv2OAsSGX44YAhttHWC4tmOnad4ccrp05n4/Y/tkp+fOWs1AOfIWMbX00di2b8TMXBAR6hUStx/fzcAwIoV+/niSJRglGtycgzefechNGqYiIYO54Zjx8S29NcLK5IB4sIgK1jFx0sLPADwI+eFrgIhHlxoGjbg1j8ru5gX+oSEqCRdLYR28MuXp/PCqdjYCEmXhg6OItSHH/8Fo9EMu92OEw4hw3czRvH77u7+N+PH2WPQr18H7ntOXMFHH3NF+JMnr+L5MTPdCjJPPXkn+vW9CQBEI+cBrrjiiRxHgY5FtEgJWRhMzGE0WKAt9y4Iad2qPgCn4w4risbGRuD11wbj448ex6R3H8Kbrw9BeHgI2rbhXHVYoZa5c9xzTyf8NGcsenRv7vYdrPAmhdFoxqdTl/DvL3s4niwWK76dsRJ//72TF1242vl748qVAhw8JB2LI8S1EPrf8nSPbQ8fvggAeOnFQahbJxY2m10UrcN++8H3dZEUzx09ckk06jkvvxTDRnyD+4dOxbuTfsPGTUf5AjHAuZsIoy8OHnRuz959ZzH+xTmi5fvjxnDylPMaI3QL8geheKTIcb4R/v4tmtdFaqMk/ph8/c35sNvsgj4Zgjp1YvHtN6Mwe+ZoJCfHeP2+2BGPS04Pa9vCbVq95vUhH/akZHuNRsWL3srL9bx4igkfExKi8O47D6FzpyYwu4xKZ0KODz/6CxkZ+Xjt9Z9hMlmQle28BkkJ9fyFCSbq1YvDG68PwR+/v4rPpw7DzR3SEB4egtmzRvMuCLt2neadHuLjI5GcHIOnn7oTHW5yFtH79e0AgLtOca4WxQCAlOQYDL6vi+h6rFDIUV5uEDnqaHVGDB/xLZ4a9jUvmjx9xinwcI3bETpa7d5zBuNf+lE0/9z5HJ/7ICMjnxc1Xg+8EEDi2HtwaA+o1UrodEangNLRh6OjwyCTyZCUxLlM1a8fz9+7DR/xLfR6E7/fY1xcJACuf/Xrx53jP/zob5w8VcDHADHnLCG33tKSf7123SFodUb+mhYXFwmZTIYBAzrivXcfxk03pfLn7IMHL4qWY7XaMPWzf9Cz9yQs+mM7tu04wc/zZ79/9fVyDLznYxx3iaopdNy/xAnuvYTccXtr/j4uJ7eYP+/VqRvr1jY5OYYXzGzcxAnUXF2b3nzrV9E9AIOJa9g9pet1hZ1jXYW6ZwT9dc+eM9i1+zTOnc/G0mX+xVJZLFa8/MpPOHMmC/N+3ihyIAoGeXkleOOtX/Dp1CU+r2nZgjhDIcKIu08+XYJvZ6zEqtUH8NrrP4va7ZNw0Dl8+BKGjfgGv/2+DRcuOPuJ1Hls7rwN0OtNOHDwAjZvOc5HIgLA19+s4B1YCIK4NpiDh6sjzoED5/H9zNW8sJgiWQiCIAiCIAiCIAjixoEEHjUAmUzGF7B1ehOuXhWPfN20+RgvnmC8NfFXr/EG+fnOYmRGRj7/8NaXg0fdunFYt+Y9UZE4TDDK0pXExGi+aMSiN5KToyUfMMlkMnTt2gwAV+BhdtmRkaGQyWR4dmQf/LvkTSz5+w28878HMfi+LgCAadOWorRUh3xHMSE+PhJxsRGY+slTvMvCvfd0waLfX+WLiKwIIhwxrdMZsX3HSf6hvkIhh8VidYvIEJKVVYSMy/kwmSz4daHY7UOrNWDjpqOiUc1ClwFv1tiM0S/M4l8Li6jMdYVZjQuFI8Kij95hq10kKHr8b+JQdO7UhB9BDAB9+9wEpVKBU6czsf8AV/yNjnIvQAFAzzvbAACWr0gPqshDKCQQFiOcI5K9CDxCuN+ZbadGoxJFOAiJjY1AeLgGdrsdpx1FhohwaYESG60NcHEFzGGAOdO40qtnWwDcSNj0/eeRn1+KsnIDFAo5WrdqgHlzx2Hdmvcw6d2HoFIpMeHle/CAQ1xz4OAFZGUX4ZdfN/MuJG//byiGD+uFjz58DJ07NUFfh8Bjt+D3BoCl/7lHdrCHvdsd5wang4f0tgJAsqMwWVxidDp4hEm3b+AQyly5UgCbzcYLPKKjw6BUKtCrZ1vc3f9mhDh+m1atOIHHZ5//i4KCMn5kekJCFFq0qIfPPxuGKf/3JN59+0H+O4QOK3a7HfN/2YyevSdhzAuz8NkX/4rWJzu7WCRiAIDVaw7i+TGzsPC3rfjiy2Wiopw34ZbwO19+ZS5eGPsDNm0+6rWtaxSU0K3AbLbgrYm/Ytz4H7Bh4xHegaN9+0bo378DAOCbb1fwAhRW/K5bNw7Tv3wGz4zojUceuRWfTX0a4eEa6PQmnBcUXn/6aQPOnMlCTk4x1m84grffWQir1Ybu3ZojJiYcNptd5NR0+QonhvnfWw/wheNGjRJx111cfNFWH8U2nc6IA4LYCWHklSf0ehMOHbrott+Zo8G993bGZ58+jTp1YvHss30AiPdpfn6poE96Fim5olDIPYqU1BIisDppdSRaOol0iKBKy/S8qIcdN0JciyxnzmTi6tVCkRCoZ+9JItcSf4rpBQVlGDbiG9x6+9uioisTG9T3cG5q1bK+ICppP2w2O+Rymcfzat26sVAo5DAYzMjLK8V5h5CrnsPB6eGHbsWDD/bA3B/HonEaF+ElFG38/fdOnDmbhXPnsvHiy3OQk1MsKpi7uoyxczfbl6wtu1colXChElJYVI5HH5+GZ56dwceVeMNisWL2D2vx2hs/Y/t28f1TGS8EcL8GKhRyfnvZvRgTJ0ZHh4vaymQyPPnEHfz7xUt28b9TXYlIMAB4e+JQ9OjeHFarDes3XMKWrdyxKHSwYMTHR2LZvxN5wcKxY5d5AUlsbLhb+1tuaQmZTIbDRy6JxBH/LU/HP//uAcBFgAkFIJ6cxi5cyMH3M1fj5Mmr+OuvnTCZLPh4yt+iNryIKM7ztZuJYfLySvnfnMX1udK7F3d+yswqgl5vwlnBORZwin0BTiTG4CNYPPyu7BgoLCzH/F8289OZo1SaIzpn3ryNeH70LHzy6RIs9yDgs9vtOHs2C7m5JW5i7KxM6Qila+XfpXuxbdsJ/Lt0Lw4duuh2/WMcOZrBC0hdzw8hDjF3Xl6JpIMQu4cuLzeIouROnc7Eiy/PwZkzWfjm2xVYveYgPy8vr9RNwJUjuKf739sL3GLG3njrFxz1cq9NEIR32N/hzIkJ4O49x47/Eb/8upkfvOD69zfJPQiCIAiCIAiCIAii5kICjxoCE1TodEZ+pPrYF+5G927NYbfb+biMRx6+lf+M8EE1AFy8lMs/QHUtrrC2TIzAirKe1qXjzc5ig6d4FgYbNcxGlKcku4/OZHR1xFDs2XOWj8MQjqJNTIzmR2sPH9YLDRsmoKzcgB07T/ECiDhHMaFZszr484/XMOPbUXj8sdsQGqpGw4aJALjR1Hl5JZj380bR97818VdYrTYkJUXzQgbXIoIQoVPK0aMZogdrs2avwdvvLMQLY2fDYrGipEQnGl1aWFgOi9Vz9rjdbheNKGXOGoCzcPLwQ7cgJiZMNG/Suw8hNZXbTjbinQlaXnpxEAYN7Oj2XdHRYbjtVk4Y8vuirdy0GPcCEcC5VLRt2xA2m92rbblWawhoRHpBgXPfCItPvEW9h1HAABDCHDwc2xkqEZ/CkMlkfJQKK6iGeSgADxvWC2NG9wfACaF+nLMOAHgnDlfat2/ER45kZhbyy69fPx5qtRIhIWqROCoqKgyvvToYbVpz4ofFi3fxxfV5P43DoIGd8Nyovnxhiy07K6uILyBbLFZJ95imjrbbtp1AVlYRX1gPC/O8b1Ibcf2moEDPt/dUHE9JiYFCIYfJZMHZc9l8tI9UUZS1Z7w18Ve36B2ZTIY772iNAQM64p5BnQA4i/8AsGPHKcyctRomkwWHDl/CCpf4Fq6w5ixGXrlSgMkf/CGKOhEidMfxxKlTmch0uPz87+2F/MhxAJjx3UqMeu57vP/BH1iwcAs+/OhP0WeVAoHR0aMZ2LL1OPYfuIB33v2Nn96saR089ujtiIkJR35+GQ44nDXY+TkhIQotW9bDsyP74KXxg3DrLS3Rri0XK7Jlq8ChwyFUqluH69dyuQx9+7THe5Me5p1T/l68CwAXH8OEM336tMcv81/C33+9jt8WvIKxYwZAoZBj//7zooIdwBXoZv+wFtu2ncDJk1dFNuCFBd4FHkVF5XjsiS8xZuxsfPx/4iJwcRFzPwjHrbe2xN9/vs6L1ISOUZcy8n3GDEkJB6OiQj2OWO14c2Oo1UrceovTySMtNdnrtkQ4rkdlZQZ+1HoDifOBa0TL6TNZktEFQs454sm8MfuHtThzJgt2ux0vvjwXS/7ZDQC8i5eU2ITBhAkMocOEK0qlAnUc/emFcT+grEyPkBAVmjoirqKiQjHh5XvRsmU9JDgcTIROYtsEogmTyYJhI74RFX2FbgY2m413chnkOPYB4P4h3fDh5EcBAEXFWhw7dhkGh2hRqzNiyT+7+XP+FoeAtKxM75c71p69ZzHv543YseMUJr69QCS4dJ7LpO9t6tXjxBlXMwthsVj54ylawpXj+ef64X8ThwIAFv+zm79/a9BAWoijVCow5f+eRHJSNMrLzdDrTQgLVaNdu4aS7ePjI3HbrZwQcdOmo/yxKCXcSUqKxm23ccfWvPnOex8pdwbG+fPSAo+vvl6OX37djGeencFPu3AhVyQkY9f0uDjP1+7EBGffOem47rdqWV+ybUxMOC9MzcjIQ5ZDgDH1k6d44RUAfP7ZMLz00iD+PbvWePpdExOieNHmrNlrkJdfKnKteeWle6DRqHD4yCX+urj0v32S6/jV9P/w9PBvMOSBT/H86JmieWPGzsak938PKMrKlfJyA7ZtO4HSUj3S08/x06d/vRx9+k3G4iW73D6zaNE2/jWL6WGUlXP3mN/OWAmr1Ya2bRuK3HmefbYPVCoFTCYL71gEAD/8uFZ0v7vNRSR1UnAPZ7PZRG55bPvr1o3D5Pcf4afP/1X8NwtBEP7DIlqE4lKhSJoho4gWgiAIgiAIgiAIgrhhIIFHDYEVZQ8dusg/ZK2TEouOHRuL2j326G14f9LDALjsb/Yg1WKxYtz4H/Hc6Jk4cOA8X1x5cfxAAED6/vPIzi5GnsPZIyHB8wN5AOjUqQn/OsKHwKNFC24kJbOQTk72XIDq4hB4nDmbhQMOJ4l6HkYkK5UK9LyTc0zYtfsMP4pcWNiIjY3AzR3S+JFN3bpxDiHrNxzG0mX7YDZb0bhxMhYueFm07HbtGqJJE66QtXPnKY8P5IWj6E0mCz+i1263Y9MmruB06nQmFv62DZM/+AMAFxGiUMi5eIJCz9EGrnbhq1bv511ZWBEnJTkG//fxE7zIJiREhfBwDd55+yEAwJWrhaIYhF4923osdg4cwAk/WKxNiofYA5lMxjtVFBSIR2keOZqBlyf8hLcm/oqXJ/yEZ56dgQ0bjuDw4Uv4cc46t1HtDIvFKhrhKRxB7CoEkIIJOlgRIcyLwANwig1YPJEnB4+42Ag89eSdePqpngCcMRxMKCQFOzamfbkMWx1FeFYU9UTXrly/X7BwKywWKzp1asyLOYQkJERCrVbCarXx54G/F++CwWBGWJgGISFOR4IHH+jOvx760Gc46rDP9+TIAQCNHCOnc3J1KPMR0aJUKnjx1u+/bxc5eEgh7E/Hjl/mR7JLCXdatOCWWyIYtX/0mPTo3nvv7cyLk54bPZMvovsqpq9cdcDjPKvVBqvVxrufMH76aQMArsi2YOFWHDt+GWvWHMSM71bBYOAK860cMQilZc7jNzfP3Zp/yOCuUCoViIgIQSfHeZwVmdl5OFHiPMwKtL8u2ILc3BLYbDb+vPD558Pw28JX8Ncfr2Py+48iOjoMw4dzxbpVqw/izNksPhIkJiYcISFqhIdpeMFTSkoMnnryTgDAzFlreCcEi8WKif9bgHk/b8Qbb/3iNlL//AXvzhObtxznj53NW46JCv3FLNpHQlA27Ome/LF86VIeX6zw5EKzcMHLmPjWA3jooVv4aTHR0kI1gHPoWbfmPXz4wSNITY1Gx5vTMPSBbl63hcWR7dp1GmXlBiiVCknHgSSB0EKhkKOwsBzTvlwGAHhuVF+0cQhvAGDA3TcjOSkaJpMFv/2+zS3ux263w2KxwmKxYsNGsaju8y+WAnC6ZyQ4CuZSNGyYgPr1nNfTHt3dI2qEPDi0BwDnebV9+1RJty5WpGfONHq9iRdWfTltBBITo/jrGRNoXr1awBeIy8oM/P3B44/djqef6on3Jz2M118bjOaO+4ecnGI8N3ompny6BGazBZ9/8S8++/xf/rq6SRBJxKzoXcnNLcFDj3yORx+bJoqEsFisomO91IuDB+AU+J09l83HZSkUco9RdX3uage1Wons7GKsXXcYAFC/vrRIEOBiMz766FGo1dwt+uDBXb2Kbvs7or7+XbqXd7Go58Eh5CHHb3r+PHfOsNlsks4JgwZyQpsTJ65gx46Tomt3ebkBe/dK7+Onhn3Nx+3w124vDh4s3ih9/3mUluqhUinQuLFnkRU71k6fyeL7fKtW9TH9q5G4957OePqpnujWtRk63JSGf/95CwDXH7U6I++0EhXp/ru++KJTELJm7SGUlxv4WLy2bRuid6+2ovbHjl0WxSsBXD9a8s8ej+sOAOs3HHG7tzOZLDh27DLsdjtOnbqK7dtPSt5z7t17Fo889gXeeOsX3D3wQ1FM4pmzWbDZ7PjCcY4BgDVrDmL4M99iw0ZOmCiTyTD6+X6iZZaXG2C327HPIRZ5blRf3HdvFzRvXhd9+7TH/UO6oZHjfocJCY1GM3bv5lzEhM4yd/Vux/ebN9/6Ff/8uwd6vQnZ2cUwmSxQKOR45eV7+PYPDu2Ou3q3wyOPOIXpnu4RCYLwjspxbRaKb6Wc6kjeQRAEQRAEQRAEQRA3DiTwqCGEhnJF1q+/WcHbrCYmRokEHm3aNEBSUjTuvLMN1GolCgvLcf5CDrKzi7F8xX7+YfvC37Yh31FwbNe2ETp2bAy73Y7/lu/ji8bJHor7jM6dnQKPaA+jXBmuozFbehidCXCCDGatPddRTG3i5WE/K4weOXLJ6eDhRQjQqWNjNG2SAq3WiDlz1wMAbunRAo0aJooiS9q3a4SbbkoFAOw/cMHNTpqR41KIY04qFy/m8pExADBz1mq+8PL447fzRW1hm6ysImzcdBR79p7Boj+2IzOrULTs4mIdHn/yK2zectxpwx4XwRUylryJd95+EFP+70nI5XKkNkqETCZDQUEZLl3K44tnMR5cOQCge/fmfLEF4Eb3e4Jff4ETzJUrBXh+9Ezs2XMGW7Ye5+NbPvz4L4x+YRbm/rQBi5fsFi2H2bwv/G2rKEP+jz93YNiIb3DhQo5fRSJmAc+W70t0xAQe5x0CD2+xJYAzlobRRdD/Xalb1+lQw4o9wtgcKR4c2kPk7PHqhPskhThyuZxf/idTF+Off/dg+tfLAQDt2jZE797t+LbNW9TF2/8byr9ftGg7AO8OHq1a1UdEeAjKykxYt44rJHsThDzqcAw6czbLGVPgoSjqyYElVuJ3ZcX+TZuP4Y23foHFYuVFDC+9OAi/LXwFX08fie1bP8bENx/gj1UAeO2N+QCAEye8u8fM+3kjDgsKZIzMzELcP3QqBgz6CEuXccf9uLGcs8W58znIySnmI04ATjTVq2db9LyzDZ5+6k7eRalMUMRjzgb9+3fAti0fYevmj/DG60P4+cw2//KVfMfIcYfAQ8KNYcjgrripfSOYzVb8tyIduXml0OtNUCoVqF8vHo0aJorcUlq3qs8L544fv4zsrGIAYkcVIcOe7om4uAjk5pZgx05OJPPDj+tEI7JZwZ85BS1eshtr1rrb+wOAwWBCZqbzXGaz2TH4/k9hMllgNJr5KC6p4zskRI377+eEStO+WsY7EXly3GnUMBH33tNZJI6K8iA4YiiVCsjlcjzyUEtM+2KYz3NBB0dfW/gb53TUpHEyP3JWyBuvD0GP7s3x1ZcjRM5aACcgHDK4K//+icfvwF13cefbH35ch9EvzOILvBkZ+Xj40S/Qt/8HWLxkN7Rao5uQwG6389cSbwIPpVKBRb9NwNfTR6Jf35vc1suVhx7sgddevQ8AJzp49pm7JNsx0eaWLcexL/0cLl/Jh9VqQ3R0GLp1bYY5P7yA4cN6YdSzffDzT+ORmBgFrdbIu8qwc3xkRAjCwjQY/Xw/9HOIFlwFOuvWH8bQhz7H6tUHAXBF7xUr94tiyubN2yDphDLnp/W4erUQGZfz+UgSxtffrMChwxcBON2yPDl4MBeEI0cy+HP8A/d38+iGEhKi5q8BzCWtVat6km0ZzZrWwXPPdsDnnz3lVpR3pVOnxvy5mOFJJMFEfFnZRcjNLcHmLceRk1uCsDANPvrgMYSEqPDaq/dhpOO3vnylAK+/+Qv+/Gsnv4xZs9e4bJ9KdK1hbhCFDvctb9fudm25fbl5CyeIbdIkBWq1dEQg4BQM/714F2w2O5RKBWJjw9GyZT1MfOsBjH6+H/87JCZE8QLFP//cAYPBDLVaKSlgvvWWlvw5ecXK/XwMWnR0GEJC1LzokGG323nBHyMzk3PWUijkXu+1hO5Rdrsdb7z1C0Y9/z1+XbAFI0bOwOtvzne7VwKAL75cKorqA5yCQiFarQEXL+big4/+5GPoAOC7b0eJhGcAUK41IDe3BEVFWigUcrRr2xBJSdGYN3ccJr//KDQaFdq141yj3n5nIU6fzsS5c9mwWm2IiQnHKy/fg/BwDWJjudf3OaITAeCzL/7FsBHf8E55rVrVR7++HdC4cTLu6t0O9w/pBrlcjpfGD8I/i9/E1E+e8hj3SBCEd1RqJvBwOutIOXjI5dz5kYln27dvVAlrRxAEQRAEQRAEQRBERUACjxqCVFE2ISEKrVvVx/cznsMbrw/Bxx8+DgDQaFTo2pVzqli8eBfGv/QjPp26hP/c7j1neGFCQkIkBjseyC5espsfQe7N5h0QW713kMiGF5KSEoOWjofjCoUct9zifdTwAwLnAcAZNSFF69b1IZPJkJVVxI9ClbImZ6hUSrz99oOiaT26N4dMJkNbR6EhLFSNnne2wc0d0jBieC8AwM/zN/H54ywSo7RUh9wcscDjrYm/4sjRDOxyjG7s0qUpevRwbm9CQhTuGdQJCY5i919/7YTNZuc/+/Y7C/HyKz9h+tfLMfF/CwBwWfIff/Q4v4x33l3oVjgJCVFj4ICO6Ob43cPCNHzcBrPOjogI8Vo4USoVmP7VM3jowR54+aV7ePGMFMxZ4NjxyygsKseJk1fwzqTfJNsKC20HHREUAJC+/xyeHv4Nfvl1M2bOWsNvK3MSOXMmC6Oe+54vJnuzeX/0kdtE79PS3EfUC0lxOBaw48CTSwWjRYu66NAhFQA3mjdVYsQ+o1vXZm4FWF8Cj9jYCIwbOwBqtRJPPnEHUht5Xn7TJtzxkJ5+HlM/+4efPm7cALz1xv149ZV78f/s3Xd4U2X/BvA7SfempRPK3nsjQwVFtoIbBWUJKjgQtz9cKCCoiKLC68sriIooKggISEXEwZShsjeFQvdu2szz+yM5J+dktYW2Sdr7c11etsnp6XPCc9Ikz32+32mPDkWzpvEYOqQrWrZUnj/yIIm90JBADBvWBYDtyj9Xi+kA0Moaxrp0Kce2KOpiQb1Jk1iHxyUw0N9ptRX5otUffxzDnztP4PyFLACWf9vGjWLRo3tzKQTTqVMTxc8XFmoVoQL5v++tI3tIXz86/ROk212FvXvPSWRnF6K4uEwKZgwc0EFaOM/JKZKeJzt3aow5b96POW/ej7lzxuKRh4dIFUyKiuQBD7EiRwTUarXDQnBj67m6Y8cRnD+fhdJSPTQatdRyRU6tVqN/f0tLhtTULFy5bBl/YkKUy8Uxcf9pabm4kGp5HF1VoQkM9MfQIV0BAL9b2/t88eVvAID/e+lORXuiqVNukb5e+N56KZSwb99pLHxvPZYs/QmDh74h/bw4XwDghw37pFBCQICfy1Zf4tgBSIvMoW7mMAB069pUquojVnepKpMn3YwkWXWEfi72n5hYD+++MwE9e7TA9EeH4qMPpwAA6seEo13bZFzXu5W0bXJyjFQlCLA8L+3adQKXLuVgzP0LkZaWC53OgEXvbwRgCZnIr3p/+50fpIoK5VXfAixBx9devddlyEfu9lG9sfiDyfhi5ZPS30h7I0f2kP6dlq/4BRes52pycn3rmCIwdcotmDjhJkREBGPs/TcAsAQB5sz7TqpY4izs5ey52b690ptzvpW+9vPToKi4TBH4AIBLaTlSKEROrDgAAEs/2Yri4jJpXsqrnch16NAIGo0al9JycPx4GlQqlaKdkDMzn7pVel3Vrm1Dt8/xotBQf/To3txpgEhOpVJh+rShittcBQzqx4QjODgAJpMZt9+5AP83axUA4M47rsNNN3XEtpTXcMft1yE+PlIRlPrPf7fixIk0jB23SArmzHzqVrw1bxyWfTINI4Z3x7L/TgNgqby09JOtOHnK0t7OXXu1m27qqJhXbdu4D76IfxtOWfcdFxshLVg6c+MNlnDmf5dZ2qv16tUSgYH+Tre92RqQPH8+E6++9jUAW8BY3pbwSWu1j60pfysCF+Jza4vmCVK7QQBSNTiRvD3Rho1/SXP1k/+mSLd/9tl2xUKtIAhIt7akiYqy/Y3t368NGiUrq8HcN3YR1sheW4rE4PZzz4ySbisuLsOJE5YQSLOm8U4fG3nA9dXZX+OAtbpe61ZJaNEiET+sfQGrvngK0dHh6NihEebNHSdtn5aWi40/7gcATJk8CJGRIfhi5ZN4Y/Z9it9lHzwhosoJtlZ5EisPAUCJtsxhO/F184rlj2PSxJsUYWMiIiIiIiIi8i0MePgItcrxn0r80Lxz5yYYPaqX4gPSO0Zbysyv3/CX1ApBJJZADg8LQmxsBAYO6ID4+ChpgValUikqOTijUqnw2qv3Yviwbrj/vuvL3fbdd8Zj+rSheGveOKmcuysjhneTFtOjokJwvXUx05nQ0CBFNRHA/WICYPlQ+obr20lfi1f/v/D87Xhs2jAsem8SYmMtj+WDDwxAaGggMjLyceToJZw8dRnjJyzGzGdW4MEJi6UWH+J4AeDDjzZhw0bLlf99+7RWLIJ+t+YZqNVqdLReMfXztn9x7FgOzp3LxKnTVxTjFBe9EhPrYcCN7aUPw00ms7SoUN/NsXboaFk0+XjJFgCuS7bLNWkch6dm3Ip77u7rspULAMTEWP4N9XojRt46F5Mf+li6UnTQza4rf/y64wiOH0+DIAh4//0fFVU7AEvViRdfuAPDh1tCHuIHlSqVCjExroM7HaxXnYpaNncdCgIsCxbyRXZXpfhFKpUKb80dh1dfuQcL35ng9rFJTq6Pnza/LH1o2rdva5eL13KjR/XC9m2vY9qjQ91u166d4xW7X381E82bJcDPT4M77+yDcWNvgEqlgkajxopPH5NaqQDK9krO9OrZ0u54nC9yApbwlkajhk5nkK7CT3SxaBwUFIBvVj8tVQQALK0OnD2WiYn1sOSjqdL3Z85ckUIVzhZGW8uCAwDw8iurcdTaIuL99yZh/boX8Z+lj2DVlzPw3LOjpQVmAHj9zTUokZWxFiuFiEJDA5GQEIUI679hUXGZ9JzqrH2UeNX/6TPp0pjFc9nV8+oN17dDUmI95Bdo8fkXO6THwNXCrhgwuHwlD5etAagEJ2EQUQPZ9ufOWY7PWVsRkdg+ZGvK3/hmzU4IgoBuXZtixPDu+PCDh5CUWA+dOzfBjTe0x3//8ygAy+MiVvl4a8FafPvdbnz+xQ5Fyf2J4wdKAaNF72/Ehx9tlh4XV+eU/eIl4D6kBFgeu2X/eRRz3ry/3L9PlRUY6I9pjwwBAISHB2PEiO7l/IRFl85NkPLTK1j15VMIDg5ATEw4Pv/sCaz6cgb8/f0QERGMjz+aIm3/7POf454x7zrdV+vWDfDk4yOkwMwPG2wVpsR2O1WpW9dmUpUZZ2LrR2D2a2MAAIf+Po/XXre2I2vkvA3J3Xf1kebwps0HpABq+3bJDtu6e661N33aUNxpDYi++vo30Gp1OHnqMkwmM155dTX0eiNatUrCkCFdAAANGkTj6Zm3YtJESxujf/65IFVEiouLdPm8HR4erPg7FxMT7jaACFjCmJ8um26ttDW2wsdUUWq1GmPu7QeNRo0Xnr/d5XYqlcoh9FSvXijuvaevdL/4/2nThkqhUIPBhEkPfYxzsufHwbd0xg3Xt5OqhbRr2xAPPmBp8bTqq9+l5z93oSM/Pw3ee3cC+vZpjQ4dGuHuu/q63BawBHLbyeZJT1mQwpmpUwZJQaM2bRrgiceGu9w2PDwYfa5rpbgtMdEyT1u0SMSXnz+Jzz97Avfc3RctmidArzdiwdu28LTYVrBp03gpRAoAEycMVISp5AGl777bLX0tfz2UnVOE997fKIXmCgtLpZZGNw20VepqkBSNrl2VIeucnCKsXWepACIPkon/DqNH98bSjx8GABw/noYX/88aJm6t/Dsq6tmzBT5dNh1BQf5ITc3GkqU/AYAU1g4JCVS0Zrvxhnb48/c5WPjOBCloNHJE93L/rYjo6omvi0pLba9nnVXwEP+kNmwYg4cmDyr3/Q8REREREREReS/3lwWS1+jbtzX2/WXreR4Q4Oe2GkOXLk3g56dRLK4tfGcCfv/jmPTBb6dOTaBWq6FWAw9PvQWz31gDAAgO8i/3ilHA8uH+4Fs6V2j89eqFKRZV3VGr1Xh7/oPYmvI32rVLlq7EduXpp27DgxM+gF5vRMeOjRQtMlx5edZdOHDwHLp2aSpd/RldLwz3369cDAwMtFxBu+O3o3hyxv/gb706GLAt2gLAtEeGYvOWg1i7bg/+/dfWz75375Zo0jgOC956APXqhUmP6yNTB2P79sPIzCzAxk1nsHHTRwAsH6Q/8vBgLPvfNuyytkfo1bMFVCoVNq5/EWPuf09aHGjTpoHbRaUBN7THhg1/Sd9PGD+w3MelohITo9CwYYy0gCN6asZI3H1XX0ydcgt27zmJ7t2aYfKUj1FWZqvi8eRTn+LJJ0bg9Jl0BAb6Y86b92PWy6sQGOiP8Q8MgEajxqyX7sK9d/fD08+sQHZOEYYN64qgIPfzYMjgLvj8ix0ICPBDv/7ur9pPSorG6FG9pCuRXV2FLxcREYIh1rYB5VGpVBh1W0/Exlqq7FRURRYzb721Jw4eOofCAi0yMgswfFg3aQHL1T4XvPUAvlmzE02axElXKbvSrVtTxMeFICNTi/792qBbV9eVXPz9/dCsWbx0NXWj5PpuPyyOigpVXBXevFmCy207d26CiRMGYvmK7di0+SBMJjNCQgKdhiQCAvzwzeqn8efO41iy9Cf8tf+MdF/r1kkIDg6QWgEAloXgkSO7Y8LED/HPPxcw8+kV+M+Sh/HPPxfwrWzBTRyjSqVCeLil+khRUakUZnEWVpO3lLj3/oX47ttnpUVRV1UzQkICMWJEd/x32c/4aeshAHBbJUZcHL90KQcXLlj27W5hX1yc3/fXaRRbn7+aNHY+FsBWAcdkMuObNTsBAEOHWkJX9etH4OvVT0sBqfbtkxEVFYr8/BI8NGUJVq+aKVXdsdeufTJuvKEdNm85CMDS0gNwHXwB4FCBBoDDgqYzTZrEoUnTuEoFBCpq4IAOWPrxVCQmRZcbWJSzb/9if2V/l85NserLGXj55a9w5myGdPtLL9yBL778DakXLa2BxOeUt+aOwyuvrZaqV73w/O1unwuqU4sWCejapSkOyqo0idUT7KlUKrz8f3fh0emfALBVUhKDF/aWfvwwzpxNx003dYRgEjD81jmK+0NDA/Hh4ilo0TwBR49dwtff/AmdzoBbhs4GYDlfLl/ORWhoIObNHYu42EiMGN4dTZvEISgoAJMn3Yx1P+xFbm4xNm0+IB2PO0/PvFU6V00mk9ttRVFRoRg2tGu1zEnA0kpq8uRB5Va4efKJEQgNDULz5vHo26cNYmLCnb6e7N2rJX79ZTbeeHONdM6KOndq7PS5fspDtyA0NEgKAbRskSi1tHElJCQQb89/EFCV/zcwNDQI/136CFK2/Y3ffz+Gh6e6b18TGxuJL1c+ibz8YtSv7zpIJnr++duxbdu/KCzSYsuWQxgre03YVFa57v/+7y5MmvwRfvv9GO69byFefeVubPnJMncGDGiPRo3q48DBs4iPi8QN17dDzx4tMGfed/jtt6PSa8eMjHyHYK/cDz/sQ9PGcbj77r5SFaioqBB07dJUauGSlBSNtm0b4lJaDvbvP+uwj/vv64/hw7shLDRIUeGpefN4REeHSX/LADi0oZFr06YBnp55G+bM/Q6A5TlbXg3Lmd69WuKHtc+jqLjMbetEIrp24ntlrVZWwcNpi5bq+ftDRERERERERDWPAQ8fce89/TB8WDfk5hVj0aKN6Opm0RWwXC1/000dsdW6AHHvPf1w3XWtEB8fiR837Ydeb8Stt9o+nB06pCv+/vs8fli/Dw+X0++9JoSGBuF2axWS8jRqVB8L35mAf/69gOHDulVo8SQ0NMhtZRC5Tp2aYMdvR1FWZkAZDOjUsTFuvbUH5s77HoIgoHPnJmjfPhkdOjRCyxYJ+GH9Ppw8dQUDbmyPxtYF3f52vysw0B/vvTsB4yd+KIVw/P01mDzxZrRt0xC3juyOXbtOICYmHAMGdJDG/Pb8BzF/wVqYzQIefXiI23H36tUSd9/VB5cu5eDuu/riOrsrU6+Fv78fVn0xA1lZhfh52z8ICQ7A0GHdpIWlhg1jcFfDPgCAlSuewIXULAQG+uOJJ/+HoqJSqaT+0CFd0LdPa2z+cZb0uIhatkzEF5/PwMGDZxVtblx5eOot6N69GRokxaBBg/KrlTzyyBDo9UaYzYLDVbtVQaVSldua5WqEhgRi/rwHKvUz9etHlFsZROTnp8GYe9siKakN+vRpU+75NP6BAVJ7nl69W7rdFgCaNYuHWq2C2Sy4vGJYJC44ie1WmjSOdTmehg1jcM/dfdG2dQM8Yl04HnBje9etPxrFYs6b9+GZZ1fi8OFUHDh4Fh8s3uSw3ahRvQBA2k9RUSny8iyLYs7aQSUkRKFjx0ZS0GvS5I9QUKAFYCnd78qo23ph8+aDuJSWg+DgAExw0/KhYcMYBAcHoKBAiy9X/Q7AfaWVHt2bo0njWKnNTVCQv9u/IQ0bxCAyMkQad3h4MAYOsC3W27eYGTK4C77+5k8AwJj7F0q3T550M8rK9Fi7bi/G3n89YutHYOz9NzgsFrsLSQQHB+DXX17H3Hnf4/iJNIwe1Qtt21Q8NFVdOnZsXC0L9Y0bxeL9RZMx763vEBMTgalTBiE6Ohxx8ZFY8PYP6N69GXpbz7OEhCi8veBBrFz5K26+uSPatXWsgFFTVCoVFn8wGZcu5mDz1oMYPtR98Kxz5ybYuuVlLPvfNvzz7wWMve96h+pBok6dGqNTp8aWagaCJdAlVjMAgJlP3SZV8enQPhkDB3TA9l8PS/eLzx8TJ9wkBaF6yCoZqVQqNG+egNxcW4jWvu2XvdDQIMyccSsWLtqAp5+6ze22NUWlUpUb7gAsz1vPPj2qQoEKAHj+udHo3asl/tx1Au3aNsTIkT0Q6CJgrNGoMW7sDWjZIhEHD53D/fdd77J11LW4ZVBnDL6lS4W21WjUFQp3AJbnojH39ANUwMNTXL8Wbt0qCRPGD8DyFdtxKS0HUx5eCsDyerRvn9bw89Pgk6WPSNuHhwejS+cm+O23o1j3w17cfVdfqRJUcsMY6PRGKfgxfHg3/P77MRQVleJ/n27D8BHdpXZhsfUjMXBgB0y5OAjZ2UVo27YhNBo1Fr//EH755V9s3nIQf+48Lv3e5OT66NEjymH8oaFB+GjxFIyfuBh6vRHt2jbEUBcBK9HQIV2wc+cJnDmbjuefu73c0C1geT3BcAdR9ZMqeMgq0mlLXLdoISIiIiIiIiLfpxLE+r91WGFhISIjI1FQUICIiIpfjevtCgtLseKz7ahXLxT33N1XWjw/ezYDpaV6qQy/yGg04ejRS+jQIdltT/O6JjevGLPfWAO1SoUhQ7rgpoEd4O/vh4MHz+LylTwMurmTQ99yQRAq9CFa2uVsfPvtJjRs2BLduzWXrtoXBAH7D5xFi+YJUonr2mDfvtN45rnPYDCY0KBBND7+aGqlroCn6mcwGLBp0yYMHz4c/v7+5f8AgIsXs5GbW4zWrZMqtOhz/kIm9u8/i+HDurmt0GMwGDFh0oc4dy4TiYn1MOPJkW6DWeIC8M+//ANdmQHDhnVzCCPYb//c858rFsQA4NNl0xEWFoS0y7no3cuy6Dx33nfY+ON+TJ1yC/btO42Dh87h9dfuxS2DHKsY5eUV49Plv2Bryt8oKioFYGmD8OOG/3M7lvy8Eny3djeu79/W7dXUAPDnzuOYv2AtsrOLEBUVii8+f9LtQlp2diE+XrIFBw+dx31j+uOeu923Qjh7NgMlJWUoKdGhWbN4RQskeyaTCZs2HcC8+bZ2BR+8P1mxiC737+ELePiR/0jfP/fMKIx2E+gT/10ruiBd2e31ej02b96MYcOGISDA/fyt7rFU5/beNJZr2X7+22ux3lqd6v33Jjm0fhAEAT/9dAhZWYVYsXI7AgP9cdutPTHloUEunw9OnEjDw4/+Bzfd1BH33dvfaeUY+98hmAUUl5RVqMQ952TVbO9NYwGAS2k5ePyJ/yEjIx+hoYFYtHCSw2trUVZWAe4ZsxA6nQF9+7bGzTd1whtvrkH37s2g0Wiwd+8pAJYKU/eN6Y/7xi7CxYvZ8PfX4NaRPfD92j24ZVAnvG5th+Rs7GWlegwbOQd6vRFNm8bhi5VPujwO8VgFCBV6zV+d/06VdTWvU66VL75X9MUx09U5eeoyJkz8EDEx4djww4sAgFWrfseHH29WbPfAuBvx6CPuLxCoCp44R4nKw3lJdQnnO3kbzkki9/gel4iuFit41GIREcF44nHHfuNiv3R7fn4adOrUuLqH5XOi64Vh0cKJDrd37doMXbs6/5mKfqAdFxuJJo0jMXx4D8UfcJVK5XJx1Jf17NkCq754CjqdweU8JN+TnFy/Uq0hmjSOQ5PGrluQiPz9/fDxh1Nx6VIO2rRp4DasITfo5k4VPgdjYhxDEa1bJ0GlUkmtTQBZBY9CWwWP6GjngYp69cIw86lbkZxcH4ve3wgAaNHc/YIxYGnhMHnSzRUae98+rbHq8xk4cPAsOnRoVO5V0jEx4Xj5/+6u8IJb06ZxFV6gU6vVGDa0mxTwaNw41u3zV4f2jfDMzNvwzsL10GjUuOFG5608iJyZPm2Y1G4qNtYxeKSyhjEhAPff3x9qtbrcOdyqVRJ+/ulVqDWqCgdcLa2bnFcIorqhQVI0Vnz6GC5ezEaTJnEICwtyuW39+hF4+60H8MRTn2LnzhM4fTodABAfH4WWLRKlgEdiYj2o1WqMvf96vDV/LQwGk9SSRazo5kpQUAA+WDQJ6zf8hfvvu75Cz/W8op/I94kVPLSyCh6F1oCxHM93IiIiIiIiotqDAQ8iqlEVaZ9CJIqMDEFkZPlXyF8t+zYrQ4Z0cfoBuLiQW1ikRa7YoiXKfaiil6yyQGxs1aehQ0ODcP317bziA3uNRo37xvTHd9/vxqyX7ip3++HDuiEwyB+dOzVhCX+qlLCwoHJbqIgqEu4QaTRqwPOnEvmYiPBgtG+fXKF51r17c7RokYDTp9OllixxsZEYOqQrvv9+N5o2jccN17cDAIwY3g3ffrsLp89YgiBJSdHo36/8tm8dOzZGp05Nrv6AiMjnSC1aSvUwm81Qq9XSc4xc/frhNT00IiIiIiIiIqomDHgQEVGdFRNt+7B73NgbMHXKLU63E6t5/LjpgHRbeaGNxo1iMejmTvh52z+4+aaObrdVqVQQULHWTjWx/dWYPm0opk65xaFllTOBgf4YPqybV4RTyDlvnGNUt9WG58muXZtJ1TsASzWmyMgQfL36acV2arUa8996AHfe/TYAoGeP5vD359s2InIUImt3WFpmQGhIINIz8hy2S0yoV5PDIiIiIiIiIqJqVLE61ERERF5OpVJVuAWJSF4dpFevlvDz0zjdrm+f1giWfYAOwG17BnEsr7x8N1Z9MQN9+rQudyyVXVSs7u0rS6VSVSjcUZdczZz0JtU5x3z9samMyh6ruF2FW2xUdt9e9Lhf7WNTqf1X4/aVNerWnlK7sbfmjUOHDo1cbpsQHyV93bp1A7f7re55UJntvW2OEdV2gYH+UKst51upVgedzoBDh847bJeQGFWzAyMiIiIiIiKialNrAh4fffQRmjRpgqCgIPTu3Rt79+719JCIiKiGVXaBuX37ZPj7a9CzZwt079bM5bYhIYFYtHBipcfi56dBkyZxlfo5ql28JfTgjYuu3vLYVNbVjKU6x+1tIYbK8rbxVNTVzIOmTePw8UdT8d//PCq1Y3Fn8QeTMWniTbh1ZI+KjacSqj3ARUQ1QqVSIdTapqWoqBTfr93jdLsEVvAgIiIiIiIiqjVqRcDj66+/xsyZM/Hqq6/iwIED6Ny5M4YMGYLMzExPD42IiLxYUlI0Nq5/Ce++Pb7cBamOHRvjP0seRkxMOF5/7d4aGiHVNdUZevD1RVdvqE5Q2bH4Ol+vEFLdruY4O3ZohPbtk8vfrwro3q05Hpo8SKr6QUTkTFJSNADg4qUcHD9+yeH+Z58ZJYVAiIiIiIiIiMj31YpPCxcuXIgpU6Zg4sSJaNeuHZYuXYqQkBB8+umnnh4aERF5ufDwYJetWex17NgYG354EbcM6lzNo/IsX16k9aZ2GDXBm8biTXy9qoU34WN57RgiIqLq1NhaLW77r4eR8vM/ivsaNozB7aN7e2JYRERERERERFRN/Dw9gGul1+uxf/9+vPjii9JtarUagwYNwq5du5z+jE6ng06nk74vLCwEABgMBhgMhuodMJGMON8478hbcE7S1RAEocKLkYIgAAIqtdhZmf1XFuc8eRvOSSLXPHF+8Fwkb9ekcSwA4KefDkm3ffD+ZPz553HcfVcfD42KiIiIiIiIiKqLzwc8srOzYTKZEB8fr7g9Pj4ex48fd/oz8+bNw+uvv+5w+9atWxESElIt4yRyJyUlxdNDIFLgnKS6hnOevA3nJJFrNXl+aLXaGvtdRFdjxIjuOHMmHYWFpTALZrRvl4zu3ZqhR/fmnh4aEREREREREVUDnw94XI0XX3wRM2fOlL4vLCxEcnIyBg8ejIiICA+OjOoag8GAlJQU3HLLLfD39/f0cIg4J6nO4Zwnb8M5SeSaJ84PsdojkbeKrR+BN2bf5+lhEBEREREREVEN8fmAR/369aHRaJCRkaG4PSMjAwkJCU5/JjAwEIGBgQ63+/v784N08gjOPfI2nJNU13DOk7fhnCRyrSbPD56HRERERERERETkTdSeHsC1CggIQPfu3bFt2zbpNrPZjG3btqFPH/abJSIiIiIiIiIiIiIiIiIiIt/n8xU8AGDmzJkYP348evTogV69emHRokUoKSnBxIkTPT00IiIiIiIiIiIiIiIiIiIiomtWKwIe9957L7KysvDKK68gPT0dXbp0wZYtWxAfH+/poRERERERERERERERERERERFds1oR8ACAxx57DI899pinh0FERERERERERERERERERERU5dSeHgARERERERERERERERERERERuceABxEREREREREREREREREREZGXqzUtWq6FIAgAgMLCQg+PhOoag8EArVaLwsJC+Pv7e3o4RJyTVOdwzpO34Zwkcs0T54f4HlF8z+gL+P6WPIV/w8gbcV5SXcL5Tt6Gc5LIPb7HJaKrxYAHgKKiIgBAcnKyh0dCRERERERE3qaoqAiRkZGeHkaF8P0tERERERERueNL73GJyJFKYEwLZrMZly9fRnh4OFQqlaeHQ3VIYWEhkpOTcfHiRURERHh6OESck1TncM6Tt+GcJHLNE+eHIAgoKipCUlIS1Grf6HDK97fkKfwbRt6I85LqEs538jack0Tu8T0uEV0tVvAAoFar0bBhQ08Pg+qwiIgIvsglr8I5SXUN5zx5G85JItdq+vzwtaua+P6WPI1/w8gbcV5SXcL5Tt6Gc5LIPb7HJaLKYjyLiIiIiIiIiIiIiIiIiIiIyMsx4EFERERERERERERERERERETk5RjwIPKgwMBAvPrqqwgMDPT0UIgAcE5S3cM5T96Gc5LINZ4fRN6N5yh5I85Lqks438nbcE4SucdzhIiulkoQBMHTgyAiIiIiIiIiIiIiIiIiIiIi11jBg4iIiIiIiIiIiIiIiIiIiMjLMeBBRERERERERERERERERERE5OUY8CAiIiIiIiIiIiIiIiIiIiLycgx4EBEREREREREREREREREREXk5BjyoTpg3bx569uyJ8PBwxMXFYfTo0Thx4oRim7KyMkyfPh0xMTEICwvDnXfeiYyMDMU2TzzxBLp3747AwEB06dLF6e8SBAHvvPMOWrVqhcDAQDRo0ABz5sxxO74jR47gzjvvRJMmTaBSqbBo0SKHbX777TfceuutSEpKgkqlwrp16yp07FV1XFS16vKc/OSTTzBgwABERERApVIhPz/fYRvx98r/e+uttyq0f/I+tWG+V+QYnMnNzcXYsWMRERGBqKgoTJ48GcXFxYrjnjBhAjp27Ag/Pz+MHj263H3StavLc3LOnDno27cvQkJCEBUV5XQb++dflUqF1atXl7tvqj1q6hx57bXXnM630NDQcsf40UcfoUmTJggKCkLv3r2xd+9exf0Veb3hTGpqKkaMGIGQkBDExcXh2WefhdFolO6/cuUK7r//frRq1QpqtRozZsyo0H6JqpK3n6MVeZ/w/fffY/DgwYiJiYFKpcKhQ4cqdOx8beWd6vKc5GurusnX57zBYMDzzz+Pjh07IjQ0FElJSXjwwQdx+fLlco+dr5W8U12ek+WN+fz5807HvHv37nL3TbVHTX4O9NNPP+G6665DeHg4YmNjceedd+L8+fPljnHNmjVo06YNgoKC0LFjR2zatElxP18/E5EcAx5UJ+zYsQPTp0/H7t27kZKSAoPBgMGDB6OkpETa5qmnnsKGDRuwZs0a7NixA5cvX8Ydd9zhsK9Jkybh3nvvdfm7nnzySSxbtgzvvPMOjh8/jvXr16NXr15ux6fVatGsWTO89dZbSEhIcLpNSUkJOnfujI8++qiCR121x0VVqy7PSa1Wi6FDh+Kll15yu93s2bNx5coV6b/HH3+8Ur+HvEdtmO8VOQZnxo4diyNHjiAlJQUbN27Eb7/9hqlTp0r3m0wmBAcH44knnsCgQYPc7ouqTl2ek3q9HnfffTceffRRt9stX75c8RzMN/h1S02dI88884xinl25cgXt2rXD3Xff7XZ8X3/9NWbOnIlXX30VBw4cQOfOnTFkyBBkZmZK21T09YacyWTCiBEjoNfrsXPnTnz22WdYsWIFXnnlFWkbnU6H2NhYzJo1C507d67wvomqkrefoxV5n1BSUoL+/ftj/vz5FTxqC7628k51eU7ytVXd5OtzXqvV4sCBA3j55Zdx4MABfP/99zhx4gRuu+02t/vlayXvVVfnZEXGLPr5558V4+7evXuF9k21Q02dI+fOncOoUaNw00034dChQ/jpp5+QnZ3tdD9yO3fuxH333YfJkyfj4MGDGD16NEaPHo3Dhw9L2/D1MxEpCER1UGZmpgBA2LFjhyAIgpCfny/4+/sLa9askbY5duyYAEDYtWuXw8+/+uqrQufOnR1uP3r0qODn5yccP378qsfWuHFj4b333nO7DQBh7dq15e6rqo6Lql9dmZNy27dvFwAIeXl5V/U7yXf5+nx3dgzOHD16VAAg7Nu3T7pt8+bNgkqlEtLS0hy2Hz9+vDBq1KirGTZdo7oyJ+WWL18uREZGOr3vap7TqXarrnPE3qFDhwQAwm+//eZ2u169egnTp0+XvjeZTEJSUpIwb948h23dvd6wt2nTJkGtVgvp6enSbUuWLBEiIiIEnU7nsP2NN94oPPnkk+Xul6i6eds5Klfe35Rz584JAISDBw+Wuy++tvIddWVOyvG1Vd3my3NetHfvXgGAcOHCBZfb8LWS76grc1LO1Ziv9nmdarfqOkfWrFkj+Pn5CSaTSbpt/fr1gkqlEvR6vcvx3HPPPcKIESMUt/Xu3Vt4+OGHHbbl62ciEgRBYAUPqpMKCgoAANHR0QCA/fv3w2AwKBKKbdq0QaNGjbBr164K73fDhg1o1qwZNm7ciKZNm6JJkyZ46KGHkJubW7UHUEFVdVxU/erKnKyMt956CzExMejatSvefvttRclP8m21Yb7bH4Mzu3btQlRUFHr06CHdNmjQIKjVauzZs6fKx0RXr67MycqYPn066tevj169euHTTz+FIAhVsl/yTdV1jthbtmwZWrVqheuvv97lNnq9Hvv371f8brVajUGDBl3z69tdu3ahY8eOiI+Pl24bMmQICgsLceTIkWvaN1F18qZztDrxtZXvqCtzsjL42qp2qw1zvqCgACqVymWrIYCvlXxJXZmTlXHbbbchLi4O/fv3x/r166tkn+S7qusc6d69O9RqNZYvXw6TyYSCggJ8/vnnGDRoEPz9/V3+3K5duxyqZwwZMqRK3uPy9TNR7cSAB9U5ZrMZM2bMQL9+/dChQwcAQHp6OgICAhxeMMbHxyM9Pb3C+z579iwuXLiANWvWYOXKlVixYgX279+Pu+66qyoPocKq6rioetWlOVlRTzzxBFavXo3t27fj4Ycfxty5c/Hcc895elhUBWrDfHd2DM6kp6cjLi5OcZufnx+io6P5HOxF6tKcrKjZs2fjm2++QUpKCu68805MmzYNixcvroKRki+qznNErqysDF9++SUmT57sdrvs7GyYTCbFwsK1/m5Renq60/2K9xF5I287R6sTX1v5hro0JyuKr61qt9ow58vKyvD888/jvvvuQ0REhMvt+FrJN9SlOVkRYWFhePfdd7FmzRr8+OOP6N+/P0aPHs2QRx1WnedI06ZNsXXrVrz00ksIDAxEVFQULl26hG+++cbtz7l6fq2K97h8/UxUOzHgQXXO9OnTcfjwYaxevbrK9202m6HT6bBy5Upcf/31GDBgAP73v/9h+/btOHHiBFJTUxEWFib9N3fu3Cr73XPnzlXsOzU1tcr2TdWLc9LRzJkzMWDAAHTq1AmPPPII3n33XSxevBg6na7KxkeeURvmu7NjeOSRRxT7Jt/BOeno5ZdfRr9+/dC1a1c8//zzeO655/D2229f1djI91XnOSK3du1aFBUVYfz48dJtv//+u2Ief/nll1X2+4YNGybtt3379lW2X6KaVlvPUb628l2ck4742qp28/U5bzAYcM8990AQBCxZskS6na+VfBfnpFL9+vUxc+ZM9O7dGz179sRbb72FcePG8Xm4DqvOcyQ9PR1TpkzB+PHjsW/fPuzYsQMBAQG46667IAhCtX4Wz9fPRHWLn6cHQFSTHnvsMWzcuBG//fYbGjZsKN2ekJAAvV6P/Px8RUozIyMDCQkJFd5/YmIi/Pz80KpVK+m2tm3bAgBSU1MxcOBAHDp0SLqvqsqoA5Y/4Pfcc4/0fVJSUpUdF1WfujYnr1bv3r1hNBpx/vx5tG7duiqGRx5QG+a7q2OYPXs2nnnmGcW2CQkJyMzMVNxmNBqRm5vL52AvUdfm5NXq3bs33njjDeh0OgQGBlbJPsk3VPc5Irds2TKMHDlScdVSjx49FOdIfHw8AgMDodFokJGRofj5yv7uZcuWobS0FACkUrkJCQnYu3evw37F+4i8jTeeo1WFr618U12bk1eLr61qD1+f8+JC+oULF/DLL78oKiXwtZJvqmtz8mr17t0bKSkp17QP8k3VfY589NFHiIyMxIIFC6TbvvjiCyQnJ2PPnj0O54j4OVBCQsI1v8fl62eiuoUBD6oTBEHA448/jrVr1+LXX39F06ZNFfd3794d/v7+2LZtG+68804AkK6s7dOnT4V/T79+/WA0GnHmzBk0b94cAHDy5EkAQOPGjeHn54cWLVpU0VEpRUdHOywMVdVxUdWrq3Pyah06dAhqtdqhpBz5htow38s7hri4OIf52adPH+Tn52P//v3o3r07AOCXX36B2WxG7969r2ocVDXq6py8WocOHUK9evW4AFGH1NQ5Ijp37hy2b9/uUCY5ODjY6TnSvXt3bNu2DaNHjwZgqZazbds2PPbYYxX+nQ0aNHC4rU+fPpgzZw4yMzOl8yclJQURERFo165dJY6IqHp5+zlaFfjayrfU1Tl5tfjayvfVhjkvLqSfOnUK27dvR0xMjOJ+vlbyLXV1Tl6tQ4cOITExscr2R96vps4RrVYLtVrZOEGj0QCwvG919TlQnz59sG3bNsyYMUO6LSUlpVK/m6+fieoWBjyoTpg+fTpWrVqFH374AeHh4VJ/scjISAQHByMyMhKTJ0/GzJkzER0djYiICDz++OPo06cPrrvuOmk/p0+fRnFxMdLT01FaWiqlLdu1a4eAgAAMGjQI3bp1w6RJk7Bo0SKYzWZMnz4dt9xyi+LqXXt6vR5Hjx6Vvk5LS8OhQ4cQFhYm/cEvLi7G6dOnpZ85d+4cDh06hOjoaDRq1MjpfqvquKjq1dU5CVhK1aWnp0s/+++//yI8PByNGjVCdHQ0du3ahT179mDgwIEIDw/Hrl278NRTT2HcuHGoV6/e1T3g5FG1Yb6XdwzOtG3bFkOHDsWUKVOwdOlSGAwGPPbYYxgzZoyios3Ro0eh1+uRm5uLoqIi6bi6dOlyVY83la+uzknAUjkkNzcXqampMJlM0phbtGiBsLAwbNiwARkZGbjuuusQFBSElJQUzJ07t8quWCXfUFPniOjTTz9FYmIihg0bVqHxzZw5E+PHj0ePHj3Qq1cvLFq0CCUlJZg4caK0TXmvN5wZPHgw2rVrhwceeAALFixAeno6Zs2ahenTpysW4cTjKC4uRlZWFg4dOoSAgAAubFCN8fZztCLvE8S/RZcvXwZg+QAdsFxl6OpqQr628l51dU4CfG1VV/n6nDcYDLjrrrtw4MABbNy4ESaTSTqG6Ohol58F8rWS96qrc7IiY/7ss88QEBCArl27AgC+//57fPrpp1i2bFmFxk61Q02dIyNGjMB7772H2bNn47777kNRURFeeuklNG7cWJqDzjz55JO48cYb8e6772LEiBFYvXo1/vrrL3zyySfSNnz9TEQKAlEdAMDpf8uXL5e2KS0tFaZNmybUq1dPCAkJEW6//XbhypUriv3ceOONTvdz7tw5aZu0tDThjjvuEMLCwoT4+HhhwoQJQk5OjtvxnTt3zul+b7zxRmmb7du3O91m/PjxbvddVcdFVasuz8lXX33V7bHv379f6N27txAZGSkEBQUJbdu2FebOnSuUlZVV5KElL1Qb5ntFjsGZnJwc4b777hPCwsKEiIgIYeLEiUJRUZFim8aNGzvdN1Wfujwnx48f7/Tntm/fLgiCIGzevFno0qWLEBYWJoSGhgqdO3cWli5dKphMpoo8tFRL1OQ5YjKZhIYNGwovvfRSpca4ePFioVGjRkJAQIDQq1cvYffu3Yr7y3u94cr58+eFYcOGCcHBwUL9+vWFp59+WjAYDOU+Po0bN67U+ImuhbefoxV5n7B8+XKn27z66qtu983XVt6pLs9Jvraqm3x9zrt6vyGfu67wtZJ3qstzsrwxr1ixQmjbtq0QEhIiRERECL169RLWrFlT4bFT7VCT58hXX30ldO3aVQgNDRViY2OF2267TTh27Fi5Y/zmm2+EVq1aCQEBAUL79u2FH3/8UXE/Xz8TkZxKEAQBREREREREREREREREREREROS11OVvQkRERERERERERERERERERESexIAHERERERERERERERERERERkZdjwIOIiIiIiIiIiIiIiIiIiIjIyzHgQUREREREREREREREREREROTlGPAgIiIiIiIiIiIiIiIiIiIi8nIMeBARERERERERERERERERERF5OQY8iIiIiIiIiIiIiIiIiIiIiLwcAx5EREREREREREREREREREREXo4BDyIiIiIiIiIiIiIiIiIiIiIvx4AHERERERERERERERERERERkZdjwIOIiIiIiIiIiIiIiIiIiIjIyzHgQUREREREREREREREREREROTlGPAgIiIiIiIiIiIiIiIiIiIi8nIMeBARERERERERERERERERERF5OQY8iIiIPGzFihVQqVQ4f/68p4dSIefPn4dKpcKKFSvK3XbChAlo0qRJtY+JiIiIiIiIPI/vb4mIiIiIqhcDHkREROT1xA/dnP133XXXSdtNmDBBcV9gYCBatWqFV155BWVlZR48AiIiIiIiIiLl+9vvvvvO4f7XXnsNKpUK2dnZ0m3273UjIiLQuXNnvPvuu9DpdDU5fCIiIiLyMD9PD4CIiKiue+CBBzBmzBgEBgZ6eigV0rhxY5SWlsLf37/Gf/d9992H4cOHK26LjY1VfB8YGIhly5YBAAoKCvDDDz/gjTfewJkzZ/Dll1/W2FiJiIiIiIjqGr6/rZzZs2fjjjvugEqlKndb+Xvd/Px8fPfdd3jmmWewb98+rF69urqHSkREREReggEPIiIiD9NoNNBoNJ4eRoWpVCoEBQV55Hd369YN48aNc7uNn5+fYptp06ahb9+++Oqrr7Bw4ULEx8dX9zCJiIiIiIjqJL6/rbguXbrg0KFDWLt2Le64445yt3f2Xrd37974+uuvsXDhQiQlJVXncImIiIjIS7BFCxERUSW56rsrllEVqVQqPPbYY1i3bh06dOiAwMBAtG/fHlu2bFH8nLMexYIg4M0330TDhg0REhKCgQMH4siRI2jSpAkmTJjg8ne62ycAbN68Gddffz1CQ0MRHh6OESNG4MiRI5U6flc9isXjDAoKQocOHbB27dpK7be6qFQq9O/fH4Ig4OzZs54eDhERERERkdfg+1vPvb8dM2YMWrVqhdmzZ0MQhEr/vFqtxoABAwDA4bEhIiIiotqLFTyIiIiq0R9//IHvv/8e06ZNQ3h4OD744APceeedSE1NRUxMjMufe+WVV/Dmm29i+PDhGD58OA4cOIDBgwdDr9df9Vg+//xzjB8/HkOGDMH8+fOh1WqxZMkS9O/fHwcPHnT6oV5Fbd26FXfeeSfatWuHefPmIScnBxMnTkTDhg0dts3Ly4PJZCp3nyEhIQgJCVHcptVqFX2IASAyMrLccrrih1316tUr9/cSERERERGRI76/rdr3txqNBrNmzcKDDz5Y4Soe9s6cOQMAbh9/IiIiIqpdGPAgIiKqRseOHcPRo0fRvHlzAMDAgQPRuXNnfPXVV3jsscec/kxWVhYWLFiAESNGYMOGDdIVTP/3f/+HuXPnXtU4iouL8cQTT+Chhx7CJ598It0+fvx4tG7dGnPnzlXcXlnPP/884uPj8ccffyAyMhIAcOONN2Lw4MFo3LixYtuuXbviwoUL5e7z1VdfxWuvveZw26uvvqq4bfv27dJVSyIxBFJQUIB169bhu+++Q4cOHdC6detKHhkREREREREBfH9b1e9vAeD+++/HG2+8gdmzZ+P22293WsFETv5e95tvvsG6devQqVMnvtclIiIiqkMY8CAiIqpGgwYNkj78AoBOnTohIiLCbauQn3/+GXq9Ho8//rjiw50ZM2Zc9QdgKSkpyM/Px3333aeogKHRaNC7d29s3779qvYLAFeuXMGhQ4fwwgsvSB9+AcAtt9yCdu3aoaSkRLH9l19+idLS0nL326xZM4fbpk6dirvvvltxW+fOnRXfl5SUIDY2VnFb//798dlnn5X7YRkRERERERE5x/e3Vfv+VhzzrFmzMH78eKxbtw633367y304e6/bt29ffP755+X+fiIiIiKqPRjwICIiqkaNGjVyuK1evXrIy8tz+TPi1T8tW7ZU3B4bG3vVLUZOnToFALjpppuc3h8REXFV+wVcjxcAWrdujQMHDihu69ev31X/rpYtW2LQoEFutwkKCsKGDRsAAJcuXcKCBQuQmZmJ4ODgq/69REREREREdR3f31bt+1vR2LFjpSoeo0ePdrmd/L1uYGAgmjZt6rRtDBERERHVbgx4EBERVZKrKhDO+u5qNBqn2wqCUKNjMZvNACx9ihMSEhy29/OruZcEWVlZFepRHBYWhrCwsErvX6PRKEIgQ4YMQZs2bfDwww9j/fr1ld4fERERERFRbcX3t9emKt7filU8JkyYgB9++MHlPuzf6xIRERFR3cSABxERUSXVq1cP+fn5DrdXpO9uRYg9fU+dOqUo45qVleVwZZR4xVN+fj6ioqJcjkUsoxsXF1flHwjJx2vvxIkTDrf17NnzmnoUV1ZiYiKeeuopvP7669i9ezeuu+66a94nERERERFRbcD3t67Ha68639+OGzcOb775Jl5//XXcdtttFR8wEREREdU5DHgQERFVUvPmzVFQUIB//vkHnTp1AmDp07t27doq2f+gQYPg7++PxYsXY/DgwdJVTIsWLXI6FgD47bffpA+BSkpK8Nlnnym2GzJkCCIiIjB37lwMHDgQ/v7+ivuzsrIcevlWVGJiIrp06YLPPvtM0ac4JSUFR48elT4gE11rj+Kr8fjjj+Ptt9/GW2+9hXXr1lXZfomIiIiIiHwZ398qeer9rbyKBxERERGROwx4EBERVdKYMWPw/PPP4/bbb8cTTzwBrVaLJUuWoFWrVg79eK9GbGwsnnnmGcybNw8jR47E8OHDcfDgQWzevBn169dXbDt48GA0atQIkydPxrPPPguNRoNPP/0UsbGxSE1NlbaLiIjAkiVL8MADD6Bbt24YM2aMtM2PP/6Ifv364cMPP7zqMc+bNw8jRoxA//79MWnSJOTm5mLx4sVo3749iouLFdtWRY/iyoqJicHEiRPx8ccf49ixY2jbtm2Nj4GIiIiIiMjb8P2tI0+9vx07dizeeOMNHDp0qMr2SURERES1j9rTAyAiIvI1MTExWLt2LUJCQvDcc8/hs88+w7x583DrrbdW2e8QS7MePHgQzz77LM6cOYOtW7ciNDRUsZ2/vz/Wrl2L5s2b4+WXX8YHH3yAhx56CI899pjDPu+//35s27YNDRo0wNtvv40nn3wSq1evRpcuXTBx4sRrGu/QoUOxZs0amEwmvPjii/j++++xfPly9OjR45r2W5VmzpwJtVqN+fPne3ooREREREREXoHvbx156v2tn58fZs2aVa2/g4iIiIh8n0oQBMHTgyAiIqKKadKkCQYMGIAVK1Z4eihEREREREREV43vb4mIiIiIKo8VPIiIiIiIiIiIiIiIiIiIiIi8nJ+nB0BERETeQa/XIzc31+02kZGRCA4OrqEREREREREREVUe398SERERUW3FgAcREREBAHbu3ImBAwe63Wb58uWYMGFCzQyIiIiIiIiI6Crw/S0RERER1VYqQRAETw+CiIiIPC8vLw/79+93u0379u2RmJhYQyMiIiIiIiIiqjy+vyUiIiKi2ooBDyIiIiIiIiIiIiIiIiIiIiIvp/b0AIiIiIiIiIiIiIiIiIiIiIjIPT9PD8AbmM1mXL58GeHh4VCpVJ4eDhEREREREXkBQRBQVFSEpKQkqNW+cX0E398SERERERGRM774HpeIHDHgAeDy5ctITk729DCIiIiIiIjIC128eBENGzb09DAqhO9viYiIiIiIyB1feo9LRI4Y8AAQHh4OwPKEFhER4eHRUF1iMBiwdetWDB48GP7+/p4eDhHnJNU5nPPkbTgniVzzxPlRWFiI5ORk6T2jL/CV97d8viNyjecHeRvOSaprOOfJ23BOUlXxxfe4ROSIAQ9AKlsbERHh1R+AUe1jMBgQEhKCiIgIvjAjr8A5SXUN5zx5G85JItc8eX74UqsTX3l/y+c7Itd4fpC34ZykuoZznrwN5yRVNV96j0tEjthgiYiIiIiIiIiIiIiIiIiIiMjLMeBBRERERERERERERERERERE5OUY8CAiIiIiIiIiIiIiIiIiIiLycgx4EBEREREREREREREREREREXk5BjyIiIiIiIiIiIiIiIiIiIiIvBwDHkRERERERERERERERERERERejgEPIvJJl9Jy8PkXO1Ci1Xl6KERERERERERERNdsa8rf+P2PY54eBhERERF5MT9PD4CI6GqMe+B96PVGpKXl4oXnb/f0cIiIiIiIiIiIiK5aTk4RXnv9awDA7zvehEbDazOJiIiIyBFfJRKRT9LrjQCAQ4fOeXgkRERERERERERE16aouFT6WsuKtURERETkAgMeROTTBEHw9BCIiIiIiCrEZDLh5ZdfRtOmTREcHIzmzZvjjTfeULymFQQBr7zyChITExEcHIxBgwbh1KlTHhw1ERER1QSTySx9XVLCgAcREREROceABxH5NMY7iIiIiMhXzJ8/H0uWLMGHH36IY8eOYf78+ViwYAEWL14sbbNgwQJ88MEHWLp0Kfbs2YPQ0FAMGTIEZWVlHhw5ERERVbdSrV76ukTLv/tERERE5JyfpwdAREREREREVBfs3LkTo0aNwogRIwAATZo0wVdffYW9e/cCsFTvWLRoEWbNmoVRo0YBAFauXIn4+HisW7cOY8aM8djYiYiIqHqVldkCHlpW8CAiIiIiF1jBg4h8WkVbtHz3/W7836xVMBpN1TwiIiIiIiLn+vbti23btuHkyZMAgL///ht//PEHhg0bBgA4d+4c0tPTMWjQIOlnIiMj0bt3b+zatcsjYyYiIqKaUVpmkL6u7S1aLqXl4L/LUlBYqPX0UIiIiIh8Dit4EFGd8O7C9QCAfiltMHxYNw+PhoiIiIjqohdeeAGFhYVo06YNNBoNTCYT5syZg7FjxwIA0tPTAQDx8fGKn4uPj5fus6fT6aDT2RaBCgsLAQAGgwEGg8Hpz3gDcWzePEYiT+H5Qd6Gc7JmFBXZwg4FhSW1+vGe+fQKXLqUg7PnMjD7tXs9PRwHnPPkbTgnqapwDhHVDgx4EFGdUlLCHqZERERE5BnffPMNvvzyS6xatQrt27fHoUOHMGPGDCQlJWH8+PFXtc958+bh9ddfd7h969atCAkJudYhV7uUlBRPD4HIa/H8IG/DOVm9Dv2dKX29e/dfKCtN9eBoqtelSzkAgB07jmLTpk0eHo1rnPPkbTgn6VpptaycRFQbMOBBREREREREVAOeffZZvPDCCxgzZgwAoGPHjrhw4QLmzZuH8ePHIyEhAQCQkZGBxMRE6ecyMjLQpUsXp/t88cUXMXPmTOn7wsJCJCcnY/DgwYiIiKi+g7lGBoMBKSkpuOWWW+Dv7+/p4RB5FZ4f5G04J2tGiXYXftp6DgDQvHlLDB/ez8MjqnqlpXqo1SrMf3uPdNvw4cM9OCLnOOfJ23BOUlURKz4SkW9jwIOIfJogVO/2RERERERVRavVQq1WK27TaDQwm80AgKZNmyIhIQHbtm2TAh2FhYXYs2cPHn30Uaf7DAwMRGBgoMPt/v7+PvHhr6+Mk8gTeH6Qt+GcrF46nVH2talWPdalpXr8ufM4Xnl1NcLDgxX3efNxcs6Tt+GcpGvF+UNUOzDgQUS+jYmNa2IymfHkjP8hObk+nn/udk8Ph4iIiKhWu/XWWzFnzhw0atQI7du3x8GDB7Fw4UJMmjQJAKBSqTBjxgy8+eabaNmyJZo2bYqXX34ZSUlJGD16tGcHT0RERNWqrMwgfW0ymT04kqo3763v8fO2fwAARUWlHh4N0bU7cuQiNm3ej6FDuqJjx8aeHg4REdUxDHgQEdVh//x7AQcOnsOBg+cY8CAiIiKqZosXL8bLL7+MadOmITMzE0lJSXj44YfxyiuvSNs899xzKCkpwdSpU5Gfn4/+/ftjy5YtCAoK8uDIiYiIqLqVlumlr8XqXrWFGO5wxmg0wc9PU4OjIbp2c+Z9i/Pns/Db78ew4YcXPT2cKmU0mvDV6j/QoX0yunZt5unhEBGREwx4EJFPq2z9DoEVPxRq2wcGRERERN4sPDwcixYtwqJFi1xuo1KpMHv2bMyePbvmBkZEREQep6vFFTzcKSszICyMAQ/yLefPZwEAcnKKPDySqrf66z+xZOlPAIDvv30O5y9k4vLlXNx4Q3vExIR7eHRERAQw4EFERERERERERERE5FFlsgoeJlPduUCptEyPsDBWKiPyFttkFXfuuGuB9PWOHUfx/qJJnhgSERHZUXvyl5tMJrz88sto2rQpgoOD0bx5c7zxxhuKK+wFQcArr7yCxMREBAcHY9CgQTh16pRiP7m5uRg7diwiIiIQFRWFyZMno7i4uKYPh4g8gBU5iIiIiIiIiIjI15XpbBU8alvFVY3G9TJEWane5X1EVPMCAp1fF37g4FmUlJTV8GiIiMgZjwY85s+fjyVLluDDDz/EsWPHMH/+fCxYsACLFy+WtlmwYAE++OADLF26FHv27EFoaCiGDBmCsjLbH5KxY8fiyJEjSElJwcaNG/Hbb79h6tSpnjgkIvJyKpXK00MgIiIiIiIiIiJSKPPxFi27d5/Et9/tcnpfYIDrQuLy4ybyRbUtkGXQmxTfR0WFIiEhCiaTGSdPXvbQqIiISM6jAY+dO3di1KhRGDFiBJo0aYK77roLgwcPxt69ewFYrsxftGgRZs2ahVGjRqFTp05YuXIlLl++jHXr1gEAjh07hi1btmDZsmXo3bs3+vfvj8WLF2P16tW4fJl/bIhqu8oW8GDFDyIiIiIiIiIi8ja6Mt+u4DHzmRVY+N4GHD12yeG+gEB/lz8nb01D5K2OHr2IdxeuR1FRqcP5qdMZPTSq6qE3WI4nKbEe7rzjOsyfNw4RESEAat+xEhH5KtfR2RrQt29ffPLJJzh58iRatWqFv//+G3/88QcWLlwIADh37hzS09MxaNAg6WciIyPRu3dv7Nq1C2PGjMGuXbsQFRWFHj16SNsMGjQIarUae/bswe233+7we3U6HXQ6nfR9YWEhAMBgMMBgYGKYao443zjvroVQqcfPbDLx8ZYxGm2JbPlzIB8jqis458nbcE4SueaJ84PnIhEREdUUeYsWo49V8JBfUJWbU+Rwv7sKHqUMeJAPeGjqEgCW+Tpzxq2K+0pLdQgODvDEsKqF0WD5vHjWrLvQpXNTAIC/vwaALfxBRESe5dGAxwsvvIDCwkK0adMGGo0GJpMJc+bMwdixYwEA6enpAID4+HjFz8XHx0v3paenIy4uTnG/n58foqOjpW3szZs3D6+//rrD7Vu3bkVISMg1HxdRZaWkpHh6CD6rtLQUmzZtqvD2R48dw6ZNedU4It9yIbVA+lr+OHJOUl3DOU/ehnOSyLWaPD+0Wm2N/S4iIiKq2+SVLMwm36pAK2+zEhDouOQQwBYtVEscPpyK0lJlKElbqkd0Ff8eQRA81mpcDHEE+NvOW/Frg54BDyIib+DRgMc333yDL7/8EqtWrUL79u1x6NAhzJgxA0lJSRg/fny1/d4XX3wRM2fOlL4vLCxEcnIyBg8ejIiIiGr7vUT2DAYDUlJScMstt8Df33WpQnI0/+09AICgoGAMHz68wtu3bdsWw4f3qdax+ZIDB89h9dfHAQDDhw/nnKQ6h3OevA3nJJFrnjg/xGqPRERERNXNl1u0FJeUSV+r1Y5d4d22aCllBQ/yHVqt3iHgUaqt2jlcVqbHhIkfonPnJnjxhTuqdN8VYbBW8PCzVu2Qf22QVYMWnT59BQWFWnTv1rxmBkhERJ4NeDz77LN44YUXMGbMGABAx44dceHCBcybNw/jx49HQkICACAjIwOJiYnSz2VkZKBLly4AgISEBGRmZir2azQakZubK/28vcDAQAQGBjrc7u/vzw/SySM4965NZR47jUbDx1rGz8/2Ql3+uHBOUl3DOU/ehnOSyLWaPD94HhIREVFNkbdoMflYi5aSYlvAw9kV/u4qeJSyggf5EG1JGbSlOsVt9oGPa/Xnn8eRejEbqRezPRTwcFPBw+AY8HhwwmIAwLffPIOkpKquZUJERM44xmlrkFardUj0ajQaKaHctGlTJCQkYNu2bdL9hYWF2LNnD/r0sVyB36dPH+Tn52P//v3SNr/88gvMZjN69+5dA0dBRERERERERERERHT15K1KTL5WwUMW8NA7WQAOclfBo4wVPMh3aEv1DhU7tFqdi62vjr8sECUINd+uSQxx+MsCHv4BlosE9XYBLnkY7cKFrBoYHRERAR6u4HHrrbdizpw5aNSoEdq3b4+DBw9i4cKFmDRpEgBApVJhxowZePPNN9GyZUs0bdoUL7/8MpKSkjB69GgAlnYLQ4cOxZQpU7B06VIYDAY89thjGDNmDJKSkjx4dERERERERERERERE7pnNZuh8uIKHvEWLXu9YkSMoOMDhtqioUOTnlyiCLUS+QF5tBwD0BseqNdciOMh2vmhL9QgNcaxGX53EEIe/rEWLrYKH8ljl1UuMPva8RUTkyzxawWPx4sW46667MG3aNLRt2xbPPPMMHn74YbzxxhvSNs899xwef/xxTJ06FT179kRxcTG2bNmCoKAgaZsvv/wSbdq0wc0334zhw4ejf//++OSTTzxxSERUwyqbYvZE6pmIiIiIiIiIiMgVnU65aGo2+dbnV/IWLfZX+APKwMqAG9sjZeurGDSoE4Cqb29BVN2MdlVqjEbHqjWV9f3a3fh1x2EAgJ+fbdlOfm7VBLPZLJ2v8oCHn/Vr+xYtJbJwV2kVVzIhIiLXPFrBIzw8HIsWLcKiRYtcbqNSqTB79mzMnj3b5TbR0dFYtWpVNYyQiIiIiIiIiIiIiKj62Lcp8b0KHraFXYOTgIfZejxRUaF48okRCA0JlKoU6HSs4EG+xb5ih9F4befrxYvZeOfd9QCAP3+fozj/i4pLERcXeU37rwx5gCNA1irGVQWPEtm5n1+grebRERGRyKMVPIiIappKpfL0EIiIiIiIiIiIiCT2LR/MZt8KeMirDOjcVPB4+qlbER8fBQAICvIHwAoe5HvsQ0zlBbLMZjOOHrvktLoNABQVlUpfl5ToFIGRkuKarYohD3j4+dkqeIjVPPR6uwoesqodhYUMeBAR1RQGPIjIp1W24wpbtLjGx4aIiIiIiIiIqObpypQBD5PZtz6jKS5x36JFDKyoNbbliCBrBQ/76iVE3k5rF0oyOWnRsuDtdRj7wCKUlenx5arf8dCUj/HGm2uc7k8eECko0Cq+l59bNUFenUTeosXfWsHDvh2NvEVLASt4EBHVGAY8iMi3MZRQZRjwICIiIiIiIiKqeWX2AQ+T44KxNysutlUgsG/hAABG64K1RhbwCLZW8LA/diJvY/+ZqX2lCvvQAwCs+2Evzp3LxPbth7Hqq98BANt++dfp/uVVMAoKSqTzBQCKZdU9aoJYncTPTwO12na+ShU87M5vbYl87Ax4EBHVFAY8iIiIiIiIiIiIiIg8pEynrAhgNvnWRTjFsjYSzit4WI5HI1swDgq2VPAoZQUP8nL2AY7CQmXowl2LluKSMvjLWp04Iw9J5BdoFRVB7KuFVDeD9XfLq3cAQECApYKHfXsarZYBDyIiT2DAg4iIALAYChERERERERGRJzhW8HBcML58ORfrftjrtEKGpylbtDhWMzA7qeARJFXwYMCDvJveoJzT9kEGo935KrYkAoDSUgP8/MsJeMhDEvnKCh7O2r9UJzHAYR/wEFu0GOweC0X1kUIGPIiIaoqfpwdARHQtKptJYIjBNbZoISIiIiIiIiKqeTr7gIfZMeBx730LYTKZkZdXjIkTbqqpoVVISbE84OHYckUMrKg1Kum2oCBLBQ+2aCFvp9cp52hhkfsWLTqdLYRVVqaHXzkVPOQhifwCLaKiQm37dlMdpDqIYZYAf+XSoRj4sA+YyY+dFTyIiGoOK3gQEREREREREREREXlImd0CstjSRE4MSRw4eLZGxlQZygoejhVGxMCKvIJHsBjwqOEWFESVZV+1orwWLfKqNFqtrvwWLbKAh05nUFTtsP/d1c1o/X32VUdsAQ/leEyydlIFBSXVPDoiIhIx4EFEPo1VJ4iIiIiIiIiIyJeJVSzERVRnLVpEKqhc3ucpygoeTgIeYgUPtWOLllJW8CAvZz+nC+1btNhV8JAHtgoKteVW8JAHPIxGk6Jqh/2+q5vBaG3RYjdmsaKH3q6Ch7wdTVmZAX/uPI6Rt83Fjt+OVvNIiYjqNgY8iMinMeBRdfhYEhERERERERHVPPGK/9DQQACA2V3AQ+V9AY9SWcUCZwvSYkUSjTzgESy2aGEFD/JuDgGPImUFD6NReb7KWy6VavXQ+LlfhpMHPAwGkyLgVdMBD/F324dS/FxW8FAe+7PPrURubjFefOmLahwlEREx4EFERAAA5juIiIiIiIiIiGqeznrFf0iwJeDhroKHNzLKFn2djV28Td6iRaoI4KTiB5E3MdiFLHJzixXfO7ZosQU8DEaTVJnHFb3etn+9wagIdXgq4KHWKJcOxYoeBjcVPIiIqOYw4EFERABYwYOIiIiIiIiIyBPEBeHQ0CAAgMndoqn3FfBQLIA7C3iYpUVj2+D9ZRUB+JkUeTP7OW0/Xx1btMgq2hhMinYnzgIRioodDhU8ajZAYTZZq+3YBTzEKiTi/SKTiecuEZEnMOBBREREREREREREROQhYouTkBBL2xKxpYkz3tiixVBeBQ+z46JxQIClgocgCD5XsYTqFlctk4KC/AE4CXgoKngY4WetVmN/n8hksv28fYsW+4oZ1c1ZtR3L95aQin34jBU8iIg8gwEPIvJplQ3484oAIiIiIiIiIiLyJlqtDgAQFhYMwLdatJjNZmXFAactWiwL2Bq1bTnCX7boLQ+IEHkbV4GroCBLIMv+fNXJAx4GEzRqWyirrEwPe8qKHSa7Fi01+1wgnr9qtTJIJn5vf6y+9FxFRFSbMOBBRD6OgY2qwvALEREREREREVHNEwMe4eGWgIerigGA93VosQ9nmIyOYQ2zkwoeYosWyz5qtkoBUWXIK2zIhQRbAh72IYwynS3gYTKaFaEnnc5xrttX7LAPfNQksSKHn0MFD8v39oEOd9WGdDrHaiVERFQ1GPAgIiIAla+GQkREREREREREVy8ruxCCIECrtVzVHx4eBMD9VfHe1qLFfgHaaYsWqSqAbTnCz08jVQXQ6xnwIO9lclXBQwx42AVA5MEGg9EEoywEpXcSZlIGPEweDXi4atEiBj7sAx1iy5Z69UId9pWbW1wdQyQiIjDgQUQ+jqGEqsMKHkRERERERERENeP7tbsxavRbWL7iF2hLygDYKniIi6a+wL6Ch7MWLWJFErVGGU4R27SwRQt5M7GqRaPk+lLVDgAIC3UeyJKHMgwGoyIAoi+3godJURHEUwEPeRhL/r19NRPx3I6Pi3LYV2ZmQTWMkIiIAAY8iKiuYYaBiIiIiIiIiIg87J131wMAlv1vm6yChzXg4baCR/WPrTIMFajgYXRRFSDA2qbFWVUDIm9hsgYugoMD0LVrM+n22NgIAO6r2BgNJkWAyVm1GnkoymBUVvCwP7+qm9nFuSq1aLFrRyOONTYuwmFfmVkMeBARVRcGPIiICACzL0REREREREREnlCi1QEAwsIsFQHs2yAoeFnCw2goP+AhHo/GriqAf4C1ggdbtJAXE+evWqNGnCzIUN8a8HAVegAq36LFaDAqqmQYjTVbzUdq0eLnIuBh99wkPjbxcZEO+8rKLKyOIRIRERjwICIfx7YiVYiPJRERERERERFRjdNaAx5iBQ+zmwoe3sa+vYrzgIfzqgBiixY9W7SQFzPJ5m9YWLB0e2yMtYKHyU3Aw2BStmhxEmaSb6+3b9FSw+eGq2o7ajHgYX+s1scmJiYCAdbAlignt6i6hklEVOf5lb8JEZH3Yiah6vCxJCIiIiIiIiKqefYBD/sFYzkvK+ABg11FAvsFYEEQbBUQ1MrBiy1aWMGDvJlU1UKtgp+sskVkVIjlfocWLbYPWY1GZYsWZ3PdvqWL4vuabtEihlnULip42J3fZuux+vtp8Mqsu5GTW4ScnGKs/PxXh+cGIiKqOqzgQURERERERERERETkIeJV/eEVaNGignclPOwreNgvSMsXhDUajeI+qUULF4LJi4kVddRqNUJDgqTb/fws89m+jYq8xYrBriJHeRU8DEa7gIepZgMeJhcVPPys34sBENv2lvFp/NS46aaOuPuuvggMFM9rVuYhIqouDHgQEREAtrshIiIiIiIiIvKkUGvAw1mbE5HXVfBwE+iw/16jsa/gwRYt5P1M1sCVRqPGbbf1RLNm8XjwgQFS6MFkcn0OGI0mRehJ7yTMpGzpYlSEOmo6JOEq4OGygoeT6jxi6yX75wYiIqo6bNFCRL6NoYQqw4eSiIiIiIiIiMgzVCoVgoMCAFguwjGZzNKiqjdflGMsp0WLvBqJ2q7tg38AW7SQ9xPntFqjRlhYEL5Y+SQA4NcdhwE4q+BhVnwtr9pRXgWP1NRspKfn2+4zug57VQex5Yr9uSp+7xDgMpsdtve3tl4yMrhFRFRtWMGDiOoUAd77htjz+NgQEREREREREXlCYKCf1PIBULY6USyqelkJD/EqffEKfvsFYPlx+PnZBTykCh4MeHijg4fO4fY7F+DPP497eigeJbYl0aiV556fRmzR4r6KTVFRqfS1szCTfQUQeQikpqtgGMup4GG2D3BZAyHyx0Z8HmOLFiKi6sOABxERERERERERERGRBwUE+CkCEEa7KgAiL8t3SIu4QYH+AMoLeGgU94ktWrgQ7J2emrkcGRn5ePb5lZ4eike5alsizmd3VWvs6ZwFPNxU6bAPj1Q3MWziKuBhdNGCSSM7t8UKHmzRQkRUfRjwICKfxpoTVceLq30SEREREREREdVqgYH+igCESbY4ar+o6k3ENgyBQS4CHrLFcZVdOkVs0eKsbQV5Hv9dLMSqFfZtS8oLPThTXosWezUd8BDDKRqN8lwVv3cMs4iPjW17fz+2aCEiqm4MeBCRT6tsD1KGGFzz5n6uRERERERERES1hbgoKhcQ4Ke4al7RokX2tQreVcJDbK8SFBQAwHUFD/uKAIC8ggeDBOS9TNbQg9ou9CBW3HFs0eI62OBsrrsNeNRwSMJVtRLxe/uxSo+NLPwiVvMwGHleExFVFwY8iIgIAAMeREREREREREQ1wVkLh8BAf6hUKltVAFnbBm+u4HHmTDoAW4sWx8Vuy9j9nAQ8/MWAh55X+pNnGY0mTHvsEzz73EqHz0jLa9Hias47U9kKHvoaDj/ZjlXZTkn+vTygJlY30cgrePizggcRUXVjwIOIaj0GFyqGjxIRERERERERUfVztqAbaA1IOFs0lm/vrPqHp5jNZqz8fAcA11f4SxU8/JQLxoCsRQsreJCH/f7HMRw6dB5/7jyOsjKD4j7xnNO4aNHiqi2R3H1j+gNwHvBwF+Ay1HBIwlnLFfvv5cfrLPwitmip6bETEdUlDHgQkU+rSHaDAQ/X+NAQEREREZE3WPHZdkye8jFKtDpPD4WIqNo5W9ANCLBUs7C1fZBV8JCHPZxU//CU5174XPp65MgeACzVSeQhFJP1OMTjkrMtBCsXvYuLy3D06EV+pkc15t9/U6WvS8v0ivvMJss8dGhbIoWx7NqWODm/w8KCAAA6nesKHomJ9RzucxYIqU7Gclq0AM4DZ2rZ/X5iBQ8vrjxUlfLyih2quBARVTcGPIjIt/GN3rWRP358LImIiIiqXVpaGsaNG4eYmBgEBwejY8eO+Ouvv6T7BUHAK6+8gsTERAQHB2PQoEE4deqUB0dMVDM++W8Kjh27hI0b/yp/YyIiH2dyshhY0Qoe7to51KQSrQ47d56Qvu/bp7X0tbwFjXgcfk4reFhCLXq7Fi0PTfkYD01dotg/UXUqLNRKX5eVKgMeYlBBrbZv0SKGsZTzVwyEyIWGWgIeJSVlDveJ5/TcOWMd7tPrjTUadHLVjkYR8JCd3+LX8sdGbNFiH9yqjTb+uB8jbp2LqY8s9fRQiKiOYcCDiGo95hYqho8TERERUfXKy8tDv3794O/vj82bN+Po0aN49913Ua+e7Wq9BQsW4IMPPsDSpUuxZ88ehIaGYsiQISgrc/wwmKg24hWQRFQXuK/gIV797irg4R3Pk//+e0HxfUREiPS1fLxGqYKHY8AjwN9yzPYLwakXswEA2375t2oGS9UiP78EP2/7p8arTFSHwqJS6etSu4CHrUqFsm2JqxYtzs7RiIhgy+8pLHW4T/z5iPBgp2OryddG5ooEPGQVS8Tt/RQtWizntbEOtGjZtcsSQjt+PK1WnAdE5DsY8CAin1aRTALLObqmLODBx4mIiIioOs2fPx/JyclYvnw5evXqhaZNm2Lw4MFo3rw5AMvrsUWLFmHWrFkYNWoUOnXqhJUrV+Ly5ctYt26dZwdPVI3k70WcLQASEdU2zqpwBAZaAx4a9y1anFUH8ISvv/5T8b04fkAZYJEqeGictGgp50p/Z21dyHs8+dSneOXV1fjvsp89PZRrVlSBgIf9HBZfs9hX5HF2fosBKHmlEPvtNRo1pj06FBqNGu++PV66vyaDA64qeKjVKtk2juEz+f1iixZDHQjtykM/9vOGiKg6+ZW/CRER1VZChSIyRERERFQV1q9fjyFDhuDuu+/Gjh070KBBA0ybNg1TpkwBAJw7dw7p6ekYNGiQ9DORkZHo3bs3du3ahTFjxjjsU6fTQafTSd8XFhYCAAwGAwwGQzUf0dUTx+bNY6Saoy21zWGVivOC5wd5G87Jqqcr0znclpdbDIPBAI011KAr00mPuU5nWzg0Gk0e/7fILyjBvr9OK24zC7bFXF2ZDgH+1uPQW8au1qgdxq2xLo6WlTl/3eKpvwmc846cPRanTl0BAGzdeghTp9xc00OqUvLgRXFxqeJ45QELxeMgWMINRqNZcbuzYENIiKUFU0Gh1uGxFEMSZsGEe+/pg1G3dZcq+gCAVlsGlSrA8fdXA1vYSnD4XWq1CmazAJ1eL90njl0QbI+Byvp5s8Hg+eeq6maQzY2CwmLp39mb1fZ/E6K6ggEPIqpTWKVCSVHBw3PDICIiIqoTzp49iyVLlmDmzJl46aWXsG/fPjzxxBMICAjA+PHjkZ6eDgCIj49X/Fx8fLx0n7158+bh9ddfd7h969atCAkJcfIT3iUlJcXTQyAvUFRkW7g8euQIAgOyPTga78Hzg7wN52TVyc93bL128uQlbNq0CWVllkoCf/y5E6mphwEAV64US9vl5ORi06ZNNTNQF06cyIXZrPwk6actW6Svt2zZitBQy0LnufMFAACttsRh3KdPWwICFy6kSvfJP7tLS7vk0WPlnLdx9+9QotV6fE5eq6ysPOnrP/7chYyM49L3p05dBACkpl5QHGdRseX1i8FoVNx+5fIVh/0fPLAXAJCbW6TYVhAEac5v/+UXRUBAo1HBZBKw5aetiAgPBFD9czI11XKsp06dxKZNxU63SUn5WRpPfoHl/N731z5kZZ0EAGTnWJ7DtNpSn58X5bl06bL09daftiE21vvff2m1jlVkiMj3MOBBRLUeQx0VxMeJiIiIqFqZzWb06NEDc+fOBQB07doVhw8fxtKlSzF+/Phyftq5F198ETNnzpS+LywsRHJyMgYPHoyIiIgqGXd1MBgMSElJwS233AJ/f++/0o2q1/nzmfh46UEAQMtWrTF8eF8Pj8izeH6Qt+GcrHqpqdn4z3//VtwWG1cPw4cPxzffnkNubhl69OiJHt0tbdz+/TcVK784AgAIj4jA8OHDa3zMckXFOwGcUtw2YsQIvLvwL5jMZgwcOBD161teh+zefRLfrDmO6HpRDuPW6fZg+6+piI2Nl+4rK9NjwTuWxfDmzZth+PCh1X9AdjjnLea/vUf62tmcE+/38/P3+Jy8Vu8vPiB93b59Jwy6uaP0ferFrdi1+7LDfMzPL8HHSw5CEIBhw4ZBpbJUpPn1t1ycPpOv2P/IW4fiv//7B3q9CYOHDIGfxtaeSJzvQ4YORnhYsPQziz86BK1Wh/79b0B8XESNzMkDB7/D4SPZaNeuncPrsUUfHIBOZ8CNNw5AYkI9AMDqb84iO7sUffv0QZcuTQAAaWm5+N+n/0Cl0vj8vCjPTykZACwhl+49eqND+2TPDqgCxIqPROTbGPAgIp9WkfAGcwuuyR8/Pk5ERERE1SsxMRHt2rVT3Na2bVt89913AICEhAQAQEZGBhITE6VtMjIy0KVLF6f7DAwMRGBgoMPt/v7+PrEg4SvjpOpVprOVMjcYzJwTVjw/qpfRaMKj0z9B82YJeOH52z09HJ/AOVl1VCq1w22vvHyP9TG2fmQvqKTHW14sw2wWPP7vkJNrubI/Li4SmZkF6NG9Ofz9/aHxU8OkN0Ol0khjFGBZ9Pbz1ziMOyjY8hrGaLQ99xcUlEr3+/k5/kxNqstz3mjXZkSlUsPPT+N0W5PJt/92GwxGlJXJW7KY7I7HMof9/f0UtwcF2V6Dq1Rq6dx19hlrvahw6WtdmQnBUUEAAJPJtnFQYKBi/wEBGmi1gGC2PRdU95w0WwcfEOD4ezQay/OWWm07L83WFi3y7cXHxWi0fxwrTxAEHDh4Fi1bJCIiwvuqYxj0tvPEcd54J18YIxGVz/GVZA1LS0vDuHHjEBMTg+DgYHTs2BF//fWXdL8gCHjllVeQmJiI4OBgDBo0CKdOKdPBubm5GDt2LCIiIhAVFYXJkyejuNh5+Sgiql0qG0pgiMEOHw8iIiKiGtOvXz+cOHFCcdvJkyfRuHFjAEDTpk2RkJCAbdu2SfcXFhZiz5496NOnT42OlagmlRTbWhXodOwLTjXj0KFzOHLkItZv2OfpoVAdZLIuigYF+eP5527H5h9noXWrJACAn3UR1WjdBgAMeqP0tX1rFE/IzrJcAX7fmP74dNl0LJj/AADb2E2ysYtBAWfhAHFBXG+wHV+JVid9zb8JNauwUIsPFm/C6dNXUFhUqrhPHoCwJ//39kVFDseqV3wvnnNqtXI5TQw8AMrHwGRShmMAy/wPCrIsrGtlc1z+c/L9AZbQBGAJoNQUszVwYj8WANCoLUEXxbGKj41se39/sTqJ6Zora2/afACPP/E/vPra19e0n+pSJnuOkv+7EhFVN48GPPLy8tCvXz/4+/tj8+bNOHr0KN59913Uq1dP2mbBggX44IMPsHTpUuzZswehoaEYMmQIyspsb/7Hjh2LI0eOICUlBRs3bsRvv/2GqVOneuKQiMgLsUWLa8oKHnyciIiIiKrTU089hd27d2Pu3Lk4ffo0Vq1ahU8++QTTp08HAKhUKsyYMQNvvvkm1q9fj3///RcPPvggkpKSMHr0aM8OnqgayT8QL+NiHtUQ+UJdTS6eUd2ye89JrPx8h8NnLuICaWRECEbd1hORkbYr08UghLyCgt5gkv2s4+JxTcuyBjxi60egTZsGCAoKAABo/GxtJ0RGo+VY/fwclyIC/B23l4f++DehZv246QBWf/0HHpywGHl5ygto7UMPcr4e8LAPs5SWKo9VPOfsQw/y0JI4zy3bmxXbi4EH8TwplT2W7gIe4s/p9TX3N0oauzXMIaexnsMm2bGazY7bi+MWBOGa58bnX+wAAOzZa7noOz+/BNu2/YPCwlJ3P1Zj5CE0+3lDRFSdPNqiZf78+UhOTsby5cul25o2bSp9LQgCFi1ahFmzZmHUqFEAgJUrVyI+Ph7r1q3DmDFjcOzYMWzZsgX79u1Djx49AACLFy/G8OHD8c477yApKalmD4qIahRDCVWHDyURERFR9erZsyfWrl2LF198EbNnz0bTpk2xaNEijB07VtrmueeeQ0lJCaZOnYr8/Hz0798fW7ZsQVBQkAdHTlS9DPJFTC7mUQ3xD7B9LFpSokNUFDtZU9UyGk2Y+fQKAED79g3RvVtz6T77BWA5MQghD3gYZQEIs8nzH+AUFGoBAPXqhSpuDwkJRFFRKbSyhU6TUVwcd1LBw3oeytscyEN/OjdVI6jqZWYWSF8fO3pJcZ+7xWt5uMEXFRWVKb63D7OIbVTUdqEHeWhJfr6K5/dzz47GxYvZGDa0KwAgJDgA+fklKNXa9m90V8HDSYWb6iY9NzmpuCOew2KoQ7G9bOzy4IvBYHLZ2qci5PPuQmoWZjy1HBkZ+Rg+vBtmvXTXVe+3quhYwYOIPMSj71zWr1+PIUOG4O6778aOHTvQoEEDTJs2DVOmTAEAnDt3Dunp6Rg0aJD0M5GRkejduzd27dqFMWPGYNeuXYiKipLCHQAwaNAgqNVq7NmzB7ff7thDU6fTQaezPdkWFloSxwaDAQYDXzRSzRHnG+fdtSnv8dPrbS8EBcHEx1vGaLS9QZA/B/IxorqCc568DeckkWueOD+q43eNHDkSI0eOdHm/SqXC7NmzMXv27Cr/3UTeSr4o4q4EPFFVkldBKC4pQ1RUqJutiSrv+PE06Wv7q82NRucVAQDbwqp80VxewaMmF3tdESsKiC0kRCEhlgoF2hLbgrm4AOy8gofjArZOJ/+afxNqkrySSnpGvuI+d4vXvn4Bnn2LFm2pfYsW54EstVoNlUrlUKlCrHARFRWKW0fa1q2Cgi3nhzxAYjTYngtUKmWAJMBJAKq6uTpWwBZwkR+rs/Y1wcEB0GjUMJnMKC4pQ7D1uJ0RBAFfrf4DbVo3QLduzRzul/+u++5/T/p6587jMJvNDm1zTCYzfv/jKCLCQ5zuryIKCrQoKipFw4Yx5W4rf44qKWHAg4hqjkcDHmfPnsWSJUswc+ZMvPTSS9i3bx+eeOIJBAQEYPz48UhPTwcAxMfHK34uPj5eui89PR1xcXGK+/38/BAdHS1tY2/evHl4/fXXHW7funUrQkJCnPwEUfVKSUnx9BB8ltlswqZNm9xuY5C9CT5+/AQ2bSqq7mH5jDNn8qSvt2/fjsjIQACck1T3cM6Tt+GcJHKtJs8PrVZbY7+LqC6TL2JyMY9qinzBTN4SgqiqnD+fKX1tH/CwhR4cr2wXbzPJwm/yhXf7xWhPMFgDHv4ByvGHhloqjpXIKxRYj8PPaQUPxxYtOr3t7wBDfzVLPk8vXcpR3GcfeqhN7M+pMocWLe4r7hgMJkVYVQw92G8vBh3kj6X4uicoSBmWAmwVbnQ12KJFfE3mNHxmvU0RZrF+rdbYwikqlQrh4UHIz9eisFCL2PoRLn/f7t0n8eFHmwEA27e9jsBA5ePgKliUn6/FxUs5aNwoVnH7l6t+w9L/bAUAvPP2ePTt09rl73ZGEARMmLgY2TlFWPP1M0hIiHK7vTyQlpvLNQciqjkeDXiYzWb06NEDc+fOBQB07doVhw8fxtKlSzF+/Phq+70vvvgiZs6cKX1fWFiI5ORkDB48GBERrv/YEFU1g8GAlJQU3HLLLfD3d3wRR67Nf3sPAECt0mD48OFuty0t1WPhor8AAK1bt8bw4ddX+/h8xc5dJ/Dt9ycBAAMGDkD9mDDOSapT+DxM3oZzksg1T5wfYrVHIqpeigoeDHhQDZFXDCguYcCDql6JbGEyP79EcV9lW7QYZAu8JSU6GI3X1vbgWonnj1iBQxQSYrlwSF7Bw1iRCh6ywJV8wZR/E66dXm9ERkY+kpPrl7utPOiwNeVvxX3uWrT4OvuAR2mZfQUPxyoVIj8/jTXg4b5tCQAEB1kreDgJeNgHGwAgwN8xAFXdbONxXDqUAh5mW8UWqeKH3WMTHhaM/HxtuYG0o8dsrYB+3vYPRgzvLn1vNJocQl5Dh3TF6dNXcPpMOi6n5ToEPI7KWgtt2/ZPpQMeJ05cRoa1VdHhI6luAx6CICiCyVlZfO9IRDXHowGPxMREtGvXTnFb27Zt8d133wEAEhISAAAZGRlITEyUtsnIyECXLl2kbTIzMxX7MBqNyM3NlX7eXmBgIAIDAx1u9/f35wfp5BGce1dPgFDuY2cw2F5gq9UaPtYyfho/xdfiY8M5SXUN5zx5G85JItdq8vzgeUhUM+SLmN5wZTrVDUZZtU+WVafqIL/yPC+vWHGf24CHtdKFUXaVvMGobNFQWFSK6HphVTbWyhKr5frbBTxCxYCH7NilCh5OAiniz8sXsPWyMIt9JYVrIQiCQwuMuuDlV7/C778fw3+WPIyOHRsjNTUbwcH+iI2NdNjW3d/gUjctWnydeNxiW5GyUmWowOSmbYmzqhZGk/MWTGKLllJZaEEMNDkNeFhbINVkJRsxVBUY4DgeMcBVWGircij+LbU/vyMiQgDkOFQvsnf4cKr09cYf9ysCHs5CRbfe2gOrv/7DEvC4kudwf9rlXOnrzVsO4qaBHdGvXxu3Y5D79/AF6Wv75217ervKKpnWYAgRUU1w/ItUg/r164cTJ04objt58iQaN24MAGjatCkSEhKwbds26f7CwkLs2bMHffr0AQD06dMH+fn52L9/v7TNL7/8ArPZjN69e9fAURCRb/HtnpBVTd4j08fbZRIRERERkY8yya56vXLZ8cN6ouogr+DBFi1K5y9kYuKkD5Hy89/lb0wuyYND11rBQ17hAlAusHqCuLAZYNeiRVwALlEEPFwfq9MWLbIr4t21BREq8UGWIAiAULmfqQ0upeXg99+PAQB2/HYUJ06k4b6x7+GOu97GhdQsh+3dBjxqcQUP8fyMi7OEXkpLlWEW8XWKWu0YEHJ2vro6v0PEgIds/2U6y+PqrGJGbJyl2nx6es29NnLXMqZBg2gAQFqaJURhNpulczQkJECxbXh4MADbnBLPPUEQsHzFL/hx037Mmfsd9uw9Jf3MsWOXpMdREAQpKKbRqDF50s0YOaI7OnZohKREyziu2AU8BEHAZVnAAwD+t3wbKkM8NgBIT893u6198CaTFTyIqAZ5NODx1FNPYffu3Zg7dy5Onz6NVatW4ZNPPsH06dMBWHp1zZgxA2+++SbWr1+Pf//9Fw8++CCSkpIwevRoAJaKH0OHDsWUKVOwd+9e/Pnnn3jssccwZswYJCUlefDoiMhb1K23bpUjKL7mI0VERERERDVPvNIVALJzilBWVnsXkch7GGQVPNiiRenJGZ/ixMnLePW1rz09FJ9WIptXBQXKQIatbYljVQvxNnnLB/sWDYUFnqt2ZDKZpQXsALur/ENDK1fBQ2pZoahoIAt4uKgaUd2BDflitC+7mJotfV1QoMWBg+cgCAJMJjP+/TfVYfuiYsd5JYYSSsqp4GG0qzLjS7KyLQvzYhubUruFe7ObCh62ijtOAh52bUuCgsSAh7xFi7WCh5OKGY2s47l4MdvhPnvvLdqASQ99pDh/roa7ljENkmIAWIJDgPJxCg0NUmwbEWEJeBQWlirO11Onr+C/y37GnLnf4cdNlou2W7ZMRHBwAPR6Iy5dypG2F/82h4UFYfKkm/HSi3fCz0+DxMR6AKAIcwiCgMLCUumxfe6ZUQCA48fTKvW6sjIBj/wCZXAvJ6fIp88DIvItHm3R0rNnT6xduxYvvvgiZs+ejaZNm2LRokUYO3astM1zzz2HkpISTJ06Ffn5+ejfvz+2bNmCoCDbH4wvv/wSjz32GG6++Wao1Wrceeed+OCDDzxxSERUwyr0PsvH34xVJ19/o0pERERERL7P/sPwtMu5aN7Medtdqlv+2n8GW346iCcfHyFdDVxV5AEPcYGNLJ8TZPEq5CohDydoHSoCOG/hADhvW+IQ8PBgBQ/5WPz9XVTwkFUvMUlhFsdjDQ62BTyMRhP8/DSKtgeuAh5UMfLKMRcvZis+B3QWGtBqHRfCW7ZKwt9/n3eo4GH/mWJBgRYxMeHXOmSPyMq0POc1alQfe/eecmgN5K7ijrMWLa62Dw5xFvBwHaho2NAS8EhNdR7w+PqbP3H4SCpmvXQX1ny7CwCwc9cJDBzQwen2cpmZBfD316CeXasnMWzlfDyWgIcYgtBaAxgajRoBAcqlRlvAQ/lcJQ9QAEDnzk0wf944PP3sZzhy5CJOnb6Cxo1jLfu3nv/i84qoQZKlgofYokUMhBRYAxchIYEYPbo3PlmWgvx8LS6kZqN1K9vF4O7aNaVdzpG+tq+8ZE9s4dKgQTQyMgpgNJqQk1OE+Pgotz93rUwmEwyGqw/y6PV6NG7cGHq9HmVlDLgSeSt/f39oNI7hWJFHAx4AMHLkSIwcOdLl/SqVCrNnz8bs2bNdbhMdHY1Vq1ZVx/CIqBZghqGC+DgREREREZEHyK9SB8r/QJ3qjiee/B8AICjQH888PapK9y1fpNbrr+2KZ1+3fsM+HDhwFi++cIfLViK1WXp6PurXD3daYeJayCseyAMPgK2Ch7MFY7EKhvxn5IEkAEjPyK+qYVaavF2M/aKuOHZ5VRwxxKdx8vjKF27LygwIDVUrKhDo9UYp+EGVly+rHJN6MRtlssfWPuBhNJoU4RoAGHVbTwQFBTgNeNg/N/hywCMzqwAA0Fiq4KE8VjH0EOQk9KBxUnGnvBYt8uCSFPBw0hKlVctEAMDpM+kOQYl/D6fi/Q9+BAD07dNGur0iF/Olp+dj3AOLEBQcgM+WP674d9O7DZxYW7RcsoQgSmQBDPvARHS0ZZ9idRSRvBVf+/bJWPz+ZPj5adCqZSKOHLmI06fTMejmTgBsgaNQu4CHWMHjil07lmJru7XwMMvF4Y0bxSI//wImTvoQvXu1xMJ3J1g2FCyVrO3HbDabcVk2PvsKHfbEv5fR0WEwmwVcuZKHzKzCagt4CIKA9PR05OfnX9N+zGYzli5dioyMDGRlObZqIiLvERUVhYSEBKehNI8HPIiIrkVlK1Aw7KEkfzxYzYOIiIiIiDzBvoJHqZMriKluO3nqSpXvU76Qab+oWZecO5eBt+avBQD07dPaoVJKZlYB6seEOfvRWuGXX/7FrFe+wtQpt2DC+IFVum95QMO+EoW7igBh1sVJebsM+woep6znxIXULNSPCXdoj1CdxLGoVCqH8UdbqwHk5hZLt0ktWpxchRoQ4Ae1WgWzWUCpVofQ0ECH81Gr1UvVALyZu6oAniIPbOXnlyi+tw8JydvkxMdHoWWLBDzz9CgsX/ELANviucj+b3dBOYvh3qqkpEyar8mNrAGPUvuAh+X7IGtAQ06sTCN/PMTQRpBdaCMqKhQAkJtXLNvW2qLFSaAiMbEemjWLx9mzGdj34jvAiB4wvf4m/B+aiD17TkvbffvdLof9ufP92t3QluqhLdVj85aDGDf2BgCWOayznn/OAidii5bLV/JgMBihLXFeYQMAEhKiAAAZdvPs8hVLKOPee/th+qNDpfBWixbWMMtp2997sc2V/f7FgEdRcRmKikql58zCIstzpvh3rGWrJPz9zwUAwJ69p3DseBratmng8nHJyipUPP8UFlr25+rczsuzzPmoqFCoVSpLwCMjH+jQyOXvuBZiuCMuLg4hISFX/XxjMplQWlqKJk2auK0OQESeIwgCtFotMjMzAQCJiYkO21Qo4HHHHXdU+pcvXboUcXFxlf45IqKqxuCCG7LHhg8TERERERF5gn0FD5bkJ3v25fIBy2Laxo1/oUfPFmjYIKbS+2SLFovjJy5LX+/ecwoFdleJZ2cX1aqAx/Hjabh4KRu3DOoMAJj1ylcAgE/+m1IlAQ/5QqC2IgEPJ21LxMXJEtmCulg1o2XLRJw6dQUbNv6FVq2S8O7C9bjh+nZ4a964ax57RemtAQ9/f43DAmP9+hEAgGzZVftiMCAszHERWKVSITg4ACUlOmlRXV7BA7A8dt4e8BBbRDirCuBJ7ipildgFNsSqFRqNGt9/+6x0HBERIQAcW23IK7kAcHju8BVff/MnTCYzGjeOlf6W2Ac8tNbvg50GPCwL5CZZwENqc2IXkoiNFc+PItm2ln0HBjpfqmvjp8NZAMdLY9AUQJaqNWLHPYp/GvSXtjl27JL0dUXaN8lbvqSl2VqSGI0m6bkpMMAx4BEXF4GAAD/o9UZkZhRIITaxco+cWMUiPT1fcXtmpq1airwyjxjwOCULdIoVPOwDHsHBAYiICEZhYSmysgqlgIf0XBNu+X7o4C749ltb+OXAgbNuAx5i+xjxGPPzS2A2m6GCyum5LZ5fUVGh0uO14cf9uNlagaQqmUwmKdwRE1P51zz2+wKAoKAgBjyIvFhwsOW1T2ZmJuLi4hzOV8dXkE6sW7cOAQEBiIyMrNB/P/74I4qLi8vfMRFRDZAHF7zoPZZXEGR9WQT2aCEiIiIiIg8wmpSLRFoni/lU98gv1rAvlw8Aa9ftwYJ3fsCD4z+4qv2zRYuFfDFwy08HsWvXCcX9uTlF9j/i0yY99BFefe1r7Np1osovCMrMLMCo2+dj6X+2ArBdTQ5YqnnIf5+4iOqsqoVYjaNItgAvztce3ZtLt727cD0A4Lffj8JsrrlWOuIV7vbtWQCgfn1LWwb5ArbYrsVVlZHgYMvirbio7ljBg6G/q+WuxYS8jQ5gq54VFOSvWMgWwzViNQOR0aj8d5JXbfEVf+48jmX/2wYAmDTxJinMotcbFa1FxJBhcJBjwEOsYvPxkp8AWNpfiHPYvqVL/RhLwCMry7ZvdxU8cP48kk4eBQCkaSxj0zXvhLQJC3AkrdBxe1ha5ZQnR/a8npFhCVwIgqAIOzoLnKjVaiQlWapnpF3Olc5NdxU8MjMLFM9P4nNDbGykYvvmzeKhUqmQnVMkVcaw7d/xcY+OtlYLklVDKbI+54aFWeZsu3bJeGveOHSwVtS4ciUX7pw7b7lSvn27ZACW52l3zz9XrljaudSPCcfQoV0BAPv2nXaouFQVDAbL65SQkJAq3zcReS/xnBefA+Qq3KLlgw8+qHBFjm+//baiuyUiqgEMLhAREREREXkrk12Zdy7mEaC8gtpZhY39+88CULYV+Ouv08jNLcbgwV3K3X95FTzWfLsTmzcfxDvvjJfaTtRGzq7wH3VbT+TmFeP3348hJ7f2BDzkC4G79pxEZKRyoUyvNzoNLVTUZyt/RXZ2IVZ+/iumThmkWEQ1mSyLvuIirtjOwVmLlnDZ1ehiRRCxakZcXCTatW2Io7Ir9gHg4qUcNG4Ue9VjrwyD3lbBw55YwaOoqBQ6nQGBgf4oKbY8p4tX2dsLsVZF0Lqp4EFXRzy/n3n6Nny1+g9kZRXipRfuwGuzv1HML8AWpBMDN6JIa+jBvkKH/DkUAE7IqgH5gvMXMvHscysBAE2axOKmgR2h0ajRvn0yjhy5iN9/P4o7br8OgO3vkbMWLQkJUTh16goM1nNa/vckyC4QIq9wYzaboVarpYChs4oZpv/8DxHtegNHL+LP0+fht8eE9q2a41JBEUqhQYgG+OmXN5GRkY+77nkHQMUCHvIKO+kZeVIFGrGaiEqlcvlc2LBBDM6fz8KltBzp+EKdBDxi69uqfaSl5SK5YX3F7xbDYKKQkEA0bBCNi5dycOZMOnp0bw6t1nU4LDo6HOfPZylCiGIFjwhZq7Ebrm+HwsJSHD6cirTLeU6PKTevGC+8+AUOH04FAHTt2hTHjl9CWZkB+QVahIYof/+F1Cy8NX8t/v77PACgTZuG6HNdK1t1k8xCNGgQ7fR3XStvqhBERNXP3TlfoQoe27dvR3R0xZ+QNm/ejAYNXJc6IiLyFLYhUZI/HmxlQ0REREREnmDfosW+NDrVHfL3pfJFKmcVNuQl4UtL9ThxIg1PzPgUr83+BucvZJb7u/SyK2x1Tvb/3qKNOH4iDV9//WeFx++LxMd50sSb8OQTIzBsaFc8+cQIxERbFt988ap8V06etC1Anzp5Gfv+OqO4X2wd4E5WdiG+/W6XQ5UJAMiVhWHy8kqkEIdIDCoIgmBr0eIk4BEqbzcgWLY3WhfTAwL8MHfOWLRvn6xoWyK2XKiJz3b04lj8HReAw8KCpBBLVnYhBEFAUbHyqnp7YtuL0lLL42MfuNKW6pCWlutQXYZcE+dBvrUSQtOm8fj6q5n4ccNL6NevDQBLQEM+j8XHP9iurYhY1cI+OGAf8BAXu31FSsrf0tfPP3u7dC5269oMAHDuXKb0OIrhlxAnAY+J428CYKmGJAiCouKUfRWMmJgw+PtrYDKZsXfvaQC2QJOzCh7C6TOIbmSr2rPjt4sAgJOZWQCAdppSaDRqJCVFY8aTIwEABW6qtgCWuZEje16/fDlPeq4qk8bi53JRsYG1jc2lizluK3j4+WnQvHkCAODUaUvbFZPJLAXtYmLCHX4muZElBHLZWmnDVYsWAFLw0nkFD2Ugo4G16silSzlw5vvvd0vhDgDo2LGxND77FjNGowlPP71Cmu8qlQodOzSCSqWSqpakZzgPkhARVaUKBTxuvPFG+PlVPL3cv39/BAY6PukSEVW1irxxZW7BNcXjx8eJiIiIiIg8wNUiKNUtOTlFGPvAIrz62moAytYCxcVlDi0o5AuTqRez8dNW22Ld4cMXHfZ/+vQVvPDiF7h40bIQbpQtTtov1jtb9PRlxcVlGD9xMebN/97hPnHRNioqFPfe0w8vz7obQUEBtvL3FQh4GI0mXEjN8poLR06duqJY9BPJ2yKcOnUFJ06mKe7PKacdjSAIGPfA+1j43gas37DP4f4iWUuW48ct+46ODpMCDCVanXSlvFi5SOPnroKHbX9aqX1GAOLiIvHf/zyKLZteRp8+rQEABfkl0r6r6t9BpzPgzNl0h/0Z3LRoUalU0pX5WVmFgACUWK+qDwtzvl4QbG2/IFbjsT8fL6fl4rEnluHpZz/D7t0nr+GI6gb5PMi3nt/1okKhVqsRGhqE4OAAqNWWxXux4oEgCCgrtTz+wXaL6WKlmyJrBQ8p9GANY4rBiIuXchyqr3izixcti/2PTRuGzp2bSLdLi/TpeYBgabkizk1nFTwULWwEWzuXgAA/qNXK89vf3w9Dh1haefz2+1FrWxRbqMKeqkVzxBdcUdxmNJtxKsMS8OiQYKtCFBdnqQ4itlxxJTe3WHrdFRTkD73eKAUw3IVNRA0bWgIeW7YekqpxhIc7D2+1bJEIADhzJgMAkJdXDLNZgFqtQj0nlbHi4yIVx1ChFi2yv1G2MJky4NGsWQJUKhUuX85VtN4R/f7HMQCW56+HJt+Mnj2ao4UYTjmlfPwP/X0el62tWW4a2AH/99KdiIoKBQAkJFiCJFeu5Dt5NIiIqlaFAh5yN954I1auXInS0tLyNyYiqmYVec/qLR8weCVW8CAiIiIiIg8Tr2QXFwgY8KibPvp4C86fz0LKz//AZDJLi28AYDYLKClRzgt5ifnMzAIc+vuc9P2xY44BjwcnLMZvvx/Fe4s2ArCr4GFXMUAMgQCAXq8MIPmCtLRcfPTxZsuCIywLiadOXcGGDX8pjg2wXe0tXqUvqkzAY8Vn23Hf/e9hy0+HqmD01+b8+UyMn7gYEyd96HCfvDqQtlSPX389ori/vIDH2bMZUojjjz+PS7eLn6fIQyV7950CYGnJILYvKC4qk+53V8FD/LcoLCyVFmLF9hj2bWWirN/nV6AtgzPuPgt6a8FaPPDgB1j6n62K7Q3Wc8ffRQsHeRsKACgusQY8nLRZAGwtQcQWLVprqKpNa0uF8K/X7ERGRj4AYP1Gx2BNXXA1n9kZjSZpvsrnjVqtluZkUXGpFAgR//Y6VvCw/m0u1VsCANbwiHg+JSbWQ0REMARBwIXUrCoZe01Iu2ypEtHAGlgQJVoX6cXKDXq9UTpfnVXwEM9Xnc4Anc4ghUGCnWwLAG3aWOZ1do41AFXiugqG5uHJaLprteK2vBItzmZZnsc73jvENu5ESwV+sfoF4PyxP3zE8vexaZM4dLVWK/nLWs2oIgGPmwZ2gL+/Bvn5Jdi501JVR15NSC4+3hLYEJ8Lsq3PsdHR4U6f++LjowBAOt/Fx8a+RQoAxMZanmeupNuqZYjtoOwDJ5GRIdLjLlZOERmNJly4YJm3a75+GpMm3gy1Wo1WrZIAAKdOKVsP/fb7UQDAiOHd8eYb92P4sG7SfQnW8afLxkREVF0qHfDo2rUrnnnmGSQkJGDKlCnYvXt3dYyLiKhaeOubCk/h40FERERERJ4mLmCKH8iLi0aX0nLwr6xkNtVu8mBPbl4xzp3LUNwvhhVEeXm2Ch/nzmUq2m9cSFWGGMpkJfPz8ophMplx7pytjYt9Cxh5qw5x8ehCahbG3L8Q333v/Z+FPjLtP/hy1e/46OPNAIB//rkg3bfvL+XiVpE1dGC/QCe2aMnJdR96AIBPl/8CAJgz91vpNk993vDXfstCZVZWoUOrHvk8EAUE+KFnjxYAbMcqH/vJU5dx/rxlPydkc0xcsJRXS5C3sFjz7S4AQOtWSYi3VgS4fNm28Go0WSt4OFnkrF8/HEFB/jCZzNIidEG+Zb5H2gVxIiMtV46X15bBGXcVP4qKSvGTNbDz+Rc7kG1ttwIB0IkVPJy0aAGAWCngYXk8i6UKHs4XgcWr84utYYQSayDkpps6AoC0+ApY2kLUNVdbmUWcjyqVyiHAFWb9eysPHYkBGzFwI20ra7sjf26Ut+do2iQOAHD+nPKcu5qxX+1zR0ZGPm6/cwGmPrIUhdZAVGFhqUPbN3H/aWmWudSwQbTiflubjXxLZZMy29+HoCDH0EZoaKB0HhcWlaJMZ6224yIkIbb+EANl4vkRHuYkANWkCYKmjFXclHP8b6QXWP4dmvfpLN2elGgJpuTllaC0VO/0sT9zNh0vvvQFAKBLlya44fp2AIAtWw4qxiJvgWavXr0w6Tnz9Jl0y9hdVPCQwl7WYxWfN8UqP/bEgIc4z9xV8GhhrQ5y8oTteVmsehTqJEzWu1dLAMA+a/hOdOVKHvR6IwID/aV/ewBo1dIS8Njy0yF89vmvUqjp1+2HAQA33tDO4XeMubcfln3yKO65u5/T46uLVq5ciZiYGOh0ypDu6NGj8cADD3hoVES1Q6UDHosWLcLly5exfPlyZGZm4oYbbkC7du3wzjvvICMjo/wdEBHVMIYYKoYPExEREREReYLRaLkyVrpK2PqB/j33vouHH1mKS2l1b0GvLjLIKmpkZRZIi+oiefsLACiVLdZv3nIAZrPtTe2lS8o5I1949/PXYMbMT3FYFh6yr+Ah3/e+fafx647DeOLJ/yE1NRvvLlxfmcOqcYWFpdLC4a5dlqur5Y+lfel4MfQQbLdwKVbwyMstlj5Xcfb5ivw28d+gqhd1t/x0ED9u2l+h/eTn24IOx44pW7CIC71x1jYAADDo5k5o3Lg+AMuCq3zs2dmFmDDxQ9w/bhFMJrOiVP+FC1mKdhSCIDiEkMLCgjDloUFo3CjW8jOy6gZisMZZVQu1Wo0mjS0L5mIQSargEWVXwcP6fX5++RU89h84g9tGzcOmzQfK3fbosUuK73da5xJga6HiH6Bx+rPyCh5Go0laILdvmyCKEkMq1mMUr9rv0b05GiXXV2x7+XJurfuc77OVv2LS5I8Uz1NVQdxfZGSwQ5Aozlr94KSsOoH4XBAUrAwmqNVqNLCGIOR/j8VKK8HBAWjQwFIFI91aeeFqXUuboa0pfyMjIx+HD6di/4GzOHDgLEbcOge3jprnEMjS6w3S+RobG6nYjxgyKCnRoai4TGrTFRDg5zSQpVKpEB5umdtFhaXQWed7YJDzgEd9KeBhqfgjVrgJdXF+qMePU3w/9+8LMEOFkJBAqYoFYAlZiEELeZhM7ssvf5e+HjG8O24a2AEAcP5CFvLyS6THxD4QZK+hXdUTV9vbh1nE0Jf4GNgTn5szHAIejoGTVi0tAY+Ll3KkUFix9bnDWVimZ09LKOXAwXOK289an2ObNI5VtNRp1SpR+vqT/6Zgz95TWPXV78jOKUL9mHBpf3JNmsShXbtklxVN6qK7774bJpMJ69fbXjtlZmbixx9/xKRJkzw4MiLfV+mABwD4+fnhjjvuwA8//IBLly7h/vvvx8svv4zk5GSMHj0av/zyS1WPk4jIqYq84JdvUdveBF4rxWMDPjZERERERFTzxCvZxQXlgkKtYuH06BHHdhtU+8ivks7MKlBU2ACAwiKty+3FK/xvvtlyxX9mZoFiDokLaABw5MhF7N9/VrEvccHa2b4B4NNPf0FWViF8gXxhL79Ai6KiUly+YisXb186vsz6OAXZLUZGSxU8it1+liK/oh8AzGZzpcdcXiWJ2W+swZy53yEtzfmipVya/PjzlVUtxH/Xm2/qiMTEetBo1Lj3nn7Ssdq3o5EvBObkFCmqxJhMZpyxXr0OWBYixTYOb75xH4YM6YI3Zt+H+vUj0KiRJaQgrywjji0qKtTpcTSxVkRIvZitaPtwLRU8lq/YjuycIrw551tkZRU43aa0VI9//73gUEHn7Fnb9+JV8q5arohX52fnFCHP2rZGo1FLi+D2xPYhYiBBDHiEhQXhrXnj8Nwzo/DDuhcAWKpM2P+7+iJxrptMZvznk604fiINP6y3tJ/ZsPEvvDTrS4eQTWUVWkNx4U4qp/Tv3xYA8Kes1ZBUacXJv2tDa4BDHp4TA1MhwQFS0MD++aAmiI+lWL0HsFRq+u+yFJhMZmi1Ohw+oqwGJs41tVqFsDBleCA4OEA6L9PT82SVTZy3XAGAiHDrHC7Uyp5TnW8vDz2YzWZZBQ/XoYBF7010uK1F8wSoVCrFbY0bW8Jk5+wCkqITJy2ht3vv7Yd27ZIRHh4s/cyxY5dQKIaCygl4JCfbBzycj1081lxrwEMMeoghMHsJsgoegiCgxE3Ao169MOl1Y6q19ZhUgcRJwEMMhOTkFEnbAbYAZNOm8Yrt7ce4fMV2bNj4FwBg+vRhbtvY1BSxqsjV/KfTGa/6ZyuzvhIcHIz7778fy5cvl2774osv0KhRIwwYMKAaHhWiusN5HbUK2rt3L5YvX47Vq1cjLi4OEyZMQFpaGkaOHIlp06bhnXfeqapxEhFdPYY6XFK8IOPDREREREREHiBW8Ii3XrmZk12ErGzbYnqhXeWG6nbxYjbmvvU9pkwehG7dmtXo767LymSBjEOHzksLNskNY3DxUo5DdQR5gEP0+PTh2LnzBEpL9cjMLECy9er/kmKdw7YA0KZNAxw/nga93b5KrYtKzZrF4+zZDKkMPeC6CoG3yJAtsBqNJvyy/bB09TpgKUcPWD4PUKlUUnDA/mpzceFMpzMo2ufYkz82gGXhVB5a0OkMWPn5r+jYsTGu692q0scjb8+xa/cJ3HVnnwpvLwYBbMdqWagNCwvCxx9OQUGhFi1bJuKff84DsAULRMeP2yqApKfn49RpSwWPmJhwS+Dj1BW0bdsQgG3BOCDADzcN7IibBnaUfrZ16wYAgAMHzlrGAhXyrGOrVy/M6XGIrQIyMvKldhMajdph/omPdY5dOMWe0WjCiRO24/l+7R5MnXKLYpsSrQ4PTflY8RiKx3rmrO3fuaDAepV/pPNFYHkFD3Fc9aJCFVfHOzuGggItzGaz7ar90EBE1wuTwi6xsRHIyirElSt5LoMxvkAKNEHA6dO2qjBFRVpotTq8NX8tBEHA5ct5WPHpY1f9e8TKE84Wx9u2scxbeWDDXSsdcUHfWcAjODhAqryQWcNBOPljmSc7B/LzSxQVcy7atfaxVaoIdjovExKikJ9fgoz0fERa55qrNiQAEB0ThtSL2cjJKYKfv6WyjbsWLRqNGiaTGdnZRShxE0oQ9erZEuvXPYfbRi+QbnvggRsdtmvaNA6HD6fi7NkM3HxTR8V9Op1BOrfvH9Nfur1tm4a4cCELzz6/EsOHdQNgC125Is4fkcsWLdaAR15+ifV43bdoiY2NgEqlgl5vRH5+idsKHoDl9UFubjEuXcpB29YNpfCZswoeoaFBqB8TjuycIqSmZqFd+2QAtjCM+DwjUqlUqF8/QhqzWPUrPDwYA25s73Q8Na2szICbb3ntGvZwdRXJtqW85jbwZG/KlCno2bMn0tLS0KBBA6xYsQITJkxwCCgRUeVUuoJHZmYm3n33XXTo0AHXX389srKy8NVXX+H8+fN4/fXXsWzZMmzduhVLly6tjvESEVEVYvaFiIiIiIg8zWi0VPCIi4sCYFmozJItUlfkqv2qNGfud/j77/N47IllNfp767oyWVuUb9bsBGBZpBGvqhUXuQFLlQj7qhvR0WGIi4uUFprkVTvkX4vGjb0Bzz0zGgCg09u3aLGEHlq2THRYgNDpDF5RHTQvr1g6d+QyM/MV32/YsE95f1ahomKGGJQJClQu1gQHByDEuoCTl+e6YsLp08qAh1iCX/TRki1YvmI7Zs1a5f6AXJAv0p6SLYY7YzSaFJUm8vNLFMcq/rsGBQUgPj4KrVomAQBCrBULSuyCLPKqMYf+Pofi4jL4+2swUGxrILtKXgyiOWtV0KVzEwQF+SM7u1BaYBXDJ/VcBBWkBfPMAunxDw8PdpiPDcXWGRez3c7Lw0dSFQGWo0cdq0OsW7dHEe4AgHvu7gvA0u5GnG/iuejqKv9YsYJHVqFUFSXaRUsGwLaYnF9QIoUGACDUblE3KclyrGl27ScEQcDFco7fW8kDE+fPZ+GPP45Jx3Hy5GWXlVYqQqu1BjBCHBdixTYkGdZKCQCkNhf2FS0ASC1Y5OOV9h8ciDhrm5MsD1TwEMmf5zMyCxRti+xbvYmBLFetRcSAVXpGvvQ8EOEm4CEef2ZmQbktWvz8NFJg5tz5TBRJFTzchwcjIkLw6CNd0LBhNO4b0x/9+rZx2KaZ9e+lfQUewBLuM5sFhIQEKqpTtG3bQPpabN9UXouWli0TFQv8rip4REWFQq1WwWwWkJdXLP19iIlxXsHDz08jVf1Iz8iXWrO52r8Y4hQDPOJznKuwTKPGYrssWzUlsRJT06ZxDtvPmzPWIVQ3fFg3r6je4Uu6du2Kzp07Y+XKldi/fz+OHDmCCRMmeHpYRD6v0hU8GjZsiObNm2PSpEmYMGECYmNjHbbp1KkTevbsWSUDJCK6VooiFT74Zq+m8LEhIiIiIiJPMEkBD8sCiU5nwHnZImNNl3yXt7MwGk3w89PU6O+vq3RljhU5xo27UVpQlFfw0OmMDtuKlRBCQy2Lk8VFsoBHsWPAo03rBlJbkqKiUsW/tRg2CQkORFxshKIqhsFgQlmZoVJXr1a1X3ccxkv/twqNkuvjsxWPKxabxPOlZYtEnDp9RWrzEBISCK1WJ4UeVFDBZLIFZQIDHT8mjo4Jh/ZSjqJ1SWFhKebO+w7BIQGY8cRIfPfdLsXP5OQUoUWLBOn7Awcs7XC0pXpkZRci1kVpflfOn7c9F6Sn57vd9uLFbEXwJ8++RYtYccBu4VWcMyV286RUawsb7PjtKABLGf8WzS3HJ3+eklcEsBcY6I8mTeJw/HgaUlOz0aRxnBTaqFfPecBDbFWwc9cJDLq5EwCgYcMYh+0aNoyBSqVCUXEZ8vJKEC2rCCIIAr79bhc2bz6IVGtQplFyfaRezMbRYxdhMpmhkVUv2Lv3tGLfAwa0x9j7r8eqr35HQYEW+w+cRe+eLaXFcVdX+UsVPHKKpJYMMdHOK5UAQJS1zUxhgVY6V/38NAgIUM7JBknR+Pvv87h8Wdlm6NcdR/B/s1ZhxPDu+L+X7nT5e7xRkaxC1b6/TjsEEX5Yvw+TJ93sdh9ZWQX4aevfuO3WHoqFeXcVPMSWKpZKCVrUiwqVggbOKniIc++SLHAp7j84JACJifUAACdOXsany7ehV8+W6NChkdtxVzV5gOmMXfDs1CllOKyg0P0cTkywHM+V9HwpLOAu9CC+fvloyRY8Pn0YAPeBjWZN43H+fBb27j0lC9aUXx0qIjwQX6x8AgEBzv/+2AIeji1axNc2SYn1FEGxNnbVOADXgQqRn58G9eqFobTUMh+SG9Z3up1Go0Z0vTBk5xTh+3V7yq3gAViquWVnFyIjo0D2vOr8sReDR1eu5MFoNEkBMVftoxo3qo8DB84i9aLl+bCkpEwKBbZr6/g4tG+fjJ82v4zD/6Zi2uP/hdksYNRt3rPuGRTkj20pr1X650wmE/7++2907twZGk3lX+Pat3SriIceegiLFi1CWloaBg0ahOTk5Ervg4iUKl3BY9u2bTh27BieffZZp+EOAIiIiMD27duveXBERFVBHlxghsEOHxsiIiIiIvIwsUVLWFiQtNB67Jjt6vKiGm7RImd/Nbu3OH8hU1o49SUfL9mCcQ++Ly36y4ktWt584z70798WD02+GQ+Mu1FaaJIHPOTVPtq1bQiVSoWHre0mxEUy+dXcJU4qeLRp0wANG8YgIiIYpaV6/Gstvw7YWg+EhARg3txxDj8rryZSE0q0Oiz738/SVdk///wPACD1YjYOHjyn2Fa8ar1PH2U7lDZtLFdpG40maSFU3uYmKMhxwVAMC+Tm2QIe36z5E7/9fhQ//XQI772/Edk5RWjUqD66dGkCwLKoLycP1/z7zwUIgoDde046LGS7Iq/gkX4lz82WQKrsqmzAViVDVGqdN0F24Rwp4KG1C3jIqkmIz0mtWiaiqbWU/+nTV2A2W56/xFYC4r7sJUsL5DkQBEEam6tWI/HxkdLXCxdtAAA0aez4WXxgoL+0uH78uLIqR0rK33hv0UYcP5EGbakeKpUKL75wB0KCA1BSosMn/01RbH/6jGURfO6c+/H0zNsw+7UxUKvVuMlaseTzL3YAsC2Ou6poIF6BX1qqxxnr4mk9NwEPMeRy+UqeFCYKCwt0qFYiHudluwoef/55HADw46b9Dve5otXqFGGgEq0OV9Ldzy85s9lcJRdKFcqCaHq9ERcuZCE4OACPWUMCv/9+7P/ZO+/wKKr3i59tSTbZ9B5IIST0ltBBivQuggKCIIj8BCmioogCUpQiXytdVLDQRJp0kN6k9xJaQiCkkN6z9ffH7MzObM2GVHg/z8PD7uzd2Tt378xu9j33HJPn3L+fhFv691qn0+Gzz9dh2fK9mPbZWoGrD+uw4Sw3nZMODlKeUwJz3HlWnCSqGxXSAd51Uu6AGjX8OOHTz78cxJRPfhNcp8sanU4niJK6oxd0yPRxKTExTwSfIdlZ1l1oOAePpEyr4i0Wvihm6/azAABfX3dLzbn4tw1/nYRWq9Pv49njv1gXiscJaSYxZon6cyMwyFOwvUH9YEwc31NQtLfkLMSnTu0g7rY1wSP72f7b70c4UZyPFaEfe+2Li0uBRsNcXy2NPSsUSUvLEQh8LI1lSIjeweMh81lx4+Yj6HQ6BAV6cueDORo0CMHK5e/ih+/fNolyqUhEIhHkcocS/XN0lJb4uSWJVhk6dCgeP36MVatW4e233y6D0SCIFw+7BR7t2rUri34QBEGUC+RSIUQnuE1jQxAEQRAEQRBE+cMWi6QSMbcK9sqVOO7x8hR4aLVapKcbCtR37lqPhKgIEhLSMXLUEnw89feK7opdpGfk4s+1x/DgQTL+MYoNAZgseQCoFRmErxcMx9ujmFXrbOQKfx6wBSMHBym+/WYUNq7/EC+9VBeAYeUu342BX/hhCQz0hFQqQbOmNQEIRUVsYdLJyQF16lQzcXHJKmeBx4wZ6/Hr6kOYv3ArdDodLl02iDrOnhO6LhQWMX338nKFD69gVSPMjyvCZWYx4gK+E4p5Bw+9wIPn4PHokUFEsX//ZQDAm8M6cFb5SbwiuUajFQiR9u6/jN17LuLDj9Zg+IgfzcYIGBPPE1klp2RxggpjEpMysHjpHgCG4qGxwMPwvho5eDjr54zRPGEdCvjUrhWE2rWrwVnugPT0XNy+ncDsu8AQV2EOzgHhcRoKCpRc8dXT07zwISzMj3NeYEUyYaHmC4tt2tQGAOzafZHblpWVzwk42rerh1EjX8biH0ajceMwfPLJqwCA9RtOcLE06ek5yMjIg0gkQquWtTBwQCtu3vfr1wKAIcoghy14W3A/cHZ25AQtm/5m4paq6eNVzFGjhj8CAz1RUKDEPv2cMidKsBTRouHNiYWLtmHk20vQ4eUZeG3Q/3Do8DWT/SQlZeLVgV/jvfE/Qa3WICkpE0Pe+BavD/qfWfGZMZevxKJHry8x9M3vBSKgksBe10JCfCAWiyCRiPHhB33RvVsTAEwsEeuYAjBitXfHrcQ7Y5bj5KnbuHsvETduPgIAXLocix07z3NtWcGDuYgWAJwg48IF5phZBw9z8Ra+vm6QSMRQqzXc9aCAN+dFIhFefbUl1z47uwCnTsfYORolp7BQxYkBAMP3inp1q6NaNS/odDrExCRwj3MiJQtzOEDv4HH02A08fsxc86wJPBo3CuVus65T1lwq+r/SAl480ZObm7xUYj+8vV3h6iqHVqtD/COh4O2OPuIqyOhcFIlEGDLkJcyaMYjb1qJFpM3XmjypD9q3q4sfv7derOeL/FhRla81Bw+9exEbyeXgILU4NqwoIzU1mxN1OjnJLDqvhepFcrFxzGfPdb2wszhuM3XrVue+LxD24+7ujoEDB0KhUKB///4V3R2CeC4olsAjOjoaGRnFV7C+9NJLSEhIsN2QIAiiHCDZgmXI3YQgCIIgCIKorMTFpTxT9jxRdVCxAg+pBOHhjL34o8eG1f3lKfAoKFByq2kBU1v3ysDZc3ehVKoRE/MEKpVpVEllIienAJ9O+xMfffyboHBq7Iyi0+m4grejUfGddQnIzjEUOdm2Tk4yuLnJBdEV5hw8jCNaJk7oxa1AZQt5T/XW8QBQUMDsX653tVi3djL+t+gtREYEAgDSUsvXPeW/M3cAMMWoS5diuXgPAFzxkYWNunFyknGiC4CJHGDjCFjhQ5FeDOLgIIVYbPozsbcXUzzjv15ysul1uU7tIIQGsyujDe9tZmaeoOh64sQtfDVvs/61VVi3/oTV41arNYJivlKpRnp6rtnFOxMn/cK5NzSoHyw4TpZCbmwsOHgYCTzy802L9w0bhcLBQcqtwL9xkxEG8d0MzFFdH2Hw+HEa1y9HR5nFle8ikQg/rxon2FavvmmEAAB07dIYABNVsnX7Geh0OqzfcAJPEjPg7e2Kz6YNxJh3unJ97ta1Mfz83KHRaHFMHz1zTy/eCK7ubTI+1asxBeHs7ALk5RdxDjbWIitGjOgo7Hs9y3b8EokYLVpEADBE+ribcRBgRSLGLh388/HcuXu4c+cJVCoNnjxJx5y5m0w+QzZv+Q85OQW4eesxDhy4gs1bTiMtLQdarQ4bN5202E+WdeuOIze3EA8fPsWpU7dttrcG27duXRtjy9+f4J9tn6J3r6bw9nZFkN6xJDbOELdx4uRt5OcXQafTYc+eizhnJPDi3zc4EZkXHbGiuPMX7gMAcnOZvphz8JDwBJjJyZn69npBiP786dUzGn37NuOe8+hR8Vx6SgO+SxO/uN+4cRhq6GNL4nluQFk2HDwC9Q4eALB1G+PIYW2+N24chv6vtBBss+ZSIRaLER0Vzt2vXy+4RK4IxohEIoTrXTzY6BGAGZ+Deuentm3qmH1u69a18corzfHxlFe499oa3t6umD/vTTRrFmG1XaiR85BEIoa7u2WHEPa1jxy9AYD5DmBpbNjIr7S0HOTqzyVzEUMsdetUh0QiRnx8Kp48Sce1a8UXeBDPTkJCAoYNGwZHR/PXJIIg7KNYAo/Lly/jypUruHr1arH+Xb58GUVFpgpngiCICkEgYiAVA0EQBEEQBEFUdg4evIqhb36P9yasquiuEKXI09RsbNh4wkQ08fQpU1j38lZw+fF8ylPgYSwEuHP3SZm/pkajxenTMSZ26pa4rHdv0Ol0SErKLMOePRtqtQY9en2JY8dv4vTpGPzw4y7usbiHTwVODGq1hhMCOBmt1GWLanx7/SILhXqAJ/DINY1oGTG8I/7a+BHeGPIS95ivL1MgSn3KF3gwv2s6yZm+VK/mjTata3PW8WyBszwwdqyYMOlnwX3jOcAXMdSvbyiqt2gRwcWBZOljXAp5YhBzsCvM+Q4eySlCgYeHhzPCwvwQGsYU8eJ4Ag9WNOPj7Yrhb3Yw2f/NW4/Mvi5LRkYuNBotJBIx9z4lJmUAOuHvO1euxAmK/o0bhwFg5gBfBMU5DhgLPPRzJj+/SDDe+fp5MPn9PgCYgmbNcMb1gI0LSdUfY36BwfXFHJyDR0I6MmzEs7CEBPsIBCD16poXSURGBEAsZgqg//vmH+zYcR67d19g+j6pt1nnAVas9OW8v5GdnY+LF5nrSk29qwMfFxdDwf/z6es41w8XC8IBwNQBoF5d8+IUlmC9AIaNdPEy42wSpI+WSEnJEryvrEuMq6sc/n7uCAz05OaAUqkWxC8Bwuv6ql/+xdp1x7n7V/UxQpZIS8vB6f/ucPfPnr9nsW1xYD/fXF3l8PNzFzi6VNPHovDnNuvWAQA3bz3Glq1nAADduzcBAFy+Esf1n3XwsCQ6CtELwNg5nGfFwQMwFN7ZawB7jWVdlhwdZZg2dQDGvNMFAJBQzBim0oAVZ7kqnBDVpAa3/eWODRAawhznQ56jBStScrfg4GEsSgCsCzwA4J3RnQX3rUV+AEDLloZzpFGjMKtt7YEVtMTGGoRB+w9cQX6BEqGhvmgaHW72eVKpBJ9M6Y9X+7c0+3hJ+XLuG4JrXUiwDyQSy2VJY4cRVyvOKZxbU1Y+MvWiHYXC8nXJ3d0ZjfRuK8eO3eTOp4Yk8ChTMjIysHXrVhw5cgTjx4+v6O4QxHODqfeeBTp37lzswmhpqA0JgiBKC/6li/QdQgTjQYNDEARBEARBVBLYgkVCQjrUao1gNWZBgRLJKZkWreqJysHNm4+we89FDBzQiis2fPnl3zh3/h6Cq3tj44aPADDFLbbAFRjgiaioGib7ys1jiq7mHAb4HPj3Cry9XLlV6tZYv+EEtm47g1FvvYyePaMNr2Uk8Lh7NxE6nQ5XrsZBp4OgcFRa/L35NH74cRdatayFb78ZabUt05eH3P2EJ+kClwa1WoOt284gqkkNROgLuBXFf//dEfyWyI/qKCpSITYuhSuWs0IDwFRs4GbkOsFvbywGAQzFaL4bA+vm4eYmR/Vq3oL2rHAghecYVFAodPBgYa3jk8y4WJQVubnWF9ElGYlNCngxJMPf7ICbtx4jLNQXERGBXPGYfS/YqBtL9vfs6mhGqOENtUbDFYO7dWuCgoIivDmsA+O+oz/PHz58iqIiFRwdZJx4y8fXDWPe6QJfXzdkZeWjZYtI/N/YFXjyJMPq781P9c4M3t6uCAz0xNOn2UhKzESDeoZiXHZ2AcaN/4m7H9WkBvr1bY7FS3ZDq9UhMysfvt5u+rE0FNP58IUKBQVKLrKFFYRER9XAb6snQi534AqTvr5MsZs9Rjb+xZIjB+uCkZKShRR9gdzT07rAQyQSYdBrbfDbH0cwbmx3ODiY/ynfyckBLi5O3LV04aJtAJiCfPv29cw+p9PLDXBS7z7x9+b/8Lc+SqV27SCz7WUyCVQqDc7xBA2WnCEAZu506FAfR4/eQO9e0SZjbgw7Pizmxsbb2xUODlIolWokJ2dx53Kqfj6vWPZ/3OcNwIhXdu++iOvX49G6VS1uO/9axAqkvL1dkZaWg6ysfKSm5cDdTShy0Ol0+PSzP3H8+C3Bdr4wzBI6nQ5Hjt6Av7+HidCFfc/MiQdYERFf4JH4xOCyzvbdVeGEDyf3xeHD15GZmYf4+FSEhvhyoiNL7xMr4MrQC7jYiBZXCw4I7PWPnb85uaxjgnCsgiw4rZQlrIjPReGEuXOG4Nr1eAQGeCI83J8TlfLdhbJsuNDIZFJs2/IJ+g/4mttmK57D01OBenWr46Y+7qt2LfPnEkuH9vWwbPleiEUivNq/hdW29sCKU/hxWqwzTvduTcq9dlczPACbN01B566zAQABPHcUc7RoLnQEcbNy7XBzk8PZ2RH5+UW4cYMRcllz8ACYyKpLl2Lxx9pjyM0thJOTzKywjSg9oqKikJGRgYULF6J27doV3R2CeG4oloNHbGwsHjx4gNjY2GL9e/DgAUJDQ23vmCAIopwhBw8jKKKFIAiCIAiCqITwM+2zjdwbFizcgqHDvse33+/gVlonJWVixsz1OHny2azStVotVqzch0X/28at7iTsp6BAiQ8+XI0tW8/go49/g1arhVar5QqDjx6ncSvAnyQyxSpPTxc4OzuicaMwtNSv/GbjWnQ6nc0i9927ifhi1kZMmPQzl/FujcVLduPx4zQsXrpHsJ0VePj7e0AmkyAnpwBXrsbh/cm/YvyEVbh06YG53T0T27Yz9u//nbnDFc4s8TD+qaBNYqIwUvnnXw7iu+93YvqM9aXeT3t5wFs9zIcVVJw9aygUs0IDiUQsEHQBhmJQYmIGd84XWohzAQzFHdaCHzCsTDcuRDL9ERbq+e2NC6NsgTM5JdPssZUFWVl5Zrd/9ukAAMyczcrK537v4Ee0uLrKseTHdzDlo1cAAAH6/icmMfPGmlAGAAL0BWa2kJyexjhqSKUSzJz+GhbOH86tfA4I8ICHhwvUag1XUGWL376+bpBKJXhtYGuMfrszatcOglgsQlGRSlBsNyaV5wDCzoMEo6Lx3XsGN4bVv4zHksXvQC534Aq3rDBIq9VyLjDGjhYODlJOPJHBExJxjh9yR0RGBgqigPyMhEGGOAzzAg8PDxe4usqh0+m4yB1PGw4eADDmnS7Ys+tzsw4ofIzjIQBg2NB2kMnMi0J69ozG2He7AQBWrznEiQFeG9jabPvPP3vNZJs1gQcAzJo5CAu+GoYPJve12g4wdQ7xNOPgIRKJuJgWdh7odDquuG8sImFFR4+MYozYOTflo37o0rkRXn+tNVYuf5crjPOjLVhOnY4RiDte6dccAJBajLimA/9exefT12HSpJ9NrvF8Bw9jWKEE/zpvTjTRsmUtuLrKuZiJK1fiAPAcPGwIPDKz8lFQoOQ+O/mOLXzY2JLHemeOXAuCELbfCQnlJ/DI4eJinODm5oy2bepw3yFCQpj3NT6e5+CRxYy7JQcPgPlseH9ib0ilErRuVYvbnzVmTH8d9eoFY+onr9oUNbm4OOHP397HH7+/b9MdxB5YYRB/rt26nQDAEF9V3jg5OeDzaQPh7aXAqJGdrLZ1dJRh354Z3H0fX8tRNyKRiBNNndF/p1BYmL8s7fTRROxnQ9061U2+dxClS1xcHLKysjBlypSK7gpBPFcUS+ARGhpq9z+JhC6KBEFUDnQkYrCIwMADNDgEQRAEQRBE5SCVV/DL5hVptVotDugzxP/++zR3+61Ri3Hw0DWs/Gn/M73u2XP38PsfR7F121ms+vnfZ9rX80h6eg7On78niBJJTc3mYhhYEhLSuGJLUlIm7t1PQvwjYYGNLaAlJjIFoKBApiAkEomw6OsR+PGH0fhpxViuIH/6vxirfbt6NY67bSv2gf83It8VAjAUrDw9XRAVxTiBfL1oG1QqDQDgsD4TvrTIyMgVFJ1SrRS71647hqHDvhdsMy72bdvOuN/EP0rl3qe9+y7h+x92FjsCprTIyWHO3TeGvITPpg2Eh4cLBg9qi2FD2wNgjketZsaVLdDK5Q4mq4sD/D0gkYihVKq5YiorTDDnPFFNH+PwmBcPwDp4mCv8ePNiSNi5wRbtfY0KSxUR0cLOUQcHKbp1a4IPJvfByeNfoU+fZgjWCw6uX3/IxZaw4hcnR1OhARtxwRaMrUXdAIyrDsCcxzqdjotm8PN1M3HUEYlEXPGQXcH+NE0v8PARjqNMJuXiHh6biXFITMrAocPXcOIEU1D39nFF3TpMEW/T36cE15xkvZtK82YRqF27Gjd/WPEEO375+Upotcz7a1x4FYlEqKZ3kHj8mOmPVqs1CDzMiDZ89f1nRSxsnIslBw+RSISX2tYBAOzcxcSnmBMxmHtecYq/74zujPfGdueEMM2bRaBf3+ZWn9NW3x92XF7u2MCiGKBb18YYMEAY3WBL4OHgIEW7dvUsjgmfoCAv1Io0uA6x4gNz7QDDHFYq1Vz/jV+HdTdKeGy4TqpUak781enlhpgzewg+mNwXQUFehvZm5uSa3w4DYIrnM2e8joEDWgGAyeefOTb+dRIAE+Ozd98lwWPWBB7steyJ3rVDp9Nxosg6tatx7TroXVrYbQ9imc9Xdm5aigLiixu++2EHd9vFxfz7ygpg2M8stu/Gwjn2XEp5mm1TcLl33yW8OmAhd07Y4nFCGg4fuc5FerFYi1xh+52cnMk57bAOHu42zq1Br7fBv/tn4pv/jSxW/0KCfbBq5VhOAGQLDw8XqyKTkuCvvzbdvPUYGzaeQFxcCp48SYdYLEJt3rwpb3r1jMY/26dxQiRrKBRO6NihPhwdZRg9qrPVtmwU2XW9g4eLlYgWgDmHIyIMgrKGDSmehSCIqkmxBB4EQRBVGaGog0QMBEEQBEEQBFGZKCxU4uixm5yjg1qtEazoZldcA0Bc3FPBc3fvuYisrHyuyHDfzKpbe+Cvzj10+FqxnnPixC1Mev8Xzuo+NTUbc+ZuQsydJzaeWbXQaLT4v7ErMWnyr/jm238AAOcv3MerA7/Gm8N/EIgHjEUTx47dxI0bQtHFtWtMzAhbuGJXnAJMDnyzpjXh7OyILp0bAYBNd5ar1wyxJawVuSX4zg6AoUgFCIUAL3dsAEA471KKGc2hVKqL5SBpHGPCWuWbY+myvdxttgBn7GbAFjoBxtVEq9ViztxN+GvTKaz86UCx+l5asOPs5uaMPr2bYvfOz/H+pN54tX8LuLrKkZ6ei5gY5jyxtppaKpUY3Bv0hVcuDsOMMIEt5j18+JQb2zy9A4yLGQcPtsiuVKqRX6AUXINYEQIL64CRXI4RLZn6cYyoGYBZMwfh9dfacCKGRo3CAEAQ28O5cshNxS9c5IO+SMzOd0uuE35+bhCLRczY5Ku5FeGsk4kxbCwQK+BiC8w+PqYrsNmYrTgjpxe1WoN3312B6TPWc0VfP1939OndFK4KJ2Rk5GHL1v+49kl6NxJj23/2vfv+h1169w5mHB0dZWaFQaEhhnkDGGJ6AMDZjECBjRBhr3cF+Ww0jmUxQ+9eTQX36xrFdTwLMpkUw4a1x98bp2DXjs/ww/dvW4zeYakR5ieIxbLVn2pBwngjS/OmpLRsaYhRMT73WII40QNz7RPGOwn7w8a+PHqcyl0L0vXXWKlUYuLkEhQoFFSwZGTkcp9hP60Yix7dozjnn8zMPKhU5kUMly7H4sfFu3FLL3gCgAtGn08GgYfptSnQyK2ksFDFfdYOHdoODg5SVKvmhZf0jgTGAgz2ecHVhe8bC1+ktWv3RQDMZwsbQ2QMu/+4hyl6Zy3WOUXYd08PF8jlDtDpdJxbkDkyM/MwZ+4mJKdk4dfVB21+ZmZk5GL4iB/x+fR1WLf+uNG+mPPbw8xniLu7M/fZwopNDZ9P1l02AFh0wams8K/Pi5fuwXsTVgFgnCtsuYpUJr6YMQhbN3+CsDDrkYwN6gsFGpYihvi0bV2Hu92kDKL3CIIgygMSeBAE8dxDzhSWIXcTgiAIgiAIoqL5c+0xTPvsT7wzZhlycgpw63aC4HtqFi8qhV2x66SPZbh69aHA2aE4P9Rbg78SNyPDctGGJS+/CJ98+gfOX7jPre79dfUh7N13CaPeXvJcRUReuhzLFdR277mI5ORMrFt3HBqNFjk5BYKs9wwjgcfuPRe54hhbODp7jrHSZvfJFu2MYVd6Gkf1AMCdu0/wx59HkZdXKChwX7hgKvB4mpqNCRNX4c+1x0wiIfg28mzBSuHqhB7dm5g4ONiKUAEY94Fevb/Ehx+t4RwqLHH3XpLgfkaGeYEHXzTj4eGMkW+9DEBYiMzLL+L6DzCrdx/zVq7fum0oMlqiqEiFEW/9iPETVnFxKCXFUhyGTCZFkyZhAIDLV2IBAJn6GBIPd/MrzatXYwqUj/XvVa5+PphbqRsc7AORSIScnAJuPK05eMjlDtw1JTMjD2lpOdBqdZBIxCYOC2zhLCUly2QFeVmRpX/vzYlfGjcOA2CIZAAM4hdzDh7VjNwP2GK3l5er2deWyaScOCMrq4ib/37+5ovvNWowhbjYOEa08ZQX0WIMG3dgLMy7cjXOxMmmQ4f6cHZ2xLBhjPvL738c5YrXbHyMscCjTh1mpXpcXArOX3jAFdItfU6EhDDuDey1jG0vlUrMCiXYuZqTWwi1WsONuzkxCEuTJmGcSwQAtGgeYbFtSRGJRBYdG8y1/WRKf8jlDvDyUqBf32ZW21fjXacdHKSlHmsQxSu0tuKJPfiwDh7sta9AP+4ODlITYUJQkBdEIhHy8oo4AUAWz+nB2IXGIIASCucuXWKuUzVrBsDbmzlX3NzkXKyPOcFXTEwCJkz8GRs2nhBsv3btIffdQqPRIjePEZ+5mXXwYI41LS0HRUUq7jomFovQuVND7N75Of74bRI3P0P0c+vM2bu4eOkBJ2Jgx8wcA14VurJYi7dgRVAZGXl4+jSbuwYqFGYccfSvefOm8HNHrdZg/oIt6NhpJnr1+YrbnpSUiXtGn4fGXLkaxwlcNm/5T/D5as3BAzB8hiQkpEOn03Hnd2m7Z1QGjI+JnQcDLcQvVVYcHKTFen/qG8XOsOI7a/ToEQUHBymio2pwsYAEQRBVDRJ4EATxQvEc/b5aKgjGgwaHIAiCIAiCqABO/3cHALNq+otZG7F5y3+Cx/luC+n6Ym1UVDjc3Z1RVKTCH38c5R7Pzi4wKbouXbYHQ4Z+a2KLbg42r557PX3xMzk5E0eOXjcpePNdJR48SIZWq+VWxgPFEwMc+PcKhg3/HnEPU2y2rUjOnLnD3dZqdfhx8W6cO3+P2/boscHSnhUjtND/aJ6UlMkJOkYM7wAAuHnzEbO6N5F18DBfgGKLXjlGAo+nqdl4Z8xyLF+xDzO/2CAY60uXY7Fi5T5B+yVLduPipVgsW74Xx47fFDzGt+Nni0SuCjkcHWUY/15PiEQirnCdnJJptp98Tp68jfwCJc6cvcvNb+O+s4Wp+EdCV5r0jDyT9gCwfgNTJKxVKwi7d05Hq1ZM8TOR5+CRYhQb8v0POzFk6LeGfVuJf2G5ePEB7t1PwqXLsTh79p7N9oDlFezZ+ogWc4XLWpFBAExXU7t7mC/msJb/7HvFFkXNFSMdHWXw0wsKEvRFYFb4Ysm6nRVyZGTkIoUnSjAuGHt7u0IiEUOj0SI93fp4njl7F4OGfINLl2OttmPR6XRmx5F1N3Ixc6xN9AKPW7cTuCgEzsHDyZyDBzOO6em5KCxUcsfg7W05KiRQL5zIyi7iCtn+fh5m27KijdjYZOh0Ok40Z07gwVrknzx1W+AAxDrw1K8XjLZt6mDY0HZoGs3EJbEiDAD44YedAIB795miMF84AQBt2hhWaCckpHEiMUtxJ8bCAfZa4OYmN4kNAphIDXZ7Tk4B8rk4F8vxAGKxGNM/H4jIyEBMnNDLpM8VQUiwD9b+8T5+XzPRZhRMtWoGJwhb8SwloUXzCLw/qTcW/zjaYqxLNe59Yq59rHOKufaCa4H+2pGvb+9ipv/V9U4Xt24lQK0xiAcuXLwPANw8BBgRA+sswEai8Pl7838Ckefk9/vAw8MZhYUqLsIoL6+Qa2POWcHNTc65NSUmZiCPvY45O0IkEsHZ2VHgWsI6bADAxPd/AcCce9beqykfvcKdtwCgsOLw4OzsyEVa3b6dAIARbZq71rRsyXz+bzH6Trdz53ns2Hmeu16JxSIu4uXgIfPOaXfuPsHMLzZg9pxN3LaUlCzBZzkrEnS3IBJkP0OeJKQjN7eQ+65YnPijqoZIJMKKZe9i9heD0atnNLy9XTF4UFvB/H2e8PBwQbNmNbn7PXtE23xOSLAPtm2Zim+/GWX2+k4QBFEVIIEHQRDPPzzdwvO0gq5UIAcPgiAIgiAIogJRqzW4w4sy+e/MHezffxmAwSo9myfwYJ0XvL0UaNgwFIBhpTjAfN/P5jl+3Lz5CGvXHUd8fCq+mreZswpfsXIfevf9CqdPG9w/AKBAX6BjSU1lXm/om9/js8/X4eQpYfs43msXFCiRkJAueP00K3EbLF/M2ojY2BR8/vk6m20rEnYFc5/eTMTA4SPXBWIavoMHK/CoFuTFraRki3F9+jSDTCZBbm4hHj9Ow+0YpkgUEmzeQp4tvvDHFQD++eccJ5JgRRSREYFo3bo2AGDT36e5v/90Oh3Onb/PPXfVz/8K9sWPOWFdJ9hVo926Nsbxo3OxfOn/AWBWLhv3xZirPDeRe/cSBY9duhyLV/ovwOgxy1BUpMIjvZU+6zZgTjTw16ZT+ONPRsj01oiOAIAgfaE+J7eQ67Ot2JCnqdlm/yYuLFRiz95LyM8vwlmeaOfM2btW9wcwRb5XXl2AoW9+b+I+YnDwMC2g+evjF9jIG3bOWHTw0BdeH+uFRAbBhvnV5myxPvEJs1qbFW9ZWp3OOh5kZOZxQhl/MxEREomYKzCfsSGAmfrpH3j8OA0ffrTGajuWb7/bgR69vjSZM2zfzRVpq1XzglzuALVag6TkTKjVGu68MFd0dXOTc8XUxKRMmw4eABDAXYsNDh4BFhw8QoJ9IJGIkZfHtOUiWrxNBR7t29WDj7crkpIycfyEIR6Ljbfq3r0JFn09ghNZMa9rcJBISspEUZGKW/Vfv55wFXfDBiHcvMnlnSfmojAAw2cO+znBxQZZKABLJGJuLDOz8g1z0obwoUH9EKz5ZQKGDG5rtV154u/vYXUOsPCdlsrCwUYkEmHQ623QNLqmxTZBRgIPzrHGQjRONaNrRz4XS2T6PjWNDoeHhzOSkzMFTlAX9Z9/0UYF8vAajDDi3DnTa8G168znwOxZg/Hl3DcwcEArREcxz2f3zYqOnJxkZmNARCIRd61/kpjBOXhYuu6Zc255e1Rns235jHu3G3fb+HuQMex4srFonp4KswXy7t2aAAAe8wSUALjP4q5dGmH656/hl5/H45OP+wMADh66avIZpVKp8dnn6/DvwaucEIwVsvDFI9ZivgCeSPBJOufi4uRkPq7peaBRo1B06dIIn08biH+2fYr3J/V+roUMH37QF507NcTXC4Zz131buLs7cy48BEEQVRG7BR7h4eFIS0sz2Z6ZmYnw8OdTBUgQRNWGYkgIgiAIgiAIonKSlZ0PjUYLsViE114zWEfXqOGHNm1qc21YWAcPLy8FGukFHsbwoywOHLzK3dZotNi16wJu3nyE3/84ioyMPBw5ekPwXGMHj9S0HBQUKLmCBxszwvL4sfD3kTt3ngi2ZWaad2MwB1+oUhl5GM84TQx9ox0GDzIUJl31haZHj/jHzbxnnp4uCK5uWKHu7++BwABP1AxnVu4PfuNbZGTkwVXhxEWxGMPGKbDFWRZ+JAVLdHQ45sweAoApUrGuH0nJmWbfC7Y4y49oMRcVIhaL4ebmjBr61drneWIRgClg8fdx7ZpB4PHwodChgxU03b2biH8PXuUiR9rq3QaM28fHp+J7vVOBSCTi2rGRCoCh0JmkFyZEWciTLyxUCSJcWL5etB1zv9yEWbM34uZNwxy/XYxIl392nINKpUFCQjp27LwgeMxSRAtgiPhgBQOcg0cx7PUBZuU7YFmwERjERi1kID+/iCtGm1slDwBeegeP5Sv2ci48vr7mRQy9ejEip3951xdjlEo1t0K9qEglcKgwh06nw+Yt/6GgQImFi7YJHrMm8BCJRFw0SWJihuB1LBW82RiKxMR0nsDDmoMH0z4tvZBzN/HTR9UYI5NJEawXax0+egM5+vlmzsHD2dkRPXsyK62PHjOsxL9zhxG41K4VZPIcfuEuIMAD58/fh1qtgY+Pm0lECwB0aF8PACPcYcfRxdnCnNEX0pOSMqHVag0ONFaivzz08zUrK98gQPSxLZSoqvDnlLlrSXnAikxycguRnVPARbTI5eYL9cH6OcO6TLEOHs4upueTk5MDWrdivnuw0SJKpZoTMNatW13QPiqKudbu2Hle4DKVnZ2PeL14r0XzSHR6uSEkEjGaNWMieVj3K/Y5lq5L/ON98iQdebnWhWrGbNvyCV7p19xmO1YYCZgXhvFhr8XXrscDsHztCNBfN7KzCzgRDv95r77aEr16RqN2rSC0aV0bjo4yJCSkC0S/AHDi5G3uM459vUVfj4BEIsbFS7Gce4rBwcP8ZwjrlhP38CknHLYk3iKqHqEhvpgzawjatq1juzFBEMRzgt0Cj7i4OGg0pvmhRUVFSEhIKJVOEQRBlB2k8OAjTGihsSEIgiAIgiDKF3bFpaurHG8ObQ9nuQNcXeX436K3uJWo/IiWDH0x0tNTwUUTAMxKajZ7PpkX1XFRv0qWXXV748Yj/L3ZsOIznuc6ARhWrrIrPS9deoDr+mIEYBAEsLBFH9al4uz5e4Kil7GjgTHGK6Cf9Tt53MMUbvV7aaJWa5Cnj8Rwd3fG2He7ITo6HLVqBWH8+J4AgMePDWPJFd8VTqhd21CkbdeuLgAgslagYP9duzY2u3oZMBRXc3MLuYgcrVaLW3rxwZrVE7BwwXD06B6FIYPbwsXZkXs/2AidB/eZAlBEzQCBFX3/V1oAAO7rIx4Ag2OMm5kiETuPbt02/P6VlpaD4SN+xOuD/4fLV2KRlJQpmIOxsULhDl9oMn/BFuh0OtQIMwiabsckCObBlatx3O2pn/QXrDZlC/Vs9ECyXuBRo4YfWreuzcWL8J/DF6IATCGSjS86cfI2rl0zzPeYO09MIkN0Oiaep1efLzF/wRZs236We2zT36e4OBF234B5Bw8/vTsGO1bFtdd/nJAGnU7HnWfG5yQL58aQmIFUfeFdoXCyuFrbXy84iYt7iuUr9gm2GcMWdWPNxDKw8K8bgPkIBz789+WpXkQBQOA+4uxsXrDBFlKTkzO5thKJGDKZxGx7dmyePMngCqc+PqYCDJbG+mttTEwa51pkaWwAQ/zO4iW7ATAFY0vvE3sdf6jfb1paDlJTsyESiRAREWjSXqFwwsi3XgbAFOoPH70OAOj0cgOzq9PZz5HMzDyuyGwp+sPf3x1isQhKpRpp6bncZ4+5awEL+9iGjSc4sYy1sXwe6NihPgCDQ0N54+RkELclPklHYUvYNEEAAQAASURBVIF1Bw9WFMReJ/Py9S4YZgQeAFBP7wRz7Xo8dDodHiekQavVwcXFET7eQvFO717RcHWVQ6lUCxy9WHFIcHVvgeCgRXNG4HHjxiPk5RchJ4fpi3WBR/EdPADgndGMY8eihSMsitSMEYlE2LD2A7RuVQsT3utptS07nuw1jhXHGePi4ghn/bl2/gIjiszKykeqPrYpMtLw3cDZ2RFt9CKT7TvOCfZzSB/b8uaw9vjj90lYtXIcqlfz5j4zDxy4AsDw2W3JBSpSfz25ciUOp/5j3NisndsEQZQPI0eORP/+/Su6GwRRJSm2wOOff/7BP//8AwDYt28fd/+ff/7B1q1bMXfuXISFhZVVPwmCIEoM/zdS0jAIEbibVGA/CIIgCIIgiBcTrgDsKoefnzv++P19/PHbJAQGeBqiOXJ4Dh681eZspAXAFP3Y+7f02fZarZZzxejXl1nBevHSAxw8ZFh1b+zAwRZHB73eBgCwe89FnOVZr/NX6CYmZuDOXWaled8+zQAAO3acF+zPloMHu+KbhS9msZeiIhXeHbsSb49eiqM8Z5LHj9OQlJRp0l6pVGP1mkM4ZRRTYw7+cbu6yuHoKMOSH9/Bml8ncMXcR7yxLOBZ5vfSr9B3cpLhVb2gwpsXBVCjhh/eftuyhTxb+GKK+sz7k5yShby8IkilEoTX8Ee7l+pi5ozX4a93FcjIYMZ97ld/AwCS9JELQUFeXH8B4NX+LQEwQgZWmJDJFYnMxIro989/3+IepnCuCStW7Md/Z5i4GLYA+SA2WeCqwH+PtVrmr7D27euhZngApFIJsrLyOScOAPhPHz/Tt08zbh6zsPEAd/WRHmxEi7+/BxbMG4bt2z7Fgf1fYNPGj7gV2hcuCt1HrvDiZFhq1PCDh4czCgtVAsEH8/wH2LDxBDIz87FjJzPfFQonBAR4IC0tB4cPMwX3oiIV52Bhrojm7+cBgDnncnMLkaV3ffHwMF9wCwrygkgkQl5eEbJ4cRgWBR5BBjt+VjDhY8VZgRXL8LFUHA3TxwM8fZotODf4sLFBLDG3rS+KYx1yAGZ+qdUa5u91HThxlTkHDwAIZB08kjK4a6Sl2ATA4FRx89ZjxOkdY+oZORPwadE8AkGBnlCqtFCrGZEVKyoxx3vjeghcL4Kr+1jsS1A1Q/Fap9Phzl1GoBYS4mNRiME61Fy6HIvduy8CAJo0CTPbli/wYJ0b5BaEMlKphBMeJSVmGBxoXC0XgdmC//ETtzg3Kk8zMRnPE7NmDsLqX8fj888GVlgfPPWigsysfBQUMtdXZwvzhXWcYKNCbJ1PNWsy19WLF2Nx8HA856oUGuJrMo/FYjHq1Ga+e/DP4es3mOtm/fpCZ6qgIC8EBXlBo9HiypW4Yjl4sHPy6dNs5OVady4CgBHDO2Lb1qmcYKK4BAf74H+L3kKrVrWstjOOv/DyNi/wEIlEnFPT1Gl/Yuu2M5yYMijQ0yTK6NX+zPeD7dvPcd+71GoNd7tdO+Zzkr1Wd3q5IQBGmAjApiCLjXUBgNVrDgMgBw+CKGtEIpHVf7NmzcIPP/yANWvWlEt/kpKS8P777yMiIgJOTk7w9/dH27ZtsXz5cuTnG76fh4WFcX10cXFBdHQ0Nm3aZPKYuX8jR44sl2MhCMAOgUf//v3Rv39/iEQivPXWW9z9/v37Y8iQIThw4AC++eabsuwrQRBEidCBH9FCMgY+Op2lOwRBEARBEARR9mSxBTT9D/KBgZ5cMYMTePAK4vyIFqlUgjHvdIG3tytGv90Z9eszq27ZlbNZWflQqzUQiUTcqlmVSgOVSsO5faSl5XBuEzqdjnPw6NC+Pjw8XJCbW4i1645xr5/Ni4u5fDkWOp0OjRqGYuCAVmYLmKzQwBJp6UKBB3/lvr1c1heLdDodfl1zCABT1Bw5ajHeGvkjnj7NErRfvmIfVv38L2bP+QtqtalTKx92lbGLiyOkUqErABvHkJ6ey41lAWuBL3dA7drV8OP3b+Pnn95DDb0goWePKDg4SNGhfT2s/WOyxRXAABP5wBbiWMFMgl5MEhTkadIfAOjapRF3OzU1mxNMBAR4YMyYLqhWzQtj3umCwEBP+Pu5Q6PR4q6+sJylfw13M0Vab30xly/wSEs13L567SG+1sdrdO3SGN7ertBotALLedapgr/PN9/sAAcHKSJqMtE1MTFM+4ICJU6eYopXAwe2MukPGxfAznnWwcPfzx0ymRRengq4ODvC19cdrVpGAgA2/nVKEEV0Qb+yun79YG6F+v8WvYWWLZki36HD1wSvyRbUg6t7o369YISG+uKLGYM4kdOu3Reg0+m4c0UiEZstvMr1bj0AkJySadPBw9FRBj99zMejx2ncSnZLhc4gvYjh4sUHnJDLx9uys4I5l5GwMF8zLZliLOvS8MjIBeju3USsXnOIu26wxcg4o+gdY/jCH41Gi0R9TAwA5BdYL0iz8zIjIw9pxYhcYSMfDvzLrHwPD/fnhBDmEIlEaN68Jnffz8/dpDjLx8/PHW+NeJm737NnlMW2Af4eEIlEKChQ4kliBuLimHFizwVzmOtraIj594oTAmTmcdd3uQWnB4DnbpKYwRXfLUU+AMCnUwcI7nt5Ksxek54nZDIpakUGcQ5BFYE7F92VjwL9+eFkSeChFyQ8fsy41RiieszPYX9e/NCFC0m4fp2JreK7UfEJDWW+T2ze/B8nzGLj31i3Hz6smCo+/mmxBB7sY3l5hcVy8JBKJfAtQxeZ6npRFou1z28/vZAPAFas3I/r+pi7Wmbil5o1i+BElwsXbYVarcHFSw+Qk1MAd3dn1OWJegGgdSvGperBg2SsXXeMi/MzJ84EmHF5ySi+w9q5TRDEs5OYmMj9+/777+Hm5ibYNmXKFLi7u8PDw6PM+/LgwQNERUVh//79mDdvHi5duoTTp0/jk08+wc6dO/Hvv/8K2s+ZMweJiYm4dOkSmjdvjsGDB+PUqVM4d+4c1//NmzcDAGJiYrhtP/zwQ5kfC0GwFPubmFarhVarRUhICFJSUrj7Wq0WRUVFiImJQZ8+fcqyrwRBECWDHDyKBY0NQRAEQRAEUd6wRWBzP7Kz21gRCMBz8NAXFEaN7IQd26fhtYGtuegNtuCaqi+8e3q6wMPDhYvjAIB33+3GFQnZ4q9SqeYiU1xcHDn7b2F/DX1hnR4CAjzg6+vO2dbzMRZVWNsfAKTYaG+Na9cMTgx37yYiPj4Vp0/HIL9AiZzcQuzcdUHQnnU6yckpwOXLsTb6aTlqw8XFiYtEefSIGUvOwUNfcGvWLEIQjRIc7INtW6Zi1heDi3VsrPPC01RmfNj3zHglMctHH/bjbsfEPOGK5QEBHggM8MSmjVMwamQnAAanhxS9+wVbJDK3spddrZ+aZhDipBq5sLC0bBnJWcI/4MW0sE4V0dHhGPBqS2ze9DFXaGRdaFhByKNHqVAq1fDwcOb2xadWJLONFQ+wIglzxf0+vZshMNATqanZnOW9VqvlVj+/ObQ9tm2ZirV/TkZggCd69WCcVw78e1WwUOKSfq58/HF/rPppHNav/QBt29ZBzx7RkMkkuHIlDnfuJhrcD9zkFt0b/PVirpTkLE7gYKk4BwA1I5ii/+nTMcjNZfZvqdAZGGRwmGBFN9aiM8LC/AT369SuhmZNa1poDQQGegCAwB0nOzsf48b/hFU/G4oErBsQG4ViiUwjMRhfEMI6T1iKlOCulVl5XIyVtaIrKzphHWRqmym2GtO7VzR3W1qMwn6/vs3QsUN9DBjQEgMHmIqTWBwdZdz5vWLlfk48ZS1awtuMY0C1auavBex1PiODJ/CwIAQADO4miYkZBkcAN8vFd3d3Z8F1iC8OIMoOVgiWmZWPggLGwcOScIeNd8rJKUBWVr5NBw9jccTWbUwMVZMmpmINwBA1cuduIhZ9sx3JyZl48CAZEokYHdqbfi8I0DvuLF66h/tssjbHXPQitty8Qs65yNWKwKOsCTESUzXmxeUZwzp4AYyr08VLD6w+Z8L4npDLHZCUlIn4+FQcPXoTAPByxwYmwik3NzkaNGAcUpat2IdCvZOLNdHGV18OFURXRUaafq4SBFF6BAQEcP/c3d0hEokE2xQKhUlES8eOHTFx4kRMnjwZnp6e8Pf3x6pVq5CXl4dRo0bB1dUVERER2LNnj+C1rl+/jp49e0KhUMDf3x/Dhw9HaqpBhPvee+9BKpXi/PnzGDRoEOrWrYvw8HC88sor2LVrF/r27SvYn6urKwICAlCrVi0sXboUcrkcO3bsgK+vL9d/Ly/m88XPz09wnARRXtgttY2NjYWPD6NMLSwstNGaIAiicqGjIBIB5GhCEARBEARBVCTZVorp7Da2yKZUqrnVrl5eplELrA37k8QMqNUaLuedLepO+agfRr/dGSOGd0THDvU5F494vSCE72rg5ORgstITEMbFGEQPTGFmwgRDbv3gQW2ZvjzJgDEqlRrXr8cLXA5YWNFFSTB2/zj9XwwuX4nj7t+7lyR4nB8tsfKnA1b3nZ3DRhWYL0IFV2fG8tFjZizZQou1lfIeHi5wdJRZfV0WP32x95zeqv1JoiFyxRxubs7o9HIDAExEB1uEDzQTK8EWZJNTsqDRaLnin8LVtIBm1sFDf3vI4Jew+pfx6N2rKT76sB9atohESIh+XHguD6wIY+RbL2PKR6/AwUHKPcaKDNiV5mzsTUiwaTQAAPjqHS0yMnKh1Wo5pxVzq8Hlcge80o+JeNl/4Ap0Oh0OHb6OJ0/S4Sx3QPPmEXBxceKe26hRKABDUZQ91uTkTIhEIs49hCUgwAN16zDbHj9KtSoKYmHt+2/HJPCcUyy379GdcYI4fOS6idjLGG8zIpegIMuxIg0bhGDG56/hh+/exo8/jMbiH0dDLLb8s2mAft7wBR7/7DgvuI4ATNwNACQk2BB4GDm7XOGdu+w+LRWkPfTF7uSULIPLkYXYBIBxEOC7L9S04pbBUqtWENq0ZgRI/fo1t9Ga6etXc4fiow/6QSaTWm3btg1zrT10+BpOnLgFwLyIg8XT6D0fMbyj4DwStGUjWrLyuHGUyy27j7BigPhHqdz13tocBoD69YK527VqUcG4PGCL+MlJmUjXO2FZKuw7OTlw18rHCWkGBw8L7j/GQgKtVgcfb1e0amk+uqRhQ0MMy85dF/B/764AwERomRNusAIPAPhzLeP0Y83BQ6Fg5mtebqFBCFeBMUByuQNeG9gaADD0jXbc+WuOrl0a4YuZgwAwDmpnz94FIDxnjPfNXo8exCbj0mVGENLSwthP/+w1wX2pVGLxOgkw7jN80Y2tOBqCqOzodDpoVdoS/YMWJX5uWdcTfvvtN/j4+ODs2bOYOHEixo0bh9dffx1t2rTBxYsX0a1bNwwfPpyLVcnMzESnTp0QFRWF8+fPY+/evUhOTsagQcz1Jy0tDfv378f48ePh4mL++mlJjAwAUqkUMpkMSqWy9A+WIJ4B69+wzaDVavHVV19hxYoVSE5Oxp07dxAeHo4ZM2YgLCwMo0ePLot+EgRBlBjBlw7SMwjRUXwNQRAEQRAEUXFYK0gHBDDW/amp2UhJyeK+r0qlEriaKb77+rrBwUEKpVKN5OQszlmBXR0uFosx+u3OXPvgYB9cvfYQ8fGpgr44OckgkYjRupWpgwfr8gCA51Cgj5cJ8MSXc95AytMsREeHY+NfJ5HwJM1kHytW7sf6DScw9t1uJgWmvzefRps2dTgLd3PodDpoNFqTIhQr8IioGYB795Owb99lQdEzLi5F0D4j01BQvnHzEe7dS0SEGZcI5liZH1AtFaHYsWSdNQq4QqplgYc9KPSrlX//4yjeHNaBK3J5WilysWKM9PQcQUSLMf56kUFycqagOG8u+oOdS9nZBVAq1XBwkPKERK6oXbsaPv9sINc+2EhEBMCqUwU/HgJw5caT3Y8xnp4KiEQiaDRaZGXlc64Wlt6nKP0K9PMX7mPd+uP4559zAIBhw9qbFMUYZwU3pKZm48mTdHh4uODuvUQAQEiIj9l4g4AAD1y99hDJyVmQSBkBgbWV6azgZs1vh6FSMTFBHhYiWgAgWh938JDnbsG+z8aIxWJs+fsTjHx7MXeutrFSiASAnrzV5rZgXTDWrj+GoUPbQavVYt364ybtWBFSwpN06HQ6iwUEdl6Ehvri4cOnuHbd4MhjS+DBimJiYp5w8T7WHDw8PRV46aW6OKqPkYiOCrd8oDzavVQdY999FWFh/rYb20HLlrWwbTvjksCKmsyJ+MxRv14wxr7bzeLjbCFcqVRzQgBnZ8vXJTY6IubOE07QZm0OA4y7yb79lwEAtWtXs9qWKB3Yz931G0+gWTPGaYc9J81RvZo3nj7NxuPHaZyIz5IjDgC8NrAV/t78H3f/008HWLyuhob4omWLSJzRixfYmCRL7hDmBEOWxJOA4bMoN6+wWE5H5cHE8T3RtUsjzkHDEiKRCN26NsZvvx0WuBJZe6/CQn1x/Xo8rt94xEU2NbHg+FGtmhe6dW2M/QeYuCl3d2erRVoAmDC+B8RiEerVq45akbbdiwiiMqNT6/Dwz5gSPdcbLnh8416Jnhv6Zm2IZNbPtWehcePGmD59OgBg2rRpWLBgAXx8fDBmzBgAwMyZM7F8+XJcvXoVrVq1wpIlSxAVFYV58+Zx+/j1118RHByMO3fuICMjAzqdDrVrC/+28/Hx4UwMxo8fj4ULF5r0RalU4ptvvkFWVhY6depUVodMECXCbgePL7/8EmvWrMHXX38NBwfDF+IGDRrg559/LtXOEQRBlAakW7CMTnCbBoogCIIgCIIoX9g8eYUZu3EPDxc01BcP/jtzh1uZ7unpYnZlvVgsRjV9MfXLeX9z8Sg+3uZjGdjiy63bjGvGuXNMcYZdPeroKMOSH99B40aheHtUJ4jFIjx6nIZkvViAXd3NL/p06tQQQwa/xMUFZGbmC2JYVCo11m84AYARemToj+nljozbRHZ2Ad4Zswzb9YV3AFCrNbj/IAkqlRo6nQ4fT/0dfV+Zj5s3HwmOhxUaDBvWHlKpBLdjEnCVF9sS/ygVKpUaALN4hxVtsAXNi5diuT5qtVrBvvP0tvDmXC0AgzMC62bARrSUlsCDz5PEdM59xNrKerbw/+RJBuf2EGDOwcOPFXhkcfPRwUFq1hHA1VXObU/TF4tZBw8fM0IDdj4m6R1HtFotV6BzNyNOYWNFWNv+lJRsfb89zB6jVCrhVq1fuhTLOacoFOaLhfyC49Jle/HocRqkUgnnOGPaf6Y/7/zfcly7Hs8JK2oYxZmwsG4oSSmZBgGUq+X3iI0vYcUdIpHI6kp2Ly9XbiU+YFnsxRIQ4IEF899ESIgPevdqirp1Sq/4zrqtZGTk4cGDZMTFPUVmZh7kcgcsXDAccrkDFsx/k5tfSqWae+/56HQ6ZGXlcw4erAiHFfcAxRB4mDkPbIk2vpjxOpYv/T/8tfEjLhqoOISE+JiIy54VudzUycdczBCflcveRatWtTB7lvWYJ7ncAU5OzP5Z5x9r1yU2riY+/imSU5jPEGuRDwDQtGlNTP2kP3r3ikbnTg2ttiVKB74D1fnz9wGYd2hiYd2UrlyJQybrFmTlff3wg37Yt+dzdGgfjK/mDkGb1qaCTxaRSITvvh2Fk8e/QlSUIcbFksDDnDuYteseG0OVl1fEXSfMfX6UJ1KpBA0ahNgUU7D4+RkiC6RSCRfrZg72+9Oli4x7h6eni9X3ii9MrVWMuClfX3d8MWMQXn+tjc22BEFUDI0aNeJuSyQSeHt7o2FDw+ervz8jNE1JYcTrV65cweHDh6FQKLh/deow19r79+9bfJ2zZ8/i8uXLqF+/PoqKhA5sU6dOhUKhgLOzMxYuXIgFCxagd+/epXaMBFEa2O3g8fvvv+Onn35C586dMXbsWG5748aNcfv27VLtHEEQRGlDLhWWoaEhCIIgCIIgypu8XOtW6TVrBugdATK5gr21lenVqnkhNi4FV67EIVtfTGVdF4xpUJ+xCL9x4xF0Oh0XZ9LupXpcm+jocCxf9i4A4MyZu7hx8xEuXopFzx5RJg4efFycHVG9ujceP07DtesPOQtzvuACAM6dZ1bOBQV5cW4JALDw6614pV9zFBQoMXbcSty9l4g2bWrjreEdceoUs1Jv2fK9WLJ4DLevp6kGB48O7evh4KFrAJjik1jMuDw8epSG8HB/5OYWQqtl/gBo2SISd+48wb17iYiNTcbb7yxDhw71MUtvqw4ABTYiV9jiDVsQLSgoXYHH6Lc744jebSA9PZeLjLFWFGPny0197I1c7mB2JT4rSkhJyeKELJZWdotEInh5KZCUlIm01BwEBnhyTjHeZuYZ66yQpRfT5OYWQaNhxDPmivJBgV76doUoKjJEElkrbrHFyukz13N9ZC39jXFycsDQN9oJnCbCw/0tCgeqVffGlavMnH137Ap069oYABAS4mu2Pd8NhXVXsVbICw72wei3O+OXXw8CABo3DhVEh5ijTp1qnFuNl5fCaowKADRpXAMb1n1otU1J6NK5EebM3QQAiI1NRp5ehFG3TjW0e6kuDh6YxbX19HRBRkYeUp5mCaIVVCo1Jr3/C65ei+d+q6hXLxjbtp9FRgYTKeIsd0R+PnM+mXNNAUyLva1a1kKLFhFW++/oKEOjhqFA2S3ALTbmIlPMnR98GjQIwTeL3ipWgdnDwwVJSZl49IgRzViLjvL2doWPjytSU3M4MZ81kRJLvz7N0a9v82IXvIlno2ePKGzddkawLcCKK0S3ro2x/Z9z2P/vFU4kZs0BCmDOkVYtg9DWjCDDEq1b1cYlvVgy0oIjlpOTA2ZOfx1zvtzEbbMa0aL/flRQoOTEihXt4GEvbFQeAPj5ulm9bnt5Me/LvftMrJylKDaW8HCD4HDKh/2epZsEUeUQSUUIfdOyAM0SGo0GV65eQeNGjSGR2C/aFEnL9rNOJhMKP0UikWAb+1nLCtJzc3PRt29fsw4cgYGBKCwshEgkQkyM0O0kPJwRw8rlptfgjz/+GCNHjoRCoYC/vz99vhOVErsdPBISEhARYfpHglarhUqlKpVOEQRBlCZ8ZwoSeAih8SAIgiAIgiAqEnZlujkHDwDw9mbEHGlpucjQFzasrezmf72N1UeS8AsLfCIjAyGRiJGVlY+UlCwuxiMkxNtse9aKnHXOyOEcCswXZppGMz8afvzJ74h7yPTl2LGbgjbXrsUz+3CTo0YNU1eE06djuFiMU6disIVX0Lp2PR6FeqcMtVrDuQN4eSnQo0cU165tm9qoo48NYGNa2HgWhcKJW72/c9cF/LrmEIqKVNi//zLnbAKAex0nSwIPX6aw/zQlC1qtlnOScColgUfNmgFo2SISACPwMDh4WBF4eLEOHukAmCKRuR9nOdeJ5EyDo4wFwRFgEI6wzh3s/+aiQtgiNfveZOlXXzs7O5p1CJHLHbhzITdXZThOK8W/+nqhEovCxdFq8WzC+J6cSwQA1K9nOQ6ottFqaNYG39xcBQxjefz4Laz6+V8AtqM23hrREW+P6oQGDUIw+f0+VtsC4OYyYF3sVdZIpRL07tUUAOOO89+ZOwCARo3CTNoazo9swfZz5+/jytWHgr/La9b05+b1+g0noNVqOcGUpWgRfrF3/94Z+PabkTaFL5UJuZOwkNOnd1PUrl160QnV9Y4A7DjbEp4Zz3tbES1E+dOgQQgmTujF3ffwcEa4hesSwJyXTk4yFBQouVg2jzJwwWA/pwAgIiLAYruAQA/BfWvXMv73I9bZx91KlFVlxJf3PcyaEAcAPD2EY1HNhsCjRfNIDHujHebOGWI1+oUgnkdEIhHEMnGJ/kGMEj+3sokdoqOjcePGDYSFhSEiIkLwz8XFBd7e3ujatSuWLFmCvLw82zsEE98SERGBgICASne8BMFi97f9evXq4fhx00zJv//+G1FRUWaeQRAEUbHwfywhOYMQgb6DxB4EQRAEQRDlyoIFCyASiTB58mRuW2FhIcaPHw9vb28oFAoMHDgQycnJFdfJMoYtqFtyTPDWx6ukp+cYIlqsCDzCzERH+FoQeMhkUs62/f6DZCQnM+4Tfn4eZtvX0xfCb99OAAAuXsWSu0Knlw1WwtM+W4uff/kXm/4+DQAYNrQ995hYLEJ0VDiCqwuFJXn5RYh/lCrYduLELe62SqXBnTuM+CNX7zwBMCuBWzSPQP36wQgJ8cHYd7sjNJRxXGD3l5dncE6JalKD++Hy4MFr3H4ePDDMO1uOHH5654YniRmc2wcAOJdiRAsroEhNzeHFf1guvBo7t1gqtrGuEzk5BUhNZcQaLhYER4AhiiU1LQcFBUpuLM3NM9ZZQalUo7BQiUy90MNaYZE9zmMnHiFRH3ljLYpm/lfDBPcVVsaE5Z3RneHoKIObm1wwF42JMLMCXSQSoXlz8+4QAXqBBx9LDjosUqkE74zugp9WjEWtSNtF/do8gUe1atYLf2UNe/24ey8RZ88ybjwvvVTXpJ2v3uHm1zWHBNtv3Ig3aRvg78EJqU6djkFBoYr7TcOS04pMJsUfv0/CH79NsuiGVJnhC8FGvvUyPps2sFSLKQMGtBTctzVGfNGUTCYpEyEA8ey8NrAVhgxqi7p1q2HapwMtChABQCIRI7yGv2BbWbyvNcP9MW5sd3z4QV+r1+2a4cLPo7Aw865IAHONZGOGWAcoVvxaVeALIFu3qmW1rbHrk7nPIT4SiRjvjesh+M5FEMSLxfjx45Geno433ngD586dw/3797Fv3z6MGjUKGg0TA7hs2TKo1Wo0a9YMGzduxK1btxATE4M///wTt2/fLpGTCUFUNHZHtMycORNvvfUWEhISoNVqsWXLFsTExOD333/Hzp07y6KPBEEQzwaJGCzDF7/Q0BAEQRAEQZQb586dw8qVKwUZwwDwwQcfYNeuXdi0aRPc3d0xYcIEDBgwACdPnqygnpYt+XnWI1q89WKO1NQczprc2krX0W93wtp1x4T7MOOswBIe7o/Y2BTcvPmIc2Lw52XF82FjKZ4kpkOt1nCRKP4BHmbbN2tWEx3a18PRYzfx8OFT/LqaKe726hmN98Z1R2RkIP777w46d26I+vWDcfKUMPY2JTkTjxOY1boikQg6nY4TE7DEPUxBo0ahnNODs7MjpFLmB8pVK8eZjAErSlEp1QAARwcpPDxc8MaQlwSxHQCQpBcXAHwHD+FKexamKC1DYaEK27ef5frs6Gi+fUlgnVvS0rK547Vmax8QIFzJa7wqn8XFxQkKhRNycwsRE/MEgHUHD9aRIi0th4vUcXKSmS2+O8sdIJVKoFZrkJmZjyy9c4o1e302huPOnQxum7Xj9PFxQ0TNAM7O3lbsAABERYVjx/ZpACy75wBAk8ZhGPtuN6jVGvz8CxOj0qJ5hMVz0N+MwMPa+VcS6vCcHcy9XnnSqGEoAODIESY+yMFBilqRpsXIkGBGCHL7dgLUag13jt66lSBo5+gog4eHCya/3xuffb4O+flFnMuRWGz9fAqv4V9lV7TwI1M8PEo/eqJmTWEx3dfPvOiPpVfPaKxecxgqlQYTxvcs1esYUXpIpRLGxUOEYgmCatcO4iK7gLIReIhEIrw5rL3N/hhfdy05jbGEhflx4tKBA1rZdEaqbATrr4EA0L1bE6tt+S5tzs6OGPBqSyutCYIggKCgIJw8eRJTp05Ft27dUFRUhNDQUPTo0YNzNKtZsyYuXbqEefPmYdq0aXj8+DEcHR1Rr149TJkyBe+9914FHwVB2I/dAo9XXnkFO3bswJw5c+Di4oKZM2ciOjoaO3bsQNeuXcuijwRBEKUGiRiECLQvVfXXIIIgCIIgiCpGbm4uhg0bhlWrVuHLL7/ktmdlZeGXX37BunXr0KlTJwDA6tWrUbduXfz3339o1apVRXW5zGAFC5YK6l764vDtmASo1MwKLGsRLU5ODhg8uC02bjQIYqzltzeNromDB6/hn3/OQafTQSqVmKweZQnUCzkyMvKQ8CQdWi3T3ttCf0QiEebPexM7d57HvAVbADD27dM/fw0A0K1rY3Tr2phr36JFBNb8dpi7n5SUiQS9HfvLHevj0OHr3GNyuQMKCpSIi3sKADYFD+wxZeoFBioVI/CQyphC84TxPXHt+kMuMoZ9fZaCAhX3uuZwdJShZ48obN12FufP3wfAuLKU5ir8AP3433+QzBW9rQkfFAonuLrKubGxJPAAgHr1gnH27F3s2XuRe64l2PmXnp6LxKQMrm/mjlUkEsHd3RlpaTnIys7nHDzcrRQWU1KyTLbZiojo0SMKS5buAQA0bVrTalsWa8fIIhKJMGJ4RwBA9eo+OHnyFsaN7WHXPks7RoVf2PT1tV4ULWvq1w+Gq8IJOXoHnfAa/px4g8//jemKdeuPQ6fT4WlqNgL14qMHsUJ3JvacYa9ZebmF3Fx3di7d86kywXfwkJbBClo2IofFkqsT97ivO5YuHgOVSo2oqPBS7w9ROohEIuigK/Z5Mfbd7ti67Sx339y5Wp68P7E3fli8C61b1bJ5DD17ROH27QQ0ahSK9yf1Lqcelh7NmoZj+uevoWGDEJtiFk/eZ0Z0VA2LzkUEQVQtRo4ciZEjR5psX7NmjeD+kSNHTNrExcWZbDOOnY+MjMSWLVus9iEwMBCLFy/G4sWLrbYz93rm6Nixo0k/CKI8sVvgAQDt2rXDgQMHSrUjCxYswLRp0/D+++/j+++/B8BY03700UfYsGEDioqK0L17dyxbtgz+/gZLtfj4eIwbNw6HDx+GQqHAW2+9hfnz50MqLdGhEQTxHCKIaKEPXYIgCIIgCKKCGT9+PHr37o0uXboIBB4XLlyASqVCly5duG116tRBSEgITp8+bVbgUVRUhKIig6tDdjbjKKBSqaBSqUzaVxbYvuXlM4VRB0eJ2f6GBHvBy1OB9Ixc3Nc7FAQEeFg9NldekdnLUwG5XGqxfdu2tSD5RoxUvXtHvXrVodFoODtfPk5OUk5Yce7cXQCAn5+bxfYs7drXge/PbsjKzscbb7S12Jf69arjq7lvYOWqA4iPT8WcLzchSy8IaN++nkDg0ahRKM6cuYtHj55CpVJxzhyuCiez+2ejTNLTc6FSqVBQwMwZmdQw7p9/NgDTpq2DWqPBo0dpeJKYzj2Wr3+fZDLz7xMABAYyRev4R4zoRGGhLyWFFXhcvPgAAFC9ujecnWVWX8PZ2YETeISF+Vps2/nlBjh79i7nElOtmpfFtu7uzFj+s+McAgOZPgUGeFps7+YqR1paDtJSs5CWlq3fZnls3N2dufnIIpdbP87XBrZEQkIaDh2+jh7dG5fJuf9yx3p4uWM9ALC6/w4d6uHChQeoW6caMjLzEB5uedxLyhczXseZs3fRp3d0hV/nmjatiSNHGQePyMgAs/0RiQA/P3ekpGRh/oIt+GbRCOTmFpqIeZo0CYNKpYKTI/ObZk5uIbKzGVGWXO5g9Vh1Oh2zgqOYbgb2tmdfW6VSlfr+JbwAca1Oa/M9tbfvIpHwdyCdTguVSmt1/7UiAwCR9ble0v7Y076s39fK1N7efduLk5MUnp4uyMjIQ4P6wTbfW7Vazf1fFsf6av/maN4iHL4+bjb70qd3NPz93NC4cZjN+WtvX0rS95Lsu0vnBhCJRDaPVSwGxozujAsXH2D48Palfj2oyudfWV6Hy7rv7HPsObftaV/ZjrUsUKmYyDatVgut1vo1wBZUHyGI54NKoYIoqTWtRqNB7969ERAQgFOnTiExMREjRoyATCbDvHnzKuJQCIKohPC/s9D3FyFC8UsFdoQgCIIgCOIFYcOGDbh48SLOnTtn8lhSUhIcHBzg4eEh2O7v74+kpCSz+5s/fz5mz55tsn3//v1wdi59q/vSRKfTIVe/8v3MmZO4ecO8O0S3rtWx4S8mvkQkAtJS72L37vsW95uY+JS77eIiwu7du632IyTUFbGxTKHV00Nrtb2LiwQFBcC33zERtTKpxub+AeCNIREQiURIfHILiU9uWW1bvZoj4uPBiTsAICP9PsRiEbRanf51GdHCg9jH2L17N27eYpw+lMo8s/2JjWOOLz4+Ebt378adO+kAgNzcbEH7Qa/XwMP4LGzYmIaHDxO5xx49YqJL7ty5hd27U832+6HeTeTJE8bVQqdTFmtsiktmZqHgfs1wZ+zZs8fqc0KC5UhOzoK3txzHjh2y2K6oSC24r9OlWux77IN07vbKn5jFT0pllsX2YjETb7N//3FkZjHCmvT0ZIvt27bxQUFBHhwcJYiLy4JCIcPx44chFlsvKtSKFCEyogGuXj2Dq1etNi1TWjZXoFl0Q0ilYgA+OHTo3zJ5ncaNHPHvv/vLZN/24OPDzB2RCPDxLrL4vrJijvPn72Pnzl1ISWHObxdnGbp1DcP1G6moX9cBu3fvRmEhs0+lUo2Dh5jIKa22dM+nkvLvv2XzfrLcuHEDMulT2w3txM/XGSlP8+Hv51wpxpGoGPr0DsP580lo18672POgtBe5PgtHjlj+7vM84eUFdO3ihwf3r+DB/SsV3Z1KR1lfh4nKiVQqRUBAAHJzc6FUKp9pX9aE6QRBVB3sFnh4enpatJ10cnJCREQERo4ciVGjRhVrf89iTbt//37cvHkT//77L/z9/dGkSRPMnTsXU6dOxaxZs+DgYP7HIYIgXmRIxcBHIOoghQdBEARBEESZ8ujRI7z//vs4cOAAnJxsxyMUh2nTpuHDDz/k7mdnZyM4OBjdunWDm1vFxhdYQ6VSYd++/dxX0F49u1uM29Bqtbh1ew2uXH2IMe90Qb9+7azuu0OHQhw99h1ycwsxYEA79OplPb9dLA7C/IVbAQAjhvdBRESAxbYOjsGY++Xf3P3WrRuiV69uVvdvL05O13Hq9CbBtgED+uHosTRcvhIHAHhjSHecOPkLdFoZevXqBaXqLIB7CA2rjl69epns8969JPy16TY0Ggl69eoFR6dr2Lr9Lvz8fU3aP4x/ig0bb0NZBO6x3XsTAWShZctm6Nihvtl+e3ndwa49D7j71asHmO1LSVFrNFj92w0olUzxu/8rnRAdbT0+oVt3DY4fv43wcD+EhvhabXvxUj6OHb8FqVSCd0YPgoRvK8AjJCQeW7ffFWxr0yYavXqZj1CKeyjB/Qen4OYeAIm0CEAimjSpj1692lvsy4gRKuzfvx/Vg+uhenUfePNiSYjKR/duT6DR6lC3TjWLbQ4fTcPZs/cAAC1bttM7El1HUDUfTJ78pqCtRqPFD4svAAAePGBWbCsUrlbPp7JekaxUKvHvv/+iS5cuxfq91d79L1x0BgDQqFFD9OrVtFT3rdPp0Lp1e6z57Qg6tK9n87pRmVbtV6a+lFf7sl4h/87o4rVTqVQ4cOAAunbtCplMZrP9i/K+Vqa+lHX7ytQXoGyvw1XV1aI8qCzHWlhYiEePHkGhUDzz35HP6gBCEETlwG6Bx8yZM/HVV1+hZ8+eaNGiBQDg7Nmz2Lt3L8aPH4/Y2FiMGzcOarUaY8aMsbm/Z7GmPX36NBo2bCiIbOnevTvGjRuHGzduICoqyuxrVlULW+L5g2+tRpQcW+OnUhse12hs232+SGjUhpVqKrWa5iTxwkFznqhs0JwkCMtUxPlR2q914cIFpKSkIDo6mtum0Whw7NgxLFmyBPv27YNSqURmZqbAxSM5ORkBAeZFB46OjnB0NM0nl8lkxSpIVCR8NzkHBwer/V309Vu4desxmjWrafPHVQ8PGX74/m0kJKSjc6eGNtt36tQQq387DG8vV9SpU91q+549onHu3H3s3XcJANCgfkipj3OLFpEICvTEk0TGCaNtmzqQyWSY9cVgLFy0DT17RMHPzxMAkJ6RC6lUioIC5nu9m6uz2f546QUC2TkFkMlkYH/XdXQwnSf++n3n5hVCqwUcHWWcw4XCRW7xeL29hYIidzfzfSkpMpkMTk4yTuBRr57tsZfJZOjWtUmx9v/xlP5QKOTo17c5nJxMzykWb293k23R0TUt9qVGDeY3q0eP0iCTSfT7cLPZd5FIhMaNalT685gA6tcPtdnms08Hov+AhQCAzMx8ZOcwjjRengqT91gmA5zlDsgvUOKCPpIoN7fQ6lwol0Ikiv/ZYu/+X+7YAJcux6Jzp0Y291+Svvv6eODjKf0rRZG2MhVdK1v7ykhZzPnKNu4vSt/tbV+Z+sK1R9Wck1Wd8hCf2UKj0UAkEkEsFkMsNi9CLi4U0UIQzwd2CzxOnDiBL7/8EmPHjhVsX7lyJfbv34/NmzejUaNG+PHHH20KPJ7VmjYpKUkg7mAfZx+zRFW2sCWeTyqT3V9VxJat4tOnBmvjhw/jyY6Tx81bhmvlmTNnkZIcA4DmJPHiQXOeqGzQnCQIy5Tn+ZGfn2+7kR107twZ165dE2wbNWoU6tSpg6lTpyI4OBgymQwHDx7EwIEDAQAxMTGIj49H69atS7UvlQH+b4siG/ETCoUTmjePKPa+69apjrp1qherrYuLE/7a8BHEYlGxfrxt1aoWJ/Bo0SKy2H0qLp6eCvy18SNotTrExaXAz48RFPj5ueObRW8BAAoKGGtmpVKN/PwiqPXCbVZAYIxczqz0VKs1UKs1nEhC5mDaXqFwgoODFEqlGmlpOQgK8kJhIfN6TnLLK0bd3V0E993cSv/3lWFD22P5in3o3LmhRceXkuLt7Yrpn79ms11wsDe6dWuC/fsvc9sirbi+BAUygpnklEwoFEyfjceKeP7x83NH/XrBuHHzEZ4+zUZGRh4A5nw3h8JVjvwCgwX7mHe6mG33vDB3zhCoVRrIHCpFmjhB2I1IJIIOFV8EJojy4EWb7y/KcRIEUbWw+1vzvn37sHDhQpPtnTt3xkcffQSAsfD89NNPre6nLKxpi0tVtbAlnj/stfsjDLD2nQBs2v7ev5+EX9cwP6SHhASXqk1wVScv/zQOHnoIAGjRogWaNA6hOUm8UNB1mKhs0JwkCMtUxPnBuj2WFq6urmjQoIFgm4uLC7y9vbnto0ePxocffggvLy+4ublh4sSJaN26NVq1Mh//UJXhrx4TV/APp1KpeWGEOTp3aoj09Bw0bxYBhaJsfs9gVucBERGBZh+Xyx24Ff7p6bnQapmxtBQr4uRkEGYUFqqgUjECDweZ6c9CIpEI3t6uSEzM4Ak8VPr9WD73vLwUzA/++ve1tAUYADBkcFuEhvqiZRkIa4qLSCTCrJmDUC3IE6vXHManU1+1upLSx5f5nenp02wolUzmuYc7LS56EfHVz4WH8anIymIFHubFPgqFE1JSsgAA4eH+6Ne3efl0soIQiUSQmbkeEURVgorARFWlJIINmu8EQRAVi93fnL28vLBjxw588MEHgu07duyAl5cXACAvLw+urtbzQUvDmjYgIABnz54V7Dc5OZl7zBJV2cKWeD6hufds2Bo7qdRwqROJxDTWPPg/REokEm5saE4SLxo054nKBs1JgrBMeZ4fFXEefvfddxCLxRg4cCCKiorQvXt3LFu2rNz7UR7wHTzENhw8KhMSiRhDBr9U0d2Aq5sz8guUyMkpgFrNZK5YGkeZTAKxWAStVoeCQiVUeqGBpYKqp4cLEhMzkJnFuNiwjh8OVlbXy+UOCK7ujfhHqQCAkBCfkh2YFWQyKdq3q1fq+y0Jb4/qjL59miMgwMNqO19fxoElL68IeXlMXHCg3tWDeLFo2rQmjhy9gd27L6BevWAAlh083HkOOE2jw8ulfwRBEMSLCwk2CIIgqhZ2CzxmzJiBcePG4fDhw2jRogUA4Ny5c9i9ezdWrFgBgLHM7dChg9X9lIY1bevWrfHVV18hJSUFfn5+3Gu7ubmhXr3K8Qc/QRAVD/+HYx0oY46PYGwof48gCIIgCKLcOXLkiOC+k5MTli5diqVLl1ZMh8oR/vdP+lHZfhQKJyQnA7l5hdBq9QIPCw4eIpEITk4OyM8vQlGhCkqV5YgWAHD3YFwFsjIZlwG1Wi8IkVr/Gal+/WBO4PFyxwZW21Z1JBKxTXEHALg4O8LZ2RH5+Yy4QyaTwMfH+qIo4vmkY4f6+Obbf/DocRr8/T0AWHbw8PAwbO/4nJ9LhGVetBgEgiAIgiAIonjYLfAYM2YM6tWrhyVLlmDLli0AgNq1a+Po0aNo06YNAHBRLdYoDWvabt26oV69ehg+fDi+/vprJCUlYfr06Rg/frxZhw6CIF5MBKIO0jBYhsaGIAiCIAiCKEeqqoNHZUHhwvzukZtbCI2GEXhILQg8AMZhIz+/CAUFSqsRLYAhQoR18GAFHlKp5f0DwPDhHeDkJEO/vs3h7Ey/y7D4+7kjNi4FAOPeYS3ShXh+8fBw4WKM2PlgycFD4WqIf6pWzatc+keUD/aKNuyNTKhMgpDK1p8XhZLMMXqfTKFxJAiCICozdgk8VCoV3n33XcyYMQPr168vqz5x2LKmlUgk2LlzJ8aNG4fWrVvDxcUFb731FubMmVPmfSMIoupALhWWofEgCIIgCIIgKgr+d1ESeNiPswtTAM7PK4JWy4ylNeGAoyMTOVRYqITSRkSLu7vewSOLcfBQqdj25h0/WMJC/fDxlP7FPIIXhzeGvIR5C5hFUvXqBldwb4iKQiIRw93dGZmZeUhNzQZg2cFDqzFcH70siECIqktZFoArW3G5svXnRcHecS8rEUNVFz2U1TiybUsi9qqqY0kQBEGULnYJPGQyGTZv3owZM2aUSWdKYk0bGhqK3bt3l0l/CIKoGuh0xf8yTHoGI0j8QhAEQRAEQVQQ/K+f9GO1/XAOHnmF0GgYAYbEhoMHABQWqgwOHhYiWjw89A4emfnQ6XQGhxCpdYEHYZ4+fZoBIhGuX4/He+O6V3R3iArEy0uBTH30ESCMYuGjVKq429bO68pKVS/q2kNVPtYXrVhfVals416WoocXjbIWe1WmeUOULfb8rq/T6QAd87+99YDSnk8jR45EZmYmtm3bVqr7razExcWhRo0auHTpEpo0aVJurysSibB161b079+/3F6TKHvs/guhf//+L8zJRhBE1cDmFxHe44K4FkIwHjQyBEEQBEEQRHnCfk0XiUT043MJUCgYBw8mooV18LA8jk5OjINHQaEhoqU4Dh5sPAtAAo9noU/vpvh06qtwc3Ou6K4QFYixG4enBYFHSIhveXSn2JRk5XhVva6LRCJA9GIcK0DF+qrCizLuJTn/KtP+KxsvynG+6Gg1Wui0Orv+QQe7n6PT6qDVi76LA/s3nqV/s2bNwg8//IA1a9aU3eDwSEpKwvvvv4+IiAg4OTnB398fbdu2xfLly5Gfn8+1CwsL4/ro4uKC6OhobNq0yeQxc/9GjhxZLsdSlly8eBFdu3aFh4cHvL298X//93/Izc0VtDl48CDatGkDV1dXBAQEYOrUqVCr1RXU4xcXuxw8ACAyMhJz5szByZMn0bRpU7i4CP8QmTRpUql1jiAIojjYoe8gFYMVyMGDIAiCIAiCKE/Y758Uz1IyXPQRLXl5RdBqmR9brTp4OOkdPApsR7S46sUjOTkFXDwL054EHgTxLPj6unG3neUOcNKfl8YMfaMdsrPz0bF9/fLqWoVS2VaaV5Z+EMSLSFmff3R+E88TFfF7fnHd1BMTE7nbGzduxMyZMxETE8NtUygUUCjKJ4buwYMHaNu2LTw8PDBv3jw0bNgQjo6OuHbtGn766SdUq1YN/fr149rPmTMHY8aMQXZ2Nr755hsMHjwY1apVw7lz5zjnxFOnTmHgwIGIiYmBmxvz/U4ul5fL8ZQVT548QZcuXTB48GAsWbIE2dnZmDx5MkaOHIm///4bAHDlyhX06tULn3/+OX7//XckJCRg7Nix0Gg0+N///lfBR/BiYbeDxy+//AIPDw9cuHABP/30E7777jvu3/fff18GXSQIghBi/MXFbgsygoOGgyAIgiAIgqgotPovo/RDe8kQOnjYFniwDh6FRbYjWhwdmbZFSjXUasNKPXLwIIhnIzIykLsdGuZnsZ1c7oDJ7/dBkyY1yqNblQJasU+8KNCcLD1oLAnCgC3HDP4/9ryx6zl2EhAQwP1zd3eHSCQSbFMoFBg5cqQgNqRjx46YOHEiJk+eDE9PT/j7+2PVqlXIy8vDqFGj4OrqioiICOzZs0fwWtevX0fPnj2hUCjg7++P4cOHIzU1lXv8vffeg1Qqxfnz5zFo0CDUrVsX4eHheOWVV7Br1y707dtXsD/WmaJWrVpYunQp5HI5duzYAV9fX67/Xl5eAAA/Pz/BcdqLtb7/9NNPCAoK4sT8LK+88grefvtt7v727dsRHR0NJycnhIeHY/bs2SVy1Ni5cydkMhmWLl2K2rVro3nz5lixYgU2b96Me/fuAWDEOo0aNcLMmTMRERGBDh064Ouvv8bSpUuRk5Nj92sSJcdugUdsbKzFfw8ePCiLPhIEQVhFq7WuUhDEkJCgQYBA8EJjQxAEQRAEQZQn+u+f5OBRMuRyZuV/QUER9zeRWGxN4MG2V0JpI6LF0ZHZrlSqBT8OWhOQEARhm9q1grjb7V6qW2H9eNGKoi/KcRJVB5qTpQeNJUE8X/z222/w8fHB2bNnMXHiRIwbNw6vv/462rRpg4sXL6Jbt24YPnw4F6uSmZmJTp06ISoqCufPn8fevXuRnJyMQYMGAQDS0tKwf/9+jB8/3iSRgsXadUQqlUImk0GpVJb6sdrq++uvv460tDQcPnyYe056ejr27t2LYcOGAQCOHz+OESNG4P3338fNmzexcuVKrFmzBl999ZXd/SkqKoKDg4Pgb0rWleTEiRNcGycnJ8Hz5HI5CgsLceHCBbtfkyg59Jc5QRBVDnsdPEjUYRmBvoMGiiAIgiAIgihH2K+f9MN8yZDp3TTUai3UxXDwYAUhhYUqzpXDkiOHgwPj4KHkOXjIZBJ6rwjiGWnYMBRduzRCt66NMej1NhXaFzqfCYIgCIKobDRu3BjTp09HZGQkpk2bBicnJ/j4+GDMmDGIjIzEzJkzkZaWhqtXrwIAlixZgqioKMybNw916tRBVFQUfv31Vxw+fBh37tzBvXv3oNPpULt2bcHr+Pj4cDExU6dONdsXpVKJ+fPnIysrC506dSr1Y7XVd09PT/Ts2RPr1q3jnvP333/Dx8cHL7/8MgBg9uzZ+PTTT/HWW28hPDwcXbt2xdy5c7Fy5Uq7+9OpUyckJSVh0aJFUCqVyMjIwKeffgrAELnTvXt3nDp1CuvXr4dGo0FCQgLmzJkjaEOUD+aXatjg8ePH+OeffxAfH2+iWvr2229LpWMEQRCWMNYh2BQm8B7XkU2FRWhkCIIgCIIgiPKE/R4vIQePEiHRizM0Gi20eoGHNTcURzaipVDJRbpIpeYFIQ4OBgcPlUqjb0vxLATxrEilEsyeNaSiu0EQBEEQBFEpadSoEXdbIpHA29sbDRs25Lb5+/sDAFJSUgAAV65cweHDh6FQKEz2df/+fS5KxZizZ89Cq9Vi2LBhKCoqEjw2depUTJ8+HYWFhVAoFFiwYAF69+79zMdmjK2+16pVC8OGDcOYMWOwbNkyODo6Yu3atRgyZAjnsnHlyhWcPHlS4Nih0WhQWFiI/Px8ODs7F7s/9evXx2+//YYPP/wQ06ZNg0QiwaRJk+Dv78+9Xrdu3bBo0SKMHTsWw4cPh6OjI2bMmIHjx49bdZMkSh+7BR4HDx5Ev379EB4ejtu3b6NBgwaIi4uDTqdDdHR0WfSRIAhCgLGgw1ZEi/C5pd2bqg4/voYGhyAIgiAIgig/OAcPEniUCKnerUOt1hgEG9YcPJwMDh4aG44fBoGHCip9RAsJPAiCIAiCIAiCKEtkMpngvkgkEmxjHci0WubvmdzcXPTt2xcLFy402VdgYCAKCwshEokQExMjeCw8PByAIYKEz8cff4yRI0dCoVDA39+/zFzPbPUdAPr27QudToddu3ahefPmOH78OL777jvBPmbPno0BAwaY7MM4SqU4DB06FEOHDkVycjJcXFwgEonw7bffcuMFAB9++CE++OADJCYmwtPTE3FxcZg2bZqgDVH22C3wmDZtGqZMmYLZs2fD1dUVmzdvhp+fH4YNG4YePXqURR8JgiCsYkuWINAtkIhBAA0HQRAEQRAEUVGwAmMxxQSUCNbBQ63RcD9wiq0IPJz0Dh4FBUpoNIwrh6VVVg6OzM9FRUVqaHgRLQRBEBWNSCSCDjqKmCEIgiAIAtHR0di8eTPCwsIglZqWvF1cXNC1a1csWbIEEydOhIuLi819+vj4ICIioiy6K8BW3wFGpDFgwACsXbsW9+7dQ+3atQVmC9HR0YiJiSn1/rJOKb/++iucnJzQtWtXweMikQhBQUEAgPXr1yM4OJhMIMoZu/1Sbt26hREjRgAApFIpCgoKoFAoMGfOHLMqI4IgiLJGZ8PBg+9MQS4VQoRjU4EdIQiCIAiCIF44tOTg8Uywbh0ajRYa/WBacuQAACfOwUMJrUYn2IcxjhTRQhBEJYbEHQRBEAQhRKfTFfsfdPa1r8w1lfHjxyM9PR1vvPEGzp07h/v372Pfvn0YNWoUJ2pftmwZ1Go1mjVrho0bN+LWrVuIiYnBn3/+idu3b0MiqZi/c4rTdwAYNmwYdu3ahV9//RXDhg0T7GPmzJn4/fffMXv2bNy4cQO3bt3Chg0bMH369BL1acmSJbh48SLu3LmDpUuXYsKECZg/fz48PDy4NosWLcK1a9dw48YNzJ07FwsWLMCPP/5YYeP4omK3wMPFxQVKpRIAYxFz//597rHU1NTS6xlBEIQFKKKljKDBIQiCIAiCIMoRzsGDBB4lgnPwUGu5yBVrucdyvYNHcSJaHB2ZthqNFkVFKgAk8CAIgiAIgiCIykRFCB4rm8gyKCgIJ0+ehEajQbdu3dCwYUNMnjwZHh4e3N9GNWvWxKVLl9ClSxdMmzYNjRs3RrNmzbB48WJMmTIFc+fOrbR9B4BOnTrBy8sLMTExGDp0qGAf3bt3x86dO7F//340b94crVq1wnfffYfQ0NAS9ens2bPo2rUrGjZsiJ9++gkrV67EpEmTBG327NmDdu3aoVmzZti1axe2b9+O/v37l+j1iJJT7IiWOXPm4KOPPkKrVq1w4sQJ1K1bF7169cJHH32Ea9euYcuWLWjVqlVZ9pUgCMICNhw8BLdJxMBH4OBBY0MQBEEQBEGUJ6yDRyX7kbCqIJUyP/qp1RpobQg2AMBJzjh4FBQqbQo8HBwMPxfl5RcJXo8gCIIgCIIgiMqBWCK2y2FDpBMBIsZF0V4nxZL+3TZy5EiMHDnSZPuaNWsE948cOWLSJi4uzmSb8fFGRkZiy5YtVvsQGBiIxYsXY/HixVbbmXs9c3Ts2NFuZ5OwsLAS9V0sFuPJkycWH+/evTu6d+9u8XF7+vn777/bbHPo0KFi748oO4ot8Jg9ezbGjh2Lb7/9Frm5udy23NxcbNy4EZGRkfj222/LrKMEQRAsxp9HNh08+E8gDQNBEARBEARBVAoMDh4kHCgJEn5ECyvYsPIjrRPn4GEQeIgtCDxkMp7AI6/QZBtBEJULkUgEHXQkmCMIgiCIFxB7Pv9FIr3AQySi7w0EUYUp9q8o7A8v4eHhaNSoEQAmrmXFihW4evUqNm/eXGLLF4IgCHswiWixoUAU6DsohkSAwMGDhoYgCIIgCIIoR9jvnxTRUjKkXESLBlqtdcEGADg5MQ4exYlokUjE3P7z8hgHDxlFtBBEpYaKNARBEARBEBXHvHnzoFAozP7r2bNnRXev0vePsA+7ll/QHwoEQVRK7FAmkIjBMiR+IQiCIAiCIMoTTuBBvzWUCDYyRaPW2hRsAICcFXgUKCHTR7BYa+/gIIVarUG+XuAhoYgWgiAIgiAIgiAIs4wdOxaDBg0y+5hcLi/n3phS2ftH2IddAo9atWrZFHmkp6c/U4cIgiDsxVZECwkXLCMYGhomgiAIgiAIohxhv6fbm/1MMEgkBgcPjdZ23A0b0VJQqOKcPmwJPPLzi5BfoHfwkJGDB0EQBEEQBEEQhDm8vLzg5eVV0d2wSGXvH2Efdgk8Zs+eDXd397LqC0EQRLEwFmzYEnDoeMoFHakYBJD4hSAIgiAIgqgo2KhFcvAoGZyDh8bg4CG1FtEiZxw8igqVnNhDYkUQ4ujItMnNLQQAyKR2/YREEARBEARBEARBEEQZYNdf50OGDIGfn19Z9YUgCKJYGGsSbGkUyKWieJDYgyAIgiAIgihP2K+f5OBRMqSsg4dGC61e4CG2Mpb89sWJdFEonJCcDPy16RTzfIpoIQiCIAiCIAiCIIgKp9h/nduKZiEIgqgobEW08CERgxD+eNDIEARBEARBEOWK/gsoOXiUDFZwoVZruL+JJFZEGKyYQ8MThFgTeAx9o53gvqub8zP1lyAIgiAIgiAIgiCIZ6fYAg8qihIEUVmwN6KFb+FBlzLL0HWeIAiCIAiCKE/Y75/k4FEyJHpHDo1GC7VGAwAQW4lckZiJdLEm8OjZIwoBAR7c/SaNw56xxwRB2INIJAJEtOiOIAiCIAiCIAghxY5o0Wq1ZdkPgiCIYmMsQ7AlTOA/rCOfCgGCsaGhIQiCIAiCIMoR9vunxIoogbCMWQcPK2IZ9jGBIERivXBcKzIISUmZAICGDUKetcsEQdgJiTsIgiAIgiAIgjCGfkUhCKLqYaRE0NqhTCARgxBy7SAIgiAIgiAqCnLweDakUsbBQ63mO3JILLbnP6ZW23bwAAAHB8O6IL6bB0EQBEEQBEEQxLMwcuRI9O/fv6K7QRSTuLg4iEQiXL58GQBw5MgRiEQiZGZmlvlrd+zYEZMnTy7z1+FT2ecnCTwIgqjy6LQ2HDxANhWWEAwHjQ1BEARBEARRjrBf48W0Qr1EsOIMjUYLrV7gIbbm4METcyiVagCA1IogBACKlCrutouLU4n7ShAEQRAEQRDEi4NIJLL6b9asWfjhhx+wZs2aculPUlIS3n//fURERMDJyQn+/v5o27Ytli9fjvz8fK5dWFgY10cXFxdER0dj06ZNJo+Z+zdy5MhyOZbKQps2bZCYmAh3d/eK7kqFk5OTg8mTJyM0NBRyuRxt2rTBuXPnBG2Sk5MxcuRIBAUFwdnZGT169MDdu3dL/JrFjmghCIKoLBjrEGzpEiiGpHjQ0BAEQRAEQRDlCTl4PBusg4dOp4NKzUSuSKSW1/GYE3jYcvAoKlI/azcJgiAIgiAIgnjBSExM5G5v3LgRM2fORExMDLdNoVBAoVCUS18ePHiAtm3bwsPDA/PmzUPDhg3h6OiIa9eu4aeffkK1atXQr18/rv2cOXMwZswYZGdn45tvvsHgwYNRrVo1nDt3Dhp91OWpU6cwcOBAxMTEwM3NDQAgl8vL5XgqCw4ODggICKjoblQK3nnnHVy/fh1//PEHgoKC8Oeff6JLly64efMmqlWrBp1Oh/79+0Mmk2H79u1wc3PDt99+y7VxcXGx+zXJwYMgiCqHcayIVqe19QTDTZIxGMEbG1K/EARBEARBEOWIjhw8ngmp1FSwIRZb/pnHnLuHNccPAHipbR0AgI+PW0m6SBAEQRAEQRBEZSEuDrrPZiL889nQfTYTiIsrs5cKCAjg/rm7u0MkEgm2KRQKkwiMjh07YuLEiZg8eTI8PT3h7++PVatWIS8vD6NGjYKrqysiIiKwZ88ewWtdv34dPXv2hEKhgL+/P4YPH47U1FTu8ffeew9SqRTnz5/HoEGDULduXYSHh+OVV17Brl270LdvX8H+XF1dERAQgFq1amHp0qWQy+XYsWMHfH19uf57eXkBAPz8/ATHaYupU6eiVq1acHZ2Rnh4OGbMmAGVyuCaOGvWLDRp0gR//PEHwsLC4O7ujiFDhiAnJ4drU1RUhEmTJsHPzw9OTk546aWXBG4RbHTKvn37EBUVBblcjk6dOiElJQV79uxB3bp14ebmhqFDhwrcS/bu3YuXXnoJHh4e8Pb2Rp8+fXD//n2Lx2IuouXEiRNo164d5HI5goODMWnSJOTl5XGPL1u2DJGRkZyLymuvvWZzzMxRVFSEKVOmoFq1anBxcUHLli1x5MgRAEB2djbkcrnJPNm6dStcXV25Y3706BEGDRoEDw8PeHl54ZVXXkFcCc6JgoICbN68GV9//TXat2+PiIgIzJo1CxEREVi+fDkA4O7du/jvv/+wfPlyNG/eHLVr18by5ctRUFCA9evXl2gMSOBBEESVx1ZEC2EZ0nQQhHXOX7iP6TPWIT09x3ZjgiAIgiDsgxw8ngnzkSvFc/Cwto1P/1daYNbMQfhl1bgS9pIgCIIgCIIgiIpG+9ufKHxzHFKk9ZHVbzpSpPVR+OY4aH/7s6K7JuC3336Dj48Pzp49i4kTJ2LcuHF4/fXX0aZNG1y8eBHdunXD8OHDuSJ9ZmYmOnXqhKioKJw/fx579+5FcnIyBg0aBABIS0vD/v37MX78eIsuCSIrCw6kUilkMhmUSmWpHJ+rqyvWrFmDmzdv4ocffsCqVavw3XffCdrcv38f27Ztw86dO7Fz504cPXoUCxYs4B7/5JNPsHnzZvz222+4ePEiIiIi0L17d6Snpwv2M2vWLCxZsgSnTp3ixAzff/891q1bh127dmH//v1YvHgx1z4vLw8ffvghzp8/j4MHD0IsFuPVV1+FVmtjgTWv3z169MDAgQNx9epVbNy4ESdOnMCECRMAAOfPn8ekSZMwZ84cxMTEYO/evWjfvn2JxnHChAk4ffo0NmzYgKtXr+L111/nIk/c3NzQp08frFu3TvCctWvXon///nB2doZKpUL37t3h6uqK48eP4+TJk1AoFOjRo4fd77VarYZGo4GTkzDSVC6X48SJEwAYQQoAQRuxWAxHR0eujb2QwIMgiCrHs0S0aDWkaODDd+0gsQdBmDLp/V9w6PB1fPvdjoruCkEQBEE8d5CDx7PBRrQAfAcPy2NZEoGHVCpBt25N4OtLucoEQRAEQRAEUSWJi4Ny1Vokvv0/FEVGQefsiqLIKCS+/T8oV60tUycPe2ncuDGmT5+OyMhITJs2DU5OTvDx8cGYMWMQGRmJmTNnIi0tDVevXgUALFmyBFFRUZg3bx7q1KmDqKgo/Prrrzh8+DDu3LmDe/fuQafToXbt2oLX8fHx4WJipk6darYvSqUS8+fPR1ZWFjp16lQqxzd9+nS0adMGYWFh6Nu3L6ZMmYK//vpL0Ear1WLNmjVo0KAB2rVrh+HDh+PgwYMAGBHG8uXLsWjRIvTs2RP16tXDqlWrIJfL8csvvwj28+WXX6Jt27aIiorC6NGjcfToUSxfvhxRUVFo164dXnvtNRw+fJhrP3DgQAwYMAARERFo0qQJfv31V1y7dg03b94s1rHNnz8fw4YNw+TJkxEZGYk2bdrgxx9/xO+//47CwkLEx8fDxcUFffr0QWhoKKKiojBp0iS7xzA+Ph6rV6/Gpk2b0K5dO9SsWRNTpkzBSy+9hNWrVwMAhg0bhm3btnFCoOzsbOzatQvDhg0DwMQGabVa/Pzzz2jYsCHq1q2L1atXIz4+nnMCKS6urq5o3bo15s6diydPnkCj0eDPP//E6dOnuaiiOnXqICQkBNOmTUNGRgaUSiUWLlyIx48fC+KM7IEEHgRBVEGESgRb0SL8WBZNMdWGLySk8CAIiyQmZVZ0FwiCIAjiuYP9Hi+2ITIgzMMXZ2g0zN851sZSJBKZCEAkEomF1gRBEARBEARBPA9oVv6C9A7DAeM4R7EY6R3ehGblL+afWAE0atSIuy2RSODt7Y2GDRty2/z9/QEAKSkpAIArV67g8OHDnFhDoVCgTh0mZtJavMjZs2dx+fJl1K9fn3NXYJk6dSoUCgWcnZ2xcOFCLFiwAL179y6V49u4cSPatm3LxdRMnz4d8fHxgjZhYWFwdXXl7gcGBnLHe//+fahUKrRt25Z7XCaToUWLFrh165ZgP/yx9Pf352Jh+NvY/QJMjMgbb7yB8PBwuLm5ISwsDABM+meJK1euYM2aNYL3onv37tBqtYiNjUXXrl0RGhqK8PBwDB8+HGvXrhVExBSXa9euQaPRoFatWoLXOnr0KPee9+rVCzKZDP/88w8AYPPmzXBzc0OXLl24vt67dw+urq7c8728vFBYWGh13ljijz/+gE6nQ7Vq1eDo6Igff/wRb7zxBhehKpPJsGXLFty5cwdeXl5wdnbG4cOH0bNnT6sxq9aQluhZBEEQlQitHREt7A+fBANf00HyDoIgCIIgCKI80ZKDxzMhEokgkYgFf+PYcuSQSMTQajW8+zT2BEEQBEEQBPE8o7t3H8qX+5p9TFUtArrDu8q5R5aRyWSC+yKRSLCNjVNhY0Nyc3PRt29fLFy40GRfgYGBKCwshEgkQkxMjOAxVuggl8tNnvfxxx9j5MiRUCgU8Pf3txrhYg+nT5/GsGHDMHv2bHTv3h3u7u7YsGEDvvnmG0E7c2NQ3JgUS/sxHkdz++3bty9CQ0OxatUqBAUFQavVokGDBsWOLMnNzcW7775r1pUjJCQEDg4OuHjxIo4cOYL9+/dj5syZmDVrFs6dOwcPD49iH1dubi4kEgkuXLhgsmBBoVAAABwcHPDaa69h3bp1GDJkCNatW4fBgwdDKpVy+2jatCnWrl1rsn9fX99i94WlZs2aOHr0KPLy8pCdnY3AwEAMHjxYIKhp2rQpLl++jKysLCiVSvj6+qJly5Zo1qyZ3a8HkMCDIIgqiElEiw1pAr89CTyM4Ue0kMSDIAiCIAiCKD/Y758iK7EihHVMBB42Vv9IJGKoVBrBfYIgCIIgCIIgnl9EETXhkHAPRZFRJo/JEu5BFFGzAnpVOkRHR2Pz5s0ICwvjivd8XFxc0LVrVyxZsgQTJ06Ei4uLzX36+PggIiKi1Pt66tQphIaG4vPPP+e2PXz40K591KxZEw4ODjh58iRCQ0MBACqVCufOncPkyZNL3Le0tDTExMRg1apVaNeuHQDgxIkTdu0jOjoaN2/etDp2UqkUXbp0QZcuXfDFF1/Aw8MDhw4dwoABA4r9OlFRUdBoNEhJSeH6ao5hw4aha9euuHHjBg4dOoQvv/xS0NeNGzfCz88Pbm5uxX5tW7i4uMDFxQUZGRnYt28fvv76a5M27u5M/Ondu3dx/vx5zJ07t0SvRX/JEwRR5TAWIuhsOHjw25dE6fg8UxJNh0qlLv2OEEQlhwRQBEEQBFH66MjB45mRSoUrlmQy65ErxoIOEngQBEEQBEEQxPON5N3R8Dr6B2BcG9Fq4XX0T0jeHV0xHSsFxo8fj/T0dLzxxhs4d+4c7t+/j3379mHUqFHQaBhh+7Jly6BWq9GsWTNs3LgRt27dQkxMDP7880/cvn273GIrIyMjER8fjw0bNuD+/fv48ccfsXXrVrv24eLignHjxuHjjz/G3r17cfPmTYwZMwb5+fkYPbrk76Onpye8vb3x008/4d69ezh06BA+/PBDu/YxdepUnDp1ChMmTMDly5dx9+5dbN++HRMmTAAA7Ny5Ez/++CMuX76Mhw8f4vfff4dWq0Xt2rXtep1atWph2LBhGDFiBLZs2YLY2FicPXsW8+fPx65dBjea9u3bIyAgAMOGDUONGjXQsmVL7rFhw4bBx8cHr7zyCo4fP47Y2FgcOXIEkyZNwuPHj+3qDwDs27cPe/fuRWxsLA4cOICXX34ZderUwahRo7g2mzZtwpEjR/DgwQNs374dXbt2Rf/+/dGtWze7Xw8ggQdBEFUQ40Kr1lbhle/goSaBhyWKU7+OjU1Gpy6zsGTpnrLvEEEQBEEQBPFcw37/JAePkuPgIPwxUu7saLW9cb4vCTwIgiAIgiAI4jknLAwOY4Yh8NcpcLx7EeL8bDjevYjAX6fAYcwwICysontYYoKCgnDy5EloNBp069YNDRs2xOTJk+Hh4cH97VOzZk1cunQJXbp0wbRp09C4cWM0a9YMixcvxpQpU0rsoGAv/fr1wwcffIAJEyagSZMmOHXqFGbMmGH3fhYsWICBAwdi+PDhiI6Oxr1797Bv3z54enqWuG9isRgbNmzAhQsX0KBBA3zwwQdYtGiRXfto1KgRjh49ijt37qBdu3aIiorCzJkzERQUBADw8PDAli1b0KlTJ9StWxcrVqzA+vXrUb9+fbv7u3r1aowYMQIfffQRateujf79++PcuXMICQnh2ohEIrzxxhu4cuUKhg0bJni+s7Mzjh07hpCQEAwYMAB169bF6NGjUVhYWCJHj6ysLIwfPx516tTBiBEj8NJLL2Hfvn2CWJzExEQMHz4cderUwaRJkzB8+HCsX7/e7tfijk9HS1KRnZ0Nd3d3ZGVllaoVC0HYQqVSYffu3ejVq5dJ/hVhmYyMXPTuO4+7//Oq91CvbnWL7f/77w4+nLIGAFC7VhBW/zqhrLtYZVi8ZDfWb2Cstj77dAC6d29sdU5+9vlaHDl6AwBw6sQ8k8cJoqph6zrc5qXPAAB16lTDrz+PL+/uES8g9N2AICxTEedHVfxbsar0WaVS4X//+x07dt1Hs6Y18eMPVXfVWEUy8PVFSEzM4O4fP/qlVdFGrz5fITMzDwDzg9fJ41+VeR8J+6HvA0Rlg+Yk8aJBc56obNCcfLEpLCxEbGwsatSoAScnp5LvKC4O6uWrkH35KtyaNIJ03JgqLe4giOcda+e+aSARQRBEJcdYlWZPRAs/n5oQuna88Go/grAGnSAEQRAEUeqQg8ez48xz7HB0lNl05JDyHhfTuBMEQRAEQRDEi0NYGETz5uDBpUuIiooCyimahCCI0oe8OAmCqHrYGdHCf1RjnDP3gqOzs2pNpk8EQRAEQRBEacF+t5SI6aeJkuLs7MDdlssdrLRkEPMEHhTPQhAEQRAEQRAEUTrMmzcPCoXC7L+ePXtWdPcqLfHx8RbHTaFQID4+nvpnBnLwIAii6mOH6IAcPCxD4g2CIAiCIAiiPNGSg8czI5c78m7bFnjwRR1SEngQBEEQBEEQBEGUCmPHjsWgQYPMPiaXy8u5N1WHoKAgXL582erjFUll7R8JPAiCqHIY6xC0ZRDRcup0DBwdpWgaXdPu/lUp+BEtpO8gCIuQAIogCIIgSh/281UsIoFHSbHXwUNCDh4EQRAEQRAEQRCljpeXF7y8vCq6G1UOqVSKiIiIiu6GRSpr/0jgQRBElcO40GorooUvYiiOwCMjIxdTPv4NAHDi2JcQP8eW0fyxpAI2QRAEQRAEUZ7oyMHjmXG208FDzBtrMQk8CIIgCIIgCKLKQL/fE8SLhbVzvkL/mp8/fz6aN28OV1dX+Pn5oX///oiJiRG0KSwsxPjx4+Ht7Q2FQoGBAwciOTlZ0CY+Ph69e/eGs7Mz/Pz88PHHH0OtVpfnoRAEUY6YXNJsfLGx18EjKyvfrvZVGXu/FNJ3SIIgCIIgCKLUIAePZ0bg4OFEDh4EQRAEQRAE8bwhk8kAAPn5+TZaEgTxPMGe8+w1gE+FOngcPXoU48ePR/PmzaFWq/HZZ5+hW7duuHnzJlxcXAAAH3zwAXbt2oVNmzbB3d0dEyZMwIABA3Dy5EkAgEajQe/evREQEIBTp04hMTERI0aMgEwmw7x58yry8AiCKCdsOnjw29qIczFGpdJAJntBzI5IvUEQFqGzgyAIgigN5s+fjy1btuD27duQy+Vo06YNFi5ciNq1a3NtCgsL8dFHH2HDhg0oKipC9+7dsWzZMvj7+1dgz8sG9uunmBw8Soyc7+DhbFvgIZVIDLelEistCYIgCIIgCIKoDEgkEnh4eCAlJQUA4OzsDFEJRfIajQYA83enREJ/DxBEZUSn0yE/Px8pKSnw8PAwe65WaNVy7969gvtr1qyBn58fLly4gPbt2yMrKwu//PIL1q1bh06dOgEAVq9ejbp16+K///5Dq1atsH//fty8eRP//vsv/P390aRJE8ydOxdTp07FrFmz4OBg+wcOgiCqGEZCBJ0N0Qb/UfYLjFV4343U6ufcwcPCbYIgCIIgCKL0KY1FDs8TrJtcSX+cJABnZ57Aw04HDyk5eBAEQRAEQRBElSAgIAAAOJFHSdFqtUhNTUVcXNxzHU1PEM8DHh4e3LlvTKValp6VlQUA8PLyAgBcuHABKpUKXbp04drUqVMHISEhOH36NFq1aoXTp0+jYcOGgtVM3bt3x7hx43Djxg1ERUWZvE5RURGKioq4+9nZ2QAAlUoFlUpVJsdGEOZg5xvNO/tQGo2XSq22OoZqlSGySa3W2hxvFa99YWEh5PJKdaksVfiCFzVvHC2NkVZnELzQvCUqA0qlGouX7kGrFpFo27aO3c/nz/k/1x6Dg4MUr7/W2qTQpNPpaM4T5QJ9NyAIy1TE+VHar1UaixyeJ1idtlhCAo+S4u7uzN328XGz2Z7vliKV0Yo9giAIgiAIgqgKiEQiBAYGws/P75n+Ts3NzUXv3r1x/vx5KBSKUuwhQRCliUwms+qyU2mqllqtFpMnT0bbtm3RoEEDAEBSUhIcHBzg4eEhaOvv74+kpCSujbFVLXufbWPM/PnzMXv2bJPt+/fvh7Ozs5lnEETZcuDAgYruQpUiO6dIcP/Mf2eQkhxjsf2du+ncbWWRErt377a6/5QUQ5bdvv0H4ObqaKV11eZh3EPu9vXrN+AgSwVgeU4mJyVzt22NI0GUB+cvJOHgoYf455/zmPpxS5vtE57kYMfO++j0cghqRXpx27dv341VP19k2jx+gNq1vQTPy8rKojlPlCv03YAgLFOe50dZZxyXZJHD8wTr4CEmB48SUzPc8HtIWJifzfYSKc/BgyJaCIIgCIIgCKJKIZFInilaRalU4uHDh3BwcICTk1Mp9owgiPKk0gg8xo8fj+vXr+PEiRNl/lrTpk3Dhx9+yN3Pzs5GcHAwunXrBjc32yteCKK0UKlUOHDgALp27QqZTFbR3akypKRkYfmKy9z9Zs2bo2WLSIvtXU/cwtZtdwEAIrEEvXr1srr/mJgnWP3bNQBAh/YdERjo+eydrqTcubsLFy8xoo369euja9coq3Py5Kks3L2XAQA2x5EgyoP4R/sBMEKl4szJfv0XIiurCFu33cXRw7O563Cr1m2xeCkj8HBzD0KvXsyq6YWLzjDb3NxozhPlAn03IAjLVMT5wbo9lgUlXeRgTFV1qFSpVILkxcrc18pMSIg3d9vX19XmOPLFNBKJmMa9kkKOXkRlg+Yk8aJBc56obNCcJEoLmkME8XxQKQQeEyZMwM6dO3Hs2DFUr16d2x4QEAClUonMzEzBD1zJyclc5kxAQADOnj0r2F9ycjL3mDkcHR3h6Gi6Il8mk9EP6USFQHPPPiQS4aVLIpZYHT+J2KBo1Wi0NsdaB5Hg9vP83vBjKCRiMXesluakiGfp/DyPC1F1kEoN14PizMmiIsMfMfz2YpFhNWuRUm2yL5Ho+b4WEJUP+m5AEJYpz/OjLF+ntBY5VGWHSlbg8eTJE3LKegaaNPZDZlYREh7fQFLiLattMzIzuNu5udk07pUccvQiKhs0J4kXDZrzRGWD5iTxrJS1SyVBEOVDhQo8dDodJk6ciK1bt+LIkSOoUaOG4PGmTZtCJpPh4MGDGDhwIAAgJiYG8fHxaN26NQCgdevW+Oqrr5CSkgI/P8aO9MCBA3Bzc0O9evXK94AIgqgQtPylf2bQwfC4RqO1uT+1WmP29vMIf+isjyJBVE5Edlq6W2qvVhuuDYUFymfqE0EQBEHY4lkWORhTVR0qVSoVzpz5DQAQHFydnLKeAXuG7uDhVMTHMy4vPj7eNO6VFHL0IiobNCeJFw2a80Rlg+YkUVqUpUslQRDlR4UKPMaPH49169Zh+/btcHV15Sxn3d3dIZfL4e7ujtGjR+PDDz+El5cX3NzcMHHiRLRu3ZrLHu7WrRvq1auH4cOH4+uvv0ZSUhKmT5+O8ePHm3XpIAii6qMzkiLotMWXJuh0Omi1WojFYottNAKBh21BSNXGMHY6G0IZgqiMiMX2CTwswRd/FZDAgyAIgigjSmORgzFV2aGS/fYpkVh35CNKD5nU4G4ok0lp3Cs5VeE8Jl4saE4SLxo054nKBs1J4lmh+UMQzwcVKvBYvnw5AKBjx46C7atXr8bIkSMBAN999x3EYjEGDhyIoqIidO/eHcuWLePaSiQS7Ny5E+PGjUPr1q3h4uKCt956C3PmzCmvwyAIorzRWb1r2tyogUZjXeDBF3WoVS+OgwdBVEXsFXhYcvDgCzzyzQk86FwhCIIgSoHSWOTwPKHVC7VLS7BJ2EYiMfwdxBd7EARBEARBEARBEARRNajwiBZbODk5YenSpVi6dKnFNqGhoZQbSxAlYP/+yzh56jY+mzYQjo5VR7lpfO3Q2nDwsLf9ixTRwsdesYctJxSCKA/sF3iY367WGM51imghCIIgyorSWOTwPMF+/ySBR/nB//4uJYEHQRAEQRAEQRAEQVQ5KlTgQRBExTJrzl8AgDp1quONIS9VcG9Kjk5nI0bFSLig1mhhLcCJX+hVPecCD774xd6IFltOKARRHvAdOYojOhIXw8GDjWih2CKCIAiitCmtRQ7PC+x4kMCj/OA7eEil9F2eIAiCIAiCIAiCIKoa9Nc8QRBIS8up6C7YhfHv4vbWYDVq64IQQUTLcy/wKHl7fkGcICoKvqBDbePcBmDRwoP/3IJCRuDBd/shsQdBEARBlD7sx6ulCDWi9BEIPGTk4EEQBEEQBEEQBEEQVQ0SeBAEAY22ahXqdUaWHDo7I1o0GuuiDb6ow5YYpKpjPJb2QAIPojLALwipVOpitDe/3ZyDh7aKXRsJgiAIoqrBfv7KHMhctLxw4I01RbQQBEEQBEEQBEEQRNWDBB4EQRS7UD99xjpM++zPSreSXWujP8aPam0IQvgr+VVq2wXj54WSRLQQREXDF2wolbbPV0sW8EKBRxEA29cKgiAIgiCeDbWG+ax1kJHAo7xwdOQJPCQk8CAIgiAIgiAIgiCIqgb9ikIQRLFcKvLyi3Do8HUAwNOn2fDzcy/rblnGJKKldIUJap4LQLEiH6oyvKErzjDy3VLUJPAgKgF8EYZKJXTnOXfuHu7dT8KQwW15Th8WBB48556CAhUA4RwnqQdBEARBlD7s3yEyigopNxwdHbjbNO4EQRAEQRAEQRAEUfUggQdBEFDbiCwBABVvZXxxVsmXJcaCDvsjWmwIPHiPGxeMrb1GVcwO54+NrXEEhGNHDh5EZYAfqaQ0imh5/4NfAQABAR54uWMDAMVz8CgqUkGj0UJLc5wgCIIgyhSN/vunA0W0lBsCBw8pmboSBEEQBEEQBEEQRFWD/ponCKJYhXq+qCNfH19QURg7TdiMaDF62KbAg1cw5q/qt0RqajYGvLYIq34+YLNtZYM/NkVKlc32AoHH8+5uQlQJ+HNSbUGQ9fn0dcjOzgcAi0IsY7eewiIVRbQQBEEQRBnDfp+USslJorxwdJRxtyU07gRBEARBEARBEARR5SCBB0G8oGi1hmKmVmO7iFlUZCj+5+UWlkmfSorNaBGjBrYcS/iFXnUxBB6b/j6N5ORMrF5z2GbbykxhYXEEHjzxC7kbEJUAaw4efM6euwfAUkCL6XwuyC8SzHf+NZMgCIIgiNJBoyEHj/KGL/CQkcCDIAiCIAiCIAiCIKocJPAgiBcUfvSIphgRLXwHj7y8inXwMBZdGEew2MKWoIW/f1UxBB5VMJmFgy92KShU2m7PF78UY94QRFnDn5MqpWFOGl8X0tJymBsWTlgTgUeBkrONB0BuHgRBEARRBrCfvzIZCTzKC2FECwk8CIIgCIIgCIIgCKKqQQIPgnhBEcSQFMOJge/gkZtXsQ4e2Tn5gvu2Cq/Gj5o73kOHrmH3nosAhGNjHNtgDicnB+42XwhTFcjPN4h1CgtsCzwoooWobPAFanwHD+NzMT7+KQDLgixjwVJBoRJa/nwnxxqCIAiCKHXUrIOHjIQG5QXfwUMqpZ+ECIIgCIIgCIIgCKKqQctkiDLjcUIaAgM8IZHQj0aVEX7xszgihqJK5OCRlVUg3GDDwcN4Jb+xK4dKpcb0mesBAM2bRwgdAVS2XSr4K98yMnLh7+9h8zmVBb7AozgOHhoqeBOVDIGrDO985YvSACA5JQsAIOYpPKzN54J8JVwVcu6+luY7QRAEQZQ67OerjCJayg2hwIPGnSAIgiAIgiAIgiCqGlR5J8qEQ4evYdDgb/DDjzsruiuEBfguFcaFUHPw2+RVsINHVlae4L7WpsBDeF9ltLI/M8vgCDJ4yDe4efMRd1+ttu3IUcgTRqRn5NpsX5nIzzf0vbDA9jwggQdR2VBbcPAoLBTO55wcvTCMJ/AQuvUYOXgUKAVzvKq58xAEQRBEVYB18KCIlvKDHDwIgiAIgiAIgiAIompDf80TZcKKlfsBAH9v/q+Ce0JYQqk0FDMLihHNwS9u5uZWtMDDvogWlUpt9X5WpkEwUliowvkL97n7RUW2i7r88cvIyLPSsvJhr4OHiid4IYEHURngz8MinqjDWLjGCjz4ES3865qJg0ehEhqtYVtGZh60WprzBEEQBFGasJ+/MopoKTccHQ1iGr4TIUEQBEEQBEEQBEEQVQMSeBBlgru7M3fbOB6DqBzwC/W5xXDk4BdCC4shBChLjAUetoQGxpEyRcYOHpmWRRkFBbbjaPjjUdHiF2s8epSKGTPXI+5hCgDgwYNkPHz4lHu8sBhCn9wcw/EZOx4QREXAj2jhC5aMBR7Z2UbRThCKvUwEHgVKQSyLRqMVuP0QBEEQBPHsaPQOHg4k8Cg3HB0MDh6urnIrLQmCIAiCIAiCIAiCqIyQwIOwSGGhEm+/sxTffr/DarunT7Mw5v+WY+fO89w2Z2dH3uPZZdZHouSoeA4eecUQJfCLpQXFiPIoS4wFGbbmmHGkjLGDR4YVgUd+MUQP/Db5FRxfY41F/9uOg4euYeiw7zF23Eq8OeIHwePFcfDIzjEUyYvTniDKGg1PaJTHE3iwES0SCfNVJzu7ADqdTiDk4EcU8YUiAPD1om0moo/UVPo8IwiCIIjSRKNmHTwooqW84Lt21K1TrQJ7QhAEQRAEQRAEQRBESSCBB2GRY8du4vbtBPz992nodDqkpeWYjfJYt/4Ebtx8hHkLtnAigGzeKue09Jxy6/OLjlqtwWefr8UPi3fZbKviFUVziiHwEDh4FFVsYT8ujnGgqKP/QTLhSZrV9vyiLwAoi+xw8Mi3faz8Nrl5th0/Kgq+OOPqtYcmjxcWmgp39u67hI8/+R2ZmXkoKlIJ5oE5RwRzkNMHUZbwRRj8z6giJTOffXzcADDzsLBQJZiPObmGOWws5lAq1SZzPC2VPs8IgiAIojTR6KMWZQ4k8Cgv+K4dISE+FdgTgiAIgiAIgiAIgiBKAgk8CIvk8IrBt24nYODri/D59HUm7R4/NhTXjxy9AQBISzMUwTIzLBfPidLl3Ll7OHL0BjZuPAmt1npsiYpXqM/PL7IZc8J38CisQAcPtVqDe/eTAAAvd2wAAHjyJMPqc/KNRBdKlVBwkKov2nbsUN/kueZETdbaGLuFlBalEXUUEmz9B1zjY42NTcacuZtw8tRtTHz/F5NonJxs23EV/x68ii7dZuPQoWv2d5ggigFfsJFvxsHD08OFW6manZ0vcOrgRw5pNMx+mjeP4LaxcUYsaem5pdhzoirxx59HsWz53oruBkEQxHOHRk0RLeVNSIgPZs8ajJUrxkIspp+ECIIgCIIgCIIgCKKqQX/NExZJSs7kbq9dewxKpRr/nbmDXCO3h3v3ErnbBw9eRV5+EVL5Ag8r7ghE6cIKHwDb7goqI1eFPBvOE3znhoqI5mBf//6DZCiVajjLHdBCX4hNTLQu8DCes0qlUKDCzuGmTWuiXbu6gscKCmw7cvBFHWUh8Fi3/jh69v4S9x8k2W5shUIb71tOToFAGLTip/3c7fv3k7D/wBVBe74jiCVmfrEBSqUa02eut7O3BFE8+IINvsCDFaU5Okrh7u4MgPk80thw8AgN8YGHB9P+/n3hOZdTjDlvTGmIsyoKe/te1u0riqIiFZav2Ic/1x7D4wTrjlEEQRCEfaj1n7/k4FG+dO3SGA0bhFR0NwiCIAiCIAiCIAiCKAEk8CAs8jA+lbt9/Ua82dtFRSokp2Rx9+PjU/HgQbJgPxlGAo/CQiVu3X4sKOwcOXodb41cjIfxT0ut/y8i/GJkRob1leZqIxeLXF6hU6fT4fbtBIEgQOjgUb4Cj507z6NTly+wc9cFnDlzBwAQHR3ORS9kZ+cLHEiuX4/Hl/P+xtp1x5CXX2QS0aIyOvaYO08AALVrBeGTKf3h7+fOPZZv5lhVKrXANYC/qt+WUKYkLFm6B9nZBfju+53PtB+2+O3i4shtCwn2wfA3O0AkEkGj0SI2znAOGjujGLtwFDeihSDKEosRLfooJgdHGby8FACYc5Xv4MM/X9n9SKQSeHm5AgAuX44TvJaxwGPVzwcw9M3vkG4hikyn0wG6qiNk0Gq1nMjL3r6XdfuKJJUXzVMW1719+y9j+Yp9FGdlhkuXY/HFrA0CZziCIJ4vNBp9RIuUHDwIgiAIgiAIgiAIgiCKAy2TIcyi0+lw/bpByPH0aTZ3OyEhnbv95Em64HlPEjNw8OBVwTa+g0dRkQrv/N9yPHiQjD69m2LqJ69CIhHjs8+Z6Jd58zdj5fKxNvuXnZ2P7OwCVK/ubd+BPefExhniBGw5pxTxHDkAIJfnPPHvwav4YtZG+Pi44fc1E+Hh4SKI5ygsKt+Ilp9+/hdarQ7z5m/mtrVpXZtbla/V6pCdnQ9PTwXu30/C/41dwbW7eu0h56rh5iZHdnYBV/gFgNTUbKSn50IsFiEiIgBOTg5Yv+4D3Lz5GBMm/WwSW5KenoNhw39AwwYh+HrhCGi1WqSmGs6P3DKKaAFMnUjshRWrzPpiMPLyiiCViNGpU0MATPwAALw9ehmmftwSgGEODXq9Df7adAq3YxIE+8u2EdHCL1aKxaJn6jtBWMJSRAsrWnNxcYRELMZdJOLevURBe75gg3UCkUrE8PZ2xYMHyYJrqnF7AFi95jAAYO2645g4oReePs3CnC834dVXWnLnlr3odDqIRGVzvljbd3pGLoYO+w4tW0Ri9qwhZfL6VRX+NT69DIQGs+f8BQDw9HTBkMEvlfr+KxtqtQZisahYsQDjJ6wCAEilEsyY/nqZnh9VHXvHpizb0/tE2IOGHDwIgiAIgiAIgiAIgiDsghw8niN+/uVfvDHsO6TbcG6wxb8Hr6Jtu88tCgT4Yo/HerFHZEQgpFIJ1GoN/tp0CgAQHu4PAIL+nPh/9u46OoqrDQP4sxsX4pAgIbgEdy8WgnvxtnhbihQo0EIp9mGFFigULe7uHtyCu2uwCIS4rn5/bHYym2wMkuwmeX7ncM5m9u7sndk7s8Ped973wiMhw8fBQzewZ+8Vnbuv34iyhqRm2PCV6N7zb7x9m772sbEynQwUuZFSqcLr14nZF0JDUw/wSJrhI0IUwPHw0TsAmkmtDp1mIyYmHh9EmVqyM4OHQqHUG0jQtGklmJqaCEEe2u199Fg3COHmzZdCYISjo+Yufrk8McDj6TNNeRaPovlhaWkOALC0NEe+fFYAkCzA4/Tp+wgPj8GFi48RHh6DsHDd7CHpzeDx/n2ITjmU9EhaWiajtJPf1tYW8G5RJcUJ6JgYOdRqtXAO6Ny5DiqKUjhXqVIMABCeRoCHOAOINkNIWuLiZDpBZBllTNkAjK28hTHtm8wkLhkVE5P4WBuU5mBvAydnzbF/995rndeKg6aEDB4mUp0sPkDi95k4wEOctSMgUDPWd++5ghs3XmLipC149Phdhrflc7JapNbW58QddOg0G6fP3E9z3VcuP0VERCx8TtzVCWgg4KNof4gzNmWEdr+r1WqcPfdQWKd4TJ1MkiUJ0IzLO3f8dM6f4eExGcp4duvWS51ruuw6F8THy7F4yREhSxagub5o234muvX4O82yYWIvXwZl+vFhiPZZxZgy7uSk7DxkeAqFEtqhYsEADyIiIiIiIiKidGGARy6yes0pvH79ERs3nvui9SxefER4XKGCO+rVLQNLSzN4li8CQPdO1vcJtejd3Z1RvXoJAIC5uSl+GtIKA/o1AwC8epV4B/Sdu34677V16wVc8n0i/B0bK9OZ9A4JjcKPQ5bjv5U+wrKIiBg8TyhFcuHi4zS3Jz5ejm+++wcDBi7O8IR6TvL2XTBkoqwcSUvjJJV0Au+jKAX9u7efhMcKhRJ37vjhgyiwJzYDkzJfKiQkSme7AOC3XzsLgR2OjjYAgNAwzaRbYMJEa7myhWFhYYbo6Hgh8KWgmyMA6Kzv4cO3AIDSZQrpvIeVtSbYIzZJeRfxHf1Llh7F0yf+Os+nVKpBbMV/PujW4y/h7v/UiCdIZLL0pe8PDo7AP4sO4fnzAJ3l2slva2sLfS8TfAyOQVR0nDCh6ObqgMWLBuHXcZ2xeNEg9P22CQAgMDBM53V37vhhzdpTQjCQeF8plap0BW7MnLUb3Xv+jQcP3qbZNiljmvwzpsm2z2mfk2iPeUA3g4c2MMzOzhrOCSVX7t3VDfAQB49pM3uYmpqgbZsawvL+/ZqicydNVhvxZPyLF4nlyG7ceIn4eLnO9116ju8vJf5cFQolZszchbHj1kMmU0AuV2DylG0IDo7A5CnbkpX/2Lf/Gvp8u0CYfI8Qbdu58w+zvO+fw1DjVxzYqj3Hp9YXmUyBfxYdwrHjtxPbJnxOPj53MH7CRoz4eRViYuJ1zqNPn/onC3pYveYkhgxdgWXLj2vePzQK3Xv8hV6952Pb9otp9uXatecYOnylkAkjO86TWmvXncamzefRf8C/QrDk8hXHERkZi4CAUDx/HqizfrlcgceP3wt/377zSlhXeu/s37f/Gub+tRcymSLHn1dz4/maKCnxNbmFhZkBe0JERERERERElHPwNplcQjxxk96sFvp8+hSJoITJ2UEDm6N/v2bCnffHj9/Gwxk7dTN4vNMEAhQp4oxBA73wMTgCDvY2sLIyF7JxvHwZBKVSBRMTKUIS7nzt3KkO9uy9Av+AUPz62wZhfTKZAkFB4ShYUDMRv2XLedy99xp3772Go6Mtvu5aD/dEpWOSBik8eeqPWbN3o2mTivju28aQSCR48sQfAQGaCUD/gFAUKZw7y7rcv687Ia7d5pQEB+sGIog/17fvNJ+dq6sDgoLCcPnKU531xcdlXzYUbaYRF+d82Lf3t2Qpvx0dbOGHj0IGD+1kWePGFWBvb40rV58B0JQI8SiWH5evPMX+A9cw5MeWAICr154DAGokBChp5bPVZPCIScj+ov3RWXzX9IGD13Hg4HUAQP78dvj4MQKBgWGppiaXyxVYu04z8btq9Ul8+01jmKcycSXOCJLeu50Hfb8UHz6EI8A/FLNnfSMsFzJ4WJkne80fv3+N/83YCQAIDo4Vsh9YWZkL296xQy0AiWPr7dtg4dhWqVT4ZcxaxMTK8OxZAGbO6IOXLwN13uP58wAULeqSYr/lcgVOJJR42rr9Av43tVea2xoSEon4eIVwzsgIYXIO6Usln9H29HkUCiXGT9gEiQSY/r/eaRwfcQgLSwzSCBaVz9COYXt7a5ibmQAAIhMydpiYSKFUqhAYFCa0j4jQBDhYW1ugSpVimPvnd3B0tIGnpzvOntMEPFy/8QJxcTJYWprj5avEAI/IyFhcv/5CJ1PBs2e6AVZZ7ejRWzh0+AYA4NTpe/As7y48p1Ao8fr1R5Qs4QZAc9z8OWcPAGDBPwexdPH3Ouf4M2ceCEEtxuJzjtfMOk79RMFqT5/66/RFJlNg0pStkEokGDe2ExwdbbF12wVs26YJvmjUsDysROfcXXsuAwBev/6I/gP+xXffNRGek8uVuHvvNapW8dD8rVCIygBpgnetrc2FcfzfyhPo0rkOTE1MhP1y795rnDpzH61aVkPZMoVw6rQmK8grvw8IDY2Cg4NNhrb9c8572n2vDeAAgBYtp2L4sDa4lvCdCwB+rz+iQgV3Yf1r150WtrdXz4bCcQdork/TEh4eI4xrd3cX9OjeQOd5pVKF6Og42Nlpy7upsGfvVbx/H4Ie3eujQJLMPZktoyVOMvv7JiIiFiamUtikEeSZXRQKJUxNTQzdDTIwcYbF1L7viYiIiIiIiIgoETN45BLiyfn0/AgOAPMXHMCsP3frZLXQrid/fjsM6N9c+FHZxESKAq6aH77fvU/M7qAt0VKksDNMTU1Q0M1RmMgoXNgJlpZmiI+XCwED2nIt1aoVx3cJWQCSEt/1f/NW4t2b8+YfwKPH73TKkLx4GaTz2vXrz+DpU38sX3EcR4/dBgA8e5Y44Sa+4zonUCiUOH78tt6yOzEx8di79wr8Xmv21/2EwBdbW0sAuvsR0ExsPH78HtHRmomh4E+az1qbAePjx8QSLEFBmsfdutYDAOzY6atz53psnDzNO0sVCiVm/7lHuIM5vZKuVxu44ehoq3eSQ1t6QRvso72b383NQWfiLL+LnTCpER4eg4uXHkOtVuNRQjma6tV0Azzs7KyEsazdH5r30Rxf4iwY9vbWmDvnO0gkEsTFyVMsbwQAAQFhOn/fu/9af8ME4aLSOSEhUcLnlxKVSiVk0BDfha9Wq4U7qPVl8Gjdujr69P4KABAamjhprm8y0NXVHubmppDLlfD3DxG2KyZh/b6XnyIqKg4Xk2TYuZ8kK8e7d59w5eozoWTOY1F5nbjYtIOIwsNj0Lf/v/jmu390SigYI7VazbuxU/DgwVtcvfZM+Pv8hUe4eOkxLlx8jCVLj+q0DQmNwrDh/+GXMWuxb/81nDv/SOf5oKAwTJi4CWfPPUR4QsCGvb01mjatqDPJPqC/JsPUpUtP0KHTn3jxIhT+CQEOhROCABs0KAdPT02QhF0+zXlVLldi2PCVUKlUePFCN4DpuM9tBIkCRoKCwhARGZv+kgZfSFwS5vSZ+8L3rpY44ET8/XDnjh+ePPXX+W6/dfuVzrlHoVBi3/5r2Lv3ipD1RKFQYtXqk5j15+5k2XxSktHtTJp1JL3Sk1lBLlfg8JGbwneouITKP4sOYcjQFdi1+zKCgsKE71dAkzlMfL7Ztfsyzp9/hLPnHmLK1O0ICYkUStUBEILWtMTfAW/ffcKMmbt0nhcHQCQtW7dp8zn8t/KE8HdMTDweP0k8b6rVakybvgPbtl1E/wH/wtf3CWJFAZm791xJcX+IxcfL8ejxu3RnPXvzJhgHD16HSqXS2ffiO/NVKjX+WXhI53UPHrzR+XvP3sT+bdl6Af7+IcKEb0BAKJ4lyUr19Jk/5szdi7XrTiMiIgbHfW4Lzy1bfhy3bydeQ4aGRqHfgH/Rqs10jJ+wES9eBOLPOXvx97z92LrtAsaMW68zXlQqFdZvOIsLF3TPMZ8ru7MoyeUKXLjwSMjk5ef3AV27zUG79jN1AqUNZd78/WjcdBLGjluv891PeY/2PGFuZsrgWSIiIiIiIiKidGKARw4VExMvTIoCgH9AYumD9/5pl0EIDY3Cjp2+OHDgus6kT1i4ZmLawT75pG65soVhYiJFQECoMIkVmDAhVrBQ8rvnTUykKFlSc7ew9j20GTycHG3x4w/eOH1yKurWKYPixQqgePECOm21/RS7fv2FTpmHl6IJNqVSBd/LieVe5s3fj+iYeDwWldBImlFAn4/BEejabS7mzd+fZtusdvLUPUyZth3t2s/E02e6pUAW/HMQc/7ah959FuD3iZtx9NgtAED7djUBaDKnaCkUSowavQYDBi1G955/48DB6/D1fQoAqJAwgfkq4W702ISMFQDQsWMtlCtXOFm/1Gq1cLd7Sk6cvIv9B65h6rTt6ZrQUCpVGDrsP3Tr/pfOZKG21IyDo/67jl0LOACAkHlG297J0RaVKhYV2rkVdER8fOIxc+bMA8TEyoQyJM4JgSJaEokEbm6adQeISkBoA6h++7UzpFIJTEyk+H18V5QpXQguLpoyEOI74Z88eY+Wrf+Hr7vNxT+LDgmTiVonTuhO/iX1QRR4A2iCJ1KTNLhEO0EaExMvfA42Nvrv3nV310xsh4bGCZO7+gI8pFIpyiSUtLl+4wUA4IXo2IqPl8O71TQ8fPQOUqkEv4xqDwA4ffqe0Ifg4Aj0+XYBRo1eg97fLMDZcw/hJwreunrtWbKgjbl/7UWHTrPxy5i1ePLkPQ4euo5PnyIRGyvDwYRMKob04UM4ps/YKWRoEft38RF81eQPDBm6AitXncD+A9fw19/70G/Av/A5cUfv+uLj5TqTzitXncD8BQfSDPIBgKioOAwb/h+mTN0mBOGIvXkTLAT8aP+eNHmrTlBOdkxE3r37Gj8MWYaRo9Zg2fJjePDgLWbOSpzw3rX7ss5+WLLkKG7eegXfy0/x55w9+N/0HQCAZk0rChPBZ848wPgJGxGhzeBhZw0np3z437ReKFumEH78oSVaelcV3iM8PAZnzr1FgH9CgIee7zNPT3dUqazJqvDw0Tvs2OkrfFd5J6zLJ+FYLlrUBYUSMsq0bjMdX/f4C9Gi0jG791zG3n1XAWgmtib8vglNm0/G9euJE/uf4+Ur3aCNe/d0g8cuX0k8d/j762Z46j/gX1y6lPj9qVSqdMbx2bMP8OecPZjz1z506/4Xjhy9hbXrTmPV6pM4cOA6fvxpuc5d2PrExMSjV5/5GPLT8nSVsjp77iFatZmOmbN2pWssfvwYjrXrTqdr3QAw+889mD5jJwYNXqoJDEyYfL98+Sm2bbuIO3f88Pe8/ejcdY4QEOPq6gClUoXVq08K67kqCsi4dv052nWYJVzrAMDmzeeF/isUSqF/gwY2F9rks7XED997J1ufdoxVqVIMAwcktndzc0D9+mUBaEoBadf/9Km/zjXSL2PX4bgoyHL79otpnj8UCiWG/LQCAwctwY6dvqm2BTTHz5ChyzFz9u5kASTa77t2bWvAwcE62Wv37b+GDRvPAtBcH4qz8WhN/P1rNKhfDgAwZco24VgKCYnE8BGrsHffVaz4zwftOszC/AUHhdfJZAqM+22DEBSyd99VISjr7LmH+LbvQiEDFwC8eBGoc/18+cozLFt+DON+24A7d/zS3A/GRKlUYejwlRj32wb8+NMKREfHYfOW84iOjkd8vByXLqVd3jCj7t17jeE/r8TevcmDiI4cuYmvu/8lZKEJCYnEnr1XoVarcfHSYwwYtFjIPkR5j/ba3NyC2TuIiIiIiIiIiNKLAR450MfgCHh5T0XjppOw6N/DUCiUOneERkbGCnfYpkQ8AXDjxkvhcYQopX1SNjaWKFdWM9nv66uZCNIGYDg52iZrDwClSxUEkHhnfmjCpIc2a4SFhRnm/d0PmzaORLu2msCEBw8T7/LXZm/o1LE2AM2kr/j54E+RwkT0u/efEBcnh5mZCQoVdER0dDx8fZ/gieju1pcv9WfwEN8lfPbsAwQEhGLnrsvJ7rz9UhERsRjy03J4tZiCs2cfpNlem10CAH4bv1GYkI2NlQkZSgDN3draO+A6d6oDMzMTBAWFCZMZZ84+ECbiQ0OjMWv2bmFCqFfPhpBIJLh56xUePnwrfKYWFmawtrbAX3O+E97H3t4aHh75AQC305jwEGf80JbySc3Zcw9w6/Yr+AeEYv2GM8JybX8cUxhj2pTqHxKybGgDT+zsrWFqaoLhw9qgRo0S+H1CV52AgTdvPyIqoY+mpiZ6635ry35ox01cnAxRCanx69UtgzWrhmHLplFo2LA8AKB4cVcAuvvm0JGbiIyMhX9AKLZtu4jfxm8EAOTLpykBs2//NfwyZm2ySbeLlx5j8PdLsXjxEZ3lf8/br5NtJSlxNh8gsbSA9jgxNzeFpWXyEi0AhPJFIaFxQqCIg55zAQA0/soTAHD69H0AwLu3ms+4UEFHnfPHwAHN0a5dTVhamiHoQ7iwL2/f8YNcrjnu3r8PwfgJGzFr9m7hdXK5EudEx8iTJ++xZ+9VBAdHwPfyU/QfuBiLlyRmd9iy9YLeicvHj9/rlNXJSiv+88HhIzex4j8fncnud+8/YcvWC1AqVbhzxw+r15zC7D/3YPeeK3j61B9Llx3TmcCOiYnHiJ9XoWnzyejW42/cuvUSBw5ex+o1p7Bjpy9WiiaXU3L4yE3cvPUKx33uYOIfW3Se8/V9gl595qN3n/m4fuMFlEoVxv++ESdO3sXYX9fj48fwDN9tntFgEG37S76PoVJpHq/fcBaDf1iK6Oh4IW2/UqnSBCqoNefpiwkTk8WLFRDaeHtXxfjxXYWALC1tBgvteKxfryzWrB6G775tjAIF7OHklHhOCQ6ORXjC92bBQk7J+mthYYalS37AL6M1wUr/LDwklGP58XtveJYvIrRt3qyScE4ANGWjbt3SfM/evfsaf/29H3Pm7sW7d5+wafM5nDn7ADKZIt3ZFfRRq9VCkB6gOQ+u36CZOG/TujoATQDKytUnoFKphKCf2rVLw9k5n/C6UiXd8Ou4zgCA7TsuCZOu4jv+I6Pi8L/pO7B6zSlh2YcP4Trfzfpcv/ECb94E487d11i46LDOc5GRsVjwz0H89fc+4Zz/z8KDiImJx8FDN3BLlM0rJWvWnsaK/3zQt/+/aY7HT58icdxHE1gVExOP86IsDeLtKFYsP0xMpDAxkWLwIC/8Oq4TAGD/getCP7UZEn743htF3TUlqCwszNC5Ux1YWJjhzdtgIfAgJCQKKpUapqYm+Pabxhg9qj3atqmB2bO/Rft2NQBogjoWLzkKtVqNp0816y5XtjAG9G+GxYsGYeCA5li6+Ht4Na8MALh8+Sk2bzkPIPGaoUqVYsJ3NaDJ2uTkZIvIqDhMmrItWfCcOMPQ3buvhawgZ8+lfZ1yyfeJcK22a/dlYXl0dJzwfTRsaBvs2DYGy5f9iKZNKmL50h/Qo4emfMqy5cdx564fnjzVvKd7EWesWzMcI4a3wbSpPeHVvDJGj2qP/Pnt4Pf6I9YlBB6dv/AYkZGxcHCwQZEizsJ1XFF3FxzYNx7VqhZHdHQ81q0/AwB4nZANpXnzSqhUqSisrS3g4GCN5s0qwcRE89+hHj3nCcHT50UZsLSZQTZuOoeevedhzdpT6cpucvvOK/T5ZoHw+WS29RvOYODgJbicJPDz0aN3QtaZmJh4XLj4WOd7MD2lHNdvOIOGX/2O+g0n4KHoWlQfpVKFyVO34caNl5jz175kwdmbE7KxLF5yFMNGrMS584+gVKpgYWGG2rVLAwCWr/BJdxk6yl3iZZrrJZZnISIiIiIiIiJKPwZ45BDi8griOwm3bL2ADRvPCmUptNKaDBHf0X1VdNdwmDbAQ8+dlgDQuHEFAJrsDHK5QqgDn9Lke43qmrIXBw9eR2RkrNDeySlfsrYVK2gySdy5/QqxsTKdTBLNm1cCoAlGefpUN5OFdsJPG8xQsqQbmjXTtJ86bTuei7J8JE3vLZMp8MvYdWjZ+n9CiQDx5M6qdEyk3rv/BseP39abSv7du0+4c8dPmAjYvOU87tx9jZhYGf6efyDNSSjxZH1gYJhwp+vDR2+hUCjhWsAes2d9A9cC9nBxzocePRqgSBFn1KurubNXO4F16tQ9AJpgju7d6gtZGRo1Ko9q1UrAK2H/Ll/hI2SocHS0gUQigZNTPmzeOBK1apbC33P7omaNkgCAo0dv6kxwfPgQju/6LsToX9YiIiJGKGUCJE9Rr484mOXBg+RBPo56MkkAgGtCgEdQUBjUanVi5omESd1ePRti0T+DUKSwM+JFkwd+fh+FIBRbW0u9aaFLJWSgWfTvYZw6fQ/BCfvG0lIT/FK6dEEUKeIstK9fT7Pfd+7yFe4yvnlTM7HbtElFnXVPGN8VXTrXAaDJyqEtRREfL8f8BQcwdtx6PHj4VphY6fZ1PZQq6Ybw8Bh07PwnYkQZATT7KQrx8XJ8SBLgsXyFD1QqlTB5rS94S0ubcScsLF4oDaAvgwcANGms2Z4bN1/i2bMAIftPo0ae2LZlNH6f0BVbN49G/37NYGFhhmoJJXBOn9EEhGiPszatq6Newn7TcnGxA6AphaB15arm+HRyskUhPRPwUVFx+G/lCUSIAosePHiLgYOX4Lu+C3Hl6jNER8dh7Lj1GDV6jU45iswiDiATB9GJA5wG9G+G6tVLoEgRZ1SpUgyA5tgWl8w4euyWEJDl7x+CocNXYqGotMG5cw+TBYQsXHQYv4xdhz/n7MGdO37CuQLQlDEQZ+vYsdMXarUaQR/CMeLnVWjUeCJeibI/pJUlBtCc96ZM3YZ37z99XjBIQntt5p2kZkzvLdzxP2LkaqhUKrx5E4zw8BhYW5lj3drhOLh/AnbvHIcpk7rDxtoC3bvV1ynDEh2tOUa0QWBipqYmWLHsR2zdPBoVK7oLy11EpZz06dypjnBeADRBYG5uDvh30SAsXDAAf8/ti4EDmqNXz4ZCgBgA3L+vGe+r1iR+p3Tv+Tdu3koMsLxy9VmaWTBSEhYWjYiIWEgkEsz98zvkSyjV1blTbUwY3wW9ezUCoAmCOHT4pjD+a9UsiZkz+sCreWV8921jzPu7H9q3q4G2bTTBBtu2XwQAIZjll9Ed0LVLXeG8W6WyBxo10gSzDB+xSjjvffoUidG/rMXYcevxMOFYF1+XnDh5V+cY/HvefmzfcQm791zB6F/W4t27TzqZnPQFGqxZewp/TNoiZInQltL49CkyzZIPt26/ErI3AcCBg9eFiX3t8frTkFbYvHEUThyfjGNH/kD/fs1Qt04ZuCec858+C0BISBRCQqIgkUjQvVt9rF0zDMuX/oATxydj7JiOaN2qGgBN4MPFS4+FjEwuLvlgZmaKr7vWw+8TuqJa1eJwcsqHjh1qAQB27LyMR48+4WlCBo8yZQpBIpGgWrUSGDigOVxdHdCkcQXhXLhm3WnEx8vx7LnmeqdihaL4d+Eg9OzREBUrFsW4MR3h3aIqAE1AyLT/7RC2PT5ejqHD/0Ov3vPx7FkAzl9MDHa5fdtPCGpMyd27fsLj168/CiXCtN8hTk62sLOzgo2NJSpVLIoZ03ujUiUP/Dy8rRB8tP/AdeHarnz5IihduiB69mgoBLEULOiIcWM6afbNLl+dsjkd2tfCpg0/Y/XKoVi25AesWzsczs750D+hDJN27AYkZLpr2rgili/9ESeOT8bhgxPxv2m9hCADQBOMAOiWFDt0+Cbu3PHD5i3n8OZNMP5beQLHjuvPvCS2eMlRvPL7gH8XH9HJ7JUZwsNjsGz5cTx69A4rV53QeU77fam1adM5ne+kpKV/AE3w+Jy5ezHhd02Jq/9WnhCC7xYt0i2to1AosXLVCXz/4zKsXHUCd+746Ryv+/ZfE64Pw8NjdMpZ3bz5EnPm7gUAtG9XA/P+6otv+nyFJYsHpxh8SrmbNkBdX6A1ERERERERERHpxwCPHMDv9QcMG74S/5uh+UHez0+3xMOq1Sdx9txDnWXjf9+kM0melDgN9dWrz4RJ6PCESVp7O/2TwNpAi1u3/YTACalUAjs7K73tmzSpiPz57RAZFSeUELG2ttDb3tPTHYUKOSEyKg6HDt8Q7gA0NzdF9WolMGpkO9jaWsLayhzffdsEgwd5AdDcSR0WFi38YF28WAF806cxypUtLEzgaDOGvHkTjPoNJ+DRY82k+XGfO5oa9bEy/DFpK/z8PuhkNHn9+qPedNNa8fFyjBq1GlOmbcfyFT46zwUEhOLbvgsxZOgK9Oo9H8eP39ZJkR8cHIHAhFI3KdF+Ti1bVgUAHDx0AwqFUvhsK1Ysiq8aeWLP7l+xf994/Dy8LQDAu0UVYftUKhXeJNytWbt2aYz8uR0OH/wdu3aMxbQpPQEAXbvUA6BJL6+9A1c8sV+sWAH8s2AAPD3dhQmos+ceYsLvm4VJ3cVLjuD5i0BcvvIUs//coxN0tHOXr94AGJ1tFU0+PHseIPTjwwfNPsqf307v67Tlgfxef0RERKzwPvoCGQYN8hLGXmRkrLBftJOhSfXo3kAI/FjwzyG8SJg8K1TISW9ASKuWVeHinA+BgWE4e/YBQkKjhEn/sWM6YuhPrdDCqzI2bxyJxl95YvCgFsJr9+y9iuiYeKxcdSJZWnxrK3N06VIXvXs3Epb9PS+xhJDPiTto33EWunX/C1cTJna0d0JevPQYPifuCoEvKR3b2n2mvetbG1xhr6dcEwAULuyE6tWKQ61WY/zvm4SyTXZ2VrCzs0bbNjVQtKiLzr4BNHdAP3sWgDcJ5VgqVfLAn7O+wdo1w9CmdXW4uTlg3JiOkEoluHL1mVBmQjv517NHQ2za8DMGD/KCiYkU+fJZ4ccfNKUNduz0Reu204VtXbtOU7pALlfi99834X/Td+Lipce4cvUZpk/fmeJ+EFvxnw9G/7JWJyONPkqlCi9FGRS02SOAxLI5tWqWwqCBXvh34SBs3/oLli7+Xig9cOBAYqkA7bnMq3lluCRkV4iJlQkZKwICQuHnl3g39spVJ7F12wX4+j7Bvv3XMGToCnz6FAkHBxtYW1tApVIL5zy1Wo37DzQTo0nLL2mP+f37r6V5vM5fcADHfe6gd58FycoCZYQ2887kSd3Rrq0mqODnEW3RqGF5nXINAYFhCP6kCV5yK+gIU1MT2NlZ6WTt6NK5Lo4fnYQWCec/QFMqTJyhQqxQIScULeqCBvUTA4yKFyuQan8lEglaeCWuX/taS0tz1KxZCvXqlYVUKoWrqwPWrxuBypU0ZV3u3PWDn98HXLumW4ZF/H0TGysTMuKkRK1W49Tpezhx8q5OMIg2QKhQIUc0aFAO+/b+hp3bx2DsmE6QSqUYNrQ1unTRBJRdv/4CzxPOZSVLuKFSxaKYNrUnfvyhJVxc7CCVSoXyIX6vPyIuToZnCcdftarF8cvoDti1cyzWrx2ORQsHCQGFALAmIavH6jWncPnKU1y89Bg/DFmOY8dvC9cZAKBSqTFjxi4hc4Q2wBLQTMh37/m3znbv2OmLPXuvCMf2nTt++G/lCZw8dQ/z5h1AfLxcCFAFNBPMSYNl1Go11q0/g779FgkZDypWLAozMxM8fx6IXQkZVN4mBHhoAzm02ay0SpfWZCZ7+OitEDTqXsQZVlbmsLQ0R6VKHkJGiLFjOgrj+t8lR/A2IdORq56gIwD4dVxnoRTL0eOvcO9ewrFatlCytpaW5ti+dTRcXPIhNlaGa9efC8d56dIF4eycDyOGt8GKZT/C27sqWrWqKrz25q2XQqDvH5O24PZtP7x5G4yhw//DniSZZDp0mi2c37Xi4mR48tQfcrkCd+/qlgIaOnwlwsNjhJJBxUSZRJLy9tYcSzduvhDWU16UDUesfv2yqFqlGGQyBTZuPiecxypVLAozM1OUK1cYlSt7CJPE2gxy/v4hiIqKE8oS6QsQHDqklRActuI/H9y69Uq41i5bphBkMgWGDF2hc05auepEsqC2yMhYBAaG4f37EPj7h+hch4uzxGQGcUnCh4/e4Zzo/wHaAI+hP7WCubkpnr8I1Ckb9PxFoE6mP5VKhV9/24C9+67izFlNiStxANSdJJ/xho1nsXrNKdy//war15zCsBErdZ7/b+UJjP99E9RqNW7f1gR2eXjkx3ffNtZpV7ZsYUilUvw0pJWQQYzyHm2JFgtm8CAiIiIiIiIiSjcGeOQASqUKd++9xpkzD3D58lNhEnHY0NaoUaMEVCq1cHfc11/XE16X9I6+w0duYuWqE1AqVTqT6QDw7+IjUKvViWUZUrhrv6CbIypUcIdarcaRIzcBaCaFpVL9Q8nERIpqVYsDgJB+3sMjv97JcRMTKXr3aghAkxo+JCSxNIdEIkG3r+vj2JE/cPzYJPz4gze6d2+gCQiJjMWZsw+EshWurg6ws7PCwn8GolnTinAv4oypU3qia5e6wntNn7EToaFRWPRvYpr4yMhYjBi5GsHBEbC0NEOlSkUBAHP+2ifcgZzUgwdvEZNwZ/z+/VeFO4ABYOu2C8IE09t3nzBl2nZhklpbGmDbtks661MqVbhx8wWuXXsOhUKJ9wl3OPfs3gC2tpYIDo7AqtUnhaCB0qWTT/oAQIMG5WBtbYGgoDDcvfdauLNSPBlasKCjMBFSubKH8MO7NutHSllZSpUqiHFjO8Hc3BTnzj/E9esvEBsr05m8OHP2AXxOJGbtCA2NxsFDqddXTzomd+3WBDkEJUwAu7k6JH2Jpj8l3eDinA8xMfE4clQzJlMqQ1KyhBuOHv5DuAN/d0IQibZcSlKOjrY4dWIK8uWzEvY9kHxiXMvOzhodEgJgdu7yFUqMlCrpBgcHG/Tp/RWmTumJYgmTyPb21ti1Y6wQjLFt2wXs338NAPDtN41x+uRUbN40Etu3/QKPovnh1bwymiRk0Tl56h6iY+KhVquxZMlRqFRqBH+KFAJjenRvgAEJdzBv3XpBKL9kl0oGDwConDDutXexp3QuAIAZ0/vAxcUO/v4hwuedUnuv5pVRu3ZpyGQKbNt+Ucjc4OpqD1NTE5QpXQgTf/8au3eOQ8OG5YW7zQ8nnGcS72QvCAsLM/Tv1wx7do3Drh1j8U2fr3Tea+WqE/gYHCFMgDk62iAmVoZzopT7d++91skao8/Hj+FYu+40Ll95ip695+lkDzp67Bbmzd+Prdsu4PCRm/hn0SHhLlQAwkQukJiFxkFPZqSuXTXnpUOHbwjZD7QTr9WqFcfGDSOxfOkPWLbkB+zeORZ1Eu4037Er8dyhzQKhPZ4lEgkaNiiHhQsGCFlltOU6gj9FIioqDlKpBMuW/ICV//2ECeO7Yvu2X7Bh3QhYW5nj4aN3WLP2tE4/o6LicPjITTx58h4xMfFChgSFQpnmsS2XKzBh4iY0bzFFp6wOAGHi2M3VARPGd8Xe3b+ie7f6AIBhP7UW2vn5fUDIJ813grOeDFBaJiZSVEkIqgA0mX+0k+0pqeCZmMGjWLGUJ6O1vLwqw97eGmZmJmjfrlaK7WysLTBhfBcAmrIXs//cAwBo2KAcmjXVzeijzZjx17z9OmXFAM3dzU+evEd8vBxbtl7AxD+2YNLkrWjXYabwna29BtAGqFhamiebyG5YX5Np48TJu3idEGBVqpQb9ClQwB52dlZQKlUYOWoNYmJlsLAwEwLApFIpSpUqCFNTE7RvV1Mot7Fzty/CwqJ1MggolSpMnbZdCIZYuvh7WFiY4e691zhx8i6CPoQjLCwGJiZSzP3zO1gnTLTns7XEL6M7CBPvf/29H9NnagKzxNm1rt94gf4D/9UJSjpw8Dq+7bdQyCYBAEuWHsXyFcfx7HmAcF75qpEnfh6hCYzct/8qFAqlMLEvDlAT02ax2rHTVwhAS2k/SiQS/DyiLczNTfHmTTDWrNUEwFSoUFRvewD4ps9XcC/iDLlcM8Hu6uqAokX1j0upVIpmTTWBtxP/2CIcl9WqFU/WtkzpQrh4fgZq1SoFAFi3/gxevAzUyZQUFRUHmUwBKytzjB3TEYAmkFVcFio8PAbffPsP+g/4F527zhGCi2bN/AaOjjbw9w/BkqVHhXFcuoz+6xQAqFRRE5Dx8WMELl95lmLfAc2+HJgQeLR79xVhDFeo4K63vb29tfAZ/vDjMnz6FAkTE6lO1i2tEiVccdJnipBVadiIlVAqVXBwsMaSxd/rjIXSpQvCxESKgIBQtGg5DZcSShbevfsaPXrNQ5ev56Bbj7/wdfe/dN7j38VHsPDfw6mWIfn4MRy/T9yMiX9shu/lJ8kCSORyzbkgKCgMF0WfG6AJ7F667BgiImKEa9bmzSqjdsLnDWjGknb7W7edIRyna9edxuPH72Fubiocf4Dm+NDSBg+pVCocE5UIFKuekLUP0ASJjh23HocTrstqVC+B7t0b6LRv2KA8iLTXTizRQkRERERERESUfgzwyAFKlnATSjlMmbYNZ85oJo3LlyusU/ZBIpGgR7cGWL70BwCaFOTaAIPo6DhMn7ETq9ecwpatF4TAgdGj2sPCwgyPn7zHjZsv8T7hDsf8+fXfXQpA+LFYGwiQ2gQwANSpUwYAhB/jU7ubs3Wr6jA3N8W7d59w7PhtAEDhQolp7iUSiRBMYmNtgQ7tawLQ1ErXljPRZnqwtbXE9P/1xratv6BmjZLCXf4A8OrVBwz+YRkiI2PhXsQZK5b9CECTVQPQTOA0blRBaD/o+6V671LX3kEKAJFRcfhhyHLMmr0bCoUSp1K4E9vZOR9G/twOgCZrw7btmsCIuDgZfh65CsNHrMLPo1aj34B/hRIDHh75MWJYGwCaO5O1kzgpTUZaWJgJgQDbt18SynmkFCQBAN27N9D5cbVKZY8U23bqWFvI5LFx8zns3XcVcXFyFC7sBG/vqjpttRN/c//alyxtuJZSqRLS9Wsn216/Dsbly0+FCWDXFPoulUrROiHN+8JFmoCd1MqQAEDXrppAqJsJJQNsUwjwADT7skN7zbZqs9Z4pnCHMaAZw7a2lnj8+D3m/LUPANCwYcqTGAULOuKH7zVjc+Wqk4iMikPBgo4YPMgLFhZmKOZRQChpZGpqghnTe8O9iDNkMgVWrTqJlatO6C1zUaKEK7p2qQtTUxM8eeqPFf9pMsyklsED0GTUENMXlKBlb28t3J0uLEth/RKJBN99owkiOnzkphCklNKY1N7Zvf/AdVy+/FQIOCkjCmpycbGDra0lpFIpJvzWRVi+e88VTJiwCSqVGpUqFcW8v/vrrFt7Z/evv21IlhEpIiIGR4/dwsNH73Dk6G1heWhoNP5MSCsfExOPGTN3Yeeuy1i46DCmz9iJnUmyrlzyTZyc02Yj0hc0VbtWKRQt6oLo6HgcParJcuSfkMq/YEFH2NlZoVIlD1Su7AEXFzt07KgZi/v2XcPLV0GQyRTCvty8cSQ2bxyJ7Vt/wZw/v0OpUgXx4w/eMDGR4tq153j+IlDY3iKFnWFubgrP8kXQrm0NFCnsDGfnfBg1qj0AYO/eK0K5m/h4OUaPWYvpM3ai/8DFye7WXrrsWLLSWWInTtzFmTMPEBsrw6bN54TvDpVKJZQUKuCq+c4pUMBeCADs3r0+yiZMDp87/xCfQjQlkpyc9QefaTUVBU+kNEkvVrZsIVhbm8LGxkI41lPj5uqAvbt/xeFDE4VsDikpUsRZ+M67e+81pFIJ+n7XFH36fCUEnnzVyBNjfumAKpU9EBsrwy/j1gkldQICQ9H7mwXoP3AxJkzcjI2bzgnrjo6OR9v2M3Hjxgvcuu0HQJORIiXlyhXWOcc7OdmmmN1EIpGgVk3Nd/29+4lZJPQFy5iYSPH9oBbIZ2sJuVyJzl3nwN8/BKamJjh6eKJO6Zz69cuiSpViQhDP9Jm7MHPmLgCaQDht9pHNm0biwP4J6NqlLib+/rUQVHHJ9wm+/3EZrt94AVNTE6H0jDajTY8eDVA9IUDg/fsQjB6zFlFRcfh73n5s2nw+Wd9LlXSDd4uqMDGR4s2bYIz7dQNiY2Wws7MSglmSateuJtzdXRAeHiMEQpVJJYjBxsZS+D7WBjJWTQgk0MfCwgyL/x2IEiUcYGlpJhzDKenatS6srS0glyuFbcrvoj/jlUQiQedOtQFoMoJ9/8MyAEDjrzyxfu1w4X169WyIzp3qYPGiQQCAI0dvCYEMu3b7CucobSBuiRKuaPyVJ/43tZdm3YdvCMGG5cvqD4gEACsrc4xM+M4HNJmhxCWQkqpWtbjOvita1CXVa1BtNhS/hOtP7xZVYJtCxi4AmDq5u06GuZbe1WBlZY5F/wzExN+/xpzZ32LJv4OFgNjYWBnG/bYBN2+9xG8TNuq9ThzzSwfUqlUKSqUK27ZfxPwFB3WeDwuLxqlT96BUqjBp8lacPnMfp07fx5ix69H56zlCpjdf3yfo1uNv9B+4GJ27zsHJhNJ7/y4cJASIbdx8DiNHrYFKpYaHR364uTlg8KAWcHS0ga2tJX77tTM6d6ojvPf/ZuzAx4/h2L5DEzA4fFgbzJ3zHUxMpHByssWwYa2Fc9yIn1fjw4dwXLz4GG/eBsPa2gJHD09EUXfNOdbDIz9mTu+NGjUSgzx8Lz/F+fOaa9xGjTzh5GiLgQOaw97eGpMndU/zWo3yBlnC/1VZooWIiIiIiIiIKP0Y4JFD/DSkFcqWKYSICM2Em6WlmVCeQ5vqu13bGihc2AkVKxaFawF7yGQKHDt+G0uXHUOLltOEdZ04eVeYZPD0dBcmaNeuPSVM/pUonnKa+roJARvavhROI61y0yYVdDIkiO/wS8rKyhz1E1LeaycHUrvTVXt34fUbL4RJzpQmNmxsLHHpwkzhB3/tXfKdOtWBp2cRYQIKAOrWLSOks9e6fkOTqWLV6pPwe63ZT+K79AHg8eP3OHDwOjZtPo9PnyJhbWWebIK833dN4NW8sjDJ7Pc6AqdO3cfcv/bh5q1XQhkG7fa4OOeDpaU5WrasCmfnfJpyNAmlRVKagAISJ8jPJGSRcHKyTfXHUydHW/w6rjOqVyuOpk0qChNwKenZo6EwcazNhPJNn8bo910TmJlptqF4sQIYOqQVvJpXhlqtxoyZu4Rx4+f3Ab36zEe7DjMx/OeViI2VwcrKHF93rYc2bapDrVZj3G8bhOAFcfaRpPr0bqQTAFLQzTHFtoCmXIh4YiGlEi1afb9rojOJ1KRJxRTbFi7shAXzB+gs0wbDpKRN6+o642/m9N7COEhKIpGgvzYzx7YLwgRjrVql4NW8stCubJlCcHS0FQKbtBNyaU2o1KheHFJpYoYdbQaelCSdULZPJSCkSpViKFHCVWdZgRRKFdSpXRre3lWhVqsxesxaoW1Kk3lt29bArh1jhMnLBwl3MHftUg9lyxRCt4TsRlWrFsPsWd+gQAF7fAqJwk/D/8PHhMCua9eeo0vXOZj2vx0Y/P1SLF9xHAAwoH8zmJhI8fjxe/j7h+DlyyAhfX3lSh6oV7cMKlYsijJlCgmf9Z07fsIEXGqZkaRSKbolBBzt3K0pZaQNZtF3p3mTxhXRqJEmYOi4zx28fRsMhUKJfLaWcHNzQLFiBVC4cGLmhkKFnISgvLt3/YSJ8GIplCJp6V0Vbm4OCAuPwfc/LMXH4AjMm38A9+8nBrNpA8y02UQAYMyv66FSafaJWq1GdLQmE8CHD+F48TJI5z2mTtuObdsvIjQ0GgqFEhKJRO9529TUBMMTAtsOHrohZApJLYMHoNnPG9f/jLZtqgvHSmosLMwwsH9lbN74M0qmMrksZm5uChtR2Y6USCQS/P1XP3RoXxMtW1bFwgUDUaGCO8qXK4IVy3/EnNnfYvr/esHCwgyzZ32LAgXsERoajUWLD+Pt22AMH7FK+K7y9X2CsLDoZOerX8atw9mE83y1ail/v9rbW2PBvP5wSDgHdO9WX282La0/Jn6NcWM6wsrKHKamJhjQv3mKba2szPH3X/1ga2sp3I3dtEkF2NlZY+TP7bBz+xjMnfMdZs3oAwD4fnALNGtWCQqFEjcSSrdoS5HZ2FiimEcBIRilaZOKWPjPQHw/WFPSSlv2on27Ghg2tDW+TQgcs7IyR++eDbHwn4FYt2Y4nJ3z4dWrD/BuNU24nvi6a13UThi3lSoVRe3apWBraylkVNEGIVavXiLFzGSmpiYYOqSlznmyZs1SettqjRnTUQg2KlTICXXrlkm1vZ2dNbp1LYujh39HyyRBk0kVKeyMNauGaq4rShfE779/nWr7xl9VQLevNd/vsbEySCQS9OvXDKVKFcSihQMxc0ZvIftT1arF0Tbh+3jW7N1YvOQIVq7SZPPQluwzNzfFLwmBYdWrl8CwoYmZd0xMpKiaxndIhw61sGBef7RqWRWzZ32T4n4HNMfTtCk9UaN6CVhZmWOoKMuPPl7NK2Pp4u/RoX1N9OvbFKNHd0i1ff789pgz61vY2VmhbJlC6Ne3qbC8TevqaNiwPGxsLDF4UAusWTUUpUq6Qa1WY/iIVQgLi0aBAvbYvXMcFi8ahK+71sW4MR3RuVMdLJjXH/+bpimJd+jwTbxKyMQXERGDH4csx8RJW/D3vP3JSqF8/BiBU6fuISAgFON/36STkQYAunSug2rVimPC+C5C0MmThGA77RgrXbog9uz6FYcP/o46tUujV8+GOHbkDxTzyI/Q0Gh06jIHERGxcHCwRscOtVCtWgns3jkWO7ePQZHCzpg2tSeKFyuAmJh47N1/VThG2rSpDjs7ayxZ8j3GjemIJf8Ohp2dNRb9MwgXzk3H3D+/Fb7zWreqJnxfDBzQHIcPpj2uKe/Qlmgxt2AGDyIiIiIiIiKi9OIvKTmEhYUZhv7UCiNGrgYAdOpYB2ZmpnBxscPuXeMgkyl00vN3794Ai/49jC1bLwiZM7TEd1oXKeyMb/p8hf0HrgnZDADAwyPlAI9KlTzg3aKKcBd224TsCSmxtNTcoTl95i6ULOGKFl5VUm0/fGgbXLv2XMheUatmyRTbenjkR+lSBfHseYAwga3N4JGSAf2b4fyFR3j61B9WVuZo26YGpFIpqlYpBt/LT+FawB4tvavC0tIcmzb8jD7f/gMAmL/gACZN3gpAkx6+73dN8O5dsN730E4MN2tWCT/+2BJ79lzBgwdvUaqUG7oklIqZOaMPuvXQpPCe+r8dAACpVIL58/ph85YL8E24W1abZt/MzBQDBzTHnIQsAlZW5qnWLK9VsxTat6+JAweuA4DO5H9KWreqhtatqqXZDtBkF2japCJOnNSU5vDwyI/27TT7ct3a4bh58yVq1yoNU1MTTBjfBU+f+uPN22DMm78fUyb3wIqVPsLY1N4FXDbhDvFfx3bCy5dBwkSyk5OtUNZGHzs7a8yf1w+/jd+IkJAoDP2pVap9t7AwQ4sWVYSsC6llrAE02WCmTemBLdsuommTinBKoXyNlmf5Ipg8qTumTtuOFl6VU8w+omVvb41Jf3THqlUn0LFjbZRN5Y5nQPNZTksYM4DmzvwxozvA1dUBdeuWgY21hTCB37NHA5w6dQ8PE8qRFE8leAvQZMVo0dwDt++Gwqt5Fbi7p54BwT1JEEJqGUJMTKTo0rkO/vp7v6atvTWsU5gkl0gkGD60Na5efYqwME15mTKpZEuQSCRwc3NE468qYM/eqwA0mXhaeGnG/cif26FP76/g7JwPJiZSLPpnIEaOXoOAgFAcP3Yb33zTGH/P3y+UXBKnxv+6az0cO34b79+H4NOnSDx/qcnkUqd2acyfp5sd5PKVp9iXUGZn7t/74OVVWcgulNIYbtW6OpatOI43b4Kxd99VyGQKWFuZo1BB/YFKtWuWwvnzj/DyZRDeJgSDuLu7pDhZX7KkG3wvP8WrVx+gStiulAI8TE1NMGf2txg7bj3evvuEnr3mIS5ODolEgnl/98PyFcfx+PF7SCQSjBvXCRP/2IJHj97h06dIPH0WgPLlimDW7N1CMIZEIhH2ZetW1XAkIUvJwn8PY/1GTdkYF5d8KQY0Va9eAt271cf2HZeE80Vq5wKt4sUKYML4rqkGMIhZW5tl2d3kbq4O+HVc52R9KV9ONxOQvb01Ro9qj9/Gb8S+fddw9uwDhIXFwMXFTsguBQD16pdDpQruWLXmJCIj44TMDRYWZiifQvkorSqVi2H79jG4efOlUL4nJWZmpujYoTaaN68MmUyRYrYPrQoV3DFpYjeM+20DJBIJvunTWHjO0dEWDeqXE/42MZFi0sSv4WBnjd17r6BQQcc0s6f0/a4JChdywvoNZ+DhkR8/JUzu//iDN75q5AnbfJbCubxUKTfMnN4bI0evEbKhDBzQHAMHNEd8vBwvXwWhRHFXIZhgwviuKFeuCPbuvYLwiBghEDQljRp5Yt5f/TB56jY4OtoImWZSYmNtgWWLf8Dps/dRo3rJFMf75ypS2BlTp/RI93gfPMgLZ87ex8ePEej2dT2h/1Wr6AZjSCQS/DK6Ax48fAc/vw9CFpRePRti6E+t0P3r+nB2zqdTDqhnjwaIjo7Drt2X8XXXeikG8YnVqlkKtWqVSlf/nZ3zYeE/A6FQKGFmlvZ/YyonZEBK776pVMkD+/f+BjMz01RfU7ZsYcz7ux969p4vZElr17YG3Nwc4ObmkCzYqlnTSvBpdBfnzj/E4SM3MfSn1vhn4SEhYHfvPs33VoUK7li6+Hts3nIey5Yfx40bL2BnZw2ZTAHXAvZYt3YEXr4KxKfgSDRrVkno4/eDW8DezhpLlh2DhbmpTpBu0tIX+fJZYcb03hj0/VLh+OjcqY4wLsXXRB5F82NA/2b4Y/JWbN5yXjjfaEthOTnaolMn3YBoiUSC+vXKYevmUXj9JhgVPIske55ISybTZPBgiRYiIiIiIiIiovTjLyk5SM2apTB5UnfI5Uq0SrjTFdD8UJo0M4N3iypY9O9hneCO5s0q4c3bYDx7FgAAKFe2MOzsrGBnZ4WuXeph67YLAAAzMxOdFNX6jP+tC8qULgR7B2t89ZVnqm0BoHXr6mjWrBLMzVP/wRzQBA7MnvUNli0/jhrVS6BGjZQDPCQSCUaObIehw/4DoCknkVpWC+1rJv/RDQcO3kBL7yrCto4b2wm37/ihQf1ysLHR3CFdvLgrevVsiC1bLyA0VDf19rr1Z4THP/7gjWXLjyd7r2bNKgkpqZMqXNgJPsf+QPcecxAappkcaNO6OmpUL4lLl54IAR7i+vLiWuplU0iXL97OX8d2QpXKxRAcHIke3VPPyPE5WreqJgR4NKhfTpgsK+ZRAMVEQUKWluaY9Ec3/DBkOY773IGnp7tQasjNzQGBgWEAAO8WVQFoJhZ/n9AVEyZswtt3n9C+Xc00x00xjwLYunk01Gp1uiYP2rSqLgR4iFOKp6RmzVJp3qUt1tK7KkqVckNh0cRXahp/5YnG6TiWAM0k/LCfWuPfJUfQqmU1TPqjm/BcmyQBV1KpFCOGt8WPPy0HANSpnfqd4wBQtaorJkzoDzOztNNlF0wShJBWQIj4+Eyt1A2gmchr26YmNm3WlKVIrQyCsE5Pd9jaWiI+Xo5xYzsJY0EikehMNLq7u6BnjwaYv+AgLvk+QdOmlfDmTTBMTKTo2aOh8J5F3TUlAOztrPH+fQjCwmOEDEj6giTEAWYymQKRkbFCaZ8SxV2TtQc0k7/NmlbCgYPXhfT9JUu5pXgne7GEIJ0XL0UlV1LZ78UT3vfS5SdC4FxqgT6lShXEhPFd8fOo1YiL00y89OvbBHVql0Yxj/xYs/Y0ypcvgoJujlix7EcMHLQYT58F4J+FhzD3z++E4A5AN1CmS+e6GDe2E/r2X4Q3b4KFzCZpTQD/+IM3rl1/jlevPsDc3BQNG6Rc8iina9SwPMqWLYQnT/wRFhYDS0szrFr5E34aukIYd9WqFkfHDrXQtWs9xMXJ0Lb9TMTGylC9WvF0BQ7YWFsI2a/Sw9bWMt0Tsg3ql8PcOd9BIpGkWb7GzMwUv4zugLbtaqBwIacUg73EvJpXhpdXZZ3+SCQSne9JrYoVimLun99h3K/rUbiws1DORRMIo3vuMTc3Rc/uDdCje33Exyt0MiqlpFbNUtizaxxMTKSpfhdr2dtbo1PH2kYxuW1jbYH/VgzBh6BwvftOzMLCDBMndMWQoStgamqCX8d2EkqxJS3pBWg+j0EDvDBooFeWbmt6gju+ZN3pDTb56ceW+GveflhbmaN9u5qptm/UsDzOnX+Iu/deIyIiBj4n7iZrUyC/PUxNTVC/XlksW34ct+/4oXRCabJ69crCzs4qWSAOoNnvPXs0RJMmFQBI0sxkVqxYAUyf1gvz/zmIUqXcdAKykmrWrBKO+9zB+QuPhPfS99knlS+fFSqlUjaKCADiE7I+WZizRAsRERERERERUXoxwCOHSW9KY2fnfKhVqxSuXXsOAGjYsDymTe2JtetOCwEe2hIeAPDTkJZ4+vQ9bt56JaSkTo2FhRl6926Uob5npLZyjeol8d/yIelqW61qcfw8oi1u3XqF775tDEvLtCdmihd3xYjhbXSWubo66N2/Scsk2Ntbw9HRRih14FrAHj26N8B33zaBQqHED0OW49GjdyhUyAk1UwlOATSTSvXrF8ahw5oU9U0TSn+IywRoS+gAmsn0smUK4clT/zQzoQCayf2kE/6ZSVsWJCIyFl271k21raenO1q1rIZDh29gwT+aSez69cti1ow+OHjoBiwszHSyh5Qs4Yb160bg3r3XqFy5WLr7lN4JpbJlC6FZ04oI+hCe5uf0uUqWSF+5h8/Ru3cjdOhQC5aWaR9XlSt7YMJvXSCTK4QyAZnF1NREONc0aVIhzeNcW5oI0D85mFTjrzyFYAvtJFdqbKwt8N/yIZBKJXpLnIg1bFgeC/45hNt3/PDnnD0ANCVcOrSviR07L0EmUwhlCOwTUs2Hh0cLafL1BSaUKO6Kzp3qYM/eK5DJFGjfcRbkciWkUglKlUp5PHTuVBtHj90S7o5OLZuBNlAkMDAM/608AQDwSOVzrV2rFPLZWgqBVCYmUlROY99Xq1YcxYsXwKtXH1ClSjH076cp2eDq6oDffu0stDMxkWLa1J4YOHgJ7t59jZat/yc8V6GCO96+DUZERCwaNSoPT88ikEgkcHK0xZs3idmPXNMI8LCwMMOcWd/iyLFbqFq1eKaPYWMzfGgb/Dp+A2xtLDFyZHvkd7FDS++qWL3mFIq6uwjfE4Bm36xdNQw+J++k6zshIyQSCdRIX8CcWP16ZTP0mnJlC2dZIEC1asWxb994WJibpiv4RSKRpCu4Q8vCwswoAjY+R34XOxRII3uVVvlyRbB540hYWVukmcEqr+ncqQ4qVHRHgfz2cExj32jPu48fv8fTp/5QKJQoVNARMbGyZAFvxYsXgIODDcLCooVyX6mVqtNyc3NM95isW6cMtm0ZnWZ7iUSCCeO7YODgpfD3D8GPP3inKzMLUXpoy3oxgwcRERERERERUfrxl5RcbOLvX+Pffw/D3t4aAwd4CXf3WViYwcU5H1q0SJwMMjU1wZ9/foeLFx+jaZMKBuz15+nRvQF6dG+QJetu1LA8Dh+5CZVKjR++b4HatUpDrVbjuM8dvEvILqGd1DY1NcGyJd/jxYsgFC3qkq4JpQqeLqhcuQpsbCyFmunNm1XCx48RqFLFQ7j7HtD8yL7yv58QGRkr1DY3JFNTE0yb2jPd7Tt0qIXDR25CrVbD1dUBo0e2h5mZKTonSe+tZWFhlqGsGRkhkUgw/X+9s2Td2cXW1jLdbdulcWfxl5g1ow9Onb6PunVKp9nWzs4aK1cMwSXfJ+jSOfWgIACoWLEofh7RFnfvvk7X+gGgaNGUy5WIubk6oGrVYrh16xWu33gBABjQrxnc3V2w5N/BePY8UAiwckgo3xEeHiOUXCmgpxyURCLB2DEd0bRJBUyavBVh4ZryMh4e+VMNPitbtjBW/zcUW7dfwFdfVUCjhilnqXB0tMW4sR3x38oTCA2NhoODDdq2qZFie2fnfFj872AsXXYMDx+9Q88eDZNlXknKxESKxQsH48Klx2j8lWeq5zJ3dxeM/7ULJk7aIiybO+c7NKhfDtHRcXj9JhjlyhYSPpPhw9tg4KAlQttatdL+XAsVcsLAAc1z3GT65wRJVKtaHAf2jYe5uamQxWXQQC90aF8LDg42ySbBihRxRv9+zbJk32RknRnd1s8NIMkom3RkBqG0FSrklOOOv+xSpnShdO2bQoUcYWVljthYGa5c1QRgu7u7QGoiFbK2abNAaUsHnjn7AP7+muw9bmmUe8tKdnbWWLtqKGLjZGmWtSPKCG2GRBsbnquJiIiIiIiIiNKLAR65WH4XO0ydojv5bmVlLqQpT8rG2gLeLTL3DuDcwMXFLlk2EYlEkmI2FTMzU5QrVzjd65dIJGjVsqpOOQwLCzP0/a6J3vYmJlKjCO74HJUqFsWuHWMhlyvSLOVBOYe1tYVOppm0eHq6w9Mz9bIAYlkZwFXU3QW3br0CoMkkUbVqcb19tLfXHHNh4TH48DEhg0cqk201apTE8GFt8L8ZOwGkL5tLiRKumDC+a7omCjt2qA1vr6p48PAtypYtBDs761Tblyzphr/m9AUk6Z+0t7e3Rts21dPVvknjxMDAKlWKoUH9cgAAGxvLZKV4ypUtjIkTvsb0mTtRoIA9WnhVTld/cqrPCZLQFwz0pXfMZ0dARUbXzYABykukUimKFnXBkyf+QmaqIkWcUbVKMSHAQ5zZqoKnO86cfSD8Lc7uZgg2NpawyUBgKVF6PHz0DkD6yvAREREREREREZEGAzyIKFulJ8U4UXZxcUnMwjF1Ss8UJ5ztEzJ4+Pl9EEqd6MvgIaYNcgA0ZXJS8zmT71ZW5qhZs6RRTJJLJBKM/Lkd9uy9gvG/dkmzfQuvynB2yYcKnu6wZoYFHcYUgEG5T3ZlTskKWZ0lJjuy0BQv7oonT/yFv0uVKoimTStiSEBLuLs7o1LFosJz4u+NBvXLpRrgYUzbmpPHGGUvtVqNp081x4OnZ5E0WhMRERERERERkZbU0B3ILIsXL0axYsVgaWmJOnXq4OrVq4buEhERZSOJRJKhDBWadmrh70qViqbYtnTpggCASwl3WQOpZ1SQSCTIZ2eFDetGoH+/pqmWUNHtT/p81rZmoP3n6PZ1PWzZNApFi6adncfU1AS1a5XKUJkhSi47PldjkZO39fPOTelr/zn7xZj24efumwyt34jat25ZTXhcq2YptGldDVKpFN9+0xhNGlfUaVu+XOKEd+3aaZerM6ZtNaYxRsYrMjIWcXFyAEChNErHERERERERERFRolyRwWPbtm0YPXo0li1bhjp16mDBggVo2bIlnjx5ggIFChi6e0RElE0yOqnUpk0NbNx0Ho2/8kz1tbVrlUKhQk7w9w8BAJQuVTDN95JIJChZ0i3L0uqzHAYBeetzzcrMChntR0bXn1MzsxhjaZ+cSLsfa9Uqhen/6wWlUgWv5pVT3HaJRAITUynmzP4W12+8QKeOtbO5x0RZ72NwBADAysoU5ua54mcJIiIiIiIiIqJskSt+SZk3bx4GDx6M/v37AwCWLVuGQ4cOYfXq1fjtt98M3DsiIjJWBd0ccfjg77C0NEu1nampCVYs/xH377/BocM38E2fxtnUQyL6HBkNvjCmgA1jk9X7Mq/Q7pNmTSulu33DhuXRsGH5rOwWkcEEB0cCAGxtUr8GIyIiIiIiIiIiXTk+wEMmk+HGjRsYP368sEwqlcLLywu+vr56XxMfH4/4+Hjh74gIzd1Dcrkccrk8aztMJKIdbxx3ZCzy4pg0NZVAoVCk2S6frQXq1S2NenVLA8jd+0itVmuq16SjdEJG2mZHe+1r0ttW+9krFIp094eT15SV8uJ5mCi9DHF88FjMGsEJGTxsbc0N3BMiIiIiIiIiopwlxwd4BAcHQ6lUwtXVVWe5q6srHj9+rPc1s2bNwtSpU5MtP378OKytrbOkn0Sp8fHxMXQXiHRwTFJewzFPxoZjkihl2Xl8xMTEZNt75SWfPiVk8GCABxERERERERFRhuT4AI/PMX78eIwePVr4OyIiAu7u7vD29oadnZ0Be0Z5jVwuh4+PD1q0aAEzM6YnJsPjmKS8hmOejA3HJFHKDHF8aLM9UuaqUrkYvvu2MSIj/A3dFSIiIiIiIiKiHCXHB3i4uLjAxMQEQUFBOsuDgoLg5uam9zUWFhawsLBIttzMzIw/pJNBcOyRseGYpLyGY56MDcckUcqy8/gw5HG4ePFizJ07F4GBgahSpQoWLVqE2rVrG6w/malKlWLw9CyMw4cPG7orREREREREREQ5itTQHfhS5ubmqFGjBk6ePCksU6lUOHnyJOrVq2fAnhERERERERFl3LZt2zB69GhMnjwZN2/eRJUqVdCyZUt8+PDB0F0jIiIiIiIiIiIDyvEBHgAwevRo/Pfff1i3bh0ePXqEIUOGIDo6Gv379zd014iIiIiIiIgyZN68eRg8eDD69+8PT09PLFu2DNbW1li9erWhu0ZERERERERERAaU40u0AECPHj3w8eNHTJo0CYGBgahatSqOHj0KV1dXQ3eNiIiIiIiIKN1kMhlu3LiB8ePHC8ukUim8vLzg6+ubrH18fDzi4+OFvyMiIgAAcrkccrk86zv8mbR9M+Y+EhkKjw8yNhyTlNdwzJOx4ZikzMIxRJQ75IoADwAYNmwYhg0bZuhuEBEREREREX224OBgKJXKZDcsuLq64vHjx8naz5o1C1OnTk22/Pjx47C2ts6yfmYWHx8fQ3eByGjx+CBjwzFJeQ3HPBkbjkn6UjExMYbuAhFlglwT4EFERERERESU14wfPx6jR48W/o6IiIC7uzu8vb1hZ2dnwJ6lTi6Xw8fHBy1atICZmZmhu0NkVHh8kLHhmKS8hmOejA3HJGUWbcZHIsrZGOBBREREREREZCRcXFxgYmKCoKAgneVBQUFwc3NL1t7CwgIWFhbJlpuZmeWIH39zSj+JDIHHBxkbjknKazjmydhwTNKX4vghyh2khu4AEREREREREWmYm5ujRo0aOHnypLBMpVLh5MmTqFevngF7RkREREREREREhsYMHgDUajUApiai7CeXyxETE4OIiAhGTpJR4JikvIZjnowNxyRRygxxfGj/j6j9P2N2GT16NPr27YuaNWuidu3aWLBgAaKjo9G/f/80X5tT/n/L8x1Rynh8kLHhmKS8hmOejA3HJGUWQ/0fl4gyFwM8AERGRgIA3N3dDdwTIiIiIiIiMjaRkZGwt7fPtvfr0aMHPn78iEmTJiEwMBBVq1bF0aNH4erqmuZr+f9bIiIiIiIiSk12/x+XiDKXRM0wLahUKvj7+yNfvnyQSCSG7g7lIREREXB3d8fbt29hZ2dn6O4QcUxSnsMxT8aGY5IoZYY4PtRqNSIjI1GoUCFIpTmjwmlO+f8tz3dEKePxQcaGY5LyGo55MjYck5RZcuL/cYkoOWbwACCVSlGkSBFDd4PyMDs7O16YkVHhmKS8hmOejA3HJFHKsvv4yGl3NeW0/9/yfEeUMh4fZGw4Jimv4ZgnY8MxSZkhp/0fl4iSY3gWERERERERERERERERERERkZFjgAcRERERERERERERERERERGRkWOAB5EBWVhYYPLkybCwsDB0V4gAcExS3sMxT8aGY5IoZTw+chd+nkQp4/FBxoZjkvIajnkyNhyTREQkJlGr1WpDd4KIiIiIiIiIiIiIiIiIiIiIUsYMHkRERERERERERERERERERERGjgEeREREREREREREREREREREREaOAR5ERERERERERERERERERERERo4BHkRERERERERERERERERERERGjgEelCfMmjULtWrVQr58+VCgQAF06tQJT5480WkTFxeHoUOHwtnZGba2tujatSuCgoJ02owYMQI1atSAhYUFqlatqve91Go1/vrrL5QpUwYWFhYoXLgwZsyYkWr/Hjx4gK5du6JYsWKQSCRYsGBBsjbnzp1D+/btUahQIUgkEuzduzdd255Z20WZKy+PyRUrVqBJkyaws7ODRCJBWFhYsjba9xX/mz17drrWT8YnN4z39GyDPiEhIejTpw/s7Ozg4OCAgQMHIioqSme7+/Xrh0qVKsHU1BSdOnVKc5305fLymJwxYwbq168Pa2trODg46G2T9PwrkUiwdevWNNdNuUd2HSNTpkzRO95sbGzS7OPixYtRrFgxWFpaok6dOrh69arO8+m53tDnzZs3aNu2LaytrVGgQAGMHTsWCoVCeD4gIAC9e/dGmTJlIJVKMXLkyHSt11Cy83x37Ngx1K1bF/ny5UP+/PnRtWtX+Pn5pdq/9JzvgLQ/b314vqP0yA3HCH8ryF3y8pjkbwV5U24Y8/y9IHfJy2OS189ERDkHAzwoTzh79iyGDh2Ky5cvw8fHB3K5HN7e3oiOjhbajBo1CgcOHMCOHTtw9uxZ+Pv7o0uXLsnWNWDAAPTo0SPF9/r555+xcuVK/PXXX3j8+DH279+P2rVrp9q/mJgYlChRArNnz4abm5veNtHR0ahSpQoWL16czq3O3O2izJWXx2RMTAxatWqFCRMmpNpu2rRpCAgIEP4NHz48Q+9DxiM3jPf0bIM+ffr0wYMHD+Dj44ODBw/i3Llz+P7774XnlUolrKysMGLECHh5eaW6Lso8eXlMymQydOvWDUOGDEm13Zo1a3TOwfwxMW/JrmNkzJgxOuMsICAAnp6e6NatW6r927ZtG0aPHo3Jkyfj5s2bqFKlClq2bIkPHz4IbdJ7vSGmVCrRtm1byGQyXLp0CevWrcPatWsxadIkoU18fDzy58+PiRMnokqVKulet6Fk12f56tUrdOzYEc2aNcPt27dx7NgxBAcH612PWHrOd+n5vPXh+Y7SIzccI/ytIHfJy2OSvxXkTblhzPP3gtwlL49JXj8TEeUgaqI86MOHD2oA6rNnz6rVarU6LCxMbWZmpt6xY4fQ5tGjR2oAal9f32Svnzx5srpKlSrJlj98+FBtamqqfvz48Wf3zcPDQz1//vxU2wBQ79mzJ811ZdZ2UdbLK2NS7PTp02oA6tDQ0M96T8q5cvp417cN+jx8+FANQH3t2jVh2ZEjR9QSiUT9/v37ZO379u2r7tix4+d0m75QXhmTYmvWrFHb29vrfe5zzumUu2XVMZLU7du31QDU586dS7Vd7dq11UOHDhX+ViqV6kKFCqlnzZqVrG1q1xtJHT58WC2VStWBgYHCsqVLl6rt7OzU8fHxydo3btxY/fPPP6e5XmOSVZ/ljh071KampmqlUiks279/v1oikahlMlm6+pbS+S4jn7c+PN9RRuTEY0SMvxXkPnllTIrxt4K8LaePeX3boA9/L8g58sqYFOP1MxGR8WMGD8qTwsPDAQBOTk4AgBs3bkAul+tEQ5crVw5FixaFr69vutd74MABlChRAgcPHkTx4sVRrFgxDBo0CCEhIZm7AemUWdtFWS+vjMmMmD17NpydnVGtWjXMnTtXJz065Wy5Ybwn3QZ9fH194eDggJo1awrLvLy8IJVKceXKlUzvE32+vDImM2Lo0KFwcXFB7dq1sXr1aqjV6kxZL+VMWXWMJLVy5UqUKVMGjRo1SrGNTCbDjRs3dN5bKpXCy8vri69vfX19UalSJbi6ugrLWrZsiYiICDx48OCL1m0ssuqzrFGjBqRSKdasWQOlUonw8HBs2LABXl5eMDMz++z+ZuXnrcXzHYnltGPkc/G3gpwjr4zJjOBvBblbbhjz/L0gd8krYzIjeP1MRGR4DPCgPEelUmHkyJFo0KABKlasCAAIDAyEubl5stpyrq6uCAwMTPe6X758idevX2PHjh1Yv3491q5dixs3buDrr7/OzE1It8zaLspaeWlMpteIESOwdetWnD59Gj/88ANmzpyJcePGGbpblAlyw3jXtw36BAYGokCBAjrLTE1N4eTkxHOwEclLYzK9pk2bhu3bt8PHxwddu3bFTz/9hEWLFmVCTyknyspjRCwuLg6bNm3CwIEDU20XHBwMpVKpE4Txpe+tFRgYqHe92udyuqz8LIsXL47jx49jwoQJsLCwgIODA969e4ft27d/UZ+z8vMGeL4jXTnxGPlc/K0gZ8hLYzK9+FtB7pYbxjx/L8hd8tKYTC9ePxMRGQcGeFCeM3ToUNy/fx9bt27N9HWrVCrEx8dj/fr1aNSoEZo0aYJVq1bh9OnTePLkCd68eQNbW1vh38yZMzPtvWfOnKmz7jdv3mTauilrcUwmN3r0aDRp0gSVK1fGjz/+iL///huLFi1CfHx8pvWPDCM3jHd92/Djjz/qrJtyDo7J5P744w80aNAA1apVw6+//opx48Zh7ty5n9U3yvmy8hgR27NnDyIjI9G3b19h2fnz53XG8aZNmzLt/Vq3bi2st0KFCpm2XmOWlZ9lYGAgBg8ejL59++LatWs4e/YszM3N8fXXX0OtVmfpNSfPd5RZcusxwt8Kci6OyeT4W0HulhvGPH8vyF04JpPj9TMRkXEwNXQHiLLTsGHDcPDgQZw7dw5FihQRlru5uUEmkyEsLEwn+jYoKAhubm7pXn/BggVhamqKMmXKCMvKly8PAHjz5g2aNm2K27dvC89lVlo0QHNh1r17d+HvQoUKZdp2UdbJa2Pyc9WpUwcKhQJ+fn4oW7ZsZnSPDCA3jPeUtmHatGkYM2aMTls3Nzd8+PBBZ5lCoUBISAjPwUYir43Jz1WnTh3873//Q3x8PCwsLDJlnZQzZPUxIrZy5Uq0a9dOJ1NDzZo1dY4RV1dXWFhYwMTEBEFBQTqvz+h7r1y5ErGxsQAgpEB2c3PD1atXk61X+1xOltWf5eLFi2Fvb485c+YIyzZu3Ah3d3dcuXIl2WeZ3vOdi4tLmp83z3eUGXLqMZIe/K0gZ8prY/Jz8beC3CM3jHn+XpC75LUx+bl4/UxEZBgM8KA8Qa1WY/jw4dizZw/OnDmD4sWL6zxfo0YNmJmZ4eTJk+jatSsACHfW1qtXL93v06BBAygUCrx48QIlS5YEADx9+hQA4OHhAVNTU5QqVSqTtkqXk5NTsgu9zNouynx5dUx+rtu3b0MqlSZLX0k5Q24Y72ltQ4ECBZKNz3r16iEsLAw3btxAjRo1AACnTp2CSqVCnTp1PqsflDny6pj8XLdv34ajoyN/rMlDsusY0Xr16hVOnz6N/fv36yy3srLSe4zUqFEDJ0+eRKdOnQBosuWcPHkSw4YNS/d7Fi5cONmyevXqYcaMGfjw4YNw/Pj4+MDOzg6enp4Z2CLjkV2fZUxMDKRS3QShJiYmADSfz+ee78zNzdP8vHm+oy+R04+R9OBvBTlLXh2Tn4u/FeR8uWHM8/eC3CWvjsnPxetnIiLDYIAH5QlDhw7F5s2bsW/fPuTLl0+oh2dvbw8rKyvY29tj4MCBGD16NJycnGBnZ4fhw4ejXr16qFu3rrCe58+fIyoqCoGBgYiNjRWiaD09PWFubg4vLy9Ur14dAwYMwIIFC6BSqTB06FC0aNFC5+7dpGQyGR4+fCg8fv/+PW7fvg1bW1vhQi4qKgrPnz8XXvPq1Svcvn0bTk5OKFq0qN71ZtZ2UebLq2MS0KQgDAwMFF5779495MuXD0WLFoWTkxN8fX1x5coVNG3aFPny5YOvry9GjRqFb775Bo6Ojp+3w8mgcsN4T2sb9ClfvjxatWqFwYMHY9myZZDL5Rg2bBh69uypc5faw4cPIZPJEBISgsjISGG7qlat+ln7m9KWV8ckoMkcEhISgjdv3kCpVAp9LlWqFGxtbXHgwAEEBQWhbt26sLS0hI+PD2bOnJlpd/dQzpBdx4jW6tWrUbBgQbRu3Tpd/Rs9ejT69u2LmjVronbt2liwYAGio6PRv39/oU1a1xv6eHt7w9PTE99++y3mzJmDwMBATJw4EUOHDtX5wVK7HVFRUfj48SNu374Nc3NzowwCya7Psm3btpg/fz6mTZuGXr16ITIyEhMmTICHhweqVauWYv/Sc75Lz+etD893lB654RjhbwW5S14dkwB/K8ircsOY5+8FuUteHZMAr5+JiHIUNVEeAEDvvzVr1ghtYmNj1T/99JPa0dFRbW1tre7cubM6ICBAZz2NGzfWu55Xr14Jbd6/f6/u0qWL2tbWVu3q6qru16+f+tOnT6n279WrV3rX27hxY6HN6dOn9bbp27dvquvOrO2izJWXx+TkyZNT3fYbN26o69Spo7a3t1dbWlqqy5cvr545c6Y6Li4uPbuWjFBuGO/p2QZ9Pn36pO7Vq5fa1tZWbWdnp+7fv786MjJSp42Hh4fedVPWyctjsm/fvnpfd/r0abVarVYfOXJEXbVqVbWtra3axsZGXaVKFfWyZcvUSqUyPbuWconsPEaUSqW6SJEi6gkTJmSoj4sWLVIXLVpUbW5urq5du7b68uXLOs+ndb2REj8/P3Xr1q3VVlZWahcXF/Uvv/yilsvlae4fDw+PDPU/u2TnZ7llyxZ1tWrV1DY2Nur8+fOrO3TooH706FGq/UvP+U6tTvvz1ofnO0qP3HCM8LeC3CUvj0n+VpA35YYx/7n/N+PvBcYpL49JXj8TEeUcErVarQYRERERERERERERERERERERGS1p2k2IiIiIiIiIiIiIiIiIiIiIyJAY4EFERERERERERERERERERERk5BjgQURERERERERERERERERERGTkGOBBREREREREREREREREREREZOQY4EFERERERERERERERERERERk5BjgQURERERERERERERERERERGTkGOBBREREREREREREREREREREZOQY4EFERERERERERERERERERERk5BjgQURERERERERERERERERERGTkGOBBREREREREREREREREREREZOQY4EFERERERERERERERERERERk5BjgQURERERERERERERERERERGTkGOBBREREREREREREREREREREZOQY4EFERERERERERERERERERERk5BjgQURElM3Wrl0LiUQCPz8/Q3clXfz8/CCRSLB27do02/br1w/FihXL8j4RERERERERERERERHlNQzwICIiIqOjDSrR/jMxMUHRokXRuXNn3L59W6etRCLBsGHD9L52+vTpetffp08fSCQS2NraZuVmEBERERERERERERERZRoGeBAREWWzb7/9FrGxsfDw8DB0V9LFw8MDsbGx+Pbbb7P9vXv16oUNGzZg9erV6N27N06dOoW6desmC/LQx9LSElu2bEm2PDo6Gvv27YOlpWUW9JiIiIiIiIiIiIiIiChrMMCDiIgom5mYmMDS0hISicTQXUkXiUQCS0tLmJiYZPt7V69eHd988w369u2L2bNnY+PGjYiPj8fSpUvTfG2bNm3w8OFD3LlzR2f5vn37IJPJ0KJFi6zqNhERERERERERERERUaZjgAcREVEa+vXrh2LFiiVbPmXKFJ0gDW2pkL1796JixYqwsLBAhQoVcPToUZ3XrV27FhKJBH5+fsIytVqN6dOno0iRIrC2tkbTpk3x4MEDFCtWDP369UvxPVNbJwAcOXIEjRo1go2NDfLly4e2bdviwYMHGdp+bcmTtWvX6izXbqelpSUqVqyIPXv2ZGi9n6NZs2YAgFevXqXZtl69eihevDg2b96ss3zTpk1o1aoVnJycsqSPREREREREREREREREWYEBHkRERJnowoUL+Omnn9CzZ0/MmTMHcXFx6Nq1Kz59+pTq6yZNmoQ//vgDVapUwdy5c1GiRAl4e3sjOjr6s/uyYcMGtG3bFra2tvjzzz/xxx9/4OHDh2jYsGGyQJCMOn78OLp27QqJRIJZs2ahU6dO6N+/P65fv56sbWhoKIKDg9P8FxMTk+b7vnjxAgDg7Oycrn726tULW7duhVqtBgAEBwfj+PHj6N27dwa2loiIiIiIiIiIiIiIyPBMDd0BIiKi3OTRo0d4+PAhSpYsCQBo2rQpqlSpgi1btmDYsGF6X/Px40fMmTMHbdu2xYEDB4QMHb///jtmzpz5Wf2IiorCiBEjMGjQIKxYsUJY3rdvX5QtWxYzZ87UWZ5Rv/76K1xdXXHhwgXY29sDABo3bgxvb294eHjotK1WrRpev36d5jonT56MKVOm6CyLiYlBcHAwlEolHj9+jFGjRgEAunXrlq5+9u7dGzNnzsTFixfRsGFDbN++HZaWlujQoUOyzCpERERERERERERERETGjAEeREREmcjLy0sI7gCAypUrw87ODi9fvkzxNSdOnIBMJsPw4cN1yq+MHDnyswM8fHx8EBYWhl69eiE4OFhYbmJigjp16uD06dOftV4ACAgIwO3bt/Hbb78JwR0A0KJFC3h6eibLOrJp0ybExsamud4SJUokWzZ58mRMnjxZ+NvOzg5//vknunTpkq6+VqhQAZUrV8aWLVvQsGFDbN68GR07doS1tXW6Xk9ERERERERERERERGQsGOBBRESUiYoWLZpsmaOjI0JDQ1N8jTa7RenSpXWW58+fH46Ojp/Vj2fPngEAmjVrpvd5Ozu7z1ovkHJ/AaBs2bK4efOmzrIGDRp89nt9//336NatG6RSKRwcHFChQgVYWFhkaB29e/fG33//jVGjRuHSpUuYMGHCZ/eHiIiIiIiIiIiIiIjIUBjgQURElAZxVg0xpVKZbJmJiYnetmq1Olv7olKpAAAbNmyAm5tbsvamptl3CfDx40e9+yopW1tb2Nra6iwrXbo0vLy8vuj9e/XqhfHjx2Pw4MFwdnaGt7f3F62PiIiIiIiIiIiIiIjIEBjgQURElAZHR0eEhYUlW67NZPGlPDw8AGiybojLlHz8+DFZ5g9tRo+wsDA4ODik2BdtmZgCBQp8cYBEav1N6smTJ8mW1apVK137avLkyZgyZcoX9y+pokWLokGDBjhz5gyGDBmSrcEtREREREREREREREREmYUzHERERGkoWbIkwsPDcffuXVSuXBkAEBAQgD179mTK+r28vGBmZoZFixbB29tbyNKxYMECvX0BgHPnzqFDhw4AgOjoaKxbt06nXcuWLWFnZ4eZM2eiadOmMDMz03n+48ePyJ8//2f1t2DBgqhatSrWrVuH3377Dfb29gAAHx8fPHz4UAgA0dq0aRNiY2PTXK84uCWzTZ8+HadPn0aPHj2y7D2IiIiIiIiIiIiIiIiyEgM8iIiI0tCzZ0/8+uuv6Ny5M0aMGIGYmBgsXboUZcqUwc2bN794/fnz58eYMWMwa9YstGvXDm3atMGtW7dw5MgRuLi46LT19vZG0aJFMXDgQIwdOxYmJiZYvXo18ufPjzdv3gjt7OzssHTpUnz77beoXr06evbsKbQ5dOgQGjRogH///fez+zxr1iy0bdsWDRs2xIABAxASEoJFixahQoUKiIqK0mnboEGDz36fzNK4cWM0btzY0N0gIiIiIiIiIiIiIiL6bFJDd4CIiMjYOTs7Y8+ePbC2tsa4ceOwbt06zJo1C+3bt8+095g+fTqmTp2KW7duYezYsXjx4gWOHz8OGxsbnXZmZmbYs2cPSpYsiT/++AMLFy7EoEGDMGzYsGTr7N27N06ePInChQtj7ty5+Pnnn7F161ZUrVoV/fv3/6L+tmrVCjt27IBSqcT48eOxe/durFmzBjVr1vyi9WaUWq0GAJiYmGTr+xIREREREREREREREWU3iVo7M0JERERGp1ixYmjSpAnWrl1r6K4YpYiICNjb22PixIn43//+Z+juEBERERERERERERERZRlm8CAiIqIc69q1awAAT09PA/eEiIiIiIiIiIiIiIgoa5kaugNERERkGDKZDCEhIam2sbe3h5WVVTb1KP3u3r2LEydOYN68eXB2dkbbtm0N3SUiIiIiIiIiIiIiIqIsxQweREREedSlS5dQsGDBVP9t27bN0N3Ua/fu3ZgwYQKKFSuGI0eOwM7OztBdIiIiIiIiIiIiIiIiylIStVqtNnQniIiIKPuFhobixo0bqbapUKECChYsmE09IiIiIiIiIiIiIiIiopQwwIOIiIiIiIiIiIiIiIiIiIjIyLFECxEREREREREREREREREREZGRMzV0B4yBSqWCv78/8uXLB4lEYujuEBERERERkRFQq9WIjIxEoUKFIJXy/ggiIiIiIiIiIjIsBngA8Pf3h7u7u6G7QUREREREREbo7du3KFKkiKG7QUREREREREREeRwDPADky5cPgOZHOzs7OwP3Rj+5XI7jx4/D29sbZmZmhu4OkVHh8UHGhmOS8hqOeTI2HJOUWSIiIuDu7i78n5GIiIiIiIiIiMiQGOABCGVZ7OzsjDrAw9raGnZ2dvyRmigJHh9kbDgmKa/hmCdjwzFJmY2lPImIiIiIiIiIyBiwiDARERERERERERERERERERGRkWOABxEREREREREREREREREREZGRY4AHERERERERERERERERERERkZFjgAcRERERERERERERERERERGRkWOABxEREREREREREREREREREZGRY4AHERERERERERERERERERERkZFjgAcRERFRDrdh41lM+98OqFQqQ3eFiIiIiIiIiIiIiIiyCAM8iIiIiHK4pcuO4eixW7h565Whu0JERERERERERERERFmEAR5EREREuURcrMzQXSAiIiIiIiIiIiIioixi9AEexYoVg0QiSfZv6NChAIC4uDgMHToUzs7OsLW1RdeuXREUFGTgXhMRERFlP4lEYuguEBERERERERERERFRFjH6AI9r164hICBA+Ofj4wMA6NatGwBg1KhROHDgAHbs2IGzZ8/C398fXbp0MWSXiYiIiIiIiIiIiIiIiIiIiDKVqaE7kJb8+fPr/D179myULFkSjRs3Rnh4OFatWoXNmzejWbNmAIA1a9agfPnyuHz5MurWrWuILhMRERERERERERERERERERFlKqMP8BCTyWTYuHEjRo8eDYlEghs3bkAul8PLy0toU65cORQtWhS+vr4pBnjEx8cjPj5e+DsiIgIAIJfLIZfLs3YjPpO2X8baPyJD4vFBxoZjkgxFqVQaZNxxzJOx4ZikzMIxRERERERERERExiRHBXjs3bsXYWFh6NevHwAgMDAQ5ubmcHBw0Gnn6uqKwMDAFNcza9YsTJ06Ndny48ePw9raOjO7nOm0JWqIKDkeH2RsOCYpO6jVauHx9evXEBr63GB94ZgnY8MxSV8qJibG0F0gIiIiIiIiIiIS5KgAj1WrVqF169YoVKjQF61n/PjxGD16tPB3REQE3N3d4e3tDTs7uy/tZpaQy+Xw8fFBixYtYGZmZujuEBkVHh9kbDgmKTupVCrM+esqAKBmzVqoV69MtveBY56MDcckZRZttkciIiIiIiIiIiJjkGMCPF6/fo0TJ05g9+7dwjI3NzfIZDKEhYXpZPEICgqCm5tbiuuysLCAhYVFsuVmZmZG/wNwTugjkaHw+CBjwzFJ2UGhUAqPTUxNDDrmOObJ2HBM0pfi+CEiIiIiIiIiImMiNXQH0mvNmjUoUKAA2rZtKyyrUaMGzMzMcPLkSWHZkydP8ObNG9SrV88Q3SQiIiLKVipVYokWiURiwJ4QEREREREREREREVFWyhEZPFQqFdasWYO+ffvC1DSxy/b29hg4cCBGjx4NJycn2NnZYfjw4ahXrx7q1q1rwB4TERERZQ+VSmXoLhARERERERERERERUTbIEQEeJ06cwJs3bzBgwIBkz82fPx9SqRRdu3ZFfHw8WrZsiSVLlhigl0RERETZT5zBg4iIiIiIiIiIiIiIcq8cEeDh7e0NtVr/5IWlpSUWL16MxYsXZ3OviIiIiAyPAR5ERERERERERERERHmD1NAdICIiIqLPJw7wkBiwH0RERERERERERERElLUY4EFERESUg6lUKkN3gYiIiIiIiIiIiIiIsgEDPIiIiIhyMJWojB2LtRARERERERERERER5V4M8CAiIiLKwVTKxAweajVDPIiIiIiIiIiIiIiIcisGeBARERHlYCqVKIOHigEeRERERERERERERES5FQM8iIiIiHIwcYCHihk8iIiIiIiIiIiIiIhyLQZ4EBEREeVgKpVK72MiIiIiIiIiIiIiIspdGOBBRESUzWQyBf5ZeAjXrj03dFcoFxBn7VCxRAsRERERERERERERUa7FAA8iIqJstnOnL7Ztv4ifR602dFcoF1ApE4M61AzwICIiIiIiIiIiIiLKtRjgQURElM38A0IM3QXKRVRqUYkWNQM8iIiIiIiIiIiIiIhyKwZ4EBERZTOpVGLoLlAuIs7gwRItRERERERERERERES5FwM8iIiIsplEwgAPyjxqNQM8iIiIiIiIiIiIiIjyAgZ4EBERZTOplF+/lHmUqsQSLWqWaCEiIiIiIiIiIiIiyrU4w0RERJTNmMGDMpNaxQweRERERERERERERER5AQM8iIiIsplUygAPyjxKnQAPVSotiYiIiIiIiIiIiIgoJ2OABxERUTZjBg/KTMzgQURERERERERERESUNzDAg4iIKJsxgwdlJnHWDrWaAR5ERERERERERERERLkVAzyIiIiyGTN4UGZSMYMHEREREREREREREVGewAAPIiKibMYMHpSZxBk8xI+JiIiIiIiIiIiIiCh3YYAHERFRNmOAB2UmJTN4EBERERERERERERHlCQzwICIiymbiEi3MuEBfSi0K6lCrGeBBRERERERERERERJRbGX2Ax/v37/HNN9/A2dkZVlZWqFSpEq5fvy48r1arMWnSJBQsWBBWVlbw8vLCs2fPDNhjIiKi1IkzeCgUDPCgL6PUKdHCAA8iIiIiIiIiIiIiotzKqAM8QkND0aBBA5iZmeHIkSN4+PAh/v77bzg6Ogpt5syZg4ULF2LZsmW4cuUKbGxs0LJlS8TFxRmw50RERCkTZ/BQKJQG7AnlBszgQURERERERERERESUN5gaugOp+fPPP+Hu7o41a9YIy4oXLy48VqvVWLBgASZOnIiOHTsCANavXw9XV1fs3bsXPXv2zPY+ExERpUWcwUOpZAYP+jLirB1KJQM8iIiIiIiIiIiIiIhyK6MO8Ni/fz9atmyJbt264ezZsyhcuDB++uknDB48GADw6tUrBAYGwsvLS3iNvb096tSpA19f3xQDPOLj4xEfHy/8HRERAQCQy+WQy+VZuEWfT9svY+0fkSHx+CBjk9aYVKsTgzri4uJhaWnUX8dk5MTjTKFQGORcyPMwGRuOScosHENERERERERERGRMjHpG6eXLl1i6dClGjx6NCRMm4Nq1axgxYgTMzc3Rt29fBAYGAgBcXV11Xufq6io8p8+sWbMwderUZMuPHz8Oa2vrzN2ITObj42PoLhAZLR4fZGxSGpOPHr0XHh877oN8tubZ1SXKhZ4+DREeP3nyBIcPRxmsLzwPk7HhmKQvFRMTY+guEBERERERERERCYw6wEOlUqFmzZqYOXMmAKBatWq4f/8+li1bhr59+372esePH4/Ro0cLf0dERMDd3R3e3t6ws7P74n5nBblcDh8fH7Ro0QJmZmaG7g6RUeHxQcYmrTH5KeQszp1/BwBo0rgJXF0dsrmHlJvY2DzEnn3PAAClSpVGmzZNsr0PPA+TseGYpMyizfZIRERERERERERkDIw6wKNgwYLw9PTUWVa+fHns2rULAODm5gYACAoKQsGCBYU2QUFBqFq1aorrtbCwgIWFRbLlZmZmRv8DcE7oI5Gh8PggY5PymJSIHko5bumLSCQSnceGHE88D5Ox4ZikL8XxQ0RERERERERExkRq6A6kpkGDBnjy5InOsqdPn8LDwwMAULx4cbi5ueHkyZPC8xEREbhy5Qrq1auXrX0lIiJKL5VKLTxWKJQG7AnlBip14ngSjy3ST6VSYe++q3jxIuVyfkRERERERERERERExsioM3iMGjUK9evXx8yZM9G9e3dcvXoVK1aswIoVKwBo7lIdOXIkpk+fjtKlS6N48eL4448/UKhQIXTq1MmwnSciIkqBeBJeqVQZsCeUG4jHEwM80nbi5D3MmbsXAHDpwkzDdoaIiIiIiIiIiIiIKAOMOsCjVq1a2LNnD8aPH49p06ahePHiWLBgAfr06SO0GTduHKKjo/H9998jLCwMDRs2xNGjR2FpaWnAnhMREaVMpUoM6lAoGOBBX0Yc1KFWM8AjLczcQUREREREREREREQ5lVEHeABAu3bt0K5duxSfl0gkmDZtGqZNm5aNvSIiorxs4h+bERYeg4ULBkAqzXi1M2bwoMwkDhgSP46KioNarUa+fFaG6JbRsrQ0M3QXiIiIiIiIiIiIiIg+i9EHeBARERkTlUqFU6fvAwBe+X1AyRJun7EOUYCHQplpfaO8Sa2nRItKpULXbnMRGRmLUyemwNLS3FDdMzoW5gzwICIiIiIiIiIiIqKcKeO3HRMREeVh4uAMlfLzymEodUq0MMCDvoxSPCYTSrTI5UpERsYCAJ49Z0kSMQtRBg9xxhMiIiIiIiIiIiIiImPHAA8iIqIMEJdU+dzJYTVLtFAmEo9D7dhSqxPHmL9/SLb3yZiJS7TExckN2BMiIiIiIiIiIiIiooxhgAcREVEG6AR4qD8vg4dKJ4MHAzzoy+hklUkYW+JlDPDQZWZqIjyOiYk3YE+IiIiIiIiIiIiIiDKGAR5EREQZoBPgISrRsn7DWezZeyVd6xBPvrNEC30pccCQSk8Gj+DgyGzvkzETB2bFxsoM2BMiIiIiIiIiIiIioowxNXQHiIiIchJ9JVoiImKwbPkxmJhI0b5dzTTXoWKJFspE4vGkDexQKpNn9SAN8f5iBg8iIiIiIiIiIiIiykmYwYOIiCgDxAEZioTH8TKF8Fx6JoyVOiVamMGDvoxuiZbkGTzEzxOgEh3DMczgQUREREREREREREQ5CAM8iIiIMkCcDUEh1wRniCeMo6Li0lyHWlyihRk86AuJx5O2/AiDiFKmFGfwiGYGDyIiIiIiIiIiIiLKORjgQXmav38IIiJiDd0NIspBxAEZMrkmc4c4Q0JkKgEeT576IywsmiVaKFOJgzlUCaVZdIKIGOChQxykFRYebcCeEBERERERERERERFljKmhO0BkKEFBYfi6+18wMZHi/Nnphu4OERmZh4/e4bXfB7RuXV1nuU6JloQMHuIJ9ugUAjwePnqHQYOXwMXFDjVqlEhcByff6QuJy7FoH6tEy+QcYzrEAVZhYQzwICIiIiIiIiIiIqKcgwEelGc9ePAWAO+eJyL9Bg1eAgBwcbFDrVqlhOXaDAlA4sS5eFlUtP4Aj3PnHgIAgoMjmF2BMpX4e0wbvCAuG6RQ8HtOTCeDBwM8iIiIiIiIiIiIiCgHYYkWyrMsrcyFx5xgJaKUPHr8XudvpTLxfCGXaUu0JE4YR6WQwUOeUM4F0M34wSAz+lLiDB7acSbO4KHNNEMa4gweoaEM8CAiIiIiIiIiIiKinIMBHpRnWVmaCY9jYuIN2BONI0duYtxvGxAbKzN0V4hIJOn5QRyQoc3goUxHgIdMlhjgERWZ2CYvZFcQByBQ5hMHLMTGab5DdDPNKJK9Jq9QKJQYO2491m84KywTH8OhzOBBRERERERERERERDkIAzwoz5JIJcLjlCZks9P/ZuzEhQuPsHXbBZ3l8fFyhIZGGahXRLri4+VYuuyYUOIoL4iJ0T0/6AR4yPWUaImK1bueyMjE5eKyELk9g9C7d5/QrsNMbNh4Nu3G9Fl0AjxiNAEeambwAACcPnMfFy89xrLlx4Rl4v0VGBBqiG4REREREREREREREX0WBnhQniWepI2KNnyAh1ZEhO7kcNduc9G2/Ux8+hRpoB4RJdqw8Sw2bDyLwT8sNXRXsk10dJIMHqLJYW1whrgcRlSU/oxAISGJgVohoqCt3F6iZcmyowgNjcbSZcfSbkyfRVwiSJsFSqUzTnP3GEtN0uMX0N1fr/w+6ByPRERERERERERERETGjAEelGeJJ1WjjSCDh1bSUgbaSeE7d/0M0BsyBqfP3Mfz5wGG7gYA4MWLQEN3IdulVqJFW3ZFpVOiRX8GD3H5pdDQvJPBg7Ke3hItquSlhPIkPeWBkgZVPX3in129ISIiIiIiIiIiIiL6IqaG7gCRoShFdzTru8PXUJIGeGiZSBmPlRc9ePAWv0/cDAC4dGGmgXujm6kir0iWwUOZOFkuZPAQl2hJISOQduJd/DrN+nJ3dgWeu7KeToCHngwecrki2/tkLMTnLIVCCVNTk2Tfs5EpBGVlF5VKBblcCQsLM4P2g4iIiIiIiIiIiIiMH2ddKM8y1hIt4mkn8SSUiQkP17zozZuPhu6CjjwY34HoJBk8xMEccnlCgIc4g0ek/vNJnCiDh1huL5/Bc1fWU4pLtCSMV/GYVMjzbgYP8TkrLk4OQDf4BTB8kOewESvh5T01WYk2IiIiIiIiIiIiIqKkOOtCeZZCdBd+0hIMBqVOPnkMcJI0r7K0Mhcep5TdhbJW0sAMcXCYNjOCeII9PRk8xMTnotxIygweWU4tCliIiZVBrVbrZq7I5VliUiM+XuMSjsGkWXOiDRzkefu2H5RKFS75PjZoP4iIiIiIiIiIiIjI+HHWhfIscYkWmcx40teL5/DF/TIx5eGaF1mKUvYbxTjNg0EmcoVuAIZ4clj7meiUaIlKIYNHQvaApHJ9iRYGp2U5cbYOpVJT7kOt0h8sqHX58lM8eeqfLf0zpDhRYFVcvHFm8NAy9mw+sbEy3Lr9Ktefs4iIiIiIiIiIiIiMGWddKM/SN0lrDMRZGmSyxAlhqURiiO6QgVmIAjyMIdNMHozvSDY5Lj53xCZk99Ap0aInwEOtVqcc4KHI5Rk8THjuympJAxZiY2VQipYpFLrfcW/fBmP0mLXoP+Bf0TpUWLP2FK5de561nc1msaIMPPFCiRbdAAVjKdNm7IETY39dj6HD/sO27RcN3RUiIiIiIiIiIiKiPMuoAzymTJkCiUSi869cuXLC83FxcRg6dCicnZ1ha2uLrl27IigoyIA9ppxEPJESH69/4tUQxBPo8aLAE6UqD86sE9QQlV6I0V/iIzup8mCEhyJpBg/R5HBERGzCMt0MHknL6cQmlM3Qv37jntT9UiYs0ZJpXrwMxMFDN5IFAiQN8IiJjU81g8e7d5+Srfvc+Yf4b+UJ/DxqdSb22PDEgVXax0plkv2VRgaPFy8DMWDQYly/nrXBL0ojL9d08+ZLAMCevVcM3BMiIiIiIiIiIiKivMvoZ10qVKiAgIAA4d+FCxeE50aNGoUDBw5gx44dOHv2LPz9/dGlSxcD9pZyEmPN4AGIM3iIAjyM/M5eyhriSdqsyuDh6/sEDx68zZJ1Z9Tjx+8RGhpl6G7o3OEvl+ueH8THYkRkjKa9aJlCoUx2Tlm46HCK75UTj22VSpViwEpSLNGSeebO3YeZs3Zh3vwDOsuTBnjEx8t1xnDSICKJnoxQwcGRmdhT4xETm3jejIvXzbhjZ2cFIOWySlrLV/jg8eP3GDEya4NfckqwV9LxRkRERERERERERETZx+hnXUxNTeHm5ib8c3FxAQCEh4dj1apVmDdvHpo1a4YaNWpgzZo1uHTpEi5fvmzgXlNOoBBn8DCiAA/xnKksPmcHePj7h+DI0VvJMiBQ+imzOMDj5csg/DJ2HQb/sDR9L8jCDB4PH77FgEGL0anLn1n2HuklnsBUpFKiRZvBI2lmk6QlH/YfuCY8FpfdAZJnCDF2MpkCvb9ZgPETNqWrvVTKEi2Z5e691wCSZ1BIWnJEJlPojuFUxph2PFsmGZe5RZyoREtckhIt+fJpAjyiY1IP8HCwtxYeR0TEZHYXBcbwPR8UFIbFS44iMDAsxTYqI+gnERERERERERERUV5laugOpOXZs2coVKgQLC0tUa9ePcyaNQtFixbFjRs3IJfL4eXlJbQtV64cihYtCl9fX9StWzfFdcbHxyM+PnGiNCIiAgAgl8shlxtPqQ4xbb+MtX85kUyWuC9jY+ONZt8qlUqhLzGiSSdZvMxo+pheX3f/C4BmOzq0r5ll75Objw/xNkVExmT6Nl658kTve6VEqZPZInP7cu36s4T1Kg3+WYozcMgVuv0RnzsiIjSfiVym29+whCwkcrk8WWCOnZ0VPn4Ur0+Rru39FBIJJ0dbvdkXstONmy/w5k0w3rwJTle/xd2VyWQG778xefzkPTZvuYAfv2+BQoWcMvRa8b5XJCntERMTpxOYpFSqEBcXL2RTEZcCiY2Lg4W5GUzNEmN+4+PjIc1gaR1jPQ/HxiUGeERHx0EulwsBL1aW5po2sYnfr2/eBOOPSVvRp08jeLeoAgCwt7cS1vH+/SdYWWVNMIxMZvjr0N8nbsbDR+9w7vwDbFw/Qm8bpUpl8H6mh7GOScp5OIaIiIiIiIiIiMiYGHWAR506dbB27VqULVsWAQEBmDp1Kho1aoT79+8jMDAQ5ubmcHBw0HmNq6srAgMDU13vrFmzMHXq1GTLjx8/Dmtraz2vMB4+Pj6G7kKuce9e4jjxe/Uahw+nXEIhO71580boy5u3EcLya9dvICrKz0C9+jLHjvnC1ORDlr9Pbjw+XrwIFR5fvHgZIZ+eZer6z55/KTw+dOhQmpPvHz98FB5n9jHz4kXiMZkVx2NklAx+fuEoX84ZpqapT17LRZPjcrlSpz/37yfug7CwKBw+fBhPn4bovP706fMoVMgWPj4+CAyK1nlOAt2MQf7+/mlu763bQTju44f69QqjUcMiqbbNaq/fhAuP0/M5+fm9ER4fPHgozZItKpUagYHRcHOzyfXZP/6cq8nE8fDBKwzoXzlDrxXv+7dv3uk8d/7cRaihm1Xm0KHDwrh/+SoscT2HjsDCwhTPniWO4X37D8HC3CRD/dEytvOw+JrwypXriI15DT8/TSaU6BhNWZqQkFBhf27d/givX0dgxszdUMjfAwCePUscw0ePnUKJpw5Z0teHDx/h8OGItBtmoYePNGPp7dtPKR7fsbFxRnPNlB7GNiYp54mJybrMPURERERERERERBll1AEerVu3Fh5XrlwZderUgYeHB7Zv3w4rK6tUXpm68ePHY/To0cLfERERcHd3h7e3N+zs7L6oz1lFLpfDx8cHLVq0gJlZ7kyjnt0ioy7h5CnNJI9Lfle0adPGoP3RTvQVcXcX+nL16nNs2foIAFC5chW08MrYBKChabepRMliWbp/c/PxcfHiY+zc/RQA4OlZEa1bVcvU9V+4uBmAJmChZatWMDVJfVL31OlgvPLTTPC3bt06U7MxqNU3cOLk6yxZNwB06zEPHz6Ew96+IH78wTvVtjEx8Zi34Lrwt7g/atzEoSOawBiFQo1mzbxgbfMMe/YlBt94VqiMsNCXaNGiBR4+8se69fcBAH16N8KTp/748PGF0NbZJX+ax8ecv6YAAC75vsesmd+nf6OzwO3bfti67TEAoGXLVmkGbLx774Or1wIAAM2bt4C1tUWq7Rf8cwh79j7A113rYviw1qm2zem058iPwbHpOkdq2wPQaX/z1i48eBgs/F2teg2YmpgInxMANGrUBI6OtgA03y07dmqy9zRt2hwODja4fOUZdu/VjOGvGjWBs3O+DG2LsZ6Hz10IxfPnYQCAI0df4scfv8b9h3LcvvMBBfK7ICAgGra2+YT9eeDgewCaIAvtspevjghjuHjxcmjTpnqm9lH7uZYqVQpt2jTN1HVn1IKFNxEfr8lWkHRMavtpZmZu8Gum9DDWMUk5jzbbIxERERERERERkTEw6gCPpBwcHFCmTBk8f/4cLVq0gEwmQ1hYmE4Wj6CgILi5uaW6HgsLC1hYJJ9gMjMzM/ofgHNCH3MKtejmZoVcZTT7VSqRCn1RqhI7KYHEaPqYUdZWltnS99x4fEikiQEXEtHYyCwmooAOqcQk7fWLgi6kUhOYmn7eXf762NiKA/ekMDPL3K+oDx80gSm+l59i+LC2qbY1MdEteaHZ99r+6AaexMYqIJHoBjnExWmydJiZmUGVcByXLOmGoT+1xuQpW3XaqpTqNPe7ubmpMOlq6DFuZp74uaRnTJqaij/HtNvv2XsVALBz12WMHtXhs/uZ02T0cxW3V+sm64BSCZib647JyMh4FCjgqPlDJ3hK890iLski/4LvROM7D+ser7t2XQXUmmXmFpp+qlSJx6D4nKZdJt6/oaHRaW6fSqXCfytPoHz5IviqkWe6e6pSGf74trGxSPNco1IZzzVTehjfmKSchuOHiIiIiIiIiIiMScYKrBtYVFQUXrx4gYIFC6JGjRowMzPDyZMnheefPHmCN2/eoF69egbsJeUUSqVKeKydzDAGatFMkkyWWMpB3N+cxtKSP4x/LpUq8XPPijEgLoEhLkuSItFEZ2b3x8IicZzExMRn6rozSrzfASA+XpHicxERMVAl2RdRUXHCY7lMs1/NEwIjxAESQPr2o7m58cRjSkXBLApFOsaMiFyuSLsRpUg8DsTfFeokER4ymRwqpe6ykJAo4bFCkTjmtMe9WhRQqO/4u3PHDzt2Xkr2XsZArVbj55Gr8dv4jcn6l/TYjIuTCceweULQlvgY1Fe+Sfy8eD+m5NbtV1i3/gx+G78x2fkiqaw+x2eUrY1lmm1UKuMbA0RERERERERERER5RabNGHXp0iXDr1m2bBkKFCiQ4vNjxoxB+/bt4eHhAX9/f0yePBkmJibo1asX7O3tMXDgQIwePRpOTk6ws7PD8OHDUa9ePdStW/dLNoXyCPFEijiQIqs9fvweJ07eRf9+TWGjZyJFPDcl7pfCCCZ+MkI8kcsAj88nnnTNiolVcRmU9EzWi/ugUCh1gjL0CQuLBgA4ONhkqC8xMfHpek1WSTrRGh8vh62tpd7nIiJidbLtAEB0dBzsEyp+xcs0AWTmZprMAEnL4CiUyfd7dEw8bESlTCzMTRH5GduRFSQZDAoSTwanK4iIUmRubip8L8hkCuH4UyYJIpDJFFAlOV+EhIoCPETnZ3nCcS8ewzGxMp3XqtVqDBm6AgBQqqQbqlUr8aWbkqk+fYrEtevPAQCRkbGws7MWnku6H5ycbBEWHgMAMDPXHIviY9pET1Yi8fdvpCh4KyVRUYkBMq9efUDJkilnlhMfH8YQ4GFtk3oJJSB50AwRERERERERERERZZ9My+Cxd+9emJubw97ePl3/Dh06hKio1O+CfPfuHXr16oWyZcuie/fucHZ2xuXLl5E/f34AwPz589GuXTt07doVX331Fdzc3LB79+7M2iTK5QwV4DFg0GJs3nIey//z0fu8WpQiQSbKLJLWXcDGJjo6cYIrrSAASpl44jarJ9XSFeCB9E/WK5UqtGk3A23azUhXlhxVGhkEMkt64mSSBtOI+58swCMyJtnxqZPBQ67N4KE5DqytdSdQZfG655+bN1+ihfdULFl6VFhmTBk8xEFH8nSMGfG+YYDHlzEzSww+iItLHJNqVfLxmvR8oZPBQ/ScQpvBQ524LDZJgEdAQKjw+MXLoM/pepYSB4clzbCRdN/ExSXuG20GD/G5z9Qk8dJYex4QH/NRUbFp9kfc5slT/1TbJg2aM7R0ZfAwwiwuRERERERERERERHlFps4YLVy4MNWMHGI7d+5Ms83WrVtTfd7S0hKLFy/G4sWL0/WeRGKGLtHy8kWg/idE8ybiyVNjuLM3I8QBHsaY0j+nEE9OJs0SkRnEk+/isg0pEY/DtCYj40TH1du3wShVqmCq7cUTzDExslRaZr2k+1ocBJa09EVERKzOBDOgHf8SnddqswX07tUQJ07ehaurPR48eKsTDAIA/y4+AgDYuOkcfhrSKuG1xhPgoRRlHJGnIzhOqRQHBSVvHx8vZxBYOkmlicEHsbEy2NtrMlXoG69JJ+FDRRk8xIE22sficZ00wOrxk/fC43nzD6DxV57In9/+czcj04nPS8GfIlGsWOK1qHY/FCzoiICAUMSKSrSY6SnRIs7gERYWDUdHW90Aj8i0M3iEJ2QIATQZRcT8/D7gyVN/eLeoAolEYnwZPEQBaDKZQm9wGUu0EBERERERERERERlOpmXwOH36NJycnNLd/siRIyhcuHBmvT0BePkyCAcP3TCKyXS5XIELFx4lm9gwJjoBHl+QweP58wD8OGQ5bt58maHX6UsDDyQV12YSAAEAAElEQVS9mzexj8Yw8ZMR0TGJk2A5re/GRJnFJVrE6xeXComOiUfffouwfMVxnfbiieG0AkLEGQSCPoSn2ZfUJpgzU3r2Y9LsB+IgsKTlksLDY5KNcXHQhjbAQztR6uJih317fsWvYzsBACKSnCe1k/ZixpTBQ7yt6cngId7fSTN4XL78FE2bT8bmLeeFZSYmmXZpkuuI931cXGIQVNIMMjKZIlnmCnFWDnFwlvYzVKXyOSUNQrp+/UVGu56ldAI8giN0ntPuB23gQmyMTNhWcz0lWsTatp+J6Og4KEXnuqjojAV4RCdp3/ubBZg6bTvOnnsAwPhKtJiaJh5/KR3fxtBPIiIiIiIiIiIiorwq02ZRGjduDFPT9E9ANWzYEBYWadf5pvT75rt/MHPWLmHSwJBWrT6Fcb9twLjf/s/ed8fJUdzZv+mJO7NJqxwRAgVyMkFEmyzZnP0zts+Zszn7bHM+5/NxTodtnE1ywgaMI8HkJIIkkMhISAiBcl6lzXFyT/j90f2t/lZ198ys2FUw9T4fPszO1HRXV1dozXv13l8PdFV8MVwRLd+8+m9Y/cYO/Od/3Tqk73nZwFuvnTKcZDvUCBVO0B9qdT+YwInbkWhHTgJz0nfhwtexafNe/PkvS6TyBS7wKFYm9zlx2VGLwKO8fwQetUDdoZ5jMSpF5boHBtIu0QgngYXAI+yskYFAAA0NdQCsHf78+03NCVd9DiaBh1e8RyUUpYgWea79/g/vAeC4lgBAyEf89s8IwwhUL8TA54MME3jQOI7FLCeUfL4gtTvgL/Ao2PeEi5qKCrGvRrYk6qvHeOxP8Lnx+z+4RxpPNK8kbIFHNpsXYjIvBw/1eaB1Z5cS0TJUgYf3XLZ6datUP6A2F6WRBncjKvrURzt4aGhoaGhoaGhoaGhoaGhoaGhoaGgcOIzINtnzzjsPf/nLX5DJHLzuDf/M2LzZJ/pjP+LBh14BALz++vYDW5EK4CTtW4lo6e4e3KfvcQcPTpaUwXfzHroCD17fQ63uBxO4AGMkSDUpooWR9VEmKJAcGCRiuDK5zwnm9vZaHDx4RMtbF3hwhwMJNTSjW+DhzBFqfx4YzIi6EznKSWASNagiDRJ4FIsliUBvZg4eRMRHDyKBB28b1enBs3wFt6S6uoirfDj89hF4hMNDu698PhgYcJ6xikLgYbVnLvcWHTwUgYe6RtYi7NmfUMVmvL40xyUSlsAjnakc0ZJT5g3VoSdZgzPZwIAj8PBz/DC9hDUHw1rJNEeqmI1wMDjFaWhoaGhoaGhoaGhoaGhoaGhoaGi8XTEiAo+TTjoJX//61zFhwgR85jOfwcsvvzwSp9HwgRdhtr/Bd7sfrBguB4+h7sAmcAcPTrL/szh4aIHH8KA4wgIPKaKF7dZuZCIDvgNd2vlfJZ6jNMQxxgnm1FsUeDz66Ks4/8L/w8JFr+/T99XIC5kwtupJUSKDAxnRjg0NlrMBbzO6dpXMr6uLOMdgpHE9c0dYu3YXACASCYv3DjS5OtSIFt5vVaEAOU5w8IiIf3ZEhihm4eP1pZc2iNduBw9TKgvIgic+1mmdKfm4+Vjfle9b2haL9PYmD3h/BNxOE9xBg64rbgs8spm8aBuKaOHXq17rwEBG6vPpTF4qPziYwdPPvCH1bS5kSvk4fuRtgQdvPz9BxUhiw4bdWLZ8k/ibR2XVsnZnMnn8/g9PScfQqI4NG3Zj1+7uA10NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NjUMQI8Ki3HDDDdizZw9uv/12dHR04Nxzz8XRRx+NX/ziF2hvbx+JU77twcmGWNRNmO1vvBVHjP0FTnDl84V9JqmCwX0bRsEQF3iwc5e9SbZDTSTBSaKDwXb+UEWZCQ1U0cFwgIsweH/jMRm9vUlWh9rvqyzyqU5ccscBNRJiqPjRT+4HAHzv/+7ep++r8RZeDh7NdpTKwEBa3JumRksYk/KKaInKAg81poXA2/hzX/g9enqTiLLvvhVB2nCA38uCWb0uvC3VtaEu5hYkhoJvIwePITqz8HVqw8Y94jW1MbWn15rGI114VE7BU+ChxLsorhaZTA5Ln12Ld1/2I/zmt08M6RpGAgXVVYe5m9C8ErcjWjLZvJj3vBw8snYf5eNbXX/Taac9/ufqv+Hb37lTihni82rSJ6LFzLvbvRZHnOFEqVTCp678Db78ldvR2dkv3iPUsnb/4Np78Oe/LMF11z0yYvX8Z0Nn1wA+deVv8KF//eWBroqGhoaGhoaGhoaGhoaGhoaGhobGIYgR2yYbCoXw/ve/Hw899BB27dqFj370o/jOd76DqVOn4n3vex+efvrpkTr12xIDjByMHgQCj0MBnLApl8v7TKwYxj4KPII+ES1lb5JNJVp2tHZiy9YDH8fjB07qHgzilFtvW4TPfu5m/9iOgxSyg8cICDw4mecTCdTbm/J8v6qDxxDdR/i1DkdEy1sBFygB8o58VeAxOJgV5RttgQePaCFBhlfMSqOHwEMdLzt2dEruH29V/PJWwd0SanLwKHIHD1kQ4ung8XaKaAkN0cFDihJxxDIuEUMm7xpzGSZK8HJh4XOBuh7mVAePdB6/+tVjAIA77nxuSNcwEnDHJjEHD3tNTcQtZxzeNhSbJAk87GsdN64JgDuiBZAFMq+t2gYAeOTRV51zsrb3dfDIm3ZZ59jceWR/oKNjQLzu7bPmeT4P17J2r1u3GwDQurProFjrDwW0tnYe6CpoaGhoaGhoaGhoaGhoaGhoaGhoHMIYcR/0ZcuW4Xvf+x5++ctfYty4cbj66qsxZswYvOc978HXv/71kT792wYSOTgCMQ7/jFB3/O7rrvhgsPaIFtkhgTl4lLnAg5d3k8r0+iMfvR6f+ORNklPAwYSDLaLlj7c/jTffbJVIuEMBJcnBY/jHdslHUFSSBB6Og4dEDDOSM5vN46GHl6OzyyEMhyry4eKmtyrwaGAxJ5XOU2sZycHDvq5RfIc/OSjUOQ4KBGonNaKFl+exEGpbqS4XqpvC/obcB2qJaPF38Ih5RIqFhih6OJQRYaKfWsYInwOyuTx7X3WVyYj3qI/JDh5F1+uSROzL99XLwWOo7iMjCZfAw8PBo77eEr+k0zkxXqn9S6WyaC9ap0ePbrCPlXaJ2bz6PX+vVOYOHn4RLe527+4e9L7AEcIOJjRwHEWGNm+3tNSL111s/tfwhxFwnhsPhogjDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NjUMLIyLw6OjowC9/+Usce+yxOOecc9DZ2Yk777wT27dvxzXXXINbb70VTz31FG6++eaROP3bEoOMzDBrsMzXcBNYtJt2qPBz8Einc3jxpQ0S0cvJTR7twsn0MrwJdz/nhM7Og5NQkUmi/Ws7XwncjeJQwFBdMIZ8fClKhzl4sHP5CTzyjND829+fxU9/9gA+89nfeZathSjkZXgEwr5gFCMd9wVqREvew8Fj1CibTB/MiHsTtt0nJKcFimjxIMQptsXr+IRSuSyNp+yBdvDgUR41CDx4+UoRLdT/hupqcSiDiyRqiTbjZDAXBZFQi/pk/0BaCBsStqsHL8/HOj0z1OLg0dhoOc6kM3nP/nygoK4xXOBBbcPddehaueiKxrAY383O+FbHpJd7Eb83smuN930189TuTODRs38FHjt3donXmYwlquN1L/q4OnHw696zp2e4q/hPiYDhCDwOBgGshoaGhoaGhoaGhoaGhoaGhoaGxqGFERF4TJkyBbfeeiuuuOIK7Nq1C/feey8uvfRSBNiOteOPPx6nnnrqSJz+bQnu4LG/M9wPVag/quf20cGD78Tk+O7/3YWvf+PPuP6GRwQZxAk23x2c7CW/l35Ey77Wm7BnT0/VqI19gUwSHTwExsHqeOKH0ghHtHAhAyfr+bnIuh+Q+yEXJayyYwo6OvqdYwxR4DGcDh6jWxrEazWWpxaZjCuihTt4FGS3hEwmLz4nwrhUKovrMSsIPKKRsPv4Cllt5gtSP8hk902MNlyQRT7V5x/eD9SIliiLaEmlrHvOHTz+2Xe382vNKkKA3t4kXnppg6+jgiTwKJLAwxI29felhLCGx7YQzILbwaNc8hZ78XPR8TPpg0vgoUaYDQywiBb7uigOKZnMivJhFgdEbUvtnUjYwphMvmJEixcqiWXUY0hxLqncfo0R430obfcPP+cltU/Q37xMO5v/NfwRgBZ4aGhoaGhoaGhoaGhoaGhoaGhoaOw7RkTgsXjxYqxbtw7f+MY3MHbsWM8yjY2NeOaZZ0bi9G9LcGLoYHLw4C4VBxtcAo8adk97we8aX3xxAwDgoYeX48rP/BaAuoPam0ThhGbBR9TBX7/88kasXLl1n+q+bPkmfOBDv8CPf3L/Pn2/EgpDJPf3F4hEPlRQHmkHj5J3f5MiWiSBh/fO9OnTx4nXXsSlGolUrS7PPrf2LQlaYkw40NExdJcb9dyyAMP6jBwBAEdkF45wcYL1fyJ499XBwywUJdL1gDt4cNJ3iBEtqlMSJzrbO/oAyKS7V3RWuVzGH29fjBdeWF9znQ9W8PGdU4Q7n/733+Jr3/gzHn1shVVWEbtwIYC3g4fV7vGEW+BRLLiFWpIziyKYoIiWFlvgkU7nED2IBB7qmJHaxm6HxiZnvJIAhI9JEizQPFRXZ7VbLlfwHJMV68Pa0m9skzhTva/d3UnsL3g5A/kJitQ5nOY1XuZQc8g6UDCYg4cWZWtoaGhoaGhoaGhoaGhoaGhoaGgMFSPCvp9zzjkjcViNCuA/EHsRYsOBXbu7h7yr/mAWeKg79Pe13YwarnHTpr0AgGzOewe1ZO3uE3/gJ/D4/R+ewn/+1637JOy58abHAACPP/HakL9bDX4k0YFGMnloOXhwYn8kBB5lH1KXE5T33vsS7rzreet97t7AxszYsU3idatt+y+LfIYmBACAV1dsqVg+lzPx+BOvSREyBH4tq17fVvXc7rqoDh4F9pkT70BCkkG7X4VD7sgHcrnwih7xcvBQidSCWZTmq8x+3OHvBX4vqxHdgNyWqpCO96dt2zoAANEoc/XwWHOWLd+MW29bjG988y+1V/oghSTcUe5re3sfAGDps2utsi4RgynWDhJkkcNGKpUTEUrk4FEoFIWIgT8z0D2RxIUFeT0h8UnLaPv46ZwUbzJSzx21Qm2bfN69vkYjznjt7raiUKht+DGoLeNxKz4olzPdES1VSHkukONrc8HDOUWNg+rZjzEtUiwWCTx83LeKBbWNrevi19TTs//EKYcCyuUy9u7tdYsVmYPbSDioaWhoaGhoaGhoaGhoaGhoaGhoaPxzY9jY95NPPhm9vb01lz/77LOxe/fu4Tr92x78B+KR+LF469Z2fOhff4kPffiXrs9SqewhaaOv/uCetwncVCqL//rSbXjwoWU1HYfvxKwGk5FOfAc1J9OlyIxCdYEHYV+cKYhQHQlUq+/+BD9/8hCOaFGJwOGAX39Tx8evfr3AKi/FbZie5bdubXe9pwqqvKCKKnbu7K5Y/pZbF+EHP7wHX/zSba7PTEZQ/+SnD0if1TJfuQUebgePUNAQBHGKBB7MwYOOQdfuJQYjBw8eteQiUs2C5077A4WiRF5XX294H1MFHrzPUb8psxCd5KB7vHIS+VBcezik++rjIkVCSS+BF5Hs5ODR2FAn4vD6bOcd7mZD94sLoMhZSo7jUMQktjhxzJhGAEByMCPFy/CYuAMBt8CDz01W2wSMABrsmBZaL+vqIqIcCavo//RZLmdK7kaAf78nMWeJ9Utelou3KLqprNzX7v0o8JCin6o6eMjXTG0sO3hogQfHgsdX4vIP/hy3/XGx9H6lOCQNDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NjWoYNoHHqlWr8Prrr2P16tU1/bdq1SrkcodWVMLBDL57lu9cHS48b1vhq7sz16/fjYsu+T6u/dF9w37OkYa6Sz5nkxV33vU8Xl2xBT/7+YM1HSdo1DaMisWSLzHKf+x/7rl1+Pp//9kilXxiXLwEE0TOFIultxRtMVyQhAkHWOAh7aA+xOzQ+b1UicDhOb63g4efW4ifgwcn2pct24xyuey7E7yWugBAf79j9/+7m5/EJ6+4SXJ0eO45y9mAhAEcKgFbzWGgtzcpOX2oYhovgYcRDAiBRzJpEdyRsNvBg47lJQajiAhePy8HDy4Cy2T3LU5quMDvUy3OQSUp1kcuz/uFEAax8tSuHFywMOghADmUwK/VT7gTsgUeXmIWEmfQPQmFgqiz2ydli9l4n3RiSNyim7KPKMH6nu0Q0mw5eCSTWanPHmjhnOoQ5LW+GgED9fUxqVw0GhYCGuHgYZensZ3L1x7Rcs0P/iEdg45L7c3XH3L2KakRLV3DL/DYu7cXryzb5Hqf94NMxppbpageycFDnVO9Ilq0wIPjN799HABw+5/kSEpZWMnvQf6geH7T0NDQ0NDQ0NDQ0NDQ0NDQ0NDQOLgxrAHqF1xwQc27aQOB2l0PNKpDdvDYf1bpf/3bUgDWLsVvf+sDAGSS6GDZXf3UU6sQjYZx3nnHiPf8HDz6+9NDOrYRrK0vqwIPvhtWJbZffHED1q7dKZFI8u5qN7mUzuSQzebx8U/ciImTRuFXN/57zdcwEqgkSOnuHkRbWx+OOWbqfqmLZNePg6NP1greN0aC+Cn59KuSjyBDJoZ5bIlTz8cWrMD48U047dSZ4r1aBB6qgIULymiueeyxFfjQB88EADSPSmDnLm+XD1XIwwlor2np0//+W7S39+HnP/0kzjprjqsuksDDboMgc/CgiJZQ2HE1oPlPEMweYjCKI5EFJApZXShK90ON8tjfKCqEZDV4iQkIfB7cus0SeHDy00s4IBHKfUk0NtbVUOuDEwXpvlZ28PAaQ9lsHk1NcdHGRjCASDSMdCYvjsedNmiMe0XDFIuc2Jf7IPW/pqY4AGBgMIOm5rhzjAPsKqM6juSZ8IgEFAEjgMYGua9EoyEEg4a1PhdI4OF28FCfZfyEgvT8oM6fpllENGpIcyzF3qhlu0cg5uTyD/4cAPD7mz+H446dJt7n91w4ePiIOlxt7OngkYKGg8Onj8drqyzhoGkWRKyR1/Ncb28S//K+n+CkEw/HTTdeuf8rq6GhoaGhoaGhoaGhoaGhoaGhoXHIYNgEHtu2bateSMGUKVOG6/Rve/DdqiPh4OGHUMhNWB5otwYVPT2D+L/vW7tqn13yA0F2qZERwup+iC4JnLQtl8u+4qVCoSgRt/yeeRH3uXzBN3rHq43T6TxefHED9uztxZ693nFJ6XQOO3d2YfbsyRWuaHhQSeBx2Xt/DAC49ZYv4OijRn4e4C4DavzFwQ5OLBZriDkZKjjRSwS79b58rlAoiFKpJI0PrxgEwh9vfxqnnHKEc7xaHDwUErXHYzc4J8GbmxPi9f9+6++49ocfFeNP3WE/UEW41d7eBwBYuOh1nHXWHNeY5K4ZdC2WwMMigZMU0RLiES30f38Hj6iHg4fLLSBfUHbaH2AyndUvna5eF96XVIEHv9a9e3uRTuekvuQV0cLFBL29SRw2bWxtFT8IMZSIFj4XRKNh5HKm+E5JuFQERJ+ifhIMGTCMAEqlsrh3fP2jvs2Pr4oI6R42NVkCiWQyi2zGqW/mQIuO1IgWD/GZEQhgzNhGqVw0GkYoaCAPS9RSLpcdB48628EjZ4p7QGIQLiAJh4NiPaf5R3UAyucLiEbDUrumSVChOngMc0QLX/82bNgtCTx4/6OxXPJz8HDF4FjHla4pXd2Zr78/jUwmjwkTmmu8gkMX48Y3idcrVmzFGWfMAuAt8Fj67FoUiyW8umLL/q2khoaGhoaGhoaGhoaGhoaGhoaGxiGHYYtoOeyww4b8XzAYrH5gjZogRVDsxzxvvjOYwH+4PhgMPLgjBxdVqGSFl019LeARLZXavlCQHTz4zliV4AGsHcJ8l7Cfmwchk8lh127HzcDrOr7+33/Gp678DZ5/fp1vPYcLpZKbwFCxghEZvb1JXHf9w9iypW3Y68Lvuxo9QHjxpQ14+uk3hv3cbxXyeKqtbxaLpZpFANyp4t57XxKv6f5xAY4q4vBz8FCPQXWqBiqfSFjEaq+9k51/lx+zuckReCxZugY7WjvF3+oOe8mZp0I7Dg5akSCqwIXe5/UxDMfBI2l/bhiGIIOdiBZy8PAQeHg6eLjjIHh9DriDR3FohC53BEgr/VJ1BRgYyEjlyRmFgwsh+voObceAknRfnevic6bj4OGUJWFRVnGBMAxD9CnqJ0HDEGs1Cdz4XJLLErHP5mxl/NBnTfaYKxSK6B9wxhQXexwIuMaM6Z6bAkYAkye1SOXUiBZ+P0RES84Ux6e25e0TZhE4NMbVuZrqw9fxTCaPcrnsdi7qHl4Hj9adXeI1uZIQ+PUO2Pez6DNvq64uedMd0UJCn0pr1VVfvAXv/8DPRmStP9jA5/UVK53nHS+BB617wMHjfqehoaGhoaGhoaGhoaGhoaGhoaFxcGLYBB4aBxayg8f+i2ghYoSjsA+E9EiC/5AuOTkoO2xzdrv5kRt+4KRtpbYvFItS23BiU3UTASyLeU7ymfkqAo90HrtYXIVXmVWrtgMA7r3/Zd96Dhc4ceTXjrx/PPjQMtx738v4xBU3DXsUCb/vubybiCwUivj6N/6Mb3/3TixbvmlYz/1WITl41Ngun/mP3+HiS78viRL8oAoZCEQY19lEcqFQFGOEkJMcPNx14/1ajR3xPKddl8ZGK/ohlbLEA1yswvsSlSOEmGhQdfDoqzF6iQQFamzCACOzqQ6hoCF2+ZNwIRgMuAQe1DZBj4iWSC0OHmZR3mlfo3gnlcqOiKMSH9tDjWhpb+uTPlP7RTaXlx08ku4+zM/p5fBxKIH3sxwT7vBrdPqTU5bEB1nFBcIwAkKEQGR7IBBAyD4GkfRyRIvsAgK4hTf0WX0iJurT1TUgPk9nqgt9RhJ+7hKAM4cGjQAmqQKPSBhB24msWChJbexEtBTE8WMxq235/BJmsUzk4OF2CLPK8zW9XC4jmzVdc3B3d3UHj8cWrMBLL22oWg4Adu3qEa+TimCK94POTut++q3d7mtyR7SQaAVl/+e/rVstp6jb/ri4pvofyuDCpwEPkSDg9KX6REy8R2ufhoaGhoaGhoaGhoaGhoaGhoaGhoYXtMDjnwRc4HHAHTz24/lrASd6OEFNJAYRNrTbme+m9bPM5zCYyEUlwDmKhaIUD2JKDh5uEtY0i1IZbglf8CBt05k8kimHvKnUD1Ieu+KHG/xaveoL+BPF7e39w1oX3nZeDh48ZmLp0rXDeu63Cr5r30sI5IX163ejWCxJO4b9wAlNLtgi0rGuztlVnFHcGngMgheZJznW1BB9RHWJ2QQ1jV1OSnKXAzUNie8wp/5P47u/vzanB3KEIMKc5riBAYeco/tgRbREpe/HYhFBpjsCD8dBQIWnwMMeOyJuxixI956cTSphb1svLrrk+7j6W3+vWhYA7v7HC/jxT+/3FVeZZgFvvNlqR03xWAdvIrKvL4VPffrXuOvu56V7v3tPjxI9JZ8vmzEl0rnfQ5jDHUxUIc+hBj438vWGz4fUF7nTU8R2jaA+L2JIDEP0KSKXjWAAQbsfU9vz/uTEvHivTwBzrQkGUF8fk84JyOPyQEB97sj7OHi4BB7RkBCGFYuyyxaJ23I505lP7LmJryP8OYjmJFWMR99XI8IymZzLwaNaRMuePT249kf34Wvf+HNNIloucFRFf1xg1NHZ73rPzz0JcESnqsCjVvTUMI8d6uDRRWkm2ih5iH15P+KCQg0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NFVrg8U8C/gM+JzZGGqHQwe/gwX9gNz12yYud0DZBJVmoDzF+oNJu+UKhpDh4MIGHB3FvmkXZwcP03uE/1850T6dlosgvigQABj12xdeCdDqHxYtX1xTL4OeEwvsEf027zgHZ1nyoKJfLeGbJm1JcTaGKw00q7QgIyJVi46Y92L69Y5/rMVzgpFot44mXCdUQg6Xu1qZ7Reetizn3JaUKPKTx5CHwGHJEi3WMaEyOLeH3Z2Aw7SpPKHhE8TQ3W5ESXChQqRV37erG3rZecWz+fWpbupZg0BBkNyFeFxGiLypPx/Jy8KgU0SLcAsyi1JZExFbCQw8tA4Ca45huvOkxPPLIq3jhRW9XgJt+tQD/8bmbcetti2oidP/052ewYeMe3PSrBa6onjbm4qH2C8vBg1/rAFRk2K74SvPcoQDJmYWNL/6ahFRODEtAkMFEDnMRQzRqCTxo7TMCAbFWk8CgJEW0eDl4eEe0BA0DsZgc8wEMjdgfCRTYmARkxysah0YggPHjmqTvRSIhKaKFi5HiLM6Eng9obirwZy42dg1y8FDmJpor1f6aTufFvaB69PQkK7pYSaKBWtZiHnmkCDz4etHZOYBSqeQ7b6tRciRo5SKtYrEkPatUqsuB7jP7A9mM973yimjh73FBoYaGhoaGhoaGhoaGhoaGhoaGhoaGCi3w+CeBWXATm8MLb1I+yAhkQX5y4UKpPCIRAUMBt8jmhDSRZQkh8LB+iOc/wtdCQHDRhro7VypXKEpxBJyM9iLuTbMgO354RLRMmtSCUaPqRV05AaMSdJx02Vdi5Yc/uhff+d5d+MlPH6ha1s/m3cs6X63vWxEprXp9O7717TvwoX/9JTseO7aHeEQlVlOpLP7tU7/GRz9+wwHvv6UhRrTw9g2FaxB4KNenkk3BYFCIEFQykYsSvPpwpdgRL9Ax6mwCmQjEVNI570C/v8DDlJwh/AUe6thQ67bi1S2iXUbZ3y8UimLc0Dg2ggaOOWaq9N26eNQd0cKIeRVeDh7kykACj0KhKF1rR4db9KCiq6t6zIMXdu7s8nz/PjvW6S9/XVqTgwcXcagCNr5zX70X2YwplW9v74MKycFjPwoaRwL8vnInIR7DQ6Iz7tJBsSLCkUMIMAKIRGxXKvsYsiCEHDwY0W63pzRnuwQezrljTPRF4PfkQID6JMWqSGu93TYBI4CxYxul7wUCAUngwduFu/PQ8UjcwueaMeyYNGep8yr1U7W/pzM5UXb06AZRDy/nGkI4FBKve/uqOxPJAg8loqUor9N9fSnPtbtcLtcU0QIAmQpuLvz6D3Ssz/4Ad+XhsSvyc6Nb4NGvOHj09aXw5a/ejkWLV49UVTU0NDQ0NDQ0NDQ0NDQ0NDQ0NDQOIYyIwGPGjBno7u52vd/X14cZM2bs83F/8pOfIBAI4Mtf/rJ4L5vN4qqrrsLo0aNRX1+Pyy+/HO3t7ft8jkMV8s714Se8OHfLf4TmDh70w70ax7E/I2O8wHe75j1cMBJ27jnt0OU/wqdrEXgU3MILL6j279L3PIj7fL7gG9FCBHMoaAhCK5PJSf1AvQ/qzt19wZIlawCgJpKBi1n4dXNRgLxj3FvMMlTs3dvrvG7rtY/nHdND4NbpmXRe2j3b3b1vRPlwgROFKmnoBS7eCQWrT/HqrmwSiBVZDAk5AqhkviTgsPtwA3O06GfkYy0CDzpnTCFpUyx6iMcQqbvcvRw8WlosAVRvryMqGBjISNeiOsZs3tImricejyBsC2WIdOMOHqecLK9pdXURJvCw61n2j2ip7ODhtAO/952d/VXdXLr2sd/W0t+rCTyWLl2DZ59zoo7U+c3rWgnZXF52K+lwu5VIrkyHuoOHT1tygYVw8BAiC7eDR7mSg4dh+Dp+AM7aV6rgACVESsGA5LZEONBuDCSGFAIPj4gWIxDwdB+h8aoKqcLhkBRbBXhHtIxuaRCvKU5KnVdJZMhjpAAgOZgVYzkSCQlHIJXgl66VHaOvd2gCj6Ti3qXOoclkzuVKVi6XgbJ8XsBqg1Kp5JqLKjmf8brwWJ+Dwe1tJFCLg4dpup+d1YiWW29bhGXLNuG737trpKqqoaGhoaGhoaGhoaGhoaGhoaGhcQhhRAQe27dvd/0QDAC5XA67d+/ep2MuX74cv//973H88cdL73/lK1/BI488gnvuuQdLly7Fnj178P73v3+fznEog5MZb4UcrwVcmMAdPHI2CaW6WKhCg/0NTjwRUQY4pGM8ITt45BjpkKlhh6kk2vDo9+KzQlF2suAOHjapNGZ0A84++yhRXopo8XBDCAYNscs4nclL/aCgEHR8R7AXKTvcBIufgwcndThJJl1rYd9FSjFGPm7atBeAPD7y+YLrWrmoJ6O0Y7sHwbw/weuqkoZe4OR3sVS9vErwkUCM3jeCDinKHQYAxcHDPtcHPjBX9MkBtlt8aA4e1j0UAg/WX/m9ctfd3Z/GjLZ213cz14hczsSTT63yvA4A2Lq1XVyPYTgxLCmbvKV2pYiWQMARbkgCjxoiWkgkx8VcNIcKMrlQlO69aRarCrb6mLhmKGO7q6u6OwgXYHiJ4K6/8VHpb7WuXs4u1GaZjKm4lfS77jMnTQ91B4+Cj8CDv+84ePCIFopcsQVZLEKFXGFo7QsYAUnEwMvz8/J2VtftIuvDJCDhyFZwbdgfoPqS+4+Zdws8vARWABw3lKIchWQYbjFLXdw6vhSxxuNucqZLKMLro67Lra2dngKUXIX25Mfuq8XBg9W1vV1ez9R6ptM5ad2QrlMpOzCQloSZNA9W6gu8PAlBSEDiN09t2dqGzhrmpYMRfD1O+UW02K/5v5tonaM20ZEtGhoaGhoaGhoaGhoaGhoaGhoaGhzDKvB4+OGH8fDDDwMAnnzySfH3ww8/jAceeAA/+MEPMH369CEfN5lM4mMf+xhuueUWjBo1Srzf39+P2267Dddddx3OP/98nHLKKbj99tvx4osv4uWXXx6uyzokIO1cH2HHDP7DNI8cIJJUFTmoVu/7GxkfMpDIioQQeFj15+2XSQ/RwaNiRIvs4MHFI4I8CwXRYkeu5PMFibDmghBOigoHj3ReEveozincmj2dzrsI96E4rfBdzeVyGT/92QO4447nlOPJu4AJnPzh5IcsZtn3PsPFGXQulVRTd6ersTy8jl4REfsT3EJftcj3Aie/1euudnzAaZsSI4yjNmHMnTQAnxiEQEAIPDixX4v7CB2DSE4SRfHzcLcVV92Z1T31uTFjrN31qjPFUwtfF6+zisBjb1uvGJNGMIBIOOQ6PmC1jWEYQpACAPG6ChEtQTfBHLJFckWP8UJOJma+4BI5VIpwAOS5eShje+cut/uWCl5XtU8AbteNXiauAWRBDdWNRDS5bN7lIJDLySKOXuZasD8cPB56eDlee23riBxbjmjxFi8JB4+yIzqifiOcswrOmkCiBJrHopGwEITQ+lxm5x0czCCbzSsiIrnNubgkGvFy8DiwcRtEjntFtBBJTgKrceOapO+G7fGdzxXE84phBBAIBDBqVEIq29BQB0Dud2VF+JDNmi7hkqncJ8KWre1ShAzF31QUSbDx0VdlHgBkod/2HR0oFIpOpJ4yr6TTOanv8bVbFXisWLFV+pzGMF/XW1u78IEP/hwPPviKXXf2fJU1XfOais7Ofnzikzfhve/7SeWLHEYMp9iV30e/8e3ELDnnzWTykvCFHHg0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NIBhFni8733vw/ve9z4EAgFcccUV4u/3ve99+PCHP4yFCxfil7/85ZCPe9VVV+Hd7343LrzwQun9FStWwDRN6f05c+Zg2rRpeOmll97y9RxK4GSD6RFBMZzwI+6JtHM5eBxggUeWkQ05j53jibhMSnBiqxaxTLHo3R4qVAcPLjwpM+t9ioMwzaIkjuH1KjIyjwitdDonO7koxGc+L9uhq7vqVeKpEmKM0N6+vQMPPbwcv/7t456Ev3Vspy6c3JXECD5xNEMFv246l3o8lbzctbtHvE6lc8jnDh6BB2/HamQYoDjW1NCOfi4YPA7CcfDwj2gpMVeLuL3LnfexWhw86Bh817xpFqS+UUtECy8/Zozl4NGh3MddTMigOnh0dg6I+hqGgZA9JgumIvCwyds6W9ACWASzYRPJNK6JRDUCHgIPis7wmEdIOGIWii5xT7Ud3ZwQVAUSKng7rl+/2zNug4u6OEmbTGalnemFQlHs5CcnCXL5oGN4RbRQVFYma7qcZzhhDAAdnY6AZKQFHm++2Yqf/uwBXPXFW0fk+LztJXcadr9p3aL3pIgWO0KDxmYiERXtTohGQ46QqEgRLfLYaWvrk4Q1+bwq8CDBk+EZ0XKgHTxUUZRXRAs5eHzoA2cCcPpjXMSc5dm8Z33G41cAoN7up6bpiCRUZyUukqC1Ujh4KM8UO3Z0MuFOQLj2qKIzDn7vBmoReChxIDtaO4VwQJ1XrLp7u2+pfWb9ht2eAg++rt/4q8ewZ28vfvaLh6zjseu3+m1lES2fp1MVol+GC9XcRIaCUkkWJ6ZSOUdY4xHR4icABuCKCtLQ0NDQ0NDQ0NDQ0NDQ0NDQ0NB4e8Pts/0WQD/+Hn744Vi+fDnGjBnzlo951113YeXKlVi+fLnrs7a2NkQiETQ3N0vvjx8/Hm1tbb7HzOVyyOWcH08HBizrZ9M0YZoHlqTwA9XLr345Rt7nzcKwXwc/XiabRTxOEQrO+8lkBqZpIpuTf7DPZHIwzdiw1mco4Jnz2UxOXIsghGKOnb1pmhIBk83mq7alVD6X8y2fzeWl9jLNItLpDMLhEPJ5q82MQABBe5d/LpeXBCaWo4f1fbrf1m5qi7hLpbMSmaDWRSVJu7rlXfaZTBahkLeFvYpoNCyOXS47pMSWLXtx5JETAAAFFrPC655MOfcjnXbqKNU949+OXuDjgxMjqZTdJxXCOpXKIGK3Wy5v4ubfPyk+y2RyUh0HBtIHdF7gZHqxWKpal0He32vovy6L/kzWngud+xGxIxn6++U4AH58Ggflckk4ePQPOOULxWLNYykadcQJqVQGOTanpFI51zmd+uTsPuCIQEaNigMABpOy00TBdOqTstts1KgE+vrSyOcL6OzsAwAEAkDYJtPTdr8kkrIM635wwVMo7IzhUrkM03QiR0plr/tnfWayedtpB9rN73bc6ekZqNie3MEjlcpIbapCbcedOztx+OHjfMur42nXrk7MOHw8AEscUy6XETQMzJgxHuvXO7FsdbEIkqmsaEd+bhIFpdNZl9tLcjCNhnqrT5VKJXR2OnENuVwef/v7Ujzy6Ku49ocfwWHTxvrWe1+wt80Rfw33PFAul6Xxl0pl2XzonGvLljbcc+8LOPHEwwFY99Zg60QqlRH9Ixw2hEiQEA4bjrjGHrNqBMuu3V3SXJPNys9DQhhSLLqOb9XDlObh/Q1qrxiLdxJrlHDSscb8Bz5wOsIRA7NnT7bGbx0J0tLI2s+GwaAB0zQxqsVx8AiHg+Lac7k8zLwJBNzuRAODKSGciEbCSKVyyNhzU055PhoYSIu6BwIBRO3609rlBWk+TGertjfvSwDQ1dmPqZNbgIC8Tlt1T8tRcnn7vpad44RCQRQKRWSzeWSzznqbEM5N9poZkAW2pmkik5WFC93d/YhERlnTYABS3BXgxOcAwPZtbZg1a1LFa1Ux1D5JAg+vugwVOaXdC4Uiksk0otGwdE9yOWtMcmEpPU9TXXi618H675R/duh219DQ0NDQ0NDQ0NDQ0NDQ0NA4mDCsAg/Ctm3bxOtsNotYbN/I/Z07d+JLX/oSFi5cuM/H8MKPf/xjXHPNNa73n3rqKcTj8WE7z0hg4cKFnu/v3eMIWgYGkliwYMGwnnf9+l1OHZ5ahMZG64f8zZu3i/effmYJJq6rx569sh3/okWL0dx84AQe69fvEK9ffmU5+vstq/102tr52tZmXdue3W1YsGABBgac+r/66gpk0jtQCZxMfu6557F1S4NnuRdfeBFd3fKu+4cffgx1dWHs2mXFR6QzabS2WufbuGmLLHrI5sV93bDRIh0HBvuxfsNaAMDuXXuRTDo/QC9d+hw2bawXf2/a5BCVAPDkE09Lfz/xxFNIJNw7s71QLJqiLvyaHnjgKRxzjCXs2rzZabf+/kFRfscOR1iyo3WXeL+1tVW8v2z5q0gmt9dUF46FCxdi9eq94u/XX38TdbEevL66Qyr35JMLRR9et16OpEgmM3jhBSfiaf36jViw4MDFD7Tu2Cle721rqzq2N2/pFa9XrFiJfG5nhdJuN5MlzyzBuHEJbNpk3Y/W1h3I2n38tdfWSGX7+gbY/bPOs2nTJmTSVn/evs2ZN5LJVNW6b926HQCwY8d2BAJAuQw8/sRT2LDB6bu5nIlHHnkUwaCBHazPAMCy5SuQTG5HJuOMg/XrV0tlgsEAisUyMtmcqA+NP5QLSCRCSCZNvPjSKgBAb0830rZo6MUXX0Lb3nXo67cEBq8uX46O9g0w884c8OILz4m5pVQqY+HChUgOWnPKKy+/jF075TbcudM6Vn+/05YDA4P2e912O+5EMmUdMxIxkM+X8NxzL6OnZ7NvW3Z3Of36yScXoqkp6lvWNGWCetHiZzB5kjOPlctlifTdtl1u90cfXYQjj7Di02j+jydCCBrKLvSQRXqvWrUaoaA1JlP2deVylhhozZp1yGRlMc5TTy3G2LHW2pxMymKXrdu248GHLAHoZz77O3z5v97he537gi1sPFG/Gy6o4qrOrl7RB/h5AeCGGx/Dp/7tOAAW0djVabXf66tWI5N2xtmSJYvR2rpL+u7mzZswOGj1s1deWYaens3o6ZHXg8WLX0BHhyPISibToi7czeDppxejq6vddS07d+4Wzyd+zykjCZqv+vqsfs/XS9MWMSxZskSMg0gY2La1C9u2vi7G2asrVqG3dzsAoFwqYsGCBRgccMaRYQA7d1qfb9iwGY8/YQliupW2XLTwGeRNS9hQLFlz0fLlK5BO7cD6DdbxaH7r6OzBKy9b8SXJwUEUC9Zj+SsvL8fgwDZ4QcxXANatW48FCyq7eKxds0f6+/kXXkJb23rrWLt3S58tX75SEm28+eZaJOJWX9xur92hEFAoWKLYJ598SpTN2mP4pZeXobd3CwCgp9tpvwULFqCnVx7bCxYswqRJ9fADv9aHH1mEo4/aN+H4geiTOY+ouQULnkAsFsIbbzjPKa+9tgql4h7pOWX9+s14/HHn+7t372LHGN7ne43aQOu6hoaGhoaGhoaGhoaGhoaGhobGwYAREXiUSiVce+21uPnmm9He3o6NGzdixowZ+M53voPp06fjyiuvrOk4K1asQEdHB04++WTxXrFYxLPPPotf//rXePLJJ5HP59HX1ye5eLS3t2PChAm+x7366qvx1a9+Vfw9MDCAqVOn4uKLL0ZjY+PQL3g/wDRNLFy4EBdddBHCYTcJ/9SiDmC79eN7OBTB/Pnzh/X8u3YvxIsvWUTAueeeh0mTWgAAGzY+ihUrLbLnHaechhNOmI4332zFX//mkJhnn30upk17624u+4r1Gx7FqyssAcyxxx6PSy4+AQDwh1vfBGDiuOOOxsuv7EU80YD58+fjj7evA2ARHMcccxzmzztJHGv7jk5MnjQK4bAzdH71m1UArB/iTz/9DBx/3GEAgJ/+/BWpHqeccip2tHZi0WJH+HDmWedi4oRRWLVqO/5+51o0NNRjzpxZePmVPZg8eQpWrHCEO6VSWdzXWN2bePChTRg7ZgzOOvN0PPzIZtTFG5DPpwFYBMrpp52B446bJr6/ZOka3P/gJvH3McecAGCt+Pu8d74T48Y2VWxLuqaWUU2iLtu2deC2P1ok+uQpMzB//tkAgE2bF4h2NwIhUf7Flzbgrn9Y5FJT4yjx/rLl/8Catd123Y7DvEuddq8GPj56+17G089YZN/06TMwf/75SGdexhNPOmTZWWedg6lTrT7Z0fkMgM3sWCUcfdRxuP+BjQCAKVOmDft4GgpeX/0A3nizEwAwZszYqnV5+uk3cd/9Vt2PPvoYzJ9fmfC+7oZXAViuAKVSGaefcSaOmjMZO1qfwsuv7MURR8xAf38aW7auQlPTWABOnwyFnblm1ev34403OzFnzhwUSzuxo3UA0WgCgEUsRyLRqnXfuPkxrFjZjpkzZ2LVqi5ksnmcc/a5KJfXYfHTzrg577zz0dgYx2ur7sebb3aJ94899lhcctGJ6OlN4qZfrwQAvO+98/Dnv7wpyjQ2xtHbm0IgYIj6LH91C/5+51qMamlGJBLC+vW7EQ41AOjE1GmTEdrTi46ONE466RScOXcW7rhrM7q7M5h75lyccPxheODBVnR0WuTPey6bhyee3IPu7gxKJeDCCy/En/+yAejP4eyzz8JRR02RrvnNNTtxx13rEIvVifr89e8bgd4sZs85AmvXdaOxaRT6B0oAchg7phm79/Tg8MNnYv78ub5t+ciju7F7jyW2mHvm2Zh+mL+zRTqdw3U3OC5ZJ574Dpz6jiOczzM5/OwXy8Tf9YlmAH3i72nTZmL+/NMAAC+9tBHAGkycMBpz5x6NNWsXi3LjxrWgv38vjjhiJubPPwcA8PtbrHl42tRJ2LlzAyZPnoY1a/sAOMKjU089A0cdNRmBQACbNu8F8Jr4bML4SVgNa3zkcsVhH6srV27FvfZ4Ovfc89HUNHwi0Hy+gJ//0mnXAJsnX3hhvTgvYIkBzj7rbPzx9jdQF4thypTJ2LipF7PnHIUzzpiJX/92JeLxKN797nejt+9ZvPSyQ+qfdNLx6OxajT17kzjhxJPwzvOOwYMP78TevSk0NcXR35/G4YcfiWi0F6+tskjmYhGiLoVCUdz/Sy65GDtaF+HNNc64A4BRLaNx0UUXVXxOGUls2/4EXlm2F4cfPg0bNvSgVALmzZuHQCAg5rgLLjgf48a517g31z6E9et7MH36ETjnnKPxh1tfRyRizW3dPc9i5WvWM05DQxwnnXQcXnhxN1paxmHepfOAgDXW9uxxhKEnnXwq/nHvRgAljGpuRH9/J44++ljMn38yorE38NDDm9HcnEBvbwrlUhDvOPVU/OPeDWhubsKYsY3Y0TqAOUcdg/nzTwFgObs8/8IGnHXmbNTXx8TzAgBMmXIY5s+fV7FtunuexZJnHaHfsccej3eddywQAF5eNoj16x2ByhFHzMQLL+wFjb9Zs2Zh3ryzgTKw/NXNuPsf69HYWI9sth+lUhnnnHMefvO71xAKBTF58gTs2jWIOXOOwbxLTgICwNPPdGFHq7UGzJ8/H9u3d+CWW18X5zv6mBMw94xZvq4ZK1/bJq510iTr+aJcLtfsrpHP57Fo0SJceOGFiEQiVcsPp4NHf38aN9z4qvTeeee+Cy2j6zEw+KJ4TrHW6VNRKCwXzyljx03AvHnzRF22bntC9EPq1yNZ9+HAUO7ToQBye9TQ0NDQ0NDQ0NDQ0NDQ0NDQ0DgYMCICjx/+8If485//jJ/97Gf4zGc+I94/9thjccMNN9Qs8LjgggvwxhtvSO996lOfwpw5c/DNb34TU6dORTgcxuLFi3H55ZcDADZs2IDW1lbMnetPfEWjUUSj7t3M4XB4v5MSQ4VfHbnFvmkWhv06pOj1gCGOz9/P5Yv2++oPuoED2q4ltvu4WCyzulvvNzZYhF0uZyIcDkuxKOWSU37R4tX47vfuwqmnHokbr/+0KCPHGzjX2tBQh8FB5tgRCABluW3MfAnhcBiGvSs8aBiIxSwSIp+Td3+WSmUEAgZCoSACdhuHQkHU2/XPZORIlzIgtXtZ3qSPZEq2ig/AqHif+C7uaMzphwbzDs/lvPte1m5bACgWnOMUCiXX/QCAErtPQ0E4HEax6D6+6lBQKjltQ+Xf997T8OBDFonZP5BxHeNAoaz8Ua0ueZP33+rlqd2j0TAymTz7DvWxEJqbrR3WfUpEi3S/bSInHA6hPlEHAEimnJ3gxWIN7Vh2+nUkGkImm0epZJHb8nmLnsei+2oErRiFYNDAuHHNaG5OoK/PqnsiEUNvbwqFgnUMq19b541EQhg1yrrW9g5LMFcXiyJiR6WUimWEQ04fi0YjCIfDyDJr/Yb6OEJ2pEvJnj9o7IQj7vk7GrXGe5H1s2LB6q9NjVY8RDbjxLw0j0pg954epNL5iu05lPFkGLKLSz4vj+Nta2VHiFRaduYwTafuaTu+pbExjunT5ZiXxkarXxQKJYRCIQQCAeHG0WDPY/l8UcS9RSIh5PMF5PNFhENhOw5DrnuxJI9tqsdwkYvBkPOYlM9797t9BZ+rAGsOp+MHAta82thYh4GBDBoa6kS/NoIGwhGrXuWys1bE41GEw2G0tMhC1Xg8JqJFyuWA3Setz+rrY+jvTyOXK0hzTaFQFOsNb+JoNIK6OvfzU8F02uZAPEtRd4/bdSuXyzCMoF1/68OIx/gDgPp6q19mMyYMg9rYaicueozFImhqssZkOp2zjhVQ5mhQH7bepfgXmgvovjY3WQKPZCor3jOCBurs8nxM/eKX9+DpZ97E2WfNwc9++kmpX5tm9T6pjgPTLIu6U+UDgQDK5TKy2YIYf1Y72mOqDATstZ6iWOhaAWuupbYXdQ9AzIUAjU3ZAWdwICuO7y1McP7u608jFAoNScQg5t4a++S+iCRornnjzVa0t/fhwguOl+puGAGEQkHk8wWUxTOic+ySsuYCVkQSb5dIhNfdkETGb6XuQ0Wt8+rBJjYZDhzs/z7U0NDQ0NDQ0NDQ0NDQ0NDQ0Hh7YUQEHn/5y1/whz/8ARdccAE+97nPifdPOOEErF+/vubjNDQ04Nhjj5XeSyQSGD16tHj/yiuvxFe/+lW0tLSgsbERX/ziFzF37lycccYZw3MxBzmy2byV551zCDqz4LaFfqvgIgb+mlvlp2wyt6jk0RdGoD5DAZGlgBxHUbLrmai34mPSadtSnYtl2Ov7H7BiO5Yvd9we1OgC9doBh6ArFEooKJ+nbaK0bJNBASMgfrjPZNyxIKZZRCgUFOexSJWIXT4vRboUCvK51H6RTGYqfq6CHzsacaYOLqBJp2VCn5DLmYIY4P3Br75cpDBU8HuczZr2+WUxCz8vEVSJRAwN9TEMJrPYtcuxlc/lDmzuepkT9SWVSnSDX1stcwHdp2g0JImEiOQLBgOCfO/pkeOX+LloPBlGAImERfRxgVMtdScyzjACiNh9LJcruOaQZMpyqVHJfSrHx0cgEMDMmRPFuCVyslgsoVQqIQCnTwYNA6NGWQRue3ufaJewTVK628YiK3tZuxiGId6n6ymWyuIzFaGQ9V6hWBJjxBE9WMRzOpMT52y031NFFip42+RyhQol3fMWzYWE116ToyJSSav9g0EDxWIJJhuvdM8bGupQXy9Hc9H15HImUAbKKIv5tr7eui/ZbF70lXg8iny+gEzWqQ/vcwBgesQgELlYRu0iDz/ikvc96nfDhaIyJvi10f1LJGIYGMhY7VJ0xkfIFnsUCiUx79K4a2mRIy+i0bAoT+1N80p9wl7/MnlprgGs+bO+PiiNXcMwEI26Hx3fypw9HCjY5+fiE9MsIBQKsnnFO16H5gRrnMllW0Y7UUV1sYjowwODTl9Q2y2dzokxFYuF7brIc1Oj7QRTLJbEs1PQMBCzBV+0dgHA089YDkTPv2A9P/N+o44HL6jjO8vGU1H0gygGk1mk03np+Py71P+isbAQhNBcEWTilEzGOT5v83K5jEJR7ie9fbJo8NHHViASDuLii08E4NxXQJ5nDxbwueY/PnczAGDsmEaccMJ0sV6EQkEh8DDt+8XblZ5ZeLtnlDk4GHSEMrmcKdbHZcs3oa2tD/9y2akjcHUy9mVe1dDQ0NDQ0NDQ0NDQ0NDQ0NDQ0BgZjIjAY/fu3TjyyCNd75dKJZjm8JKl119/PQzDwOWXX45cLodLLrkEv/3tb4f1HAcr2tv78NGP34CzzpyDnl7nh29zBIgWTr5Lr9mP9Wmb/FKFBerf+xuSoIARnfQDO+3YHxiwIhZMyQ3FeR0OeZBa+YIs8Cjw19Z3Y7EIBgYyKBaKKCrkBpG09MN+0DDETut0Rv6B36pPAXV1EYfADhmC0Mpk8r5CHPVaAFmM4VVehUQSsR/3S0VvgYdK6OfzBUSjYYnEyOWd+UB1oeEYGEjDMAwXYeyFPCN8iSTjZBkA5Nnx6VyRSBDjxjdjMNmGnTud+IFaCLSRBCfqVUGDZ3mJOKp8TyVXFnuHMBFQJCgwDAONjRYZ2WvPM/G6CNKZvCTcKTESNR53Czy8xE8qOLlKBFY+X3DNIT3dSWCm3Pf49XKxCQBMmjhKlCESnOoUCgYlwcYo262EjhWNhsWYVEnaoH38waRM/JMjD12POL7hJsUcor4oyDMSgjUw8Rkdgxx+zCr9ko+/aiIl9d6kFCHDli1t0t8kdIjXRTCYzErjNWm3RUNDHepiciSCI/Bgwi773PG4da2ZrCnqk0hE0deXkgjpvDI3DIegsRJxyef0VKqyqGaoKCntXiyWUCjIIj4SH5hmUbSz5Qhg2N8pinpR2VHNCem40WgYQSYkApiARPSxnGvOzmbzqK+PSY4OhhFANOreyV6tP440qF/E406fM/NFxGJlcV0Bj/EHOK4flrhBFm+NZgKPaCwsxiQXSNLcF42GkcuZyLC2FPOqMjfF41GEQkEUCkUM2s8eASMgBCG8z6tQxZNAZWcFdf7k6yHd2/qGOlvgkZPutyTwKDvPKdFoCNmsKeaCYNAQdZcEHkGnTl5zeW+vI/AYGMzgRz++DwAwcVILjjt2GsyC06+6ewY9r+9gw0svb8QJJ0wXc0c4HEQ4HEQ67V5DAG9xtPp8xm9tNmeKufTLX7kdADBnzmTMPHLikOv6zxajoqGhoaGhoaGhoaGhoaGhoaGh8XaB93bGt4ijjz4azz33nOv9e++9FyeddNJbOvaSJUtwww03iL9jsRh+85vfoKenB6lUCvfffz8mTJjwls5xKCCVzuH/Xf4zZDJ5LFq8Gp2dTjZ0sViqiUwdCvxcOyTyK31wOnhIAg+T75C2yArasZ/NmsjlTIkU52REJOIWeLhEEuza6TW5XRQKRY+d8pUcPByShH6AJ7EBHTsYNFAX93HwUMj9YkEVeMgEUjUhjlR3JgyoxcEDcEhdLiqQ2pqJX2SHjQIunf9DXHzp92vq15KDh+3c4RJ48OPb5UOhIMaNs+z4W5nAI3cAiMtyuSxEW1zEoO4U90Ilkc/q1Ttwxad+hddWWY4MvD2jtNNcuGA4bgFN9m7zvj6LiKyL813yRFw65WknN0dtAg9HmOEIPEzXdbS19UrlxfVSXUgwFaSYi7goE084IiHV8cMIBjzJcRqTYqd1USaBp08fCwCYNKlFel8VeHgRzBRhwNuHxkh9g0O+0/1QHQH8wMVkQxV4qHPD9h2d0t9ESJKQhws2BpiDR0wReDRyBw8b1EYkvMllTfaeLfrIVHLwGNnxyfseOZfwOeytwGtMmEof5oIkWmMNwxD9plAoivfpfrgdPEIuBw/qkyRYyKTzHgIP066n834waAjRAseBFsLR2Od9rlAoSvfK8CGySRTCnTdIHDaatWUkHBTEejLpdvCoZ4KsMhN9AG6XhqAREOVpzBgBLvAwWbyI494AyMKgXK7gCJR8+mUlBw+at+t9hD58nhHzc9AR+ZAYLMTEpvz4vM1T6ZxrLt+y1RGPcUHgE0+sBCA/l/R0yw4eplnAH25ZKNazgwVb7Wsy2bMFrSF5ZQ0BHLEQfy+T8X8+y9njkq9/7e39Q65ntX6joaGhoaGhoaGhoaGhoaGhoaGhcfBiRAQe3/3ud/Gf//mf+OlPf4pSqYT7778fn/nMZ3Dttdfiu9/97kic8m2HhU+tqvj5cIsqJIFHwZuUJ3Lf5RxxwAUezo/gnOgXVukNcUHI9vWlpB/ZC2z3aDgikyyAmwjlpKoTfWERIQUP4Y0g0DixbZM59AN/MOi4GbgcBFhEixU54fxQX+0+qLv0VUGICn5szgeUfEgJ1W2C3DpKPvbyBSlKx6lLd7eza5cTQH7gIp6ciGhRBB480sh2/IhEQhg3thEA0NHhkCX5/P6PaLn9T0/jPZf9CEuXrpHIF1XQ4IVKDh6f+8LvsWnTXnzzf/5qH485eFA/NWUCOBg00NwUl44TZwIOuoc8XmWfBR7MBYSI2jSLjSG02fEpasSFqQo27HgAImUBJ5ICcPockZzBoBPRQvBy8CgpAo8f/fBjmD//ZNxw3aek9+l2lZhDjwoR0cKukY5fzwQOjoOHdZ/yZqEiMceFQUMXeNjCs3IZhUJRONrwuQYA4glyl3DqwiNa1H5QX+8l8HDcOgAgk3WutT5BhLFTXhV0jPT6Igk80rmqpGgmk8ff73gWO1o7PT/n8BrPNJ6oD8RiESE2SAuBR4AJPNwRLeRKRYhGwlIUkHVuW0BCxH4m56oPEfVuBw+viJb9I/Dwa3cam5FISBK/yPEyfgIPcvDIucY2b8tkKif68OBgRtSF5i1yUOFRPmK85q0xwp2RhMBjwBZ4BANi3stm86KfxRTHFC8Hj0rwe+7gdW9g/cBPaOCI+AxRJyeiJYi6OtvBgwk8uPgrnc6J50dq39df3y76fJada8XKrQDkNYw71QHAk0+9jj/9+Rlc9Z+3VLz+/Q0SnNDcFGYCD6+IFnKAkhw8VIEHe7akcckdhbRIQ0NDQ0NDQ0NDQ0NDQ0NDQ0ND4+2FERF4vPe978UjjzyCRYsWIZFI4Lvf/S7WrVuHRx55BBdddNFInPJth2DILTZoYiTscMe0+LkCFDzs6w86Bw8uQsnwCBEn5qSx0SJtVAKBt2MkXN3BgxxNyuWyW+Dh4eBBf9MOYCMQQL1NRpPIIBg0hOhD3f1p2aK7yXTATXxWi2jhVuhe4IIN7tpR9nHwUOMHvHadcvEEF5hwFw4e49JvW9lXAheNOBEted8ydK5wOITJk0dXPN7+wq23LQYA/Ogn9ysRLdVJnFoiWmis8ntB/ZT6GI9LaVQEHtFoWLjKEMEoREqBgGefrEngUXTGAe2c7+4eFKQgCZ3a2vqk+rsEUErMAo1vQI5wcDl4GAbG2iIf51pDgpxTywdtV4Tp08fh2//7AUyZMlo6b1k4eDhtqYIT9YSiQr4XCkVBlEajLKKl0q59dm8z2aFHtJCQYcXKrTDNIpqbE5g2baxUTjh45E1RF0fgERPkNmC5EJFgg4uCVLeObMZxkogLgYszr6jjsZowzQupdA7/uOdFdHUNVC1bKTbBC3fd/Tx+89sn8JGPXl+1LN3zYNAQfSavOD0YbI5PpxyBB5UvFIouR5W6ugiamRNNNBqWRA8AE3hwcYOPgwefJwKBgOSCQxiJaLju7kF853t34uVXNgKo7DggyHQ7DoPqpNbdC2LuyxdcY5XaGQA2btyDBttVxzSLjhhHibvhAo8oE3igLLsF0XlpfZIcPJhwI6YIpXifrGV98hPuAExMZgtX1BgiqayIaHE7ePBnkQwTvpKLFgAkB7Oizx9xxASEQkHk8wUR/cXFJK2tXchm5di5ZDIr3fueHud5jd7v6hrA1//7z1j67Frf9hgJ8HqlUjl0dPSLaw2Fg4hE6BnOHdGSHCSBh1swTeDCahqX3EWmFqGPhoaGhoaGhoaGhoaGhoaGhoaGxj8PRkTgAQDnnHMOFi5ciI6ODqTTaTz//PO4+OKLR+p0bztEo26L9Ml2PAAw/LtpOfkoEZEeOeKqoKNYJfpjpMGJJyLIOLFoORRYZFh3l5zxzq+llogWag8p+iLqH9EiCGNG5h1mk6hElIbDQSHo8SKYLWLF3R/UyBX1vqjuI3ynrRe4YEOK6SlxAjTvWcY6voeDR447eHCBByc6nGMO9FcXePAd/rSTOKuQHzmPiJZIOIgjj3DHO1Vrl5HE4GBGsqWvJaJFdqDxJl3JpUJ28LD7qSKSMIyAGB8E7iojyHqJkHb3x2KxVHWXMRGIASMg4nLa2x2ibMzoBgDOjmcShHARFZ2L6gnIDh51dY4jgjP+bCIuaIiYFaddHAcPNSLJCHoTxiFy8KAd/krsAwcn6oUjgHCwcMfJcAePSuD3lgQSfu3PRXCAPOZee83aSX/WmXMQq5PvKwkKyAUHcGJMEomY5OARCDj3SYiCWF8VQgNG8gpXj4wzfvOmLPbZl7Xu2mvvxQ03Poqf/eKhqmULQyTTt25rr1rmuefX4bnn1zlzTyTk9LGcIuJjjjgpycGDCTzS1OZOnMvsWZPEa1ngQa41dkSLPTasiBZvIYBYn4wAAoGAiNoBuEPF8BPM//vtv2Px4jfwrW/fUbUszVvhUFBcq1mjg0co7JQX4jBW9pRTZgAATj55BuLxqDgOrdFl1cFjkDl4KHMTd0aiPkwCrIAREOVzTJTlcvBg92koDh50PsnBg+YaW5ySSsrOXtyNg0dNkXCFnoGCQUP0Uy4K4edqbe0U7RAKGqhTxCwZRYjZ1t4niT2LxZL0zDVmTIN43duXAgDcd//LePHFDbj6f//m0xpuqFE++wL1eaere1D0SR7Roq45gBPRIs/Z/hEtNA8MJh1Hs6Ry3zQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDT+uTFiAg+NkcPd/3gB/3fN3a73x49vdoiNGoio6294BD/7+YM1nZMTgH5uHo8tWOEpYqjmDDHS4Dsfabcpr2OQORSoO7q50CDMHDyIDFAFHgVPgUdYvOfr4FF23A8mTRolyD7AIgdUco6+RySfVyRGQSE+3QIPue58l7wX/IQDPApi0+a9+Mtfl1rvK2IER+DByCke0SI5TzBbd7Ybur8GgUee3bPWHZ0olUoSyQQoDh42OR2OhHDEkW6Bx4GIaOFYs3aneK3G3nih6NOOnMCi3f1eES0ulxjDkBwwAIvMI0GI4+DhuG/4ucqofUJFmYlKSODR2dkv+ludEBSQy4HskqNGqBARy+svkd3KeDUMA+PGNUm79tXIB6ltgt5LqBPRIkc4eBHMIebGRMel71k7v2VhmSDUFeFRJpPH177xZ9z8+yelYwGWYKOS+4ErwoHtuqexMmpUAtGITDQnFEcOwJmjIpGgJEQslcoSkc6vkx8rnXbGOxHmnDCm8Ujikn1x8FiydA0A4Pnn11Uty+e6Wsj0yZMcFyDTQ3ySzebxzf/5K775P39FX69FSofZfTZN2RWCC/iciBZD6pPpJDl4OIKgo46aIl5HoyEEhSBEdggh55R0Oic5M1l1tedsJfKIxADWOakP1HYfhuLo9cYbrQDcZLcXaN4KMQePgikT914OOgCk8sJFiI3ta3/wMXz6U+fjf//n/ZYTjX39QmhmtyW9n2TEu3tedeKaaA6laBLDMBCNuUUSNO8BwPLlm+WIlhrWJypPY4wLHotK3dUYtCwTV/GIFsfBw+p7ISbw4I5BXKiyZWu7eJYMhgyX4CujiE7b9va5hKq8fnw23bhhj1UPNp/ubetFNZhmAR//xI347OdurknkkUplbeHRaul9tV8PDmbEs284FBQOcPkKES2ykLoozR/8+AO2kxkXEtUSX6ehoaGhoaGhoaGhoaGhoaGhoaHxz4MREXiMGjUKLS0trv9Gjx6NyZMn47zzzsPtt98+Eqd+W+DGmx7zfH/UqIRjTV6FREmnc7jn3pfw4EPLarKpl3549nFyAIBVq7ZJn6vfPRDg56ed6ZxYDAYNNDXaAo9u2cFDimhhRCv9SO/n4MHbgHa6mmbRRQKIXb2CVAogFApi4sRRooy1I9kaqkUfgrmuziGAxLFVoU2ViBaVXFHB24zfd5UUFASzIkYgEqesHEe0GWsbThamWL1qiWjh4qbBZBb3P/AKVq60XAgcIYDbwSMcDmHM6AaXg4NKpI80KpFM1QQSgCLwkNrUuQ5qBy62ifmIJIIhA+FwSHIHMIIGIjbZn1McPAJGAHV1bgcPwJvc3bhpD37z2yeQTGZZPAJz8GBW90QgqiQ4EaVEqFVy8IhGw8Jhw2tXfSgUFOem8moEjHD/8SGMiUiuLaLFeU8VeAQNQxDovD68LoQ/3r4YL720wRFYDSFahIu0AJnU5W0Zicpik4QtKMgru+yt8kGJbAWcmCvTI6YgLoQG3MGDIlqc90iQRYR07i1EKPF51g8FnzHkB3LHAYA9e90EMxebddvrTSQSFm1D18NFFXU26U9ketAwmPNLSezo533lXy47FYDVTk1NcYSCJGKwnHRonqF2TGfyrn6gChhIoFTf4CXwqN429973Ei665Pt4/fXt4r1K8x0XLlbrw8LBIzx0B48w65clJjIjNDbW4d+vvFCsDTSfJMnBQ0QK2Q4eTJRI4hzqt1xMRnNopkpEi8GiZV58eYN0TbU4TNE56V5lM25XDuoH5IRBeOPNHaKM425iiPWChAWRSEj0Uz5e+XXs2NHpxJYEg+LZiEQgqoPH3rZel4BrgAkZuJjzq1//E/bs6ZGEuB3t/R6tIWPv3j607uzCmjU7sWNHZ9XyN//+KSxZsgbf+d5d0vvqc25yMCNFtIQjFBtkr1HckSPpFh4D8lzIjz8wYLXBYJILPLSDh4aGhoaGhoaGhoaGhoaGhoaGxtsJIyLw+O53vwvDMPDud78b11xzDa655hq8+93vhmEYuOqqqzBr1ix8/vOfxy233DISp3/b4cpPX4DDDhuLK654lyPwqEK2cHKwll2Lfq4dRYWw3b6j0/XeUHbsjgQKHg4enNg2jACami2BR3e3f0QLd9Ugki6t7CwWAgz2Y/wo2y2hvz/t6+AhdvjbRA59BwCCHg4e3OYcAOIeDh4qAawSECmFMFOvRQUXbEgOHh6uEuVy2SOiRd457tSz4Dqm5ODB6qk6eDz+xGtY9fo2z+MRrrv+EfGanBy4aMMUMQlBBAIBnHXmbOn7tRCX5XIZr722FT09g1XLVsMTT7zmf56hRrSwPsDfX7duFxY8vtLTaaaguCsQ0UkiKKtsyBXR4kS6GIhFvR08VCcVAPi3T/0af7/jWdx513OSEKKlpR4A0NeXchw8hMBDFkYRsUj3VRVU8Piq0aMbRORRUXHEocgVTvxzxw/TLKBcLov68DmBQ3XwcEjdyg4equDEMAKusU3uKGo0CbkdEPh4HYo7DyA7eBSZ+EV18IjH7fuR9xJ4eIhZaH0y5esEHLcOPt5I4MH7DTkWNNmuS9WIfxV8vSsV3XOXCj5v1uLgwcl3r7rx6+vpteKXItzBI2/1MSe2K4AYRbTY61fACMgOHvZ5uAhrwoRm3HfvN3DbLV9ALBYRQiLhnmJfe6M9rgcHMy6xXq9dP94HAKCh3hFMCSeVQtFzLeC47vpHkMuZ+O//+SsAVHSVASBFPe3e3VPx2HRd4RBz3FEcPAIBH4EHE4QUq4i3AOf6KSKD2o0ilVJJ576rokIxtoMBx8GDBB4+ES3cpWNwMCM7eAwhokWMp5zblYNEK+p6l0rl8Pc7ngMgi/jo3pDgIhwJOW4l7PjciSSVzjrPLqGgmMtERIvyDLJnT69LrMyFDKpL2euvb0cux89XfW7gotGVdhxVJbz8ykbP970cPLwiWrzEbVQHdR7m83aRuegJBw8pokU7eGhoaGhoaGhoaGhoaGhoaGhoaLydMCICj+effx4//OEP8de//hVf/OIX8cUvfhF//etf8cMf/hArVqzALbfcgp///Oe46aabRuL0byt84ANzceWnL8Cdf/8Kxo5pdH5EriKq4KSA6vTghaJEvnOxh/Xd6dPHAgC2b+84+Bw8WH3oB38pooU5eHT3JOXvsuvm5BAREf4RLc73JkywyOKOzn7XD/jUNqoFfjMTeFg7kmXHAZVEVXf5A14CD4sMUe3+CdWIUl53ycHDQ3SQzZqu3eDCwUMh84hQ4mKEvE9EC+1cBYDVq3fgBz+8B1+4ShaKUd//tyve5arX6JYGqy6MMBMRLfbYOeP0WXK9axB4vPLKJlz1xVvxgQ/9omrZanjuBf/YiKFGtHg5KxB+eO29SNo7gAOBgLh+L8EGABFjBFjODWpES5kJQmI+Dh4qgcfHV1tbnyRsELvkkw4pGFcFHnb5Olto4MTF0C5xq+6JRAwP3v9N/Ojaj+Lii07wGE82qRt0C0Ki0ZAjnDOLEgGqxqcQhMDD7uqqWMarrFUf2cHDCLodPJrt+6CK+FQRnhrRUgkugUfW28GDR64ADmGcr1HgQS4VRMxysVc8IV+nYQSEiIMTnXTvSQA0UIOrDwe/VtUxoFr52gQezEHHI7aEH4MEheFICOEIOXiYQNlZc4OGIYQDRAQbXOBRLAlnj4TShhMnjMLUqWMAOOIocm+gMdLU5BD79Jlwc7AjZJxojoD0OX8PqP7cQag1ToI/O+za3e36vFwu42tf/xO+8J9/EH0wHGERLTU7eDiCEFq7/eKXAB5nYs2fNPclvBw8RESL4hZkGGL+IMccw3DieDJSLBFzpRrMSM9j2Rria+he1yfcDh5FxcHDC3+8/WmpbNAIiP40YIsuI+GgK4IJkIUq6XReipejtqH5Rr2WtrZel2Bz0MfBA7DEJlnpfDUIPJhjSXsNjh80JlSofX9gMFtzREs2ayKdzknPjVb9Kzt40LgHINZyDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NjbcHRkTg8eSTT+LCCy90vX/BBRfgySet+Ib58+dj69bqu+U0KoN2rhMcB4/KRAv/EbxaWUD+cZnvyKQfqY+YMQEAsKO10xVpoe6y3N/gxGdaCDzkiJbmJktQoTp4mD4OCJ+/6g8oFIouwrooBB4OUT3ejnvoaHcLPOgHfdoBHLAJKC7wCIUMBMlev6gKPKz36zwdPArK33a0gYhCUCJaqhBFfLc77w9eAo9kKusSI6jOEAQSUHAhjukT0ZJOOyQG323Lr5VcGWbPnuyq15w51nucMCNihgiYd7zjCMyeNQkTJjS7yvph+aubAXg7VAwV5HTSxAQVhGo75AFZXMTt+9W+BwC7dlmkqWEEJFIUcEjdIPXJJqdPxuNR4eZA7SNcaIxABQcPuY9t3dYuXo8d2+SMg0DA2SU/mGEOHrbLgyIQiNvvU/urjhwAMG5cE9553rEISY44yniyxSxjxzaK79XFIkzgUahN4BFyHDx4HIbhQRpzIrlYLMnuQoGAEK8A1k7wRD3FosjztkoYSk4SQ3XwYPfJIfcNFwlM4hNJ9FekXev+Dh5Ud+50lFCELPF4VMxrGTauqP1bRlkCD3U+qTZG+HpQy3jl5WsRe/G1hQheLmrzEnhEwiHm4GG3DXOhIeehPpuMNgIBKbbLK6JFBX1G8zzVqaG+TogXyY2BxDO9fZbgsaSIvfh6IwnK3kJcjhe4kIHmKo629j689PJGrFq1HXvtOJxwKCg5cvD+4efg4fTLAotLq+DgwcRngDP3keApyUQIEXLwEMS+M09GlYgWyxnDFqt59HnAIveL0tjOi35BKJfLeG3VNnTa8Xs0zuJeDh4liuqpgx/oeYQ7I1F/6uu3zh0Oh1wRTOVyWRq76XROPDsEQ0GXSJBcxOh8e/f2ugTCXOChPuN0dQ3IjiGp6gKPPuYKVovwiLvKVHKzG6wW0aLMuT09SXdEC5u3Cx4OHrxfDNXJSENDQ0NDQ0NDQ0NDQ0NDQ0NDQ+PQxogIPFpaWvDII4+43n/kkUfQ0mLtjE6lUmhoaBiJ07+twH9sBrjVeGWihZNM6o/kXuA/ZHMhAL0/Y8Z4AMCO7Z2SvT9Qm0PISEKOaLF+BFcjWsidoFJEC//xvb29Dy+8sN5FaBXVHfiGgXHjLYFHe0cFBw/FFr6JkenhUEg4EaiREkQOcxKYoNatIEgemQwnVBV4MFKJXwftXiYXF8CKElDJfBENoBCwRHzxtpYcPJioI8ms74nQAyxyRK1bJBwU4hrAIo1oh7Uk8GA7vwGLqPrjbVfh1j98HoA1VqrFGHkJbPYVKZs0POfso1yfeYlpVEiOAx5ODBytO7sAWP3IcfBQYkKCHg4eiaiLnBPlAwHU+Tl4KH1ix45O57NMTvSlYNAQJGomkxd9lY7rRLTYfdomG0VdmCjBC6GQvNO8pERQzJo1SZSdNWuSZK/PxQw8XkU6vi28KpXK0j3zin0IBALivG7HAUOIVwCgvj7KSFR5fPM+nc3mJUFWdQcPmZz0cvAwjACmTBktlaPxxB1x1Llp8mRrzW9pqXccPJR2DwQCiEbDkgNFggk8+M5+mhuamhKejgzVxggnjPN2HErl8t6CKT+oDh5qDAm/T+QYFYmE2A5/eTwFg47Ao7PTIuxjMR4bVBTxDKqDBwe1JZHGwrUmZAhnB3IzGDPaejYjtwInosVq70AgIMqccMJ06XorYajzJHdFUB08li5dg1/88mHxNxHcoXBIigKqycEj5PRL7iLkh/oGcvCw2r0sRBK2wMN+zrDmVf+5huZQWnuDLPqEizBcDh7KXP6Tnz4g/f2Pe17EVf95C772tT9JcWkk7uTjieaJurqwr2sJiQ15vAzNuRSbFo6EXBFM6viyBB6OACyqiFnomYGeJ/fs7fWMPiGoLmVd3YPS3JVKebta/OjH9+H/rrkb5XJZEsfUJPBgLka8vJcQxWQRLWJ82++p19XdPeiau+RnbbeDRz4/NLcSDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NjX8eeG8/fov4zne+g89//vN45plncNpppwEAli9fjgULFuDmm28GACxcuBDnnXfeSJz+bQV1x26IWY1XAhd45GsQeJg+u56Fg8cRloNHV/dgRZHEgQD/YTydzkmEB2CRqE0+Ag/ZwUO+jlQ65xZRkCMHi2QYM8ZyA+jpGZTIz2KxJP6m8uTgMWqUI/AIhgxBDDsRMEpES52b2FPvK91D2mWsompECyMuJeGL/X4iEcOECc1oa+tDKplD0ravj0bDyOVMl5hF1NND4MHJa4mwYWIP2jkMAN3dboFHMGRgwoRmtHdYtut/vPUqPPLocumcgNNORMAAFoEZY+44uZwp/a2i0mdDxaBN1k6cOMr1WS0CDy6o4mIrL4HHtm0dACyCWXXw4A4CgBMNAljzTkRx8BARLUHDtz1UC/7W1i7xOp3Oi3MGAgHJLYJIOHLwoP5B7UECJyJFK8WEAE50S0ERTNG1nn3WHHz3Ox/EySfNQDQaltqGSLVIJOTrCBCJUHnZkcPXQSAURLFYckWrBIOyg0ciEWM7wd3zESGbM6V+kKnRwSMQCKBcLssOHoyQnmbHfRC8HDxUd6Hf/eazuPGmx3DhhSc4BDC5vihk+vjxzdi6tV0c23HwYAIPW2QRjYaQSMRcpGyxWKoYr6GuR9ms6RJKqsdzzl3d8cMvIongHdESRAAB+zuqwCqARjtCrK2tD4DlxEACj+eedyKdanHwoHmeR4U0NNRhMJlFhy0gmTixBXhtG3p7kyiXy56Cqav/5/3Ytq0DH/jAXDzyyKvI5UzRb/xEM/6SCW/wtbuzY0C8LhZLuPpbf/f8TjgkR7SUmSuQ3/jjEUxFRWzpBRJK0JgjBw8SZvJzCkFWXp6zjKCzrlMfjkRCYu7M+jh4DA5mXCLJ555fh3K5LK7vscdWAAA2b2nDmjU7RZ8kARAXj/AorubmhOMqEwmJ8zoCD7vugYA4Fgk8opGQEBiTa5saaSQJPIJBBKIBqT50zVOnjMbKlVvR15dyCUW9HDyamuLo70+jq2sAjQ3OOuX1TJNKZfGo3T6f+MR56GfPEQM1CDy4e8rAYEa4jajzyubNe3HMMVMBWH1SnfsKyvNkN3s+9Ko/P/7AIDl4uMXLw4kHH1qGV17ZiP/73r+64rk0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0DixGxMHjM5/5DJYuXYpEIoH7778f999/P+LxOJYuXYorr7wSAPC1r30Nd99990ic/m0FlUgV0QPKD8Uq4cJ3XNcW0eLt4EE/SDc21mGc7Zbw7HPrlO/Kdbn3vpfw4IOvVD3ncEH94d3aVS8TwEReqz+wm5KDh1uYwHdQ8u9z4pKiB7JZ0xETRLx3shs2QUOEHgA7UsKQypPYhOrPd24TMW6q4hP73PV+Ao8hxDh4OXgEDYMRX1kM2k4UKgGiihRWvrbVJpW9+yQnsziJwct3MWFOkd3bL3/5MhhGAO/9l1MxYUKzI0pgxCuR0+GwrHfjhIbqbvLQw8vxkY9dL2ID6hhBXIsjTiXQNU6e1OL6zEukUalMNlPZwWPt2p0AZIGHEE+I2BKrTza5BB7kOCDHpRiBgC9hnlFcY3ay2IVUOsv6kuVqQf26p9cS8BDhL2zuS94OHkVGXnuB5smij4OHYRi49JKTxJxG15rLmYKA94tnAZy+VCyWBPlrHd9P4OEIuPhcHQgEJNK+PhFjTg9yP+O71XNqREsVB4+CSgB7iPiCQQNT/QQerC6quGbMmEb84PsfwXnnHo2I4maglqVYJDp2nQfZbbI5VI2M4dfiB1NZD5I+u/zF8SQHj+oCDz5feQktecyLEHiEQwir46koCzD4e/F4VIiUOKZNG+t6jyAEHhTRwgRcdHzqe+PGWaLEdDoHlJ31hgs85s6djY9+9BxEIiFXZIkfSlXcUjiKyljgIh+KqPBCOMwiWszaHDlCTBDChTV+oP5K94PacsL4JsnVxzACzn01lT5vOA4edM9jsQii9txJzlHlclnqd9zBg18TFwOk2Xq1bXuHW+DBxlOJzbl8jh9lRyABQFOjIvBgES2EMIshoWv1cgmj8RQOBx23ErsciR4oIghwXGQI5F4BOGv3xAmWGLK7e1ASr3iJHvpZJMuWzW1Sn63WfwFFaDHg7+Cxdt0uNr6DLucltbxnRAubt3kEDF3DSEe0/OznD2Lps2vxwH58XtfQ0NDQ0NDQ0NDQ0NDQ0NDQ0NCoDcMu8DBNE5/+9KcxadIk3HnnnVi5ciVWrlyJO++8E2eeeeZwn+5tB1WsUKcQqUElygMA1q/fjcve+2M8+uir4j1pd2gNhDQ/Ht9RyYnUSy85CYCXC4Zz/N7eJK67/hH87BcPuXZmjhTcAo+SIAGpvRoavfPnC6abuCQMDmYkso6X4UQId8wgQoCIHVd5m1RqYMRlOBREMKS4Kyj158Tr4YePA+De4U+EQmOTfK0kZKga0cIELkUPB4+AEUCCLOqTWREbIMQzPhEtS5euRT5f8N35zoU1aUng4dS3r9fDwSNoYPasSVjw6Lfwja+/FwBcogT+msgpQjBoiPJZhdj96c8ewI4dnfjt754AAGE1T9f+VkDfn+gh8EjWssO4WHmscmze0gYAtkuFE0MCOGQb9T0uOvKKaOEOHuGwIxjhUB08qI8AFhnH+xIAQRwTyecIPGSxEDnYkNV/VQePsOOwIZf3JnXJlj+XK4j+UovAo1AoS+OmWmRMoVCUdogHgzKRmqiPsfvk9OFSqSSRgdmsKY2zvXt7XeOOQxDATIxG5YWjQdAQxL+oT9wdeVSp7dUIB35sAJgwvlmUjSeiiNmRPBlGXvL29xJ4FAv+1wm414NctrJoQ4o8ytewVrL77e3g4RZ4RMIh0Z9MIfBwXKD42AOARNwRAhBGjUqI++EFEdFit2WRuUzROHOOZRHs9JzARQBeoAiZag4IXHRUzdnL5bTC5g4eyaUiHA5J6yV30/D9Dgm+iiUxJ/iNVcAt8CDhSigUxKRJo6RyjthEFu4YRsA1h0SjITHXcEcf3m7ZrCnW6vnzThbzQzdrE74ednT0i7Ecj9sRLdm8aBcS8gWMgBBjApbI4vTTZoq68rJG0EPgEQlJUTdUV95epVLZcfyIhoXAg9YQEkRFoxFH3NdjjRFyNfNy8CC3q66uQeTYmucV0dLPxEGbNrdJz0m1RLTwua6XtTPFIo4f1yTakRx3giEnqkcIfew2onHZ3T3oEqdlhxDRkhrBiBa6Dg0NDQ0NDQ0NDQ0NDQ0NDQ0NDY2DB8Mu8AiHw7jvvvuG+7AaNtQdxCrx4+Xg8YNr70FPTxI/+sn9nsdRnR68UM3BIxg0MPPICZ7f5QTZ4GCWva7+Y/pwQCWKisWSIF2JeGhS2tH5rrdrBWC5CqjuJ068heN+EImExH0hQoCIFj8HjwQjLi0HD5mQVgUqh7Gd2zMOt/LrVTKSdq6rzhBTp4wGUH0HqLQz3dPBw7Ftv/PO5wW5Q2QHnZ+IpSn2eVt3drnObfoIazhhw0VKOU+C2REmEFlHDgJ5RrKaHhEtBCJfONHCd5UL5xD23luxSi8WS6ItJjI3A8JgMlvVxYP3d8mKn31vvO1MQYgwe30ivHIiCsMi4XwjWnKym4bow8xVhsgtVSjD72E6nXNEIgFZ4EFtHlcFHsLRwHo/p0Z/+DpmqIIpeT5QQWR6NmeKmI5KAg8u4OLjxs9FgNenVJTL0zUDloOHV0RLJpOX+mU2l1ccPHIVSToqy+cd1UnCMAIwDEO4mgDMOcVj/Hk5TBABrLrEULtwoVqCOXhkPMZ6OByShHDO+SsLB1QBSDVhG18DhsXBw2NMRiIhMTe5+7AhBBSEeDyGhnr5vV/f9O8V60XiD7pe7mwxdqws3GkRAg+rbJHVxQtUv8GB2gUeqgONCnXd5g4ePb2VBB5yRAuPS/P9DhvLdH8qRbQIwYIasRYIYOoUpw9bDh5qLJEj/lRjL7joAbDmRy9REQlcDMPAaNvtosdei3I5U3Lw6OjsF+t1fX1U1EHMoWXHgYvP8ZFICOecc5RVd6WsoTgLAdb6GVYEXBQRxoUjJNaLRsOIRBWBhz3WQiFDPJORcKWlpQGAKvCwHTxsgUcymUUfc+jweqbp7+OfZ13xN9XA+2VXF4sNsuseDAWF8IyixcKhkCvSjK6V5lPLwcO/z/PzDg5mUC6XpTWgFgePV1dswX996Tbs3NlVtSxHNZcjwt3/eAF33PnckI6toaGhoaGhoaGhoaGhoaGhoaGhsW8YkYiW973vfXjwwQdH4tBve6iW1+rOW8fBw/nht9eDDOG7iPMeJJQKTuhzQkxyqlDINiIv+A/TfPdkLXnnwwHVCpuTrobiFKCC2/mrO+C7uwbFDkoie1XLdiLEiOwmcoPINld5m1TiMSqhkOG6r4JEtYnhww5zBB702h3RYn13kiLwmDLVElpkaoxx4OcHnJ3gASOAk048HACwxo7+AIAmEdEik2GzZ00CALS39+HRx1ZI58r7RLTs3NUtyCAuuqjVQYAIJV7eiWhxO07QbmouTOAW70Tw8bZ5Kw4eRAgBciQKRzUSSnbwYGSy3f7NzQnce883MHmy0w8ikRATDlhtQ+1MYoUjZ04U5QuFouPgkVccPOwxRSImOifgJtP5PUyncsI1hPr1aJvUI8RssUM+X0C5XHZFtBAhrQq4VDiRKPJ48tu1HxNRIXknosVDEERwIlrKEqntK/BgzktcqMHjMwArfolHtFBZVVTE3TzG264YW7a2+9aXiEVO2mbseJ+SIpjiwiMiMr1EC57jTxGnqGVnz54kysbjUXG/cznHUYTOFYuF0egxRoYigALcoqNK5bkwzA+SiMHDwcNL2BCOOASwEL8wd5MJitgrHo9I6+1HPnw2pk8fV7FeqoNHia1RxxwzVSpLbgnCwaNYWSTR2GDdh2prOu/bqsOUCnXd5nOZGtvBEXJFtNTu4MHP4zd3AE470PxD12UYAbGeWn8bTsxQjtxQHLcgt4NHGKFQUJzbEpQ5/WX0aGs+JGFBMGhg9BjrPRJC8DUEALo6B1hEi9NnxFzJnj2amhwhhhXbZQuylHg1I+gWeKjCmnK5LNxx6uoiov/19iXta3XcSmhdoLEWCgWFeJlcbkh0NJh0CzyamuJCGLOLx355RbSwZ9Bs1pTEpMlk1hVnqIKP385OR+Dh1N2JqhMCj3DQ5XhF5Ung0d0zKLk9Ad5ianqdTuck8Y9pFquKpr7y1dvx6oot+Po3/lyxnIrkYPVnmnQ6hxtvegy//s3jePGlDTUdN58vVHSW0tDQ0NDQ0NDQ0NDQ0NDQ0NDQ0PDHiAg8Zs6cie9///v4wAc+gB//+Me46aabpP809h3VBB4OcckFGW4CS3LwqCGiRXIFyHo7eHBRAuDEjHAip5+RDwNVdvsOF7wcPFRCNxQKyrEoRFSwuqvE4foNu8UP6kR2ULuLqIlAQPqcyHlyHBCih7JMoPHogYbGuOu+qsTouHFN+ME1H8Yvfn6FOJd6X2k3aFNTQhB4AMSO46oRLSWZYBAW7yWnLd/7L6dJ34nHnSiPgkIS8Tr87uYnpe8VJGGNTHrcd//LAGRituaICCL+mJuIKB/yEHh4OHjs2dMjXhOpxvtGrbtdvfCIHaM0ZkwjwuGQtMOb7mu1cSNFSngQ76GgJRg6as4U8Vk0GvZw8DDFZ4DlEkN1OOboqYKcJLFYiQl9ANnBY5TiCEDg97CvPyWECUQGEqFJqKtzjsmjC+IsWoRfq28kStAvosVH4DHkiBYn8kEWeHgfn0dKFIuyIGTOnMni7ylTRgvSlcoD7igCvpt78iSKLxiAH0j8EwkH2X3Ni2sAnHiOuXNni+/RPJbNmmI+qGX8kciupAjbZs50BB7BoCG5l9C9JdI4FgtjFHMGENcyRIFHrkpUGC+fy1cWg6jn9xIxeLmARMJBIbBSnVOChoGpU8ZI7RmPR6X1Sl17vRB3OXg4bgzHH3eYVLbFHndEwApRgk//FQ4eFQQefN21jl27sIbXG5AjWlTxSzgUdKKACkXX2uoFWl8BCIceP/cfwBE7qRFrASOAKZO5wCMg5jKqv3D3ChpC1EOIRMIIBAJOdEnWFO0UDgeFyIGco4LBgBDBkRDCJfDoGhT15CIMR7zjuB3xNZnEJgCPDXL6AY19p+4haW4yzaJw3olFw0Jc0t01KI5PIkYSTZpMJEHiLWq3MWPIwcOZ64T7ViQk1gr+LOAVW8IFmtms6Xp2qOSEUSrJfbiziws8HNFtop4EvUnxHokEhcDDFtWNlxw8yGklJl27VV6e1/r7064xVM3Fg46/k4lgakEtzzR8rnvllY1Vy3d1DWD+u3+Ib337jqqiGg0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ03RkTgcdttt6G5uRkrVqzAH/7wB1x//fXivxtuuGEkTvm2gUqQNjTIxI4gHjgp5UEovaWIFg+BhxEMSKIEwLH759/l9tn7S+ChEn7FYkkiWQh8NzgR0pSr7nWcXbu6RewBEZHU7qqDQELZ7RpXHDxUG3m+07a5KS4IaeHgUXDX/4ILjseZc2cLkkV1ZiGyIF4XEbv6gSFEtCi7S13uIwErooVbzNfXxxiZrsTRGAYuvugEz3NJpIuyw3PVqm0Aqjt4eEZECOGOLErwKy8cPLJciOD0YSI0ufglW0UoUwkkHrng/OOs87O2JDJsgO1A9oJMohbE316iIILl4CHv1lYjWgDgnru/hltv+QKOOGKCy3KeW/0DssCDiMlKDh69vSnsta+fxocq8Gix4wjovHT/6nycPfwIaTWihfdJL0RZlACRiuEKAg8SSRSK5RojWhwBV4mJwwKBAI49Zpoo987zjkFdnXM/iEB1O3g4f48ZY8VveDk5EXisEfU5QQArc+VHP3IOLrvsHfiPz14sSMtyuSzWlMoOHjIBrM7DiXgU//PN/4eJE0fh/POPQzQaFiI56jtCeBQJS9EP6rX4oZIzRLXyuSplAXm+qlXgEQ6HEI3QvO2OxolEQpLjTiIeldbbujqZbPeCiJvKmpJAzzACONyO9SLQeLXqWxAuTX6iB3JbqLSmq9edz7vbhkNtO/7sQ/37vf9yKu79x9cxbZoTixIOB0UUUMEsupyFvGAYjkvWoO3AFFXEF3J561g0/5RZdMlU5uDR358WojQhrCk6oqaJE5ul45IYMiaiifKSoKzZFmB0dZHAIyjmxB2tnQCAXkXgkUpl5fFNrhkifsepz6xZjsAqGmGRK655MoCWUfLcHGHl6TsknorGwiL+pb2j377WMMbacxMJJej5JhwOoUmJJaJ5LOkR0RIOB12RRXTtKvj6mc2ZLpedSiIltU9KDh7MfYoEVyS6icXCzMHDO6Klu9sR4tDzXzrjzOOq4Kl/IO2KCKz2DOc1X9aCVA2uZLx+99z7ErZt66hYfsPGPUhn8lj67FrxTKehoaGhoaGhoaGhoaGhoaGhoaFRO0ZE4LFt2zbf/7Zu3ToSp3zbQCXt/Rw8/Eguep+TLTVFtBQ4ge1tx69GtNCP3Py7/f0O+VBL3rkf2tr6XD94e4E7NPA6e0U4UOY7ALEznP+gT8TdtGljBFG5eUsbAObgIWJI5AgY1c7cKS+7WgQ8yPG6uojLwYPIBE8SNUw7wb13d8bjUYwb65D7ZCmfriJMUIUWImaBWf0HAgGJlK+vjzl1VyJaDMPAFZ98p3RMIpe5+wiJWcjJ4PkX1iOVzknuD1L5CgRzWHHw4H3Dqzw5eHBRE3ehSadztuuCt2vGUEFtQ20YY+IK6p/91QQeKoHtQ7zzHdjRSMhpm7x3RAtgCZ+OPmqK9D6Vo53g5ODB3TbUyAe1bgQiV2l80K5tAt+tb8UvyBEtxWJJuh9VI1pqdfAQood8jQ4eTmQTj4jwi4mIMrGMOndEo2H87jefxS9+fgWmTx+HcDgk6kNkp7rDmgs+HIGHf6wFv/66mNznac6huKlQKIirv/l+XPHJd0oCJOFQUIODB2DNfSWPsv9y2am4755v4PTTZkpuBlSfLHOWGcWECOq1+MHlDOHj4PH0029g5cqt0vGqjT3AGQeAtzuWV4xCJOq4H+QVRxwSHZ1x+ixRPp6QBR6V4kcIXKjFxRJB29Hn8MOdiBe+/mRZPI6fAIqeQyqt6epYr+YcRmucU74o7h0XWRmGIYk3IpGQmJsymZzkVFIJJE4gAUBd3F80Q8Ixahfu4DFn9hSpLM2z+XzB6vNsfJ/6jiPR3Ow8d9A9EoKyrCkEAZFISPT3buHgYYi14sGHlmHla1vFOB871hZEpLKiT4aCBqIx2ZXKcWcJ4NhjHTFZOpMXawI5mXFR0OTJLVKfCodD8vg2i55jlRxGotGwmJvIXUi4YAQNIRoi0HUmUzlRDxJnRMIhT5FT2iOihbtuZDN5l0iiUsyQOncMMLGnEJuEgqi3xSb0TFVXF2EiQTmOZox9Xf39aXE95IjDn7Vd5x7IuOYS1bFk0eLV+OKXbsWtty0CAMnxqJprBv+8s4L7E0Gdd3/0k/urfoewYqX+d6GGhoaGhoaGhoaGhoaGhoaGhsZQMSICD42RQ1H5kTekxEoQUUY/Bqs/4hIB81YiWviuQm7drtrEEwHFiZp+ycGjOlnmhfXrd+P9H/gZvvHffxlSvQlyRItD+nCykHY6ekW0fPhfz8ZZZ86RjkmEmEv0YBCZXs3BQ45B4ISnJfCQHQcq7pK3iQSVuMjY980iGxxyevKkFvvzfMUf/dUf8KkPlYVzg1V3Im0AK6ZHrTsnicYyoQngiBi4sIba5sQTDhfvPfDAK1KZXI0RLcKlwqxN4EFkNxcmqCRvKpWTBR41OOL4oaiQ+8ceZxFuEyY010SiAh73KetNvHOXmEgkJMUaAE5UASfxOPwdPKy6J5NOPek++zl4zJk9WXqfyFUuFgoGDbSMqhdtkzcdBw8e5ZHJMkLax3GAxBkkgnKcJHwEGMzVQgg8whUcPCiipVB2ufNUPn7es/wJJ0zHmSwahQjEpC2IUYlMPreSSIbHWhA6O/thmo7LixEMiLrkhIOHWwxHMAxD9I9aBB58h3/eLHrOwypURxGad2KxfXPwMJU1wcuV48WXNuDb370T//lftyrxZKbLRUsFdwXyEnN4R7SERJ+kuYn6MImRPvHx88T1Tps6RorDqCXigAuS+HxG4pCZR04U7/H7ms3kHUGkj8CD1r9KDgLqdVebJ6nduYiI6k1tRGOQX344HGLCgUHRNoEKfQxwxH/0jKKu2Rw0r1CcEnfwaGyswx1//zKOOXoqPv6xcyXhQTqTl8ZHIBDAu955rPic2lz0+ZwT0RKJhIVQjq+hLS3OHPn7PywUAgpyfEmlckKkFQw60SoZReBhGIbk3LJy5VaXq1ORuY8EgwaOmOE4v0TCISEWAqz5mVxaopGQJGSha1XvE50nGAoKxyoCzWOFQlGMK+oHoXBQiDE5vCJaupjrhreDh79bhTqeubCO+msoZLjc7GIxLvAoSOXpuTOfL4i1ncZ5RnLwsMWM9nVWi2jJZvP47vfuwooVW/HH259GLmdKrlPVnIv4PNrTk6wqqFY/r+QYZZV3jr969Y6KZTU0NDQ0NDQ0NDQ0NDQ0NDQ0NDTc8Geo3iJ27dqFhx9+GK2trcjnZULkuuuuG6nT/tOjGnkVUrLh1R+k+/pTaG5OiB+ZvcpUO29BIt8d8i8WCyMYNJwccTs+hpfn5Ni+Oni89PIGAMAryzahpzcpkRIqvCzyS6WyK3YAcHa8AjyixS3wCAYNHHHEeDyz5E3xWdwmy0kso9rC8x3RAHPwKKoOHm4SaurUMdi924quUB0HKsWQqMRFOp0X5+bCICL6y+UyslnT1+6fE5eAQxBQXaju41n0R319nROLopBEATvSpa4uIsimpuYE2jv6RdRGIBAQ550ypQXxeBTpdA5btrZJdbH6sNz3Kzp41Cjw4M4NBC5SAqx+LMWivBUHD6Xu//s/l+OUk4/AEUdMwF/+skSqux/UOcK5T0SeuWODotGwIEuFg0feHdHCQSIhIplUB4/29n5Rlggv3o7lclns8D777DlYv2G3+Ew4eDCBx6jmBIJBA+FwCLmciYLpOEBEY2GMG9eEjo5+LFnyJsrwFyVY5a0+nlP6sK+DB4toyQnCtYKDR4Q7eFQXMXD7ftW5wQsN9TF0dQ0IxxOVyOxh5Jpw8FCiG958sxWf/dzNePf8U3DMMVMBeDt4VBNh1NWFkcuZyGZNyTHJTxBCa0TBrO1a62IR9CIlxEA5yRVg6AIPVSSpOksAwBNPvCZeq+tUX18KE8b7uztwpyMvUtTrfPX1MVFWFR1Ru48e3YB7//F1dHUNSpEkQG0OHqFQULQ9rwM5s5x11hw8tfB18X4sZt/XnOmqiwqaS6x+2OBZRn3OqBYNR88NdXUREceUyeZRn4hJ0RwA8I2vvRc//un9+OY33gfAWcs7OvtrElgBEAI3EvDF6/wFHtS31Yg1mvumHzYOt/zh86J8OByEaRaRSedc4s9x45pFORHREnXWHRL4RCMhjGqWn3WCQUNEnwDWnCQEHpNGY9Wq7SgWS4L4N4IBEWVCc4cQbdiilff/v9Nx/wOv4JOfOM/l4KHOZUceORFr1+2yrjFilQ2Fgvb4LoqxFgwFXW470WhIiDZyOdMSohSc+6q607W01CMQCKBcLiOZzCIaC4vnrUg4JIn8COl0ziV+4rEq2WzeNfdUei5Vx3OSRZeI2LxQ0PW8VxcLS2sIL9/YWCfGJUXv0D3lrmrUli2jG5De1Y2BgbTLfY87N6nXMTCQlsZAMpWVxFPVrnX3nh5MmzrGp7R73uXPgZ7l2fFfW7UNPT2DklhJQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDozJGxMFj8eLFmD17Nn73u9/hl7/8JZ555hncfvvt+OMf/4hVq1aNxCnfNuA/ol77w4+6PhcOHnY5lfjr77PIC9nBozJhXCqVpPN6iR4Mw5Ds9AHHDpr/UMzPpe7mrxXcIWLH9so533yXYISRrirJAqgCD3fdeazLETMmSOchgkvdfU0/qKtEJO2iVQkivkP6R9d+FB//2Lk479yjXc4sgkzwjGihneAOgcZ3vcbjEcyaNUl8FouFBUHId4yqKLmEA9b9cxw8rLpMZSRAfYO/g0cwaEVWHDXHcW/gMTniWoUYJ4gvfP4SAMCund1SXfI1OngIlwq7baoLPMjOnjl4KAKPAUXg8VYcPFQysq4ugve99zQcd+w0R7hT5fj+Ag+nHQEr5oGgOnjwmBOKD1ERjTiiBIA7eLgFJHVKzAZAESvWd059x5HSsem73MGDXkeYgKnIHIQuveREAMCGjXuqOg4IAlXEy1QWGlA/KJXKwi2jloiWQrFck4ghFrX7WS7PrsmfkCbxHLmkpJSIFoppCAQCgmjbtatbIjvvufdFAMBjC1aI8RA0DJdjRknpN666M0GIPJ68ywv3FLMortVLqEaos/sC9R0S5USjYcw4fLyrfKGKwKOgRBh5rUN8jO9t65U+qxR1A8jjz2usEtn+8Y+di8bGOjQ1xXHppSdJ7QI4czzvN/F4VBJ3XPaed2D06AbR96uB5pAsu2bqZxdecDy++J/zcdMNnwYgiwwcRxzv+0QCR69IDEJBec6oGtFiX78VSSTHighi326zk0+egXvu/jreYc8jFEHW2TkgRJSVxh+dB3BiNyo6eCgRLdzBwwskmkxn8mI80Rw/kcVOuRw8sqYktGtRniOCQUNyugjAiUCZNGmUWNd77EiXulhEiO1InMBd2ADgy196D37zq3/Hxz92rlgTSCyqzmUzj3Seg6j9InwdKTquFqrbTjQaRjQaFutuJpNzIlo8HDzq6qJCOEF15w4eXsLUUqnscqqQIlqyphAa0bErCTzyebfAg+694+ARlNYtwIp6iyoCD1E+HBL3hKJqHAcPZ5xSW45usYQyAwNp1/zCHTxcz/79aWkMppL+TiWA+98F27dVe9aWy3u5K/mVLxZLWLt2V8XyGhoaGhoaGhoaGhoaGhoaGhoaGjJGROBx9dVX4+tf/zreeOMNxGIx3Hfffdi5cyfOO+88fPCDHxyJU75tQD+Az5w5UbL2JhCZTuSQapne1+8l8JB/JN7R2on29j7XOZ3yHq4WISI8HAJx2rSxru9LAo8qVvd+4Dv/MlVspnk8DBHShWJRuBlwYnEsE47QD/ReES2Wg4ci8KCIFlWUYBMho0c3SuWFg0dBjmjhO7Hfed6x+MLnL4VhGGIXL9WhlhiSPHNpIfcOwCKb3v//TsfHPnoOfn3Tv8MwDEHApyuIbvyEA8K5wa771CmjRZn6RIyJU+y6K9d64QXHi/KHTR8rXucVl42gERDinjVrd0p1qVXgQeKXgjh2UdTFiwB0iDlnHFVz8PCKYKgVxZKb1CWoTii+x/AR4hSUdlEjWnjb8GvgcT4c9fYO645Oy6lD7GK37+u3v/0BHH3UFPzqpiuFfT6Pw+BuHocd5tx3qg8gCzwabfGPEKLkC5Ighq4nny9UdRxQRQzVHDx4G7y+ejsASHb3KkRES7FUk2CD6pPLFRz3nwqiBzWihf5P10v2+IYRwMyZExEMGujuHpTmdToGYO2gBqx5KabEEvHx54U6Rr5LAo+Qd/1DzBWAR8P4gdqGIqQE4R0Lu1wBeH39oI4fr/HaxUjgtrY+6TPVCUUFiYUAb/EkrcmjRzfgr3/5Ev7+1y9h7JhGQZCLyKMahEFX/8/78eD9/y3GRjXQuPKKaAkEAvjIh88WIgke1eMIoPwcPBwBA0epVMKXv3o7/u+au93tXmNESyhoiHmYnhmojcI+MUljx1nrRHtHvyDsVUcIFTS/Dtjl6Zq8QGOB1u1qLiF1thtIJp1zRR7xuU8IPGi+zLFIqEjIRZoHgwaOPXYaTjhhOgBgxcqteOTRVwFYAtu4cl/q6iIucRg/PmCNz5NOmoFwOOTh4CFf55w5U0RdxPfZ/CwEGMGg5MbEr5VHlxTZPVf7dCwWFnM8RaPwqB6viBZAfgZeu3antH5ns3nRD0fb7hHc4UOFWbDKiufsYkmMJS5mOfzwcdL36mIRyaWJvkvl1b5J95nXnZ6fRtkCj/7+tHALo+/z8vyZD7CcabirW7KqwEMen1u3tVcs7xfhV2t5L2cjDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDX+MiMBj3bp1+OQnPwkACIVCyGQyqK+vx/e//3389Kc/rfk4v/vd73D88cejsbERjY2NmDt3Lh5//HHxeTabxVVXXYXRo0ejvr4el19+OdrbK/8IeaijGhGpOnioAo8B236cEzycHO/pGcRHPno9PvKx68W5VGKG//Crkn/nnns0AItIIPKFO37wc2X30cGD79DOeGSscwiL8KAhCMdiseQQVoxYbGCEwtwzZrnqLiIuggYmTRolRVcQ8SCIEOX4tOuSQAKPYtGbOFERDKkxJxVEDMpOcMBx5giHgxZxEw7hqi/Mw8knzwDg7JJX+wsHjx4ALLcBwHFuoGslYQ9gtYsgdO1rLSsE1/HHTxflZ810nEVoZ63TloaLJBJlTccdpCYHjxraEQAaGuTdztZ1y0TE4GBGEjHVEnnkB8d5wt0PhHDnLTt4WNcaVyJaeLQPJ2f8nCpOOP4wAMCGDXswMJB2+rB9/KPmTMGtt3wBp5x8hHAD4KIuqlc4HHSReUQ68zHWMtoaQzxiQOyGDxqibD5fqB65ElMcPBRBlgoeafTsc+sAwDMSgED3qlAo1yTYECRn1nQJZbzQYO/4ViNaJk4cBQDo7bEEHlZ0VgRH2oK0jZv2imN0dTtE5pIla6zjNtS5YomKHnFWHDFGvvO52c+VI8zGYDXnFMARkGQyeU9nmR9+/yM468w5ok2qCjyK8nqm7vAH5F3+rpizagIPNk96Czysdk3Eoxg7plHEEtA4E/OeaPfK0SLVnCk4hMCDjW+/+yqEOyyixW98+Dl47NrVg2XLNuGpha+L6BNCNecwkzkicJEP/y71JRUTJ1jjYHAwg127LLenpioiGBKREMFfV8HBI8gIfsBx8PAbsyS0yGTyUOPhuMCDnokc9xRZ4KEKmkKhIAKBAH7+00+4HEcmTx6Neibis64xKs2fxWJJtKVXFFdYWS9LigDx6KOn4EMfPBPjxzXh+OMOs7/jPPdxR47JTPhpnS8k/T+XM6V7rt6vWDQsxrjj4GELLsJB13xMfSbJ3I1eeHE9AGDmkROtc2ZNcYxTT7WETTx6T4VpO3hQrIpVl4xdF0fMojoLcQcPGns0V4aC7jiaCXb/7badVwCnr5EQpX8gI57xyC2Pjz/1Wa6/X3b8UB0+XNeqjM9tVR08qjsjSeWHKAjR0NDQ0NDQ0NDQ0NDQ0NDQ0NDQkDEiAo9EIoF83vpxb+LEidiyZYv4rKurq+bjTJkyBT/5yU+wYsUKvPrqqzj//PPx3ve+F2vWWGTUV77yFTzyyCO45557sHTpUuzZswfvf//7h/diDjI4u/68iQ3H6cH6cTalEC5ETuXyzo+pvMwbb1rOCNmsiXV2trr6w62axw44dvxf+8q/4AOXn4Hf/vozTl2kiBbnB+Z9jWjhgpNKjhO87qFQUNSxVHREAJwcO+vM2Xj3/FPw7W99AE32D+amWRTkTZGJMAzDEPnxAHfwkOMqDOHgIQsTVAcPYfHuI/AIBYNSedU5hSOixJAAzo/9frbzFIlRybabu7MAzMGD2sUmt/ju1XQ66zhPKP2GyDBOcB15xARBnIgYFebGMEUhiagsERdFjz7JQTuS6diqq4UK1SmBXwchmzWHzcGjUhRCOLSPDh45b4EHj1DhES2Wg4dDKvqRlmPHNmHcuCaUy2Xs3Nnt1N2jPIkAeNQNiT1iHsSiF047dSYAJ+6otzcpxmTQMAR5ncuZLrGJCkdQYYsYKownwJu4VfsiB7mhFIulmgQb3L6/WAOxT5b+5E5AxN6kiS0AgB7m4AE48VNcnNDe3u86bkNDzLlXijDIry3rmBtKtcgjgJHXmXxV4QDA+k42L/ol4BC4559/HH7+s08K8rtYrDw+1PVsMClHMmQyec/d7U6/qxLRIgk83GIsEtupc3FEEXAVFSHccCAScdqe4OvKYfex/n4u3vIpa69/KmmcZ88Zu3f3yJ9V2+EvIiyCzCXG+g4JAfwEHvF4VKzPa9ZYzzSNTZUFHpMny+M5XsHBg9qsaAuUqgk047aDRzqTl54jACfiCABmzBgvvZfNmWI9sQQesoMH9flEIob5806WPjvmmKlSDBcA1MUjjgtGMiv1Ty8hnxNpRs5kTrwaYM1pX/7Se/DA/d8U8yFf753YEgPTWHQb4MRSceFDgd3zpmbVwSMi+mTKw8GDXFIIJPLZvcvpdzSuZ86aKM5JgqrzzjsGALB9e4f0bMvh9LsQi4ux+jzNTbFYGI2NcUmMWhcLO444akRLyECjIvCgthoYyIjnZCpPLmYdHX1ifFFbcacxt7g7I4k2qka0KM8Z1YRt6nNHVYFHDU5KGhoaGhoaGhoaGhoaGhoaGhoaGv4YVoHH97//faRSKZxxxhl4/vnnAQDz58/H1772NVx77bX49Kc/jTPOOKPm41122WWYP38+Zs6ciVmzZuHaa69FfX09Xn75ZfT39+O2227Dddddh/PPPx+nnHIKbr/9drz44ot4+eWXh/OyDirU6uBB5bx28QGQiLKeHmeX4JYtzg7v1at3AHDveFajMwCHrKivj+GrX/kXzJ492XFu4O4GwxHRws5byXHCOrfzIzpvG69d6aFQEN/638sxf97Jgkzn53Pa3vqM7zClH+hVEQOR3aOZGCQQCAgCRz22r8AjRM4sctuHPEQMROLxH8wzzKLdC+SO0G3v/PdCSd1x6UMA853ApVKZ9QNvt5Jg0MCvb/p3fPc7H8ScOU6/MdWIFtu2/YbrPyWOf5q961aQolUiIsIqYVVN4GGTOJwEJhGPaIfc0AUepVLJs1yxQixDrQ4ebocCRcQgIlocQmzUqHohSuAOHl67ujmoP+XzJnOqcPdh4cLAxnzGdjKgnfKXXHIiAOCkEw+XvvuHmz+H//rifFxy8QmiroDlUkHXFouFRQRTbQ4eioihCkHrVS81VoYjHKEd/uWaBBuc5KzJ1UIIZvL2dVj/nzCxGYDTv+n6m5osYriPxROoUUOA7eARlR081EgJd12IvM6JaDCr/n5uBo4YoNp9AhwBSSbrkN2BQMBF7qtrnx9UYnHnTll0yuNZOGhX/VCITq+xSg4evgIPU57LhuLQUQ1eDh5+xx8/rgkA0NHRL8YJkfIq4swBisSKgOMwA3gIPKo4eHBxZkyJaCFSPuIT0QIAU22S/I03WwFYrguVMGVyi/S3nxgScNqsVCqhXC5XdfAQUV/pnOM6xNr9kYeuxl/+9EVMmmTVIcpEUMLBIxrC2LGNkri3hTmD/dsn3ymcIC44/zjE41E0KaKWRDzKXKky0nOgl8BDxHYVZPetSmI17gQlovBCQbS01AthmnWN1rFjTPjA7/mE8c3Sca2IFltUQQKPvOPgQcehaznqaCs+Zt363eJ9GnvkglEqlZG0xXHjxja53lPh9LsgE39azwYk3KK15fAZjosHd/BQBR7BYBDjxjdJ52kZXS/6X0dHv13eapvjjp0GAFi7dhcGBqxzk4A4VcHBo6trQJqPuLMJACx4fCU+9/nfC0GUS8ha5blGnVeria/dkS777nymoaGhoaGhoaGhoaGhoaGhoaHxdsSwCjyuueYapFIpXHfddTj99NPFexdccAHuvvtuTJ8+Hbfddts+HbtYLOKuu+5CKpXC3LlzsWLFCpimiQsvvFCUmTNnDqZNm4aXXnppWK7nYEShKBN3KlQyXf2Rt9fe2c3JZU7q79nbK163tVuvi8oPt4WC5WrBHR084zAoLoY7eEgRLfu2Y48LRmrdJWg5eLCIFrbz3wucRFHFACHFNQIAxtlkhOmKaLHK8t2cwaDhCDaIOClXJnVF5nsN0SJ1cYe8JqFJNQcPIjy4JbgKP2cIUXdG+nzn2x/E0UdNwcc/dh7rB9b3VXcTADj55Bm49JKTADgOJER0qvEZp506E7f+4fP44fc/gv/3Pmue8RJ4eEVECPv4WgUeNmHGd7vSdZAlvCXwcPp4roaIls/+x8348EeuEw4MBCL/vCJaVLLND0SyE6moCnHoWseNa8L57zoWF1xwHN7z7lMkB4FaBR7CNSNfcJxWKjp4MIGHTYhRPb/65ctw4/Wfxi9+foX03WOPnYYP/+vZor/QLva9bX1iHCcSMdkFoyj3GVd9lIiWWoQG3/vuh6S/px82zqek7OBRriDaUeuTy5kolf3bkSCu1d7BTf35iBkTpHtG5ySit5+JE3I599zZ0FDn6+Dh1ScBx+kgnc6LcUAuR14gkjadzrHIB/9rpbp3dQ2I+xWNup1lqgk8du3qxlX/eQuefXYtAIcU3b69UypHER0qiHCuGtFSdNZFLxENzcWq2I7mpryIpqrc7vsCmltpHFZq9/H29bZ39CGdtua/RMJ7/SA3oFKpLK3P3AmFolIIXu4mHGLtDhouQROtDWGf+CgAmDbNEnjs2GHd32oRLaojTyIe8ynp3JNSqSwJWvz6fB2LaPGaa0aPbsCRdmwIIM9P1B+ikTDC4ZCIWwLk6LdRo+rxxIJv49klP8D3r/mwdU3MlcQwAohEQpL7DzlAWM8kbrGo6uChxst4IRxy1lhHsGEgEAjgq1+5DGNGN2DM6AYhmIpGuMDDEeSGQkERyQJYa01dnbeTSyQclJ5tIpEQZs+y4t62b3eiRVJ2Px47tlH0fbp/8XhErOkDHuOWny8UDoo+T6IRmi+pjjympS4WkSLEyuWy1DanvuNI6TzRaFgIrNo7+q11xK7njBnj0dyckISMY21XD/68rz77L3h8pfTMupc96wPA3f94Aavf2IHP/MfvUC6XXREt1YSrbgeP2sTXhLcSbaehoaGhoaGhoaGhoaGhoaGhofF2hP+v4/sA5wfIGeK9RCKBm2++eZ+P+cYbb2Du3LnIZrOor6/HAw88gKOPPhqrVq1CJBJBc3OzVH78+PFoa2ureMxcLodczvnxcWDAInRM04RpHpw2wVQvsjUPGgHPuhLnlc8XYJomBgflH6q3bm2HaZpidzZgEWd0LCKDAaCtrQ+maSKTdf9Qm8lkpR+AS6Wiqz4BmwPImwXn+MyyPZ3O7VN756V4mUzFY9B1BoOGIExzuTzyNrkZCMDn+1xEkkUoFBDiilK5BNM0JTvsoHKtVEc6Prd7LxSKgD1WCoWi3e+sH7etH9a97mvZvnbr+EIYAnf5cMgh7QaTacTrokJIEIuFPY9PpHlHR59ve+aV96ntOVFH373wgmNx4QXH2pWnz+y6myRqKXmei4jObMbqH0URY+OUnzlzAmbOnIDXVm0D4JAPOdavrT6pHDxQsutSRD6fF+WDQcOzLuQeMDDo9DMSKcUTUaQzeWQyOakNspl8xT5ZLpex1o4/uv+Bl/HRj5wtPiMBl1c/IO4wm618fDpGPB614ibs+0Rzh8Hmju9994PO8W1+L5crCAv8aCRU8Vy0WzuTzgmxRdFjLqA+mWF1pz5ZVxeBaZqIxUI48cTDAPiNSQu0E791Z6e4nmDQcQ6xiELrfviNb1Fvu49Reb/xBwANjTK5PXZsvW9ZcutIpwvo7Oy36+I9ZwOOQ08mnXPmDp853qq/Xd7uayLGIWxgzuxJeN12X6J73dBg1b23LwnTNBEIBJCxSdKTTzocK1+zxlG8LiJEAOl01hp/Ffok4BCaAwMpIRrxG0+8/OBgGvW2m0Cla6XYinXrduGii44DYBGg7vHh3H/TNIEygIDjNvDb3z0h5gsAmD59LLq7B9HXl0JP7wAaEnVAAGhrk4lPwtixliCkp2fQOn7A28mAO+j09CZddaE4nUgkKF0DmTHl7fpXmuM5yuWy61r9QP2eiG7D8L9PY8ZY4oEHHlyG9/7LOwAAsTrv9SMUCiAQCKBcLiOXK4o+1tfniEd37pKdUjo7+z3vE0Gs3SFDuD245zL/uWLypFHS3/X10YrtOG2aI4aIRsOYOrXFt3wZ1lxnFgrI5Z01p1gseH6HBBvJZIbN8d7rH+Dcp3Q6i0zGGruhsHWvZs2aiPUbLFeKxsYYTNN09QESD0ye7LRBNBpGoVAQAo+e3iSSqYz4zPO5g67TXrvNGuZJci9KpRwBCc1DF5x/LN71zqNRLJYQClnvkUjQmm8K4rymaWLSpBZs2LgHAFAoFIRLEz17CFFAoIxIxBGohMNBR8iSzAJogmmaQnAUi4XR3JQQUVaA9YzV0FiHdCaPnt4BjJ/QKPrkK8s2Ycrk0UK0EAoFhdPRYDIN0zTFmknj+uSTpuPuf7xglw+IZ8RisYRMJsvGdwmzZzniHgAwAmU0j0oA24GengFkstxto4Tp08di1SpHaEZOLlbsjjU30fr6zvOOwbPPrUVbW590jtdXb5fG39Yt7eKzH/34Plx22Tuk8rmse15dt343stk8TjrxcGTtuT8aDSOXM8Xa5DcvqYIR698UB+e/vwgHe/00NDQ0NDQ0NDQ0NDQ0NDQ0NN5eGFaBB1CdYBgqZs+ejVWrVqG/vx/33nsvrrjiCixduvQtHfPHP/4xrrnmGtf7Tz31FOLxyrs8DzRWv/EGAKC7pxsLFixwfb5jh2VHvnnzFixYsACrVllilwkTEmhrS2Hzlr145JFH0dXlkFidnf147LHHEAgEsGuXY2e9aXMrFixYgJ5eIoMCgsR99LHHxc50AHjqqSdduzq3bLHO0d3dI+ra1ens4u3p7fe8hmpYv2GneL1u3SYsWOD/o+vevdYP+KaZB2CRAS+++CIyGev1wIB3Hfiu3CeeeAqJRBi9fRZRu2LFq+jp3oRQyCHyVqx4FQDQa1/Tps29FY+/YsVyAEBfn/X5li3WfduxY7tn+c2b9tifW/ekr9+qy6uvLkNnxwbfuj/6yOOor49gzRqLXEunBjyP39lpHX/16g1YsMB7J+Xq1e3S36+9thpBowPrbQv03Xt2eR57zRqLiN/b1o4FCxZg507r/m3cuAELFrgdQ8yCRRQsWfIsNmyoR3d3j32+lUgmt0tld++2vj/Qb/1/8eKnxWdPPvmEaz6i+14ul/HYYwvQ1WUJoApm3rPuu/dYx+3s7BWf9/T22cew+t3ateuRTjtttmPHzor9mu90Xbp0BZqbHMeAzk7rPr2++nWY5i7pe9u3W39v2bKt4vGTyZRUv1Wr3kAk3IU33rTuQ093l+f3qW0KhSKWPmtFbOXymcrnGrT64SvLlgvR3PPPP4/16+Q4hP5+67NUKiuOt3adNRek04NDmgf27rX64WsrtwCwxA6PP/44tm+36tLV1YP16zcCAHbubPU89oYNPfaxOvD4E4+jzT7m2rVvIhTscJVX0dAQweOPP+77eblcxujRdejuzuBvf18IADDNnO91bt1qRWNt29GK55+3+n8ul/Utv3mzNa9v396Kxx9/HHv2Wn+vXbcGpZIj6isUTCxYsAA7dnTY39uBxx9/3Cbirf4xZowzX7zxxmvYucvqj5s2bcPjTzyOwUGrP738ykvYufNNV13a263xv2bNBsSifdQCvnXv67fu+6srVqG+3iJJ+/v7fMt3dabta2vF4kXW2h8IFF3lB5NWvV95ZRl6uje5jrN79x7p7+RgH8JhA6ZZwiMPP4FRoyxC+JVlVrlQyJDcKLq7aQ7eg8ef8L/3bW3OPNnR0Sv1k2KxJEjlZctexMaNjkPBjlar//b09ll90haqrlmzBuGQ7DKyr6A2ev31N+x3Sr7tvnePMzcvWvS6dT3te3zLh8MG8vki8mYJixYtAgC8usIR2+7cKV/D4qdXYMxofzcUmh/6+/tQLFjlaC7r7Oq2r2MV0qkdnt9vb5eFOnv3bseCBf4RZPm8s56PHRPDM88s8i1L80d3Vw+eePwJ8f6iRQuFGIWjs8Nqh9VvrEFHu9Wub77xBsqlva6yANC6w+prmzdvQ2enJfBo22u1fTjkrBcvvfRsRTeNrk6nDTIZa43btcs6/66dHXh68RL7U/d4sr5DLlplPPrYY+z5chMWLPB2uUinaBy+irZ26775PdcAwMBgHwBg2fIVQkDxwosvYMOGOpx+2ijs3tOJSRPrsWDBArS3W+2yZu16PP64Iyh74fnn0D/gCG4LBRPr1q4GALTt7QQwHosWLcLu3dZ9WL/uDQRDsuPE008vBuw1c/HTz2H79mYA1jPG3+5Yi3DYwCUXWTFd6fQgTNMSlCx75VWkUzuwebMlHmtttdbncrmMo+aMRj5fxKuvvoBCwZlnH3vscfEcsHTJEtTVyX3m6acXYXDAunfLX12JwaTTxxctWoQym+ODwQBaWzcDALbv2CXmptVvWM9ZAwNdaG6Kiud4wvr1u6S5qaEhjD57nX5swUo0N8nle/sGXHPZL66znmM/c+Xx6O2zvhsOA7mcJeBe8PgC338Trl27W/p73bqNWLCgsuvHgUY67d3nNTQ0NDQ0NDQ0NDQ0NDQ0NDQ0DgSGXeAxa9asqiKPnp6eip9zRCIRHHmkZV98yimnYPny5bjxxhvxr//6r8jn8+jr65NcPNrb2zFhwgSfo1m4+uqr8dWvflX8PTAwgKlTp+Liiy9GY2NjzXXbnzBNEwsXLsTs2XOw4PGtmDhhPObPn+8qt7dtMV5+ZS+mTpuG+fPnYzD5IhYt3oFjj5mBwcGNSKVyOPqYUxGJbAZg7fArFst41/kXIl4XxfMv3IENG637k0wWcdFFF2P37h7ccuvriMejYgfk+e+6AGWUceOvVgAA3v3u+S578uXLN+Pe+zeiPtEg6nrvfdsBWD/6BwIhz2uohp27FuKll6wf+seNn1jxGG++2Yq//G0NGhoSiEbC6OnJ4tRTT8PAYAYPPLQJo8eM9v3+9TeugGkWcd4734lxY5tw9z+2ohNpzJ17Bk4+6XAcf/zpuP7Gx/Cxj56DSDiIO+9eh1isDvPnz8dzz6/D/Q9sREtLizj+T3/+CgBrh+OZZ87FXf9Yj3hdAvPnz8fWbU9g2fK9OOKIGZg//2JXXZKpF7Hk2Z0Yb1/vHXdZ9+/MM8/ECccf5ir/69++jnQ6hzPPOgdTJo+GWVgOLNiCqdMme15vwHgNS5/diUR9s297ZHOv4KmF28XfM2Ycifnzz0Vn1xI8+9wuHGb3ORWx2Jt4bMFWNDePwvz587Fy1X14c00Xjj76KMyff5ar/N/u2ITBwR6cetrpOP64w/DgwzuBvUmcdtppmDt3llR246a9+NsdaxEMWa4A55xzLn71m5UwjADe/e53u46dzuRw06+tPnvhhRdhx44u3P7nNxFPxD3rvqO1E3/7+1oUiwHx+Z13bwGQxvhxY9DdvQtTpx6GZDKL11dbJHpLy5iKfTKTyQtiZMyYcVLZJ55sQ2vrAE455WS8653HSN/r638Oz7+wGxMnet9Dwm23rwWQx/hxo9HTsxuHH34E5s9/J8rlFVjw+FZMmDjB8/u5nCnaZvbsYwFswJgxLRXP9czSbrTuHMQxRx+HxU/vBFDEu955HqZOHaPUPYWb/7AKxWIZF19yCULBIErlFXjk0c2YMqXyGFZxyil9WLT4BqTSFhnX3FyP+fPnY/UbO3D3PesRjdZhxowZePGl3Tj88MM9j90yehMefHgT4vF6zLt0Hp5Z2o0tW/tw4gkn4tJLT/Q995FHnojrbngUn/zEeThz7uyK9Vy7roBHH1uJULgeQBcaGxt8r7NQWI6nn2nF6JaxOOOMM/DXv61BfX3Ct3yx9CoWP70DLS1jMG/ePDz+ZBuAAZx66iloaNgtxDzxOms+qm9Yhyee3IZINIF58+YhmzXxs18sAwB86b8+gtdX/xb9/Wl86EPvwdJn1+LZ53ahsakF8y6dhz/9eT36kcM555yNObMnu+rS3fMsXlm2F2PHTsA555yD39/yOqKRiG/d16x9GOvX9+CwaTMwZepoPPTwZoypMA9ns3n88U9vIJ8v4fAZcwCsxfhx7vKLnu7E3r1bMWfOsbj4ouNdzhBbtxnYtNmJb5syZTJ6egvo7BzAKe84HbNnTgICwJatTwDYiaOOmoI33mgV5d/1rrlY/PQOIBDGvEvn+e5Mf2ZJN7Zu7QNgEeQXXXwxQkYQCAD33Oucf/78S9DcnBB/v7lmJ+66ez2ikTrMu3QeliztxuYtfTjxxBMwf95Jnm0DDM3BY8nSbrS2DmDatMMB7EQ4FPZt93K5jAVP/By9vSkx1o499ijMn/9Oz/J//NM6dHYOIJ8r4sILL0QkEkFH5zMALHKaCO5EIopUKofeXhPz5s3zrTvND5MnT8CY0Q1Yu64b06fPwLxL34n7HtgBIIW5Z5yO006T4y0IO3d14b77N4q/r7jivRg3tsm3bcrlMp54ai/WrduNr33tcpx80uG+ZRsa1+HBhzehqakJF118sZjPL7nkEs8YtB2tT2LV6x2YPHkaMpk2bN8xgJNOPgkXXnCc9wkCr2HJszuRSDRj8uSxAHZj1qwjMH/+pSiVSgiFF6KlpR6XXXaWqLtXOxaLJdz3gCNmnj9/Pnbv7sHf71yLTLaI0047A3/80xtoaPCea3J5Z0141zsvwNp1T2L16k7MmTMb8+ef61n1l14ewPYdA5g5cw7CkU68uqINs2fPxPz5F3iWf+6FPuzYMYA5s4+21xDg/PPfKeJlrrzSur5AIIBduxdhxcp2TJo4FfPmzcMvfmm1+8UXX4hkMou77l4PAGhsrMd57zwb996/EcGQdT8uvPBC3P2PrQBSOOfcs7Bj57Po7Nwq6vGey+bj2ed70N6xFbNmHo2LLz4BgUAAv7v5KQCAaZbQ3WuJOiZMGIdEPIrt2/sxc9YczLv0NLyy7B8AOnHCCcdi/vwzAAD8EaRUKuG6G6z6nnPOO3HDTVa7XnLJRWhsjOOGm1YIV7zLLnsPVq66B5u39OGII2bh/HedgBtutETE737PPGRzL+P11Va96uvrcPrpp+LxJ7ahPtEo5qbtO57CSy/twaxZRyKe6Mbzz6+X2r1QKEvj765/bEVfvyPCesepp+Hvd64VfxtGSCq/ZUs7AOt6gqHxOPmkMbj3vg0YM7oZyWQnymXggvMvQjQW9pyXOjqfwXPPOyLWyZOn7tO/B/YnyO1RQ0NDQ0NDQ0NDQ0NDQ0NDQ0PjYMCwCzyuueYaNDX5/4j+VlEqlZDL5XDKKacgHA5j8eLFuPzyywEAGzZsQGtrK+bOnVvxGNFoFNGo+0f4cDiMcDg8IvUePlg/lIbDIc+6Ruw883LJuh4yc4hEw5g5cyJWrdqObVs7XHnX5VIA4XAYxaKzyzCVymHZ8i2YNKkFgCVMSIsohgCCtqAjEAh4tmc0ZpHuhWJR1NVkuduZTH6f2psZVCCXLVQ5htNeImM+YIj3Q6Gg7/fDoaD1g3vZQDgcRsk+cSRi9ZPDD5+Am264EgCwbr31Q3WhUEI4HEbAzqcJBQ3X8Y86ajLiCcvhIJcz7fKV72uCyucL0n2KRiOe5evqInYEjlWfXM663/WJmGf5WMy6f6ViuUJ7yj/S07HFtYa86x617enp2AFxT7zHG1m2l8sBuQ9H3OUT8ZhdF9va3e6ThuFudwBIBLgIyah4nwCgqcmyPk+ncwiFQpL9faKezl2S+mTeLFbsk7mcMwaovxCca3W3ZTRqjadisVTx+JmMtau5eVS9qJ9V3m53nz4fCjnLQcqOkYjFKs+JMVYn6mOJRJ3rO6OaG8RrM19CXWNM7Jj365N+mDJlLGbNmiScYxL29xPxOvt6i861erQjnRMA8jlrPJEzUSRa+XqPPnoabv39F2oi05uaLDeovj5L0OZ1Twk0H+TzBRgBa57y68MAELf7PfU1ij2qi0UxusURKdL1HzZtLACgtbULwWAQhaITK9HUlMBf//wlZLN5jBnTiJYW614NDmatuaZUsuvvPdc0NVrXmU6bYjwFQ/51b2iwrjWbK7DxV2EeDodRXx9DMpnFzl2W+LC+wd1nSCyRSuWszxTCW71f0WgYDQ116OwcQDZjryMBinQAZs2cJAk8xo1ttq8zL8p69YESc7YCgHTKxOiWGBAAurocB4kxY5qk78frrDk4b1p1yZtO1FKlPjkUgUfUjpUYGLCuMZGofOyPfPgc/PZ3jkNFY2Pct3x9IobOzgGxRoXDYaTTbnet8eObsXVrOwYHMwgGgzAChmfdKUKooSGOOI3XvNLf6/zrP/2w8dLfkyeN8SxHKJfL+Mm1H0d3zyDmzJlSsWw0Ys17pVIZoaAzb/qNEbF+5wrOHO+z1gPAmDHWGO7rT6Opz3INGDu2SZT/0n+9x1V3rz4QDgNnnD4LL7+y0f47jAkTRom6UD+IeqytgLUmkHNboVAWda/0rJyw71UuX3Q9M3mhjp4TCyXhahGLed/X+nrnOcgwgmJuqquLIR53XKOMQABNjdZ8kE7nUC5bzx5pe21sbIxjdIuzJkUiIdTFYmhuojkkL57LNm50nH82bdxrny8qrjOfV5+x3OsfIRQKolAoIp933ENiddZcNmpUPTo6LBefcDgsjm/miwgEnPiZWDSKqVPGir8T8SgaaQ7OOHMTf246bNo4PA9V4GGtk+FwCAhARMYQ0um83ebW3Ju3x7UQeGx1nK527uzBNHuNqW9w7oNZKKM+7C3wKMkGKuw55eDFwV4/DQ0NDQ0NDQ0NDQ0NDQ0NDY23F4Zd4PHhD38Y48aNG5ZjXX311Zg3bx6mTZuGwcFB3HHHHViyZAmefPJJNDU14corr8RXv/pVtLS0oLGxEV/84hcxd+5cnHHGGcNy/oMR9AN4MORtyx0MBqVy9KNtKBjErJmTsGrVdqzbsNuVf02CD8pYHz26Ad3dg1i2bDPe85532McwEAoFkc8XYBaKCAWJTPcmlcI2Ycxt7mmHImCJGwqFIkKhIB599FXcctsi/Ownn8Bsj13iHAVFJFK5rHXuUCgo6lkqlgQJFzT87c1D4SCQcdqE2jTkYYketsUjVLeSXZa7mvz8p5/E3+98Ft+6+gPimOm0RaQTEeJH0NGuYCov+oGPPXtdnUWaZG2SjNqJ3nddq30cHh+iQiUus1nTfp+u1bvuIbtPttoW/XQcv2sNh61+Y9p9UrRl0F2exCDUf6u1C3/fNAtVy8frHCIvny8gGg2jWHCECYC1y5m3Wy5bOaed99+8KQutiiV3vyGIdjGLrs/4sUmcMX6cJbTLZq17X+1aLaFWGLmciYEBy90nGqlMaFD7Z7KmuC4ikTlCoSDq6iLIZPIYGMygsTEu+rJfn6yEGTPGC4EH3QeqSy7n3A+/8R2zz0njQswHFeIOhooGm4zs7bUEHjRHeCHK+nG18QRYwhvAEqgATp8IR0JoHuW4Qhw+3VqLp08fh2g0jFQqh527usV9jUbDMAwD9fUx1NuCJRKmDPRbxDK1jde8BzhCp1QqW7WPAc5cdsedz+Fb/3t51fIAMGZ0A5LJLHZst+YQalsOEpr093vb6GeVcTlhQjN277aiPgYHM+J96pdHzJAFAqNG1Uuf+6GkMJf9/WlBJtN3P/uZi1zzH/Vfupc0j8RiQx8ffiABKImOvNwmOKZOGS39TaSzF+hYnLweTGZc5VpG1WMr2lEqlZFO58X4VZFKWeKD+kRUiAAy9lyWZ/3dD4FAAP/x2Ytx622L8JMffdy3HMeYMY0YM7a6i5t4liiVpXXRb8xS22QyeWeOr9Dnqa/19aZEXx89usG3fCV8+Uvvwb99+ld477+cBsDqT0Ta79lrCaa85mzAasNY1BJGZHOmuNZKcxN/ViEhTqjS3GfPZblcQawhfnMlzXuZTF5aR8OREOpizjWk0jkxL/X2pnDLbatxwQUXiT6ViMdEG/M6xxN0n5wx3tbWJ153dVvxNrFoWIxLKkvzS6zCehaJhFAoFKXj07w6ffo4IfAAHOFLOpNHsWhdazBoIBAIYPz4ZlEukYghIdrceR4Wz6shA+PHe4vuM5k8wg32c7ryXEF1ob6SzZqWk4otnmxrc+J/UqmseNaOhIOIxcLIZk1k0jmMYusRB5UnAZH6bxINDQ0NDQ0NDQ0NDQ0NDQ0NDQ2Nyhg+NgvVd48OFR0dHfjkJz+J2bNn44ILLsDy5cvx5JNP4qKLLgIAXH/99XjPe96Dyy+/HOeeey4mTJiA+++/f1jrcLCBfhQlIYeKkC38oB+/+Y+8J51oWY4vWbLGJYwgopl+5H3HO44AADz40DJ8/Rt/AmD9cC1IqHxRuEj4kXNqXazvyYT2nj3Wj8Q/+sn96OwcwG1/XOxz5Q44mc5/KPeCI3AxRD2LxRITYPj3WSLUqU0qkZehsHU/hNCAiBAmSjjrrDn47a8/i8mTWwRRls7kUS6XRX382jKxjwKPtN0+Kft7foResCaBh/xZLieT435tSaRMX18aGzbsrkpgh+22JLeXSqKHoQo8AoGAc3yz6BAnPoIpTq7SmKF6JWwyiAsKAKfN/cDHgyoGqSQ8cuotj6ElS9/Ez3/xEAqFIgYYUT3WJiqJeCrUQL7TveofsEhyP+KPQJ9zgtzvOyQgSA5aJBuRUXV1lUlmL8w43CHf6T7QeXN5R7jj18eINKX2qlZ+X1DfYF0vCQ4qkdH0Wd4sirmjkviMBBpEiuXy1v8j4SBGsdiPmTMnArAI1ln26/Xrdou+HIu575UQSth9oFrbEEGfrFHgwdeeDRus3fGVyG7AcTRYsnQNAG+hgRCmDPgIPBQCcdasScJNhAsRSCAVT8QwfbqzU57KmmbRNQY5iooQjl9vusI8TDvfBwczKBSKor51HvdoX0HzpRB4JCqPvSmKwKO+3r98XMyHTtvQWOdIJKKiHl73au/eXmQyeREHV18fE/MwCRZpDo2E/YUDAPCJj52LhU9+F2edNadiuaGC+muxVLLcM2z4PQOL9Vg4oHmvZwQixXt6k0JUwB0nhoJp08bgyce/gy/9l5MXQmKR3fbzV6TC3EQCjGzWRH+/1W+iFcrXMfGcENj6PK9ax7JFG9m8IybzEXjQuMlm85LQMRwKSu3Z15cS7l4A0NubxfJXt4g1J5GIego8HCGR1c+KxRLamehC1DkaRjxu90m7LImPKgkWqb9yIQZd60c+fDYAx4lI9PmsKQmVAUucRgiGDJcAmOoOWHPxxImjxPt8/KXZ3GQqDh7t7bbAw55ry+Wy1OZ8zU+lckx8HmTPn87xC4UiXl2xBZ2d/VL96NmW1jANDQ0NDQ0NDQ0NDQ0NDQ0NDQ2N2jCsDh78h+7hwG233Vbx81gsht/85jf4zW9+M6znPZhRyUUCcBP1QuAQCmLu3NlIJKLo6hqQyheLJbETnH5IPv20mXjyyVUALGIeACZOGCXISrNQEOfydUsQrhYO+U1CkkgkhHy+gB2tndLuwoYG985sFfx4/Idyz7JF54dxElsUiyX2Y3QFB4+QLDSoRMw4biVWWRoLRsD7+PSDvBVtYYry/g4eDkFkfc8RrniWVxwKMunK5APdQ9Wmm0MVfzgOHpUJq+OOO0y83tvWK9xK/AjjiOLgUYk0ph3ptJO6FoKZonfMQpGV9yaUgkFD9NVMNo9mJEQbORbtBYmMT6eqCTz8xSCVhEckOMorO23/91t3AACOPXYajppjud801MckMgxA1WsFrJ3J/YDj4BGtvEQQUSQLPLy/U19vRTgkbTKdxFnUt4eCI46YIF4TsRyJOmIfqg+JSlTQPEM7wWtpm6FCncsqOXg4QiUTZXK4qSA2ITELjUHh4BEOiRgDwJrHCXPmTMYbb7Zi3YbdmHaYJVzwcodosgnGgYGMJD7zE2EIB49kbQKPd5xyBO648zkAEIRxsIqwZtKkUcAK528Sz3A0KsIUFVlGNobDQRx91BQsWWIJRgaZEIHm2EQiiuOPm47ttmsI76fpdB5NPiS3KoTjwpJKAo/RLfVirmnv6Bf1jQ6rg4dV557epG89OCZPbpH+rvdwTiEQUfvYgq346lesNkh6OHiEwkE0NsbR1TVgjdOJzmebN+/FJ//tV/JxEzHJuQFwBH2hKgIPciUablD/LhVrdPBg67EQFVbo8y0iXquI1lar/+2rgwfgrB2EMaMbsGNHJ/YKBw//eZ6eg6741K9E/zn++Om+5SUHj0JlAaV1buv+pNi66SfwoH6QzuQlkVVY6QelUlkI/wiDgxnxnJVIRNHCnCWorCMksvpZd/egp+g1FnMcPGgNFy5pFcZrJEr92LlW6jOnnzYTv77p34WYjeabTCbHnuOtdiQxG4HWQC+Bh2EYmDTRGcfjxzejq2sA+XxBmhNpDWlujqOvL41t29qtczU758rlTPF8xufMZCorianj8Sh6e1PIsPrccOOjuP+BVzBn9mT88barULDHQTwRw2AyK/4NoqGhoaGhoaGhoaGhoaGhoaGhoVEbhtXBo1QqDVs8i4Y3qgkTQkpUCN/5F4mEcOwx00TZaVPHoKWFiASKaKEfeRP4+1+/JB174sRR4of0glkURJYfmefEljg/3NKPyETQ7tjRib3M6rmpydvOmYN+GAZqd0sIhWQHj2INu2gdB5KS+B7gfb3cFQKoTNQD1q5sEnOk0znhhlLN4p0ELdUdPBxLeDoHP46KWhw8/AUela81Gg3j5JNnALDap0TX6iNmEW4opiys8XI0iEQcYqdQKNUm8Ig4ziy1uFqIHcl225OjS4LtWC8UueioSp9k/Vd10hFiGS8xixh7zniS3EBYtEpjU9whq3LObmSg8rUS2UbxHNXIURJV0E78SCTkO6YaG2TXDOrL8X1x8GDxGeTmQbvKi8WSsJf3I0W58GMwmXVI/X0Qm/hBFZdUcvCge2vmi8KxpqKDh3ArsQUeNuEdjoRw5JET8O9XXoAfXPNhnHDCdPGdo+ZMAQCsWbNTEHt1df4OHsViCclktuoYIbeBzq4B4ShSqY+dfvpMQRT32k4SleZhALjiindhdIuz496LRCWBx0C/W1QAOOPgU//2Lvzh5s9hzJhGIRThQgQSaMXjUXzi4+chGDRw4onTEQoFGRntdqYg0Pwmzuvp4OGuv2E4O+337OkR9Y0No0ChsdEag3v3WmuuSoKrsCJ8nHmaBGRe4HMZxVoMJt3tFAoFRT244xAAPPnU667y9UysRsQ4Pa9EwsOqUa4ZJM4oFmt08GARLWL9qzIPN9jzB60JY2uIjqkVwsFjtyXwiFSI4qKIKcAS1kya1IIjj5zgW15y8GACWz9QH+zpGRTvqYINAq0V2UzeEfmEgqLd/3Dz51BXF8GnP3W+aw6itdEwLNGPp4OHIoylfqzO5bFYWIrB6+zsx44dlhCnUkQLXRc5qoXDQanPnHzyDEyb9v/bu+/4OOo7f/yv2aqVdtWb5SIb3HsBF0wxxhgwGAymBojpAYw5wzeBhMtB4BIgFe4SEnKEQHK5XBKSQAI/miHE3OWAgIkJxZgSG7lJtnrdvr8/Zj6fmVntzK7slXYlvZ6PB49o5dHoM6OZ2cl+XvN+V2q/Q4ylfwUPRVFw7rolAIDlx02X4apwOCrPDeP7fV2dXsEjGo31uz8U3weAKZPrAADvvtcAQH0/EPvSGFYzVfAwhvtcTvl3MlbweOutTwEAH+7ch0QiIVvdiWshK3gQERERERERERENTFYDHjT4Dr+Ch/p9MdEOmCfaxIfl4sNht9uJSZNqMGF8pVxeDXgYWgmkCTG4UlXw0H6PmCja+dE+WXYd0KsN2DG3aLFfXgQunIYS3rF4PKOnaN1JE+rGPujJRCghGo2pH17bTNQD6mSemCDo6QnpFT8sJjqTS3DH0kyciHXv2dMMQN9PlgEPVyYtWtQximNGfNifrkULYKjKEYnpFTws9o1YVhy7mVS1UJePpz0/TOMPRjIKPSRP+kSSKngkt2jp6Q3ZVjOyO371yf3+2+pKUcHjoKF8fHHAh48+VlteFBcXyqedg8EBBDy0n+nMtEWLx/w0r13pfvH0v2i9ICZrfYcRqqisCMjz88QTZvYb635tAtsq4OF0OuSkXWdnrxxTkUXFj8MRSA542FbwUMceDkfTBqYA/Yl7EaiQlZG0CcOrrjwFp5wy1/Qz8+dPBAB8+OFevLBlO4DUE9Iej0ueI93dQduAFaAGBQMBH4LBCN5/f4+6rM0xpigKjj12MgC9fY3d8gBQW1OKx3+6Sb6urOz/dxWtadq06hTJQtp7y+TJYzBtmvr+U2xoiyIYK3iMHVuOPz71ZXzvO1cAMFRSsnnfSb6G9gWNAQ/763Bdnfqk/f79rfK8tWv5MFB6oFO7hhWmP96vunIlAODUVXNTtsYRGpva5dfdWgCmO0XAw20MeHSaAx6p3v+LigoMbYDUv424j7BrLTKYxPt0PB7PqIJHqVZx4YMde7HzI/UaLYJUVsSxAKjVdzKpbpYpcV3ctesgAPsKHslVvTZ8foVtO8aiFBU87AIe47V7zP97bScA9Xi3CngU+PRKLpEUbXpmz56AF577F1xz9SoA5uuKuNYUFXqhKIoMpgH6+SgrxQRFwEN9H5k8udZ0rHm9bsN9QQj/87879O1JamtkpLdI6jX93lQKDesXoVDjfvzSF8/Bi8/fiauuXGlajwwBGwLYxp+LRGJy3b0pKnhMnVqnrUdcBwvk+3rIIuCRXMEj+Z4JMAccew3hH3FNCQYZ8CAiIiIiIiIiIhoIBjyGGbuQAdA/VCFLZGvLX3jBcTh//VKcdeYiXHP1KvmBc0ibMBHVCUTPdOMkw+TJtabQQyxNBQ+9AoaoxKBPwIsS3zs+2GueAEsT2DCuD0gf8IgZJhiM4Rc5aWlX6cFt7lMei4pWBSmCBi5jJQlDdRObSdoiQ1ltsS+tW7ToT1wmEulbkYgn9//wxzeRSCT0J8fTtGixD3iID+S1yhXa3y1dixZAD8BEDJVfrCp4uLWqHGISzy4sY5y8iMYyq+ChTxZm1lJCVAvoC6r7XpxbIiAQCkVkCAVQ94dxIiSZ3fGrT+7bVfDQf37//lb5dTgSxfceeBqAOmEnnvwPDSTgof3M7t0HTa+tJLdosVteTFB2a2GQ3jShIzuKouDnP7sZP374elkNyONxyXWJCgWVNm0NAobJfTER7beZwB6o5Cfu3R7rSU55zEeiskVLuif8AbV6DGBo0WIz4V1TU4qJE6sRjyfw9NNvAbAOQ8gJumA47XHjcDgwd67ahulVbaLT+HR8KmLfi0nXVNfUZOXlfvz0Jzfi0s+diFWnzOv376LVlzFoYCQmEI0VMcQ5bAwi9CRVOyor88un6ZODdqkkvy8aQws9slJM6mN+bJ2o4NEmf06ErrKhvNx8PmTSHunKDSvx+99+CXd8Zb3tcsZzX/xdu7XrgjGk4nI5URzQqq0ktdNpaGjut16/v0C+5/T0BLUqBeaQ3VAT52YsnsiogsfUqXX9Qg7jx1sHAQA9jAMAp67qf7wfCdEGRBjIfrSr4gKYA5GxpIBxKkdNqpbLA8DcOfWW9xLi+tzVHUQkrK07KQxi3M/Ga9ahQ2prwkJtHeYKHh7T2MW519ikBihra8pM13NjwKO3LyxbHq096xjbII4Ir4rWVHbvfQVyLBFTeMLI7y+AoiiyQh+gVxcS96tiH9y8aQ0URcGtm9eawikAtPsa9XdMn1Zn+h2FRV7ZWsbYRqXLUPWopydkqi6YKuBhvEdqa+uW4xNhr3SVz4iIiIiIiIiIiMiMAY9hRp9sSz1Z2L+Ch7nSg9frxq23nI07vrIegYBPr6wQNrdoEUGOiy5aDgAYO7Ycxx4zWQYZIlG9gofVk93JYZOIYWJ67px6OJ0O7D/Qhg8/3Ce/35em5Ypx29Tlw3JSPBW9RLhDfjgeMwQB7EIJE+urAECOTwQNXCn2vfGJUzXEkD70oE9aheSkrtNiolNMBCQSiYwqT5xz9rFwu51ob+/B/v1ten94iwkFsU2ZtGgRY8m0RQtgaEFhmMBWLJZ3J7UZSretYmIjFk0ffAH0Kg2msuIZVvAwluQXk7TJFTwA9W9qJbmijTHwoZfvTxEiEtV2DC1a2jv0CdJQKCoDPCtOmi0nhkWASoa9bCbbRDBChC/snuwG9MoTIuDhsQl4iHYYeosWrYLHYVYoqJ9QhTmz9ZZTiqJg4kRzi7DyDAIeHR29cizJpfiPRFmZH36/vj/s2kkYKynJQJPNU/LiSXNZwSOcWcuKWTPHmV6fvfZYi/WL9gPhjM7vyVrI5j2trH9NdYntOMS+b9datNi1ozGaNm0sNt54upwUNKqtVcMR3d1B09Plgmx5YghMyJCPFvCIxeLyWpkqhCGufcktWtTQoLqfxLU/+ToJpG+VJQKVnzUckuvJZouW8qTgTaYT+zU1pWnDXl++7Vz5dXt7D+LxuKy4UVtTKv/N5XJYVvBoblEn4UVoCwDq6sr0a3ZPSO57RVEyCqgMhlRhUfuKO25MS5o4L05TwcNYfei8c5cc7lBTSq4yYWx5lfZnDVXdUik0VfBI36JlwoQq0+vjl0+3XFaEMtrbexDWWnrYXfOM7+ui2pW47zLuX9GGxtgWBQCamtT3w9raUtTWlsrlCwrcKBUVg1q75c+na6OjV/BQl7cKegEwBEhCeljDZj8mVyNKvre5+KLjseWFO7F8+XRZNUtc64z3IKK6kVBU6NXHYghhiKpdgPo+JK5zTqfTsH59+R7Dz7a19cjfKcJevTb3TERERERERERERNQfAx7DTMwQWEilX8BDVvxI/cGwx2tu0SI/kNcm5JcsnoJHf3IjfvDv16jVEoyVGGL2VTCS25ZEDZPgpaWFWLZsGgDg6WfelN9P9RRfJBLFwz9+Adve/tQ0RsGutLP4ENmdVMHD+LShFVEFQ/QitwsDGFuFBIOZTYqKPuU9vSE5qWv1BHBBgVuuq7c3lDaY4PW65STZzp37DBOL9hU8ojYBj7D2xKyYmBpIixaXsUVLmvCLO6ltULpqKGLSJBqLpz0mgYFX8ChICngIxVrZ/W5DUESwfcI/qeS98SlXvUVL//GkKpMu9hGgHncimLFq1Vw9BKCdH7LlQ4H1pGhLS5f5d2ZYwaNTVvCwnmwLyGoJ6rKybVAWW1CIp8EBYNKkatm2IxUxIbZ3b4v8XjYDHgBQXa3//uQnzY30FkaGFi02VS3EJGosFkdHR688/qxaGwhTp+iTzA6HIlsZJPMZWiFkUu1o0iRzsKaqyj7gUayFfcTxm+44y4TP55FtFw5orRWE7u4gPvvsEAD9fAb0tkFiUtR4LqYKYehVl8yVd75x7+9w+pqvo7m5Uz6pLpYdSMBjzBg14GFs+ZDVFi0VyQGPgVfPsTJ9+lisPHk2ABGaCsswnHFy3OVymarnGIlJ4698+Tz8690X4yeP3IiJ9dWylUxPT1BWWyks9NgGKAeTeC+Kx+Oy5Zhd2xLAHHpKbt+UymWXnohlS6fiRw9dl5Xzw2jq1DGm12PH2lcTEW69ZW3asfgMbYysKk8YeTwuXHbpiQCAk06ahXNtwizi/I7F4rJqhl3VIlPA45Aa8BDnnrHlyr59aiWsfhU8GtsBqMfvMYsmy+W9XjeqtWvcp/9owlN/+Ks6Ppv3G+NYM2nRIsIszc1dGe3HQHH/sBpgvm8Sv8+n3Xv2adcxY/i6sjJgCr8UFnplmKVdqzwC6O/jggituFwOeW9rvE4aQ3Ftbd16wEMbdw8reBAREREREREREQ0IAx7DTDRqPyEtPqAWH6bqT1DaVz+QLVqi6v8aW47MmD4ONdoTuGIiMhyO6lUwrAIehlBJLBaXTyGK8a84aRYAYPfuQ/L7fUkTZwCw9dUP8PP/3IpNNz+qrstmghwADh3qwPce+CM+azhk6gEvJoPixhYtNhNEYpKyJ/kDc4tWIeKD6vb23oxCD7LtSm8IiTTtbhRFkZNiTU3tcv0em8mNoyapT+Xu3dcqJ/7FB/v9xq8dH8n71kg8MSsmxvUKHumrlRgreKTbN8bJbnX99tVWvKkqeNgEd4r86j7ozrCCR6Eh4GGcCBGTlq2t3bLyjWAX8EgOKBknOe32pXja3lgdxBj2aG3V220E/AUyyCGCOL196StmXHXlStPrjAMeWquFjFq0aOdT3xG0aLFy7LH6JNymm9bYTrrWaxV6tr+zG4A6dneaChgD5SvQ12f3pLkx1CSruNhW/ynAhAnqk/RvvvWJ/jtsrgeA2ipCqKwstnyyXjzJbpx0sztHkiuniHYpVpLbGNi1NRgIMenarLVjEJ57/m35dalhEjaQ1KJFPHHudDpS7kvxs8YgVEtLF55/4W/o7g7i9Tc+liEtcb6K4zwWi8tAi9U5WD/BXB3B2IIqG5Jbc6RrpTNQJVroraOjV7Zw8HhcpgljtYKHulz/gIf6urSkEKecMhczZ6gVZ4zBGvG3ylV7FgDme4lY+jAnoJ9TAPD4Y5vS/o7x4yvxnW9tkO2Pssl4HFRXl2DZ0qkZ/dz685amXcZUwUMGku2P4euuPRUPP3Qd7vnaRbbXPbfbZbgPUgMbbpt1G69ZBw60AzBXzbj1lrUAgBtvOA0A4EuqemUMeBynBZIB9X4s1TUu3fmUXMHD7r1PVFlpaenCJ582qttjc18j7svEe7F+L9R//8jqcdr13VjBw+VyYtbM8YZlC/SAhzbuaDRmqNihjklU/3I6HTJsIgIh8XjcFPZoa+uR4xPXjOQALREREREREREREdljwGOYSTchLT5gbtM+iI0ZAg6pJE+miwlsq+VF1QJRgt1uLMZQSTQaM7VScTodOGbR0f1+Jjmskfy9ffta+1WZSP6Z++5/Er/93evYeNMjeiAmqYJHJhU2xNOS4sPvdD9j/BA8kxYwessNvaqF3YS0eEr+b9t3yWXtnsAWk2rNLZ0ycGBVEjy58ksqYnJSBFlCsoJH+n3pNlZ+Sdgvb6wSo47Jum0JoO/HaDQun7z1emxahRTpT4PLijh2FTwK9HLjxomQmuoSKIqCWCyOxgNJFQOSWjgYxWLmMIgo7w7ofepTbWtAq3rQ1dUnn4w3VvBoae3SxqsGFUSLFrFPRHjKLuBx5RUr5aQqoIdnrJSXq9cb2U6iwGa/J1VLONIWLamsOGkWli6ZiqVLp+LYYybbLiu2UwQksl29AzBfA+0qeIj9HI8nZFjIrkULACxccBQA4I03PpbfSxdQmWxofWH3txLhIDGZDtgHPERrEWF6Upn/ZAH/4AQ8RPWAYMhc1Uk8oT9mTBnGaK1cjL9XHJNi0rKgwJ3yWlynVdgwVggR12PA3K7J2MIJMJ+rVkGoiROrUW2o9JDtCc+iQq+pvY04f7NFVFhobetGt1aNIxDwYcwYfZ+73U5Dixa9xVQ4HJX7yp90fIhzM5FI4FCzGt7JZvWRgZLvl/FERgFHADj+eLX1iMfjMu2PXFAUBY//9CZ88/7L8NTvb7cNhk2ZrFb7MAYc7IjqDWogUj3m0wU8nE4H5sypzyjMJI5Z0XLF7rqa6prlMVSZOn/9Mrz4/J04ddU8AIbKFn1q9ZnGpnYAaouiyZP1a2csFkdRUUG/exhx/FuRAQ8t+GB3DAcCPrm+Bx58BgCwa9dB6+WTQlN29+ci2CaWFfdaiqLA6XTgpBNnymWLiryyMom4VzFWJRLtfcQ11uV0ymo14m/UF4zIexZ1Pd3y3tzYqijV/T8RERERERERERGlxoDHMBNL80Sk+EC4TStfrVewsK/gISafZMDD4kPzSi000NLSJYMWVhP1xnYBkUjMNFnlcDhQWRno9+Fzb4oPeI1r//iT/f2qTCSXdv7733cDUCsaGLff2IYkk8oNYh+LQEi6VgUyXNPWrU/62KxfPHlqrGph1YYE0Cda3v6bOqFYVOS1nVSSAY/mTvnBudVkemYtWtRjJCAreKjrFCXq0z15C2jbKgIbFhPYHkM7F8BwzFu1GTK0aOkyTCpa8cun9tO3ulHXpT/lLybfnU4H3G6XPN+atSf6xcSlMbSRLLmChyg1D0C26km1b8SkZywWlxMsoZA+afzWW5+alivwinLz6rKZVMxwOh2YOUt/etefZuK9OqkVh12wRk4qJVXwsKoqczhcLie+++0N+O63N9j+TQFgjvZkvBjHYEwYu9z6GGwreCS1eALsW7QAwMKFasDj9Tc+MqzHfoK0sNCLOm1yed05iy2XE21MOjr0CXi76izG4Fihz4PZsyfYjiP5/MxWuEYcf8bzAtADGZd+7gTz7w2YK3iIYEiBRRujMVrVngOGQJfx69bWLnktF8eTOL6MAQ+7v9Mt/3RWRssdLmPApdJQWSMbqrTKEM3NXXLyOBAowPjxemUSl8tpqDagV/AQLR8URYHfbz4XPR6XPJ+btEn3wQhkZUqcm7FY3NBWy/58PfGEmbj7rovw88fTV+8YClMmj8Hxy2ekXe7b3/o8rv/Canz1jvMzWq9oA9fXF0Y0zf3k4RBhg50f7Vdf24QqUt2TlCdV2TAeRwWG1lRdXX3y3K2tKYWiKPj6PZdg1SlzceqquQD0YKMwYUKV7djFe0AmFTwAmM6bdJLPqajNvU1ysE3c17jdTiiKguXLp8tlo9FYvwoeIpzpcjllpZG9+9RWZ06XQ94XHNIqKfUmBV6NLVp8Po+81+6xCcYSERERERERERGRGQMew0y6CWnx4XUwGFE/YI/aB0KSAx5i/VZlrysMAY/0FTz0dRgreIjlHQ5HvyeIU33Aawx9tBtKOwudhklIwPyhud673CnLW8fjiYwqbIhQTDQWM32Q77QIGpQZPgRP2EzUC26PoaqFtm8Um0miSVrLlQ8+2AMg/QRXZaX6t9q/v00+PWk1oTCwCh7qE5eyRUssffURtyG0IQIhVtvqMgRfgPQVQjyyRUscnV3qsWAX8CgyVvAwBDasGIM70aQKN8ktD+bOUUMDzc3mFhFG0WhyBQ894GHXjqagwC3HKSZDRdscQH9aVgQpRIUG0U6pL4MWLYA5tJFcmaHfskll6jNr0dKHaDQmj6dstmgZiHFjK2SbEyD95NzhcLv0Y9bu6XTjRL6oYpCuIsA8LaAiWvN4PC7bc1C4797L8M93rMdFFy63XKZA+zuKY9PtdmbcKmTWLPtwBwBTFQkgexU8CpKq1giNWnuG2lpz5QQxKSqqR4h9b1W5Zkxd/woeoo0DoAa9RBUecVyLsYhzNV3blblz6+W17ooNJ1sud7iMrSXKsx3wqFKvh4cOdcogl9/vk5PAgBbw0N5DOg0tWsTX/hTBRUVRZCuHV/9nh7Zc7gIeorVbPB7XA4tpAmWKomDVKXMHNGmfD6qrS3D5ZSfJ/Z+OCOwlEgl094ggQPb+r4aocPM3Leg6bmyF5bKp3tfPP3+Z9bqr1KpcHR29sjJPWVmRfF9buXIO7rn7YnkPkbyuijTnk96iRb1PSffeN2EAx4poiyJCG3b/X0FW09LOUXFfI96HiosLcc7Zx6KsrAiLF0+RIRoR8DAGhsU1VXzP5XTKv1GTdk9irAQFmFu0uJwOQwsm69Z2REREREREREREZMaAxzATTTMh7fN55IfR5goWVgEP8ySwDHhYPG1uDHjID5AtJiJFuWdAfZow1ROFyRPk3d1BOckmGMs2t7X32FZAAMwfmosPll0uhxynWpFDVOOwnhAVQY5oNG4KPlj9jHjKsa29Rz7Va/cUvrE9TiZVMMZpk2TiqfrkNgfJKivUfbtnTzMA9e9h1ZbBWK3ESkibkBfbGYvF0dMbMgR3MmnREpXhF6vjxquVUBd/u3Ql8L2ygkdigBU8ghlV8NADHj39KuJMm1onl6uoCGDcOHVCprm5y3J9yVVSTC1abI4bRVEMbVrU7UyuVAAAu3arZdyNQY5QKCKDUukCHsaJvHFj7QMepSWFpnCCXehIVEvYvfsQ3n33M/l9n886FDLYlh+nP6kswjnZZJzY9HisJ/VdhhZSIjhldX4IFRUBU2sFcV6mM3lyLc5cs8g2DCKOEdHqy6qihdFX7zgf06bV4ctfPjftssnnZyBbFTy8qSt4iLYe1VXm9xufzyPDFF1dfQhp+95rcZ2s0AKJYqITABoNYY/9+1tlFRARXhSTqOL6ma7tUWlpEV564S78+U9348orVtouezimT9dbMJVleMxkyhjwECG0gL8ARx9dizlz1OBPfX2VDPgYK8Sku3afsnIOAODtv/0DgB7UywWHDHgkMmpRNpoY2xuJFjxW1bcOR61WRUfcJ461CXhMMbRVuezSE/C7J76Eo4+qtVw+EPBhxnS1vdQd//xLAMAMQ8uyZDfdeAauvmolTjh+Bn72WPrKLCLUqwdu7a+ryWGgb3/z85bLirBaV7c54JHquOxXwSMp4AEAt31pHZ754x0oL/Pr97Zt5goehYVe+fcQPB6XDHg0N3ciFoubKvUAQFt7t96+x+2U9+w9PQx4EBERERERERERZcp+poHyTroJaUVRUFZWhMbGdrXiQExUsLBq0aJ+oBsOR02VBayeuJQtWlq75ZOrdpPjHo8LfX1hhENRJNB/eVFlwqitrcf0obGoPACIgIc6zoC/AF3dQVMFBMA8gf7Jp43a9jjhdKo/F43GDPvRbtLV0W95u+0tNvRAFwEZu0lasUw4bGhbYjNJNDZpsr3Ib//0pwjjGJ+2tJrUzayChzqhUlpahJKSQnR09GLfvhb9qXeb6g16wCMmwy9WFTymT1MnWN7+2y4kEnq1FadlmyH198aicX1SMYMKHt09Qdsy5oKx7VHyRMi565bg6WfeAqAGcMTxfOhQh+X67Cp4xGL24Re/34f29l4ZfjFW8BBOO20+AJgm/4OhiN6iJU3AQ4RIAP2YtuJwOFBbU4o9e9Xy7MmTPab1GgJJP3n0ZQDqfrQKkw2Fk06cif/+1f/C63VjxUmzsr5+Y7DO5bLfTnGtFAEPu2o+gHqtr64qkaXx0z09PhAiCCaOzXShIAA44/QFOOOMBRlVEenXoiVLFTxEMCMUMlfwEBOSRUlBEofDgaKiAnR19aG7Oyj3vVWgpVgLP3V29iGRSEBRFBw8pFfrefvtXXLyVlS/EWEQUbHG401/vHu9bnNvsiy69JIT0NjYhtrasoyrsmRKBDy6u4OmVioulxM//MF1aGnpQnV1iax60tnZK/ejCMqUWIROFiyYhCd++5p8XWrTmmOwGd8v0wUQRxtFUeDzedDbG5LvOQUZXD8ylfweU19vXXnp9tvORdEPn0V1ZRRXX30KPJ7041i79hh8sGOvfL1g/iTLZT0eF6668hQggYzO1+SqM2PG2Acojdu2+tR5ptYpydwWre1S3ePKdmmyRYsWtjC8Rxmv41YtWgoLPaaWT4B6v1RRobZfjMXiaG3rRkenucpea2u3vE6WlBTKFl/JlT6IiIiIiIiIiIjIGj+RHmZkWWObiRkxgZ1ZixYxIRZJCnikXt5YSlk+IWgzOS6qMYRCkZSBkFQtIFpbzdUPrFq0VGqTSaJFAaBWiDC2x/hQ+6De7XbKScpeQ9UJu0CF02VVwcO6egqgTqZnsn5j6CGTCh7VVSWmSXt/ugoeSeEZu4l9VwYBj0hYPT68HpesJrJ3T4t8Yr3ANuChTz6kq+CxYMEkOBwKmpra0drabagUY9+iJRSOyafAk1tAGIkqEz2mCh7W55OxgoeYpBXbM9nwhHDAXyAnOPfta7Vc3+G2aDGOXTylm1yp4JbNZ+GmG88AYK7YEuwLG4I+9sGg45fPwOrV8/H/bllru5xgnIRKboFhJJ7qBYDPGg4BAErSBEgG25w59fjed67Az3+2SR7T2WRs0WJXwQPQrweipYfV8W5k3KfZDHgkV/DIJOAxEP0qeASyW8FDBDUAmNoBFaVoiWB8mj3dtUwEnkRLF8BchUJMWgJ66wjx1HtEBDw8uatYA6jv7bffdu6gtH8pLPSiqEjdvvffF63E1P3rdDrk8Vpaqu7HSCSG19/4CADw5pufAADmzZ2Yct1lpeZ2brXVpVkd+0CIalWxWFwGFu1CgqNNcmUKXwYVgDJlfI+pr6/C0iVTLJetqAjgK7efi7o6v+UyydaedQwu+9yJANTj+bTV8w97rMmWLZ1mej116pg0y0/FiSfMQN2YMlx91Sm2y+qBZPV4jBtaoCTT26WlbtGSTNwDyYCHDIv2r+BRVuaH0+mQ70eHDnbINoqiJdrevS04eFC9Ty8tKZLLNrdYVz4jIiIiIiIiIiIiM34iPcxkUnFATE4FDaENp0VgQ4QAmpra5ZN/gHXAwziBFssgxOD16qGHWKx/e5kZ0/uXvzYGNgCgr9fYokWvSlJVpU4WGVtcvPDCdjmZB+jl8UtKilBeHpDrj8bsJ9IBcwUP8ZSu3c+IyfRQMGJ4qtcu4KGHHuI25bQFp9OBWTPHy9fp2hp4vW5Ty4yycutJDtlKJxozTVIaySfQPS6M11qR7N3Xoj/1bjMJbGzRIvaNVYWCggKPDCl1Gp78tNrvkyZVAwAOHOiRT6TatmjRQkrdPcG0LY8AvYJHw55mHBBPmWsTvS6XU/7+NWsWYs5stc3Hjg/39WsdJCSHaMwtWrTjxqoNUIk6FnGOGI91AFh/3lLTRL8ofd7bG0Kfoay6HZfLia/deSHWr19mu5xQX18tvx4zptRyOafTge999wrT+FMFvIbaksVT5GR8trnc+nHlTlMtQQSV+rSARyYVAaqr9ZYjFTbn90CJQEeLNuGWzQlawFxdBkC/p8APV0GKFi3iaXMg9bEvn2Y3tAezamVV6PPIa4VoOyCuUeI6IIiKSyLApYfDsls1I99UVqrX3nf+rrZhShXeMVZI+eJtPwcA7PxoPwBg4YLUFRPEJLNQU1OScrmhYGrRol3PM6lcM1okn2e+NK1IBmLB/ElYefJsXHDBcXjo+9dkvQKUoii44frT8M37L8NDP7i2XxvBIzFvnrkN2KSJ1RZLqlwuJ+77xmV44jdf7NeuJdWyAOR9tl21P3F/JK5dEe0+yOo9qszQfjCRSNi2aCnX7pdE2PXgoU60awGPmTPGo6IigEgkJtdRXFIog192lc+IiIiIiIiIiIjIjAGPYSaTCWlRpj4YDCMmK3ikXl58aLxnT4tp3Vbr10vgR/RqInZhExl6CKcMPSxcMAlOpwMejwvHHjMZAPpNjIsn2gHgwIF29GqBj7F16qTgQcOHwrs/O5RyHOXlflRUqBNELS1dclLGbj/KD8yjMfmhefL4jUT4pS8YTluJAdCf6I9EorKCR7pJouOO058AXbjwKNtlAfNT/cktXoyMFSyMYRajkNYOxON1yX3Z0dGLoCjDnmGLFr1aifW2imBKRwYBD1FCfc+eTtkuocyizD+gt2no6QnJp+/tKn6MG1sh/7b//NVfAtBLlgPAvz1wFR584EqsOGk2amtLMX5cBRKJBHbtakq5PvGErTj2RJUEwDApY7GtY8aox/z+/WqFkOQWLcn7SA94hOVTt9mcbAPUiiuAeq4ffVSt7bLJVTLsjsmRwHjdLSyyD2R5tIlKUYXGm0Erj9mzJ8ivszkRKSbTD2nnU4FvcKtO2LV3Opz1BA0tWnq0iUSPx5UyuGis4BEK2rebUhQFJYY2LcFgWAY3jppUI5fzeFzy76G23QmbAnIjWVWlun/EBG66SlOAet0TlbdqakpTLlOW1JLFarmhIK7dphZiGVTcGS36BTyyGBDzeFz417svweabz5Sh3cFw/PIZmDa1LqvrdDgcOPGEGQDUYGE2wykuQ0gXsA94iPZGHR29iMXiMqRrdW0S9zvhcBS9fWF5bvt8ahhXVOYA9PeOGi200djYLu+zSkoLccwxR5vWXVJcKMMghwztroiIiIiIiIiIiMgeAx7DjJiAKrD5wNxYSUJ82GtVkWOCFvBo2NMsy9PbPWEsJr7CoYh82tlrNxbDE9XRFO0wKiuL8fhjN+GXv9gsn8htabFu0bJ/fysOHlQDHYsWqh8UNxhCHS1ae5cpk82lr8vL/KgQFTzaumWIwWlRKQEAXNo4o7G46cNyqxCGbIcRjCAWSx9iEH+TSCRqaFtiP0l0/vpluPtrF+F3T3wJZ65ZZLssYA542FUpME4CWLVpkROUbpecwOnpCeltDSyeehc/A2RerUQGPDr69DFahJTmzlWfim3vCOHjjw8AAGbM6F8ZRq5bm2jv7g7KkuOlNoEQl8vZr0x7SaneWqSyshiLj9XLxPu0fWOsiGMkzkkxqWFs0ZJIE34Zq1W8EC1gjJUKzj+/f8UN8Xc6eKhD/l3TVX4ZqGVLp+KXv9iM3z7xJdv9CAB1Y8pkmycgPyp4DCZjwKMyTQsVETwS1z+7a7xw0gmztEk2L05dNe8IRmpWlRQWyXYFDwC45Z/OAgBceMFxWVun8b1P0J82T70N/oB+PQjK9zTra1mxePq9q1dW8XA6HRhruL6qrUq88r20vb0HIe366c1xi5bBJip4CP4MrjdNTe2yklFyazGr9eQyHGYM0onAnl2rutHGnxRms7s3GG3+3y1n47prT8U9d1+c1fUaWwoCMLRQ7H8vIQKw8XgCnV19sn2bVXUvn88j7/3b2rpl5Q/xXn7csun6urXwiKhotGPHXrl8SXEhVp0yVy7r9brh8bhkNb6DrOBBRERERERERESUsZH9KOkIJJ6089m0wygwVJIQ7UysKniI8sq9vSG0tqgTzXYtHMSHvKFwNKPKDTL0EApbPukqnvoXT2O2JVXw6OsLIZnT6ZCVA5oOdqC3N4TCQq9s/XD00bX4+JMDcnlje5LW1m7bpxsFsc9isbgMbNgtLyZB1RYt6Sd9xNOSkUhMLm/VtkTwet0DmsidWF+Ft9/+BwDYlvi2Cnjs+HAvdn64D6ecMtf0BLoMePQG9RYtNpPALm2iM2yoVuKwqVYiJog6OvTqFlaVYoqKCjBj+ljs+HAfAPWYFiW/U65bmygMhSJoblYn0+0qfgDALZvPwksvvSPDRqJVSiqizHnUIuAR0wIelZXFaGxsR3t7D+LxOBwOh6FFS+ptFZOa+2QFD/Vvcvtt5+Kcs4/tt7yY1L7zrl8BULc9k+DAQCiKgolpSs0LDocD06aNlcfk1Cw/IZ1vjNfd8gr7FiqiksQhLcBmFzKQ6yz34/HHbkKB1y0nybIhuRpIto8ZQG0nNHPmOBx9tH3Vl4FI3aJFm7z0pX5fC/j1Ch4JJEzrSaVYa8/U3t6D4oD6dUlJoSmYUFjoVat9FBeiuaULnZ19o6eCR1Wh6XUmgTJx7Xa5nLJCSjJFUVBY6EVvbwhOp6Nfy5ahZAyGRiLq39UusDjaFBn+5laVc0aryspibPj8iqy39BH3R+L+ze4e1+VyorjYh87OPrS1dpsqclgZN64Cn37aiDff+gQf7NgLAPLa/fnLT8KHO/eiwOuR5+V8rbLaO3/fjSlT1MB1aWkRlizWw7BibNWigsdBVvAgIiIiIiIiIiLKFB85HGb6gpmEKtQPaYPBiN6ixZn6A3av1y2fMm462A7A/kNe8fRxLBZHd09I+302lRu8elWLdG1RystFC5XkFi2RfstWVhajrMyPUq2SgqhoIAIek5MmDSvK/bJiQmtrt9yPdi1UnIaS15kEQmRrnFBErxBis35RnjtsaFtit/zhEG1vAGD58umWyxknosW2xuNxbNr0E3zrO3/AfzyyxTRBWaQFMHp7QrKFTiYVPKKRmKxWYrfvxVP1jY3t2victhOjN208HTOmV2DNGQvwL/98vuVygDnAtG9fCwD7Ch6Aep5cfvkK+dq24odoRxO1qOCh7d/KygAURUE8npBPr6cr9y8qsogQlGjRYtVixu0y77Py8txNigrHLNJLtM8xtBgZiYx/x4o07QREZQjRZijTqhnjxlZkNdwB9K+iYPeecLgURcHMmeOzGh6RLVoMbb30Ch4WAQ9ZkaNPBkPsxiTaEXz88QF0duktnoxVTwq1/RUo1tc9WgIeFRVJFTwCqa9NP374evn1y396V/vZgO37wr//21WYNKkad/7LBVkY6eEzBhZEJbNsv3cPZ0WGc20wrh3Un17BQ2vREu9fMc9I3Au0tXWnvUYCwFlnqhXjfv3rv+Cd7bsBAPPmTgSg3g/98AfX4XvfvUIGV6ZOUcObhw51YveugwDU8K3L5cTmfzoLVVXFuOrKlQCAWbMm4OEffgHf+ublA99wIiIiIiIiIiKiUYqfSA8zslqCXQUPUaY+FJGTyVZPUCqKIisaiNYndh/yGifxRXUFuyfNzW1L7EMSFdoHzq1JFTzEBMrChUfJ79Vq7VxKtEoK3d1qqfxWrUXL0ZP1gIfH40JZmR9lpUUIBHxIJBLyA2e7ySSxz+LxBCLRqO3YzdsalgEPu6c0PSIIEI4irlUISVfBY6CWL5+OC85fhi/ffi7KbZ54TlXBY//+NlmxYteuJsMEpVuW5u7pCQ24gkdYe+LZ7qle8VT9/gNt6utAge2+nD17As5eOxm337YOCxYcZbmc+L1i0kmsP13AAwAWL9bDMskVDozcsvWOVQUPdf8WeD0ydHTgQJus4gJYH5diwri7OwhAr1TgtQh8BUNh0+t0bUKGwkUXLsfixVNw7rrFGe334Swc1o8BqxBO8r+LCbpctjUoK/Ob3geGS4sF8V4k2qEA6QMe4rrY1tatt2ixCVDOmjkeAPD++3vQ1aW+7wQCPowbZ27RAujVPjo7e2UYy+Md2QEPr8dpmtS3quAxZ/YEbLzxdADA1q3vA9Df163MmD4Ov/jZP5naPOSCMaQjjplUrTBGK2MFj8Go/kP9iZBucosWy0B1mX6/Lasc2dz7n7lmEXw+D/bsbUFXdxAVFQFMm2ZdgcvvL5D/30LcZ40ZUwZAbcv1hye/jM9dcgIA9b1v7tx61NSUZrStRERERERERERExIDHsNDdHcRf/m8ndnzYgpBo0WIbqtAreIjJQqsWLYA+md4kAh424RG32ykn2js61KeXbauJePWwSbq2JeKJwtaWLtP3RbDg9NMWyImV01bPB6C32+jqDiIajaG9XR3TUUfVmH7e6XRAURRM0lpJfPJpIwDrth+AOYAgxmAb8PDq+z0un560nvRxuUWLFkPbkiw/BexyOXHL5rU4e23/9h1GDodD/l1jWlufT7V9BACNTR16wMPr0gMevSEZwLEL+oiJg15DIMTuyV6x/kYZ8LCfHB+o+glVpteZlPufMX0c/t+tZ+PSz52IVausJxhFRZyoZQUP/ZwUEx579rbIUBBgE/AI6AGPWCyOkJg0tqgKEOwzV78py4MKHj6fBw9+70p86Yvrcj2UQVdTowdY0p3byce4XchgsDmdDtx4w2nytSi3n+9E1ZOenqD8XrqAR4VWraS1tRt9clnra5NoS7B3bwt6tCpW/qIC2T4JgLyei7/pd773RxnGGukVPABzyyu7a/d55y4xvc+OG2fdRiyfKIoir/Pi/Szb793Dmb9o+IXDhjtxHon7i0yrgR061Gm4Rlpf9/z+Aqw4aZZ8fc7Zx6ZtvVOT1CqvlgEOIiIiIiIiIiKirBn5Mw0jwIEDbbjjn38Jn88FkcnJpIJHMBhGUKvAYDdZKCZgDjapAQ+fz/opPkVR4PW6EAxG0NGpBTxsntAU/xYKpa/gUa594JxcwUMEC6ZMrsUjP74Bu3YfxKnaBLsIp3R3B9HR0YtEIgGHQ0F5mR/nrluCJ596A9dcfYpcV319Ff7+7mdyLHZP3RpDMWJyzmFTYaPAZ6zgoa3fZtJHVvCIxGT7Grv1Dzan04FoNCafABVtbwBg/371a0VRUOjzoKhQDdZ0tPfIfWnXUqKsTJ3wa2vvRljblz6byYSSEvXJ992fqZVWsh3wOPnk2fhw5z4A6sRITZonx4X15y1Nu4zLbV/BQ1TfKPB5UDemDO+8sxv/+vUncPIKffLEKhhkfBq+pycozw2vxaRxX9BcwWPJ4qlpx0/ZU1zsxc8e34jKivTHl6j2IOR6YnTdOYvReKAdoUgUK0+endOxZEq+h7Tq7yG7DO0BUhGVo5pbuuQEZ7HN9Ua0r2lu6cILL2wHABQWeVFQ4IHH40I4rO8vEcTs6OjFxx8fAKC3qxrJSkoK5VP7fosKHoB6fzBj+li8+14DAJiqoOQ7j8eFSCQm2wE5bCpMjTb+Iv1v/tlnh3I4ktHD2FIQSF/BQ1TLaDrYgYQWSLOr4AEAl37uRHz00X5MmVqHzxta1lkpLtHf0+rrq3IaWiQiIiIiIiIiIhppRv5MwwggJqb6+vSy83aT6eJD1L6+MLq1J4ztJshli5ZDokWLfUltr9etBjzaRcDD+kNbr1aOPhjU28WkKxnd06NWhRDbobcGcWHSpBpMmTJG/kyRX/1Aurs7iBatPUtpaRGcTgdu2XwWTjh+BhYs0J8+r056otDvt94v5goeEW3s1k8sGit49PXZV1YAALdHr+ARy6OAhxiLqA5htOqUOSgqKpAVNloME6l2x4F4orujo0+fTLAJKU2apFZg6exUWyAkT34fqfnzJsqvx40rT/sk6kCIFi3RSDTlvzc3q8dpVWUxpk6pw3PP/w0AZLsHwDoY5Ha7UFCgnn+dXX16VQCLiZO+Pj3gsfWVe+AeBZPL+aZ+QhU8nvRtCpJDBblubaAoCm64/jRAsW81lU8qDQGPeDwOh9OB97TwwOzZE1L+TIX8mS6UahOSdu+XYvlYLI63tn0KQJ/QfvCBK/HJJ40479wl6joNYUVRVWQ0VPAQbUuA9OG8OXPqZcBjYn2V7bL5RL2W6hWprCqTjUY9WkUIAJg+bWwORzJ6iHsY0QJOryKXJuDR1C7/P0C6gMekSdX4+eM3Z/yesPrUefjoo/246MLlWHfO4oy2g4iIiIiIiIiIiDKT159I33fffTj22GMRCARQXV2NdevWYefOnaZlgsEgNm7ciIqKCvj9fqxfvx5NTU05GvHgCAR8piciAfvJdPFvra3dcjLd7ilaMQHT2NgOwL6CB6AHSEQFD7un8rymtiXqWJwWk9d+f4Gc/DI+gS1bgKT4PXoFjz75MyIo4nI5sXTpVNPPVVUVm37+qEnVlmM3fjAuJtJtW7QU6IGU/+/ZbQCsnxoHICfbw5EYwloYIJdPd4ttEwEPEawxWnvWMQD0Firi+HI6HbYhieLiQiiKIpcH7Cewp04x93bPdgUPY0hoTG1ZVtct9kPEokXLoWY1SFVVVYwz1yyU3zdOitkFfcS+6Orqk8EjqwoeX/riOQCAq686heGOPFeTVL4+1xU8hqPycj8URUEsFpctxBqb2gGok5OpiMBGZ2cfDh7qBGAfKEt1nSvS3p/nz5uE89cvkwEtMfkP6MEuu+pbI4Wx+lO68NyihUfJr5cuHT4VhsS9it6iZXiEoIaCaD0GAPfcfXEORzJ6iIpzIkgtgh5WoWRxb9rY1I5eLQiaLuAxUGefdSyef/aruObqVaisLE7/A0RERERERERERJSxvA54bN26FRs3bsTrr7+OLVu2IBKJYPXq1ejp6ZHL3HLLLXj66afxxBNPYOvWrdi/fz/OO++8HI56cCS3kLCbHBfVPZpb1Aklj8eVUYuW9nZ1v9q1zgCAAq9edl4dS/qwSSgUTlsyWlEUlGnhjBZt7IlEwlTBI5kIrnR1B9GmBTzKtJL7qVQlfchcP9E64KEoihyrrOBhM4njSzFxN7au3HJ5t2jlEY7Kdh5uT/YqSQyULPGt9XAX+/2cs4/FrJnjMWXKGMydOxFA/4mA5OBMMpfLiZKS5AoF1sdNXV0Ziov15YsD1gGlw1FQ4MEN15+GhQuPwpVXrMzquu1atHz44T5s2/YPAOo+UxRF7ktjtQ27IJE4X7u7grbnBgCceMJMPP/sV3H1Vaek/HfKH/UTzdULcl3BYzhyuZwoLVXDGYea1bCGeN9xWUx0BgI+Ga4RraiM155MiMBbsk0b18ivGxrUVhWVFSN/ovOWfzoTAHDrLWvTLrtk8RR86Yvn4CeP3DisWjiIa64IoFoFV0ejU1fNxaaNZ+Bnj20aVm13hjNxfYtl2KJF3Jvu2dOMDu3eP9sBD8C+TSEREREREREREREdvrz+5O3555/HFVdcgVmzZmHevHl4/PHH0dDQgG3b1OoIHR0dePTRR/G9730PK1euxKJFi/DYY4/h//7v//D666/nePTZZawE4fG4bCeARUji008bAaSvfrBq1VzTMqKShxUxCdOpVfCwaxejBzyiiIs2JE7rkESFFs4Qpe1jsbis/OHx9J/8EQGP7q6gbBdSUR6wXL8xiLBg/iQUpflAWwY8Mqjg4fW6cZtWMUGoswl4eNx6pYdIOPcVPMQToMkVPCoqAviPH1+Pnz22SU5qJYdZJtkEZYRSrU2L+Hm7D/4VRcGyZdPk6xNPmJnhVmTu8stOwg/+/RrL1g2HS7ZoMVTwiESieHHLO7jra7+S36uqVENboo1R72FU8BCVZewmRrPd3oYGR011iem8KhhGk935RLz/tWstxGJp3ncURTFVkQDSnzM33XiG6bWxMpHR3Ln1sh1UuxaITBeGGwlOO20e/vDUl7H+vKVpl1UUBevOWYyZM8YNwciyRwQ0RTDP7r5mtHG7Xbj4ouMxeXJtrocyarjkfYd6vYumue6NH18Jn8+DYDCC7e/sBgAcfXTN4A+UiIiIiIiIiIiIsiKvAx7JOjrU1gbl5eqk+bZt2xCJRLBq1Sq5zPTp0zFhwgS89tprORnjYKk39KZPV7p/xgxzz3O79iyAGnT4/W+/JJdbcdIs2+XFRL0IXnjtKnhok5TBYPoKHgBQWqauW1QTEU/HAvpEuJGYzHvjjY/k09flNhU8Jk6sxqyZ47F0yVTcd++llssJ4kPzkBZ2cLrsT5l165bg5BWzAah/J7uxiEn5UCgiW7Tkso2GKOWdHPBwu139+q07HA7T05719ekDHvUT9GM4VbWTZJdecgKWLZ2Kb3/r8zjmmMnpNyBPuFNU8Njy0t/xtbt/jT17WwAA8+ZNxPjx6pPNolJDb69ewcMu/CICHq1tegsmqwoeNHwoioKFC/SgAVu0HB4RsIpplYjice19x+acSn7PSxeKvOTi402vRdAqleTqHtXVIz/g4XA4UFVZ3O99YyRJruDBSgWUS3qLFnMFD5fF/bbT6cCsmePl67q6ckyZPCblskRERERERERERJR/hs2sYDwex+bNm7F8+XLMnq1OoDc2NsLj8aC0tNS0bE1NDRobGy3XFQqFEArpT8t3dqql3CORCCKRiNWP5dTEiZXy68rKYttxBgIFqK0pRWNTOwB1ginddnk8Tvzhqduw44N9mDFzrO3ya9YswJtvfSJfu10Oy+VFIKKvL4yQ1ubEoSiWy4vJuWAwjEgkgp6ePvlvipLo93PLl09FTU0Jmpo68NQf/goAKC312Y7/hw9dI79Ot1/Eh+a9vUFtDNZjF665eiUCgQJccP4yRKPWE39Olzr51dcXRiSsfijvcKQf02Bxak96BvtCiEQiCAbD8vupxlRU6JVVJ6qqAmnHPX16Hba++gEAdfI63fL19ZW4/z41hJNuWfHv+XD+iuoboVBYjmfHjj3y3+/4ynk4bfU8eWx4tYnCdq1qjcftst2OIq2F0sGD7fJ7iqP/uTEaJRIJIAFAQUaTy4O5vPGYzHTdGy4/Ee++9xlKS4swbly57d80n7Y1n8Yizr9wWH0/j8fUEFQ8HrPcnwsXTTS9drutr/NyLAbBYMhy+eTqOmWlhTn7uw723+lwjvnhuq3iXkW8ByqK/fvPcN7WfFqex6TVslrljoh6nRMB7Hg8bnlcXnzxcXhr26cAgLPOXGh7vzrw8QxsW4cD3mMREREREREREVE+GTYBj40bN+K9997D//7v/x7xuu677z7cfffd/b7/4osvorAwP9sZtLcH5dc1NU48++yztsv7/QCa1K/7+rrSLm+0Z897tv8eDsdMrz/+5F20tn6SctkdO9SKBfv2N+Jvb6s/19raYjmegwfVQf/97+/C62lGZ6c6eeJ0KnjuuedS/sz8uWV4YUuHfN3w2ad49tmOlMsOVEz7wPudd9R90tPTndG+nDHdiffe+yves9mVrW3q37S7u1d+GP+Xv/wP3nsv+33QMxGPqx9e/+lPr2LXrlJ81qCGEj7+eCeefba9//IJveLErn98hGefbbVdf1urvo5IJDSgYzJTW7Zsyfo6B6qhoQEA8PHHn8pt/PBDdRJl/rxqxKL78Oyz++TywaDauuG1198CADhdsN03zS3qOfLOOx/K77205cURM4ky0rz00ksDWv6GL8wFALzyysB+jlQdneq1/8233kJHxz8QDqvXqVdffRVlZfbVrITnn38+7TKfv2wWfv6L9+FwKCgv67M8Z5uazGHTbdtew7vvOjMax3A10GN+OOrqUo+zhoa9AIC21tZBeU+j7Bjpx2RzixqG7gsG8eyzz8rqXq+88jJ8PutqUJdeMhMHGrtRHOjg8ZtGb29vrodAREREREREREQkDYuAx0033YRnnnkGr776KsaN0/u019bWIhwOo7293VTFo6mpCbW11r2/v/KVr+DWW2+Vrzs7OzF+/HisXr0axcX5WT49Eong4MFeQCnFNVevStt2Ze8+Dz759H8AACevWIg1a1ZkdTx/ea0df/3rJ5g5Yxwuv2y95XIlJR/i6Wc+gd9fjNlz5uCZZz9FTW0N1qxZk3L57e/8Hjs+bMHUqdOwZs3xaGhoxo9+vB0+n9fyZ2bOOoQXtvxAvj555XIcs+joI9tAzU8f34Ge3giOOupo/HlrA8rKSi3HMVDNzZ145CfvIBpNQPssHqtXr0JFRSAr6x+ol/50CIcO/QNTps7C6lPn4dX/aQPQhgUL5mHNmoX9ln/6mX1oaVEnt044cRmWLpliu/6Ghmb85rc7AQDV1RVZ24+Aen5s2bIFp556Ktzu3La2aGz6E15/4wDGj58gt3HLS48DaMaaNcfjtNXzTMs/90IjGpt6UFMzHsAelJT4bffNwUOvYNu2RvgKSwAcgsfjwplnnjlo2zOc5NOT5uFwGC+99BJWrVoFjyd9S6J8GvtAl8+nsTz3QiP27+/GvLnzsWLFLDz4728DiGPlKSdjTG2Z5foLCsbj3vufxD13X4Tjlk3LaCxXXXUBQqGIbLOUijj3hXXr1tqOfzj/nfLpmB/sbf3z1hZ81tCJ4pIyAO2oqq6yvW4P523Np+V5TKa2d18LHv3p3+FwOHHqqavxre+oFe1OO+00y/+/kE/bOhyIao9ERERERERERET5IK8DHolEAps2bcKTTz6JP//5z5g0aZLp3xctWgS3242XX34Z69erIYOdO3eioaEBy5Yts1yv1+uF19u/SoLb7c755LCdqVPLsWbNmozGOG/uRPzXL/8HpaVFOHfd0qxv1ze+finefPNjzJo53nbdRUU+AEA4FAWgfsjrdjktf8bjUb+fSChwu92Iq1Wn4fVa/22OPqoWhYZ2IdVVpVnbXpdWhj0aFf3Mrcc+UIFAEQDI6h0AUFhYkLNjsKJcDZZ0dgbhdrsRiagVVwp93pRjKjJMGpSXBdKOe9w4vc1QccA3KNuZD+ew16tOIsViCTmWlla1/UptbVm/8fm0yeH2DvXp0KIi+2OgpMQPAGhr7dF+X+63OV/k3UQkMj8m82nsA10+n8bicqpttRTFAbfbjVhMvXZ7PR7Lv0MikcDqUxdg9eoFA97WdJPGhw6ZJwXTHQvD/u+E/DjmB3tbReudUEit8pXu3mA4b2s+Lc9jMrWCAvX/00SjcSiKXiHI67W/7uXLtg4HvM8iIiIiIiIiIqJ8ktcBj40bN+KXv/wl/vCHPyAQCKCxUS11XlJSAp/Ph5KSElx99dW49dZbUV5ejuLiYmzatAnLli3D0qVLczz63Fq+fDp+/PD1qJ9QieLi7LedKSr0YsVJs9MuJyZBgqEI4tpEm8PhsFze5VL/LRpVwwXhsDp54vFYH6oOhwPFxT4Z8KirK89gCzIjJgvFJI7TaT32gSoo6P9hsdudu1OyrEwLDrSpYYRIRNv33tRjKirUQ1IlJemPMXEsAEBZuf+wx5nv3G4RCtJbGYl9Wl7Wf7vFfmlrUwMbhYX2E8YBLVjT3KJOHHttzg2i0cbpVM8/EeyIaylBRxav3QNx4YXH4bvfezonv5sGjwijhoJqazOHc2RMYmeDoihIIDFiJvaHAxFGjsXi8t4NsL93JiIiIiIiIiIiouErNzMeGfrRj36Ejo4OrFixAmPGjJH//frXv5bLPPDAAzjrrLOwfv16nHjiiaitrcXvf//7HI46PyiKgjmzJwxKuGMgvFqIIRiMyAk3u5CEU/uQWlSPCIXUyROvRchAGG+oDuHzpS/DnSmXNlkfDIbV8WVxktDlcsoP5QURDsiFsjK1okirFkYIaeEaq9CJceKguNiX0e9YumQqAOCC84877HHmO5c8hvVJlqA2CehLEd4QQR8RAin09a8uZBQI+LTl1UAIJ3CIdOIaHYvFkUgkZIUkpyM3k83rzlmMci3QVjcmdYsYGn7Ee3VQu0exC66ORgx3DC3jdU/cuzmdjn73mERERERERERERDQy5PXMoCitbKegoAAPPfQQHnrooSEYEQ2UmLwOBcOIaRNtdk+6uuVTiMkVPOxLI3/pS+fgG/f+DhsuX3GkQzYpK/Nj166DaG7uApD9p3R9BW50davb6nAoOf0wXq/goQYHxL63qhAxffpYvLjlHQCw7PGe7N5vfA7NLV0YN7biSIebt8TEX0Sr4BGLxeW+LPD2P45FCKpNa+OSKgRiVFpaZP75FOskGq3ENToej5vaX+VqAt7hcODnj23Cr37zF5y99ticjIGyT1S2kuHPHAWIiAC1RZDQ16sek7kMDBMREREREREREdHgyuuABw1/YkI7FI4aKnhYf+gsAg7RaFz+HJC+SsG4sRX40UPXHfF4k1VXlQAADjS2AbAf++Eo8HnQ1R0EkNv2LABQpgUHRCWJdOGaC84/Dl1dfaisLM548rSgwDOiwx2A/neMJlWhAdTtTyYCGi1awKOw0L6CR0VlwPSaFTyIdMYn2UV7FuP3c6GszI8brj+NVQ1GEPG+2NenTqaP5AoebLmS/0R7QwDo7VPbFfLegIiIiIiIiIiIaOTip380qMSEdjgclW1XXDYTbeJD6mh0YC1aBkt1dTEA4LPPDgFQK25kk88w4e/J8dOWVhU8rCYJnE4Hrr3m1KEZ3DDismgzBKQ+jisr1MCGqFiULuBRrv2dhHQVP4hGExHkiMcT5goeOQx40MgjApE9PepkumOEV/BguCO/Gau/iQoenhyHhomIiIiIiIiIiGjwcMaDBpVxQru3N/1EiF7BY2AtWgZLlVbBQ1QfKUuaXD9SBT59ct6d46cty8r0Ch6JRALhsBpM4FOgAyOCOuLYDYb0/ZjqKe/6+mrT60KffcDD63UjYGiJU1ERsFmaaHRxaudYNBaX1231+5ygpuypri4xvR7pAY/BpCgKoDBEciSMFTz6WMGDiIiIiIiIiIhoxGPAgwaV8QPmnh61FYldqXzRAiUiAx5aBY8cfVBdkzSJI0IQ2VJoqL6Q8xYtWnglHI6itzeEXu0pUNFChDLj0ypwiEBTKKgewwUW1V/q6ytNr+vqytL+jnJDqKOinAEPIsHcosVQwWMEt9CgIzfQkEF1VbHpNSvEHJl8CXfkU9hkIGNxOBzy2tfW3gsg96FhIiIiIiIiIiIiGjz8RJoGlcPhkBUGGhvbAdgHPNxuUcFDffI6FNIqeOQoZDBuXIXpdbYreJxw/Ez5tTvHLVp8Pg98WkWRzxqaZQWKykoGCAaiSAt49GgBj6AMeKRupTJubIUpODR/3qS0v6O2plR+zQoeRDoR5IjH4ojH44bv537ClvLbQCb1q6tLTa+dwyhAlE8hhnyUT/tlIGOZNFGtBvb+Bw0AWMGDiIiIiIiIiIhoJBs+n0jTsCUqEjQ0HAJg/6SrKDMdS2rRkqsKHnV15aYP2EtLs1vBY905i+XXIgiQSzU1asWSN9/8BABQUlLICh4DVFRkruARDKmVUAos9qPL5cQTv/4ipk6tw7KlUzF+fEXK5YwmTaqRXzPgQaQzVvCIxRL9vk+UDVXJFTyGWYAon0IMo8VgB2tmzhwHAHhn+24AgCfHVeGIiIiIiIiIiIho8HDGgwbd2Dp1wnrP3hYA9hNtLpeo4GFu0ZKrJxE9Hpepd1/a7gAAH8tJREFUgkW2W7T4fB5cfdUpAIB5c+uzuu7DMWe2OoYtL70DAKiuKrFbnFIoKioAAPT0mCt4eC1atABAYaEXj//0Jnz3O1dkNPkzaVK1/HrC+EqbJYlGF/H+Eo/rFTwUReGENmWVz+dBIOCTr9kCKD+J8z5fzv/BHMeUKWMAALs/U8PUrhxXhSMiIiIiIiIiIqLBw0+kadCNHVtuei1aWKQiAh6R5AoeOawiseqUuQDUicPp08Zmff1XX3UK/vDUl3Hnv1yQ9XUP1KxZ4wEA//hHEwCgqrrYbnFKQVTwCIUiiEZjCMkWLdk7ho9bNg3jxlXgoguXy78ZDf4T0gNZf75NLI4WTqe6v2OGFi3DrboCDQ/V1XoAUhx3RLkycWK16XVXV1+ORsI2QERERERERERERION9Xtp0CWHIgp96QMe0ag6MRcK5baCB6AGMBwOBSccP1NWZ8i2qsr8CFIYJ6wAoDhQmKORDF+FhgBTb28IQe0YLvB6svY7KioC+M2v/l/W1jeSDPaEEieshp6iKEggkdG+FxU8orE4YvGE6XtE2VRdVYxPP20EwOvCUBnItWC0qZ9QZXot2sTlCv9GREREREREREREg4ezHjToRF9wobDILuChTc5pFTxCWgWPXAY8Cgu92HjjGZibBy1UBltVlTlo4vUyAzZQLpdTHq89PaGMWrRQbuTTU8b5NJbBdjjbmumyolVGPJ5AQgt4sILH6DMU51Ol4f3SwRDRkMmna2Q+XbcrKgJYumSqfJ3tgEc+bSsREREREREREdFox0+kadCVlfkxa6beRqLINuChVvCIJbVoyWXAYzSpqjRX8OB+PzziGO/tDaGvT51k8THgkZfyabIqn8Yy2AZrW0W1jng8jlhMtGixv9XhxOXINNh/T2M1MmeaY2ww8fjNrXzZ74qi4HvfvUK+7u0Np11+sIJ2RERERERERERENLgY8KAhcfzxM+TXdm1OrFq0eL2cHB8KgUCBaV97PNzvhyMQ8AEAPvvsELq7gwAAv39w2vsQkU4EPGKxBGJx9X3EmUEFD05c0kCJ+xUg+1ViBjr5zuOXkolKeHZ43BAREREREREREQ1PDHjQkKiu1itDFBVaV/BwaxMmkaQKHl5WkhgSiqKgoiIgX7NFy+E56cRZAIDnX9yOHq1MemEhAx6UPYP91P5wrQogqnXEYjHEY2qLFqcre7c6w3W/UPZ5PMaAR/arxPAYIyIiIiIiIiIiIqJUGPCgIVFl6FVv36JFPSTFk4fhEFu0DLXycr/8mhU8Ds+iRUcBAPbvb0VvjxrwYAUPyrbBngAeUPWAPAk9iPeQWCyOeDyzFi0DlQ/bORrl03EGmCt4OJ2sEkP54bYvrVP/94vn5HYgRERERERERERENGg4a05DwhjwKLSp4OHUJkz27m0BAITCbNEy1MrKiuTXrOBxeKqr1Io1hw52oKe+CoB9sIlosCmKggQSg1vxIw+IVhnxeAKxeEL73sjNsg723zXf5NN2GoOnI/kYo+Fl3TmLccrKObJVHBEREREREREREY08/ESahkRlpR7w8Pk8lsuJJ2LD4Si2v7OLFTxyoLxMr+DB1jiHp0prSdTVHURzcxcA+9ZEREMhnybHB4vTqb6HGCt4OB0je7tHw981HxkreDhG+DFGwwvDHURERERERERERCMbZ29pSBQVevFPN5+JUCiKMkOAIJnfUOXgnXc+QzisBTxYSWLIGP8+HlZOOSxFhV4UFXnR0xPCP3Y1AQAKi9iihWiwOZ1ai5Z4HPGYVsHDySwrMPqqfQw2t9vYooXHGBERERERERERERENDc6a05C56MLlaZeZOLFafh2JRBEKaS1aPAwaDJXyckPAgxU8DtuUKWOwfftudHcHAQB+Pyt4EA02UUnBWMFjOFVXGC2tdIDhHzjxuPX3R7aRIyIiIiIiIiIiIqKhwkcOKa8oioINn18BAOjs7GUFjxwoKy2SX3PS6vCtOWOR6XVRISt4EA02WcEjGkdMtmgZXrc6wzXwcDiG87a6DBU8+F5JRERERERERERERENleM160KhQXFwIAOjo6EVIBDxYSWLImFq0cL8fton1VabXdXVlORoJ0eghAh5xU4uW3IUIFEUBlOEdZKDU3C494FFQwIAHEREREREREREREQ0NBjwo75SUqAGPzs4+vUULn44dMmzRkh1jxuiBjurqEhlcIqLBIyt4mFq05PZWZ7SEO8R2jpbtdXvYooWIiIiIiIiIiIiIhl7eBzxeffVVrF27FnV1dVAUBU899ZTp3xOJBO68806MGTMGPp8Pq1atwscff5ybwVJWFAd8ANQKHqJFi5dBgyFjrODhGCUTdYPBGJQZU1uau4EQjSLGgEcsrlbwGG4tWmh4MFXwYMCDiIiIiIiIiIiIiIZI3s969PT0YN68eXjooYdS/vu3vvUt/Pu//zsefvhhvPHGGygqKsJpp52GYDA4xCOlbCkpLQIA7NvfKr/n8XDyZKgEAgXy697eUA5HMrwpioLjjpuGQMCH228/N9fDIRoVHK3q+0b0rbcRffRn6vccDKodDraXsed26wEPVvAgIiIiIiIiIiIioqGS92URzjjjDJxxxhkp/y2RSODBBx/EV7/6VZxzzjkAgJ///OeoqanBU089hYsvvngoh0pZMmVyLTweF7q6+uT3vN68P1RHDIfDgWlT69Cwpxlz59bnejjD2rfuvxzBYASFhd5cD4VoxIv/7BeIP/IsgInoKZuIFqUAQAMcba3pfpQsMNxhze3W70sKChjwICIiIiIiIiIiIqKhkfcVPOzs2rULjY2NWLVqlfxeSUkJlixZgtdeey2HI6MjUVDgwcIFR5m+5zKUQqfB95NHbsQzf7wDRUUF6RcmSw6Hg+EOoqGwezfCj/wXOk/6HAAg7nDgpS61RUv8UAuwe3cOB0cjkamCBwMeRERERERERERERDREhnVZhMbGRgBATU2N6fs1NTXy31IJhUIIhfTWE52dnQCASCSCSCQyCCM9cmJc+Tq+bFu0aBJef+Mj+ToajeZwNKOTy6UMm+NttJ0flP94TA6t2E8ew6GTL5cVJ6LxON76bA8AYCeKEPzJY3De9dVcDnHEG3XHvJKQXzodw+f9cjQZdcckDRoeQ0RERERERERElE+GdcDjcN133324++67+33/xRdfRGFhYQ5GlLktW7bkeghDIxE2vXz22WdzNBAaTkbN+UHDBo/JIXLsQgBAS0MLAGB/T7vpn184diHA95EhMVqO+eYWvY3c//3f/+C991itKV+NlmOSBk9vb2+uh0BERERERERERCQN64BHbW0tAKCpqQljxoyR329qasL8+fMtf+4rX/kKbr31Vvm6s7MT48ePx+rVq1FcXDxo4z0SkUgEW7Zswamnngq3e3SUAv9gRxiv/Pl9AMCaNWtyPBrKZ6Px/KD8xmNyaMXu/joOKdNw9IQ5+I2yE11d5pDgaW++zQoeg2y0HfN79jTj0Z/+HQBw+hmrUVpSlOMRUbLRdkzS4BHVHomIiIiIiIiIiPLBsA54TJo0CbW1tXj55ZdloKOzsxNvvPEGbrjhBsuf83q98Hr7P2npdrvz/gPg4TDGbCkvD8ivR8s205EZTecHDQ88JoeG+5orUXXZDYhe9R1MKC/D7pZW078XXHMlwL/DkBgtx7zD4ZRfB/yFo2Kbh6vRckzS4OHxQ0RERERERERE+cSR6wGk093dje3bt2P79u0AgF27dmH79u1oaGiAoijYvHkzvv71r+OPf/wj3n33XXz+859HXV0d1q1bl9Nx05FbefJsAEAg4MvxSIiIKK9NnAjPtZdizE+/iHHOWMp/J8qmIn+B/NrjGdZ5aSIiIiIiIiIiIiIaRvL+E+m33noLJ598snwtWqts2LABjz/+OG677Tb09PTguuuuQ3t7O44//ng8//zzKCgosFolDRMLFhyFh3/4BYwdW57roRARUZ5zbLgMBScdj6l3PIL/NXxfhAWJsqmqshhf/efzUVjogcOR93lpIiIiIiIiIiIiIhoh8j7gsWLFCiQSCct/VxQF99xzD+65554hHBUNlblz63M9BCIiGi4mTsSEKy8E7v41AMDlcuJrd12U40HRSLXmjIW5HgIRERERERERERERjTJ85JCIiIhGjLLSIvn1tGl1cLmcORwNERERERERERERERFR9jDgQURERCNGcbFP/zrgs1mSiIiIiIiIiIiIiIhoeGHAg4iIiEaM4pJC+XVFRSCHIyEiIiIiIiIiIiIiIsouBjyIiIhoxCgu1gMefj8reBARERERERERERER0cjBgAcRERGNGIU+j/za43HmcCRERERERERERERERETZxYAHERERjRiKosiv3W5XDkdCRERERERERERERESUXQx4EBER0YhSX18FADh5xewcj4SIiIiIiIiIiIiIiCh7+GgrERERjSiPPnIjWtu6MW5sRa6HQkRERERERERERERElDUMeBAREdGIUljoRWGhN9fDICIiIiIiIiIiIiIiyiq2aCEiIiIiIiIiIiIiIiIiIiLKcwx4EBEREREREREREREREREREeU5BjyIiIiIiIiIiIiIiIiIiIiI8hwDHkRERERERERERERERERERER5jgEPIiIiIiIiIiIiIiIiIiIiojzHgAcRERERERERERERERERERFRnmPAg4iIiIiIiIiIiIiIiIiIiCjPuXI9gHyQSCQAAJ2dnTkeibVIJILe3l50dnbC7XbnejhEeYXnB+UbHpM02vCYp3zDY5KyRfx/RPH/GYmIiIiIiIiIiHKJAQ8AXV1dAIDx48fneCRERERERESUb7q6ulBSUpLrYRARERERERER0SinJPgoEuLxOPbv349AIABFUXI9nJQ6Ozsxfvx47NmzB8XFxbkeDlFe4flB+YbHJI02POYp3/CYpGxJJBLo6upCXV0dHA52OCUiIiIiIiIiotxiBQ8ADocD48aNy/UwMlJcXMwPqYks8PygfMNjkkYbHvOUb3hMUjawcgcREREREREREeULPoJERERERERERERERERERERElOcY8CAiIiIiIiIiIiIiIiIiIiLKcwx4DBNerxd33XUXvF5vrodClHd4flC+4TFJow2Peco3PCaJiIiIiIiIiIhoJFISiUQi14MgIiIiIiIiIiIiIiIiIiIiImus4EFERERERERERERERERERESU5xjwICIiIiIiIiIiIiIiIiIiIspzDHgQERERERERERERERERERER5TkGPIiIiIiIiIiIiIiIiIiIiIjyHAMeSe677z4ce+yxCAQCqK6uxrp167Bz507TMsFgEBs3bkRFRQX8fj/Wr1+PpqYm0zI333wzFi1aBK/Xi/nz56f8XS+88AKWLl2KQCCAqqoqrF+/Hrt377Yd3/vvv4/169dj4sSJUBQFDz74YMrlHnroIUycOBEFBQVYsmQJ/vrXv6bd9m984xs47rjjUFhYiNLS0pTLKIrS779f/epXaddNI8NIOD9effVVrF27FnV1dVAUBU899VRG256t7aLsGs3H5H/8x39gxYoVKC4uhqIoaG9v77eM+L3G/+6///6M1k/5aSQc85lsQyqtra249NJLUVxcjNLSUlx99dXo7u42bfcVV1yBOXPmwOVyYd26dWnXSUduNB+TvHcmIiIiIiIiIiKiocaAR5KtW7di48aNeP3117FlyxZEIhGsXr0aPT09cplbbrkFTz/9NJ544gls3boV+/fvx3nnnddvXVdddRUuuuiilL9n165dOOecc7By5Ups374dL7zwApqbm1Oux6i3txdHHXUU7r//ftTW1qZc5te//jVuvfVW3HXXXXj77bcxb948nHbaaTh48KDtusPhMC644ALccMMNtss99thjOHDggPyPEyijx0g4P3p6ejBv3jw89NBDA9jy7GwXZd9oPiZ7e3tx+umn44477rBd7p577jFdszdt2jSg30P5ZSQc85lsQyqXXnop3n//fWzZsgXPPPMMXn31VVx33XXy32OxGHw+H26++WasWrXKdl2UPaP5mOS9MxEREREREREREQ25BNk6ePBgAkBi69atiUQikWhvb0+43e7EE088IZfZsWNHAkDitdde6/fzd911V2LevHn9vv/EE08kXC5XIhaLye/98Y9/TCiKkgiHwxmNrb6+PvHAAw/0+/7ixYsTGzdulK9jsViirq4ucd9992W03sceeyxRUlKS8t8AJJ588smM1kMj33A8P4wyPZ6ztV00+EbLMWn0yiuvJAAk2traDut30vA23I/5VNuQygcffJAAkHjzzTfl95577rmEoiiJffv29Vt+w4YNiXPOOSejcVJ2jZZj0oj3zkRERERERERERDRUWMEjjY6ODgBAeXk5AGDbtm2IRCKmJ0OnT5+OCRMm4LXXXst4vYsWLYLD4cBjjz2GWCyGjo4O/Od//idWrVoFt9t92OMNh8PYtm2baXwOhwOrVq0a0PjsbNy4EZWVlVi8eDF++tOfIpFIZGW9NPwMt/PjcGVru2jwjZZjciDuv/9+VFRUYMGCBfj2t7+NaDSa6yFRFo2EYz55G1J57bXXUFpaimOOOUZ+b9WqVXA4HHjjjTeyOh46MqPlmBwI3jsTERERERERERFRtjDgYSMej2Pz5s1Yvnw5Zs+eDQBobGyEx+Pp12e7pqYGjY2NGa970qRJePHFF3HHHXfA6/WitLQUe/fuxW9+85sjGnNzczNisRhqamqOaHxW7rnnHvzmN7/Bli1bsH79etx44434/ve/f8TrpeFnOJ4fhytb20WDazQdk5m6+eab8atf/QqvvPIKvvCFL+Dee+/FbbfdluthUZaMhGM+1Tak0tjYiOrqatP3XC4XysvLeR3OI6PpmMwU752JiIiIiIiIiIgomxjwsLFx40a89957+NWvfpX1dTc2NuLaa6/Fhg0b8Oabb2Lr1q3weDw4//zzkUgk0NDQAL/fL/+79957s/a7r7/+etO6B+Jf/uVfsHz5cixYsAC33347brvtNnz729/O2tho+Bip58e9995rWndDQ0PW1k2Di8dkf7feeitWrFiBuXPn4vrrr8d3v/tdfP/730coFMra+Ch3RsIxn2objuQ+hXKLx2R/vHcmIiIiIiIiIiKibHLlegD56qabbsIzzzyDV199FePGjZPfr62tRTgcRnt7u+lJxKamJtTW1ma8/oceegglJSX41re+Jb/3i1/8AuPHj8cbb7yBY445Btu3b5f/lmmJ6MrKSjidTjQ1NZm+bxzfPffcgy9+8YsZj9XOkiVL8K//+q8IhULwer1ZWSflv+F6fmTi+uuvx4UXXihf19XVZW27aPCMtmPycC1ZsgTRaBS7d+/GtGnTsjE8ypGRcMxbbUOq+5Ta2locPHjQ9L1oNIrW1lZeh/PEaDsmDxfvnYmIiIiIiIiIiOhIMOCRJJFIYNOmTXjyySfx5z//GZMmTTL9+6JFi+B2u/Hyyy9j/fr1AICdO3eioaEBy5Yty/j39Pb2wuEwF1BxOp0A1NLQLpcLkydPHvD4PR4PFi1ahJdffhnr1q2T63v55Zdx0003AQCqq6v7lTk/XNu3b0dZWRk/oB4lhvv5kYny8vJ+k0LZ2i7KvtF6TB6u7du3w+FwZO09gIbeSDjm021DqvuUZcuWob29Hdu2bcOiRYsAAH/6058Qj8exZMmSwxoHZcdoPSYPF++diYiIiIiIiIiI6Egw4JFk48aN+OUvf4k//OEPCAQCsjd4SUkJfD4fSkpKcPXVV+PWW29FeXk5iouLsWnTJixbtgxLly6V6/nkk0/Q3d2NxsZG9PX1yScKZ86cCY/HgzPPPBMPPPAA7rnnHlxyySXo6urCHXfcgfr6eixYsMByfOFwGB988IH8et++fdi+fTv8fr/8UPvWW2/Fhg0bcMwxx2Dx4sV48MEH0dPTgyuvvNJ22xsaGtDa2oqGhgbEYjE55smTJ8Pv9+Ppp59GU1MTli5dioKCAmzZsgX33ntv1p5opPw3Es6P7u5ufPLJJ/Jndu3ahe3bt6O8vBwTJkxIud5sbRdl32g9JgG1XUFjY6P82XfffReBQAATJkxAeXk5XnvtNbzxxhs4+eSTEQgE8Nprr+GWW27BZZddhrKyssPb4ZRzI+GYT7cNqcyYMQOnn346rr32Wjz88MOIRCK46aabcPHFF5uq2nzwwQcIh8NobW1FV1eX3K758+cf1v6m9EbrMQnw3pmIiIiIiIiIiIhyIEEmAFL+99hjj8ll+vr6EjfeeGOirKwsUVhYmDj33HMTBw4cMK3npJNOSrmeXbt2yWX++7//O7FgwYJEUVFRoqqqKnH22WcnduzYYTu+Xbt2pVzvSSedZFru+9//fmLChAkJj8eTWLx4ceL1119Pu+0bNmxIue5XXnklkUgkEs8991xi/vz5Cb/fnygqKkrMmzcv8fDDDydisVjaddPIMBLOj1deeSXlMhs2bLBdd7a2i7JrNB+Td911l+22b9u2LbFkyZJESUlJoqCgIDFjxozEvffemwgGg5nsWspTI+GYz2QbUmlpaUlccsklCb/fnyguLk5ceeWVia6uLtMy9fX1KddNg2c0H5O8dyYiIiIiIiIiIqKhpiQSiQSIiIiIiIiIiIiIiIiIiIiIKG850i9CRERERERERERERERERERERLnEgAcRERERERERERERERERERFRnmPAg4iIiIiIiIiIiIiIiIiIiCjPMeBBRERERERERERERERERERElOcY8CAiIiIiIiIiIiIiIiIiIiLKcwx4EBEREREREREREREREREREeU5BjyIiIiIiIiIiIiIiIiIiIiI8hwDHkRERMPQFVdcgXXr1g3573388cehKAoURcHmzZttl504cSIefPDBjNa7YsUKud7t27cf8TiJiIiIiIiIiIiIiIhGGleuB0BERERmiqLY/vtdd92Ff/u3f0MikRiiEZkVFxdj586dKCoqyto6f//73+PTTz/F4sWLs7ZOIiIiIiIiIiIiIiKikYQBDyIiojxz4MAB+fWvf/1r3Hnnndi5c6f8nt/vh9/vz8XQAKgBlNra2qyus7y8HJ2dnVldJxERERERERERERER0UjCFi1ERER5pra2Vv5XUlIiAxXiP7/f369Fy4oVK7Bp0yZs3rwZZWVlqKmpwSOPPIKenh5ceeWVCAQCmDx5Mp577jnT73rvvfdwxhlnwO/3o6amBpdffjmam5sHPOaDBw9i7dq18Pl8mDRpEv7rv/7L9O+JRAJf+9rXMGHCBHi9XtTV1eHmm28+rP1DREREREREREREREQ0GjHgQURENEL87Gc/Q2VlJf76179i06ZNuOGGG3DBBRfguOOOw9tvv43Vq1fj8ssvR29vLwCgvb0dK1euxIIFC/DWW2/h+eefR1NTEy688MIB/+4rrrgCe/bswSuvvILf/va3+OEPf4iDBw/Kf//d736HBx54AD/+8Y/x8ccf46mnnsKcOXOytu1EREREREREREREREQjHVu0EBERjRDz5s3DV7/6VQDAV77yFdx///2orKzEtddeCwC488478aMf/Qh///vfsXTpUvzgBz/AggULcO+998p1/PSnP8X48ePx0UcfYerUqRn93o8++gjPPfcc/vrXv+LYY48FADz66KOYMWOGXKahoQG1tbVYtWoV3G43JkyYgMWLF2dr04mIiIiIiIiIiIiIiEY8VvAgIiIaIebOnSu/djqdqKioMFXJqKmpAQBZWeOdd97BK6+8Ar/fL/+bPn06AODTTz/N+Pfu2LEDLpcLixYtkt+bPn06SktL5esLLrgAfX19OOqoo3DttdfiySefRDQaPaztJCIiIiIiIiIiIiIiGo1YwYOIiGiEcLvdpteKopi+pygKACAejwMAuru7sXbtWnzzm9/st64xY8ZkdWzjx4/Hzp078dJLL2HLli248cYb8e1vfxtbt27tN24iIiIiIiIiIiIiIiLqjwEPIiKiUWrhwoX43e9+h4kTJ8LlOvxbgunTpyMajWLbtm2yRcvOnTvR3t5uWs7n82Ht2rVYu3YtNm7ciOnTp+Pdd9/FwoULj2QziIiIiIiIiIiIiIiIRgW2aCEiIhqlNm7ciNbWVlxyySV488038emnn+KFF17AlVdeiVgslvF6pk2bhtNPPx1f+MIX8MYbb2Dbtm245ppr4PP55DKPP/44Hn30Ubz33nv4xz/+gV/84hfw+Xyor68fjE0jIiIiIiIiIiIiIiIacRjwICIiGqXq6urwl7/8BbFYDKtXr8acOXOwefNmlJaWwuEY2C3CY489hrq6Opx00kk477zzcN1116G6ulr+e2lpKR555BEsX74cc+fOxUsvvYSnn34aFRUV2d4sIiIiIiIiIiIiIiKiEUlJJBKJXA+CiIiIhofHH38cmzdv7td+JRt2796NSZMm4W9/+xvmz5+f9fUTERERERERERERERENZ6zgQURERAPS0dEBv9+P22+/PWvrPOOMMzBr1qysrY+IiIiIiIiIiIiIiGikYQUPIiIiylhXVxeampoAqG1XKisrs7Leffv2oa+vDwAwYcIEeDyerKyXiIiIiIiIiIiIiIhopGDAg4iIiIiIiIiIiIiIiIiIiCjPsUULERERERERERERERERERERUZ5jwIOIiIiIiIiIiIiIiIiIiIgozzHgQURERERERERERERERERERJTnGPAgIiIiIiIiIiIiIiIiIiIiynMMeBARERERERERERERERERERHlOQY8iIiIiIiIiIiIiIiIiIiIiPIcAx5EREREREREREREREREREREeY4BDyIiIiIiIiIiIiIiIiIiIqI8x4AHERERERERERERERERERERUZ77/wGO+nE842JH3wAAAABJRU5ErkJggg==", + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OpenHighLowCloseAdj CloseVolume
Date
2023-11-0140.88399942.38100140.86899942.32500142.315823437593000
2023-11-0243.32799943.88399942.89400143.50600143.496559409172000
2023-11-0344.02000045.30899843.72300045.00500144.995239424610000
2023-11-0645.28500045.93500144.89899845.75099945.741074400733000
2023-11-0745.71900246.21799945.15800145.95500245.945034343165000
\n", + "
" + ], "text/plain": [ - "
" + " Open High Low Close Adj Close Volume\n", + "Date \n", + "2023-11-01 40.883999 42.381001 40.868999 42.325001 42.315823 437593000\n", + "2023-11-02 43.327999 43.883999 42.894001 43.506001 43.496559 409172000\n", + "2023-11-03 44.020000 45.308998 43.723000 45.005001 44.995239 424610000\n", + "2023-11-06 45.285000 45.935001 44.898998 45.750999 45.741074 400733000\n", + "2023-11-07 45.719002 46.217999 45.158001 45.955002 45.945034 343165000" ] }, - "execution_count": 7, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# 3. Detect Anomalies \n", - "anomalies_df = nixtla_client.detect_anomalies(df, time_col='ds', target_col='y', freq='D')\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Date\n", + "2023-11-01 42.325001\n", + "2023-11-02 43.506001\n", + "2023-11-03 45.005001\n", + "2023-11-06 45.750999\n", + "2023-11-07 45.955002\n", + " ... \n", + "2024-04-24 79.677002\n", + "2024-04-25 82.632004\n", + "2024-04-26 87.735001\n", + "2024-04-29 87.757004\n", + "2024-04-30 86.402000\n", + "Name: Close, Length: 124, dtype: float64" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data['Close']" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# Example backtesting logic using predictions\n", + "initial_cash = 10000\n", + "cash = initial_cash\n", + "position = 0 # 1 for holding stock, 0 for no stock\n", + "for i in range(len(predictions)):\n", + " predicted_price = predictions[i]\n", + " actual_price = df['close'].values[-len(predictions) + i]\n", + " \n", + " if predicted_price > actual_price and cash > actual_price:\n", + " # Buy signal\n", + " cash -= actual_price\n", + " position += 1\n", + " elif predicted_price < actual_price and position > 0:\n", + " # Sell signal\n", + " cash += actual_price\n", + " position -= 1\n", "\n", - "# 4. Plot your results (optional)\n", - "nixtla_client.plot(df, anomalies_df,time_col='ds', target_col='y')" + "# Calculate metrics\n", + "final_value = cash + position * df['close'].values[-1]\n", + "gross_profit = final_value - initial_cash\n", + "metrics = {\n", + " 'gross_profit': gross_profit,\n", + "- 'net_profit': gross_profit, # Add any transaction costs if applicable-\n", + " 'number_of_trades': position,\n", + " 'winning_trades': position if gross_profit > 0 else 0,\n", + " 'losing_trades': position if gross_profit <= 0 else 0,\n", + " 'max_drawdown': -1000, # Calculate this properly based on your strategy\n", + " 'sharpe_ratio': 1.5 # Calculate this properly based on your strategy\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([33149.55], dtype=float32)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "predicted_price" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "33504.69" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "actual_price" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'gross_profit': 0.0,\n", + " 'net_profit': 0.0,\n", + " 'number_of_trades': 0,\n", + " 'winning_trades': 0,\n", + " 'losing_trades': 0,\n", + " 'max_drawdown': -1000,\n", + " 'sharpe_ratio': 1.5}" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metrics" ] } ], From 4d58ea8529c600f388ff674421b9d3c59b3bfe22 Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 09:55:47 +0300 Subject: [PATCH 10/25] mlflow: datas of mlflow --- .../10907cb5bf4b4682a3e3263cd492417d/meta.yaml | 15 +++++++++++++++ .../tags/mlflow.runName | 1 + .../tags/mlflow.source.name | 1 + .../tags/mlflow.source.type | 1 + .../tags/mlflow.user | 1 + .../157a11fadf914d06b512b2d1a68754f1/meta.yaml | 15 +++++++++++++++ .../tags/mlflow.runName | 1 + .../tags/mlflow.source.name | 1 + .../tags/mlflow.source.type | 1 + .../tags/mlflow.user | 1 + .../1b0617c0c97a49758cab155987a2d886/meta.yaml | 15 +++++++++++++++ .../tags/mlflow.runName | 1 + .../tags/mlflow.source.name | 1 + .../tags/mlflow.source.type | 1 + .../tags/mlflow.user | 1 + .../28292ef1274c481ebf9936cfdc9e9503/meta.yaml | 15 +++++++++++++++ .../tags/mlflow.runName | 1 + .../tags/mlflow.source.name | 1 + .../tags/mlflow.source.type | 1 + .../tags/mlflow.user | 1 + .../2c4c2b32f9da42ddb0b822945ee4ea6d/meta.yaml | 15 +++++++++++++++ .../tags/mlflow.runName | 1 + .../tags/mlflow.source.name | 1 + .../tags/mlflow.source.type | 1 + .../tags/mlflow.user | 1 + .../3a75507364fe4469a8bb8a1505cddde7/meta.yaml | 15 +++++++++++++++ .../tags/mlflow.runName | 1 + .../tags/mlflow.source.name | 1 + .../tags/mlflow.source.type | 1 + .../tags/mlflow.user | 1 + .../8c8467413b3649468d9106ac74299ae4/meta.yaml | 15 +++++++++++++++ .../tags/mlflow.runName | 1 + .../tags/mlflow.source.name | 1 + .../tags/mlflow.source.type | 1 + .../tags/mlflow.user | 1 + .../abf9771578174b5799bccecaff95bb9e/meta.yaml | 15 +++++++++++++++ .../tags/mlflow.runName | 1 + .../tags/mlflow.source.name | 1 + .../tags/mlflow.source.type | 1 + .../tags/mlflow.user | 1 + .../dd1d90c2e84a435ea34fec307bcbdf5d/meta.yaml | 15 +++++++++++++++ .../tags/mlflow.runName | 1 + .../tags/mlflow.source.name | 1 + .../tags/mlflow.source.type | 1 + .../tags/mlflow.user | 1 + .../e06de0a320274556841c3f4223c24246/meta.yaml | 15 +++++++++++++++ .../tags/mlflow.runName | 1 + .../tags/mlflow.source.name | 1 + .../tags/mlflow.source.type | 1 + .../tags/mlflow.user | 1 + .../ead61f5ce7614436983485000a89a3ac/meta.yaml | 15 +++++++++++++++ .../tags/mlflow.runName | 1 + .../tags/mlflow.source.name | 1 + .../tags/mlflow.source.type | 1 + .../tags/mlflow.user | 1 + mlruns/0/meta.yaml | 6 ++++++ my_model.keras | Bin 0 -> 401056 bytes requirements.txt | 3 ++- scaler.gz | Bin 0 -> 470 bytes 59 files changed, 217 insertions(+), 1 deletion(-) create mode 100644 mlruns/0/10907cb5bf4b4682a3e3263cd492417d/meta.yaml create mode 100644 mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.runName create mode 100644 mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.source.name create mode 100644 mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.source.type create mode 100644 mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.user create mode 100644 mlruns/0/157a11fadf914d06b512b2d1a68754f1/meta.yaml create mode 100644 mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.runName create mode 100644 mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.source.name create mode 100644 mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.source.type create mode 100644 mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.user create mode 100644 mlruns/0/1b0617c0c97a49758cab155987a2d886/meta.yaml create mode 100644 mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.runName create mode 100644 mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.source.name create mode 100644 mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.source.type create mode 100644 mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.user create mode 100644 mlruns/0/28292ef1274c481ebf9936cfdc9e9503/meta.yaml create mode 100644 mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.runName create mode 100644 mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.source.name create mode 100644 mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.source.type create mode 100644 mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.user create mode 100644 mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/meta.yaml create mode 100644 mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.runName create mode 100644 mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.source.name create mode 100644 mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.source.type create mode 100644 mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.user create mode 100644 mlruns/0/3a75507364fe4469a8bb8a1505cddde7/meta.yaml create mode 100644 mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.runName create mode 100644 mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.source.name create mode 100644 mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.source.type create mode 100644 mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.user create mode 100644 mlruns/0/8c8467413b3649468d9106ac74299ae4/meta.yaml create mode 100644 mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.runName create mode 100644 mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.source.name create mode 100644 mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.source.type create mode 100644 mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.user create mode 100644 mlruns/0/abf9771578174b5799bccecaff95bb9e/meta.yaml create mode 100644 mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.runName create mode 100644 mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.source.name create mode 100644 mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.source.type create mode 100644 mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.user create mode 100644 mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/meta.yaml create mode 100644 mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.runName create mode 100644 mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.source.name create mode 100644 mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.source.type create mode 100644 mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.user create mode 100644 mlruns/0/e06de0a320274556841c3f4223c24246/meta.yaml create mode 100644 mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.runName create mode 100644 mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.source.name create mode 100644 mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.source.type create mode 100644 mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.user create mode 100644 mlruns/0/ead61f5ce7614436983485000a89a3ac/meta.yaml create mode 100644 mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.runName create mode 100644 mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.source.name create mode 100644 mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.source.type create mode 100644 mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.user create mode 100644 mlruns/0/meta.yaml create mode 100644 my_model.keras create mode 100644 scaler.gz diff --git a/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/meta.yaml b/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/meta.yaml new file mode 100644 index 0000000..7a2e1bc --- /dev/null +++ b/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/meta.yaml @@ -0,0 +1,15 @@ +artifact_uri: mlflow-artifacts:/0/10907cb5bf4b4682a3e3263cd492417d/artifacts +end_time: 1719470197620 +entry_point_name: '' +experiment_id: '0' +lifecycle_stage: active +run_id: 10907cb5bf4b4682a3e3263cd492417d +run_name: silent-yak-815 +run_uuid: 10907cb5bf4b4682a3e3263cd492417d +source_name: '' +source_type: 4 +source_version: '' +start_time: 1719470193459 +status: 4 +tags: [] +user_id: user diff --git a/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.runName b/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.runName new file mode 100644 index 0000000..76d0fe7 --- /dev/null +++ b/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.runName @@ -0,0 +1 @@ +silent-yak-815 \ No newline at end of file diff --git a/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.source.name b/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.source.name new file mode 100644 index 0000000..377e2b5 --- /dev/null +++ b/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.source.name @@ -0,0 +1 @@ +C:\Users\user\Downloads\ten_academy\week9\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\backtest\Scripts\uvicorn \ No newline at end of file diff --git a/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.source.type b/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.source.type new file mode 100644 index 0000000..0c2c1fe --- /dev/null +++ b/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.source.type @@ -0,0 +1 @@ +LOCAL \ No newline at end of file diff --git a/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.user b/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.user new file mode 100644 index 0000000..b219360 --- /dev/null +++ b/mlruns/0/10907cb5bf4b4682a3e3263cd492417d/tags/mlflow.user @@ -0,0 +1 @@ +user \ No newline at end of file diff --git a/mlruns/0/157a11fadf914d06b512b2d1a68754f1/meta.yaml b/mlruns/0/157a11fadf914d06b512b2d1a68754f1/meta.yaml new file mode 100644 index 0000000..5bc7532 --- /dev/null +++ b/mlruns/0/157a11fadf914d06b512b2d1a68754f1/meta.yaml @@ -0,0 +1,15 @@ +artifact_uri: mlflow-artifacts:/0/157a11fadf914d06b512b2d1a68754f1/artifacts +end_time: 1719455659156 +entry_point_name: '' +experiment_id: '0' +lifecycle_stage: active +run_id: 157a11fadf914d06b512b2d1a68754f1 +run_name: kindly-eel-644 +run_uuid: 157a11fadf914d06b512b2d1a68754f1 +source_name: '' +source_type: 4 +source_version: '' +start_time: 1719455652786 +status: 4 +tags: [] +user_id: user diff --git a/mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.runName b/mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.runName new file mode 100644 index 0000000..ab55860 --- /dev/null +++ b/mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.runName @@ -0,0 +1 @@ +kindly-eel-644 \ No newline at end of file diff --git a/mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.source.name b/mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.source.name new file mode 100644 index 0000000..377e2b5 --- /dev/null +++ b/mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.source.name @@ -0,0 +1 @@ +C:\Users\user\Downloads\ten_academy\week9\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\backtest\Scripts\uvicorn \ No newline at end of file diff --git a/mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.source.type b/mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.source.type new file mode 100644 index 0000000..0c2c1fe --- /dev/null +++ b/mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.source.type @@ -0,0 +1 @@ +LOCAL \ No newline at end of file diff --git a/mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.user b/mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.user new file mode 100644 index 0000000..b219360 --- /dev/null +++ b/mlruns/0/157a11fadf914d06b512b2d1a68754f1/tags/mlflow.user @@ -0,0 +1 @@ +user \ No newline at end of file diff --git a/mlruns/0/1b0617c0c97a49758cab155987a2d886/meta.yaml b/mlruns/0/1b0617c0c97a49758cab155987a2d886/meta.yaml new file mode 100644 index 0000000..80ff50b --- /dev/null +++ b/mlruns/0/1b0617c0c97a49758cab155987a2d886/meta.yaml @@ -0,0 +1,15 @@ +artifact_uri: mlflow-artifacts:/0/1b0617c0c97a49758cab155987a2d886/artifacts +end_time: 1719470299248 +entry_point_name: '' +experiment_id: '0' +lifecycle_stage: active +run_id: 1b0617c0c97a49758cab155987a2d886 +run_name: rumbling-rat-300 +run_uuid: 1b0617c0c97a49758cab155987a2d886 +source_name: '' +source_type: 4 +source_version: '' +start_time: 1719470294733 +status: 3 +tags: [] +user_id: user diff --git a/mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.runName b/mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.runName new file mode 100644 index 0000000..dcd6ac5 --- /dev/null +++ b/mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.runName @@ -0,0 +1 @@ +rumbling-rat-300 \ No newline at end of file diff --git a/mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.source.name b/mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.source.name new file mode 100644 index 0000000..377e2b5 --- /dev/null +++ b/mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.source.name @@ -0,0 +1 @@ +C:\Users\user\Downloads\ten_academy\week9\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\backtest\Scripts\uvicorn \ No newline at end of file diff --git a/mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.source.type b/mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.source.type new file mode 100644 index 0000000..0c2c1fe --- /dev/null +++ b/mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.source.type @@ -0,0 +1 @@ +LOCAL \ No newline at end of file diff --git a/mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.user b/mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.user new file mode 100644 index 0000000..b219360 --- /dev/null +++ b/mlruns/0/1b0617c0c97a49758cab155987a2d886/tags/mlflow.user @@ -0,0 +1 @@ +user \ No newline at end of file diff --git a/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/meta.yaml b/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/meta.yaml new file mode 100644 index 0000000..308d2dc --- /dev/null +++ b/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/meta.yaml @@ -0,0 +1,15 @@ +artifact_uri: mlflow-artifacts:/0/28292ef1274c481ebf9936cfdc9e9503/artifacts +end_time: 1719455895265 +entry_point_name: '' +experiment_id: '0' +lifecycle_stage: active +run_id: 28292ef1274c481ebf9936cfdc9e9503 +run_name: righteous-duck-384 +run_uuid: 28292ef1274c481ebf9936cfdc9e9503 +source_name: '' +source_type: 4 +source_version: '' +start_time: 1719455893781 +status: 4 +tags: [] +user_id: user diff --git a/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.runName b/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.runName new file mode 100644 index 0000000..e770433 --- /dev/null +++ b/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.runName @@ -0,0 +1 @@ +righteous-duck-384 \ No newline at end of file diff --git a/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.source.name b/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.source.name new file mode 100644 index 0000000..377e2b5 --- /dev/null +++ b/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.source.name @@ -0,0 +1 @@ +C:\Users\user\Downloads\ten_academy\week9\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\backtest\Scripts\uvicorn \ No newline at end of file diff --git a/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.source.type b/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.source.type new file mode 100644 index 0000000..0c2c1fe --- /dev/null +++ b/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.source.type @@ -0,0 +1 @@ +LOCAL \ No newline at end of file diff --git a/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.user b/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.user new file mode 100644 index 0000000..b219360 --- /dev/null +++ b/mlruns/0/28292ef1274c481ebf9936cfdc9e9503/tags/mlflow.user @@ -0,0 +1 @@ +user \ No newline at end of file diff --git a/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/meta.yaml b/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/meta.yaml new file mode 100644 index 0000000..2cf27a3 --- /dev/null +++ b/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/meta.yaml @@ -0,0 +1,15 @@ +artifact_uri: mlflow-artifacts:/0/2c4c2b32f9da42ddb0b822945ee4ea6d/artifacts +end_time: null +entry_point_name: '' +experiment_id: '0' +lifecycle_stage: active +run_id: 2c4c2b32f9da42ddb0b822945ee4ea6d +run_name: treasured-asp-159 +run_uuid: 2c4c2b32f9da42ddb0b822945ee4ea6d +source_name: '' +source_type: 4 +source_version: '' +start_time: 1719455652770 +status: 1 +tags: [] +user_id: user diff --git a/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.runName b/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.runName new file mode 100644 index 0000000..c1b5eec --- /dev/null +++ b/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.runName @@ -0,0 +1 @@ +treasured-asp-159 \ No newline at end of file diff --git a/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.source.name b/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.source.name new file mode 100644 index 0000000..377e2b5 --- /dev/null +++ b/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.source.name @@ -0,0 +1 @@ +C:\Users\user\Downloads\ten_academy\week9\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\backtest\Scripts\uvicorn \ No newline at end of file diff --git a/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.source.type b/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.source.type new file mode 100644 index 0000000..0c2c1fe --- /dev/null +++ b/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.source.type @@ -0,0 +1 @@ +LOCAL \ No newline at end of file diff --git a/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.user b/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.user new file mode 100644 index 0000000..b219360 --- /dev/null +++ b/mlruns/0/2c4c2b32f9da42ddb0b822945ee4ea6d/tags/mlflow.user @@ -0,0 +1 @@ +user \ No newline at end of file diff --git a/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/meta.yaml b/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/meta.yaml new file mode 100644 index 0000000..53e88a8 --- /dev/null +++ b/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/meta.yaml @@ -0,0 +1,15 @@ +artifact_uri: mlflow-artifacts:/0/3a75507364fe4469a8bb8a1505cddde7/artifacts +end_time: 1719456090915 +entry_point_name: '' +experiment_id: '0' +lifecycle_stage: active +run_id: 3a75507364fe4469a8bb8a1505cddde7 +run_name: luxuriant-duck-250 +run_uuid: 3a75507364fe4469a8bb8a1505cddde7 +source_name: '' +source_type: 4 +source_version: '' +start_time: 1719456089526 +status: 4 +tags: [] +user_id: user diff --git a/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.runName b/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.runName new file mode 100644 index 0000000..3eef3a4 --- /dev/null +++ b/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.runName @@ -0,0 +1 @@ +luxuriant-duck-250 \ No newline at end of file diff --git a/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.source.name b/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.source.name new file mode 100644 index 0000000..377e2b5 --- /dev/null +++ b/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.source.name @@ -0,0 +1 @@ +C:\Users\user\Downloads\ten_academy\week9\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\backtest\Scripts\uvicorn \ No newline at end of file diff --git a/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.source.type b/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.source.type new file mode 100644 index 0000000..0c2c1fe --- /dev/null +++ b/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.source.type @@ -0,0 +1 @@ +LOCAL \ No newline at end of file diff --git a/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.user b/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.user new file mode 100644 index 0000000..b219360 --- /dev/null +++ b/mlruns/0/3a75507364fe4469a8bb8a1505cddde7/tags/mlflow.user @@ -0,0 +1 @@ +user \ No newline at end of file diff --git a/mlruns/0/8c8467413b3649468d9106ac74299ae4/meta.yaml b/mlruns/0/8c8467413b3649468d9106ac74299ae4/meta.yaml new file mode 100644 index 0000000..c5e270f --- /dev/null +++ b/mlruns/0/8c8467413b3649468d9106ac74299ae4/meta.yaml @@ -0,0 +1,15 @@ +artifact_uri: mlflow-artifacts:/0/8c8467413b3649468d9106ac74299ae4/artifacts +end_time: 1719469710712 +entry_point_name: '' +experiment_id: '0' +lifecycle_stage: active +run_id: 8c8467413b3649468d9106ac74299ae4 +run_name: upbeat-hawk-747 +run_uuid: 8c8467413b3649468d9106ac74299ae4 +source_name: '' +source_type: 4 +source_version: '' +start_time: 1719469704632 +status: 4 +tags: [] +user_id: user diff --git a/mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.runName b/mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.runName new file mode 100644 index 0000000..fa6576a --- /dev/null +++ b/mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.runName @@ -0,0 +1 @@ +upbeat-hawk-747 \ No newline at end of file diff --git a/mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.source.name b/mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.source.name new file mode 100644 index 0000000..377e2b5 --- /dev/null +++ b/mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.source.name @@ -0,0 +1 @@ +C:\Users\user\Downloads\ten_academy\week9\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\backtest\Scripts\uvicorn \ No newline at end of file diff --git a/mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.source.type b/mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.source.type new file mode 100644 index 0000000..0c2c1fe --- /dev/null +++ b/mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.source.type @@ -0,0 +1 @@ +LOCAL \ No newline at end of file diff --git a/mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.user b/mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.user new file mode 100644 index 0000000..b219360 --- /dev/null +++ b/mlruns/0/8c8467413b3649468d9106ac74299ae4/tags/mlflow.user @@ -0,0 +1 @@ +user \ No newline at end of file diff --git a/mlruns/0/abf9771578174b5799bccecaff95bb9e/meta.yaml b/mlruns/0/abf9771578174b5799bccecaff95bb9e/meta.yaml new file mode 100644 index 0000000..b74987e --- /dev/null +++ b/mlruns/0/abf9771578174b5799bccecaff95bb9e/meta.yaml @@ -0,0 +1,15 @@ +artifact_uri: mlflow-artifacts:/0/abf9771578174b5799bccecaff95bb9e/artifacts +end_time: 1719470032644 +entry_point_name: '' +experiment_id: '0' +lifecycle_stage: active +run_id: abf9771578174b5799bccecaff95bb9e +run_name: crawling-kit-485 +run_uuid: abf9771578174b5799bccecaff95bb9e +source_name: '' +source_type: 4 +source_version: '' +start_time: 1719470028956 +status: 4 +tags: [] +user_id: user diff --git a/mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.runName b/mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.runName new file mode 100644 index 0000000..b95978b --- /dev/null +++ b/mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.runName @@ -0,0 +1 @@ +crawling-kit-485 \ No newline at end of file diff --git a/mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.source.name b/mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.source.name new file mode 100644 index 0000000..377e2b5 --- /dev/null +++ b/mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.source.name @@ -0,0 +1 @@ +C:\Users\user\Downloads\ten_academy\week9\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\backtest\Scripts\uvicorn \ No newline at end of file diff --git a/mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.source.type b/mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.source.type new file mode 100644 index 0000000..0c2c1fe --- /dev/null +++ b/mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.source.type @@ -0,0 +1 @@ +LOCAL \ No newline at end of file diff --git a/mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.user b/mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.user new file mode 100644 index 0000000..b219360 --- /dev/null +++ b/mlruns/0/abf9771578174b5799bccecaff95bb9e/tags/mlflow.user @@ -0,0 +1 @@ +user \ No newline at end of file diff --git a/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/meta.yaml b/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/meta.yaml new file mode 100644 index 0000000..044a1c1 --- /dev/null +++ b/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/meta.yaml @@ -0,0 +1,15 @@ +artifact_uri: mlflow-artifacts:/0/dd1d90c2e84a435ea34fec307bcbdf5d/artifacts +end_time: 1719469544503 +entry_point_name: '' +experiment_id: '0' +lifecycle_stage: active +run_id: dd1d90c2e84a435ea34fec307bcbdf5d +run_name: thundering-finch-129 +run_uuid: dd1d90c2e84a435ea34fec307bcbdf5d +source_name: '' +source_type: 4 +source_version: '' +start_time: 1719469543186 +status: 4 +tags: [] +user_id: user diff --git a/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.runName b/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.runName new file mode 100644 index 0000000..86e4a2e --- /dev/null +++ b/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.runName @@ -0,0 +1 @@ +thundering-finch-129 \ No newline at end of file diff --git a/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.source.name b/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.source.name new file mode 100644 index 0000000..377e2b5 --- /dev/null +++ b/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.source.name @@ -0,0 +1 @@ +C:\Users\user\Downloads\ten_academy\week9\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\backtest\Scripts\uvicorn \ No newline at end of file diff --git a/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.source.type b/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.source.type new file mode 100644 index 0000000..0c2c1fe --- /dev/null +++ b/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.source.type @@ -0,0 +1 @@ +LOCAL \ No newline at end of file diff --git a/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.user b/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.user new file mode 100644 index 0000000..b219360 --- /dev/null +++ b/mlruns/0/dd1d90c2e84a435ea34fec307bcbdf5d/tags/mlflow.user @@ -0,0 +1 @@ +user \ No newline at end of file diff --git a/mlruns/0/e06de0a320274556841c3f4223c24246/meta.yaml b/mlruns/0/e06de0a320274556841c3f4223c24246/meta.yaml new file mode 100644 index 0000000..621e7a5 --- /dev/null +++ b/mlruns/0/e06de0a320274556841c3f4223c24246/meta.yaml @@ -0,0 +1,15 @@ +artifact_uri: mlflow-artifacts:/0/e06de0a320274556841c3f4223c24246/artifacts +end_time: 1719469444925 +entry_point_name: '' +experiment_id: '0' +lifecycle_stage: active +run_id: e06de0a320274556841c3f4223c24246 +run_name: gaudy-fox-720 +run_uuid: e06de0a320274556841c3f4223c24246 +source_name: '' +source_type: 4 +source_version: '' +start_time: 1719469442387 +status: 4 +tags: [] +user_id: user diff --git a/mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.runName b/mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.runName new file mode 100644 index 0000000..b16d7f9 --- /dev/null +++ b/mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.runName @@ -0,0 +1 @@ +gaudy-fox-720 \ No newline at end of file diff --git a/mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.source.name b/mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.source.name new file mode 100644 index 0000000..377e2b5 --- /dev/null +++ b/mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.source.name @@ -0,0 +1 @@ +C:\Users\user\Downloads\ten_academy\week9\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\backtest\Scripts\uvicorn \ No newline at end of file diff --git a/mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.source.type b/mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.source.type new file mode 100644 index 0000000..0c2c1fe --- /dev/null +++ b/mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.source.type @@ -0,0 +1 @@ +LOCAL \ No newline at end of file diff --git a/mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.user b/mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.user new file mode 100644 index 0000000..b219360 --- /dev/null +++ b/mlruns/0/e06de0a320274556841c3f4223c24246/tags/mlflow.user @@ -0,0 +1 @@ +user \ No newline at end of file diff --git a/mlruns/0/ead61f5ce7614436983485000a89a3ac/meta.yaml b/mlruns/0/ead61f5ce7614436983485000a89a3ac/meta.yaml new file mode 100644 index 0000000..63502b0 --- /dev/null +++ b/mlruns/0/ead61f5ce7614436983485000a89a3ac/meta.yaml @@ -0,0 +1,15 @@ +artifact_uri: mlflow-artifacts:/0/ead61f5ce7614436983485000a89a3ac/artifacts +end_time: 1719456665027 +entry_point_name: '' +experiment_id: '0' +lifecycle_stage: active +run_id: ead61f5ce7614436983485000a89a3ac +run_name: powerful-robin-937 +run_uuid: ead61f5ce7614436983485000a89a3ac +source_name: '' +source_type: 4 +source_version: '' +start_time: 1719456663435 +status: 4 +tags: [] +user_id: user diff --git a/mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.runName b/mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.runName new file mode 100644 index 0000000..1ab7037 --- /dev/null +++ b/mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.runName @@ -0,0 +1 @@ +powerful-robin-937 \ No newline at end of file diff --git a/mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.source.name b/mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.source.name new file mode 100644 index 0000000..377e2b5 --- /dev/null +++ b/mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.source.name @@ -0,0 +1 @@ +C:\Users\user\Downloads\ten_academy\week9\Scalable_Backtesting_Infrastructure_for_Crypto_Trading\backtest\Scripts\uvicorn \ No newline at end of file diff --git a/mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.source.type b/mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.source.type new file mode 100644 index 0000000..0c2c1fe --- /dev/null +++ b/mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.source.type @@ -0,0 +1 @@ +LOCAL \ No newline at end of file diff --git a/mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.user b/mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.user new file mode 100644 index 0000000..b219360 --- /dev/null +++ b/mlruns/0/ead61f5ce7614436983485000a89a3ac/tags/mlflow.user @@ -0,0 +1 @@ +user \ No newline at end of file diff --git a/mlruns/0/meta.yaml b/mlruns/0/meta.yaml new file mode 100644 index 0000000..06a6e2b --- /dev/null +++ b/mlruns/0/meta.yaml @@ -0,0 +1,6 @@ +artifact_location: mlflow-artifacts:/0 +creation_time: 1719454196389 +experiment_id: '0' +last_update_time: 1719454196389 +lifecycle_stage: active +name: Default diff --git a/my_model.keras b/my_model.keras new file mode 100644 index 0000000000000000000000000000000000000000..ce62e09a15d26e020ee2b82d48d5ede4a344fd93 GIT binary patch literal 401056 zcmeFY2|QL`w>WM}6q=|^DO8k5x}$Xs z)O7}{3z3}d{Okjro!XlX^$kal(jPO*&}5vxF>mx3o{^z?sP*qC<+q8neiRaJ|Me77 za`g6caa-O=$J5&>z{9z{r=Jwt2{?M#`}x^<*?azMp5weSz}d^+&EDfD?B}~e^wsKJ z2!6jq@b|TM^RjpN*`>d4fO9*;{=q)&U9DFCQ)1?Gg{aov9&V1oe?ZN}!`t4!eT>46 zeVv!P`T0BhIy-f7>lNVPAq4oj+P61)JGeVL`rEm+3(C-FjIpV{!RU5*>9@b^VIM3M zt`M^LulUmKgbA^JFN-N&J^}vI+F$&II|qAzM^`%`*`EVl+`)#SzRqBSCBja+1fbr< zd^?Li_P&1YQgN~O@N1V+mpI+pY1sYb;NKafa0LHxwx`XRJN*}iyQq2i`Fpm5{%NMo z*V#Y7*UPR$=^UNgC$Lk^x*+~S`}mDqmwVee*gLLRW$)|Mj@%_~zjid20FU1^1$g;- zd;GQ`#M#%|&O5-reL`HkeeFE${Z{-A-_5_hOJm_YtJ^#Jy9L_&cN(j|y_ajdSbd!x z1AKjj=41DJxS!i{Pj8`K3Q+?5ob4Rk?0+*5p&@!Xd)T>oxwTuJn~)13k-whp-@yHT z&hGEbcCv@Juebj^FE=6MKWDhZ>VNj+=ls)mv}@^q*^CTK$BgZGxod>K;pe}=?@V8R zSMTNCUiKbSelu>Ne160Ca-nMxc5R^BF7W?`K^TlN81vH?w9EhRl(&sgS30KQFCOy0 zE?a&5pRx@QN}^rymOK0ZZ50tZzyJ?>-%b_jbbkM)bAJ>3bF6<8@>50K{DbZOCbUy4 zh122p(^>cnXX39Y{w?TFf`1F(Gtv@T&k`afs%-x&WD@*kaRhX6MZC%fNhOouc5 zn|?X;KjlKrJ9+)RLUwu4E`Ej3e;!BL;U@KU4S#P;!kU-2o6sqBN$pSF#D84s#`;VC zb7KFKmCNpDK=jWe^1oiYx|XAVEndHkIsacSUPk(3^~V@@`2BzLIR9je*Uv!+N725- z{4ZL(ezIj^Y}n4$zZS2~W$nLz@%m4@(f`ou_0Q%^|A*JF|Gdzhy@VS)p(Xq#9{Eea z&;|RaS-aZJxqXjfARN%|_c9)CUe5MEH^l#2w=(|-FWFABGi3go;q)Je;r~vc{kKEu zc2Ytbe>)ZO9}CWYD)$m$KON}*UfBHi6YI!}v~%s~?djv@;r!c(-P_0C&GQfUynliI zjUDfJC;MMFx?ScbOsxF`c?cEN%gt-Koo|=((APK6@3=;rj5akHZERp9S?=NOVDDk~*MRnxKzomX_C!SICaK*xoIUM@4P7yx zux97!?J3L-1hn_5uWM>5q}|@?EzJ9^@^usD`CNQ|X4i!2u)lQV;VsP0`8nDP<>n%^ zMDO6HOLGjYzozCu1bp>`eO z{S8aP+^4Ub<8K-|FoY?*zk>J%c-cAIFL(C!XctMBD1Q#o&d1r;&N)b!a_LONwEHS| z;TF16&ARYIf0G}*I_loS8HINw2TMtcwEudyXJWmboIP|qnbdVPjS|BF}G>fX`WU+8q!eWW|uyZrRkkPeK$;OTT2nvZTr z*~S0hPCMwr`_(S~4%Yuyz4}Lf!1@>Y{n+2V zi-GpD%l7Ba?7K*N-Ok`I_4db~ms9&@Tlmyve}g-k|LXon`rErB@)ObT)XP89-@^7F zQh0UQe@E?K_x~#r_*H+q)(h)S{ppfJR~+W(?BUVg)}^20x)A=8Wyd|hM@yH!w{+TR7v8V- z(4oPy3kQS+1cJn_J6$iBR?=uu7j1aor3#UJo`UBHUCrufAs@h_OY zKZ^%~26V`*OV0myB>1n9woBkwKhS0V%ep=W?G#g2JkVu-mVc-C{z!lCchT+C%RkfK zt3x^%=~}n{PPYE_`ahWje%0T>o%|2()Ss^5=yyJJ?Yj&+>s|WXwU6t<|Fg1V9TWY_ zKB}}+Z@c>YRgeFyzyGUnQIT#PYkH^PL`AfIib7PZqoGTl=Q{=TYh7G;GSS}FXRw;^ z?4$h}EHXe!WWc(g&mzL!rGCQ2#5y{Z>O9F17rm<3fzp)$>wG~ZsO#Y$QSkb?u^6Ken~LYhEX7od{ZwY%Rgjpz6CTUAV2GzbKFVmpd(-2v*>N|*^EA{>xQ-sN zPr$NI3qH7;3+b22sJP)YRAcY~)z5Cnd|f$L{n zBc2hppuBqv&KBH(T?>bDZ*;3j%ciTS;=TnnYVLxI+e_RxIv?Y8Cc=@$jy$`nx1gVp z0m|;ma5<_sr<)auJCokxBZ*hAQy`74H?sM!R}Eoa3>w8fOXoB8JHN3Xj;eE`j*6kO zb1T%yM^V{k0R(C7#TQj6aL}L+qo7a(Sv*N zSe+YpPM6b`HsTJcKO+M+1ff@J54>aCf`jHhU^5T(k7hh}~;o<4er^}XqU4)vSS zxT*oD?SA@6O@qnZD#yuQ`3!-NO&PBmKD0g=M{hK~hVE-~;nF}|E@q<`S9&p@# z!~MND^}E6JLV5!xFY8S#2R_4D_s(FM{5DLU+sJR-bDJK&uZ`bE^kSyxoHNK}oA86FM#iVtPkn-HID9n7IJn?_*)M*(Fv|q960U_B*cJo{Mk3$0BOi5Ie`! zur}=wEOfa*Z(Fp1$>=kn<)05Zjk3&{%sx#1R|6ceREvo{yB4MIHqd}N&UfcOvX$Y|f5^bFh?i*65DTF_ozO??IXb@{ zz#QKs>|c8nUc1wb1NDr!?Tvg`tM>pmy7uMxl`@>s=6=lLL(+h@=lFKDO=y!h6dxby zLDfeqV1igbCL`}VF8A64w+6dHm6bRXR8b3iZN<1r-Ah4mL5f+kdI#8^=*vZiw^0?x zNE#sDUHP&2cdwYu<;ziR$lL7Mq!GJHu-qWiKB+qyr3H%yh~rLL_KjB5&`&$pV8 z;r0E=1II+3LxBjpkXW-R=Eqo*ky}`6kqEM&=Xieg+;{BmyYlpaQ6L*Ss?e0n(-g+N~|*r^9nQD`#Icft7WK}fozzWPeYj5 zuw$WSx0Z&PDdt6($-iD}CM9ey*uLIuuIoCpoX2a-$fhtewa75D{-SHl+^8{COb{oZ z-i7e2b3d_}Og`TvXgjO9AeS{N*B}8lt*l<^BG&!!SbF*HJer{MNT8KJlsu_cr>sDR zUaXKHKO#nwwCrv)Z*@N^KIalISyj$-%HZMTy_hB46_C$QeI`fj>LsY=-f47~?-9Oh zM1TIfwhycke>W9-&F4#QV(5xqJhCk;hA(~IhpxK%mcQ%e6}IJ#1bu1J$}iWs%4%Ip z6MV~m!m2j!p=^>ItDM-(i}gFox?TjLStZUZJ@KB^zShdWv+%8;UKNN;PifNsdtX-O z?Ihm97><{4xG%dyJc7RP2a;yppM2HW%-fe@$4aElVl#%9usZph*v~y;2u@hQ-*NII z%hw!0ofU)GaI2Z7*_rzUd&Dznbx9pRmkiVFAQOBrD-v1WsXtJO5lP97jcIA<4ISH z=G}J#?{L~>)0bT7*j4?FOv{$_Ez@~0iRa|KL@?r8iaiCPxTGyS9BqU*e`Yd?PSPc}AP`?Y}@f7D|~dsjDFn*ToD|6ibg7FTxZR##m4 zYyIztE44dhI4<+|vi!%!m47Xd4vi2M?TDzm*u7so%i_DA`L zU(Xl*EdQY2DKM#j@Ob`3{vRWOU-J)L{y4kye5#A9|Ec_0@3S2g2Wxedzw+0mr{g-| zUHo{ z8tDWDE3BGa$sV{lj1#Mmr8h1vh3WIf(;ueJTu2wRMzg0_RnF_n2D~McOl_t8@xFo`m73lkd&6}o>wgs% zdVAycLzR#*#|S>RX2F4xU&$gI0RCc8u*gG>vGfvyeq;wK&6UKBjkAb*QzL$G%?I0W z;W+uJ5mf9N4zWgCiI>6((1?)5UiV6|XvuuMVWq(8gzTfb>xxk7_A+Ge#6p?kK7QMF zamIQ|9GaxOAe4@P9u8`tR=gco7k$wze3yTKHVT}+W8HyE$TW#s42URY}Wh~@}ejw-8o~A7|@3D2-I>PR0Lmtz4VMF%iCvOiEm(h;FwALgp=K#+euk;YhUK;H}zvS@D= z@w80BgB7Zr`%Y7wMy0vcgO`KkA$xYAS2H~*t;7sZyh9t$P2d*V?}Ygp75q26$7Ji( z3wSgs0FuMcQ{6RcnCE{C;`-IjgMwTtUt@qMSD<~F%%79T-#1r`@jKo?Cc|df(Q+D=e7c6S+tOg_q$v9Mz*bmY z=7pQbOe7lz9%iksnuD8rB^*NrMD8cxSAHMn)OIVB`N8KjpY~;D9n)o2W`|;6Mkdtw zN^sYV%_tl^idQaFKp*FD`s7?X(wi?6hXdUpglquGdL@oYu%=>ToY>0Q1vo^s52yS( z9vTJ=gY62d;6bk$=(DXm`h0kXll@mf$n|k>*Oo%%79)&lJ%F{=n^<<91UaE=10hd+ z>6u6CL3f9YAhNQWh`No(p)=w!P<=7Hx>pS~8?KP&c^7D!W&vz`GKzHDx&v+3j_2-u z8H26w&f&Jkxp?#LM2!6W9&{G8uqm$<@p+6IomA8ptDawktn9}=r<*&ds>UX^dBH&lS;&Kv>E>7&z7le}r{XD;|V2dtXd@9Ertrlk;-8AuVpbPl>jo?Z@@5awJgkEQZ1NI$_n00A81oKnr zw%hjL^j3xVmKc+xj|!lCj2<^XIvzeG9%Z%a70A0G!gnSa5GmDu;B{#jc;)3`N&!b2 z@`9jc{}vj({w`WbALSqZV9fQtx)m-Yy#V7u4#cxik49IRL(bMo5Z>SlH?akkRny7v z4dD=9)r+fX2F9vDH}m*6@&ZRq`5tVi=aUE z0!=Sk4yP;&_|2;&IM)JO=-q7@*k7-Q){oKHQ%nkv%@z9f58FV)cMGl+eV)0=lzQ2i7MgJ7A1H+ zbphPe*@WAbgW#@PBD<&V96362F!P<n6Fkuj&o<8-y@_+Gmg>JPBOahFo*d3G80 zTe=C279fp3F$W~gwaA?&N!Wj;7RyI$#J)L3q+s3*81iVr*irGWFyBa$Oco1+@n<6G zjcgvoec6TRvkFbDdU7wG6j5Fe3kXk(BZtTCBym1&h z*$J-k$6!%?BJm$C!90Eu1vAEQxMJmXD0EJS0Yk@trj#$(cRP<&(Gzfq`6GC~Qkq+4 z-j^9TdLZsvd>txIpTz}I;drQbE&K4rEaWMU0z@4QP(B6Kw|5c;o8x%x%zSLDs)HXf z6~xchhXmT^QAZ^ioclEcKSMUAWhcXdTrqCm{5(()tEAaZO60|d2h>D7g+5$Uf?4{J zX#6ILPE*@XdN1z7KbT#C-*zUz=$$?A!uw0OXa>jIG%EsD&CR2khc~0{v@`grIF@`E zG8>9|jloxoLeMsT3x4Y!ga(_3;bryhG%T@_&TAV35lNzacX@v>zqSc_e>SE06Sw08 z$+LXPhZUqIUyiFgn}~t$rMTEq4J@Cv3k%$i5>9&+CQg&YhU6%`XgL=eH#XwtCA)y< zcM4nU-^Luh3#`=up;G4jhd4sLmMZW6fZ}_%&1FjeQ zNJHCd=_U9`{7xSvrYno6RK|DG^r=knVNG;d=>A3MptlrH-BrL{kvB=Q?`^t>vxlXg zH|V|niFD?dJlqm$S$Za;KQFFA6O}jKBk~OwK(K8KUO2uDP9934Hih9JDY6yQOncKK zrS@R{okQ*H-teY;KUp-6#bCj1(m%kR6pCDd7sInqZbznRUVakY)UttoAOSG@M-GX9 zDZ-4<&gHG~5a%}7z9EV^LOos@0p&SUITgiw{DI{r+jeZmQ^PH1T+-Ii|sHn0X9^bzO zu3K+Wd(Fq_eB}X^S?iCnkG7EY=>^1$w1U&(OXNjL6^xwVjdLs+?#RoHFk&=E_>Lwh zcZ<)MtL*?skABR|LHDW3$Hf>iaX)a4!+Dq2Tm?5LIcU?Eg7EQ{LfBGzw2p36+(YUbKtuS`daLY$^FSgF{A;$2#Z=oB9s#4oGePG#|e&pKehjhuz z3Rr(KmW{vPmnMm|K;502=xO0VEmRaC!D1v?lplevaogc#$u-zHwi_56Qo_4NJPgoT z2@+*0@O*48d?@!qmg)_iO@dSA>ScY>wJDMLdJ`>a=EaOqh;_TA?=T&>LF@!4*;wx<-?zp@bSjZT6=N0Z>R zwFsOT@`2vZGvq9VXROlKE5JE29Ht)_#APMORhWkrn{o5tNffI%oGj z{_A5)P&qaU71ZW1ISUNviZ%x_Aoecia8oe3pDO!FWEyC`XyFe|mly1R+#TCaj)BPQ z`9$xKHT2C(ptcJ2^ptcs9=v>w`q(AX>r-;z>bqn-c+m>Q#$F&ww^wZkiP%4pxlZ&phv#N$dVfkX18j?apX&yr1aeSUqfSZ=w zrqc5BP<^uk*y|->^C%^F;^mGH!*-i`UlQXQHV;P$=_7b`uQbsMiNt#%8_8((0O+rN zl+2v*mYsDm0`zK1sH)a7nEBxeG%edgKeq)#tFb?7%$rNjRi@+R_}<)&v|W7ljU#FP zVL9$=>utigKEbTl32csI8&MxRlX$Jvz-g)L>4K?aAoh?ej@rGQ7_gxjB=10PRQqG~ zyegQNB*x`9YT=hU8KzI&Blt4xG7RyZgO_WU5!Ydl$h4MBJX5U0_#NITNZ@ZHHY$#A zCfJH@&dR`7uN4Vz#zfq4c^}>J)e9C4jVB?~mqPKG`LscEFrEB193QuKtmYbV{Aswb0 z26Yckf{)rwXk1fELW8~7FKcVj=I}?_R@n%`k0$7_tQdM^+AeA+b&P7bO~JrNnyA`) z5x?6cT`Xiy^Da(aLw9=A3iWOcRzxntHwk(S|JZ6A)TBYS&k%*f%{{rZm95x~Yan4q z!eM!fD&m`~7|K^ek=onz>(0rf;hGUx&t71#;4;nlf$%1} z7r3{DkR->~#6s=}F5DG{>DN=SRcbQh9q<}{+}sPKI)VRo{2r)!&_H#8tABc%h zL^IYESC2@Po8RE(TenZ}VTpZDqgAI!H>SF3|FN zV_4PVkA|i)Fyi}EFn>``8y|`?>zC{@y-5_gmGdN+Z7*_(Me`&yG^&6FD?ais4O$1M zYWKkX;l<=*>t?X{A;YbFD8S0;(RjsW21Ztoqcy4T6XnSLop8d1%=*7nVF+ z$X5{V4fGOJV0M)pcUH*)=P#WMS#IX|tmj8+GuH&-X8nMT&2{99n>^03J`dBZW1;%% z8_>%6O2R*+qWptcbau)i&*luH{s*1#^w4a4X-hylDh#J;JcpVSTX2Y;HBP^ohE}eJ z*u5@VRMxeQ+_E2nw_hdV_4|*(qo@}B)jren0gp^$@(z4ij|t(_{x3Cp~s+j8XveG1aC*uZzCr{F1Lrcq<)7p zFQ3qe^gdi38-sIN3~+x@672nc0Tw?`hXu$&bg~pTBV`F+P~L~;_LX3UtzSYX<4GDm zFOiP5%3>ArB@rz=Z81xTTe|(K-DAW={sXJ1m_n zi%=z%rC(S-iSJbLS~ZB+Inm7y=WxX0^RTpE2GB!<9XK!!EUV>klB*(Dxyu(W%iFP6 ztu_NWt4h7rMdS53;>;nq2*)dGF@C5vH-{a7C0P!%Y?l!U__iLTkImo;zJEl#a1@sf z$fQec212RfP|OdS1-Wkw$l=hBG)D3y_I|txblwG_$>X`8Xp{<aeyD!*3nLQ+|!`!($<6u4Qnfmj=dM7KOW?cEH>X zDG+@{mpDkJ6Oj!i&{ijfqHnh1n(CRLp`VM@-524PRq-&9O~z8r3@06w;Lctsrn#G) zF>u!zQv0$LGh$4z$1MSV_^1Q@oRzt|>0uD0HjTXfD8?nZY=xsbCFrHTfv4X`k}=Lp z!YSVsNR`tMxX>-1+~947X43*ZbLbhnzI&D6%-SI&>zyjezq1eqda1*~nGL+{B0&Lzj1F z_A!r1(s)mNlq}8!8%sfmY%W>6HxmXeO`+)l>desIk72{%>twjbA;FDF*3|D{395*@ zV=ezF;c8=Occ(gP@vSF>pV7y4$-Zo>@^XGobO`E(E(U#VC*beM1M^mjkpr{Jy!g#n zKmQ;&*US;-93N3d+5YhSz6*SMvl&}fJiw!mBcbmlX$)5yf#Ygx$N|k&WL4aEs#%dm zOg0}URd$KwSg9(yzuQ8$^c+pY-fTl>l^$&G>}>M<b_% z0eE!2D4D%cl-_-kNVE=|#lEBV5tZ=WnD4y{mIxMLM*3b@RlF6VLV7UWc3;ACrB*Ps zN*>Bwjd0$KzRV)++weMYC4QH8@*V2?KiVhLNwv;TET@;O8O1d2aR;@-Gjks^62zc2iJ}lVrA4 zB3{y0Wh@K2aYv%P@b>fqmYYT~3oD#fxBQ!)8<}oIwM3&4XU! zw$UTEy;$KSf=bO-95BopA10*X+TA^2qj51+t-TFf!U%jTKLqCv4`c_-3c~3+$Kg9Q zq>Zx6$f~SFxG8!XCM-WizPzx)YwS2&DV>VNp7+`7?maMpZo{+bLs7fmDPbO_0v*mL z!QiO*#6~p<<c0h?BeaNC9FO52ql^CcZdqExq?G(gLYE8iYR z)a;bG{1tmqDKQLIrwDUTPC1Y`xfPW4ShOhMkyHBRIO5$EdR8(Dl4DljkI%_;N_{EV zjyg#3a5Ab4>d)C#o8#nVrF4tWE|@q-7kgSrW50bo_C~!6z1aT<-)^S`PMZ@4J!gHV zbKP%Z!Ql!VWFZD01D`^lO`4!Le>dhSd1BFE5o|3#%s#Hr;1ag;W?XV-w6&6Uy5W-%o#&I`xvZDR^;bT1)dRyWJctk{@&B&z?HZck>t=~S!U7XGE&n|f?KiD0xIHk zFnMY^Bv+h4chhtH#c%Y%Me!nh|1=Nkdc;Ft`i|$5(ieD!g=LoaTQN4v3m;7zL9#bq zz>Q9e@W&%LCQar%mc5yPa3C4ykDI|i`Yj1>`$Q1+?1fOic?TYMZF#U%gxp6QFm)pb;(ObFvwSK#Z|1lXxzPlKwja!MgjT<<6^@CGZ{plg! zW0)4upUF>dAQD!^sO6H5>p!XD>NFqdqxu;xmZg#0_n+8}ds0bV!$R0S@++MX-V@Jn zOQ6~xZ^I6sOYm;o5YG8a36<^XDLixBMa7TZqR%zmt773c5A%rE(5i?csiJvf5a z(K~6N)MSiS?E%G=sbDH9i#yWsr4>LIlnx{tqO zO&&CD+>cg~Wh9_bD7U0&cvy9tJT96`N8Gw2{ivz&AANm~^xP8HD4 z2^IWau?f8UG2P+);#iZD3&JAjk)-Us7NkBJA<)Y zLa;wyyI=y&-4{Wn#x}AGWcc8zC<4nQZV?lejYv|J+53S{Xm#Z`aymATI0iKf(@bid z&F1c)5b}=3Er{x-3tlJXV4$Z8F_At(_pfRybqO-W zXDVq}D`C&ZT|WU;elO{|?%nw%qQkIk$q`~1A_b+h`r)7qzF=wWVAS4h2v%Gy(Y;zn z?`wU98Im3}_NpoCc|e2-X;Wpy<~86_b2m&pC5CtQ$O=D{Rf0hii}6Ef1bKb$713~b zMb4fshxfLpusF(}hV<3LlJHEv{Jg95rQkDNHggAF6K$h1yn)Q1yT@Vj`~AdY$R09D z81sZTgo1n359sR$uzC6ce4AS>aCxB)x~-9dKD};2tWy@1+g3$dQ?5X6{YZ9=_A6X( zaUEaHiX-8Z55XXbOVCg|iW8xUI9@adp4^^Di!+8`!6t+&Y#g25oDOw*s;H5*nVm0o zjBX7X#6{Q!fo)ulKyGRqc_Wbx=M7Au)IOhR#T{l-LwmyLbrLveyC*T0S_T=u=6GgR z95fnDM`JT>i2JdC>KE@sohd9V9z7X*2+y6W!xBlQOcbc>&!OMT?YS+HGvVQ@b?`2u z1kFyr!wdsk;ki{L%;haOBud2&@)`7uxILzRGlXS=o&1bhBZcs6HP4F%R0xY%#NCFL(~>j`{^j zI5^IjvwZTA27VpOILqhYm+c#|A#6|??Y0h&F?%8OcwcfZd?Oe;o}y>ZJCLLe&(SFS z0zXgdAbDE|OjJ`g9zR)+Q^rbhSGErYx$BuI7=DMX+bId^@*Cmsj#C(dn=s&dE-sb* z!P?5oF|FNm_;0@;RVwPmtheDoTCzC0-4-JeEd$ApTveER>LQ$|rtsk6QL?p9oABF) z)tFQ`2SyDGg8}9G5RA|9h36eo;kOEJ=#N0(50Uu(yhIM)_jg~WeF*X}`paEy_#&rkk6qpB+V_%@kmovokRWb3K zwiT2uD1MN;4N?^zTa*;M%&(Qq|v`0SF8?)416U z$GZzLBpVmE!TDIK|CC&}I!w&bJyFv$8K&$SB1 zGLz(LDC~(7@*>YHj82BbtC}$HU^O&+b0&>T(y&?mG|sOprmfG9;1l0uA!;~Dxh`Pi zB8>20Qy<*$w8>2GxDG61|d1P}-b>OWvw8H$I8M#s(m2KQ7V}-iKi8hiFzY zJP#a$juI`wCVH<=F{++*#Dxzj+a&xSkqz4|VQQs0DhE!-Ekd2BDm?+~C2vyAYae+0 zZTaZ5NUTk*ltap1Wy0<7$;F<+vJdQ^nt9eHs)U#SU>-|rF7xr^cPMfiSq zKO)lB9|OD11PNG=a%)6!iToz=R4|m=9;5+Q22*k5hraMSR-b!ke-6b*^<>IVD?nvH zGu?fq7{0$*fEM|SL2jZlS!^0b=1+8itsBijDXk1MYmD|_-N43{}emaZQI4H1vY>`x+$>l!|o%IBfnH(xNE z`b6+jMiy2rze1)^+mJh0G)mo!qe6^cW2coda8h--xYqkwW+RMS|c;KOCev3+C9}#7WwF@Y1?qd~{$4 zr&XK}S5+eMNO(VH{F`uURO&|h@T9qq^0qf!+{LHZ@8^x240iki?O@hnMgTY|Dn@4=NP8>#>2JaF+l3>TSH*7|)< z=CJ5%JkLK#Uhlq6EK0}V>@ATv+}#%Mdz66eLo*`w?gX~B=?IjQPf@KKinuUiKBS2Z zXM7fy;OqBhaC3MMlsj#Y(%tvcmF}rf)IA=>uV%v79TxDa-$9t0dI$PcsE{Xb6X+M) zRO&n@0f*)JVf43n`mm`4(#aK9IDs_-&&8?hKNq#r$a9WfC zoK_<((Xv9v@#o2Ai-!P(+hFMce>T2;A61$=6s#S4!{KBbIHE-`qQ3yl)=0yGd+L~w z7>Ds%u5i$61D1sL;#@7OiNvH<(sceZNVcxPr6yZY{k$W1)UCse)?g}l9E>BZXOta0 zejZBqJs=MrR>S*#hBzoK3hVmD!t%u49M`y;+~ID5>7w%xJmEIDIA5SUrsmTjOWz8L zol9U$@KsQ=e}@AuOF?%ihMm?u7^D8P$(zYraFwA6D3nLw$nsqB_^Jx>6T371Pc^ul z_#RBj&Y8&en+MHFd#KX!o-qB$7OWgq%{NdGMLETJq{uX!?45iGxCG(&bkv!;Rx2Vn zvw`ou*$ESPq8M5v16kYzuv#>qC^egL`(n4iVz;g6V)Pi!tr<=icgqCt4?2v?6;aZ9 zn85mP{o#G`RY-wrI40f3hu*Z$4l~kZdmSD2&x7%_8~6IC zI!w{5#scT;}#!h?bhX@|+{m1a`Np$>S-uLrhcrzhk14ElzF{rke3$r+IEiYI1)o# zZUxcax3X)t-;6?*1)@k5x8h}9QvP%!5yye>4MK= z$TW?aaIa@1aZl9N%%2kFtXk}y_NnVztm z58r&Zvy6l!^cPWM!u$3D-EGgnsI@0-tu^319=aCQtKvb-CJXdd2a}5@6=<)mQP5vy zCu&|@0wu-f!2je6n{%pQ%B%*yR!S0xiBG}WCq)?b-T=$Xmf@71`(g2fNq9qWnZCL& zjhg>fc}K&5C^5Xd%?FExXN4O?mJ|1>Eo{Tx ze4N}jlf(`j&aQS_P9F2)$?K}^&@1dcP0TG21j(d9Q$+!N%zTGlHo90BS_HN$Qfc$i zD4chr5Fbq1f&J$Q&#Ib>AZBhX+--<}dwsV;U)^JndSMGJ`?w6NM4w~4N-x}9y%ydr zdjb6>nV{KwRc>)v3G6j*g1J$nz*ucMWVnS=!F3-TzR?}_ISz)sRnDkpvxj_3lM()} zZ*T5a)+#u%VHcefk_Le}DUj-QoEja-;+GHy(r;=E$sec*K_4r@S4tXm&KmN!7mq}n zxKlL#jw&(faRZh*s`3424`f15Nx&Gr8Ymy@3O{;FV$aeUusl>1)pS+yJc(sFk2|m} zB!SLtJx@RH5oLnuqJC|UL8*&rZs4awe zuNQdUX$($z@`L&*u7ut_5>Sd=k9Sm>N%_a#%-E0DaEE;`tbe?mV#HTm9ls9UYj=R_ zv2bkK+(4ISS;4Y_{e|cL1Hj-u#pxEhWVd0W=^^7|DO~)ruQ(_8ttd`Hr?V_2fWFF3dmr2!mf6<{v#DrXksp{J?vjdO(0-VxY%^PBKnGCqk-G35>zrjW%EU+EJ-RM?%0 z%dg!hM-DaeJ);i5VV@-6p2U;Buipy_xpQzR#Ergf*g_tdhQRJ#y~(FQV~D*c!F&x7 zT8*t~=Nal0|Vjajqh>8zb}aI%*dkgy`peQ6bnF68a2b zbRUYKUYrG9JiQqcFPox8-8we?*jqd;;ebt#V(8$=O?aVZIqbac0)=~L@#9BE@n=8P zg=gdQv3?TJ?!0(9Uy{cPlJnV$v?{uxUj<^>2eNdqwtF`r`+FM3j5jIzyhmR zn17;)zPUSwZ{0(L`sz*PRk+sU0GB-4Y>`b<?hCoN9=(ItIJ5obZBjARJM;K=abu zz@hddZd-X9j*EB4MUq#D{=}Qqwk8(Fe;WkXoZl0@O9(X);@t9JQKl?!6RuiO#IJev z63XA5Cbm<(ATHw=?kQDZWCr&V`l4{+qu55}pUr|LLqyPV;eK4HVTLP|Tw#BS5)>Of z!#x%gu=&DEd_P|g150gDSM(SZ3@XOWrwgILH<_Nb+(f>Fj)2Cq8ZfZ;LrOCO(PZQi z(o3}-pD7H3(S;_Q)GS$Cv~eVN=xk4B;Z+&NHqMtsHJ@PjeMsV~e=CQG^9Fc3F_RA3 zEui~l!$|FkB7EvTlNslV_)Xmp<42Xjbi+JTov(Aj^2A&I!ihWBXU;;sHEtxek+a~n zo(p&e1}?sR5y5wuDjrip{RiN5!GZ2WkLS{X|)(t935(PxXYIafE+ zp;w1exkq-a?pfg(gzaJ|DN%0+^J^jf`^+o zzUVgyJvNsRr>Q-N)y^WmN$?pI`xwAFj1c;UwMwW~^MM~TBbPsRY$^_@=R-ivY*?kd zmxw1$AZM3ULi~yabVZRGryDdIQ>$BGndkswtu4h}j!@+qAI4+-^WMN7(}YL5>dc6_ z#!#dp&K;i93+e_5*TFH}@Uw&tobmWh&&&+rNBTUbl2X+ed?OQ2-Pw*QzERkumRn zlh0|^OIG*YD66c@gi4W_Pd${u-h=6er_yd>`Np-a{FAi?$r$# zSYJ+_hkeE{?_+3rSBc%Ml8>b1AP(=(K&ECos+^H#i?*Bq$!tO2y8MuKeVu}>RuAE5 zz$j3g_l-0fxMF3K9B(KU1r7=G@#3X+a)0hY61~d@tFB+gRh4r1BI`7qP>z82$0K2~ z<`eSx>QDTolPof7!wbqtXqp;pN6fcd+$8{^-lCyF5$^G~moEfi$1I>4#?^-+@ zo;Dkdg0o?(xfN|We;xYIk61A22NQ>H;7KcxgYdSr9 zKL;}H7NK(HG}cn04mNu$)7}v)@J`E5x@IU27Q{B9Om94%v)KY+iGn6!os3PRys45` z1l(;A_^jPBkoV_0y6YM6x=E$zcKtleoA40o62|a)VXx80E01Wtmgc2Yw~!B(?U+6K zH4$(x%p4fSno4fNU%yq*uSvsO4Hj&VzX3VDzXX~3Cq%x)5g(~Zu%ohL zP~R+Hm@~OT>CmSQ`RM${l%77RN%n30O9P%7 zKypYDeY)Kg$8&Y?`Dz#*t&S$M(#6>sORteJkIvwO8P&w-Ln5p-&_jtE;kbWY3aTt9 zMqk+}Ap2)E$}XzMo*82>rKkiiuZVyT(FZVi{w-qr;WSFPn5xfC1Sc^{Xz7jePQ^Pxp<1GTA-rXi$(@QZc%s@UP| zj%TA_#Ec2}@(IVtv>6fA(9P)Wa|M>Zu;YH^hGN!yJ*cngCoxr_I80*{AALn1a*SVs z@tmVTex1TkhmV84(C^;AE{5`80RPso^t;IyX!-Vrwhyd?z*^y5v^|cg&hq#-JCbSz zl;X2BYq0B6CVZM}!Y(?chz{CWxL}bg&3`wOG)ldI%a5nQ@Sj#-qw)ibt6OMz>=@A( z(`EF=O)=Ic=RUrl%3-F10!Di@k^f|-;v419XmQvOj9@fhQ6CPa(vs|5MHcVuQG(Vp z2IxM}LsdR~0{??Mh_BphGTJ#8!`e*w^2s)M|6mXeDLI3-#R5x_Yk@J{Ui7({CY%i1 z%!o;S!;Ig7pv;)Tl<_&DxCA?xcT4y^QOfM0bG0zZS`KEf(!xZKNv!(63wY13jUFsc zqH_Yr@N-YZ!g#f0nkVQz1KA5f#`3AP>%v&*_!)zfk6t8-{T~QN9r4+05lSoi;ql+q z@c!#Nh<9k-Er0fIsAP1C0Mv*lY{yVpgB^Vd&dO98>wh!oPGxC79@ey(Ok?@GJt})SFri) zU*?FuAuwt==1d3XHsG(_0{5va$*$|( ziraTKf|Sco_>||3wmX+{ZX+wG|K{N!c6<(8>*}GJjZf&+l~ZATO#}x1H-j~H9;Ex* zqR?x(A!g_a48kl^%GP|OOIze2aiu&RWpJFm{3ayd{0f&VCb361ghNo8 z7_VR5h zI{lj9g&y+J+_`L4^Iu;VMjA@#Iy69(fJdE&;hNV{| ztm7vd@SWp?e(c{Ju-#Kfq?|XSsNEKAQW)zeVL?J&=L84L*V0+Tj_@rW`(TG_I3Aim z5sSwc!s|b#%$>qe^l>c0sRi~7C-7*AlXK8z#Lk<;ZN*{7e}2{vef|;F;}NMf<6(Dl z1olLS({*-*T;Yf`x}WjHTzc9NyEQ7RUyBFCkS&xI^f%Ij`QWD-O_)V0~VD+P3 zTwB>kBbV;Q7K;S@<)z41tY3$BWQLe;ULOQ6&?Klbc>Bj7b{fW%VJ-U2#{Ra{;JBNIl>P)Xa*J5*f^|;tZL1)ifkIwNa z_&4VrR@kNErhYBYrgR3^C=YX?_kU;cEY>G!L(s`2nOVKppBFXygfD@UIrbp zc50o#2MaY)SnnJXDEF4Po;Vpz)FR-yzdy!AF>p+C5wyLv#w)WQz!EnzHhtCz9ClZhEqQMYL-M=8 zCnFFnbd>S6#}jO~oB_K}`-00bf4scG8Sjk!MJC!N;w2e7M*aL`zBf)dTQ?}fyF7sj z`d%p18S?1$>=?vc_k*bW=a^3dqnUqF8Y1P65M#?KObj-|(9A=eT=aF4wmqAi-?S1v z&BfUUxg5;<*95WOE1Ar_S?Fp~OgD}D1MBwyr0U?;sGthx6<(0?j!CF z+lM#fRf*dq750F$B?QQHlR4XpKs@pk6y=QO!>8WH_G80fe}E;4Nw*<-7Xg(PexhPk zVx%H*8O}4l3$h~~;O9kONZNN9Hhk_arsD7SS;~*?Ve(SI1Nl50>OBN0>nicilo*_3 zEyaHM&mCH-lkxAqeayj2=V`p%IR0Ty5PdK6oo<;}N_-0waH8`HSZZVe*G443zOk?9 ziuECIzWfDEZeEX4UynlX0t-4Ne-*7+F%_mnsFD3oR^Z@YL`m!E);nKcfhX;!@a?!- z#(m9BYItZ0Jd%(u56u)94C`8w3!k{Y(=W)4O*_b)y{+7Rd0F24OfOfHd=bkZJi)M- z1>D*;J)9@#aeT=sM*rG)_~#=BWqm`WYLy2#4V@)hD{q6uV=Y|gc@9#So3aM?hM4z_ zk;Ep)0=&MJ3EWmAPEs^v`*tN@Vz~TEa>?umx7vOQaZS6+F(IensZ9hNcN6C1;=asct2YAwyp)9Lj|Dx~JV+>g z1mxCNupc-CHml|`#5%k6RTzG-yw{_kYtXk$#@Ep2UlQk$JmFQM`2m2~I( z7P@Ru0qET_8di20T0|!V9bJWQzuXG5BE%qh@&H|Xp$l#=89{1Z-p2Zl>nO(Tfv>`B zD{V2thL3ld>7heZAwr22o1|}jvUMkUf3SwU6)R>8Txyvu!{X_t`<>QzwdAm9k`c^J z4MF$KMWRVBvuUSB4)h%ffvETqATHqvVKHi~_PD*cE_oRA4~BD>O9+>gCCA<^`N_;O zT?T81O2M^!B3#|YlK3!H=s6ogXMA!aa?v4}vvetp_?!vTL;IlgWf#roWXZzxP;@Yz z1)pw6(pLc^Ap2N34(q4{i4ZaVpPxTE|G2=E3~BPF8x{G@Wf#%ysfcQfZ zmM%!DBG+%Iu^|WE5*Niac(QyM;onbUclu3(5%aZqt5r*Am(yJ?agM;F6idPg%>i;E zKAHs2jwWa7$IuC?H=si&2d?f6$3CmM*!21;i8=QfXF7Mlptluy*0}>N>(9iMYaC!n zvpDa&ClAP+9k|zA9~atur|})bkbM$PzQxBu`KNNs_Nt}^GRgSTYAH0?SW?wn2FAIp}1~O z28`LZmoD3%%_MtVCPphZf`it1ytR5bUsM|p@+B`pBJl&2zt0n!W=TFfV+u*OZ6n9u zE`Yd|B52;S8S@t2WyF0r+PoRL)J+f2Szx8d-BsZ?xCc|mV%2`se$Om_-sPT(iH;JA&OR*K* z1YB}Cls#Wfd7)-5InhB53asf-EnCzaxfOiIn&643OnPe5Fm`{BJe-^R0ZM{O&}CT& z?z=aHw}k(f%W@GJAL<3~ioVbV$|s1}u}R<^F#*p1cawR z{CDakM9ZxP)5Q0Lrp#LaXKMz1}H zN*oK!%pTE3nTK>`s5`#)lVXQCY=yc1$&nl71a|Jf4;!=PnADsvDDB@*6Hcxs#{Y)% zmD_bN>FsY$<&Z7$9a+K{{GPyef1L)8r*shUyfJ*hpNXhkd6#IrZ(mtH44;L`^Ew$ISNs9SauMUB~GR% z4K4%27mM=o36+RzrUTIn;01ROj#|mF(?00H)1AvvY2RT~PydJ(hZf+0lpV~8w2`oQ za0fV*2%KK~R*-z_$y=EJgCn`asOw=>bP?MxWPYULW2I=A8d!>Rn_|#4U+60?rh$T> zN5&?r@wX3t#dT*Uq3XT;WcaI8C>ehpZ-*{LOUV;BQ&)#I)qGxlejo#_g}Oy??RD7G z{S9nA5-?!*VNB?Wot5{K!i9`194>84yEzGP4@<%hjkj1M3Z`C9UTsu$b|&s#D2L_)XnoLi262fPMSne+%C0=- zNpcq06TPM)_;^wgDwn0;ME_(msP~kUuow+3Z!XY5yH?l|kwPo}9KsH_TPUBl7<^6U zK{EFPDlRLqs{Q)JJpLxOalF9Yvi$n?dMuAkf$ZI9aL1uEY~df$IPG3Ea(zvu6(X4g z>u6XTngW-^)^Hsb_n>{AHg5Vpf<2md7xt(;V;<%jqgHVQ_wQ*9y)GqA&q!*3eNY6h ztA2@1n%vp~Pcle@glfqZ`xhmt?d*%!CR@l$-PL20=q zjIAyLX{pm9>mLVTfwv8g_*xFDrHp~~{|0XBf>CkkD;@4Qo7=n~0~Rctz?(bI2JNFS zKrdkn^C?0Jy(`C4?Mu~Yx9+92odn?JC1(Y#LLFO5cGH26m9T7TKGD$}hqu%eVabyW za__$+Y)nr=_vTT2iG%{w9JEI>^{M37!%_T1`%voOd4vADvXyHrNP{I`ZNby`3FPWm zp!-@DQ-vA)$Cbv!FK>XZpOua-SwV1gS|}1TO}zV4jW5!g&V5%j;=_bls@wy0=%>dC zpSO|G4Vj9=mZy<|)?8SB+#T19jiG;jM#AsTm!xaB66!ghB*!QHWO%a>7&bJCGr%#t zipCVYJ^doRYd=oNHMm11xj~Zju#aqaxC95%ro)XD^~^}sDC~M|L=_C`!0AH@99%RB z&MY3qD}WK7*ER_61g~1Z-6@0L2U=?&=aJvSsZ#uw3L#il$zm z4_=o-m0BOn{n~@Cs*0JmmOxl`U?tf#bu5gjT1S>`+=_?O#9;5-N%**896U~PL0vyP z@LgbtO7s`Z8BrqKn=5d_=#k{^uwSI*a~=E(^+9B-X@6lfZ1e6RiT|mxd#r;|dI9Bb z7+fbw$#U$E;VL-vw?^O!860J)2Q>zBp>Fd8!XJ5o+fNt?ey3C}etR0M>XrqYi65Eq zUytMZFE44dS2=(%%c$`@O((0V;J^otK3+Qp&D=a8)@=nIysOM?8RrT&Pd1QH#dKVk zl?tDv_tKw!Ip`fQ10PkIFnwpAz`iAdhao=+Z^f<0-CFImO=BeM_BY(x#P>PYmiH4m zyGwZPmnketcf^c6b+FwpjmsLb9G@M@WZHh1^A%TOagn$pP0M^m?o2Vp;U#JG!1tRt z!l4J}PBf!$H0ojI_)(<(NSC1d)iS}7lB_CBp#yj1`FR!+U>`V*+9t}t)fpnhn&@MX1S0+STTcg zY0Ii%XVF`fzFH0Hof&lZ_jUAVp#n{uQvyl1-QdJF0$Z?+$vz%Q%Cfw%+@cZwol?bV z4nl1@kj9;@mcrjf(){!2`*^g*4%Fo4;Iqy^^6QH>b_89-U2pt}O_CXIC~TvFHu7*s ze=)o$u)*LAODMJ)4mtN+P~WVvVCd=~rye*bj zR&yQYW8qoi3o`7+J?a##3(1>nvH#pvghrtkmlL76(KPT@KT2i3tmO_kKE(!IRklgo zfY(^zjqXo=!r#}j_%dlSceW~+l!;AaD&*D)Tsed8$|__;+jB^tHVu5+Y~aPbWTJNG z9;Z-dNR{5jGx2*K(9$hm1*zVPSr@h!gGzGA$A5d!E_^0-yij64OX?w+DZvNN*^Fa4 zhr_IABZN8V6SCIF6+?#c_%`r|^SQeW`*L2JUCiyCJ$@>Tt*Jwd!=_oK_nirNG}(NJ4$14tPnn{x=q zIGjP9r8kiIcocIV?h>i)Y@k6qQ@L1)>*UwXM^x|63-V*a5J}i|9@3ghVNcpk9P8|b z9|S+qzk`09L-$wzpYc7}dVje||adq~fy>mc^cjyb)y4hwdf z^P3Z7`1y?<82d5;BvW0ncd5WG33p)Qr=`SKdOY8>(-^y#-zLo$X2P#A?KIbI z2u?XorG*7QIiGuG{5$C`#K1X_+c3oJYs^A>t^uyB7H20YY{j`b9(c2-h1lv}Ca0eL zBb^HN>{X-PI6^TID^n!t{(MKYeqI3ES2;mRt>EVo$>YLEX?U_pL{=39U>36*9ZsHs z4ch7us3PQvXO4zPz87hf^a3z8`Xw?hO2y6pH9(d33>-gm8mO6_LYItZWM66$Y`&I{ zg+srX0jcLydi^cZ71RQMhP4XM+X7xfsk7WKzLd0nnuDL-&ZSqrXrSU7Lo8HoBIDic zz}h4SESx;a#%Tt`@YF$2su%_%|IJ6f6X}@ZD7r;-6Ft_bk<16~Rx2CJ=(d4gD#NUz zhri0voIGXdK5+&!Z$*&H#ZQ5sZHALNoXL&8E;2ubr*Q#Q_^|CR`KI!no5DtssNJ5B z-}(>yuCD?c(K^tV42GfVIH(OuCxt6V^EA2R z+l1d$F41Ty3I3D211mF>%{U(e|F)YRtY#A8jG73 z%|`3T?(k@46&?zSCSJ!=h-r-qSO4G{{kg*l3iez;oH-dxY@6`0MUM5HtunBsvK>-R z`|@VFJE)r4D9lhhO5W^k#XEBv$^2j5$ezy?uKgV(<*qUN>ZS%pZCXo%ZSLZS_OlrJ zq!2ENnn>cwSa7&@2WW{qovrDI(z11M=xsB!DZV1!>O#FzXAIh+D2VV&7edEoz~8LL#EH>jDZxmC9vXShQ?aQpE z3QYQ|e8FEM@_;|JCyDop5RA;Xv%WsY2@^_3;SMt;USr#K>SrVgK1bp~Vf9aHA|=hv zSu6OIst|8Xxq-)q0`bvbXS~s&!Db#ZgF9Fmu-kJZAQV=)4($i7Wo2 zG&G0E82%)jcnBFiKOJRKd$IE15uBqCLFVn8!mGY>22wUaS=Q4=uJN%a%QJbUC>{M;=dak4C4x^0ZcF5dSLwN5-N%58erzh^q%9h|5PUeqvq( zesaITBn%&qnv317)y}=gcbT8byIw=A^3x#o5#3yCZ8C}5rwzx7GC}7;8(HjRPc^e0 zaQ=LClpPxe2Oc`$x%tO&RMB-f6Yv-f?8;Euq@F0)is-A!O<1|ame6DKK>Rg>;#1zj z)W`RrXq4c|kb6QR?VE9f)i_+2xQp1Hi3Hy(Nmy+dM3v5cq0?vk!1kzZP|9mUVucQ@ zS$&H(yIh97%T-Y8W-08{v4C@zox!I$4fo_!!ufMMA;QND9d^};j{jxpRrTN0WXUD$ zh2yBbmZM)IpTqOVYr#_813Pmjpx(YwaARi&W@vArQ(!+k(_aaH8F$jV%Z;$Dbv{^) z6*AFJJiwgU_hF%uKN@tOC$Y!gGL?H*q0bd}ysmK!tVX}$sxFDM6#+5W?V|{Le|X{7 z4iEbCb`mM&pL0c%E|C-4#Q4H7aYF6$dX|iTEPBgnQRin@$lpDBtfI3L|7UnCw8 zv0`iB*~?b!Jbn_F8uY=n&eiaFn26?UE8^ydp_q0lMd&XJs9N(D7&s6ID#Cy!zfp&Y zeUuKpZIAFrcPQCb+k!TmZo%arcCcaHc|2HL278Nw@n~ZR+=92HczUm(9hx!EH8;j+~VDZcw07?1X^CelTUuoapERKe?dB=yhz2l0;kb?J{^L`6vK-Te)uu$ zCu$DYKx=(jP}(;VjpJ%hy_l)l(=9JY^`0pp@Sp`On9^BaxWczmHa6(@{IXQIxn6Dce%!w&NV zR7<*n?q1&+Pv5mTMPdrK;`2EElC%o#ZVSg#4_-mh-h3*%`yLR9P&jHQg^f4e5u7)} z;vzSw9QKdy-Be3{`VC|K@BHMJn1nHBI=!GMZXNzobSC!E$DnN3b^4dpfxS_WF#cU4 zh@adD?Q0z{c-1(8OF0TjN3L+P>(!~k(Gfs4YR!stJcE)m+wq3cf0!_FDNPvr7gq;J z^HyDPF9Hh0 z4EfbRZ;9p)_am7-0$W?QmoeVH0=EhN1TRxR!B?@AhAmwJmB%kZ&}l6;_2YYV_%6>@ zZny*soj5QkGUU@6axgrWA}98gUR!8ON=hBE?9EwH=(2?bq{#BC7Zt)`%_PwOp#*8h zl^9|3hdVem8htjLrG?IuaOZ|JaJ+VmzIt#N%tM>V>S^;Za+a^qMO#z*J2`aqTYnr3 zYKEfKr8IJ#I6t`kJm>L#I-Xyv4US{x6MvI-cp%J1_d8f(Nb7UF=`;f!f=Y4Zqk9-A z3J1SK!&!fSIl&KA4a--J7iQh^{J*w5=**B{9eUoeN9?bOHPhttU9 z4GQdl$0o>|Hw(RbP1vLE6Y$YTC-4!t`L1OzG2VMCM)E0?2zqOK=QNP9y+;pT+Xoqs zRM^)`KakZ+w!?vztGHmb75IJ@G)wiX=DpZ{I^n@_ye_s556`xZKiuY)Q! zh(}wllE~KztZ$Mw*|m5((OGu{r|@@(`_aoZrmPIMzf8s8S6yIc@=5gL>pig2v4nk^ zziGhb(A8=2W%^J#O2EO@vuuYX5GucL;Z8Xu)PddnrBn_3%lUU<9igZ%EOT( zwXo*Y1}Htf7#ufez@Nuj5J)w-9ly0%^P6F!L$~^<@yEyDnJCSVi4$hc*Iwburczo& zrVIUPj#ZrHZTfV#5}t5yrA9*yaCK!Z4xKmPM;pJQl$}n#@2N%cY1!23vEUcm<_#XV z+c~kzf)4iVF6kHP!l_R`1Yd{=<~O?0OT#(5Vl9LVtk_Om$~;N?eSyoBBUq-cMb+H4 zQcpV_y2UPfPRk#i4k_w&yzzT$tf1^bsB)vLRXOWuC&hB5`h`w(VSxw$fR9cY1UOqptk0uuvTEvzTd|g;zgLLxC)o8d;}6}uHe$?F=&;xon*+Z zVa}Hb4Eu)z7&G-f855YrR7~4X^_3KOjY&52^5JZ*IIM@1YKgHQ0z^U|dK*u+D|7<-eT*xA_4eTRUj@6d^-GY6U*sJ&KlBoW^Of!A$$x`Rp)@0lKQN2~1?p zQ9~~SRAuGa*w8#kn^6og+joKA$~0)69SCvPPvhvARiL+tp=J`_NzJ)Wv~v1lc5q!Y zjpZU44~1lS_BjnNe*Qtd)hCjtT^{J@lSppJUgdlPgSdj8dnj{M9_H)w46&^hIJLtX-kOTZzBm+Al`IheZ#B{47(Bewv2!mY2i2v*K)Aav8i6xq#q z!x)(rVo!M`we`P4|L!T`o>y-nvrg{EGY1x9%veFstTe{i8WMbwuoFo({XAA**aTvN zj<{%BBpDga;q0g}bZ5>uexL3wrf<;?$lg}~@IxDRv|pvWV$YyZE~CEeU&hd3EnXdU z68_VTLL+@`jC^NBBR?FWb*?eYJ7NB&E6lRKCNl`CenLK56P&ROhZ#@$ag)M&cDF1C zE0ts6_~A_`Q%6BkH-#oBB%3(*;&)6^f=`a`)9wQDWM~zs{~k|zQ^fFn`z%(%2yOEk$asaXXcBsrTKP9K>}y+SZ?L6LOO(l8#cSZ` zCeJ?k@|j*Q>49g8Z^(+G1~{a-7TvyXqj%)iG0tu+s3 z0)wLIcZGJyTm@sfT-X!85@)EZfaKaUsI@VWtg#v7bmMwqy<9jqF(?Nnyl5rX%j_U6 z{yxmwdJ2wfaY*09K<)A<^u9;Xbn^gYOfiRn09#lh-a^Vs6!=B=SW89|*Ih-9QgC{1ZQI{4&{^%h) zJoGS;?3l9>zX@K4HPV&TqqzZ;V;ZQ&j}vs`KQokUs-{x2*TH-J#b})y13M)CkV}H^ z^KS#dMo)FTb8Z*v3B5&CogBu#n$9L$tg;%_<_!a8tBD^chP8{oVZOYOEj?#H{_`2n zzrA-JRo$+^y9^QBle_@a2Zii*zb_zb|B9JwKOQz^$K#0+Q;6j2Fj#V3oDE!Q%%@m? z!7W#};IsY#oOEO~-4L`IZ^cH??_rlvwrEf!^Y%O5Z#YgJ4GuumwjSuT-$t!A+Cc2Y zS~50ZGUhPSDQ}H$hEsEhHqI!2kXh&>#Khaer@<^#sdK zs;TvuI=$ zCM}oeI%ji_kB>*nu?tzQlJ-gk8C=uz|E$U;e1{jcVAW=7cJ9+ZAahGa>a|} zW!-HEIWZ0sTW-M}gOfOz&SG=CJ-_~`Ij-{d#Wee5czs(Brl*yFTlOI1TBeL^9>&x3 zZT~oDE(UsBIcyG_kAI&wQ?nvHEU!w&tNo*)G0Fs0+p_6U_+#4J_JYJriAT3;8UBrP zHeTF19tRv5JRG|pzkN3bb;~LUKB~xTMqkC^sa5z_=NRd~rw0jNN+EFYCxm_K!37#$ z(bdKkt_b_(tbIh}xK9hLIA8`YgA>?eGX#P_Iv&N}{KhnsT>2+j1~uv(a6(ueO>6ZB*SDomc=!~) zoOps*N1dhWvA;20yAuCoJQEnYQ0CXKIjHNj16_n&pJxUAr}pIsZr-bSgy5y9`%an$ z9*80DLV_9fH{I~7q#xI848;S-tEq0+Bl@OnH171-4;%X)T1l$!C(@x9w{yrU1TaGr`+y2Xj9 z?@dN;Lp08h55qdg8*up21PIZoAvH;g5HR8{-j|f*bw*Eyq>^12_(olH`(H9%849pA zJCcqQeI>B3^(#3wCl97Qlj9d{JWsu03M#iO=DvEZ0_S<}L;>*(nAFQMYZcEyQD7KN z(rzLdgI|ewnJfOv^`W`4%eWO6*W=DVFc39)pPhC{D5!XnpJ?7uS&PGB?@ zrD?HAUqE6C)D1GSW~fqE}Q(AiJE2sBe9n# zRy&f+RXwDyZ7$aI%?5mbmq=+jW4PTnT-`GfZfgg_8tt3R-pQxwdaWDyxV{Vg=of*D z|IUq-tS5!Cckx!38=TrCgH5WHXtdP>EuLHP_xPu{y3-XuIa)!=#A@#EuCHkJxQF>I zq(`;B3&l@z`|u~f2gbU2;Nt)H@iwkx#@bOtcH(sQ+Td53Dw2b@VUIDa=mf;jN*Lo& zPmO+-V&s8xa8Dk|pImne^?tQd{qD6Sc;6f%%e6qk&|acrEaazdSct0U9qDIx9n@@T z5}4hwTQ*~Cp>Jr)i9Oz9n=zjK=& zLdCw-aAQla!@onZjK-58>aZ^W)XepH$BzQLZdry~rI$nX_CdyT+bv8oO<}hGibmOW z5^Pk7Db{rcasP|}mpmEC-~APXC)7hpj<+mHxt_{Iims4|d_ST~Eclj!0$kZ8#mX$wYAcYC-X%ysL$FQR+MEY#R^0oN=r#u2~2ab7|{lWTIFzSEk=p1m^* z!_~)O>Wv;)w#^buQx=fmyKnL1r8HO(F^nH>Gm$*h`HY6=^RXk@2mZaC%AW~~1EX+N z-trJn;>}LuiLOiZhSYYDE{r8RAIY&Ja`yw1nM~Fgb;F|oWfrDyB%S9b^LGt2U{Toz z?0-|lEIOkFYHp`Fm%5Yq_OEbfoK=LEd6VJGhClcj&kB1s&NF2PuE2=;h2T^jN574e zH+e-9yOD8haotz?@zqwa5xh_p6T@)RP$)Iwf6< z%hY{LBM#|B%+*aFa9$h>JDMa&Zm$lX`+O>N+%JJA!g*Ic<|;L)_{Ut%uM}$d1+XXE z1ZyslCYv*i~)|!Peq1_kky*IA{qTlk-$Ja~XZqFcXek z(81}Jry&2R9V`|Y^}H%W=#($RPrt%I|F;s^XB)&AW{L3qn59h23JLOiS_WCA|C-b_HpHu`GPR`3kjPxpIj;G}=u(2#Kn{2G7Kc3y$5cUpq492aBuetG`e zZw@X0exk30-5X2nqM=FI61R-o1=>1ap#JzV`g{LYYQ80txi<4GW)y0XDdl;h+DI$B zr4)n(RySc-djvfxCe9uXRKd6|N7S#BAw&8+CRXkwV=X8& zFEV7eX-C6TVc)sak|1<98H+1j{!!`D0p^d48Z@o{1qm;N`&Gzo7?>Uk(hFSRa@}SO zTk(o$cUocJ&tx36dOZ}+s-S(Jj3IdTL8A0_BP6-Uz?ST-)LFufIrDiXR_}~s0*8*H zhmkV8Kb1<97p(=iVearo*gHO=_YwEsA}ea((}s?RtEhykrFHdoZ!ps{=2M--coHSc z-w^Ic(VZ8>!tOjwr}3aUV?Nlr-=rGLc<$NR3@lwX6J2*0(#s(uG3>(yvTt_?DxRH) zYxX=x|9TE{`p4k?if=SCDi3E=2jI=ve?&6+7JiOMB@ZL6P}9^b)a!DDO~*&@K3$)Q ziIJU)7(Fj;?)Kh?&|f%pO3zd8CP2ZC)5732**+mRW*pp2(%?7s z<&&i*UQC6dGF&^ZP8urXCuG0h6=w$Nsmnwo}J~>TIh|4GY}xm+uVxn za7d?vq)ypGMEaL#!rvpTnb525)3qnNI=!&myBO!Urqhux193Vtjn=ow)2_e{9Jk(y zN(WxYp3p#i=yRCX@0$nf-7Z0{`*+g*eURRYKLe5GA92()1FmuFcC=UJsf(`X&A-Xo ztm1e>*z#AXKgR1bJ};8++D|2%Pm*!Ya5YFTSdGq!=D7HP4Mw{Qz5MMSXcFS@wz4b<}{n zw?D}_un^A`r$K#G3jWRu=j58^Vg5=hqmWu-^ z!yyv#_Y@qs`2`Q|{|;-?|B>OO&6EzKd`+ZN}& z$%X?P&O-Z_1Ugk+45JIr!ni-CXdkMM&sA?z%m23GJi`s8QXw9TdL`Qnh8|SKNKdu zHbj%nmI9}?g1Htj1;g*ZBcqS>KqZxBBPNaJw^X0OAh%g;soo?Q+Pjjm_tod(RBN$% zt_za8V@c2&8Q$qeJAL}~By2cVL?+pdg!)~R!MbQTY<_YGwcA-X#$ONCtxHF<0$E-! z!~|93B5;oT4-nV2!JWR|D1F2cf+8p5o~<>+cG*W_SeuFI+*|xAH=4a^6fWqT3e>u~ z0;Ji&7hO0(KM6KrN6P;uLP&{_E2e`^}v@aWg%U770`dagWIw-d0Bf6Ka_PxvxT1L&dm3!fZrKyK zy)heuxMyUJg*3Os#+Npw-iE7%26Xz!yC^p*5*8=B@I7^)vGcw6e>Vd>kG_UGziQ7 z=(6M5EfO%L|hD)Ogxao}<#}(nq5-ajh;~Rc9o5*^c zyhhTFrjlJp9>DPuVJ5cx9UaQt1fti%XPgSZ@o_ud6)8zf-&w-dmlOHQZyU*NVQ*U9 znr7;8p^DnPzC_js+2h-@U0B$v3ZF)AWwLv!sc%aJsXbJQYSI*4|Bi>;(%GEzu?i|X z!2>7k%m(f7yYMDUo&-L>Nw)||ka7N75MCuR>X2Sw3!ZNFp*l0iTekf?x|6_~x+te7w-R8TRYq7qc10un`n5(O0n zLKx#nIOo-bKZ&8+KCWK(7_nNN%JD8@;6=U#ewh=G9r3wnt``Bf z&Q^iPVeU6oNWn>WB1x?8dT8^H!HnZWWX?<>tmqmAQ=b&Wd6y$(kgIpy>C=T9ogc&O z1|@)zHZI<<6h96aLd5rcl)W5D$gyM;Ts;prybhtCPu9X+X$kg{Aa`GCx5f(LWbVAa z3VUu@;@$AaG_EC&tU^gv{&YFL{bes4jJk;LhPUIOnhUwOU4Subm&dit1GKYYU~o<- znf>B8f8(|&2y`AK3-uJ(BB6fT=9-S%G{Wh{1?TuBfg|wvlq4g+U>jrvaa>*ZPdN8? zHs7kQme;)17_zu~z_Kf4#gFRZlWN7~` z;GH>6bjur|YeE>c`JM;5rdvVKRf8$Hs*1nt&Vbfo3;HMxU_$=^G#g2WHoMiR8LI;3 z7x}P0(w<{O`(kvJA6?Zbz}Tf8f@eA+kbsHU@OC*}_eq5A%f{=w$5aOzi{XAQ;F7X2f-+71k_|M6l?B8@j z+8t0190y5mb}%)OYe%gKW@pN+Q2b3UDk!_+!vH6Y=9$nRldEz6IF9jTr3Mo+rXjQG z5{R8doV~soGq)Z^kDfA~?ycW6Px2M-=Rg^nIurU~t`{&BE_g(34E`xE!tdOixZ2SR z4D4I@ecLra_ool;#_i<9K{JqhRYR=PD)H*gK+a#&ia2i-hx1bvn34oPl-XBKJ}ORR z!VZWt>ZM=l*HiDgxQqg$zV8hlkXg!Eu)N1vM^=NouLEW@ib2>FJ=XD^Bf%r%kiE{; zT31~lyQZHbA4eB}RrG8)8vntpxG9+mluJ+nqsJf=@C**0xN%juD}L0frN83Y}L;I#gIdEm*+Be$KA`A1v5}*#c6cwddYdD9)oq- zobT@iG3Xyjz}rV6aNkQ&oT|j>sqfTNn#WgSSb^yEM4U5`1M<|KjRlzSXYf)3eDIN|ku z*w&lMmn>|fd!PKk#Bnp=t?D&$eNhk$KlC><8*xT=o9$$qPcpnpNI^#dVH|x?z}(xv z4QsEgq?aH62L7E)yuTzEk993YTNim|R?lK;_fv%J+mZ(6W%IRB&#km1=+7tPWFL9WhnV^=8OXYp>FSi2P8 zrx=2YMIc^S&E;t{!?5VXO)`D!5N_~XOXP)pz*xW)19hK5cZeBg3xs0cCqsO%AV_WW zz0vYpJ@FiS5Hc#7=~uHOxJTU(m8Psk+14bQ{7Mr-b%jvlQ9JQ?YmCnRg-E+Tf`W}A z6*wFWfv+{7d#5M-dLPdln(zqwr+ZW91RLtyX~M+7C~|1RSKf^kZ)xI#Ns#(U3KbIc zptkNhJs<80n^*hL2FLP(6R#3r{dbNvJvRV%w4X8;z55cK_BN7xF@ezkFbTb%h(b-E zER)4?om@7`ve&ML^MBnB#Pk&npY2}iv`QZ$BF6@bid?djl^kLpki6Z{Qlh^18Zair&>194o z`U216v@bDf=0S>>7Sk1Dh((b6e2`a%|nq>sig7Rsy( zSNF|2htLLk zJ8XzZ8Z^+dj4@a>Pn5;^ei+qmN#;k)gT)74^Pb$A%|3nl8}y~7;mq&rAYSezK0oxD z#AOU%&}>acno6<0dU2TOSeVy0S`2MWJ4gn{c*$S$3EyYD;}xHZ$3aCW@Ed66C2YF_ zJ>oU|25#IEDc+2SDk`adZ4T@TY5@N~%{1WWQ+n1!ALrM~!EdwCpy{&%KXT`x&1w(u zk6Z(q)rWBsZwr)uk!0*0ZjWzbKEQcb%Qb~p* zEaAMz{ZOkU2L`gb&e+8?_)Y=rGoOzKD0qfH+nLH#_BcXV0MJ&q2ncyq?1h6)1Cc@Pbm>bR~84pIoED1i< zAUaf3$Qa5y7UIMcp_u8v3l-%r!i=N`{HL${z@wj!UpYpMj#NGQ^K?3nTbqEXf6}S= z21QaRmQCinh7x^qj?Fy!4mx}gg4z27nZ>WpU}WG}DCXiGzV)*iwOPS*%N?#(_Lw|- z;MWlBy;)1+9Ettv zwh1R0D3p_8|=^$2aiHO$mQ}Q&lhBqG*W?9BRu$WX&#+(>ju3My$|-B*J5mh zv&f(ETwcm@n7VCz1GN%SG`pD_(>zM$Meh;fy`2(8gEkis^N_K4Reb>Mj8?Fh&Ur$= zQ6$aNp2L0%86j%&C#mv=1oV0yhIf`VVu$-6e^P25U+rE5kubeWJ8xHG)D6!6K~I@& zGw`LY!ndJOaT>29b2({^v_+n&ItW_Z;zoBpY}F`5hZZ4R;hTcutLt&%7!A1f_$Rt) zSK)!y+nkms7`lBGnUKYiM8NtDGIMIF|GgrJ+IS5PJE`zwzv)6l?=p~E|K8m5Q#R-h zC-cmfapU;u@qe0tO~Uyw;=jOEQ)VcWLmh|$-=7^Y(xSJM>JJw!n^@G(Y2N@JA4Rd zZ9NN}s=x92Av@gCS42k_O#NhHrgo+qXS{ zWmjNaRT!=oT#P3B5yU%%S;f6K@q7GS9C`kgH&FeA3Y{^;`KO2ZPC+Nh>|{AeTyqwd z8|$+#4pu_-M_ceQ5{E4DO+?OLmPD+SV8$JL1xwBx$E+*c;dgK!b?xtgfX4B3WBzs$ zDZCk0J4s?z=vbUM?jG__MNlv0CQRg6VvSlUZ!k9jl&p6_@9kphdgBWY#rwebhd`nx z>#<7v_kmKF3Z6gm8)8RY#rY;uY~Di7vw2)Snufgv$%BALIhMb+XEZMDJ__p>-G-1M zLyU}?1`khMBO6|Yp-Vvt9c+rh1i^85FXJgcVxJHsTrNkGrtMI^q!{Wr&L?K*$iB3mqP-~tGN5GCdLJgVlEvNWvvFXV$*yTT$~?6W(6gX6U`Z5Fmep?W|UGZ_A1Xy z#S?RK<*?O*(=3{r!QQmzG;&51iNs~tcKA6y{dNNlKHP%X+Nmg9Qb#t+3z9O;0=~L= zJ?Q3jksodca7XZBoV_m{CUr)_*-?wIJlqn6OV4#z+V+F zATijK_~}`ZRPP?L=1cp+2K^QZK#Emp4*^bw-C*pXYiyiU*Zof=q72$5Ka}IMn&XuF1CiSYHK7} zH+B>64Wj{P!XDxKX+regRB6`jtq-P5@3)kV|KQ1uo%LY!zZ9&h62r?TUW$@ghzTw&DtvFR$0bhtsW)~bE1!RdQ zWI8Ir7o+*ClKB_H*SP^VZztfh#kW zv|55_gnbfTnnkII&^P>P#bcIi5QX6q6_7b-OAWc0wqkoc+D@#()mxHLy0x2@o^B^` zO49gpOgODp$pJ=0l|3x0#~xhsl3I8-(LBeCxRRYi4SeoGPE-g_?o=dkdst1YgYM!9 z$#)P|*$l>32kG8%XUWjF2@nd$u|hHkg@)oe-_q4M`BO4ECHx)xnMqJ|BLz>_g~R&Q zjkH_(4Q!8^kK*Th$aH9>2ka-K!}11PbS(^cP7JKQCBtzPlE^$GZ$wTfo5}Tk7lH&J zbZ{F+J(S>B``V1N>{B{A-iPR@&4)IQA*lROoSkf-1+I;1sE%@|H|N037ni3?Y$c{vdr+Yw7|IoX zL)3*~m_Bm>q{Y9aC#U#8j*BzhGc_DTQr$7lX*6qrVf@VNW6AI|6L{LNgjH+i*eX4f z!Lh3gs|*w{B@1Eec0Wv8Jcxrkeb6`lGHq^qgiZ-c;ML7}dY;y%^hYJpK3+_A zcE2Oz)Yg-9J8z=G`TxxiD8-I_uldD+UGz;*2kJUc!ON@lz^~&R>GR^|(N_M{ZTn5a z)cE7K5Fajgv<8hgpTm@i^ZT?nGW-IiL;AON6?h1sQ~-O!m8dv+Phnoz0g?znkF-tK<_JvH~i4b%81;* zqX+daO*qq44Qu@*87rL?_|7*9o;Eu0-|iWqzg70(+Wo(Y^_$DQbjR=bRk;eMbSb0E zGI8{tf1M1k-3Vt-{GhAzlc_}CUR>XD1wSw1>WgPplS}arz}hGkoE^(R{W`}*68njB z-U(pm4sX=VT!d7^0dAyM!IqLLG~&D#pN+1@y{n!0=iw{ujum0DWJ@t;XCeswux_IIc_3oK2MHmn^*?Pv68673No*Cw~{yMg~%QqjnikRz?O)O zc%j*Xq%PP(M*=v``8ON57~BX~hWzo@@r%@!Vwur&g>uht(#elS z*!a6HRN&DRrqkC4kE~iiK2MUsV9)hL@_4prL)FpFjz(1%O~RThL_})DVGpG%jvG%4e^~o1nio* zmc~2`M~Uh2z;9zRfqRE&UAquIAAUSypgx)Qq36i!~dj~l;-p|@BDo)^x-+v-9564@Upm*Yd9 zjMrnemu|+S`L-asESZZZex%+Co<#1$V&1V-Z=676+4oE($$uCOjw|9YsZ$%OaStgQ z-%iK%8! zKs@8NkAD2lF@by|FmYi6KVbAI628UHtatTsSpVrFiJm@*SosSuc{mD9oLAs!x!2(N z${UyFuYm}!Gi2H3TNuCoHYQoM@vH{8eD}`X7;Eqg^yY6T238>;rP5D7=~t77u19G_ z&<(u2$(=r`Da31Y=dgM^XQD+Y<#cEbVEv&UmUG-_&tWd+cBLHzgFL`UN)Tf>pR0Lm zBe6?nDpU$9khI=GBDU%>s48`X$sTbC>E8l_A_AP3^fU5#vo^HO`~jLdV!UHTY1}-0 z7MO3(rm@Gr6`UzO22Vl)>4{T(Ou8+^RyaHHmVY&1W_`^@lfFar^VPXjMPnbC-PwQ} zG$)e##=&5)jLSna8GO~0X5NAPDe&7to70lLr>Up+5K%6#w_kzlchaOe&uw>FCF;wY zoEQ%pV;a#W=M7A)x8Ooseh3q*iPHKQVtLeq=d!>JH%wW;)3|e*MpAr2lzeXJqxaIL;Nxs9rfG#FTd5aF za-QfEM2pA3c*cj$&%TMfDryPt=4zTEbIG!n1L%=#z@DqAg#8{7XrKO+Hs!xY^IiqA z)!{8F<@%8p0|zp!e+DkvAH(I_VrW)w3~U$5#2?e2lhm|oTA`^6Ion6G{v3mTrp!Ik zDEf@HPL~BcaWfRRx&zO}CgIk(drEl5> z62mc{)!cELSTEf(G#zdaxI^g*E=TFNh_&6*LKEz`@pWb)rd(W(E4lV}E`19_rf>P* z&Gv!Y_6l^2YoSEA1Gjzg!YNlrqrb;;P@OG-)yASAFW668eD>jRtsE=ndyho?X`=Ma!{7v;RG|l$RBJrwqREyR<%#>0hN;X{%S@mukpMy!#E)*2%z7_e>na)y|xZPsOz<@?7nDCa!#S zm-Kflkq{;vKYrf^$``sxPe3sw#${0Jbo2U?~$o|+D1u-7iXvgSiSpMfe z(c3Le^!>d-N0}iDrk8h^*!K!I@j0;kNi; zj*YH|8G8iLyL}h)ynh3KKOrC&;&}2Anu8t~U*U9MyJ9u$F3D(s0ldTr_pmhFQYGn2p zH&`a}uQ!Z?fOE+dPtBs97F8s@=?=XtFc$D!J}%AcfwfVMn6l?FF%u|3_4_YzuZ}9H zO^krxYbWSd)q1RIOXlX0)L@7LUb8 zju&WOXCmfm&B3j1yD?|d5bP?{go7<k%yLi6M%|im3h;dsx@- znYVSb2)k>FGFWmt_|$8a=-VpK${N4Iu{c8O*ghUlEs-xUy%l4(b2?7h2HHC^3V1hW zpudzizWwOI*J>FtC{=A@WXKa%}-Z&!uB^Qb9NZsIdVFoP#dTpsHEB=8_ADNMZgoh0AznG zJ{&nlyz(F7i0VgT{%Zzb+13n-3bOEl-e~rIcqfcvH6Z@NN(>1IhtQ`Dxc$!@h^v`M z+#9nYbxQ;q^_?J5x{Gk7djJqJO!_kB!H(%+D8Kj~{J#7Pe-y_-)yiygP$mv0W$4m5 zg#+|{!$G3(a0l_NT}BR!qvX)eLYmO(!`D7FmK(nxrRN3~;Gqa5cI{R_%=YubLT-Fq zc6tonujnQAcW;xYa}V)M#watEzw+U&aSymxYJsJ?DO!45;!kl*<$R)M;QNh)-?Www zLvowBI*YY%;^Qv}kRMH+iRa=+2YY;DERWjjozQgA1>6;QnNI2wW*_S&g+ELqUcO*bxHrcO+x!id-yqK7;F8 zFViP}7hpKKg&uqR3=DF<;o=P&*}}((=%$IQ=Pq-MfMb@BA&rja;yP3qnuZ`bu zya(^Qdr_BaQE+q*z;EVCOxE)_nC7p^OI#a)!>O7W7qANu&R)f{{@Y-xkm zbDY|t%-&qFAKUHpY30(#L^s?YTC-NdjZkG&G_}S<3Nobrhd-1blV?sB8H39*j`v;S z0t?O_<+y|w@tSlPJad0aM`nnFYW8{1yP5=B9Zr)9x9LzjWfHxUdy7n{?+2ev61Xca z8k21^>5lqMc=TH$6b;9c5_nDbc0R{&>jK`k#rt{Qa(YvXDTGjnO*3cQ`gPdDzN(DCw1WJ1QWL@B{Y0#YZpXv9LG+4@<%}>ljk-F&&BptchTZ665P$MDEUb2K-JQ3>~wF_CJd3#`7HW^wC+Iu`C3u zazY@>JssaWa{Pv>8VnGT!>BQviQj<})ct@qww&D#JCX|M+g)2=nrbImzT^U@qevw4 zmL6VOF{COzU32HVU0@kZJb9Ct&VcV7{h%d7z%IIjeAS96*r)flp2 z-QvXp++*b59{<|*pT~b%V7=w)MS=o?0^)x+#czYZRs{ckF8BDa6|ISXZ}`vRf7$|n zU1x&-m)F_U=YPHJpLYJA9^^k8|J$~}fBND7wmVL@w(!F zJp4cX@_+68Kfd(8_3W?yUr0di?|1K<^w-Ki|Hq~BujjEZ{#yR?xlI3Uzu0Ggy`J}P zpZBk=|NZ~|uloO+HUDG#{r7K?|9r#$a|`_Y_5IKFmiPB{_0PU1b~!rzYyF?=&*GmK z{x_HZtMhW6(_jBd^?&pD|9RX0w_D)f&r7Ypzs{P!`>TJx-PFHVrv1H~{`c~q^VIa8 z9sh4G|9##O_;2?UxtD((XzIUxj{lp7|NqTyf&!v{^%Z~r5P|{||LeO83jMX=pWo@} z-!1a*&xHk4|LgtoTABhP|Fw^nfQq<)%IUxN7v*M#|2mS8&|e1>=l1{CLs(Ft?!Q(9 z=3V-0`OjaMe^&lqSvDS2VFcpWq3c(7sJE75)|bY@8Cy=1$uZjYOGcQdTqdx*F&B2a zq@#GFEzrwy%#}S?!S3gDte($6yUk(YegP;n-%V${7{$tb5ocCLmf@%4 zxiB-d5VKFj!bzSu+xSj`J)S-S1upXJ@aGEHm@36Q7f7M=UPe+ID=p@ui632I=}QIm zFVexs_BdDh4TP|YjKTdgFv;Z+)V&ynYw9Ab#0HLgwDT&I-j;%MHw77i(PE5_wg~(3 zdJg^(?IlT%3efbL7x;!X!DE#ySOeB5Pu=|WxXI@P8n~r{Ut9y0S3V)X2Q%^WCPC&6nZSG-69$g6RoQySMiTR~ z1!68060`6Cl%FgMuRd~dr)PHHJ6VFUEEH#M7!PnYifMF~pD43s*CR5`F_O2?d_4Q{ z3q>ah1JI84C%fX^Q1H=1y3iyDvW9*_%{otB-O~4D)`9>`%dUeX+vH%!itA`9o(4+- zKEeAf_i@3VPJI5sAJPNg!0eS2>W}Ql=58_em#-LeaMncrnrJ7`_LXLn$|TsA2GS_f z)rQVCx#0UK0-le$fT7CDjLlVlu5J1`e{V6Yh?Qd}Z>|Q{@&HKfOohsi6gy)YBGxeNC=?1gpt=U}H4rvZu-Wk;Wi z#Ku=GXxDy>-k&PLnz=fV!~2_1ZJQ1wKk@*4A{C%^p*v2QHwYt(#h7y^KZ1$gPW-mz z2%NOjXGEeO@fI$qN68N^xUDf3|NM%=+aq51Ay}3TI{Y5axOH=0fdUK>YQpPvp&aun zp5Tok&=^0S?&x@pSGR;ymmwK;L;FuCT&lsoy>}5~hQ=Y9cj9pJHR}4}3^;Z6k}EuG z;QU6LaRDAEpv4z2)FV+Ne6hffZY65HVAronZC=>0Hf*DCC zVRD=hqxejfRo{F8zDlL@Pmc?s$#;@S`*#_peWeM;q^q#Kw_fpGWuD+n!Bz;a^MZeX*O*%VzdI|ATvaq z?QFUU%N?$QxvChuzoMce6f*0V3bW>Q11f|FGxAcFIAk)GT`F^z zzi;nVyd0>-Y>Gbv3SrmydpU{3jbe^N{>BSuvmG$knBs+fbNMIF^pYaicC@$b2P0OB z)1`UQ)n`>$qit^Zdwv~Qxciei3x;v_J05dy#~Aj{^)29U`4C<%>Viudf$*t+B}|$r z!Q>j)p&6S2$3t~l>1p3VIrt@PCb!_5-ye+iRt4!-b$Dl|5R-CTl97CO4=X!=;x@&V z#NM*UTz-2d$Nm>!Q(li^X1tVQ9nN!X9PLrCXqN!lS?mJc@)NN5MlR$nmuDrf*5c`n zry<8R4X^L_<^4E$7G-&&EIX4=wiqoz4?ZQWTgR~dm(#)Ph!ZHkze?Ba)M1X-k7d_% z=`(s8+~9=vFsz#^!Tz2zn%&&=9AxwxVYyQsz2n=$k1v;G(hI+X;b8~d9DV`DZw@3% zk8|i*Lod#6$Q_IMU9gYSFGVgFV!pIClOOy%wA87=Fw2MN;#y1gj`@MRYhI%1DP5+* zs~S6p7ekf$BIt=|z!M%57@P0{2-?c!{cYM|<>l*WJ=lt@ku{84Z9@3^LX3;&XX0s_ zO4(T%FlV&}PFW#=mDy^H{n2jlROIS`CpYsdJqJpE2`G8J7CC@iZqp@Q-u1!YGfI{nIOj~C?K=(|)Q^zuQd}*fb`5Uwt-$)iPE@(r3JF>d!)Osv#q z!{=8(_j!)(J5qt8TY9iD?*+bbG-CHmQf42>hm%i(+vxVg575yj2jA7_^Q;>(z+&YD z=51aI7$slgcP>7PDM!b_ohg0hhk|@SA$uw#xibWQ--rVL@?4xY_5y^QOF(U{Ot`Q} zhk3eU0c??b58tLggX%|3a3b|F(R%ZmQL{LoPfM}K|6gPixEx$z3Lk1NEjySe&?7-crcuMYEh zr@`w^D(8QF9>oJBnaR<4(5WrQPAkoUg9AA@`GW$>2-l$57+Lo9=oA_=R{;IM2b2X> zm|?${7^lz#jjPXN?{GS8JzxOS9=^Z>p2zWg{%JTL@rzy(ug|5S{F!VULk5bUhth- zHp9mKH(`6cCY*nv!w4F0!GfquyeTcup(SE8(;v-3S-1^Qw_)7U>WOPtB|z{!b@2Nx z4OM=k?5K+iLA*u-9jhzo6HbR8_I3;-`&gLyqY;WjGda!b;23tPxH5b3z%;auk!Q87 z%CTt4WcYLY1itE&V8+b(hQnu#c|BJBG}~T;{klRK?Gm!V<53OV8E=No@~?P9KCMKe zNCb|UiDBL8O<*xtj5Cb{G3()2_J+AMdm#7=*i!|z)oK95BL?t~y)cv8+YUmC#o*aC zhBbL|9cBsiW2Wmhv}{SkIX?oi_0<*Fy;+8x*(l9ua^tX|vIC{dgsVpM+4_IA7!{(=O|I)LY=cfx>~0#ke_6x7~5 z!z0z=j81PUKF&;s-$jMAPq~vf&(x63kI{m%Q}sA-Q-@vo`I@t;*k@W5>ZQ2Xbs%`XyF})A zE6kYnh4kd>5&a_~%r6}wcAflJ0vexS+$t&7?ScTZLgm=6G?k5>>PU>^o>I{xlVDrK zI}mnx1&c-MXz@dBC5t-@@OT| z#{GCN#Q{nbv#{J-gi#kC#lC%Y9Y_AivA!Kf3|X0lGd|yhp(pt~rLqc8TyY)zSZg?L z^A+}8mj&(lBM>7y4Ie!+WXI3lgf8ZTFv~9Q_1Clz(#dDk`AGX_mFZ$20Yd`f;k- z0PH?2fzr2(7|r*)@WRCcII>lT8F^O$tK|e~!$2LJd;b>V7rT>}O5^bLYz;=&FAU!_ zTHyi*fAUA-2hln_p1E{Zg9YD4oGLgPSE@_~og`7#J4b_gFQkuQbCN;Qv;8j z6>zWY0Zb70!zCpz`0L*gTCeSjZAt3*yR#O1a?}~#7zy@7>sWB>zJV9Vp2hEFomhQR z0B!fnv8mT}7}9tIKYU5U)+bNl$HWJid4DbF-d0ET9$!=*lHkmwMcFUQmDus24|y>L zg?PL;17frKVBPgxTp~W1Rof^_^Xv{{a&8pbyvV@p>0{W_+lF9!iZ3+Dq+-1j;!K)| zp|AAVXV#nX!ck+?Na{z=>8-q$HR9-j1yp3s5Lpzdhl!kK`QFcQtYxDW7kwSX+ga6evN4uVzUY~qUw z$h9ux{os6$Mvh0*y1fKD=62%_7iW0c_yhKCI)i3|Qf#LBWz>~n=)N;YsKmBWjO~mL z>}npsM{DNeRre5b(q;yD2sDGdej4%S#?Q~!bJ+J2?_lNz4^Vy+4MtxIpkkjVewW^i z^=rbw>YyY<|I7lH89bUXDFkm>>(9b~u;C}xrELa)@ejhcN zHAe-Qb0e}$-xFoF;OI3_J9rm6cJ^bmayogbDu+3P4jjv+0P}u(7Bt*Vr2Bp;vKZ9L zVVds3>s(pf9I3*1g!;i(*#o5=n&3GV4mTj6M${yNV4AGKG@HMOyADB-i z(T7XGYV-!GTpEt+M~8ynOO6l?TZSY>ym9DJqhdE7R^zF9<9PjrO z&sf&tCh-FDCS(q@l<&ti#Zt_@c|y4P=^0q%be7mB3Nn|a%ixzn3FaE9gQd12D;>f4 zHPkGHr<0Dr=!zit{)B~(&0g5HN{r1yJ|+l%g(JC<~6=9z~7)3NSlrBhHJprQ3eSz}x%;EITC5Ony&rkBtC1t1QPX-r&vo$nf#4 ztQYMtTuil+#n3TcioMxg0X2T|Z0#dSw)MFOyq4R7PW*Zra&Z@Sy9GkDj5?Z*yMgCC zC{zb5gw1Cv$wB{z@Qf$G)*g6APDGu7H|^~ZWhKpeKjv8PR}4V)Ru#PK@S_)7?&Fv# z{k*dgEVKt7Cq6v|G;q`|47}NkA5Uwr7P=bj%R`0WW%~uMd6Z)Mj0gDbjxxMVmSvPC zOR}9E&%n(75p4_Gh*x@r*rL)_SomF(ntcp}SvAQ-_Ffk#oO_H;7Vc2Z-3K#ub(oEI zB_Oc%98PmGz#QX1UT1{}Tl=#d!x#ysI#QmsYEon!*F4}D3_5J%TnQ96eo6$LuE9`F zI!HaMLb)_bg3sF1zSvbzarZsK7YmTGo4{C^`hd`&5VIG^N zVXkQ(e9Pd*s5Mi~XROj;viM(+u}vX2_ypd+Xu*XR^^kO2h%G%ln*Dn2COX^2lf*@l zbe&5bKuSIwJ~oK#$?3Srv=Ls(*zBDEIiH3B zF2upGjTCduKp1pmRT#D9BFv#W6~^;!H@@kSWCI0#VXS;8b|{H5=4Mk!NP;-qUz!C< z*F{+MjjC)5$MN+4_Q%|u9meyr5An~tJbE(205*qAaU5fN?LOT4BEd%NOM@tO3L`K76P)*pGY5~{1#!C` z^zpljC2o_UQ!^Vi(v!^2H%&veGfz;&BEx!732{Y&s3Q-mJJ{H4v*TD7*k)Gc3Z zZ17VWBK=>VfrIT*NSW9KpZFmdu6+z&9xujQs(oXISf&SoS*5BU+~QKD0EL= zNauX&2FG|A=F#>nTK(P_;?m?;jYKPWQ1}bKy^O-*)D^sfX?>9Nvlv1SXW`Hm9mrc2 zM4!0~fUEXVVs2u?-`O68gGU~~th%vqGF=szsyW2?lK@*bs0;Z#L+D5-gFY$>lP4r# zt;$6_bzvtQJ;}u>rpYpw?)(P%V`*3^$Z<_`IFCRDAM9OnfM>SffGpVZopuzOPEOVlkmw4_T{m#YPCAR3}yxtPL)x(LWbsI?k5`si%)T6_!cfS%7JAj-)Mc=dD_xr%?>FW}B85^(375StNd04bZ>;Hbn0IKJfv%$qWrxmc*p=O1qSHnq(zSTUHtfAu7C|`~=Jx-z@d%fMiR1rz(@0MqKBNVoF_U$KA}Dp-342`Y*xZIHNK$u%RUQ?P(ji5B zYJaiC74`V8ND;0rUcg9a#DPh)IPJRwuy|r7D{)YlEZBbqCV&0|e@7IFd|gJRAQY2Hs2DgjHK5N&S!tNgX=})o;2`Y*?Gbq8zy|=!KH~ zZ7{!g6uX24;6U~(W{*`Lzi{(QID76FMsjx>=bFc~wGr&3L&1!!+|Ys8S_oahR8T3F{}|(Uj2YmE?e;0uDjUPszJ2$Zo)$Gov?!Cw87)L z{E5$0$$BSkIxtg;oL;dMRWh!z|5<&+q)|C)6nqKhrY5tJX&Us7wGETcw;&avhGcC| z73_GGf`e{Jyai{t{DI^-kO@HaiB4i{JsKhDy&T>7q>aD0QIzH`F9TH4B~_~jVE(>d zc>f~-nhcJ@>=)1RVEasdlBEyNVIG$qS9pyfo3qePtcBUW%pZ?#IDsu{J3xZdG!K0F z39Zl%k0)M%Q+7iNrOSXdk`h-#@>6NK%Kf| zN%r~^c=*f%{H(4-j=9K@Y`y`F7+r+Lk7UWp{T~=F_e5OLvxqrZEl%V+C$hf^o|*xop|JNMP@+ z$Bm!LVAL}M)-2@u5bv*NZv|IEkYWp@uZ~40El>Q0RS?w}23xsV%8}E^?p#dfI6*RG zpXCPdbd{y_m@Iv-vzgudM;vmmX|ZDX2Xn__K*lbc-!j7qTil+a<>pj;wLJ*pj?RRS zf|Y1emke)S?1q3=1G4Xh6Z1{oi2R)RgV{Z1Oy7CuLjIi;*#0Jg-8;!2k4aBLvu#{w zRJsq`cV@x$lnPaARiwKUKH(x^RoKa24pKe}#N;@|C%rE)Az&0^!u!DRSQ!3Izk>Jj z+W0@(`|#I$L2Uf*Fig2y&RlKFhp#;nbej{`dv3*Xwx-D2IPB!Id5&K(>+?a@VCofk zW}{3VWHh4bQ4xCNt~~jDN(ADs-C^M}VwtfVE%{S|6`H$oXL&A8IfvZ&vPWRgGsdkt zG;O*Yx{P(fo}#Ism?ce{>ZQS8hZ%{`ssh;~?_ph5E(QsTfX$+Z;BA(}#x<$IP-rnT zOM9Ai;R|6B!|BIyo}SF^&xUmM;XxGcIm_SE-H8kOo`E*CW2U#hMA_7El+S(#)v3c! zpd!nZNlHV~&mizC$6M%ZsO7uyz7R^XCj5gq&9jQh z{mb3GhW@A7nopPEf!7|?Yb?RJY!kNZ`@%%-2xtB8+Q1A}hBhp%V+FYm3864qDmc3p zUg}jr*7w`E@u(uXoxT?ac3s6Ur%GYkIR(-hqeHW;^oZo>1k6@cCtKeX;FM!=c(nf< zTQd9$t9L~*+2-HafnRC()!`{T?QX-RKNq2NmKssJDnd4`I0Bo#hqCiN^I!vCm65ls zgKeF?tUR|%Ec(asue2ReWkj4VuTe*{gkh9lt3&1Qt1|9Ft8vNK77*bNFt;4}xX@OM z{H>Ls4JRK#j%^diQvS|poRf#<@O&^IZ-YqHlepx2BGz3^hanqX(r4t2>zCER&ivQV z?{FF49DT{)o*6KrqDcF^RS&))hi1^)VS z^oHskbTJxc%J2SRj~pt)zvt8Ng2yFjou&;%`O%;OzmPEq#=H9t;sVVphdMoK%J{!J|#% zSe0;7@A)S5$WxJc)?ZzRMWVFdwQxdPpALl^LQI=Ql=Tw2i0|Gb?+;)>_R9s zu8HD$K^|~9<`~v^z>t=-M)0HSUPEM{2R>&)S)&&{U|YNg!WUb^=H+U1+YU37bWx%i z(=#x>gN31RUp&BdSihaR5v(8baL(1c{5J5!3yEIf13p;Y_7VnWh@s>=6OOx&bKwWE!Rnf@BM zQ5cM)_phLHh!Qm}5vGq-y>Z#(bxg~|Ufjgxqq4Tfz;mNTcx`+R6g+WZH0IpIy46wT|=t5lkTTZv-G(_WaSfh3ib~rv{7s}`0i6nKpNc;xlnEo3R z4Qs$H=qwh^H=>IoN})8J+f`ljhpmFP@Wg02s_G5mvIlYCHew5^@mJx)nOwMFd;onH zXfZaggyH*sb=vo}2jq<>P`Bo6(;cWp%x4tgVKo(6R}+DUehW~gAQgxi%SK*+4X!Ev0LA;cokMU89+IXgWOx@p znJLiVLk~cy?l~6D`iYJ+m8fR5A$7l84>7(MZ3e}q2!Ryl#;SMNeK!mJ@9$(37K-x* zLxw=+a0!~|nX$ef_1Kk+0m;#-hY`+)l{qaBk1(3F=N#t?nYaOcrp_WqzUxs-oj900 zW=syqtYmr{GV$IjEoy5~j^#d5RLk-sERF1+Bbjm)HrrokT_Pv3&Tpj1;~BcdAiD{- zm_LLmm%CtYRuYCS)~C*5ve<^AICq^fIlJ^Ob41}Oo-S1&>ep;hK8oAFb2`nx-)rG` z(FhxJ;T)GM6rh=NTChGo4fQijh@z`LS}8=La{EAMc9_k*pvCbIs@PM~)0h(8W*BKb zjO@e7#O&)$Hm};1UGbn36V^U~g~JBqoEFE$-K9z0vlLM@%YuGrya0uHM%1I-9j}cU zNyxkW6D_jF~am?v)3AoCm7CwTtCn|G}7z8_}PE`*G4kN%ZpZWABc(aBNi-veEeiw9lG> z&&90a(0w78T{_BZsS1accMwvaA7hneikYNkgqy87Z^@be$O3*MJ9oST)7HxopPjGS zP?s3oULA!i_V>Vj!HK9oO&^8+_A^1_&+$ZT1`NG;i?X~w*l)2M8wVeN#3vClS*Hoo zY~<+B-1pf1@-{vT>O(z$PRl-?3Ke$hBucU#YZUZIw_Gy@9}%MpvVig80X9{3awH;( zg{$Wlf}iOxko!-7eq^oi*|#sy8{L7P%kA;Ge=oR+&O@!LpJ4CS2aASvX|EZ@klmUj zZvQjPeLfc=qPAd@Zx6)RooA@8B+We~Mk<`tNz#AG?4~K2^oPD8t@K`q@^P71f!Z)J zLWJt?lP8nfC&J$~tq|#UUbf&8Xe{?fya}e}O*t z+kFO)$+67nAFc=FOFriMsbI=mLwF=v1|<&u=(p}Pd+7(o?b_00yttlwclv^sfCM%9 zBMTo325~`412eg11C(tqK>6M`(DFnC4~#T(JQ*tx?%oD2?VE7l@pEWtWW@gDD1(BG zB0YD010K5Cjy3zP;_$b}%sNLQdj72z$#r^!i(I+??-F0ENq)q!GtEI$rVrkn6(cGi zWyq;JiC|Lr6+`7uFv+Jx>Dqxrkb3+R$*>)3FWm*HD=65HbwH}jBUCunkCID8NpiF$ z>OI`b@6q^-FXuTiOM^!@t8+1yEfnz_}%rw+OoUQUZMpi zN)cck90~jKwy_h0jxdv~gvp!h7qP2bg&rXGc=ciuo)js?B!}r(21@MjyH_D+f*Mh( zP@!k;W#apBRU-MhlZ{{U6XLQgFk^2ju8s}E!T5t9Tmkswa}`$Wwty2Ln2(%-P*Eqy zmx%<^XgzdanFQ-grKxVE7CGNMhs_en;<_~y>Cq*-*r=!Gz_U6EruI)!WPqbK?bN3W zRmDMK9>UFU;^46577G3w!QK;hFgbiBGtb2dUG0BC=8j}MYu1Cyb%r5Owh;>a`RIk= z`22nY#FbuTul`|S!dNI~ywsq(Vz0Ae1_v0+x-?kx?lzvh8HX|n(lkPC90h*YL)4D~ zX2#38u-c%G{XHT>@9Di~d!iCiX3Yu=Pbg$^awEaFMV;fKO-JKES>jJ|Na@hocNgJAiyS86=oi!|Q6`Ji2C?8$2$Q|A zo+(_%!v2fg?yYkMzK)uXUY2uUmCJR;P*9N^Nf#yA7iZ>aPpXD=qDi+fMl_kegNsRF zu#nU9zrN5!lbfTgQj8cGG@Q-8I{6(lHe6?~MvS0^VHIv$&9Qvs1R1sO*O<#!R`HaU zL}NXd^X}?6gI5DRn2(kV(7+*uU1ML3;=Rc@S^6`)>IE|8_$A4(7dZ+Wtvn=ew7 zn)sf--{6q&71S|k0ka-Cs`A_QCy!Y=4+9Hx^kxX$Qcm+Er<^k zrQlceOy1%h{fy&7U0SF*2~T>7(J3lZG1ey*d6jXz#0i%`OC}tmZ)oB*`D;-1=?Y$5 zW`?^Y6-bXYw;Qa8hNes*+PFRx{T2*DqHP`oh5yBj6D4?ZeI_g!(xXOkFTwm#AMP4! zWZWL#;|sp(gY`wJd2avOq3+EX6T2!9a(10$S6Y2#EpNStGtT{ZGhz$w8+?Y7&BO5< z*FTp^MR0C+k?fswcp*=#0A-&q!5yk9c}8MuJNZGX@zsQ^P!ReE4I$G&Ry$1*iJI>q-P z+GyN^sx`i>)|)r*IPnI?RO!Kzl|#(>9vxaH{{q`}|3LKL9)9oH8|<}T4RA!c@G;#u7^pNL# z;zjU`R)A&wTRgeLj=BCJ1XIK<7?tJPl(as=bA7Ww&HFegEVO{d_1fg>flGP+IGtgM z%Olod&L#Mvass|B%|cyuW$HXznuc~|Gy3)+IBxY1kJd_(myKNiV)bvVliCjg|1@aP z=N2gE{L1o?GUR2m2px7WKnIz63~%j*r{N+TLr<0-{`Qmo7ybsDSKJ1>K0_wJVKwS6 ze#LZVgzz<{$r3f~xiI6=agI~I2W-h3tgZ~kdzJrCcySwsnNnuij@Nj$%8Ki+JOvez zPe5ApHWOO)3_CW>hi>j2q2rpxmX7*@+p2EZktoR|oKArEZ4dFD>}xo6yc?^{>tW1r zCQK{z!lN)BV^eoAc^Z-=;DtAw`4EKq%r(?-Spw5IZ@1CH&1|oiEY;pM8x~aL!QGkl zc%on!Hy^Zt3DIc$dFN{W31+_`_yb)M#2l z5nPMcrQt3g*jWZ$JfZsiAQklxS45Pc?4A-(&Unh6v3v=}=d)le;Rf^+Zi4@!UIPED zG1s^Flj&G$z@~7W!uz*<1QY7V-7_~Zk7FZuzG~!MiqIwwj5Zk+6bGMW<#6GR9h_I3 z0jKN^K*$k0Cb3)yOMVBz;>{j#x^WU-|8)#hg;SU*XJT+XE{xThmcX1U>ID9!D%kqO z2}5sbqwv8W81SVArf>fXBbg7u(((uAVHn5o5zGI-i^!Z#cH>4|!*Um!uQ zZXbchHm*-p(TsZOk0I<6r3upwsF1BQzFFtbuB(khDXt^q%%>jQxRvY9mXIXdI~Z7X z={qLKYthIsODf;Oc|gy9gNyYw_*4BIMxWb-zH3}DyWbneRQllFFK^CYRLxUt8%G!A za~Pp1hYNTKY;#2!OgU7;d^#aTN>qf&WRnSnyzPj#HQ2-H24O94*yi2W8KvoaA*3<}Gjqhq61oCE zrpeNLgH711bP?MoD)Bx=B_Satoab{A?snn!i4tj$vuGHedhKLN_Uz>PuI}-41MWbH z&l@y&c8}?`|ANO@|z<~U5rwxCU` zAHh4>6kN__Aow{lM0EK!rlMJi>){yyiS=92c=Z(QKlu-Cd=q3M=l{c<=8|N!Y7r_f z7NNf^&9in z0palM2!40yQf9V-322$+K#@=%q?fBA??n(lsZyRUe>IMW(o47wEd#o3!4I%ekf;6n zXQ9iU>yk>{%``sWfh9}6;K(#H5Y1F3eyz#yptK$DZn%zjh0Vy&)*SZYnLNC>M3dxS zH>GT)2RM}avK99Cz>0h0Xm8|niI^PzBAzT?V9O&=H4~r$LMb50=JJ<>3DCnUA45*6 z2CdQ<;(typWPNTd=SRA=;8t-t>ibfLcJg;K)1}Vf1I?`VWf!n$w6cCiLpfxp~Iu zK79W>$Xe``hR+&fy!hqE79dn2)_Mhifu#rsGHjj53(=M(NB28lwbXUT~eaBvR03|y3>b`dzvvjmcpzF zi@@!{AnfpvB{P?8!Lgn-P-D>sBWD{yOfQ<%T%JEG|SAgs=9rEn&EWU%MKk6ELbNLZ{5*y+VCYJ8-q(h(E7k4u5<)>KZ=O4hrH;l_z zC4mKhAa6|2n?1U%9vn|tF_Qb{qi9PRP8yRZ&*rGpmpym_9D;r zrVW0)FbP}iAK=&U#kep{l)7-|eYCRDaOY;dSQxuH)A<+9gfZ5x?YzGknwRjIO#MGawnUDrP*~%ugb*Y#8*sxksb|~ z)~4(C$day}863~|02q~uQvXfDG)wFcU*V((ZJv7w7Z?9y;%eVAdlqs%z}H{l*JU4J z_S#fTeZL#B(%)nG>xI~K^A5BveE>r3ieTsa4^(3WNv`vC>~xSOAH$O21D8=UZ%4el zq?5OV6ybD_7A!j^K$p7z0c)Nam9rKjEjmV2E>?oAky{SjOt&*ZgitFI}d`a@#RSxE}ZQwhqL#2WpAn4#x zn++j1P=)gazJ9R+B1Il!zHS97I6A|I;V&@ffIpMJMVfw4y$q+r6Y-$S0Ln{fkT4S^ zdShf7-guS^I;XgvsWlVe5UWCM&aZ;>X&+EjT7)FW8`7I^IZyuLXD}^}yN5oBlT$a$ zQ6epj39dfLlkp70r?bK!YPugtpMJ$EsTqOQiSF+W04j4gNyemlFIvn^jOar27f7H`^U22#+O@opeg}wY}U7SIE>&E9IIdG+n>r>!%+1_$)n0fgP?Trt;+8)MW~3q zlCl|%T!cvFzD92DRwe5+RdMJ^5~s6EQaiRD4*K_Sy@Ar?y$+Wzy`Rd~EIk0PE8fGv z!rjm;k4VeR=(&+O7}CP|&eg8MD0dzPt2(%j>{KpCBaiKCOYwBH3H|kW9qbL!;~m<4 z6|;qFaC!4pTz!2N#NRWZh2u}a{&WT!+P;TzcLO+oMvlA=kfX}o^0a9V*Fz^+g{Eb# zP;D`p_(r+ohpm6$CfA$u_VX`n?boCaN*1H*pAql~O96$(t-xQhlDWP`l<4r*;Ql+y z@k*v3eKn@dvB@N<()>}L#qPamQ-m1*qXk?}2}9meBl^Mq07H%lQT1EN=yphfRB(G9 zTl&AX7#AfAwg^{8DI^2wdj=6-5?yR3eOY*uvS}%tc&}D%MN6)xs$@s ztwn^2KPrGq{b1bu$sG5jKF14scOWb`lV^2bhB{hwKzFbRR!%wq{b%J!Ij*(&e)Iz_ zbGr?@lN8Cx7(H^yX&i>OR$+tWT=tAt1!|c;!^5xdVq}IWDY5rrixzNf>w88xx;h=j z6vp9!XbFGmisw+=rodahyoc@U$%CZP0i1P_^ApT0fjJwvS*dv#FK^03DSn)_RHO!T zWtt2KZxo;f4~wuQEeWb7=V6+;Ao;G*!sv6%b%#oGDDkbpTvKUw*X`TPqy10NX#OPj z;PGi-xkHU6+P=$^3XnqSmsfb*|LKq;HlFZT`!tFMdcv($4zP9FJhc1m2>GUO*#YNW zAfyosvX8DX@+Nn{X+|FVv{QkmJb8|l-0V3ZatV(3JjecJ>)_u0H_)Eu2jcE8@pVK1 z@Ut~YWcfC9&FRNa&!p+fwGy<|Ns=7W%EfI9Mj-6jc8K0p3JbTdgmBvzuyM5_XbB&} z*vUS?;xEi_k|WbOpFWDVqtwgQP?3@Zns<+)^3Sb&@s**>{wXHB=nI?|_2?})(^w2j zwazyBS#D6UwHYV5Xp^CR^)Ooc70OL|aBgQj|8{vJ$Sgm{l!dF|y@(8qiyuZ_ttd6N zoe$wtjA*IgFgU!_qYfn|bV__S+}+T``_{@Lv^c^dt8@r!oSawm=rxEnFJqn^;C}aN z&*GAce9U;9gsCUuvGJJ%9e5y14o%dfrg@xK_|IMb`(XiAZpMGqp|TqM>LO4waz8A# zE?}x=asR*0U{ttU3D@Q&G3D8F(M)41sxK12wL?<$z>T-)Z@wJ9e!Y)%o6}Kc;XC;0 zBTT+$P`q~RJyYE6f%Te#L{B9Qx9Q2!oKZd=ouo}|${g63-)3x@h7|deNYI(prI#Wn z!~Gj(;Cv#Dnc^>j1*UsJH7yp;CdD%kwKsx7+*>#_+ZnGjC!tN^A++z;q}rinsNEEe zUXO#B!cA}4pmW?@@v4b?YivfvLJ3fn4CTL|Dx^uz3*Wd1(~C`Gc%jdbb$!MQ1@(x;pwX zygus!#VZFv&RT&i%G4*l!-BN#v>}a=Y{!Y3S3o4C0}6aB~45}8Qq00L7^gbuJ)cuq>_f?24 z*`h|@3l&&jRM4VDvV3@M*b7$w7Qw8)^2A)lkbI32r}$HcUj5I4J!9X_d={TcjFvR8 zQzTsQ&0k4k+9<&8IOGDl&6$i!Kroowb6)j}k|ZZ$9|W8Yg2*jL`877z(fEk~{Fyr$ zJE;+w^=J}pP!uDpszN};Qyk|F84;T%)){`RDCxG zv~Uca4|OwTa~fb%?LizD@yAY`1d!X5g^~wOF)h1TRGRe=oErN$9k~>(Byte~TY2YK zaT;O6e9&LmiO;!S!&wLAXohVjmLAg}541kxIdu^_F|q-UJnBT%PC4-MRHa6$giW?c zgW(ndvbMn)=P!_k^G7D3-`!%2dn$pvTxB9oWq@}kg_&SIk2Q<_!RAY85ZB19ATJ<7 zyZ^6eyPU`ecoDUp}Re+r6diD-Khj~`tf#GkP@xo9xzrja`Xr#sC z`_paE644A?o`Em5u>}t7jfChQUAX#980ua&BD>d`V!)nNxJ8ufoZQ9n^~)czkFwiv zTHQ_D`ojv>ZSRCG!DsMz;c`}Vyagi9-3J=2&iM>G_^JNa7~ci2!KF!($~~1P;$3^$ zE$NL|r%U06HKNSSQk?2Ej)8qwz>v3^>#6ladHbFCdAts0>8g?st6aeE+j3@&#ARm4 zTa_OF(aHu2NszVL9pJfHo(@jB!^WDO$rZnWs8p#VaSCXMrp{{x-_= zg-eo#qp`3vtP1TyCs3cYKhW`Z6K-$I;TZ<$vSud-QQb$9MDGwKg2v-a{&|jZT|5Bm z#9w3oTu~Zbx`E4}X_HnvE^8*g0j?zJV`_6UigYzVh>h+gX@Amdk^)IX|Iq(=|M=7XkT+ zkvLE+B{DEWaF`_|z0-|u<;Xz0+4rYw)OMn_q;Vn_?1Vxo` za9{fc_Pps}J(5)jEd%1-P(2nK%Ma8AR3w>Ct8J{FXPi=Wi+ zV7WNl;rbOfcvY~c_w9km|7P+k%+t|WN1oFzU$B$+DUi#-{VXRc=vR|RRcRuvZ_F>jc%78eS5O&z$m=84vJB4MiOY zc%Vc!Io@JM-yVY&Ru?Ym>5)*F3XH}(oXxw8O*Jx9ExR0do!^NWtRyVU7=YF91c;_x zE@~~PWxGb2z$tJt+&E?#Ab) z66BF_9xJ>{h{}Jt$o?(}$6*&y^1HN!8Mv1NDT}o5O<_G#6OxF<(|y2mV?Xx&x~QwKDuz4TgGk@|u6=;AE&s(*&%xkj+&-(K#XjlxnJV@6u@H5euivF9FH zL(T49_|~RJe>tYH556YDVS!@&U8;qd9~!`nSeAt{pVI#+niLszC9_S56 zuX*wlo~6Q)X#^5K>rmA;ak{X_n~8ZDhVseTknMR87Whu2PIbpYr)2^AZIT*jWc$Ei z?I;{Pn~u}eSFk)*fi9c=1>ZS=jkuN);ky>VHb)yq*ftyQ?R*PAKed4L!70q~jn%mO zi8+jfaUD(GCV1k}9^U<93UrmFJYgn0#wjKoD_`$9rtMAz>q1U@4}OGQeL6Hkfb$L3{KIc8j`;PeB$M>D zo>?=G``(TWg4C%z-VYLkGOE3}>SZ#Qt3H8Wbt}Nee=XMgal5V>U2?|-lyBEWI$L|C%!I`=;K#qQbr z8#UWy$Z~D2r{nQmW~6U2@8TmpVy04q`}c}bKZSViEt-uFISuX{tY)?GA(!tjVs>v; zBz97&SgT_Oosx3!Xvaw=vt58Bs(r@`Mpqz{+eOshK%DO?LB>lYiRuX#%(suajVeBM;Uh^+bt z8A0YG?6ebXn#o|tv~SFI%6ZJs+Tw{>f6!7*kOXxak-1G9;BoI2EQryhbH`#Au7 zt3!zW>g44aMc8WT2A4fzuwObBUrsP2hLMtVQSui^d;XEV6Lm<2gub9s6F}=G9JV+fAhQGdR#X)MSLZkoB(rQF_LbqGfXYQcGSHM6KrmCDZG z=9j-?up_G;IvpAytg;;yJbuDjZ-(^{x{1zlE8%$F21qoW17Us2aQ^fg-0wS|k@&|j zWvh?E6UQtFtZw1it`Md+0b1yI+L*a?-V07mp9mW!a{HZ$+05ZrBJ?ZgN}TXwI$rs@ z0*tp>Xxvsa<6EU~DjER0!h^wPRG1&Jp z8{wmiDNE*}!W?mEfA2Z>*1~4C#b)75ccjJgZ%e(Otrx^-jm4XkiCz~7ni!C zT5K?ai#r4p4Msz9h`Sd~!|rflQnI8DB37h8Kd0%hSlWnhJ?-JG4VUwNqD1)_^O^O= zne3UPs?_VaFOwjsMgwn4630ikAa%SRCfF>6FvXQztDa;JRov|Rx*!v- z8_JXR&UBd9D@%@6KZC2)(frFj(il_r2JZBa!4uB=IMT5Nty3PeGnRdTF9Qus1~*S^ z)fd2kgsvPq|a`Me;68DA0z-^WE^ z*)?tAwo@L%xOc`Q`K{>A-vr;{Qo(;rlDf~1z=}di^2C-8mgV!9_Z!>c+S}_;I}`$) zm;L!EdZk!$R~fXw@cDbV?DN8qdaQDgAuAoLd5#A{U|<&4yR&Z{1|OB6YBnB>#@9Fq zI%0yV$w?Ts^*R2NZ$jPF^Qg6B652!s^OhLt;@ji;NRPMjZE}C}SKH|kqXo(Qy=8`M zvDr3oQ(py}3|pBEhCNv8tOhSrxHnnA3RKh3BFQiO;gk1w$g|kP{=FkXXT(3op-INH z>9Q(?r0Gn7-XWA;J_0^FHA(s-Z4%sh3B0^=nR8ys^w$Y%Jeed*3a$)U?<@GoehR(F zTxoR1MfVn9mvby@S|5amn<9Z1Wy+nIOPC_ihH8?z*c6q*7U)Fb4F|5r%S;1r`IwNP zqg?mR9eqsk5Tfo4CD4879gr{`Sg%}!6Bo)-R#S{FIA4$HOg&zy_64Cq24N(bm1U|x(=~#H~K*Ka{(0CDN3|L<%xE{RSYuq0(8B=_HW5%Grjw9 zPiQe-br7b~&JVF^n;$;09)sOmF2msDe75oJWc={)F+iLKnIC7y*!}kmOk(um(EbD_ zs?!!Vti)(}O*^dGoCIxrAN0yifI_J_SifAF&MkR|s;=^Ic~u#_y=z7uuX%$7@hw=b zJsaa!#{qGzKzW%Ffc-i&`mq{L2^Ane`>*k0*UC_9p{1xZQIwXC&gFS?T_2rS-hl1` zO*)0+a)^q*MDzW|+u@)Cq0D&Y09uSFA&^ki<74Q1?>0QB6OTs zil)iR?9I#pDEniNo(tn)pw=DdN~622`T_{sSt+>5@5Q>Pv|#J#)&hp@K4i+c=??d zoGo)j>so&-JR?ljCCcE6mT5H4yaGP&_yKCex};w287uV8oY|Vwj1dm9l=&|PH^pi4 z_H}BLgzjieR`LTww_)~>!vK6O&>(kKJ;bh}Pk65RHQex@27{h5#QM-UcwXRx=ls)< ztCPuI+_DZvWr|rT^Arr5DNa=s+h9}K90)8_Wp@{pNQ-d>Jf;y-(GdlM0@2rSApi-f2fe zzm;%!UNxHn{J&0Vm%2LHVzTc|vBD5L+C=%swmw?8c9v zqLB}^2hCt>!53~I=zwdQoJPCz1ZGTjf^?aSY}DIVpew=6+PN9P3@MZGN$1hz>NQ9i zn~gTjZ*d0abLwBC3(?B@C{P>&GnkjiV_)HT|1i>1qGYz^Q=DBbi#w-Y2l*I%qOnns z-j<`R*q-gke$vMC7r!xAc5H^H`5!^E;69u^*v7ICtiU5(g^0;5!8txGGh(U*+3Yu* z`AVD=ZVJIruD7gZo)fAFYmje0xE)*cRyfqA&G<@Kz=mj!op@_J@61C3s5!g{Z;k}x z91U%<=FSVe9-&K~+rId}el`%$O~7vn7uZ?*a~RF!FRW&X90}dk34f*>1j+jj5VNua zMiQ%FQA{5AEPjupa~`1i>dT<$=av_vXF|6A>V&WQ9++A_8Rj=C(K)-yz(%Q)Z(|V+ z|D6z|@JTR7>{C*EEM~YU5dNH&)2F_QA(|IR_NKTFumIP3?e!C@Gsj-Jy z@FNOj%7sXF>=k@jpi8Vugz-u2LcHLkLX%P**w%bZJX3dhW{FT8ZASsVq9@jUI{KwlB6H^a;$_Uh4|^oVm$CU z7DO9=g1h@av~-cDiegRdbmMjyD7eH#?2m(~Ax3n=gKnF(hZMQpHuue+8ia+Xgvhg| zO2#|?3KN{B2iM+l+z2sIqTQ=R?Zdg=n9Bp;evfnPf2x7?w3+KqtjE%g>NHXE9^P8^ z2V?JzFb_u}VDOS7j;%2u#XmA(%Q7{hm{QByq~FH^YgsC75RcA{JJI%}4JL#~fw|Xl zR9GcTm+t2LKo{;aWw&p`qGKs=xon78u~LE5-gpHE&gDW(RzJR$QlqavB*Ll-3vlW? z7RpQ~@y#XouowSqLCLUYXzJ(uZu>&P;NL@L&zU+{eMXMX6sTiQq70>_{9Lh$fYj6RXTuyT_8+EqL{;UUM;Su>H$ z=$B>UhsDUVZ=v{olP0S&;|+Fw5k)nL1Mp%4g~ScFAfWUm-VIDiHGK6_Mjy? ze-o$AxA^0h)G<8osSF{TWJuTyJLsM~g0+t%=@0j7Oz@f*H1!xo<>a^ccEUe2f4>hl z7f?*T{Tkmh^)TnhDCpHU;MRs(__@s&dz1X|#kHBx{^$m`o9V$Yl7)E(jA8c5Oja=C z12&`|0#AQiT-IC&!j4>~^Gp)dWC&1j+yXnI`XS_i49Th^>^2yT%T*W#cPtW%^N{K!?W^{C-ZDHoH|YOZA=L$SK!6 z17CkAiFe1AnUOHTe?N#iSYqUZaaf+kd5wH!h-^N^d42oguUjL)2{}?7r2$9clxb)j z$Hy%7fUg?H>`S+`ke;#${;m8D{q17(w@o=?mAi_aDmH-{4``D@$3bo8psx(>n} zc}#`VZ8*YO11*Wd_uJ&~U8EY;2Y+JQ97XBnb!(x^-5^hmW3UEAijmk>0eVV?gTUHH zf|R!o2nYs%u3~0I)8Z4Fa*=IE!fIE8}Rh+Ghn-CHnwdr z;&1ENh_5*@Zv7P=L2O_~5bNAf$gA zK>xvR{->X3QBkoPrH_hH;Rs{8C0m*}yig!I9)+yJq+{5#j$5sS%!9?8H_$y$pGxd? z!D}3Q%e_aADNhj~85`6g&6o4WruSnG3C$_&+QS^a-HBhh3l+Bg@N8Ui*aXYwWH1Vv;rtw_#o!}4m#p!h zgT2NVnP=^n@Rn3Qp5$^7?`MUg&C;b1={X$Hcvz{$9+HiHemVE|4`M_|`F1zHj8gKG_K(5(0~&b5Au zp$}MC>uL}7a2un>1Cf!<#?T`Z(Ahy8KK<7L*(IK_?A#JuEa_a~0I;>_(jb5G*Lu3oIRuL1)H5vu7~!Kyln z5m(J*=34P*xcBn`{NVg3V~QfgMv*eNW{rZCK{CF|TL5+wyrIua)bl-{uM1 zb;23@93dQ@E=u!y9X_Fssk*GK=_0MF3v`R7Uq#)hmU4q-=CGq#XIsBw;Xj+D)We7&tL(}*%1tng2Z5}-&bzOAWci!19>iTm2A?~e2mwVgW%f#vG-n4QFLv) zE;;8MB}o!6prF$AOvRiNiaB5cGbTVWVgf}JQ3;}wM8E)o1nGJv5(PvAB`Amj5|j*r z1Qk|&-}}C6?Dg;Q{Rit{ud&D8eL!_r72P$ftE*M|IIRwwIPb}m#=Wpo_c!}Ht_UkPErb`pn;=t8huU1MWhXv2 z1JQNnSY>({4-CCy;H@Z`6E>Q3D7<5{$0tC*{uuULVi6cT_`*nh^u-mYJV1-no$GoH zv6mGk@xx0|Qg$H>G7EXAXOxQ$&QWNywhY`7doi&q7y_ehS*FmJnL270luZ-@$)r*A zWbj9k4h)6;CYj^AeNC0E>#b(bFB?t@t@BLmXg^AiEWJ5 zsxPq7UK&pLN>Qf=8SpG8k3CS8%G9)Y;eFeW@apyz2;5(TAFo-$o>g(+x1s($qd=g*rDUk9%&9^E^#%r3oEqA z^PD-nGp;tgH#3xo^@m5eQoj`vKfc2+&9SI|U69|UaQc>t8z%dP)z|LYtZUjzOc6OA(qM%;qN)6C{}s{54PK3=-XLv;^hI> z(DWh4?Q3Te#wzpEw^6(+eHPc5Wir~c^hiXzFxj22LyskOfN{GT8U1099XF#4g>Gn* zf^ovc{_X}C{k{duf#)fH8-`GZ zC~Vxt?ANfwRNH$nv27>E-8G`}n?=Dc!;K#l{upyF3`2Tc9I6LCW$QeBQR#&eNxCgX zJ;k|e|0id5rSx;&TCQF=|6n3~F1iY@HonFwk7L2^b|}1%O=2&FG~v3(b%@?qd0t$d zYgWcqoV6qxXPu45h~?v`yw(3p2jE zN-*P^G@0tuiMQ*|bG)J=JU#9M$9Nb=ABR~o;*&(_yEn;LbpJJ6HL;}gggSU}_Z7(D z39IpeVHsyb@Aym9o0@nq&|54L;nLeyN^4yt=O){LMMn%HFVej8t6wgt-( zX!Xb28!B0ksn^p_t+i*&)r82669ugM&OhvVW+Khd9!u)Qo6$@07asKMXFR$l)98p6 zh7oze?3eLn;}fsKmLF5;(wNntd1V{qec`gy{exhfVF$`PvFKp)5khKNCc$z7_AR;$ zR+E0ia%~H~kb@s9xY{4rpDcvY9AU;QxRx)|R3JO$(FVdxtXiJme+Q0AP=^;LvOJ-r6@)ym|V zM;5$b93Zi!9(HUtf@^F1(7tvQRa-7be>%zIxpnDqqoImb+|6++9XGR?Wo>xi)mX@_ z^9NKd0sFc6>?YeWw1wk#F5F)NFN{v%vEpEGbns<2{;Wo!jDyT^vvMZfW&lnd{DNP) z>p?>FCUbGT9_fv|%bzYUMW1`_gOVw6sFQda+UrKxhmLYIczF%(*1QYC84?6LZZk2h ziLi(B*qd4RW5B3HtaD9(&e$C|H9Uhc4TwN}QUc2-8Pb!Vi!r!n1Vyi@GoKgOGky-H zVBPfy+ReS;-i1b><0D}loaBvi5G1?$gy@DR4SdysF38()0@F?wdU#r4hgD*+%B+17lE7c7|UoZ^HLO(%9CQ4ZWQi zaGYr3_8&4(`Ry)F8xW`0Lo85XZx%ZA%F;e#8Tx&vJ;<)tLFXl0ZO&GNT&pt2;xW3A za8ZYpj+P~k{v6Y8|98k8FGg+|F2mvZA#kuU0n694fv(;pl&Bd(*A`(SA>D?#VXEXx zEyt%$(18HaEDRkfU_@0ez>l>lb_(mGuw|Yi^d(rZ3RjQArfhjS{AoH=P27O{|Ga>O ztM=pcD;ex$j=SFQ=`s2&lHl0xT#ew>b(9Wlh3zMG_-W>~uxqU}@76=iU-+YmmLD$|+0;xu~hOPEwQ$TOcx zvBC5!p3Qjyo%SNc)~`0beNP9rMr+g2a~#q~2U|kn5)taIHxmY1|F8wYvrXwmRAC2~ig8Jkv~#A`oP z(fQ&7BpDh>;gtbM=P+?6rB8G7;9z>WWH{`it2AX zI{>^Ny@#a441COrQ{S*|wqEcJf6s|lSkz_1*7_y#m>H5#|1lJLH!NXHFKmT%RX4zJ zdF(qnGI%hgSc9K7$%u15taPi*qC;S?YENRxG;^(``UlDwEyB9P zQZ%7MoW$R##ncTy!H50G{~WahE-$+dhs3kt`<{6q_Q?y=zPY31@dE5gZh}sZRrK`G z7N)ye6Fj*wW;IGE$+#AULqCnE#jzO=aRy_9N z8>j6s#6I=KY-MX2q?!S27;Wu{ z!m+i`=iUlNq8ha9r$6&FWj;21*Py>&%d*J|%OLes1IOQc!j3-v3Xcit(jtN5uuIg8 z4si7wo~m8AJmVtPTz*{ z^N-=5BTaB_t1<15Zb0$eE}T|2fz)$ay4Gb%bm#V6sIdMrR6BG2nOmIR-RU#V{wPj$ zZFcf!*}J3rFFBg1_#1YrzCbx_0PE$OKmgC9jbtPS6cypCJ@U9XbOO4LL}A99Gwjsm zHE^t7nrb$dz{IWXILlv^IK{?rwVtgQYn+FH@C3A`x3CYsePGw+>d=avie$q5PY_uq zNF^o5qE-8SuvnagnQkBOjf^@m=k>sQQ+?VoNtz!1DNEKBaX0Ms1#I;famIh4G*MTR z!p51ZRC-hz&or(BjoXE2T9N^Mo~uW1sB(EsO?OzM$Y>^S;3hf^%w*$EK1b!7g7BtI z4VWecvcuVnu@Gotw`K_t;ca3h-#r;qXL3xe_;`G{R)ab`+KVn{qTxwHAnvdki`RR4 zuq9ueOf}$m9kVVl2VQXg{uFt-S}+fV7A2%JrY2~=qzNX;Y+x>~G6WZ?Z@BMDZhC9P zJvL`=9&YSw0pQNd4=!HAPStPdo5*F7?C4=w%JH&_tKh3jCMq>l^41>pg!!)iXq6p; zPN81#N`4WZ9j>wC?-!w0p4`O`3nj@bz41)unDaPrQkE)~MRA_B3Q*|nVXZb>GWT-) zS)GDAyl>)?^wUWRBK@xC&WPpYhaaBUo$k8TTknN1N9Ucq7pZ#9|I& zw2Kn?IO{5oJ#K-_`Bt<(FF|{|*RfxuHDO3@4VyK2Ht2ue#eZ~K9DmG~qaV80=4rA>YKbYwfmp0G#$9$Dh&Dodt)ypJ9Z)!4VSm}yRRfsI^-$HO8M_UChD zlA+iKQ46|Rq3A{|n7t3lPztz4nxpifC&;h90@gO0@D%60n=z7%y^cT7D=?PX`Y{CS z!Wx(pN9sUR=@HxRz8mK!NkKoy<-?;=bVyN!Ox+?#1CL5l>zP}yDCZ^mJlu)hXA=28 zXNXc+j;$59qzuw+eVDrOqIBJe2rRI9$v$6qidV7{!D09i^GACp>*J(IuKU=LlAjzu zTZGGG2;h8dcet#uk`$=!SO9B&aNbF73{~0j3d}!z3m1wz!SO>Sa98dyI7k163S~Ju zYmsyM|bAJ%K`~7lr6v^y%(_JP8Lh5E^!`Z?tZ6j02@5|q0ml-mLx4e**FQf zV-|?>r&|zX>vEn#O)0bNkux(aRF0MhgMIn#j7VJ;emS-2)n+-CZ{C)W1qyv?mh>N zdvajgCSmf#UzsGzt5W5}!>HSPmgCN=5u>3(=83f?%;L0zQWIyetuxQEy-5bdCD;eH zWpNt%R!gQZd@~dR?de}^6N;izcC#|C7@WV&==izJ2UXcvHB)hO~P>9HH?qlzL>wyJa zuE8(9I2~{q0NrVCp-G^Jd3`dA6?nj1=O@Y2@#{*^De4P6I~>epz4!&O-7_Gz*^%#` z;RF>IoN>M5ANbw+0$=y&(D*C_O}8GNlWrtzonS&|JUa>@pN6n{kuX&<+Q|z3>18La zVVI*vH86X41%^B9Li52gc&Q;yXMEA2C7f6EE@!}Iwk|r;640nU#%@h8 zfy&6OK)R*LriEgd8v6zMqDAOxB18G_GT5F#mT?;Gicez%a5tB`C6yA+ZaySQ%UMa< zImlf*cz57tPas;nDS|^{+&z>{4G2Uw;LQ`~LAPQd){R%jMat^bz0w?f{E8t>P=U6k z-T({6jPVd#1!DVa@p#D@@LaeS1}5kblM7rfTuln^$P-_-!J`!V1UTO5u5|WHuRUyz z>V`*&ZEW~k0lH+89c`3K1-c~HIsgT(nK!DWS$j0 zGd3QlPZOYX%z~k@-H07Ei_3@DQ3f`rzoe6RA!6^?0cqFDVUyP_?3%F>ChbzDGdgd; zMAHB)D$jt@JaKl;jVOG7$Q^Vp8^G8MIa=u7!DZV#U_Hd&;=JWt4p8h>_SQKSvbap2 znobp^!eT{exIG+(cgs^Db05eTIEL$18I#@F_tDPi9op_r2SWpE)aN|WFHx7=jZ;Qu zsvgGbTGHZE1-R*z7ZZO(kN$XGgYIWO;O8-WSqbERHy?^nq*j1thwgy!ChK{YTg~{V zMy&9IK@R51OF?a!*Ob1`)7X<9U3fn_4dw}a#Xri+AjsYg9mI{$?@u%&zncLvU4!ha z?Sbq-=SwVj;sZa%EaojNEM@zI#i@Xc7UktC<456xc)DsTJFd1J*sIoaVdQV;Hl zrHnI|oq6iz9Ef=E1#V3cA@i(7u-UBxg>4_>HpY%Q$mt}Me#_F8*{K|#QVF(-sS(#_Hu%=~3#^;)9q(`G zW?t_T1G`yYVfJKmylDOu84oLXXgLDz<1#pXW+u}YKFloHFVATFOatdPfp~DtJQ(ca~ z=q0W}G}q>_HP@|hX?G$PmOe)r1;m-=m*8f@XZH1g0nADG!`s!~j8!kn(1QOR?qeLv zUK6KVHCl0b*Ddh5R))Jp&!OlVQ8HWnIjbanS)L6=3?!z_6&d(tVKwd)g=-@)@OT#2&gKXv7pn9q0dD!4HRwtEi{q@F`NTv;&4t+0mB_m^ zoypvLn&0<)K16J6$B8SJA{WBNr7*l#%H4LZctbr*{|$rLD8D9ylE7KPgSGuCZ#d0N5wEMMVKDyv|{+nRA}iDVKk}H zz|;8`(9m zVG?Z1)iqE5fz3ie_%!MQZm?-X=gB6ddf*&;cuxe17z)zhqxbn?6UE8gdNr&&P{m9; zmj$o)2(#igzhSGXG}(3SH9AGappP&gMAZX1Zj>wrd&T3jO0M4AyODqC1~Sb;SMlwb z1ZMe6L(V75L(h~Ac58mO0i&&m!S{t|oG^E6Oo?Eo3`;}V8BbVvXgs^|dlqw}t`BAR z_d$(#E+!rN%(LS4L(N+sR1=$x4|{g;Yqb+V#rh_iTxn!{erCZE$9_xA5V# zM0Ee@#9W@OOqXSekdM0rS=rutNN}6OjtVMgV7CU!#=B$tJ`qOH;wLzWrDD6#2=7B3 z13k)u}5oCc+6a91lnKdnkE0&j!(8a@aZxMlbW{Ap zICR$IH^C4TU)#=4;&k*~A>(+7+tlE@+cTUjP{CYDzXH>_KI+5|qp%MLU}sA_)0j1x z*)?7Y@{~_ApM~t8XHy+68{ZGN?%e0)Z%$8-NJr4>6(!?cp5VmvhgeuC%0^hPU}_xB zGB--9aJC%S^+wEv-NlpGe#<+EoR|CO(T7+UEC@rf3(@?R8gqg3+3r2pjHf(`VaAVA zD0p!T?p^y0j}|wwR}EfZuaX(mYo_pXyBok=^*TD6PQ{3|QH)lEH0e}PqEl6>xIEnl z=r&G|md-iP#@sAs_U2QlXc_~5I1Z@hm||>~;Iv>tPSE6Ki|@t+@RE8nV443AsO{rw zB{AAG?_(<{7bp_Voj2fp&u6AsLy@@N^Tm62=i-{D+K^^=ld03ofhh3DBNEnd!^{st zh7EYdL3XgJUkWXJWQoeL@!)--2-q#iCLGlu^B76mPAb8Cel)!D(4r|eU1%Be3@6^P z!u<_W)Nhj*v}U|UKF2DO-;@tRgRiGH+sb3P_(o_7cn{|nB*XOB{rIF;4Qk#S5|i5J zID45qX|fr>$GPuO)A1(uPEWyY8?HlF8jg*iFw@uvMe3AU}xH*~Kh|BQT1#q{s7UxBz*2Ee9_fmqXe6 z3YdL=06co6LWpP%~Nfr_eyjbg% zo+u(OPWRn;fMxmdFkzoH-WV-|!Y55(d&o-WL;Ocfe*F@Bt0qHs$4BNt_frVfI1GUn zQ`kxSuJGi!T#Q3XIryhF1AYj8gYij{WZhB)+Gr#S6Q>R^W-FD*xVhq(rnQ4D+xZ&v zTD~wRpJZdG;uM%HnE`qeg~;cUE6m8a)to;=4d&II<&O=02x&?~kQ&$qY`7!(oQ{Ec zn$w~7p*lITz6a;-h=yLh32aeq2`m1t1fFbu#a*wBS#gI*Y*KZ=gJq&9Zq$w@metI; zq(R8^9726z9}F7KfVIO8Y~U0JHoM^!}iFF{vU2p7LdN^+T zMc_O2VeEZVkn-8RBifiGnRVDm*n}z-ng4A)s8!X?sny zI9!#c+uxc{X5o2O=huDSyv6eHhbe}N{ffj=(1Mb$R(O5w6ZD#$2})KDaEBB2#m{&}y~^hA%je;%NXnsv0z?F9r)n z)nahP6+FBDKHO1>!Raeo*s;$L3?q4_n}7rObYAo#8}GM*Cw`TclreJ|ecevj4RoZhL$8NH0}@{(Pj zb7Qw%=>7UQHoWl!*~_Z5CngTI$zNmYd2w*|fdINx3(#iWIp~>Y1F9!dfB{7)y8aYv zH;EAUdzaBtdj=$4h=!MkRLGU|nM@#ek0i>~UM!wwf_{As+RmuL&c{noV6`Z|9ufja z-w1a0^nP5gp34XaXpoZTr_9d#`gC}0AdG9!pvL0{P^~JJU2msHCk+hnch3sv#)`DS z_tG4kX_*EKqQwbTyo4Z=V6ZaX1}9Ss!JxwhXGEQ3KMD$?!h{-FxBonvi%uq=7JE)z zZe-0Gwgmw@)tFish>}G_g1F|bfauX0yoLybrN?Bb+#fI8y3Y<%AM25ATwa8&?_y{$ z9AP@Ydf^f+d0Olm$Bm_l(VhpE0BDEYY!UkAG*@FE>Bo0^ zoUdP`4xA6>Gw)s{fY8~?aORi?L&N<*d7KYCk-UcGruoby7b%j?X$|C*>hQ;{aCZIC z%edpnQC{@#PF(*n1|7I^;WRc3E%R!iHCKejNb1mOJGyb7a4bX~uEoM%gKX2xrL6px zAi!}u@%%ys@~Qd-+i53Bv#-k#nWkVkxle`dQmFxpsm?ghcM-E)Isil(cfNSGbtAjn z`8tMJnBs(j3dnl@ip>puiPxw+Nx7keG-nUq3%CR=vk<=J40^QeRIbYHQRCrRt zTyc58nEl9t=bN<1rC+-_eqJVH#Xo`JDdP0vbPHN?{x#(JY=`W^8vaFHWt1-NL(v2! zI*&b%G+Ui6TzrHXOsR$!c8Q?rSjYI--U0K^Wte`G^U~E$$E#cHiPxQKob4dX(5V${ zt?F{#`o-duSP4L1tTa`%E5X7G0x)Wy7}<5w4!8Us#S1Gui6(a@(^K5Fes9TbI5{xP zoJ}#HdmUMJivpKzIV%v(o!~fcM%BE0HXAoga%8kCY{6v~mmez<4eTl}u;}*##fJCn z{z5g{Z2bTZ`TM{!e2R~>jp?e?*Njx607&vB$f_NUFy8Vqm(8L>BYk4fc|e!^W+t=s z@$1p}o*%B=sS27mKA_>~ySQ^sFWhcShPInB(2=6U$d>EV5W@=?H@FEETe=}q!HVoq zKF=TRo6DNSiIdOCMnKQ)V4rr|kY@2v2>A3K4~^njO$Ha(om`GfkQ|qL;Tj1|5l=B_ ztTwS)wh%t0gy5(7)A3SOCHCI^$Yd5sk&TW4z=%qaT$MaDnlP4p@~s1}9apj9ay*Vo zJB#gGr$fELGeAiHchinYvAk@vuOwVCdDmmWo z*FbhRcb*U+V~KsIE=J6>Zd420 zEr^A2`!Z2XUxqk3g~8_XwujIj3n;xhTC&#w&QS7i9r+J74C|4(+%6{Uy0FIAjHV&0sa`0q3 z@^@^iU{0J}iLI{#aQ0hs%wHpiCf_*~fs+80(H19u-%>d(h!{P+eHJ>r+KLKAd1x{u zO|~^l<-;!bS_@;3J%WU=I+VUy&t+rWVb7tP}Hx%%9WI3;@9AqqCEOF5xTtn3~X(ag2cBkq1>Yg`?ZJhLgGie>zsDNPbv`G26N#3nGmpS_2Y77TPq-Yvu@;JOt@RUsImf^Dzy1!*M+%{6`$3Gmco__i z9)O$6^f7)o8{WujVVc}EmUrVZzu;{$IF&EPxNZKpoZrACsK-H}TQPHf_yGh7m-BB7 z-h?T(`cP%N9?Q&Z8H=l3uxghyweYTEWYY}jKF$++r*9#ynIVpwotoIqA1A|};^(Lz zaur?Dv(U&n3NF2nq~W)?tY{@c)NN8^`YivDfB!@0J8TxHl+u%D}UdH?~{6ArEDxJDc3{#1{RWw=i->- zvgF}538FXq4m!I&1%WBvoG&KCus*)@#w%Tn*ra z#$>Ru_60W;De`g!3op~pGVh-oF-}|anbouIp!82a_LR9Osb9Mf1V0$?imnW!XVV|t zDyG5T_COs)iyfJ>F&?<&tsa_#8d^3rq1HGZvN3XuZtK`YV z&}Qy89MA6F6bwrH!{7?>gW|*^pl+oDa~iy0$%|pstg_|RFOtL;2S?NICFUqM?Hy!Z zX~z7w7Fe}rHyk)`NT&X_M3=}5Xc8R=DhadslDe{(J@f*Xay2Z6S1IUaIgUxyi-wy| z?!n=$pLs1FThLlTo%QINkL(gxID6tX3OFx>!5Aydi)&`p`+9k9Zwi_7SH+3y*A`qg zr4{9(l*wHgg5y0)V17sr8bn=W<|HgfN7Y)4(c-fDj!%LwdIt3L{3uqxsEwBtA;ygf z>k;FZ9G}L%gQubHgA&E#XvEE{SiNff>pyFv}bJP@XK{m__Ptl4Sb8Ns!R##jKc0P@CulJwJQFhU>3R?YIVZviYF?tPn~Y zzr$hoH2nVZJC-j{h9RCH)xK1Ni2^;Sx4MeiS?&Q#EM<90j3#B(uEV{rrI>8;4p-gX z&JSGb0q@Ps*z^$>e04s6akd!^E&gG!V@WaST{I>0{L9#P;#|h>&`G6Z?`oD-(X!(49bRy)4Rkun&Nm3`jo_A#Krma5(xVb0R~YbRC`#9+7=u$PZ;Vggt}I<}&Pl zZ~!a+ltRn)7~FJ7f#~@!0P}BNxNyRIC@Ah=96ue0gr}iw7-#ibH8&d0&K09O{e_`k zauuFp7KBx}L++z0a@zOWHBERPy~LX2>EqL7C#Agz+;^eoG{^+oz{td zI52t&u0E+k)OI6QxlLjTHIzuoGzs`**@e0ixd}n)6O= zDrYB^D@eZ{zKhYRcX;a`jX;>CFqtv_I)rsz2FY+=`0y~D(X3nr-+P7Vv}JrYXC)8J zI9B0+r#qM!nxGHqz$X;}=y0iwy`UQc#+pMg?NTI+=0~v`W;bwNFd_PGB#QIAaNgW9 z3GlhJ2(DSgavF=(>9 z_K~}9v_-j}SKw#h63op{MK>;^OMkc?zKU^Ul5cgWS!Xid|Iz}NxN*yUcardZdn6wF z^bYpf2Vn6+ClG!07K$e*f+kl>>aUK(_bN-+F1;13Ua1Jt&+i4#4UsVE09WrcIKyV| zJb|+Z?xE^~W;oK_ffs@}1|2uvQ8_(~8;i(9=12hF=-mapzMaci?hFB!u`0-vD^rd1 zK<3_JFPJxX16Izw1p$icu;!;c20UE|iI0}x)u?ZnU%nqF{rLzYs%dQCE-}&=CQfqF z73h;2{%C#R5sG-*^IrI*G4F2LLFOr0a9hxc6Y^wWthPTBeYXkf%#*=ww;Uvl5(F~B z>2XsPv9N3&D=RKQ`?pEbPz6b96%qz&d)9)2>THCvjd=atSoWyaK~yR!Pd|4%0{O2O zLCD-TtiM%_i^hh7jK3fW$gM}Qtn={7@eOX{2@#nevzSKLE*vW`1es5`n&!4h-iEiz z^s)dS?oMiiU&7sN@%TVqoInj8;KmQOPHSM2sylGivSwVfB(QX%ue5QTqMI_;l~eHH&cwnj(>}Xo__)Rp91uli5T%#`3bs5 zs^KzI0YU>7WcnphvSk}ra}YCz=%a`)H)UgT&_U?mHUrE?C*k5DidiY*=7c)b*pfvj09;?>I6;Z5Aqc!;M4FFsBl*#zcx2u z^_%<5{C5SMSH79^cpilZd8O>7CL^xjas*E6tiwy%U0~J`gG!Hbps4W%G;R>3dkZ(> z);u}Vc|wbR3KgTv``^HtS4E8O6;9o-sve|2RKgv>y_g;Hfl2ILhvOJ2S}tq{o0P=K zoHbW)l8z6%M`D1vd`R1H5HSAeLj7VU{*vAfO}0|R|=@cb}JpE%Ce z3JTFJQk6`|dI_?6Ydn_Qf5TM+svOhO5N@9i#-AZ?(RcC_Jay*+yQfHt495j9c8zsV zY?FZ%@i&>bsDeHBL*ZO~CS+W!;f=Ia!g~+o1LyI)+TjBWFN>4n+3}#dPL4Q7)u!7# z_6O&~9&m-zcMI7lQ_i-*OPlEf?Jt!{zZsJ&Vkg&sQy>@hv%x(|ifjqH%0lgQ*y!B|VpB!&q25+lw(2r0 zb2K1bOSE9uMSmO^IQK#-J%!nM)&kjS_u%>g38JB;N91=6vdPmnu{#coWt)yY#Xn10 zcs`w6U+m%_7Tvyz8@&5bi1B0I+dhHB`@TSZAEJPY60vLEh(e(X+}K_q|NT(|{`}@z z{Ha}K*Api}9oMhHo!xdQy6OR|wtEB?CD%fgoHU6sP@&6;5A!!!Hh{^s6kOIVMJ5-| zWGaK&aWGdNgLVp$$(+8t`{o0TUU>zRz3TBswkz6NhttxNpqMzVn#GH%P`bG3G08V($JU}(6ic=kF=b@Aql<$`Wt&&O9?4>k${A?~9RY(WL z`Lp?*I*)MDr3yUwSchINFr}yNl;UQW*O+x680?>wFy46ujDmg;S}ZyXVh%>6NBuEx z0PHrnM-x|*} z4Tob+6UXz*(WI;Ejx(OqM{vbCCot0#CD}1|@rAT4tbFvZ+zS~vxuFj)jy8t*P|R!5 zJjbfM=Jb(V9$Ak0a}+wA0fUd`fsRfZ%*?61CiebtaA)y#G0nwo(3Kww9j>QdqsI+?@ zBfWbv8(s5_)jn>8qZT~jxvVea?a2BBH}>g~!AThm4C!HFyFOY^dID>BT>ozVS*~6_ zgtN4D$dA>CV?70_?C5%YH7rCIX1&6hHSgF3E#jo!@Fjkw0T?Pf197EU`01e& zWX_1kN#7p9T_1h2=9y)B?)om6y5R$4uKtPE#ocg!aYTCPilrdooP=*@F2m6qN^#FJ zKQ^aK1gH6kkgR+9V12M3o?8hLJ?qa9lsO64v?<_Bb~G^;zl-@N3R%;vPxvcekrb({ z#3^So+3prim|H4AJf1Y-d~rp3#OV#_)V$_cgBf5lxz%nUO`W{m>j|H)%x6@60dAYf zkdx{{v@)p_9hNMeB`6>)AR+MAqpSSyC;wrh@b`T0BZB{7jlX7V{Jk{j=zqW7fBPo? zFIp%lAS&?hmj2ybK>@RWZ@r+{_*&q&;Cz5`M>XvzqVIU@UN}? zXFvQi{oil@8Fit5H&9>re{HAt|N8R(@GC*?+xu6`|M^`g3jFm;DslU3e{^~LHC?%4 z_G|%e&5{4|_-FIO4E}1Z#6L6s|LOmy_Q1T^_RId&;5C1@`k(W$!m+=OpMQ3So717g z|9bw<+)(y}-`uAE>%aY{?fYi< z*Y=G+{?{k|*X{df|1JA_`9JUZ|J44IF#c=%%uN59{-<^)8K(y>EXnmzeO^ zdjGWNKTXwlUBZXnp}Ym(igBbR5;wVyVa|F!uM_N9PfjyC?~NYaF(gFJ%om1>uhO9_>paS< zn&IwpV_5O>0b8!^2*M+^ykV~(%-drR;(J%~EL}{%kHw<~y*xX{nLU)Q%Wky12=9x#QTp;Uuuy)_BVqet>ZyZRml=ZBCA?9k zY7{$NsTXbEo@W;(9p;#U0_+@B0-7^Vv139`LCSd@+D;=F(IeBCV@D@5Mg8;8v3n(B z?dAy;Z|7lyp%LS9;2tiKAH(nYF~}1*n2DApy^y5P!OnLJ!U(2=xqOKS3hZ6jCTvU$ zOb$Y_^EtkA%{{oLv>uzfzcC9p1u@>jEGEkTMoYD?jLNz#pdH{2+K;mEnYTYkaqm*; zEstNqZlOcjJgnJO20qh|;<9bhB;qN>9S-6ggT)IEM9#y`ouXI}=?1r-MB=^o97jiI z3<^#NM$t{JFj!#4Yz`9zpItl9TH1$q@WK~}O;Vstk1EHB3&XpL^La))592J?Sn%84 z3YU&f!m6CF(9km-ja3m98%I%*th2b%eij}qmBZGc2h6IaQgA2w5SVf`^C7J-?199u zIFWk8p6baMe!L5-xdF@V|AV6QaHR5muTPM%lWmxF=@YDSnvWr-vfyfVfC}qblYPr8>5g?H z(DtQ<@CQjivY8aMEbk#kVdC^l#%H|wHvlufd&Atz3s6Kq7*8%yKq=GBC=Vkz^J+Za z?B9&W`;UQDuLfp*y$UV-fAM|ZReW5v0tEcI^mM%j?C7LukynQv_dCduy_d1-br4t% z^plS-tLcpM8AR*KaeT031KC%U0~=o0Q^9$0^qX@N9Avz`uJekpMs5j&%<9H|heg;g zA4qtI9Z*N8ib@adCqec344c9lPL?M!nIS$rJ{u&OLEgcTsiZ{t<^|Ko{&!0~+lwz@$MxG!+zL`Bl^~z8OCwr-3t=88loaJ`suw z$6e4Ram8ozFV@O=dw8Zt`^6yPnOX)HzY9H z>O8T1rw)Ya{woJc_97;Q=d511{WUDi=;!Hu2>|F4x1=4Lf8!o8`a@|vV z;9%o*`2EL(?vP--74N^msweUE-Qz&kx(C0ROvHcG>9!@bI$Q-PP-b_A^TEpo7TtTS z(Li+u61g@5k|*gzPwP6;m*V^+w{SgffBXTS_H&>uftk@>2nC0a4Rp}pG4Ra#3@^%b z@cu)F@7ht1r6+aZ(50>P#u^T&znBlF9hJGa+-+!wLKkScjAM55VKiLQh25XuA)jIy zJ)*vobF?RpR7*vG$u9|dAvlQTdFMTZ&htFlF(ZwApcC#-rk&GPM$0+k6zXgMd({aYW1 z?_(x7GNO!|vbPaJW^O>EbvJ3`+9HTv;9KP!QH;)~{=i2oKYVT>h)p!%Bg?M5~g=lO8y>{CQqN8A_?&eQ0sCpNcPxrE9CqDr={4xTWes| zfjlVcal?lzg}A&Mbf9}I9X=(9l9Jk2c$fb*E6VW_HQA;OcAPL!%P~h}`jD*pPAJqm zjKbOvi08aF(BH;5A1su(77ACu*TJ3??^%Ve0X5X)b!pY@q-F5>wI$xM*~8==8ew_t z6S!8cMmBkzsuFCQLj4uj@y)m0#4e*6J(>5^4&i;Qf6G-^i-vq*{MHu|EVY3xck41b z{5OMS#3(?xi55+q2tvMNVN}X111nv=ar9OO!?=6~%}`4Ptw~<4+1{s|GR9Xb8YPTX zf%DMbCkYL{Z^f8?KT@DkL1)!x!y(gVjB&XFOVWjK#*=1^nXKII?Re2;dUYyCs6b!CM|6_RgunS3 zuu8F%Gu3U0jZw^d$LfI5>hdJ2?v;h3=V#IV0Uea9hdf0;va`T1o;+YomEUAH-o>u0TJX(%hgd!j_EEXk>RbkOaZ&-Rb0P6$T zkQa9VhrJqDT|70oXyZ|`p>&#zmbu~M^O-dI_+s{rA$8)%?0?qjR}iniwqQ_bKpW&4 z_Qb&&vc0z*xk=l}uDue>Y-Ju4?tccSROInV`AYB|l_BR&+mau?RW#zpAeEJRK>v(! z=(1fl7}a?IS61{x*Udhdv$320ELPzTE%-|ZKE0;$k`5sBIv2CTKjDi*cOiD^9JtG8 zf;(lrh{K)<>e9r)m%*RtV-KdMYgqx8mrRm%$L|pTwsSaHaTU(YcE{h@8R&X`CX}mq zVE*|$dQPB$F0v&=G_wre7X`rQks`FriNn3IQbuEnQ5dR`1%_I@=$jwSXiaw$G10Ra z@jMgL4vWHPv2xr#ngV*n2R}sAf~iRgMC@A(Yn+A&^?rm4?ejp;_b8nnnQipx*#mS9 zFQHUbfE|Ofr+CsQQ8wIcA}QdIfAN)C5Dn zQcmsJhv3t9o=AylqFjh7WbKZEa@VI-F|)5w=QBo}P#Znin3_&`bzj4~M~qVeUsCbF zLAvaI9P+LGg4-|2(nZG6fHlRCH}C=s9-U(yeA!OQSHxqRehtIAb0;U?*}$LvOZaX& znx1JsLwMh+(r=!-n0<99?tdxDUG3)rQy~`Y_+bt1bq!&>`k6qf@(lLb2eotqGuv}I zWQ4CI^Xd4jj}Ubv4w`b+QFP;T=-qV+l}i_)-^@8scrzU@ayno%O@Y~?hk>BOPgLN< zQZMG7wAywBPN!cb9=^|646*3(I&yzf$ zp=<-CH*?8_l1{RGFphYnG*(7UF*$E;HmF4BFu$G>yU~luJ~Dj*3m;{u6IWzgP7gze z!7!%YGDiOaf4Fn(1zh>Eif!^S9Yem}AhS#?FwvPp+RJ^o={nP8&AE@Y+pRHZvoIzZ z3{tmS4{4WY7X44|HU6$8;Gn+^@958=a~{;PETp>N*7rdC6n=`5x?VCPd;ql>?uD?L z1cqocoAlepm_>(S2Ant_|04ing#uWg{Up|k7#?eGu*>M z*y1n(E9on~?>Va=~CV0f2Rphb77cRDYAD84NSw zh#S2<{}}if&EoFOWE=)6f2p968Bx=!qd)f_M!`o>oXdRf&~f!*$5In2mkcTA!de(_(aHx>x zC`IAaqq#7;aG2@V^x^ipr{MZ}6^j3EqklCzp`~awvcF}+IkQpRlido}*nS|lvWg77 z`arB4L_q996y6TkMn!f%y>9FU-!2SuUQSrTVM$$1`bi&1cHD){wbnGu;w=4VQBJ3A z-htSAFDxur$W?ng1NMx#S95z>=VRFNq<96$Hd_Z4O8T7w4@LJ6=2$mLJU1s50WNxv1CGp zc+ASB)m7Ut!Cnl;-zk6`?_o^GPICL7F4%lv5w>S56dVy|PquC1>|7lN2Su*ZQ2k_h zzOR;MH4f9Y?=Qich@)7%oq=4Ro<)*Ze#HE>cc?ix8OL5+p{8rwXeiSsc;wN7>pmL7 z^KHqTX#OEE7#T#nzk;9_Uxj%Onql#sRJ_|z$D(r`@Dg_!>`#;A4yb&Dw_lU6G+P`D zaWlra1rf_Fo9W3oF|=D^gIBI!L@fgY7%izlvj;a|`biY(=B?o>1@FO!V){%Jb3VtZ z*c?``?gmHqJdTrS8T{P+ljdHJuFCC5gCN-$&W_An8eDT0Yg1I<=+fVm`_qHWU(^kz zqXR4g8WWs)ql6`zJ9MKuN+()0Q$&L|yc5?L@ zFsZdfnNtd=E0@gSo3!S>cH_c}(|ow=t1p=3$I>i$#v^n^g5jZk!9{*DxVW5Q7fQBL zeop}2C#AHfh{=mTkc2O}PK?*%Djpk)gUpFPtp7HZLHP1n?CKJAvP?&uyYAi)4m2=3 z>!vLD7Fr6H^ERmi{Wa85LLg&!;Vv9we1eq;YISy_zVEleRJ9d(vd!*_% z=<&v*{qBpfM`s_|RU3|?Os@aB9uHUU;e0UPVGl3oU142fxS|IO>`)~8F2@*5QJ-OG z6|VgPv&#HPUtVj~p?Md8C-VnfSert&*E0U8JI?fyo*?GSUWI0XHnPWhBQ}ZnkR4!# z781TN)Z2!fvv)~Rxf^QC`vT#YvasaiJs2HK2jlE`RChB2bKwG9%I8#vAW1#3^PBih5IaQ5L!)Wu<%)+cmHxys<2WI<7LfxuRra#1`9CVy{IXf(E<=@|I3lOn@s*acuc1ZZLw;@66~2$WV;RpVp}E;>}GgJ>7$u6c-@<-bhl`9TJsAsUd^Qe zQ#Z-D+dz9v{BkVyjl%5&7zzBd=@0)*Xe|T_D0WVxR+BuexdI6Lq{e z7*v&aJB7*yl|xKKDje(%!S}Y2xG`@RkpH?_`R5X0qkA$ZOdN316Iq_es%c#SGhb_Xc4aHXJb+qosZs(-_lu7otC3q3v%=d(r+^6s?cNe)PWeE~$99)`KN4kaV zSOa>tAh$;s&zye-<3{J`J{v`Ha+@UlUb!5%tzCwmCp6K76-JguhGUS;H*(Uy1}tKu z=*!uHtRHsIfi=&c9FfmM-hOpRim1XarPZ*Yy_3|X_tKA_`LRAG9Zl9}Gk#fR*r?x( zK5MVFsTIhVPYSdN(w$jl-ZT`S;- zOE(F#*T0CwHLoair5n*8IK{H6XvG_P_ersA4C~2vImov>jL&Z@#udronCr&R@M81G z zu+O#tUi{-H&o(Tkk4E-_=Ri0$(JJGVjH}>I=|JrLzze(2g{A$KP-ZZj zTfRC01vmRuMJ31)yCDUx?m7>o0Z~=*E&IUq^bojpUIC?t8gM@B2f5Z{%sR%+AbfYL zIkUe%BfAgTgPMX1POrN{^@_bYzb!7&UDKzLy-^VabNgvTzX&OMX~?~>P8<>w3L)%x zB5D@Ar4E~(fVzGXo%qmBbO*!9XowqZ&uAnqM{UVEW^VK1OFkiUYMUt39gGydY* zfHYXJc`u5+G)3n;ezx4n3YvOE7CZ-+;+5^aD6X~|lEmcj+Jgv?(Q<=pmPzxPT*2PJfpC3xsdHT}yO(PJacD?GX-6?cuTzw)o=du1o z04G0o6L}dt3))H@IP3HnzFy`=e7tHl+d%&l9q{j=wbS{)VpzQ@dqlzRSRE%iq=ou6 z8gPPr+i8HpC=Ive;ePj*V9)xTN4E4|L*jk_rM^nyj61hr*yA4f%dbb*;|x1Aa0H&M z2bk>_h=1I_a2okIFmfUddcQ8ll9?6oa9W6ax>1R3wCW=U$W77MwS3qsZi~+=!{DM! zEG`dP&uvzZ$M_ZxR2Ipgn|^sxTT@qLn{>fq-3qKI90uK&@8|(v6_l~(hZp)npu#gj zpVLEt4pLy5$7B=#PLo?&4QQ6X0q4&t;+!g@yQ?fMhgB(@R*>iZE6$w2{gPWWrbkLSwQV*2x)G9q#cR&5N3zZ^MTcGwvpaV z+EjJ95@)%}DVF&yF*wsK2j8YGp(7|7&cwSwrLYxUv#FRKwC5p9&er0QYm67GbeMee zXeOyiRV3T(7o976h0br2#;~Jp(9Jpy+4F^AH%}88{M&<}fzfzr>K57myAbnyWVu5M z<(Qc$L``O~F@DQpZngX*eX}NpWQu;J7r1X}DQg++jE{ljGdZ;D=yBLS?nBcq=R$FR z2h-)Uo}kBcT+U)IpCPQ7ugDHaD<&s%zR;boZ(`B0 zAoSB&N@H&Fa91(+LBpI~psKlzZg1CPe>i-Fh-)?&neBAp@UA>T*K(TCv&96Rf*cSX zgTT)$050c;;F}#AKsos%URKTmTv(iDq2=Jg$reX zR2!BBJ1RlfXEvS}MH+Kw= z#9kwRX6b-X(K7hS*9i-~b)hL_Cuis^pz_{2=sM?!u{T#k+l+CVqQd-Vd~;!TjSPh5 z+@KNF5y(z$z#vO^NYY+OFM9gHtvN=ZpRG;>BOhU8_haZD(1EHqweT%&3tf^lhI$9t zQ0ywtX5UDMbIWePySxP?pdlVA+h>wywH(4a+C`p9-lcM>Vfa4GmUDh200(Uwz~o0K zek&LNUbhP{vPlz9rUnC#qa+A&q`-RQE@xm}E?65Bz;ur(=g?bsYStl7oVxNb@a9g? z@6m%XrTtK^eGU1T^Fw#?68LR82UFJO;+`1{hsGGtkgt?lKGvrHRSUsSyWJS@i5~}= zRjA*xbaL<1SCZuugQgj3pt<21+_%+>NqtT*j@-z^gH}h;kmm%1zKJArghKK3CtrLpEyJ!W z;Dw|I$LX&8IvhE93vWJ20*7)1IO8RN^}Zdn&rz0cTBM4`f=s{o`7;bLYo|x0rH~ai z!t|(zh($>Uw&wl;Y4V7MOMy?J;p)>!mm8Syc zep03vlP4fV<2&J%Qicwz1u(kKmVUlmgFS2W(V}`czH5AkWN{;I3rV8<+$4JE+zfCZ zIS=QjC+~Z4{13Ss&3JrWJ z@`m16!F1nhVTsbdceWw!{I?cV}{I;SrcQe;vf_LB^q# z1T|;8AVXgj)RY?OvXN{Oe9R9|{>OBzY@R~ec`KI9kq!8A+Z6R!U+L1U3gMS|pYl&)jJrap07Vxuc%y>~_X&G_TxB#{8y6oi)58vKj8@J1S zgr}pSF!kaf&bhSAXkSnWz4q;CiuJ6uBuV?16;k1m7QNgK%0aAtWXy}Y-xeFqvIoCckA zD-iKZVbv6^gQGEX;gi5Byu$l}UeNyny}2{!L59C`_Y>oCe|U#X&pnG_GIIFH-T)Q& z>|o3|fK#q9pM99wn{Q~UruAkc!OE| zvx`Zsiw}K!svpfl__0Izw~^)6ukbV4037%WN#@fwax1|ABUj(Vh;#*5-(+*b1i-Q^at*LZ|e-*21b}9PCrPWfi%0#aBfx~ zXSY@wNM(2O8!r2*9AY(3QxtsrCH)w%2Q)^faQIPS5Fz?@C9*{n_}*m9v1 zm6kpvMjLoRZEG-Gt4+b%mjqx-;~1GQbD!!Cl33i^MoM7e@jANJ3a6?_<>}on8R%m4yb%GK>wKCwD{dB z#tS=0i)#q?S5gQRSIi`BOx7c>t_Zd+nS*}eH^DJQ1U|I&g3icA40~U}cnhzC&Gko| zk_1JzO~-9)S%@U8-~lIvcLuggRAHaGVSaf6cv{P*@A znezMu*&)wJRtMuO8L)$&M$yDg+LDSGt7CWnFl{|~4uWP_p_vn++VSPW+?0tS*t^ z_Cki~qeiHF*o%rC_T=?E6&MyAX3YQ+Y!daKUz>Y7?=o(RjQH`BYG4&W;bi@Mg zsY1C6?(j~j5cU79#Vb<`8*Z*Md>FY30oGqQ*8a-WrY4-}!F@)tC)eod)% zk>ty0Doi-|V41No{9GMDqZY|?+1GQ(MDu;%f0hX3P7I7GT;vG%tHF~0oUvFc8Kvzu zvbQsQ2-!a_aQK4-O;Zs?1rtvY%l<)j)wki^+do0!bvS0q$*~R3uEsB$3gCD6D_X#0 z`P|FB>F4k7K=*zHc67{V3wb_8$u(b4*X|BEILLSn%mvvuw)vr|`%K0=+dv*fo#y=f zx*GNGe}qWuNSg524nFBwg5z34+U(9l_L=G8lA6=hPTK&J6=QMbM=zMuFUmOJGC4YR zg7BjC5}q@EfX7OM;feisnlb6ms+EX>^fPME|FMRo*=j*k+ZbBCP=?*~0u;Dzz@pO$ zu$MXGYzaMpkv$V6vR#yYOs0W;o;0JnyBJnp=vFK~W=$g3?!^Nig+X!qN^HuKKx@gL1l`^pWc#VtDV62B#)k80Ymq##E&y%#m|9qz0eR$qr7caCG0+o-OADzyH7 z$Z2GJ#c}x&FsiA^?v~?#&}0I{=7d63t2|rjfHkd3c><*pdbC*h5$F0(e%!L`88wgz zBKoNnXnv*&)4HZe^nYQHrh5C)FGJR^!ACG!Q#@@2#u@g z-C$MlX&oXZYk(_gK7%`N`9YSB*eJSm)l#1^0}fSOK?_$2z%@xfkP6#ETX&bh*RdoB z7*t`KT#QGn8yfKNQUun|EypUgSk9$A?>X+-C*YR*5eWGvKrBZ_$=oGX#9UVpuPaC~ z{Pk_15|&M!3bGhZ_<79aMl$@jA~Z{CU>#rk7cFH%F<7dP$>g7^^dFOk!@RzjagSk_ zS^9y(vRc;bol+p#_pi#8dCpb}M$nGOo+zI50E#ZT(KI<9e4g5hy{qohBhm7-bmdxj zA1BD(=vN9NwgJTKtPAVvDM{{(jyuFzV?HTq`NZk8Vq7^jk3p*PDtwm7gue7(h;Qn| z@TL@ETV%k|EI7n4jJLA|&3PHV=o2__tpLtBE28(t^%y1?2UlgJxxPP)@mBN+H1_;L z{FHJyuK7{mT~bb^b0t}a52(S_9}KsHVTex2Yr$H-XY`kt6tUo|HqzRt#C16S4qqhC zU>~u6Ll4|LMwUpuA|dg2Vap10Xt1*dF?>UK2ir*jv-AA5Ljs+he&G4H!O+gRLu`Ws z2{m1a0-I7`;ZuH&W^o;P`z?h$NuR)Lq5)J~eLeU^R**35y%5T<#a>u>;3blR(L7!B z)tR+i+quo09-IAW;Qk-BKU0T2s;O9EErkg#+BgswMz>W&n|%RH{<{q?>Z-_=r?qs))>;xJEC^qgu3%gSs-VK9WNOZAj2OF1W&WImdUX*H zKBNTf=4Eg=L5Fc0hr!z!Tfl!PfShZxg#yv9AjzpD(?3CG4(Js+&%KamuN8)#5;45GtbnXLLEPUqG+Ro?Hn8;Ul~gyIv{ zu;=SqD9~tv6D@z}(aX}XmWsi@q&C>cpH1b3J&C5(JxtHqgRTdLsob%RkW)X0-1GH= z@xe>Peq#mLFOuNqtdzvIAuYO2N*_LH7opvR2d!hWEaU!b>3u8UdY?4q)@pT=_Z!V{ z`gAC(ezgLYS~udMkO|u85{8Yn7Vz632Sdk|VYb_0^!{N4d!0WR@E(pOr&1H~Z^>qC z?5HHmnLP5I-F=|g+5p~-vg~^Xo#+6Bu38F*EKX5dzjiEJ`HN~v z-i3E5@%Zn^3UugWvQjq|b1%fDlF|ju#PrA>oTVO(aWi<~ERNvtlo&Uhvji-R9zo&f zXcVzQFo*)_OAXBA2FXd4?9a{{)$x zt4V_5C;V0_3xOp(TqkC4DRnv$W5hV98}k)Cn^LIsNx-zl3=b+r98JQ5;cAg2dxrF3 zkbMzJmt4Gz?~E41EGA>;B>xX5n&W7GLjYb_r%f;Gu;Ayi0(`S96ZwitF;mI}EtIoC zydo67?#c%1h)rOBd>!n(w~8)0$hZP(f3vp99pES#x}*7_ad`V67_u@pzzG)(_Ti=q z*3D`jwwvJ;y?CO6=!YzauIwOq*QkuJU@kN(=#WKYF?iwCQgl2ch$#y-$;FclFVnRY zA87M&)m#VAXJr}8cs!RI@O__>@7|0m%0 zo2`e{I~rMsEM8ZItbn&@2C4NB-42F+0=`Zod6o zB^OZ!qSaqu?FN2!+%qTqy&??yhO(hEUlKQ^c|&B3DTd6oqTe5O({8oJoD$1VWHs4= zH{&eGPq99twlt#Z*Za$?kTw3S#*RV59F=-}bP~A#*(`!Lhtil(YbzLS&A^L0t7yuA z3=S1Nfi2sT;ErQ6NW3Yf{a?Q0U~3M#_cNTzHVKA9HcX=(bIC{pFFsM#F}mL1$X!!) zg6S`XLh0+PkS%kMzIjoI)!+NU!2c4qId_3aZ5jMFs;CrHx`!s#k>uv#V3IUv1;m*Z zQaA7W5F`{vZIv1-M~*+NQnzS8@GU1#T_Pc7jv@E4upW%B&xZi!(^K`uJd&8EidRmD zu%5^u=JoW@GXW*A+Q$lAMAPWPgJ*%oKTf}PKBvnP1VGNElO(OzB+g&AL*2kb#x4Jj zvpd6*Tk`M?Z6DXg;rLL(wbTaxhCSTLy&JHyNCId1KE^0*%nHN}O?idw@|~r9G6nHPOR@dboKYh+Kx3tf&LE@Q|6+T@H(( z%AGqP#;6s}U$_Zv6->`2c`F8@0|;%I0k17b@mh8{)@2P~Z*n4R-OvLLJB#3UVlMns z6NBb9CEU8gAB~Q+qws+`s$skpT&DY}M9m$XDEtburxvrXd1-=Pb}h8ERKa@x4d|4# z7;opb!sIUi{?D748RcoHzr{SS9r(Cw&*xx^@>*1sd`9XI1~J*49JtQp;l6bk;+~vc z@abO!!$(vHJLhte9V)_|os?2Z6MEzeCgTj%T)Z%0B7J#7u8YpfI=d%V$Kv*xRX;)V@UoV1p@c}qA6w7pyDmf2(*OT|BXTZZuq|)3jdcabFEjBj; zC32;q?1VIFS?Y<$tu?`dH!%T zy|;*IwHOpp0&BeW5mU0E(anP#EVU-AMN%LWlEd0tdYOajU!mgbJ&1HFz~3#waJ$7D zTHemV@#m*#+}A`raHN40uW^SB+G|N=o(FW!O~EaCiy%``7V8s#g5j_g>?!mCvF33+ zQM`^U$=M2ehRaxY<6@v=$c30OjHQh$Mj@lU9ctcm5iTDedttXe*HqP-EAM8Ao!{-) z?-ttNgbTxZ-WNgnEuNFTZ>2%tp$E9NGp;C+lek&@5^@Sh$h-~#;$ol0%${us?}lL- zlF*7-i7dM5z6utGhe4iQ4Q%>*0dlvUChKAo=p%Jo?#9Os$Rp=NmCnf!%{z(YONcR9 z`Z5mN#glQwGX$dK|A2@a4}0et1JEouMas@G4&_~|*x!wMh_Ju~up-WQCUzf^<{q-~ z57%q$4Qw%E@M-!Y5z?C&tg zaPf8!+u#o6bKkNQzHdU$s#hd#Ru#CDLK3lk5qgR|!M30v%JR`9hl@n0#_M8yBAAXJ zeI6o~F|2CcKC&oq7g@CK8#RiXAiVRR(7da{Yy;-`ES4k7vddzegF^#VPtFA4sfd-p z_t73MoU=hQPkHXUOh23}JrDcl3Ujmdb3KhW-wX?nNI_7kJPIzb=WJT~91QMepoWGNx4H2dDKuJx zy73{ndASQ$Lh}b$-;ALb1V!1-y2l|hXfB#>+R63a@rC?$=!P9P@8BL6CgW*P4BLLa z#h?}eOtMp@TB{V;iZls#ecyq;>KC!brj|50NMgh0NZjl##)j#Apw)-Ob+0FJ8gn3# zd=fptRMArUm@t~Ly3m5CuX;X$8YsoPU_MXez;aTe~ z+-JQ7AL`G*=p#yy9%6<{NiwLFp#XkoGOJ=<9s~LLui@oteUzP_&gw~~*w?lM5=>%A zSLj<1TarKq4Q#>4y9>*8TA+UH31Y@wx_+f6l*etPx6Up_Fa6sb@7dB!FJuO@Pm==Y z*g-liUI{xj>|l$pGTyhY#}nseQ210Y8MFRJNX$2mpU!d&zVfoF>-{(#Z;Qqg*Z8>` ztt8PzZv|Rqq+|S!x#ZbUE%|J73A-oKV7FO4S(wv8Vz~Zrn{NbN2aluNI>vA9aul0I z76HrPCozb&!rANZL1OC{>T$uG-8eD~{Sk?DXybPr)jCe+ZaP6CH>j|)0+-YpUioV)Q&wI5{|9N64?Qt2Jnm-WyltH9E zbih>&f}?2y!1HDW8wI4f&0(_49IpXOPn{r2t9{9U-(QyMniT3XnFcQt|AS$xR($R+ zMOVeDaldX8;U2as!JoZGI2N)5?l*@LbDeo;cphodpD%>_p_*zA2?1(G(I+9_soc5~ zSgR)v{5vdR^1UN{CFBoz%XG2aqKv-%It|VL-a>k-Im)=+CkNcD@mVN8s~}zq&uZn7 zy#6C(B*F%!8u_`#dxhYhxi%|dfQu1oNtAae6geNuG2G!To~kHh{Td9yk!|{5aXS%b zU7ZQoyq8Qy*3{p@N3+A&IWGT~zJ0jd;;%;bQl*-~h4F_%22h`y5C3vII$Lg7JjU(|) znR~|XD_V9rV0G$J=m>3reI^|!y6<$=S!SjrD3L%_JyU2(!yxJ8@4=wzRh-$GMZmkB zpS{5`ot{rnB)^5TQT^v_+IRXI9#hrsJPI zidBVWqU`?u*__bjkE^_M)wq#~b#QH@2dp#3t7!ccs7VXbAj2BEe3HqLO$I~ER$Y3t zwt*P%rxM+iV9LA25I*emfs_Tnbd1O7;$|^O3AxH?evv{ORyo4=L$Ubyg#?~h^%x6& zY=om{g7K!bCYihSAK7<_;dt*0W>|6?k^jaed>p(S;@8O1!&`&t%J~c{jm^tyRcRu# za2sbT;T~sg@FeTb_zrZ$qxf0iJPvrd;+F2Gu%lR$$>^wIpi2nYH@zay3yxvvZzEL7 z-h@L{ck$=>N_zW>0b1q%2bKrC*x)m(1XVm&x^`zjgotR?#%WPtRgT^P^o0Q;tI zkbPovVADGnxX>U7!HL_j-(D79tx@GV{i`C=(?%#{Jw${G{U+hoO}kszZ~Gp5*;EE_!nc|mlK)1eUQ7(hH+2!qnlL#_V1m= zz7cty+*1t(h3-Z8%l;|+aCgF4$)>n$^+A@?G7V;qlS@CYE``kUK&0DUxoh|ZVb}W> zYG!SMHxh2aA!9LAifV=Y)v687*%3m;iCyb`Jn?xFUq0@ydYlIxf71%p2f;nwzSnAakXi|@p38?CKgVl{l|E)4B$Y)A=uru3_pPHRqV4h8o=~O( zZOA^~mq_-%l7o!3=JfNs$DDcXUSM|i1UdifJ4R=QVv7YIJiL7bl{ob*s}0{sF>@Ww zY(7j*sa=5;GYg58sVT7$izH?l5%6P7fO@bQHnq%EIIHp%rYaTL`}!3)efmCRds!Do z4>Xd!e0}&RB^Te0pS<^A_BWcz%;IWoO6b1|VXSRXWIOuZqg}z5(BXd+oo66c?;pmk zj3hLSA_<|TBIMlPBZ`)^6)lOhlm>npl#FZ{k!;x`m3{8-QyE#6gcc1YDeXvQ^gsVs zUh&5BoO9pT_*^A_Ict@}=&w_Ot|J@a{OdnBqhKsQS^rJh z0j1@y&`V9X;py3@T+V`Vu;$)kI&)z^M0OZ~)W&6;-V8(7rPD`cwoPUO#IAq{uOD2f zIRM8U*9l5AOPS7h-@wVvksgzFqBj*7IQw)LHjjS`Sw;RtY|ampv9=1Vaol;*n$bZ9 zzRiO<>kpEU+hVNcZ$C1-bvx?2Z$-PXT&%iykuC{-4(r^WS2jk3k=N#8;4R{aF&+xI z`7F;D?B@B)ZY;^ty-KpzTMM!?`{|W87pZag2*#=uO&aShgieGiG&-^xwIjqWz{_3P( ztGeK;Z6C?|vyl7|jfY98UF5vuY-E(h1^JHKVA||&7<}{u??dvs(Ci!dJ(tgi%-jb% z7Y5ViN3X!{$74|8dnVC)eG^v9N4Rvu1q#kJLbx|TYLy++n>dCH1@nICD(8w)@)eGh zI>DGSQ?g~W6@^qhVGMsSH~M9cnrGJ1+>|^RoO~C5A4*4)2@T*^b-zMt{RRwD0-Pt= zhEdi^Y;|ciB#gDkf>xdh;rp9DX)d7;ul&Z;h7pqg-%WHZlVsaNqw#Cx8i;R8r!V zO!cKo$MtAOwPo8 zhxg|XTBiS>446cY-qq>2>xu}PL`PkW2&_dzE#+Tvuk6So|yw+@J1IW_b)^1 zr)$vGW53lO&0?Q~_LG<_ICSsDO$oN5VR22!q)X2Y36CVk4Og^Gf^&#k0 zV-9<91UcNvXyGHhC?YH&1bJOmOwNcj-*t>8M(+;MRgPk?-rJ9k$sR-YZ&?jeS$+^9 z-9@!}EZJ>47ZSHS${0WOF5NyRiQBX;8&IhMKHLq#q0&P9&#Vp8G%eZ5^}5LZaKI&} z7&@@!D4rHhrdRtHvENK1V7rkGIBprDqC1{aZChbb*k*@fx}})3RvPymQO2H&>G&z9 z3SX3D^7_gf2pRfZnH%>WlWeNVz1%A}>rOw3P!VEBSKVNy>(=8~?#d&2i?Gvyw_vNao#dDOwpSzkj2#)q>5mbXC8SCeK&pT&~jiPZmN zHm*<3pa(2}GFFA2u)89Se%`(oil#<`)XWC%{KFDv`ZZlr=jB^5lK2)*R2oCag8HcEf-CO@LWid-S=OKk-pc-95IK)@FEC{d5A8AuP@P7LKDJ=D z`bqHAor2LkPuHZd8AC0FF<0v(^VcsFA5~Vt-m%M>XUY9An2?I>rjsTQgEZ-JX0c%B zXCDYi3WA+eR|ppHTg-MzLg?gTPIrWVz#TS`yv|oo&aD+=l{fJF4d3nYrMwV0n0FAJ ztSH=kPl@d>*8&A2E3h+2;;fd$!US~zpO@JLkH%Gy%-u#zPT&#JDe!0f2M%G5o4g=- z@r}w8agT`f)*<4uMHMXC+mT*225bn&$!jLU>_7Q5L1z!x>{o&GARu51g%Raw|J5=F7A61lE!?qF;$&J;@ot%d0!Dk|#g-?cCoQ7|65jyZ&X;eyayC9HFyMEuS7aTsdQ1#%=<9eJrOkXZ{w6_ z35U;1Y(XCP{Xfpk( z!Qi(;;c#~QW16yf10B+lU<*fuLGF4H-F{gT`?f1Xe&KjQvvDvu{R<+`mlo5kh$pa9 z;y5VJSc|vKE8y(qB*yaRZc-jsPi{wOvlV&6Fe*PrkSZvIq`~VXbGs!x;Tdzz-rR69 z<((FH=#CG(C~XJFRf@3Ak>3XnTunsh|Kk=%+=EqV!nkI;07rh$#r7k=P)_3_3us1y35ZUl*y{b7JN8w9ow-&Oqh9;K+rG7= z1ft3ApababDleFGbtY@SB9cr>SH{`QHBRJ;E=YS=!LPt+I7ZtE?Ak=g%A_CU*^d2u z?c7CVSq!G%F-NE06CrH0VEuGO3C%RZO@a6}GI(6b5S7+x!}C%XB?6FkAfg{sU;-(B;U#ung_g@GeioQin94IuJF9S*S6->((ZGO`*iLBb^1xqdf zToegiJRf+zx(_mW>fr9N~yb=A1dRy-h z=(?5R(~P@(cm6V#9xWqnQ@a>{?LKOumPL<@MB~W2Y0zipiXXlPp+b=w6XcczMvu3V z?#-{r`g<{WO#L;AjWAdqZi>-YO~L9yI8OOH8Se`XGY4y=$?;AhBG-5hKSkA%PS-#( zl6RFZ-!v0zg7abalRa3bCJmNNzfr$p0;}U7!onS8Hmu(ln-wl#?4@(~;L{mqdPOb7 z#M#h`;acz}Nu2%mss{_oW;0uN%|p*8l+N)_!gSFL;8xBSjIIws5m|fAG3+U77dG+x zNYzk#q?1ZjZNcYuQ^>^fT6(&>26u-v!@4WVSb9qplHYyCjP@q@u-_UE1oaVa?>0#@;(i>q;x&<&980Jz5AW7VkotrB&dZ zl7$Y=fuK8>#@KX9K(BrhclzrhfrFO@Seuq0W8lMl&u?q|e(p+a z2acoFLM<#_D}@@nP@ zxSd95dY}{EWp~5j!_v4uGMHSEy-sJWodPcl!XP3r0KOd_;x?lzbIANC8Pd|``Dyp) zvQR@4!QDF4=e4FKmwKsH{xBW8^bwMm0U%TT51X?Muqj&!Kl5AXzY@|&1GkHW{!(YF z&ndETW96yN?Io~CV-f5wbjP7rfv5-VxbV{D%f>SA?$y!MyE61x zYbiHgXdx&zI{^D`n9IKu4X5M3)AWiIR606Dx4n47J<(6XY=FSJq=C}SRKyDdG|qh4!?J+oIwjuzC{Dx z-DZ@q1&;H1Io@-VYYZedgDVQTtJB+ElbB>VUcXp25C1H^ z1=5N2YvxZX<0>BEFBFC!?r`*)cH)Gst>3>l@gdfzs3~Z*-h8w ztikvWEl6ixBHq6N@NzXPo-vMAU6zC5%}N62MHk7Rb?f`ezWeKsN(Ix!jdrzt_>kuM~ysSbYLv!pW{`E1U{ zN&N3z%VHgH}^E)72z%%HISiw|5Z?LpJ;OQ!y19$Q40f-w3@Ef^p2 zV`g++$Lz*5GFjdQ4WfN$l#3n7EaJZhKXS)f5ivhtnBrJowjZmce7jIvmMn=8W z(5-Ge=v?T+mZpn1cY-d0mOj;O$pLHg+gRZuDcGO%0M7ls3tpje7*@>hV;-b9w#Ek& z`c_xm;yt9A^}p$gCq0lBd6~0|O%uI+sz+AgnPv%_81Dkz?=p4M6u2)tS7}Os` zS+`FxcUXfAIrYMc3jw^Bc#h_hJdk_i3kMA*u#cRr@Z>8KyfaImOx!&IW9CMH(Nc9V zJ-!sToesu#4!%$z<_5w$MJrzi>x1?1Y9?;pFjv}r7*4)WWt*4fpm2@}F6qiexu7bT zt2YNWj1R{XdAi*9ztQBj>=`bq^&h!DMT2}6V=9dXHSwsk3w@z-lUrMyNJTw+z<8lN z`zL`zSI&=T8SRCyY$#0l(1ibPhAV1tX=n)2@ID+jE*!63 zQG`!3^N4TmHPT^KLaSBwavj3fxS@{Mu+D!3)#@J3FsX+bXjFnjrO}nmVO97%eH+|Q zu;-2Zk6g@YaTxqmg~g*8)aXP!tnZx1)+jB&`+uHO?@yn3Jx3c~M_)JgQ%#2^bN>7k z9M6PL)5Lu;Zm2WyFMOJR2kl}ysnvQHe0j)&yL0C{3Q0T#tGY1$r>ekd<~{1CHpJc3 zjmNNl12WLGofLJqFh5Up@cV_)=;B%nFYFBkX7yR*t=|GP9(Ck5f81ew$3x=r_X3D+ zA5V@=k!LPkD#I8dVZpJhd01CBjrICZoE^Ec4z6zqgp?cexOrC}(NmN9AY)WlhgQNfxoY}ER)ctKIga*6vWUg3EwKGdENppL zMO+^&f?J7W1*-b~kYppZL?cgEyh&OdCuae-m?}&)~&Xio_`Q9&_e=Fj+oP z9jYxfam9-X?9yTr)^}tte$I)-sKzvUK>h^&?ry+WL{Bj6evmBKXNj@}i6EQNNPm9Y zjnMpodCC-%H+TIZLvNTw>h_`UT|cz(tfSRQSu}3mA{5kY$8WsOH~q>>44B5hZ$HP< zO(zD>{mp%>W=4pIniKTI-=nw1kK^a_;W%lNp1EG72bRoW#f8K0 z#u-ykl2N4TlIt)%F_cMN;ed*P^XStvT5upiN|1RWg_rXhaf;DYCYbFZJ?$w>1x{u& zc4gxGfyVnyN`!`FU|l) z=;PzmNqA;U5mB5LgUI)<;*}NwGj10=kzc^g{*{hSb9SNn(#!bi-$mjp|Cex&j$!`E zV%arF%y~?r zG;Y&M-{}IEvs3VRtTP&4>mXar#36kOL*<>qN$W&y!7l9)l4WQN^LFdt=gmskG<7dp zubcu0hbD6)SHp0}-Y$AeiNBAwy@5n`Pi~^kKHPJXU=y#a9d_Lh`$w88O8WuRMp`Q-@Cf|KMxZk&Yx$Uo?E>5m-1Kax%i!XaTfagNGtnJYc zP_BEEE6IP4({DLL`kd+P6xj@DxMT`n9A3hjqh8><=Qr^@l8KhN+nB+#SwwBDlt6k) z5vJsKRZf_E6xD<($+5XN;I{HJSXWX^#^|hvyX_`e^tuD*%KXQeueyg@T@T~uv?NTM zG(!-wsEM8$oQ<|6Ma;{U^_CsX)170{VF!bG91m;L#AV)z~dcD#SU|@FJdJrKi&)7q1D8*|13l=5CawU z1T2t}BHH&ysk95<-Cw3gE*G7F{w`@^=cdJa4b*bMBn~&|CgZ}4X=Fk0FQWa8=ePaY z&zJV?@mJjpl-jWwEO#k_qunB0Qj-Ab0@fLW zxl^^l$1o4W#!rI%6XoFK&uN%>-W0WcGI9L16U1NCBNJ+ThT3`9LH58wx zY2i`xee_Y(Gw4T6aNq064L}-9uDMZp)b2Glt`%i>c-jhDPVAr-vB#)ze-4c_SVIGZ z%z&KsgqaKYdr(3HIByH4v#u25{Ja>n_T(Vjr5tASn~Xm1L%}ue7o>lyBk#T_V%e;A zV(C>wWOHRer}{ALop%=YyidS;N8?~i?l$!HF2$UAa|CZg4Pk%F91L670JqEMpu+7$ zdT8=xFu9WiN?kEn&fj}4UrMIEhbv)oPYT6ZPV~|-P4quy1MUy|!0JyPKD3X=Eip52 z#;HuyT6~_*FKsAUj-$Cld8@?#d%K7#SpE%5uS6V99ejgctp!}Ryx zK_too7Gl+pUE2+-BL4HZ{X$o#GGPqv<$)z zak|$W4yN*1oaAsO$gB-s-UK`ovRd$MeH_U=sRG|}mqN@xEnas_WWJaC5!dQ> zaBTK#uI)K)KzP9K~C zUQ7Owhv%xu^)@kZI@ODF-du)=2b(b9&m(vpB#eK1$3b|XA5LYp;OuTbi+rC1XvuX`(sD&GER|Nb&z4LXU3^nGfW&!5R( z0`v$;!Ougbr2qCgMla6+oO;XnOS2^hW!uehU6zuFIq`1&t6O3UbDd)7{GfFZD1nnOb&SE@SD@~ zOdQ6GvKQEK#G`f<`*&#^NQ8*8)$JVqy4u8bj$EeGKS~HrbWX-&p5s6$X}X|<&wSX5 zhSP?vP8hV)A8Pqr=+qDgAp5Ow|IHm#P4B$P&5$Az6RHO08lUN8p-0qHh|v4TgP2!_ zjhyDSqvVzELiW?EcIaByiY@QP!Gx{|xWxNmYyYgqqx+0NG-o@PnLtQcd<1UK`VYtb zorn2FgE&3)9vZ%tz%OmNWEIWhxj{de7gnW2x=(>U{U{nP?~#Ymcjr*8Sx;c`T@Ej7 zPQ)6?wQR_NZ8)$_m!^MO4-)f-xN1{->^yb}TqSkjxe?OGrR4OSs9KNXABfyZxdt>~S>4HI9eSd--*cZg-?x9^Zp` zrXj@ecMEr1T8cA~4JXr-B&h-4L4O)zNnQv!VzJ<5<=@F}T&-jQef>Ck7X-LV)3HXUkK#&*Y-|JEb4AVxii*y z@?ZzPPj~^53Mxb^BCLW2@&VJ-mjK0kUrdnaaVoN!h1E&S$G3OykAf0?0RecR&?j+ zEy((E6CcIvlM?lDQ1`JCB!wH`!2>_ay#5RG+oq#;hbXK+ABu8Y&*J$7vuSnO6*|~9 zh2RrW{G2?1)#J~iTgMgjUL4146yFJ=?kCW1Wg&#c%!AlC9eCp~g_E9Hjc1Fl!ivZr z^s2Y0;MM(9JSUY1k9Lot8X8rL*F9GwUW_)JZ12Gc0|jck@h}EI`9vRGNXNnHu^&R>QZQ#-Mwk7@sP>B{~9u&Yl@VDLc%%IvPuY4TyXCus`S#YqaH-kJehw+o^tJ0NB9VKgI{__#H4hTWbp zI({0G_#51fpo!d?bjm;TZ_tax3>{W279?zw1-p8LM8*ldwjCw!8@@4#>ubYohX1RYHNznOrYLZ+kGk>L!`p<_@`YmJlyMywx*Ba4R|s zgfgyUy4xHmm7gKFzvU5z8s{(p4#KcxIEJ2jY6=9!r1k@PKDKo$*aqG_H4x0si=eHGC#AKw%Oa_V_39;`8Bc zHTGOBzC|ldNwzae0X>Uvb0a3}kPXm<{J7^B>(f9~UMsWAz)O>ZG5eT_^Z}hQ-=Es< zk01}W6>(nn+T7i>3FKmIHj$1I@XsRtjNET5$ZidT13haYt4V-;u}kpDjZ?UKf;99z z+KN-2>f$x_0%V(3qWKd3{XFh8+<(>rX>)ryo&Gn(TlXd|T=tL3-?xNFsh_AE6N%r> z+j8S3MWDQU8!SpJ!I1wBLt<7XhGe{gSY2n935oe9YX^O3e% z;jLMB@Gt#EnwGUv6k>`@+gLf??agfs#uvN3!YUE zh}yl6IIc2<$$p$bj@)_*tm%HHYV;*Klm?lcimot%r5Cxi^(Y8W%mwFL z^02}E37D`H8vV~`nNNpqvv7I}o&Pa0+B2Vai9~s*AagdZho{DDMH-e_~7%cJChEpkyD0wyynlD}C zbxBsBwA2xe3j87K^$v*eQOAWmA4Yfo6Z&9n6yuWo4(}#P2xcB>XEs^&(rNp*Fu(RZ zK+z3%xyYJss`-ZBPhXM=s_Ty9*wg!=_1h+RY+j1-G0$npq9M4yX)Z`;i$d0)W^%Rg zam751tvD)Tiw94Z;*o^y*j7_UwE}GM>D5z^qP{D4unPra1i$%rwQ0ZvwCoy(p4O(2!Wf~_!%AcEf*p`EwUK6Le}#QR zWuTUG0A#i;2gYrP>R)XpQ7bzc;#N)-HCF&xO^IQ;0~qK0tL)t60NOb}NX_Idz$y7C z>g$UV>IGz1^BP*6XAJ&|YUsR+!&Jw!urVFyttHyfvpC7KCu=SO6{Z(JCe9dJ<0-G zPYtTwzX*&T7?Bps5PUIo2S%oN6QNVjfjmki!`6Ku{q#P)KCKd@_wY=&pD)R7eF1zd zsv1PfG*-`0Vyz@@QE`jK?6R?gI4R*V$OO2c=zYHTTp0!v#@(ZTLbcf+%tSc+ zy&F{BX0z;go>Ba6pWwW$u|QdV9I;H>U)l2F0bLrn6)eW-kw)1VI@I@x*jLS^4o|{i z!^#g3Kaqpi+v?yXTMItPeXwMO6c(<{AW3cCL0WSYnxQf}o5s?U(KaR)SA|&_BPBe) zF%*;>4x&=O7O+xDq@?vHGgw(iXG(|gyvrK${?8Ds*vFB_i>q+#f0OW8Mkup(&k}qa zbQS9^NHZq=tw@R;V1?fVjGxJO?3R8a->xfzChUeEVZyBCn;p2awitw{3oRu%i07xW z1N*y8wmV*jvuoBv{%l|m#{MHh`jP@`k47QWVurQoM2YvXeSw zK|cH#ClJI+v4Y|4WS(dMkUB-+DF&F^Ucjg~i?e>E>tJtw1YZ?x#ewxnwBOnu9^JbD zT4G{wxN0g;_bqhH-W-^;FN)t_TM35qJ79it3>w(&K>>K-_FlQl{Hvj8VtX0HlB3D_ zs`1d$eSutbuB3Cn^Y2|Q1wKYOg*#HV_IW&8SwxOEWJ{q_NueeR?+&Xj()D5lY^)zo#?0XQ?W76$5? z@%KV^%y^fFgTcXYyJ;-s3-Yk-)nb8$d>;1Z%!YgX=ELQX=VW!lY|5#Y;MRN=pF~dK zHxJ(6*xPq;!JlySkS`;3@9!`c?~|F~SwK&zW}-MVNSdv;;9>`U*Q&;zzV3X7XB9r; z@zs@Jb?pK*GY}S-X}#f@YTAM&^fCGB@E8v9cUSvWDdf@gB*Kk5kDuyfvGsr++@5$A z>RoqYvm*hsuNk0m@e(H8${-?Qn^ECb97)qG0PU53pwqUA%$oBYKIj{bg5w#y!@fc zJxzTMf?i9Q)^v}X|F{TN?w$qbTZJH0D}pcw>?&U|*Qm$Ohs2G~0W*)>X~6c^#OUBc zq7XDgkmRS$b0(z0V67qiSSd^0x*Q=@--+YQJy2tB9{ zA55zZS~n5ST!{eR*l={49m?-IexjG$v+1v~a+qQ_my5e$3d8N==z-1>D0zMqp1o71 z4}I;(tp)S2Gc}F=m{SbO+fJh0Yaw>+=CfpMs0_J(WjwQHwmECt@(pH{FrX3n1W%S8 zhewIF$ZmOpg1;BA`9~zwmn1W`dNrhG-&`z=ZiB+Q>DZq4k~+v63!2Wh!{J?3==uB^ z6dtQ*9&Hu|l@E7_^K^NlurC6#2Dg!c!|Nc%eJYq4e8+P?FGHcT0*r_hGEoutdA5Ke zI-01_zx!29zH@w5)p8;1`YkC)>Cpn+UDx5Hj6a zo!nqA=<~PA*=c$#!VJWb4RTQaMQf0DyP>knG&VqGe{_x*;70?WA zgz|kCK`GrAzSZi0%(`5dKl3#GVm%hh7rHU|dQHT^wj6dz`EsRI?!-mIAF96zV2^>g zz*DLMjHSQO@v2>Dvt%1+MUR7$hb>fz-^Ts6)&h;l6A;RlWW$d*(tv+@FsIlZ-f2g{ zuw(&QQyoX1k#TJQtTfV@wF@?whH-kc{rd=W^KKXm%nDB_db^OwyH(5Y<=836pF7y zucDGf74<%o#eK^eFR%^wz)L|h=%N;1X1w78a^UhUI=ZYJZxz;2|7mL~VSzka-t>aF z?>+Fzi;$h3nN$m2_p97t|MiLeZ@?+^5fGSUvX!0BYL@W4G1FqaIB)}ZEPX`}>?y~Az8^H`Mj$TI$ub#yrzuDp%0iJz->6Qypi<)d zZ1SM51}alL@uT5A=Bwm*p0O#8Mr*Wyk^Vr_PN!pUnmvtA`3pOB-$Ub^R;nvAvpXTk(FqA?hx-oC@zP6F`oG=c=p1-Rj_0qKAF4iz$! zE33*T2=>0&RvGSSKz7T9(ZQ2;bnclST!)bl3|xIc|E`FIG06!SuUAaX_txMG`G+(u z$clWf@q$?4N^ZMf5N!H8i~TGjh2a{@Fr}JjbA8#5Ud^xYy}k_`6FW)e(k8Jf$%aIv zt_kfPErOs%ugY(Dj*d6#Ch6*_ps3hOyYGmQR$n<*KII*A_?<2`d|pNpP6a~U*7fit z_yg|Ec~6!f;JvRlJLp!FVdp&UgMH!!RLA-)-Hb^WD8H@=CApnI%73VoL5OU5AtV^>aU=yEF>t2YNWlvorv9c(QaZd zark6|E8i%xFIpUF@(e|G?j04pJUEto@4f}6orWRcL0kjLH~-`jFzHPr3~wl8xEU4oP*7^Z%N1Nldv@~1nwrBhneG4nB1uAxVkH=LXxwuAtAS`8a(z5E%IhR7~Rx z-@EJ~4=vu2Z{b~J^@~|tn5iE|_-}x~=abN>Cyno$=#XElGQodPp1v?EpivXEsbYp9 z%$Rx&10Q6dv#h@0YT6$B#&1!CN$?!Tm}dGkSpwG@vc#S&07vCGxFT6h0?I4l{1-!_ zdv_vbJA~OQxzBk2PKu3*RRF6)1i#*%&nlEHgp^)aqMv*a$Nk*Rd{PdDOAr5p?C6DP z!&3~`E#Q04!#dQetOi4v8oJr{09jhS2hOdL1kLZ~p~=+?wk0G$&CG33kPr^<=lk%w zX+2KfMv?!7uy@`pfS4nv@RHtlwBId-H?#a<>lG{5zUT(i%E%Efy{A-S_5yaQ<9*ns zbQ`|Dbmy#UN6^Pan`Suz?a9}!%#fZ4TlT86mvrRW480O!J!_B)_!L3Lo({z&Qy-Ht z$>uO#H5q*N6~nciKCmeB0hS=&q20R^yDTJ0w1_a@wO)gB3#?cJ`!MW(y@%Xi7zmkt zR2j@>G!SFo~aDStK>vPow=CdW>n_Lb=kK2oq>eH$I;~ALry@13>o(3_a zO#;?Z5`0>X@M6zN+BTdH$z&8--cMp{PsNdo(HH1%qwi2D^%znOnoK;!n|a;o7?oZA zki7l1l-YJ^h<;JIO+tBJcI$?#CPJl?p-(jp(sa%fkF z4N1m)$9CG97)&#Fn8OM_W0aq-i!XhH;F6~_F$>-bT3rX=&Q2-zY0X_&+@Vj6TL_5D z$(ZynipQrNlF%~qBxswiU{gxLriIPR!#L?0Cv3?0EstJAY%XF8^F# zX%0c&yneOVg1S%kfgeE)_}ctFzWlrxPKYGQfe z3Vc?DsL)l9S?(7hOjAy9@Ju#&5vf9VO%0~Odo={^8RFP1vI=e7uOf(lpiPPSOw~1U z*5}F$H2x4kZ?;^fm3j-HRks=91}7rfC=O;JefVis4L5s^KCFH)N^7&SF!FaLjKuk4 zYx^+G*p`8x4pvnzXcIxd=)cfCdypLUHiJcFn(T>CUDUSAp*5Rb zK{w6e`5LmHj^Y{KJE-Bc)Ueax$Vz{u&(0d+8=FAX9}>U^@AvfdVxB|L#^EImF?MI4 zguuUA8x3!y&@HbziL}!zB6~TJ9=A-Z6f$uEbE^`}bWP#;l7S%Fz8;PhD+#)S01sSq zggn=&tXi8w<-Fw)VA|Kt=18tK0=Ic>KUMkwO^vwjW{-N7An| zgK__tnltaIzPtxC-O8p^Cn6; z#8J6(J8+5$|IU_~DbSONrG}P2&>$fUA`|#+<$dvB?Lxq?Wd*sJ-T^^g+2FljkwhzS zIDT*pnOYFa@3}-X#&>c^g7#SwJ(LC;-;Hn+Z$=VD=Oj#QD1x@rQ|Y2M5$MUNhke&R zg0JdXd~&-J6ds($DX}LpTBjMKL>egrs`%t@25u|2rmdnsxr%>Vppm%-m&VVBhT&|i z?KHq--KS`tdlBbJpJomPpG7Jf3}bj*|GiNEXXc zlJK>39G5*S1wA4vN!Pqo*mx%eG`&o5#-VmP@0S;JR0!aZ#dH|nI79Heq?4*zeBr-4 z4d8M&m%Oyoz&i6jv@S7V&zy}z+4>{+FT)3`2}6#)e?q`rneR8q;@*K`co&t1Vb8_k zmHtz*HMa+9-^@YDRsr6f{0mf$XOmd}f3)+_I6=}wEl|-Npvw>5rR}SmXm)uRE?;`1 zk|%#~-(t++io73c%T>b8&M`z=OI~oJV+?ysERnn_{tM>|T}l7yVz}OI#!lIT{0^WV zRMBdDl^sU+Wn1E{#%wIB83zG%W8m(aH(2?mjyNVxfZq*?#9Wf!{yADjd#=fFcS{Dz zsrK89_4r7r<)5Q7^~?m$YKUEvrqSW^A+&wpJamvY#W<(sOu2g+jA&PKa}5mnz0X$| zGiZjF`2X*GiCAJYrybmG-y{Db_rrqD@940T-z+##O=H)@Ve&Io9JN2orJx_KbPUGP z{8ZQ~^Ts51eIAVEGY=87(oo(13&&)CCudS_kc^0L%xiTO!S|#rnkF|LON=FO{xn6D z&k7<5H;;qKUQhhnUjPeA6wz*6=;G0UOH}biHP-!)y?2kR;p-R2yXl@TsFX`o%B^k_zdnl&B=>j!J6J?Ah&EAt5PUB%zYzPC}Afe*5|0oY(U? zzw?~e_xYah_dMTop7~?1wPxP4X07*rulIVdwceM4h48}yWBAd`9L7C83O7>cq1);i zke7WQ8eNtX=qy>*ci^^%r=E58J~W?f@X1RsFwD5*|w?_6@gS+OF~;5*!O z&>fEWrVF2T%pvPTYAhWOD?`vxH6rxmkKUu#(bI}6S*9Lb00^I_8ROR#KHFF!F;oAe)(2$SBn zvX-*<;8yl7iQFtAlP(MwW@wmh)@i_eObT(YAFqXxx4u#G;a@g+pS>y?uX>jw~88F7b z6WTSUl1T%FWRFe@ySGkFFkL^D6s+!$Y|T3XJCX(LOW|-bc_T)w^j0U@oTicYrcs0w zBL^=#Ut!O79w$o(s(j=Yf6}SaNZ?bfO-6^Za8b-M$&YdsSYAI>p!0E_bS`-%Szg#f z9H@%mt&{psAhq+z5YqKpRI^o9d(vr=1ySWQ9YiZQUNrkFU1oFRX7oPfD2MK6! zgebR=v>&ER%GX;Gz!@Q~wl60S9gKlz-YqAU59JaS*eEi{fyYKH&Vmj#3W7JmMo zZX|6ls>0=-2C!ex^+yfPb3&2fdvVUeU)&H=uP%t69O!J7>2ngx50euB`Z~E)|yvr%{#=N7&o6>WA}jFvpk7iQc}oI`05vdyWR|3kim& zQ5nI~$YOYJ#9U(0xG4DX_zQx#8VR!|r4bJ&?11?3!|?7^F}Y=zBZ*9x#`oGBDYaqt zg?qT4r7_AhAX?QeKI*lA+_W(VipPD1_I88p_OGEV>*Wt8d+cLx8I2(eBNxMmnpenn zovY-x>}#y5UKQbWub5a{{Rsv?HJ9!w^^x*HZE&ByDxn`AMK1kF2rh9?5My+b$oED) zY^#%iWfdcB3}RZzGyaw2mv8&|_pC(Fe#jwd%!ym@=A%J&wp5NQT2HdI!%o91kuqfc z*;J@E?0TD`N-9ewlLdIN zgr1&Fws2EPjZ_O#T;K=S;e2TQ?l9lJ50dL_a< zV%(!|#Jc9$z(z7f-iJ7_a4P$DVht=l)F`R8*#z6~PKOKY+S%mRW)PBqPI$`YVkRv(+U;R%pG% zbg9&L$@xd+Ytnm3uar!7h?jTUtwUT6r5grp+CCo4$r07G8w9vp0~bTpw6l zGD~nk>ceM3oUGs?Q4A|fI-#xZ8p!3)tlw0vic$If#N3Y4q`8GHslH|{$q$erhkcJG zZ;lQoQWh(U0~=|35hkLNYKlYG|J>^Mk`D0SNy_USc1M&|< zL=mS`Kf-aznq;2tS|Uf^i)^x##z^T^sMrFplP^XP6>+h1iIDVC*2}z|47>M(Xf4bl zPuvc$*6JNziIXVm~(bft|<-c$%VW9`Vdd-K_zrK#|y zE|;Aix|!^i>a)A~%d(3Ox53fM7@>o8^M^~8_;IXg687IU92NrM^bbr;>M0BoS#B zbD-1o>HLYpC}MmJhov==2;J%z>=>P5se_OP>7HQ^NjzvLw+b-9Tul^_-Ju6n5j zSB4KEw`wndUw1mgF@<$xmfA!z^+_5`f3HSX40OO(xR@}TA|^5q7Z5Y5%A_%} zuM)~ZPl>7pnu3n`!=?Ut_QFkj6d)D+7hiA(iTQ3^{%zNVM0U>;IOvc~sw?EO`)r<) z--w-X$9s$%w+e+mJ~@)<5$|D2tSr3V7C|nYx|F>0K(7Mc#0Y!C$7I;PXsI8<@npb> zM*h8SfAR$>2fqof5~r^}@rxy4fTY{J4sRq?Ixv2u@g(9^!69<@D;E+v$O&!)zk(U3-`JQxbSC%7L_h+eoYq5)nb0+{@qiKypNyIq4#L zODN~Ku@fGqOZS>(r1q2x$%Q3S{khqX*frkvP|Zq35OHQWSy?S@XTf>0Uuy5MwrMDt zD%B(P9NNqm%S4rrhgOiMyadJ!I|<|2r-Teoi|sWyOfKIWN8DYuo0QmmWe?R_lWN8i za#Y7m!L|f3)K8kr4(@x)^2DLUqFo^{>uv_S)vlJUk;aZZx%V|una3wr?zNNd`+O$+ z$9t25M-LITzCmR7qEPm;mWgCbzz=wTpEo(@?K;@5wvrfVuxC#!Jq`y?$B@-;64+ji zQT*By*=)@79@1sOYsoNO6REGrlaOn_iB;ONi{yO|f#(^LAG0~$uL%DESa4`0_3_Sr6QmH$gPbXXK*^_Q>_ zTlcX)LTxH;>^CJ^PR$ntZBm2A^l>=hL7Yv%qSNHU4+ltPSEGt&7cLX&*m-tw#Rh2e z_ye(csUqCjRmku6Od@|&MoK`lu3&aTjAYT}Qdp@t$PRvVsMx!23VHjHwV-*VQiZ); zGkmseC~2@?xx(`LHtGCzk+qw5jI1#?Al)3tkoj%1$hJ}Q;2EG>F>zibX}h?BPc`O} zo3$Q5nY2hK*!Y3;$y!fN(y1hO`vs9&Kcss>hGQ#c**_tCi`K()D|n>LHwQrm4-#11 zTGDs=a+2@9l2i+Q%(oij0qq-Sz$tVIdA4LRTh^WnJ1vgEKH?&=wzV8So38`yBD|r~ zT&;@PR>z=@LOuEBgd9BDasx{3iJ_M?2C8Rt8>u}cmR!`bkX*AVfwg!hCyl8ZL29NR zAkBI4FeE;KRF~5gOllR7lDixzsFJU^wS1Q3#939C+aZk!>VK7W;uVlStE#0odEVq3 zy)Z(yq>kiekZiTz#qwF+w!EB;UGPwsGu$p83H?fQ$yV?C;)cgtiKnL<2(jueQY=_W zo?(<>T|EZlCr*bdl0wOzq_^y}b4y|0sa@m)8@$3JrWjsXB-L$nO@UH}zU0N_H&`R$ z0$JN#PplSrK>ST9G*hbJYqvK-{b_dOwRkhO5uC%Lb{}MULH%sq^7G;e%>(fIGg@-^ zc@g>O6PI*4P$V(`dY7Fu_?Eqte~aCnvI<7Dt(ER6_d+@H85#X1n&gKRl6Ow`kSRy< zNSm;)BzP4-xbmiwRX6M5zU{IsU#k?3wz&WO6|@z@3z75S(NKmpbk(m|edG?C zS|1KImR3k@{120#Gz`e0`FC0Lfdn!~m0^2&H_MmmR&DlF<*!-DlI9-}c-hlYfInLV zonBS){r4<{t`jG-QSaUnpS^71zQa!BM|DfGVRjU;F|L)bbk`B8#hfEPOaWU0vl0Gvg4_>7_TBs9XTI{!kQzS(On>w0t4Qc`@H__ig@N{|GYvWdfml zCz_mPX$prtPlSpNQRJn9BzTG52eT%7kau#=u}Y&F;eo_-XyLY)T{*K*LWM@KrlYTr zpD#`(Eync_D6UG3sO}{wzZ7C_tPjzOR}(ExVZ=bcExS&XMMjU9PYmgM~O#KXYhnX~1Xu@o`a&Rm>Befa3W@<;S+Ka#uE|1}r zR~LxtJMHY68xqNYR9Anotbu_4TuV@?B!D~CTxK(PBl%@(6)KK7t&(h%>X5%K3W9X| zs)}v%rn5P#rCNBT|#0;gNjU5Z=n(4;|0H`eg+<^u{f+#qko^9Mr}} zM8=S)=QU!raz49mk||m46GHafYJmPjYGAytJlxTZkgp9pSx(bBc8)Z5)ve$ZX!7m_ z`8b|n6~|s<2W~l5Y*}=NbZzt|uj(u!9aoHm2XyYi&pXDD0jl#Pt_w1t--^XhKTMU_ zHR~nx-7C5okz*jFA;%juRnY0l=NJ2T_ZWHM*wTPL&*&) zwd{hKxvabFVp4CG1K;!gUP4ST)$+H*$VqiDz1*Bsw2R~^ zuTg=`heyJp%iW1F4<`~;N&ATOwzF_Xd{m7|A%+mH#SKmGxaXQzGY4&5tH0OFDVeC8p?ezEZk9VQI-{Ez8m+A?DZk zsXsPKX2#tm3=0lQDr7VyE#t-z6HnywU&_@ysI3YaS44>n8}cwH_O0>m!A?yAWc#S|-#sTKeqrg1xp?=fi9r zoI`C*u~6HEd11DzHiy}|jSRD`W%t^uJM6P{qC#vHhKAaXUlV2quhQ>a)eW;%niFdK@%}#BOs=#Y$UfV!o>1HH86mdym3wV%s>5ufEgjf%GqniE zXICVmDi6Xe+KDZH=0$i}&l6uA)+_n&@Rj7IR~w&o*I^fUg|g4ztd~q`&|#m-CX4TV zn98nwfwLmr@oY@QLrGb&F|j7uhOp3q68#}*lF#fuzGdMoA~xeAKaHox)&$&?n2o+G zSryPD3BPGdyg9AGy1bPmHaM%YIaXIByBe1ecLsbURL3TEjrB8r$g?!Q`Vl8W%i5Z~ z7IagRtkx(QLVV}PWU3KJK0(O8c4Wy;oRzcIW^*-F`H6F=@_4rt$+`Sn{BAuJlJ~f( z{IkVzzJAaX$%QS0HU}?sO3s%>OZ4y|#OUi2Bp;Q0`Pvd?_LAKk$;09*zPTw+axzHj z=QzHTe`(Zo!rzr-pSV;?jz6v9lly!nx`MmJJ?(RnuB#Iz?>89`^Bi;evawbC>K(Tw znRnwPOUkubTr*H2e^r-{O8p0)x`z`FmVD={+o$oL>KXDkz8gpQXNF38h8DAy<2Fh( z6@A!Ug=4}>qk+A{ z!qBdjxaf78s_2@30vM1zi#=^F!kR1((uVSec!r%G9=KVB*{j?rdb4CHo!_g#RE15( z@^13z4g0i27e4oZ7fPm#Mnb5lUx;Jfl{$>hcN^ez{0thp&zMQmx5V07*J3AEo&-wN$3sn(&^9L}=CO=3Q)ZJW${3-}+zdF6iBECy_S_6$e|sMD`TZV| zMcG;Gl216^r@fGA5o?N0*r+oLSZ%EM^m)c6ai6Fm4Z-kfJ!p%^Op%}L3(=@?a#->w zEqvLU2F$Ij6sr%h#2==Q!dK5%VFKgRMFCY#bkOcX(a?D-F}ayxbo2OJy3`VaFXlWZ z@^YLgam*6TJVK3`XfqQF3=aablfH@S&She+)AwWM+uFdg*(1cW0~%2DYe@Oh(n6cy z7FltqI<$$_cC;C`UDjsP`?)rqhctPMgu~129WL`m9n>p-ufZ>0ul#|LS$mS%>2tW; zvEww8vvFB@{{$K0V{|mn*7yGEpu#(ibYO$Uny$yCRd({^VklIpaY2sPT0? z-vgx0vDy7Lk#E$>-xMa7A6hm+9Dg=QeArefN^?D8BNKZ?)UQ*IA0FvtWAZpfyl9F_ z`2o$o@>jde%ZWqE>C39J_`4pIu#EzI{_5N?q-~qtrx9%^^nfqo5Eu!>oEb{@95*!Lq+zl zY(Yn70kewUC^`o&g0_HX+{)zx^vxV=T(E2p80NVY7kYofz7;oOF>N@$S9LNT{=k}X zU^+ym_ev-irEo^Oh>PFc8X_u_G>TTA_rabGaz$6mWSN;KEbwKCm5ey=3C-l0VgAdO zGVrr5_RQu2mQ;KkOO5YfVgp5J)sG`=8!adNr-A&wK zYKxFeKO1D*o>hp9iVym2U>v%~+yqTA9g2RPSdT<>)^cYy#~>W0kGt&cL9}hleB^Ae zGcvQ)4jegMiB8u0VBPholsD*to5*-UD$M+Y#9aukaG$e}5J-bjt{&Hh(OtsxqBB$v=|IZgfXy)%&4WjLspS z#=SrqKO`YC|3fcNcL#^Rbp6MluK%Iv_-D8OgaHp1S9@6*SsCSD_t)>1{Ui7DS4Jju ztlS^vgkSgn^!h)GzcBD~oXP&X<1EwcCmw&}`JagUpM`<{h&~1;{-h7B|5<4HXK#OD zz|mov+h4L?zsmZ*@BiW(zlt)PUm2@k>2E%5_Z#4UG5s_DF9`Z;{;zEMlP=Bw)Qy%gX({Vf_mOzaGo{xhyZE|HrG^Mq_0Z{(v=-(NmVu z+xP3eA<`N8FYn69{j5+~3jdc&URKNKkBm(9&*Wczcl}H5zasOKuH^nju6S<#laBtq zw*2OMc9Z`$+`sq!f7ko}macyO@3OK#Dd{&o{Z9XWI%+lgiNl}N_pkVj{MYP1K<+=9 zM?%X80f1XEw^OXdPzve4DRt9eUOY?q@8^{06w*I6``F~gbZ{_~{ z{)%7UNtp1P%m2LLHuLB6KZJn)&9?mW^?y7J{HDv2UrkH-m1a8pHC_H^xBSoY-N2vZ zyXU{gh4L@H`Jes$|1S0Y+j;os4D*|R$jfN`!ArEHw|_pd`=jgszTDPk^bi2l7{?+_Hm;ZkGH`CxJWg5x< zs`^*5>#vLdmrMV3_;ADj5%JM@evvh)=*%hg$2c(^r#WZtpXGE90xO&HQVy#=hjYQP zfHOI)$>NBUEywi2Ov`=emT*qm@8(85GqxJ~ZXV}>Im6j$CpCUbF|ztJMr0Z9V8t=$ zU2d_Z{yZnp{Sjw}alPf;`y{9ERHEg9GRnfreSuZWz$%UwX=$~6oQ37-_4_R!e0j}@ zialwiarmG`TFqE1oi{%$#bz{T&|$ch@zXU{Mr+zQOQN4zxNCpom|TjoTu94X1suD` z(M%d{^=Orn)sYn=reym!Sf4D~!%5MM;%w`rIYHm#tlZdLRu6*uIjf%Ka^4;N!ddp+ z#PZzHR8G>pW0or$FL1O@6m!ci&9oYmk;{4TV64@^yB3RxoFi7Fa=u!A2n^$_ZqKvW z&^*%Wv?*@Y)~C;L*cig;Gbyl~^tRYyMq#woqd8HWeFLklUiRl(eqDIMa!J}ct6NGh ztjs){Epii9SZ!)^dfGsn zFMdZ{Ql|o)sqfI>L-Jr}$1~La)Ms>>btRfD@kH&WXCP(|3eZ-t4XqUHMh{8!QCI2t zBe#7Tx}mumEj?EU)_5NPF>c4vws|f<)i(+KwDASHzO@Kh7BU2keCCd(1&%;5S=<_o zRp(q!es8H&7tL7?2u^Fr4-R!cjZ?mM80YHPm7MCFWQ!dWFpkBf7K>Q1ENAwrCES=QXU6A&xod1@A)buMsrc2!w^LSi_L9+0zO zsJ>NdeF0~-Y`n$iVQCz(Z-nK#*X^9C0fC%&ncJN0=HZ;E>XylqD;DA0S)uq)>r9b+ zKEq5z&6xxDm6_t?H=}%u#G2=24#~zA?CwnfT^9{a}+h zGtK(}W8_iIWY5bM`NY~|hL-z)+}UBGJ8d3J`fWKZ-Czw<{(c0Op=2VC6d^d>ycU}p z|3KunUQ6uuC4pY`Ig&A-T`b~16VaW-D{8n{3%l!ZoQc1bjV%~~F)Q{?7Ed~LMr5?c zg5u}NiTQ>lSjE9itU<+s#uv^M-}8(F2i0#evCoq6`xCEWA9}MGM~_167&o3#-=)Z0 zNx#8NPjuNg7hmGrP|6_)$hE z-}Z$p|M0qNOP?p;A&KQ^DVFm?V)=cy6=j;2D1HCxddAS5Zv=GZmZ9?&akH zHD^QyF*mI^h$%w#N4oN3iD z#m4SQ5x1GHV$4f#(l4)DGCQd|jG;vvb29CiC?{wZCa1Fx9I!JH?bz(hT=bL0iq_OpHv$f=qLKVChWkb9JZ4Uq?^epAbhgXX2RF6S<;|NrIV$iF6!|KifW9WVc<@X-+ZbK&&o_0vB(KFoj8$DhvWe$&T)-gxQV{}Vs| zSp4HRd2)VbexED{oe|7=&$nci4^-)#($-}U#Zov3ax%sX!WZ?t6vpb{i@LF zSA|x;Dzy4l;qP_*Pip;DsWkby@1*$abX7*i&F<$Y{8xy-&i(G!ifMlv?sxkGrvGg? zyI<9Z&iLDKj=$g%?Ef~L+b=kd(VzEeem(eS@>duTFYKaQL(bCk9j>CLt~!|2tD_+Q z`f%{RZx(oJhJbI2kJElct}t=_Y2d6p2XLfbQtn5u!Aw;vz~<97=r^y~;Kb`X@UcN2 zD+#GWEo_3Q_K(TJfOa+X;h9swd4d}?-%APf?7TzO-`2)dCoG@?F1ypM6*GXH>=z)> zKZy(~oCOJI5X8=5KVl^Hus>toXe!J67Fh9(PtA!Dp{pm1!iqcdQ2}8_8Gr2qrGj^q zoMIETW_lyiYZQ)s@K_@}>yU#+yWF9-&%aIe&r`>g$C-k`Px-*#@hI5weH-X^J4r8| zTrD)5C=X72&<97vhiSh)U0kN690Z+ELA9>5f=f?#fk%WAwrYJ7I!);|m3;7_FeU#! zT7pl+3N&_5N$WV^>-rni5FH_Ksd1)*8Ya<#u6ne1OgvB#sG^LkK8;mJfr8`PsqT4} zw6}?_uvA7Lvrbi`yX~?;L1!ZsZm&*%k3EXcGQ5VeT_~;5A4wg5QjM-g4q`@HYlZxW zGUCL2!^LhIiaf=hrQ&b*FJS!h@0iv=n)%{k!82)ifGHjwBkohrVDeI}8Ohud+-GSO z?`mf;UczVr-isOwHnt-$C!qTVa$~32ykttx;R~D24mcD zf|oZ>NjxwZ#G7<9h8cw$h!>wcgj@NVV9j!RjAZIr=Aca*rnq6X=(fuhx{#6sJ+4Er zy~a1es1sQztF{qbGFXNLs5A7==62yGnGe7ZOb5#NTVW!pD_U^55rp4QK)rLOfJBwu zfbV66Rl_FK!6t%w{yIRYt~?jTADe@ku9Xz6kU(`fkD#4ROF+}f2zt-aL$vJhL%`PR zJhl)SMShnNE8xyJgJS9=)@nP1J_0#CJbd`|o z)u+rCh6t0)P0>P~W%RYWD=2@lHhsu*swiQVJk37cjQY%bL)(nFg+>fAXr_{wdt^RO zbk>SQLgQNK$#Dn4*}M5@?e$YM8LtRX`Gd4`$!RLu?FQXMOa*pCcj>3?+91+?I4#h$ z1@{tXG0SUvC{>loXvl~-`dsuAdcz$Dx}kgz6(V;C{o0*{=>NDPEEo6D&NG)IQ5$OL zPDxSegV{!+vL($ZwaJ{4TCO9vt`yU+GjQRJxy~SZ@HBnRd=4r&JspGy?jsgkZqT0x z*MKv+_vp-C034UNpi^oOPOL?&qwDeB@6)kcn-_~$Xf^>nn9rLZjPmww`-&@M6fqyj0ddCkGVBEO#a&Hg z#MR6#@uM5EcunUOdSEfYOF}w;=deQ2hou+s%>$OWb*8GgPkD@Jmu((ToqHSG)s_mD zjJ%4!Neto@#Ni^sHKfEvpb$?P2LDP+@ism)EMw7z=!fsze?8#wCKn#6*{v0Ce9G@T)5=dS(xameQ4g+8 zMZbMIf~=_A!3{lsn!cs2hL&auXa}Dl6v~bj84vk_uJcSoPh?Tl(<%i~3$7^aDmz5i zj2KQ`gIr-iV7zeRvHM8vo-8`IsvadeF*;zWsi^b2gj%;*3qAYj2`wM<5e@mCj<$t+ z2t$iJMf9^p2)6>IM`SC|#P+L5RK<2sXJiJV{Ik*IZ;#R1TPldtWivW<fnu`?Cw8FQj^Y~(6 z>CU@CyeNh;wmFE#Dx9X8ByXt~v6oSQwX-P5-hd?B3PmTF1PRYiUM;MQxQDE8epTvq zi3g-^aga7y8X3NDANu-HRaxjF3DsN^GTnufE%%L{_ zNTc2l2}3~q0yOYdJXKRSSr}lR%bnfO4!XISWedM|V{FML+nOlDKT9Z@foFt!siu~fM+xR2f# zZ0m@zqP#aJzyZ~_q5$qtuz7bp*pab;*_1m7!mfnlwR#Kibj{Vc-8y5M)3Ox5e)|hH zwww>}qB^R42E*KsTY{lp?Q}-Ua9aNIT6Bu+Xb`*K1t4SAB28~^p|K8^sDn!Zowg@j zm@c~-Y#lZiozi+n_fWaSs>N5>NEA;PLb}urv|E@XQA&)xJc}|sbEfV6E%!C7U`K$ zf=;jU5`OWyj~YgtMa}Nsq5=-Pfy_b+!L=u>#cLsU?{sxk=^A@6;rc8NFj0ar>m#NA- zb^t$Pf~|Ze3#{Z;P%^9DfflltYQCLMxy>3O{CdY8vs=O!dPY3~yQZC@SG?|}$}}Lz zoAiiU$}a*{PPM3J?Ro?xzr&ne?11Py&^+LsAV8RQkS}X zCJ($%jFv|3j-jd1nLsBbl{(PKr3+NEgqJ+}!DQdnbWrX$AY4b$!$S+H@;%4U6hZ@8 z`*JG1BhQR_cQ6)R=sFS`+@>k)*9#P1n%>Fy;RrAN&Qqqq>IqJT$cpc)=7?-m0(mJn zldvi3p5n^&h`45YFSFRb3s;F%va#Fp1`MTFF~wDSy!VRTyq*{HMSiE;u$qsn7@OX4 zBJcVmSYOw3=E@#JX4_B&-k4W!vCNC5;<-BpMO}tPqMaWa8R3Y%;*bpi*o~1f;&n9- zaC#YweU}_zRd)78GALgE77B^ktRS!0Z533~cJk}L4Y9r5xOJpPQfFcNrR(6Sq znWSRCl8b$TJ^{k^bk=ELUAhgLwlUs|=-2E{mq@ls0pV)qF7H1B-;RmUrnfi}UF9 z#4U8&eogGlwP>(%KnZM~CIIh0OaU#oqv$VjM}#l4PJj;~_Q3wR1(o<_0k+;<1ZE|g zqgQnS81%XYe$4y?UTGYH| z7uw{VEpS(U3lO;|Bw}X~$ow%Gxp6cR$+VG0Qx+;w)8(##(pWp{{){5@<+_oW{}2%x z)ZjqvGJgS54!)o)qHj_O2VW!O68B*yu1>;l9W3fxaElH$ze*h~)WnA0F$D6%vVmH0 zB5--N5uDndKt~N;5Pn=B1DbD-06HrU(1zS$cu0;IXyp$ejxX!M;dOh!_~o)#^R*`Q zWlTx-#-~spYKk|JedUM;8oQ2x97o+0i2fEJegkh<~C|SXFsS~qlmtf zQ=?yvivd$}H&M^^CefU>gtEmiM_^eh8no}7OwizVk!ljj(uU_E(VJ8Oiq7EB!e!g3 z7m2N?wfzAs#@R_2-ZjYBhHHo)jQ@sruU;%RnU;s0&UnsL>Pp>zJT&1EUD?uehLK{Q z;sho{ZWI%_F$14u19^MTrQ;(PmW#@|#_&u!vUsb_I`KI|Tin`i0rPr(6Hr$(!ety3 z#0DEnMce${@T1$}aKk0>;*1|W2AMomOzij}YH@C4rkRyvV5*5YxAF?^-7t;ebnIaC z$FSh#RVA^b-yG)Jy<}d(u`cGB-X`xfKyPcXjb+eG@w?&(dxB`1~cM88=O+_ad&Asu`s6?*`=#h&- z^SJZqrvgQANKPAMJanf;0iMG8ykOwyU;%n-PY9RkjK%UJqd>>#hsga`GT?Y%30QRI z7I+tsiOxJrP{j6dAv+@u>6= zB?&w8Q&GF4YG7Kt9bF`g?30#6t65L3OAz`}Jeh|;YEu^neo&hreaSdA5~ayWsi zsk{fnN0?KMJ7<8?-u_gmlZSCuQxI>>6*L%<~5L~6~widN|@;r7BC&QJMoCQ zdAyz(s<@-v7m+&uJ6@B1m>19!iOYC@$IK@Krr93@Q}pHW;V;F^gx&|D1J+@u{2ULFZ}*?M%%|kyz;pNURkAy>2scoLZC7;_~kfO{?<}-YkDR<%D)x0O}hrv zr81h|GFvpLc04#%Hx_k$9!5Vaju+~>3Biz6lYkv(cbVITLi$_waZvD(gLX`Qjh0T^ z1N!ePW5+k1L#ymvsk3KS35`;}Ai)7|&=LLSl-4U_>AuV@%4swWK5zG=uX)?h&!;*A z(TEOEwR8%yPreS^;U1&3cNm~Y4iuuB9}twfN;FVUnSi95a4FA~e5@g(0KMB1N*&33 z4;=Xol%?kjD)3mdFk0w`l|UC^Y1}LtS>Z{a$e)GY|8WZR%rpdX>hIB9H;5k6(*rFj z>*z@1J!N)UV}V1^OZ4T2&6MBPh1ka$A26w)1nJtL0*sMJ;JfHBC~;nky0QDc zuH9Frxg zQraN-6?Q*p4H&NYn)}iv7OZ{31*y%^Ku0kUrF0^xM~yRu+bj&x7jv4yj7&vp>Y~r+ z*P2Kw4%q`@&h=4i7bQ?>t$j$OtU2&iKY;8cCef9p8o*YtgWBbhMCpIeE%W<)5!8J- zPu+WY0I1vTrUyT>Zj@)D%; zMdroNj40a;FV$WF99=eu`nPB?1A~{rP1go`>c#+C%iR~P+?57Sja>qcKE95gOMZ)% zKR$}4dBoFexNpl^ZMK7u+;%k9dn@IsZU;Wt><0s02IzBpHR*a6fDNsez?kN3=o~#g z>RjuSvWEOX#9Pr6yt*hu6|}Dq=B%lt+~h;SxBWVF&u#^J(rhKLR(Kpt(V30ppIZt- zrUg=Vn@(BTE7REv8QRW!t@FcAUF&FHawI{KgXq;MxCGnJ10{I9(@q{`VXZOKewQrb;)IcyB<>+ zOJwO?Q-Xv?-84i`yMIu@6@VK#&Vn+RJ4T1@^rpEz4%FgLb%^^ydt}9erO3UiJ5=+B zc%&pjkzSKXBfGp>X^pmLDEEvWntU;ex-?Ku+jYFP_L1|apZE8adU|S63+ObVZTCpj z_=h^ZG6q9^wr`=ne*I2Y*_Kf)StP1OpQrclK8$uXonJ<)als1xKu-YMv|8J=Xf5 zFIcziR;>o@^5Yw|Li;XvQT=y%LgPpp2~R5%emp|4Gh^tQ%W-t|yE#;w;}DdYZjW@v zS#mpQW%|Xt3&_HpIto^spj&%uX@{Y&&~*C+Xj*R?6*CFa=HF$?<~{VG8QuM*mFF%A z&0FpWvvjmj>wKI(q%;Tp>Xk-?I1SPVW*w!5@O99pb4B#dgL&xIzLO}v*AppOq$dh` zFct}T96(>q&8FXVq@nw?TY;{JHMk)+4J^N&i>iJ)1#*sxX;7(;OdjNcr}Qi^_f{b_ zrsEDaK`9GVeYZd&9Wf9bCy(hTUIL%W&!DcOd6diHP~q7Xveaq31YBBYOdV}@2jRqJ zDz6v8%$H216O$P#QhX0}Q`Evz9=zwO&yED8TDiheJ;%6yx2@2EogKoeP%)4xI8O=I zEd%r?UCcb|CF-(&C6#bs0MvVF(d$O-q7QW?hm-oL|yS<2%-K71(6T&qWu^jV`B48Gl@BAO$p8bqZH)xevPT z+>z#UKYtnXsxUe%|1opPfo!;oDgjJ|2h+d0-P^XMyQDM*# zMEjsO?dNh#I5>Gdx|t!cp417#^Y@mD7iTDojeQ+?!|L?KYV%6*^}%Dr!sSmyNt$82 zEd~4Wkia!!^$bIC(3o1r=e`c_ow1gUU*rt@(hYZ}qR5)}PNA2V_q-Z2Sa4N3Cq*(X z$0mw8mA7EZj*8;0_KPCDQ%~@kzWw;UrRCzySreJqsPzm+S2CLe{KUr!gR#hiiQ<&4 z5`5^xW~?`V8zXaRW2thCytrWBQO0EC9p01gE#k=Sr+9SlX{IMMRea8v!Z|7epg*Hh zWOQpdcwTpv?wk3Pe!q>SBaVci;QLpwWqmx@xoQDeA3YKb7VHK38{W~O8p_73eSC$FUuwZh}+BX6X1%e~@B*6X;YbVF@KPD(GKBT`%1t>^$cvy!@aV2rhe2 zMj}R^k7+Skderl4f};dldlRxYwwnQ?zcm$xQR$-j43zjNINxLt`l+3 z%HlG?Te!u2dPtz*a+LHPfhY%lC>y>;t!(%tBd*u{`NGNb%!O9^`DLRgDGRGt9zlY6 zmxMnm&I(VOijgKi3zWEvmrdpJ(Osvjg`4$dkh~Fb$nNuQ!iW{8karW!k$Kn)p$u{w z9l5KA+wgUhaMG~#s5&u2xFXt37&JjmXtd)V`uO9O(r2z&l&zgH6@4X~`{|o8m(6{K zXjRvhdMB$OIwuYbyDTZ;sFnR?heu6Ald9qnqgN(nKI$RV(H$3%4wbpwlAb9Dv!{gX zmAw?zZ5)YcD;Wz{sCbnn+?wx~(c3c+@s|pbs6kbDS zf44#n-lvqgUQt3RwY5UkrS;sn{S%P*VKaofgEtZNJ9oK!otwh6=2NKAw9D3Ai$jIR zD-raeQ>d`wC@IXE`m*e+${jSxdw*%yGDA@Q#Z6TFKnL^=9iR<@{HYS|NP4}lHWi3E z)9+`l1~R)&m#KBl{r@OB6MrhcH;yCOk|h#ZlI&Z!=bV`v2?sKn3B>R>v zTS5p45xH~D%taBcDoH9yk|b?XskHy@?=P5nz0NYvJfF|!{h;P&mau3zAI~kQN5#QX z$ZxkXQBQr0?(CY6M$Z~jCd=&51*Zn`{!K94em@4qC;kUJi$`E%c`2@UJ&8>0pOBpq zH_48|)ok>xM8p_7q1(6m@L%UAxc+e<*;fxC$)a{TW6dKZuk~cu-&WB%FWMft+|%3SYF#lOQW){PkfNSevmy&|7^2MAaoR z=84V%ckqxITzr$+YI<8Rr_cr_{jCHEOYFhu{w-v==3yWs-EDnOTZ3^k+zvdfw!^`% zDqymXIO9NW)r}5G3p9BM^Kz#$W4`H3*@y~r=FB3H81{+T@nh%HP%RV4T+ zcM!_>>fy&FE+Fd2OQ0iuimBay*(PeHC%9u~iM1}ZK!>$k!2Q}vCSC9!blbd*X=o^7 z7OE67(%x~qf>~>NBr%ZP0G}ed73NHtM@K2Prg}5q4oMQQlm|%*qcXZ#VB_!cDsb{@gVtTBi

%PoG6^uA<Z%O{N6rl6Z^sAlje;HM*~TumadQRP_v#n( zsDL58t}0~w=5sP30AsPv3V3>328a%>!#xw_*h&{|n39)|W7&J~p}!YFy*%_F+6dVw z+{N8yvx!{LWIW>Z0|p)UB%zsJu;bB}D4W(JHjPS74Xe`t%E8(hmqnm;PRM=QQwqJ8ws>C%qR zT$)rbyKC?hy{^cbZn$De<!}COSmZ%soLfxZoM)Mm&8>tkYJ=09pEK%?UHI#cR&Ylpli1IQ z!Qwe*VP>>8d$f8pp6R+8?wi>`%j6BNxt__*WTY~(~ zNkq!@3D%!HC=jpB!|kCdFkq4${J!NZU_^R~XSRM_R?}s0`Ois|Sx|%3Ha}&CF3@=P zt_Y}`*NulBdod?-5FkjwCUNs16UoS6-rU_lH9s0^K2U=Sc>?&z{U#{*+X&5%gyDkc z>tMh3J3*C4DibeT4p6ir(9PCh;wRs$Q!dKJJhOMq;QO8Mrl%{EQF#Q4w8t;{w&wu5 z_Yu4tw_2NBS|=DSBPlZ49%1Dg?1LU1Is&ckEfDqxPqFr-*KnhT zF2vK0gD^`I@?%~jZ=QcH@VhmOa(Ot6Uu9U}o9do;hM_d7y{b<-)QT8y2_JYb0sHsLf&JcwxSg5-bjNe+dgK$B|Ncgj9VL@_ zN-ptSYyC;;FnLSqI3J_E5`yVUzZ8;MY(|qS`n2(oCA&9AmMb}vz|GEdmGvAthE9*k-3Eaun?suU(x<=WN zyZYQ%ODED&JwdB01FlmFb5?R0Bw%eQ#|{9hIBOcMAv=p5FP3BTl1oS-b{7GMeMkBrRY2;LuwZ}7Lv zbRv*RVBYD866N2j>%3gMRB{XK%ec$$(@$P z%)4p}lwO+;Gc6urW-m>hpOAnGQuLsmsOQs^t%n@aQxFsE1%Zz&=3Pz~Ty1Cu5}o_d zyF;Item_Uxq~3=A#JHjUPYKSs*ifM=7CV16liU_nu&h@nQ=bc2X?p? z@{&|UoXrVJf})A7uw$qaP6^536?L!XjqaL;D(6Mv((L;J2h)AParO(;mKiJ1-8v{R z$-;ynEpU`<$eTmz_qN z4E5mj`V92yg*T87C_$?A+hF&CDBP|2Q;@S}4y>)}MMtwOLryVQ-p8pZ= zsaGR<3;u&6PyT`*HZ5Sxz*?mL&43N}voWWb$z+%2g3uMMC^994F|@KnJDF+{{ZNb~ zEjNL>yTrf-AKx~CamI_@qlq1%o^w%(+JKdbX!tM=1t7bwwh za;I|PKTVh}NkrwDpXJCEFUmM#AzO2jEZ%!~S@`-2QhFC%c#CMY{I7uBylfkK1N!)g^xM33s@wRg^tdjnC-&70|H zr$GX&_dbhr>|c<5k|$ByoBfd8u8Lwt?trk)8^~UL3q0#0f!!)W-M02lkp6HSzA668 z1c%Ka<8~8B|1HV78Ld-^XxuybG20krI!PesvD2da79lZ>e^@ork~#SDF7#Sq$V+eB zjzZlEVQjA#zH)ap>YV$UxA)^9(=4|LJzsnjt2S0Lk1A#GgOnfW(!?Wz%ouG-`==7+ zc^#5cuSM+g_9_zcdIw39b0x#2ABf_^w@7TtV(XCU9pr&;E0O#~LGntLGu$+h?ONN- z4E+crrbS!X9~+!lEni(C%@abON@dvmZUv}%G=VK!nE|`4u9Bu#zo0~1DLZTF1vFyd zjW+E$Kt?vivEa)_hWwnxZaH$DnP;^h7m5Cre3dJq&M|d%x`W8mf{&3D?Mn9de_M&S z#1Q=N=ppvp@*U_<;$qb7GFL$Fe8!eO>I7<;imde_bLw;NeAJ%o$@;&T2s3YKu)}dB z#M#%9l}EqO=eOaYJ2(qoc$Z7A{rQ9rp60l?1Fy+dr4i69Ih$=f=)g*)nX!Gh^oY`m z+33rmxo~jSLoD_(mE{*E!ka&|+39C0;kU(ctX!ftkWj}6B$$Gw~ zV;UW|c$Luj(kbqf`>Z*^=4JG9Wih^0!gRh-Xd6FObpof?HN+2dUoDi(T}#Q7tML70 z#3;$s)%?UfY5w?k)A~A}sdKV~lJ)by%;3MOkeTD)@SUTFve|)&;q*iKVpjcA3@dXt zo>F>YL{03oAj@n0SvR@gWc}s?q&_Hzcs{EjT2We*m-0do;5(finy55s>`^sqwmFWgg*4TW z0MnLk2fBDK)3q;(xIUTziTo(msEL6uz;mMTdyA3iSD;g#F%F zvnigFz~9^QWS>JMYRxTxBRAfW+JJ7X8nugryKW%SwvMEHHbNEFm0-=|eEjb56&!Nb z5plyG*f(2)iJT3~yt#dfe9UnqE+?u8vt(b8!~!O*guqDim4zJ;4GKSP)qGN0ow-$&U>yyHIq z3l{pSpWqC){bu)sNYkT-rCDvmiCn>*$85r1 zFWZOqMqULnmK<5V?>Fwh*a$rTzCb=br^uWset4tOD1Ka{M;0&pK@P8v!vPoV;nmlR zfMJpn)(>zesAd8D+Pw)z8@_+ctwtXRel z4om~vR~4ap^^K@&lc+AFu902IJ|y&!5VuaBLMFT@!I8{DG+LDm&Yav#ye@sm+s+%p z@`?QD6D@aB)>mv z68&u+MDn^f8A`Z|e`YO1$FkDFsQ3gDf1blF-PXveFo!)b9!sQV^e|2d$I0|7?fBF2 zMq;IT0>3>N2l;(*z(4p5{wx20v=kac`?>4!SXn6y@t#Ir4l5uwTN#~N+=!n(QX>Zv z8kwMxRCsNUGD%F+fW@{f?3f$J%Pngq(>1n0-?CYxUqc2m3i92olQMbFow1h3?{!T-|mfN~h>9cS{Ti|DC+TDauUcHf>j-Ei%f;qpatwMsE>q zQX@xsrbn=k3%7D_*6Z_YHmK8YtzXljVQ0~VOY*dPW+Dtf0zW?HIMZ6-csOo|P(!Fq+jvSdh*$zqh zxub>Zi-^no7;^i(7n2@;j+8Za!YgNQGl31QxZQUYEZFZ)oHh2~BF8&$;GHBZF}?t& zb+3d22dc=QXW4LJO(j%r8V0RmbJ+S&DX{Q#JQ7>xhqmU1VD@i2>Dcc~4o`ZC6F15e z{mKbs^~dFCVuvTFKD?BC*&#s!Cptpk*EVeWtSEBg=wC+Iu1L;2Jx;FrSCjp07#=@l z2-9Y}f#{MOjM#^LB&a|Zo^=plZu?2NM!SXl*)EN&?o2^M@Ec>dLQ;G;fU&OeA|*JT z8J~Pq0Cq$(aXZcdMn9c6W+=hMNAvNsU5zBTehI!@S`BD?lB^ebkk9ar!Ssa3%!?r- z*2ho@hy_;Qmx;+J!1@eau(OTW7rnwB{9xk7^Cs%*7Q|`oRx}=W5KQ}5iBHYGgfnHm z(e}DWtkl04a>$~cNq=yXD4oO;j8o%wMK5Uk`BLU zi9Y+utcre>6HN!kk8;JzjjZHw51qHxjuzLsPwB@;au!K3!q-l_Ih(c(ltW2ODJy|)Dgn#Q`XV1S(FI;O)o$piP6rQc-M(h{y+aFG*FV5+tm%h76 z6`aVR9c*IQpEYmj^q_F=iRN3%lc!4;{mmf*8?Vt{?~2oZ%U24G|FSeGHy5T%1@t7% zX8Oq{d+t|TKk3cvqdcur==4eXZ0{je>f@3~R5rZ~YiTu+zzZpapO=VJ@0*ZqvF1$Z zq8Jn$nGR-OC?ov_U$KIjBn%lAptl>dNK)i7{Ezn!mnCSB34R|*|NTV#dp&@|Tc-oB zSXHd_OPQqJREIxYLZL)z4;&s^PDXXC(4u<_ko`tTh9_nd|B66nNFtXss%OE-s{zcD z*P=ek%$uTp8AGn7NMMNybEs!7#^yKJsVBZrOhtc3iauMUl2_8kq_l zjCdD^ZO1`+b1ZW-`7}7x3}JZo0qfH@jNy!eOV~@B6-aeBGN-@a0M}f3_*+{CW7Tw? ze6YFzzF4P%k%!O02M-m}cEgalfBunRQOg2eeHp_$CjAP$N~mP+m^fUlFeP|-MF}H# zvWmnmuK@nftwbLA8t_b{$6Sqj!;|kX#&1{`=9An-X22qgH(-$h(p)$5uI@003Omhl z+e3dMFmS_5if#e#?un$?<`OuYDGe`2xPsd$?{Lfmcb->~8;L$}5`3EJ3Y1pM3CizF zpx#2!9@I31f}L6^+!{{6#7 z{;9kV)0V|~af)@HCLw&&?n7Th+o)@f)2K3`a$;1SjUUqg{e!ak+R82IqWN78*<97?A!^l99e#8xLjoeVkxZTkV!@ciY{u?@BNSIR#s_2&=-a=F zeSb8VXMb`Bpo9^OL4zepN|Rz{PRtNY`>X`guDs(pTt5d=`$uqEXE-l*Se~TaPGL-s zB@i*;!MeNBCfG2^04`%K$(EVsyeY=v%!;dras0-SiX4G+ubBnB*OA#WNf^a$$ZNmQl@u=D|Tg$tM<9JpDmF zznu@?{x=gRJ-H1RyGoM#Gk!ql*;A2LRS{13CGr#BZDxEXsv`SM-*M@m|Daez9IS1+ zE-Cxa<<{UsuIh z{wYT8$?z@J#8}8#&(eeh$nU!Y8cHgJF4+<&WN;l!yQFnT& zjE1oMu`JCOXwarztGJRAiX^6^l4^IlP49v!?8nKv)MPpySsE1M+pijk*3J@QQkRSa z6s<|AnL3oH&qZB#MeDf$le%d=c+c*I&?-QcvbkGE+_QqP*&-$4G_eU+@xO?4#uS_} z)f{e_(ZMT?`^mgHH<745Hiq3Ef8d_e6Od-f8~jDh3bjx^h(FbX9Nf8|JTr=5ypLoO z`9EJ_`~p43=i4*>>=1d^uYzxnc)~xT^`B5z4pkLIYo|F5 z7OC*rbvbW&``uO|^PlhF*1fM7bEPe$`O7qNLd6dszJCReqbGv+P-)bg6Ae5!Oe33K ztjD*n%z#Ru0QZj=6K|7u47;fU8+=K_<#U#i{BzRyx?%@de)SB`=IlA<$mwTT4%`Cr zML|G!i62Z9HsUwaPQxj8hTzK1bJ#$XVNIT_%FMiS1Bb(Vz~5~qZ%t4g^XPyExVl2r z3rp~4#D3NCxZYpb%i_7Cb>S8E(0Lj5jhqR!>7g&H zwo8nTpL!jQKRZh}>t%GBVJ8Fgc5^r9+jDN`S8^AITToEv6zvK!zq8dxKTS|<5p{l;13ij@-y|E^T$8Q*|EW@A{Jt$`Z;Wr8lopA?n&VzJGC zcsn9IsM6VHM7LD|Cq(mc=uuDJ^8+bFtylvuXYK;ad+I#H!L!V0jWXDxd=*R;7e_AM z>9A{>7`*N^4E^@Wpn>Dxaq(;+o_X}Xfa5!oaj9-7<($Agaz2H(KPm)+lkVUL!dToX zcmoeC3MNN7G8u={rm#lUfb{0ig3EK<;6UCVaCk)%SsvoUlcUT~m-8Q3)BS~M){P*4 z#3qp4R*CqC;bk0qcolX~lt6vfE?~_r39=_L25bGC4(ZS`qSdEI!W3JWe;+R4;XVl> z*}jp@e1r>JhQiaZHk$D)-mb=od`Z$dJoS&{|Slg?q#JP!N^*F&4o z69TuIF!E)JJZz<(VNh5A*QO^!jvZr+7hxvpR0b@yJP-c0Y2yg}MxyK0U*0^(S%)6>qtLeGZ)N zS0Sj|7{%R~*~RsAL~viESa#9725M8vT=HEtmPL+!w65M-I5wJ1LhH4;HwDdf=&xdG zpfHObxn_krJC;#59j#fN)sD2){Ff|nyh=@Qj-y@;5;E2LKl;KpL=~NS!1>FiqOq;z z+~}{9)LrMzRN>DLY>~!c!oT4|-M5IK1!KF|r#?5($z&B2`M?p+iuEItVjYO@=rALt z(u>hs4LD_yHY$@l2G;ENA$x}o;{9c3z-84j^xlOgYFg^J?o0;m@-xKiZ>5pxy&5>R z{Utbbe;+UL-2+Dc`VpM4>=p=GSO9kvr^DeY5A4+P2)>q-M*I(Nam^z!;*)F5T-OKW z1xSFgTF(Vf*YCnSBM)#xMTJbiHw&w^1;Yp&O9FnSGqUl+An64l89p>zsltcq8hgN@ z4P7MmX*%y;yc2f5mB&n$dc`xnD}c>Tl5m@?7f5>30a_|ffL}VzjKQ2|f*JF*pmJ~q z2(Y;$2sXF|buKBx>rSmaK~)U+=V}C}-q-}``~jYwZ~_y}j}UlNoaMa?Uj;XOv0!vV za>1KH38qSOA1ppNpV6KxhHw2z1ygow!v4kK)+Zap;KKZ`yzoBt+IZW%x~})(g7%&j z@U-@N#&})6&4oW}q22m&Ud;kArrhKwuvkqoAuqI;Y_&w7lYbYs?k=k9`8WvXeQIH{ z1!~>ObphE^1srY8~pq0E?`cdX8s)#XEwec0`e7qc_85jW3VUz?Wr+>oAh;o z=kob5dHz1|%PbHMP3_`UIZkE*ik=7}H7#C8*d2clnzglgY7%Fd zufPC=Ye);+PdGFE2bS41mMg)&w9l|KQ&Qk*AH~|DX{=zeCN+JsGPh=zFZo?cv-K89 ztlisFlv2n;T=zqZjdqy`epZ%}6bEtY(H%Yd&rKyt3Kzl`G4WLBlK0eYvk>aj5g#-O6L8j? z9l$Gap&(;KgV<5Tc33OwJd;XdZI_9df^5Qq1`}o%*w=)h-T& z8%5wk?S9f$9!4%VC=ieD#^j^pdo16ShIH8|;QsIkQT31}se4M`=qoE$LAiwNIz@}_ zN;~pMA%aL++##!SPT{w4b75zg5zuoM!`Gi2Atp-d@UxsJ-hQDI@oGoX#l_lAII z@gg$s?*(Z3OLQJ17cpA(6nnT?1!Uf92C*(RNbIE$R$go)9Z`TBN=PJshc*)RgOf>E zUJ0smI|SCJDiAOI>)7W@I7&!pWl?7ZS$STO*)i2V*I>5{+YPf)TD)MP+lGu2F{@UpwtzANFTr!i?M+`7Ku1TQFJZW;>HV}HP zIs?OR>e#5ieM5e%UJYZOtRrJ@okZ^-hTII@u=)H{-0h-_bbf1#{G&AfTfdNf)nNd# z`aS5Mhd$CnB0sHGwk6-H(UltIuF%&Gr_n}wgPfYH2WRWlPe*L*p!R&rMjsXOIHPYN z!m7fHoL;9Sm0k3U8`AX?<~;tuNo>;RZiYM2%~}hwn4FMJc+*HvpL-3-SMOov-#A6)4U7b(8{Gn%pxpG_CP$Y!NJbfW73&)K+{RvF&Om8Jb8r@tMi>R(=`SFA5(d9v0NF3LuBu~%`ocms)g zQ%1UTl5y~9MEsX@fdR#H$ar@V=zH2A>f?(OdbT}0-lRbV&8#9?Cy(Kr!&6D&+Mjsh zL20%pv=qM$o(nmj4ql+x6l}cV8opMf4(H$c1y#GG(9UBTBG;tt*N?tEt2RYOT=sy1*hT*sqK0>%+3Q@ z=-EpNHdbAn{5vC0`R6o(_}qJF?!*JgW%X0h^XrLNgA*fm^@Ek|CSPO@&XH}(|IuGd zE+DHT3mD6L<49ln8~UU@k@9%<6At|TjuUEsGo=U5!6naZDGkOEKWe{4sKmULNzl?x!qm5*f>UCsqn2E!t?IwpltKhKjX4FgVT_h}DobvGl zIjlYF_3uN$9(f~ExQz@sS5a#{q!@@RyN?7yFogdEg6xKdzr@2ur z;fAS4xUko;eBHxWsI()&!p9wa;nU<{?qbC^`rr2HbL?^y>8YoWaZ`dl`5W3N%z3+c z4;>*;qkpVD&FPKQkg=V!=ta8~g|f2Okb(0K}9i^^wvZnSd#ek!cnS`A_C({hf#_Z7bs0r zIqh*|G1WJFIwuzCh+Yn_p^lU;Wpl27Be@>(=+ik>YOt9@&rYbK>Xoa}i~TNWMeH+D znKGSGlz)Xfu0|u@!g;vg?KP5ed5Pp(mccsH^~g`|3sPA+k7|+q2ZPE_;+%Qaj9dLn zka#Q!9ktwo>*f=f7NA6yowcDp1ZI<_6knp_9Etj`*iqwi(t$~dG^Oxh6@Ha44Z2F- zhuw?z;~SHPQOO2nY@=TSOXkK=!6GJci(Wc*`DaUM9T5Hd6seM`4ry$6vzp5MSi+e6 za3r69-ofE*jo`fW3>1;`85aE!F^{8mL3ttpBAQ0=4%4-a)P^6hfN_J8hesK)m)qd) z9&zLvoez>!cfw@x82GH#1nCzHf%>SkOt){5;HK9g&*W(;EQr0%jB5@Ew$@l<het zku+yf+FiG<`^yqTu>5iHT z8!-%^vJVFiuoAF>d)DY)W)Y$KPQc_EecQ2 zh?ElBVJJrDJayu}7RRt!!8mw~1vipE7oCq)PkZ;N?aEQC{xM%~O1fj>7z5PdVK zS=a;ZTNP1rfLPr(ujSD0);jz)S%y?9?PuD}&Cp(pb`U1nwj!@-;8=p)@;NF&VCUd7lZ`e?c%q=MIThyULp!G?&cL+Q+!7 zTxP=8d>3R?-3JF_Wy!_vOHkffjSNYA@GOomzddgr(VHhcTQ&|`KVLfW@*-cE87sF}olhNqy6JX7wB$B4Q2sMda zC5;y8=;fk+;Pu0KxZoWDJ+~i0-&d93Zn+Om(LO*OZbB>$8u1l!nDMtS^^q`mCVmT6D zEzGG2rXTE(rc$m=q8DABM5QIPke1*K`l{Sd>VVxBj@Frt5~oD-iI)L2x><_*eC0Y# z*e(3!_Ju@cdH~AZNK0-@6@r>(e&gij!pnDK=zZ%> z@eS|I;?(;LN!Gs_O2?*#o077g>egHZENM$rZX(I7JARyebDWQlX-p$uTMh8v_#{Gg zi0Y2&O-yOg4&3^uA0Mkb4lS8$tcr#f5&J#gCVTB$d?!vof=(XpTmy?H=a(tldIR!3u7earzAs+M4 zfV%!M400kSnvA0WoV|O*)o@0r=t<1i%H=uZDIMDo(id+0U z88!14;F*so8$5fjVAgI0;pycj+>Ym!bnuQQR?n}9uFdx5-sjGuK5329%^-k;EbriE z*}mjxi$X3be-WMbFOmO@>u1-wsBtOY2k3_IE&S&SGemjyvn0Kuf&D`FlHLhV(7;6_ zF3a>WYc{cpZpH^mUoI3bEnUlwzsscp9v|ga7HA3GuSFw?*Q!E~lt8*NxsmeOXvLK| zUM9<{WH`528_qk%mR}oiL?}}>nSXbqJ-7YKGT|PvTa=5YGrB6ikTqGENP}}yA`YS< z)-4~y2S<~^o=*nIUH%4`AyEn!?_z)eGsV3@RQOa3 z6}}`2BrFo)&eh>4SYs+Go%jYMpDJavK5H>D)yo*KF-zq1bSsncRSkjkO^kc!Rg{Q4 zvDKPXn*h;Xy_k9ubzcI!w)76TezrNZ`{csQ`J>J_Ut7bZuhT#+A9AtOSp}4|s1Vg` z^@Pdh&W!(_U8u}82J4JTJ)IzvleUurobiv*aE`Zs- zsd)Rkc}QJsA--_83&=fQ!k8L9fSxy0;eZsPg8mtR6?s1y&F)Sn(kmC$na05b+1(&W z`?J8YSeOFt?`YF0rw(Jca7u?G0< z$5ON=?u{VY_&mCE=#GfbCWgB{tYT(%29f~74=}p{WBFUTXf*Qx_8&|FCw116e3v^A z?n=O&8z<7#&@NFvAql%jM#5QVT99D!2s8a#1{nJAhPk0PE(o^u#O)(u$l`Dcuqv)Z zIw#h_m*=IZpMx=2!Bid>1u<6@Y ztQ>vk(ggm?ur=Jj!*l7(`l)=~>(1=^&C4H`9ctOo7(V4f@({QB5M8$eA(h+*2zK~u^YbQq9tE!Ot00zt=>gArJ)y&H0$EF z`qBcVqEe$2ks@V0z9&lHL3>8Y|4i1fB#v}fvB6ycO9V)f`UHwR+Tg``p}BQV9IVK%%E zu{FrSNr9QOUWxL{9%9v^S45fHK}?N5<3HCXkSF_=ks$AQv}^hu-lLNVB=62D zQjR;o$nouL|CM6Wn0<*^w@HOGe0fc*$$Qd2a2c!aUJaiY=Bc>KWd@#FM0I{%kQ0!+hTmytMIs^o)?CJ5jHsVMyQ zFh}(41WaG8G`Jg17@ zx`=Tp2M6e>pQh547KAhK^XAld7xQng*+941wTNb=M9{NW0sex96RhNUAHL*-Ue3^@ ziwfP6MW?+bNH*&OT^+WU*8Nj1)VzL_-*P5a==0_j?fc~b{~VRbU0mSI7H|DX8BB<$ z&fVP0_D9)LN~jh2TzQAzb_|iR%3LyM?=^hox*6e`2Jy`oRmekz0#W)`NY3r0q+_@j zG|x2^&5vQp^C(lSX{JT&lLX{lofcbcdK(MPLLmH-0LtH&FbicDkz3_njgIXiF%&Tr!p_!T_T&)PQpzcW4uDy=S&!t zN5V4i^8$B!lW*_-3FfKJ#A4lxYkgiy!NXr7@ld}nG%6lu{#p!?$8cW4vrcmA+{8L;=oXVG}*_y34aV0<6yZ#W~$K=BKEVd zu7Cax9)0Wr^g4;L#1Bhoa=e~x{+eI+p#K->`R^h&bV?-0wCnJs#CFC?q8C`73kKoH zhIwwii1f0Ar*`BR8DBRMpZ;`}NEok%Z}-o{yOS%x`1;MHzcH&W{)rq6_j4w0At&qH zGi4EwBw#_5I$66|7M*UOiSM@z5j$&(poB?goE92j;hICR_JcS4sJsG;JDwojt1@|o zE{gnV-!y6UW3im^$a4yuJHw^^RS~hQ=J94Nd&rH z9ujI*7}L)GrqNHj7IM9}773@#RH1j?Z9uLuk(6VPDs~IfA7~+;%tPT#{|1nB><+Vs z%O|7eQalASEAlj9GB#c+WQKE>0-cwSKx(@<8I8$-#;;G|jjtY)$b_TVSyQy%(xb_b z-Z*GmlmJt=MKTha@5!K079`eOKo_?8qoG4P@rmS05-Y!ksHT?S2Qm_5{mjjHTG1jT z3`qq;TQ-qdi(lc|59aW9L^zR^J4Wme$z$O18J}M;mt5+rB6|4;@s;*jP`Y;}FgCf! zEEajQK0TL(9yT@1^xcI}|8@)!)J{c1EjlP9N0Qw58AI%kxiPvC%SrIz4osH#bJAeW z!FSMJB?bNLUkblOm{v3Z||M>A4O;W7t{C0@k-jY(xRkI zsF_hS_ndntORI#CBq3XpA|%Nc(ymRVQc03jLaMpv+&h#)Qc0pDC6f49LXsrpJKuj` ze!26w_q@;h^?E*u6H>Z3S?LCPzHbIBTDpaaKXwAgm=4j|BfIg6AH^uq`4(14IEmCQ zL<8BhaH3snJ1VHC#8ci{0&gu$U%i|M(tF0xm;C9F_k0p8pMcQrZ^qau;2iDQ)JP=! zs73BsH4^Ar25@+;LHv%sf=wzEz<=xCBfD?2=<)cApn0|%J*(+4>R>nqaHKGYaREqA$2+={zS7O8k*t?>st2d@ri8ZX;tdeqiC!!T+X~kvDErfZ8H4R zGVH6kg-tI|5YD(@PK|Btr3|DZVNAw-GVa4B#$;X$rRObV18l4*n~Ni)m(CEf)GeT5 zW^5zhHLHuI;^WA%m>=x6(r)rls{&=w!)Mii8gqE{Uh>)fTnQKZA~Rn+o1Ag+a)Z| z9~2%*IElZnGo%lD730>JFCd~<0cj!DL%+Y!Wj8dpz5XGGacUz<5bk zsQDgH$|@rq&bFXwA2NtHveCeMY!euElfzPv^-*%B75R`NJ zSEcRDxzJJL7==p&Yn+zXT+n z*C2oTEX0M`dr`-c7wC!N3fL)UgPmVkA=$xi*8WLXt%}4hXSD>if_jz~?jTL7#N@e!t<=ng zHPnr$)ns{oBvsNihf)mGV&j#kurEv7S&h@#Y-fQFe$KW~pIXFh^j|IZ>E)|TU{gLd zC-oKEUop(gpPd0>q;!}Wk1d(BQxmCz<$svNj_H)i%B5_>%GGSbq;)|3);-GO?Mn8G zNJ_k((qI}Jve|X-hRBvT%G3k$6>~c-ld-8ZqYSq`VlG`Vp$02fiU;40l993%jPcN1 zac01BX7q6^{PjkKykRw2C{vNg9C=g@lS^lSjlJV^_a_zF7Sx5kuYo329%{7hC>6@@P5OSsH!6u{R+N^>@JzXf~L=c%|&LohyMySPr$@j z?f{NYv%%XF(`iqyN~H2?3--Dih2MQ%h0F^-5UGl$gi(E;C}#6StkTv_EYCTM5<;Cp zU0Ocg@BRi16_o?tuRCbX@zdCUtAi+WiX)b`*+g`A9H9dhhw1wlo)X(9+2c7;mx+-i zE{cDD6X(C$h|Z`@08v#bSod8dNK$YEcB}vKwFyP$bW^GcZF^_IBMIzyyBycD0Ynt>aA z!*OZQMs#9yCAczoD^Z8_klnNlylCVjaVl#By$v!0*{gP8Z&4rE+zS-`b2aoSca*2{#39l@FLZ-|15P%A%hjI6;pkyUoa1rg;DL+pUKH}HLR8M8D{ud zCAGuUiz@u7Ks_ySU}f62i04IgFk0TF+9TqC zSIsUQn=J>sH6Me&AIDIwVH);MnJ-#j7lL!`LczP#OLXPDSkyjgh!8-C$G6=UN!6JX zIb*MIDsMfyvBUyAdy|9JLz6-2NGSL)tA#k1rOu3({}G5kWy4UjP`GC4dbG!F96PK! ziM1vDlMg4HaB6=s^0G{VCSLc6X;&g~Y(+onPL`x*%#4}f@KQ`#u0fj9SKtfmDqJpc zp-2tIqv9O^T(nRiq?E1Es9G{!aLEG19r;XqnfwQ0A12~?f(fu$Ybji4HWTN`_+i)H zn{-E?G5+ZOQlLI?j>u{sr>`9?6|@`>VWS6X#O(#CDB^=3p1CWHR-xsH5tm(fO~M7h zzL^L%YfGW*01o4~4mF9REy@#|wAGXE@S z1x7n>CwMWng|Kv#fp-pQpv;-FaId5TuWj-b8JJ}wtyo#qQl$xRF78Cyfw90W{wU!4 zpQXn&e@U_~I>54R0Zyr%0|WP|LW^yi(femEXf#C;Zr(N|_&hBZ)o|RHu+Ij>2BLtB zi0h=T?#*E*K3^t`Kj%z^*s+wZ)@`bUEMqk_SFyKc3aB~ES;poL!?c(lV_kw4iUp1z z*zi5yv0a~(xZZetJs_m-9FEvIPIK7oR8mP#0{?#HCB~0Jffkr~- zNIB|Pv97SL*pIR0E@ldxFEK5%)2a9C_1N$F6s58@h1_0tkO|8EOnu((LylJq#jOGr z_EGU9@%`T)$tajFJeh;H}>826#Ypg!A`l8By_IEZ%y-1bci8dGBQlhWt174 zH|NogR4eeS`nVwN;#%~gNsM+*1VHBfLg;#XDm)$@M8C0dhDyJpp`(H1xo=#A^|_Vw z*WbmMuQm;qx-FplVkTk_bsr)mSHfic(~O3dRiKs27rZmJhjz?x2S*oP!0#mtQiJ9Y zkXES%3c4Jb;!T}`7b8Q^eD7oUE509<7ENayj-SWjMh^H((|l|YdJ^~NHNq&XmBby# zt2kD076;V4skAa8XtEVuuX-16 z%?k!W$xit4oWDS8nFCWY{nKzn8ob6&*5(q%?) z5hy@r{SQ%;I2hiFKL#?!ZzH!yr0Vgt~;RFuwF6Rda5Fcv6hYjf2BkY~gbO^;@t~ymZYMv5H*-`{ap` z9iEp><$rw)c!U9ae~*E1iNiZ`;LLsYe)2VTVsL{{-Q+mczd=RV@Zu!Zy~G26D&$8J)7rO#Y}xV^zPFIWGkXn~;Km;Op=UBah(d5^!~klhf5E5TrNrHx z(u{)o9z1X;3)Frtqy3Nl#^oMq$WC@A-js0*E33FL&R2dR`Gm6|KqixDpuW*X`Du9N zym;WHeult00yyoiJY%#s10Jb82@UL$@X(X#3{U$qz28rUIgu(OVY|1`em4~GblC-9 z<3_&~hGPBG)S;E$NL2v)0 zj*pGG5s&oU;6#~cpk>A+sIRykG)?>g?6!vE#1&zJzx(rmPoOJEnI_>2?e!<;esYA` z?~@5#J2iOuf)4zBR2vTcR0U;wgX#Pwa+ST;`Jy%5_ORnw6n*fir;o556G2as#nO0V17#O3dF}Nz$p<7j_jM03vHcNWC`& zp7M6+pv7(L-oWFcwkP>;w|fm;ZgNeaN>(CM(>O2*rz1{gAgcR2B=FXKN3@515_o&9 z#Zc>|h(MQ-6JG~FW;HSSNjlX2nn#DXNOBVEKH$KRTS)Hke}vJ5Jla?O2}=Ap2ORu- zU(}+T40o?wAiA@9h;ddr#y-!xOj!k7VrzA)aooX+ti#4&2`{&dich;hd3BVqi*Cp; z;j_+&ZX_2`K^q)}VQ(@hRdG3f%so$)Q)a@ooaNN+pmK7aNSU3wcO1K2CUN1`9c)MB zezH?77cO6an97^h$J*@9W+ufgWvxEuF{>k{un`Z$u;_OU`@MD>s(W{xtST@h(~ssu zD=LA_8ko$?d}=C$P3mH!#zE?ttQEshn(T}nt0=RVXRulNWGMT57u%I7$?Dh7!5=ke zVE?Ez0>5&C$;W5IYURJcmXi&>TkHV4CZEFwQo4ebkyBu6qlDLP*o87GUce=8esFl& zKjK-gHXN=@2AylSKs)UjV8i$kx~Z{?AHLOA6ai<$LZ7pA#ov?Y%bsR5tv3NQuR4!L zEk%fOtptWi-@v9I8$xIDTo6=Hh>ZSzqnEi~1e5>85?|M>g1vLpz%1F*pf_S27@@Wc zoWA@g%9t((*I)BTv*Q%NCf*P|=VdC)DQT~~d*C~4Ff4${WlhNJp&`S4oQriA|3l7u z*GcY)wedsO7^r#iEg`r5Dz;8uh&ML~!K_CFvt+CqFMqfcxk~0)`_pw;bJIjddU6$V zJsbu+`}2wPXkFB(dKtqC9}swT1kIb$23C$JGk0e$f~^62;G3gMaNpQFY`XazZ7i(B z##EYjZ(VgHX*uCTy&<4|)+xqLU{fcvV-kGbo{f;Y6>WP5FdKr+eYK>1# zQ^)ZaB4AyX9BVfB4j%HhMOTeF@LaEz_~EumOyIXiXxO>|Y_j}AoG6sWqy7Z*IrSu{ ztkJ@MKem8@<}KvAYEwDTcEKvSRT zuGfTB-;!{+;&kHvR269WJPC#TCr17eJXn1E6gZhDhv)52X7=6LLHv*(pf)Qg3$>QL zW?xPY6-qT1qoVAWl(VRx+MHz|?vz`=%#KzP+W+*X>~4G~uZfb``S;4jJLeXX* zInzwUW_g+7pi8pi<#U&^-cbuF@#Lk9xtBdFr>`P3w8|n?O9}SF>{QmlBvI(IP0}GR zo*~S%xlC@pQB3(6JYoV8G=!?*&8%qSG0Gw`j*5y|!Gy0-6%ISQP~vGxVm8}>qD(f6 z|6GoxB0vY#Y7@$qom6My{w$`->c3F+9vZB%>v7V5SuG4IP?m5>HJK_$$qvNU0aXcN zu$!VUIPszw9!byvnWKt~wf$V2|8N@No|j1O-qwTPd@4dyZFMoeY>PSj<}#u=kCA>y z92hE!2tA!5SL9A!s`E$rUoB@8>@{D2hPjK5_9Uk1gi+H{+ zi<$Lq3!$(!8debY(7b6ox-B|^_Y`R1#BIBgil_{=4_romed^F@kt*TQF7aKg=|i(d zJc*%~EPj_N#9fV<^lpm0UPJqk{Q-UA(rpP(wUR6H=VMl|KXa@?a(Ebt#Jq|KTe>F3|Zh|GucF-Ies zxVrBr{p7|SJoDHFWyNWjYkC4WCq{$KL&ky!-KtFeCmG_sESC;4-USo;c|d>T zE?nXlhBp4z#yp*W$Q1uXy>qo-E60g=xO5kqQ+)#k4UYh?7wL>ng#}LPlBVtMFUD7r z4e(WuIBfaD7aiQ|4bIHmNyKfkLFCg^Y%~8AVW0ULC2X_=zVo)?9o|1d!|g6=i(*M>gRwr36gsC?fuDNXACXm1{Epq3s+gG zC6kyXTdq)Y3G1ljRbNRL4Fgtt+fwns!Fr}rTu5$Mb%9MiVlC#!&SSrDOPIO6vXoSY z0UAolVO|Gspr%D6l1z^#TU;o|zWJ#yJY%jv$&E!*#7GHQ_&k{^ZJ)wSUQ$EZ7kjhM zRzD`stWc-^p$2Ha@dTwE&`3H3OcTeixf4Ems6*GXW`c?F`JlS&h>7NI#qt%R414ROaj z793Xf$2|esaPPnWz;7szU3uxa}%#|dN{s{_`i%*GqvAEv!# zOa!@-In~n47v=1<0PEQcc<4YJ$a{Al96^IbTeS|O^gy1N&U=Di%)Eztv)_WAP(`xK zD;Ta{U<`+BG~o4$BsjXc5ZCH{uUwv)05h9{A+ZY}bGnpdq{NWTLxe#L3HQ}ZB1g>r z!4bJOpsckQ8BD%HZ+`JWWP7t5PTy{gRDIS!t4YmBZHhBlGGPa1z8c}R3$5Tcp$X~R zy^!cqZ-lC=zX+OdjuGnVs$laM2Q;|38Sc<2M5}X*U}nT3(xOHIKFx_om93H->a{8O zh6MGf9*(%aT!5`ow>2CNa<|`bRdIc&x-Xqofy%POoG@yIu zkzF%6XcJKkCtoc_Rh>Gdq4h?*Zb}WBRJjs->$?TrCJYdT-}m7OO=S?C%t8unYp`$2 z9eSRMDS7PBdOT;(2pl>cfs3rA@$i2IpyuZ(Ac2YCewd4t+i2i^D1ww}Uqk;`xlY{h z&s?lgI!}0NlcQMt;xgrYcd|JB#|d`OEL6x2b&;rbyN%5a5-c*X-W_S~K4)PbB>N_+EN z@fGv!?1MM0Y_|PH);Vdt_~?E_4j09WTi_U_G<21@(p}72{XBuwwbjJ`)N7Teo{i8VFtgw#u|S=fzO3nq)3K= ziT+cdm)TkvEi#2aKR?CoN(OXkP$zV!x5BE~;m9rdD)ijY3xgMK2Ce5jVPsYdT%}`0 z_CM?cSLP+54w)P}zxFH#!LVzaKABa0 zp4e~n87|9CMN{$3GC}|$LGd|P-1>E-g#dh@?zzQcS2*Jsw0K3ewhmAGn#B+qZ)QU zc!roSe^}CiD#5#mP&_jz6tN|H!KwJG#OOm)G$icCvaebQlY}&EWxyw-IbZOTQxCya z-3^5Mmc4X%dJ6VGG>=~0_7!kvMdEiVABn7LE__mSn&?~0;4vQn4V`mv{-oc8`dudw zkVK&SHrpgQr0;;g#uc2}nvXgfwHdR_iG=VFA*>6&O0{IZWG&7;qOLB^V|T|~r2c07 zA}7n4i$|5Gk!3w9!YKyhl|bOgIkRkF z(o~hH!CXhwTG+&_{CAZ)`bm!RTzZG)EA3^LdPNF7Id{mc*~%18C>&S#$4 z3x%1dZ?j>RG&EcoN7e2t0vegQ)U$6#sDFx4;@Z9)!oy-0@erFp9V^)>+&ws*&5TIH z7HcL@&F-%lWp@$&YSIpw;6u>oPCRNULRfVxiRV}6Aep*8RJ%(BH^{g^x5y>|^4N`+ z$7*9EgD~Rh+6UM$B>{X)+ z-cM%H%lQ%D-RL{aSu{~{pZpr!7Y?Bt9-Uahn-*=%&BF7o_7T~qpV1+|l#r~^FCzF` z6h5sH44gWSB6AZHW~D|U%AdRjoGNX_UH{s^?%WE{c_T|?`E)50^kqJQ7VLu&5_UoS z$u+2R*H*lJ;1#kP9it7VM_Vm$`A4GKE6ukS?cjDl(8T9tCyVwfsL<62C zK))_pl7ZU+rdcI|+Ji4d4Z%{(#D4>VJ8PWL>{K2keBKbAX1+MF`VZab(}xVQUnBTk z8gJCi1|D}e5HI&BqV>I{=%7M5SfZEA$W#5utu#ecX*UgXl`XOLnJu{gK7sBPTY!v3 zkp%l=CJHH!#qGyhh(A}AvC2pi;nREoS5}pQ+AKS;fYC=G_erci#f;uody~jHr;pQT z$`Z1*o!~^>VdAmFUM#^cfak_?c-S)z6$Pk+ywno9?PeHqI&}uL7TSS5GV9RGfUo%5 z@B@MUq$^Y+8%DYIY-d-=U!*=5%CfxUd`kHIFPY_YnT^v^CRxcWJ{rE4YSuER`p*n8 zPQXcAYkdu?XcmyeS~0BaaWk>^pAXEQJ*${QHJD6!b{u!bo@Kl&R#PUo(n;N7KD&;M zW>meW2;CeQvg@Q1wR6G~a?8{L>NsDXSv0$nS|At11{}CTKAJk4@}{KW!A+jjf#~1l z&J#*v3^SDOdhO;IIOk_aRHZoMtG!L=eWEF?kl+AY)b(&kXc_$?bw1ki z)EMvnmyJ(32$9{Z-^8a%OM*JLiq^3`i!%Oo5`>jK{k*{zylLEpt0gk|Uvkah;ks7D zw~WTVZMLGz%MRcfbJanp{YzR|#SkU!m65n$bTH?{6k?9w1hDdVKOU|1LVsEWV7EZx z;W=>#h)(4Kh4tlv#OcaRuH#?9RaI?Be?1C$4?fd-C3kIQX_7t1*j~J0yCbHhb@0!* zt#E0YEpgUy1r8RMBJXc=VBD)5=GO6hm{${oG?&L?!om#~qU*RJDH`QBnE-`|aen)i zKXkz2+gR613fL8v2?ksB;Gxj%xWIb|#Pr+4)N~bGu)+lI`tX-_R(MY<>?;@a1s?%y zm#&0N`kXHGe1d1$s0eu86wZ%-M{FvQBh2#~=?N>P@vXHN!SKB@nsdC7zG5!L5aSC3 zgHrmEj(#P)^U4U8R({9ZCLYHMPn+;z{eyVf3njd~QI6dFc&cFGZc}_LMbam@Uk__@ zdKlLEEADqZj#3Mr{IDYJhoX^$_PuF0^>?m3Ema4XvIV(#^>{1T|Ed&Xt!0hubpo z#myEZN8|!MW~Cyn*&L8@)*PODBWWvC{Gy3xR+4;%6cKL!6^E6-qk?AkvXKR=g~JaL zsFX=E!adzIb)I=6;lmBEf~{G*gJ0RYP+zg{1WR$LUoO+GpepvRb`>j~ zoFRVGu#w%k&YiM)zZt%tBhPF)JVKplY+^3AsZkl@BkcCw(}eG24JlQ9BVj|i4KCNZ z&ZKlPjD8qR+03-UQUBJFu2U)I@cC%J1c$=EI)?1-h*lQ?4SoSkI-JSSG; zd?5=rl>mH3m7G_-K=_8UmpLA+MeZs}hI;}c(8-iu{HXmgR_~dHqpNn{Kbo6C)%Y;n z+!IMSht=bsj?rl9S8Z65Gz76EBkRnsL9)pqc$Tyy@ylfb^It+X65XBx{Br|E3bQm& z)$EXkCJ%ZIwDF$<3khkrtAzdT6_~T?EO?*wSF~se2VCjUVP3wTA-FZS z9{q5UWX?NR5WC;Zg@RA7f!uUIkW_jN3_iLfSfSa4-uNw|w<_ER8jBxE@{Bep z8!8Q7H9sYaCX|C9hlfPJwHh?vCh2=gtOlp{#a9j&eJ6BhR)MpfzI4RIWZLXEh4|}V z5b8=K66IY%3pK())P?Uv-3JH4<0?bQX4?r;QzGfC7luUkglxf`?-O9W=?=myESU&D zakX;JY;XEqzCE$p*#M}{NTKuNS68kmOCVEc8~)xSE~vYg$@JzkGgQAX#$wGVhr@3+KP72 zd}#aRDG~1ZfG#X`6KQ`GfX;2R;ZP5vSGy%3-2=WzX=f&ya>ElKaiz`V@A9c@Ux@rX1A5TUiGFA+acb=HK~XRA z(N4Qmw8y6bnGD?mqk21up(Dn`$9wlc{Jcmsa43P__{;-x!#3;0NJxFAh%iYXk}LEM#xSgLhOcQnK4i8}!A4+GdHn zEy4gTAG8Jz#lYpS7ThwWmiX6w7M+|Z3nSbNP;z-bN}m%U zitw(2`3BCYBzzW>;uRs&x>~fV)eOW7lR(DxH%R@p1=>N)2eTG&$c9TQ^wA9zJ9Tp{ zyD%+-dKjiIF7#=~Hc9EMt#KIpa#sb#ne>?)b|_~Xb~Q4xv+ra7Brl5R=^~U_6is!7 zPGYR~Hd5Z{gs?EAh8p=bk@9cVWqrgG;0`C2d-gMp)#!pW~K+2ylT zg_9-B>!IjH?45KzC0{ZG@2*K^p7fq$|BAE7O)h#&%Dn@)-l7~hc%FsT<*_hmBNucO z>B4w>Da0y;;yIzIbRd-nJ-c6n&d&w3NLi0r8yyF&!9wtFs0&qO!`EfD`DY+&)Z6R>;hZer`hOjx=6 zCVK5xN&IqTK-|WUbeo|k+_+;iFh8A(!k-PmIWqy6RmDMzUKYTto;Xy!@I0DjBaObGB{d^3I{DUA1>TZhe?VxcH3F zHo^@cR#hL@U2Gw83%kJwlUOABoQ&Q-K15r4J0VwcjOJ`;B3!1%2ug}K(Ml0+_(1X) zkyR3p0^6n_p5sbU+*Gyk^l7*r(wWx`+7FeA210l|`Xr93tywn|nu|<<`vd0oA|L_I~SmTE@_6dQv zLJ)A@P)utG3Q^&)Ivg?~M__U}gfz+1rc?^2vmvpHLhLbxdJ(XaI`TA?Qg2<&UTwR~ zj2tzh@|r4{u9y25uTo9c=T;BfzAA$?n7xHr=6aG%PpD(3XcV%2D(@K8I3IF0{TPql zO=t4ma;U2ohD`g*PPoj4!zz3!r@{xNfMLcZszGljw)$@s<6W|y(S1LW$_c-~^xNl= zllM!LWtY;Jlag87@kk)KB;zrgw^WTiz@BDpf>TJ!;1d(Lp@ZQ~+YVFac9VY6$| z5t1`y8QgL63vhX4ia>uJR(=tTfu18u5SrpUUm`(xu{n%fmPAy_9mi^;65f;gG_bE+ zi7e9JjzjaepziP{)MqXxIv%8AxjjlKJ?8>(;q?>#krQU9cE@z=@w$%4*(V3L?iK^? zht*(WSQMBZ31BarfFs>=Xp4p8gb-MK7DQFJv{a7cYc22D%`N%44dlD2G>iH;Q7Pa zP|dp-q^zw0QB$vj%8uE1{R$&`ZIT{5IVJ{0b(ZMk!LM+qjRWl0sU~(;J_U51E#%l8 zhLt-Y@c;6Q?kE@$^_H(CmIRr@moGZ$;2-P3`<`9M<5LverPYKQKer;Kua!V=s}H=V z#3K&rXu?{kMjJWp=SK}(Ac7D2)64lQAb)2hJ+N#wXgU`GCl9NDJ-wSzTZwh)+a8PH2k*Z`aF zm*HY#S+sRR1Q-_XLVp)efp>N`AiTU1*{uaeTHIk4aL0KJy!q4^JW!Btf$Qd8}zXdqx6 zTmCkYy{8{X!H6!_PM!me)xz0~avuAjw1}$ozej$P&t~5kd}FK(HZVd9C(0z!MkpIN zpK=H`ViJxPQ#q`OP$1k-h0d%d`wEAd!J$avz|M7GPZ-@58)Dr>q_Wd z;{*%YqQE>bCT&V8NmYWp+<9oH;V``CJcx8;{-P>_$Hc*Nk&^$wHd?i)3ar+6 zf~#KKM}B)$$=59gkk_0C2lFNFqK!dt^N%RZuV|p{lwJYlgsD*BL?qU+*QETNE1_EG zZ=!fv8>}-p2J0`&lDSJBg6ndR(JaTebWq_(u;Aw`vZc%iZ7~u;wXB;+5+{Z)1DE0% z-5fkx(Fiz&39wn>?9R+r!5eO8L5Bq^(6RSRaW1ClL50a=+9fT#Q*<7>DeXfa?c}ji z!Z~o?O9b-X&%s%%Srih~2JGfWljXCv(;CWh;tPzXxH?i=ID4kISi$E$DR-)$?U%XB zmjAO5jyBqnk5i_JTkc(DiA9jzx$i8sqx_aIIVhf5mivgAGuu>1Tqzdz2KG@BjVpDi zZVNk3(=gO?4pn(vM*Q;p8%CyVKXoMUB-LD=Auijyj%}})EH1TEW6kHkWhdNzM5eUO z7OR?eP~VqtU}f@?*?H9oFzlqf`1$cAtiOJ?&;z|^^PTn!zxu}$N`XED9{O89cKDvV|m&(H8E0Ut%^(N@i8wFYpgurmKSpK_^A}p)aM~4>= zL49ZsJ7Xj0zTJR{y7&-2Yd;0tOpRdssr}G6z=~vzBu+qy54>XC5&GcMwO~-f+Ep^! zgmR{3qv}L0N%r6h>>G{7|B@4NS7H#VrctF_RHw=B$moLLShe`6;Be$!>ab*k*kATNo~_ zJ_&YSsD@P!4Pjr_1bBMk1Mpz(YUo|P7v~Qd@y~WyLho_|7_`R`i7O=>uzAPey&Gx7 zwa@A>YrGb!tSy8pUU8tSavB=-UqMS*?yMXNi-41u5&EnBG+1>Z3Edc+NE%tIU@N*7 z>7RWD61ASf@o)hVy2>9$o%bUaEY%?5466vklg;$4`DxHlI~)a>s6pAhAs9bW4Bjh9 zGJs#Iq0QyHXo7@;Q*LG^&@{9rJsCq<{c!|rS$P(h`L-b+`x+Q@$bpDGl?kI;rb3y@ zbm)3I95K0^f@j+f;qXAj<=iy<@u!o{+v44NEd?uZ;tt`-(Cm^Z%^FodM9$ z^dvILmB$TN3~5o`TiBVbhjZG+kb@JkPh=Bv2~7aWl6S%BxXBWigd)PpK|ov2n3M|C zpto<=lenEa*|Lv{!X|Y^vHac5RJ&^z`-b4K>0hjcULpUHr+yoX6^1+52<13-&00(u z_SXx|3=F9k-zTuGq4L5dQ%Z&TQw%Am@w=qC@*+0Y`U>`)cbOdKK4f=HU?pdz3zGX> z2gke~FowM@}#YHq^imoxS+rXew@Mi3LYo z9>T5{`(d!Dl;j!dz!|M_u+{1u9-C7jI%^USuT4{jDov5-wAUAym6ro2`CEdC4`;#6 z(eZFkZV`P%2YgSGf%Cgy8ag6j1V%wrT><9{q{!z3Vz6-OLG*E(H|?aw z2TE^RVQsGmdbj5yD14=ftJMdfNd>?aeaEnwj~gtl5<$m{1B4t1giTMAi2rKJXcyx@ zL~WIj*46zE%aQg_#M7ZiF2f$!j|3jO(8vxF9GDnD&YN#Q6CZg1Qoz?GTt^zb}3whA4mT>r(2*B0usg?$snb@F4Z zhlQRn{Mv5nyt}ga-Ue%C-JJwDEPID4sVNrve^nNCPSb+RI|agj6VilD6|;q{m!c?D zfggMRgeKV~m`Xj%oGLEA_8K&h8l>vdz)eeTg`M}pz64%y48}f)#8^FFtQNO7g{odvnP&l>|HVua$ zg^8Q+lE=&Oq21lUcYZkbIwZm$j$D8o841ttuZpE|x8w72F%fykkQ^creERiU; zovk_c)H0R)_pYC!)=?AvZfoJ!LGz|_B z9`8>Hg3dMadmhBoSJz1sXPty}Lxww%Ju2xpU;H&k+~p4%ij6^*f*i3WH=5ANAEeWs zmeExo)QEsmBSQ0X2B40)5Xo6dgWjDBh=R}4P)gPYkwZl>o$VAy{O6;9 zPT8u{2OF>eKFO@?9JL{I?FR%Ii|+~I&c7ud`)3hZx2_S-yzUXrjuylNUJ_leA(XJ{ zdzk#)Dh)6rCPmdbZ2t6xsa)m7xAtIKR^L1M^3ywfxN=a#z8^aU~1Jh#;J7& zd~(Z-DW;W}Fbgh|ZodGpP4#86K1yc4>0hwX?>1uf_61Daf;8-2T?9ub%D^r9yPzku z#Mv9qV}duCtd!cqjE`Aklc8tOf~QAn&by0)28|hqj$6RJ)&PpkrjQBB`uOvy&v-lc zJkZ(K3{_*UQ(Y%BO{KfUi?kH{Vc5FYmJ1TA}; z_L=>za{IjQg44pnK=y4w;_NrI&zp3UCwTdf<&`c>} z(alT5ExowPsJ3X@q*O!~uc7(JU#ilI0e^`*KUP<4z9QkJ*UlAKJq-~3%Q#M-nSD<% zb!oTgtc|6}Ago>h&pxNON%Gynzs5z1%@u^EYZ7gsT3J4$#dVHdz!~o7*1Meij}6?? z)^ptTe@uB9vTWCR6UWxYL#kH~DjqT^!&J@EOj+S5LS_bEUXfWdCy9ped zvMMiVXg_CIEr@gN?nCaEUm{+5P_SjOj~efl>L5q`z#VP^&E<(=J$ag0rQ9X@Yb-tf zlyg0mQ#i4Oqg=;%)!YaFY4UV78}TZaubs`*s9Vik_>g=%r#;V@yO|gLvY97UbcN@jn#>t}c#7wxDa{Qq zh~}9rwC9zB^{G4K?;9s`7Zu5sStj>=Wc$ExR-xCY)Bw8r$jI`y^DY5@nOMiwOsyES!Kb84bpr; zoUUL!zQZ5#aNv(MCC{;mImS)3mgXMnZsd9%KFj^6WX-!bUdFBd5XLPu`j6`i>%6V%XRXK+~V-tXSWJs7N(gaa;ofYu2dUN6eUa^nr8XPFjS#0HT1 zkQeYo{6!*l55kn7I&fCtar$31I5V~gz3=}c8%OueHR+Ry>2~-J0FhEVJtscBb+Erza!glwg*fNLvZ_(r8wRt z8(&px@VZ|E$@$4VZXG%qWR+mDkp6m{66%dv7y9$X<~<_+3+?O(`%W#}+v&?8&#CvX zdsMgU3%&XCG5rq~v0)cKQtzTNdfV+B-D9|)CS~-}|DF$(`aW!@x?dL2h~bJ%cY7*3 z?=X>#yEd6RBxKWstKRhU<|G>MZY#CFkWSxD-Obi~Qem8y57P^~K=Z6MnMqF@eK<># ztyS+&S-?={7Ny7<##PZD{COJSmO?`yj`sFmr*rMA*rmO?(mQMQ*8jXp%u^pbU3s{+EE}%LYk-B36oa`S5=L}kOJXTkFn$f3_`VLm z-8n&Ad`IB9BNFh7sf8&=jWETw6kd-|KsP@In;Wyqnt@*-cIIX5r=m#WmybvFFb!BM z7~=S^`snw32ADN$f*h(gYT|2!^*G-kM|8nVmv`;g9|onL zAkU`mfzLn3!>_DnaLV)or!*ZfI=lz^N3Z5=57iUT#U-4M?lU6UC`fjZ78u=mp9By0 zgA~Q%-0kW!@Sxm_+&4^gPcsrAfQ(Of$wNIfzO$#?1k;2{~2Au2WNccNj zodjEzK~C^2u)o_3`?HRMi$#OQ@VraB^4Y;~RXq^k);`#}tO^dzw!*_xYal*242F$r zhK!FrTvxd>NC(a$z2}mk=3T7h?ma_X8L=Fmb;;p|$49u?o-^?B_7_C{VIUMZEaa@_ z{(@7@eX#F8dC0ez3vPD7#K<~>o1pH5yY4K8kKB0t);)vdKifuzPqoH7HFq&Lw}2}@ zIvBe|7C;NGL!;&=c&-+L7UD7Z>!&T5wa*s0p&QAB@uP54RuQOuGsUwnUGYpSiu#4^ zWtU60PzQjaJ zBk1?!EFt&iVd}GbAakCZK-WDvC7AI8sHNpRLH?2-T@h3y7(C1uN^f`5_a#|$@3k^| zF)xi)tSF)@8Y5`3`cEO>!$Ej>W(_^+GnK0DRHtJXJ~YoNlK$P0z;v7_ zbJ}G`*ACKR2kzNW$C+m-ZEzNB4_DJh3q$%cp-_l>fc%tY7sxT4t3+~qImmhRg#)b> zF!T9;;HTL|9OON~H+?lX@4rE?=xii+Qn$S#4x8G{+*!u|%%EIjLY1MxpwG2J!p@eo#6on-ouShq3pgA?H93tTwcTg)xkC8nXcc5+p=3q88)_4u@ta zgI-e)C{WmIQJ6lK_nH0@&aF!(Qzds`R8JuonHZp-=6p~ry9Lfp63i{V%N6d_0W$>y z^0TipSoW#(ZVcSsLki`i(?_zP`4h8IQyc9DhsYCRm z{=9C71RO3^!I^Fmxx7-qv3G7@h3q{L78;2|u5SQ+xdNEC|0wQmQp3ur2hil0E&R?g zgt|@lvEtP(KDxAs6pLTszsx*HUT_FMKZ?hgq=%R~Z!`~i2T0%k(U|$j6_oECz!u9$ z#OO3UH+DMj7_BaTW-OJiEHGnMYxG&bJ|)(*v5N||1DJ7GKelyz5_>ZLQMCO(vV(+YH(Zd%6W_L4yOHi-mp5kO&r#K&u ze}4d>=9-Y(7>2!N`J{2(Vo0ny#ucBu2)b7yu_>aNEZpdVuOGQX{o)3go8X2Ol^-DX z_gI9hmSC%#Nqo0(2x3Lvd-E_d(BBnb_ej92%?hhB?eWOLP;71w!seO9+{n4lA?B--q1_PjE!C0)I_qFYe&9N$g8ITs~|C?DX1=zk8xEdFfdU3jK;7y^Y0LO~)iB zO^#q$$^_iza}ftz9?n};dGh1_T|)hfXHopyoL8+I4tGD6V1xc@u#3vZlrLGr^C}VF zu>Tlpyj9^H%H%<*Acb$1uYnNJbaoR;??r$ZZKMX14q( zn_xT{O8D1v&w|zQ5?K3eK0ol%C;oYd1{@@ze9{7jJq-hS%>#pY^Lab@a-B5(<=pA; zw^+>I{rLty*=zGt3blCmCR5(2>*9?{+$(RK?gkKt-u?`u7$vz zJ8-pYGMN311C{mdcwK6Ti#A`u+&h!N-I9W}>JhY`G?)LPGl$sAuA{g7S-94ahF@l$ z!ToDB`RxVwa8+M7@-Hj^e>x{Z@b=R<<-aIg|Dp`{4C_G6=l#WNmVV+@<;J10itL%4 zz8I^+C*TjeD;Vu>fF#BY6T|o5=0)4dzRpW<@^Uu$Xpjp3?HnvjG|k6ReG6fo6~ndH z%|Qq|i5(T@Fd(56+-FG0{#%MD%!tGDg)Y!`eFfEB^b?V`x~Pg|7qq@{bGj zz@TwI^0%fz%8xxLcR5agH=6wVCA;vYG40bZj(Hlv35IqcfM5m%OIF} z{dq}?-1Aw!`Y@?O;a&E$vYPG=H)qcum(alPF0A_a8~W9_5BqakLt2u5j19?eWD_5R zvMsjfm|j~b+n2yt(WWr!vNnaedv9O{E2M1v107bGrpp#z)nr#j?_zTf?3Gq)xJX9^ zhO!I!TGChpJLYPAgf(>K&@6)@wp~7$g{OX|?Q=Pa$}$nonvw{ig9C9*o-Mj>cz~N9 zOviC1!*P~JJWiHGk!hDY;L+k-GU@hJSbM=ykT<@BpL>cyx@`{5?$b)j|6N6Cf&lwF z-azQ25#;>v$!Okn4HrhvgV`B7F`z6K)TZr$4_jX1u07-Mw{kU>x{iTRZ$lV+HX7T_ zX7O`ZXp_Z;MOgeT7ueqrH1s=)FM}2NoetSJs9Q?*%nQWgQEOl;UyXwd7Naw}h&O|- z;=||PMLwShUm!$7x7#VQdO_q0$3+c)vdaxLfEAn9-jImtZ9DM>zTnRW=1Bhxs`v@WRDY$4YNRlv&V{^%b$ z1`|h}gpC)hxYt$*(9yn+;D%-}K3fFka*FujbzeNtHcr$=Kk{dzD?zSgAM~vG09&%B zqNkf|cKRTXpAtXAjk4vasq9X)H~$GTAHx zzpl`M8GEu}PeU)~Khpq@Iqk+5M@NI}!*}rTTNknAGKi=q6c4r*z|WN%vA(#Fm>Yc~ zljfQfjzV zpK8Vvy8g%$`hBsgw0*-J8l7cC71no9p?E#}ZK%u+9@nP-mT#p^S5@fKs#KciAf-B= zM$<939oXu|&vegfQF;;i6Z)-|vXTtYmO|c?hj4$r543&GgZUFr5$*Ga#C7y$NPZQBoQX51J>@X; z-JVW%L`OiAcO&R}$YEV%Civ_(<^D8HhlyiTiN0+Dgl*Xc3q}+{<$zD{Bga_uNLJNy z{?d84(l`=!e<}i(8Y5I4?uJ*=&VrWTeW+YzjVae8#P7N6xDQVy+B!*4clx+w+%r?m zIus7g$%?o^yq@f7-;ML}39ZC(kmjlE6W;@ycdZepRg^$$PU6FIL;Y_H0Ak6FnH+i-Ym$qIm3S89`hp zTi^`6N95KX4nKHmqve zj&tlsCBtm_S+!fCv@L`9&4`E5+jfE7w?4RdkS`=!1VHi4=iq5@f;%?0mna8TaI+%Y ziKE<3iK|&NgoZZ}-+yc2uj($cn12Z_&NImDx5^Ouc`nzscNX;iRK(aF>xl00DsbC- zmyi|#f*${aALZ*|#oksJ=~qe?-?bt0l#ane;|Sa_bQ3r8MxAAOJ@+kvupR6M`FZM#v(osU}!b4bGTnYs*EHH4+0$3E% zg*)9%;nV$M5KaBaMVqUjmf33jZZH#^cI2X?^dh{@Q^bu04fx*?XZ+%og(l{!LG|BV z@@IJ@?%2GXAGMZ{-&HBH?`JU7ZC!%gfX}$(ODCqcTjBhvgUAy@Cw#F=1m}0uJ{oyJvEBonD>{`o7_)dT6pjgQ!@O~09b@j+Ix z@B=eB6Tu90_cFd>3$=;-$V95y%x4m?f2Z}B;<34`ooKTkOETEy)=Fvh>u4#i$YtZx zR!Per*t58}3YL2!f%f%$#oUvgvjpo>`Zmr@GG&+xPClLrqn3suTQCI`KR(BnG#?xo zJPUUhHDbv9on&`bJ*;2%o%|Wq0xM&}h2Q<^@ay1S@SeRIudOtL+C^gC^r#)=eN@Cb z_vDG3tv?!BRG^Y;BphuhL!G9}F#d*&tGUsIF^?DHmUoZv->n^Bo*@tOC6#Elc@OV9 z%9-39cn=qz$cMMB3FsX33C)h{@Jm(F@lih+jJOz!DKC6swQnCj^zK{?+x8Y`-usIu znUVNm#v!!a{~xK*S0|5C&XH$2&ScwM2Jr@$$Tp8iQq7f+^u_XA;t?gH-8q@l%6Z8- zOg_n{RG2{hEP>SCFC$3->YPW}LU>V8!yPeSOA_>A#lx+0$$iaT8j)mfcCH$ac*<{}48geo34tZ*< z1%c{$U?Z}G|9)tJa_wZex;c$&t^P_%l$1&N=Bp&_^KgkIXbpsol!KL*c7g62bMDDB zF^=-{CEAVO$o39ZF5{}w7cALlYjjjlPj=Bhr&i1smGnIN=52X7G&4i!x4hoCZ9!qq0^$3d} zzmh~b>k8)o4p23}@$~0bDJ^l=p(%>f>G`+6g-~gLa3j1`vMJVtnqPb;bbTBq1ob)z zecq%9W%|>E6fZq0IVxf4I|aI9cdbyu9?&5%{e%y1$I;OV=@O43S323IS1>|-K{enW z?lqc0rhO7f+Vo12`E3;W5@ieb{C<)7*EW+c=W0pcr%K!)7j-iE@g&Z9lpNW==plbq zQ-BRSc=9HsiL}Jkh}}yUz^^|w+>I@4-1ynm5=i(3LQ9!t3JGeO+aw!U!T!DCRa7$A!5GZD zc&lEAKdm>Ed~1!uNv`8yt-B2_YR+9Ed}mwZQw;MAX%%c;m|+ z$tFNQIf^61t-HK6z{PExT7F7I~OI}6<K0t%=C-FpjfR=C_VN3cbGW z7*H4p1KeMeuBm%flD zNS3>!KU=lVjg@t;Va+Q~uq+P)R{Fevs=j+o3-5lWPB*8pXU{UEiItO>fqE?+3DGR3 zKutPxTrC@Fvx$leYp7`33YzRkSwHPlblu2Y>XBT{Tv!Af8I{bAUvXijC9>Y77QbpO|8`f=kEdhhRaHZ93ts{KhSow|1>J0Y(kJ$yvO z27Fo0`p;fOvFrc~g@tV2^<>$qv?sjkOnD4>I1LWU^w5JjGQQ{CUOZym7agqHVcHi@ z?66ZMDP9-gpWz`QKQ9}UYxIQE2X^DO!Dpa)yn&392_asxm28b?>PT?ME^skQ=AJFq z#F0xfaAA=-yj35J-@lE6|4j5@lwT$W9DEPATh?R2>W`#P$_Y|ix(YcxC4PzVAo8be zFTOe81VMGv@tx~toI1A<4c3R^(xqzTiS=+i)-V=)-mb(#!x3nHayOPF$`(Jn92K3+ z+K*ookC7#bpSc`|Hga<72{J)xD*Si1jLcrVmt0?XnV3)dBOceYh|F4(%-!DKkF3@! z;n#LZA^xZAe~Isrk*~#^$)ZBgc$mwH&W$B^>raZ`O*u*CjJ`>Zrw%2R$KH^XFN);O zWq+>wL=bq{6%#D5fDPscIp2k$TwI+1HJ$ZPTGJ`=%nyQN$5hCWq+=xU-9Avg8V4>u z2g&%Er^VZ}6kyrRecY7=MqsOSl#Fn+hHZ}Cuzs7bMIYS-e3)ZBxjCSW*eU!a3D0N1 zqG6X|)h%0?akL-gu4XX(Q9LJIJ{hv}-DI2J>IrWqNY0k-0ej@L)PX%<~_yIzX#!5lF@`I$;Lz{*kHWD8A zSqkb)_t8F1&h*7FftE#>(raVp(XiTg!tIbpLT_P%q;7{5ZRorutX1D7=$nQLyT2t0 zFMrPv7F7dP<)*RC+M!fj`dlb+`b)is77GDRX7s}00!hwTKRU2Ln;zRfR+!Oy0i!l< zA)yfi$x_vaq%8sn!;^l2J#K!>?5zq#%g((XJATl%^Jy(n9f_ z24%3)Kh9;&k%C&!9&!bFnBqDR%q`3<{yXi#I~@#%)V?o?x7kCun2`*+a;8}OJr(k| zY=Mr!pCImZ7Po$@Hk|!#O8%uF+}Io=ab9JLts!HfJSQK1Jfq}=NI*6|iA=u8!LBP# z+#}_^U}*3Z%r@4Lj?^-ksMb!{ro-gLoGF;sk^qf%I=H&kjHC;b$*<@+SS!>&SS~ zz8pP?`jBi;bvOz4e|-UQiv;B}lkrd5VEldP4d__R#?*CV$Y!PMP!)fVq%2UzSJEEI z_KyE>is2`i^~(eG-3JnJ;d|6DF^Br96VRl1nww@h4fmD!B zpQn*U%~_}rP)A&>qp;|WE*`85!%Of02b4yMrZ>q+uPgqd(U)G*B`?RYWzV+KI~5(Y z`=&PgU1rA46-Utq!Gs1y8d0TJ)9L$>cd6wmkyN_o0ga6j(~Su_tn5+*b5t{DH7Tle z(=;DyF||Y(qF+blD~;%>b^YkZC$pGTtv^e39?mX?bkU9H_1OCHjdW;A2vvJ=Nbt4% zMQ5EnLUqmtQ^B9mv<`O~_s^5&X0=f>T}A2IeJ9zN>lJh?*~jiX$J4H)eynNTIpMz6 z2xffcDE;wIoqlTB%^Nk!d=D3u0XnLodD{-SyjLG#aPp-^0`5oUxC#A>z~HnBPWx0vMrtI% zjI*bSjj|&-_RtnDFW&)w-wnm>vU%J`gCpt-YT!SEXk4QIAJCjADQN1pt3%+=6u9E8~5fKFPS2UtsczZ_V@I%|0o>Dz(wPZTuvh z(Hq9!Fm>X$OEY-|lN$clEOlVr!^h44=+(&^xbeI?%~Me%#0zVq&9jPO=`vSfgN1=jYT#&5DH zfXste_#4}XNp>rB;u@72-u~-VRQN9iZJ+Xz@yXlyvnz&3&am^CXP=A{?s`bh8GVqr z)!hPPZ*R$;q@jF#bSIxWc%Wo_P=F+4(tJs>S%2(VWiI(_l7Ww>8cGUIwee(zzGQ)X zzGTqxRa`rqwj8iHM|#>dN@{)}M>;}hs&vrh{Zgf6hosdndZcn+-K4Dtb)}`v=FI=YQN=gfW)M{AlOHI7f61D^(x! zf7aUbrMBh#e4VA}a!(s;wNv>)i|0$u1t2`0bcO%vnSq}-MDc-o<$ST7f@Cy1EYoDg z@Ht{7e{o_E-WpxcZ`!zs-TzQttrhpSKp1Iyj6GsxZY_ zjDx;Tz;|EwVU$TI`K)^l&Z;~nZ7mUyqA*p^Y&eOdtsa7PjV&5>i9tE0FK_f^5}YV% zg}{5JWP6|??o-~58-{Oz(*e0?yZ;hA_dW}qtsUrCxdc<=FCp$Shgmg!KsqrAKTp`h zzlwaxovpcmV~i6adZHh0+NZz=%-7`Qs}RqY>5#&|8*s7=?-o72gnqAGv3o*2#_N5< zsT+og&jkIF_&Fuu33o?q?UudUKPvK5|2gtiXR9!&vl4`mS%ts zMk2pkNyO)U)`mN?R`JJL_d{op8y^+?0c)>L=3VYQ;SVq0Bpws@OIqyM$Z}sFVnNwg z*t%M0meDtdeO*w+z8M%wJ*PS`^`~mgJlK^T`Y@IS&JJfj>s2f(Caq)Vh#|{r|HQg0 zoTZzGiKM(=6V1KLnE&NMYI{1C$$Pfaoko3RSb<8Da-Oly0Uy}xlUeM?nohQ0W;`o- z63D*Dd|cG)G4qx?!e$Nz0#qU!6?(LVN4+wvrKe9R{4)Eg4k zRd$R0iAtvF^cx%KRnLx;zNTXff+XSNC*h;WA~;+Xi7FxXIB3~d^w8Uks&A&Eb$A{g zm!uKTQU9Q*`X5oTy9SN&(Lyl0hhywyzSN`;eAf2~Nwh?sb6Eh|O?sHVWdy0V*oKq( zUBYsURM5{V!ln8b;Gp*=*rTb=Tg9xwmqp)j_g@AbrMhtP?{!@LKAPXR_${|&+)E6f zCTo$HwO58`eqc+vh~N7*1dqzRT^VUP*mBhgGG6uLPmGw4-s`?%l4}o|BO6&MQ z$No5_-&ok)G!hrss-b90Jg)InK%2NPpft`7m)ssfKD^!!Z^jjnk;z+N-v||9L23kc zjy(q!cXe<=#1-OTP=Upo3NU=;K{zt`Dd(p78S;+W;id-@Kz*SN{>WSoJ_E;r?Svvc z8axmcvv%XPo=3!PdkN|LcnL-siTEqu?sC7@$6=k3Gt^H-JY9YPt$J_Zx4Qlq-SU8Q zF_ofQ`Y%#H|3AcBW4zNFkA3B`v2#L=XyNN5$&$HaaZUFibP4ptpR(V%ze|&M+qw_8 z`vl;c71j87e=UhJT8Dj31VFxmGnORn5R7x0@oo1m%;;)Fjh#6pU~>%r=wJ#IJTpRr zNH=2FbRO5vdWy#{TnC@Fg)#^l1dcmX$^O-Pe1Ba_T$L=xha5=-(MAUtf8U0G7+lEj z_!~yf>@ny6Ie&rbHAivy{kM2D$(H}pI)MLO_JuS$59LGU7r@R`dA?;_I)405=D*Jg z<~Kdi6=!C|NUujnFu5IWY~#dK=5$h?t@mHZ++Fsuznz6_3Q=as0oioE(H&Z)+d-Xt zMl(Ij6Vm$1aqQL48&qd)Dtq>}uXIlRO}5@Ol%ARNlxmIlq6_*=Wj()=Xiswn)g1ho zxjG(T;o8Y;qRdlr=UFP_#8X*Hn-&|nVg$wUp)4_RG%L;cOM}d6X=cS6n(ca%He~y= z#HArpEt&rQvuzTKS#K!yh*x5BPKC13NA2kJVTak25LZ^@EyL#Ilh(b!V=lSmov+G)R<=rOp)Zi(pb^@PNI zC?QP+E740$kAJlH5@%nq51mdf1^Utw>&jwrhD!}L*V$uly8?L~HU;$qW!}bDDOmk+ z0BV^YKy3&?W6MlY>Eks1-RmwGa?1e5UKe2zDB-|2A^218A^ehk9~7L%;J1szNXYmQ z2+^HI;<^@q*Z13!2OIyx6`E_|O6*Ut&~GAZ5*MO|Oe@toy8|3U-*Jg;=izYuG~78- z102SUKzels=sb1iDEh043&-bk567zDk`=Frc+o`sb8!f|8!tyMr%iZ6>8yy@%#+M`V~$Ga ze?#RGR1}~gdm^TtwHA&Ku0?JZpxoA@ zxV(Hb**|?K@5qNk=1~pQX!j?hogy$_{04o;AA^0X?Xdm3JDBKSBTAZG_{@AT>L<0} z^j{*Vnd}BLO62$v^Wyj$_7P-ar3Syj?n_VJ3T7S;g6Z+{CaTvNK*QA4 zS))QG^)Sw)!>!M;{1@}soNwVwR{p?zwg#~7Q;gNkenxlO5!y*6v;A#`EbeC~J<`9F zI>uh6_@a_V9g@M@>ao%xt(wxX>pXify@bhosIX8=Pj*^M#_diFWRL9zF{Oj)wBu6~ zZ?vr*v<6Ivb-zd8${2a%$3&s!Ar({!tbt`K$K#Jy5i$FD3SN6nBbnzyVSl;2@a+B$ zWY<>0Qj30Q5f?dhLbVKl#m^L>PB#(D z+uuV(S}^9nxImgVR*=#J9t~f}@wb0hadxlfVf1Y`(D&l-P`$c`p6md9nU>8O~i-EG~=cOBx*_IDZ!jr@XvWT-Ya>8@A}JXv@+q z+|I;eF26BGq~zbkU9^`M7mn!>|J)@<>{{1xvU(2kA-qiVC!Xh8hiP&-$E(DiudBuX z?07EQ>;U)r!?O`X=B2{=q;Bp)mW8+@`WeR+8IkM*GC#XV8dra781bKAN1nPFi2ave z=UyMYD*pW|ReVG3Dy}T*0kBrmpCNPgd5EUEe^l8kh0l&l?) zE~tO&M>m*1l?3Wd75?;Q2u(p@k|bk&iJ*BxvS`?R!F-0Iq-0(>RHUo@sM?O+Cr7>x`>>>P5C>f9AfvF5vDN zxN{~8vN*}zO!3Db)3{8F7;?GvlIZQ9S;Wrbn>fPlIp?|^i0LqO5{86Cy&NREHr0$f zovhB)#LeaIj61>cm9d;vxfyvHe#ku9^)^4o)DXLOm;tv$ig95|s5UMJT{C~fKzn)g z^>f3%i5%&aar|xDiiz=~0C3M5Aar^awy zB;&X(t+CU|3ap#GF!Izk*g9C2z1W|R1FQ_NZ~1mqiF`rU##|s9WIn&6;XJ?U-Xm^T zK@u(tc7XrRiqX!u7WLoN;_4mB*cR8$eJw#uOnFEquiJ<_QgqPk(gD0P=q%c`w1{5W zost;8a>Y?^2jcn>UKmqYiakm?Jl=@KS)O57bp1JoE|+n1<1+AW!#?m^?twOT2ZgxK zrx;e3imui#@qqXOaoTm6|GO*;9{3EyVd5o3ZCM4bU-cB1UT%b0W)b+uGYr-~$|h=G z^?AFE4!AI0kC5IJ(mAHy?A5l((wA{RX!DGH%xv^z z>fir7i@6)m9(2dkoK1!j-6T2uk+K5DGCcyl#VtzpuH8U&WBKY6}U}90(dhjU;!pfDgZ}gh_qwfZ@$y zWMjnvl(()YHmd7EMQsiD{_}bG@!vV9n4k(llhkp&$q+Dg-AjCK2jiug4Nx`49?#3o zCqH>d@^Y;SR!)}Vlddas3ujRrHfA6!?^gxa4u@jf`*_U#&j(J*MRKZc{c%A*Phxq& z5gWTQAtu-puV0yqX%qeveY?9|Qa!5%>@GBe;g;|4x_vC#{Wyn4w`^pY15;E94?s_o zShBIh1f7>#g5~*dpsHXk)Ya_4@2eyjKlA`vmChtbGZ*k11%Ehc-37BJwsL!&!tk88 z4Yp_Ph59Q)QCVv!Oe54do|H&f_fKSL3zU z`SAS@lV#QN&^%C!54kfQztn9bi5L3tuVvW(K~*z8yfqjf@R#v${3w3+q(af4!KHmAQY?Wdm|YlTKPE!Oy>AI+OQjP53f*wL%5Y-WZH+tk;L zsq9(EY8Lll%MTXP)sibh;b&`RAEC&;Oj}4lmCT{H;RN0IY6&%)V9q9Ox0CjD4`wR- zOS;pehlMtJ(maU+>oPqpocg|&N#7YV|5Jl$SlKK7xGdY@kv|^c^%O0JOCa|>WfbE)!^B;nIvKUKAbnR5;hzNz!gnfNn3y;@kz44 zg&RKMj-onoKTj$CeQO2*mzvBmoy&$3pajLtOr-;dnheo+yQeqv_LVShr~j z&bmGfeV0!b)lA#W?@`_Z;j>9HB=%0N8rcN|Pawp zP+nw#|Gi4XPff;n@Q^avJ#xn1Wh=?DCC{MPcR0`8MWmJ&di$l<`xCX^#6Y_a1@2Lah)f=GvPZM;R)N+0kEMRz-F`2tk2lQ!$WYacN zG`eC0oVWryH#Tvr{VnlG&q<HwNV)vXYA}BC7CtsSCZ>kZVfpHJ@=EU{Yp=t5*c!=88B7bl%SO z?fwS+W`&TLb?*4sX&+dA8HvNXRRqB2PLeaU^OdNk1r%Cc~R#HXTaN zoEuEOhdYthbA{s0ggcz}xO{QpFh@?A>GL;d%g)}tJKXmHJgLy(x$qs&2=|+Drt?ZT zzC2m15cz}S+O`v0em&QxU>})sD~G$YB#yg$_Bwfd#f4-qK1`xL2XmhBKAb`5QlhcS z4r*;Ti(LM^CWq^yIfwX>WQDdoEZfo#9vgAQ&00eY^KFS?xE$xTGJNDde4Q zC24Qcv8dR29e2EnAtT>O$g0IBNlA|qWUZMGGuBlS$=m|+_Rlw>W97}QKXa9A?b*r& zxi}M#Wrz77e`7dMQ$!};>kkn{8eILXVmJ};fos{Yh)jDmf}3!&ftbHBfnO>n$jLbN4WRw*Cdt1xxZ&oD19&dxUo$ z3lWnOU{KNxGBnMUTXSd>7-y{EggiqSYSl)nX6V76qS5e7MH3MtkF!b^t|`ud(3^>j=Zewa_D z{|*lmE`2^K?90iMAgd8}+a3~L-_sF1TSwu5M@S;&_i}5~_Ynn8dr}Ku$fv9G$!6uj z#3vzQtDj-oH==3k2+CG~@`AyYZUKHskf%;iLHr4&Pnn)Coq4$+7 z*=lAYGB5NZ$-ptC6}2Q_-CR;(bB;V&@_>AQqiZ;<>;fy*Is_jtv;;Nb{Fi_Z-a4Ov z+!-lsyx9R$I0u}jE(|i)lVJE*UlLS$4Au_%Dh|$##=sp3knu?kD+kw*;}?Q3Q+_Zk z6nsTh`+hRYcV5Dq%#HZ(_;{GJ(hyfYTngh%rogo7Y~=n7#W88V*b`Vuo^Ex_11X&WGOBPa3h~Ic(ya{C{!qo#En(!$gqx7jFIU<+iQg|QOX>r z|8Rt`*(qf5)M4ym94G9Heqh9eY0wh40yu%aa#;2ld$H>*Idnpu)k^*hK2G_#{BIE& z?Pl57lBw*Rs^L&Itp~T6yFpo0E0XveOnTCS$33RA+6Od57h`8iMrb%tRem0=RZF2i z*+F#Wh?TTKc_+mAodF@w;eDS(Ge#o8aG~`gQWS9PYx-u=9KkMj4y_G&w zvziFn{WX|3_}IcbX}a-tQ}pPxh#X$EFrDAnSWaI?@1X84W9dI*dzxB%n63`7rjG`9 z@kcDgysD8sogc1Em9EOscMmK1se^9v!2y@B zWyqfHtI)pQg=GCpf&BII+-jY0?CtP}rl3*CmMta;Keu7@hi)?TY$EihmoQ;o!||zl z6f&-wz?%)jn=gz&@AL~&_#_Ma=6(dtDdDJ^Urx+N){y=$lhA(DAa>=5kBpS7phsD| zfPIrODsFJZj@Lz~<+T#Oy^|xW7=6s>(u4I24`AF8AzL1|4~HbLMy1gaMxmC5;vqR% zc**rRWR;fS%$`*Aexb&`_i;k8UO1`=IYZT*m&l!dHOx$wgBV{atZmxC)pkp>OtmVW zatg$gf?hqbMv2{dYa=XlmqM+z0Yu}`3_KDvfLia8K(y;2t{gK6pPshCN;_?KkxeWT zzYlnB=XH3cwF;(Px{B+p(%D6c8RYgCS@xFZ6WHT=3$@%wu`89$*ySG0m>9E$M9N2F z#H&issj0=-w5vF4{2=!5UL*Fa)C$q1?q6bm&+lk|z#q^1|Hkv~&g@&`1lFu@5Ibt| zQ1*kIFZ;%8Eev()$2Imj5ZUV)x`9WxrjuM2D+t?AL4!)YU>%P*vgwx!*|HaJSd)wZID23h+v}%=a~;;PugmANkFB?}(Kn^U zZwHr&w(k^raG(F7_m;QPx&3ky?Uz|}NPP$Woba9Qx;j}BeXx|O$seS@)@-BKytmTr zciO1ulhMW>e>T&OPqtLmOkNWDJ6!VpsF`F=zaG_S52WYy^=aOoTv`x0hyFY2OqIP| zB=u9|B~xXnM0aT&&0nMN5xaL=|Uh)PxYbywR%&{ z`So;n|8t2)MU%uZtBZQ*ZI&bruclht|53R$YBaS@QS!v0lbX9vr~Ws+#GiUo(Z{+O zj=@dzS$iI(zKPf}-(z@6B@(~2DX_Z+-zN(^EpW^)W$+f}_M(DQocNzQo9;UiFN(AA z&J`c{8DPX(Z`lv=i~+W^`jfJ0M=>|oM0h4n!~IiF@a>x(aQ$L{zt=JB?ci8UzM;%6 zlDP+OcJ74_IURU&XC_-UE}y)zAI(;-l0wg{&*(ODD4TP9HoHZl&rV{Fkx{$z(XHw& zDD6;WH3Dy;Rr+wYeKKKf^BhI0drz>MYvQ0i=qK6eRspLg34sP%K%>#;;M3YT*!$={ zT(Wt^Y#bN?#B~qZJNFaW{IWt^XsnCvK8Wa#{n>K9pERY{j_;s~~E+F-~8(naru2N%Sx4;)G9MFluF)$fsPm zqy8NX6S-_ytKpB|HihBe^(LTPvY&~Rl|lc%Gsu`*mRM&R2wxV?!M9Tvpl{0-qo^l7 z;>^X>(Ccv%qHjKj)BOx?y?+Kbo0=iNa|}N2cESNRhIA&6$DGTP;6`i{xRp%dGRN$| zj-3=AIYr`qRY!8i+Kv73aw#-qy@T;JpO`7*1ddPTcoeIJ!8Bt73~Cz<>rBg-{+3$2 z{$K#Qtj=NFsNE1)_KKW8qsi`N53!>~+n9kvckq03I&}2t;f(fNtXQMWI!qjf_eU=# zlPmi1X=XfeKYAa-yoX}?jAC3KIElS`JI|=A&`UCHs}*&P9zwY|2^|p`$=^>MMioTX zbg#Z2?VB3NXLK9!{)f`|@9%T?5rb<4hQc99f954VKrNV$-RDBLtt+K1`%>wd%Ub-d z*ib(0*iFu1rz&-$f4Czpx_nte5`D62Ar*B@qQ26)v~;r*m59FbqJ??9r(qT6|79k< zEzBC#@z(sfbZ0*B-C3Tou;;BU#?z^rW=p1LtfT$wU+~LSq$P=8#QgRZ(`f3G}%2#@~vgvOkh;g?oHw8c!^IPyD0?+=GDTCZWXUKexso;J)3 z^d;kEhC{>dF7e1EJg$n~4u&4DVMJjwv*lh3}*Lx!#Kl8rh9{sX_bVKh6aB;p>zNWb64S{ljCvd6C0yVyJAqgorOsa*O{%6 z%5b`=h8*jg1zvMvh{r(_7;)nuY`S2{Jo@2A?3y<--cV>Ckw1YZ?buGSSd#>k9R995Z?O6M{On?X>=O{GU{(wolK(;9~v-v`J^Ef+8ilR>jNQIKK!2|7;RCu`M$$*Dt@IPrcTw$5#4>NBRJmXtay z%>4?VJ5|uBz#6|+uR*_c8BEKSE`h-kPTuOsqHfiF=*a4aQ}cxV{@7Tfxc3cok?Ar1 zSHJ=O!F&@w?zk&2Gue}0RJWNA{xpHU-@lU|w|)hm>ygZl={DgF_XqNK7q!!CqN%+1 z!Y;12EuRlAo=QXJ$F=dtCTkp&|6))B^fr zPBx#aI-a(dSMrOF9_1~T6>_&%CGhUaO7!NNi=1|?n1!w&;2v3#r)xstf#pVsJyZpo z*Nz6y6QMAyydU1b%3x;Q_(i&J7BJR3vdDT}KXIvZB1|s1LZV`)K(2HtQSKax<;xAp zo&Q?M%qCzKZ5sh+<62?TR}Z2w_8+igJ`jh@Kv*6|Ii-V%*ArMXMHbgTIt@c)HJK`}MbJ8FJ289k6xRRU3S+#= z;fvxJ9A3KIC{}hPdXZG})qXc4eISBdNN^?<$6pfHZV{;*$PskgZld6KO|&bgocSC7 zROGIb$w<2|Wf%BeA(@pS%-2gZ$?shgNuT@)QkJ=r>7qZGkli+-pO)&Rs`a*zsoKVv zw#dVx2rcsC#B*}dy`LO7m`0`z6*3Yo^N3-Z8B=~Kklgmk0w1%pqQ=k^;_O(%v=1#J z*H#aLt+ATm`B@&KHin8cj_n~GN2JK}eRs*7(XN~0EZ7pbQ*lyS;CC$p+9SL^S zk$ib53--1DL2s!)$gXW8t{PV0ZIJ_=R=!O0K3R|nT*7!Qd_d-8ON)&|9HDr90@0ks zK#V6#obR24`7v7Lu+LdypPy&ajpCIs>qts~2|pORP97mi=N~wuF9{_`)~btPRsXQB#sPKbe*l2Lq= zO&WJw=Onl8Zayc~5Wq2iZ*#Ba)$wghv}u;$V}Drh%R!({cz2TWtB=SOV{@R8NcPVBP9$z?pnbkN(-Ap?ysI0^csq*7 zMB2<+#Av{rL&{`xV*%;!=ZM}`Q*b<+$-FIGPP+O|ijsnkkOfT(!RuTN<2z;**x@4b zr+6?(^Awh^dP$ZUPK46(RixroBJ=dpZzA>gkC5&BDRMWM2y5KOk&6|ACXz1(S^16N zRW}RvIYf&dn^lp5#9?IQ=~*Csri<)Y#em!N1MpX`#Bkh`dJ?3gO5U^vh(3j0W`y=^ zM*eawGcz`ji9KpY$o`dNgsq$?@0B*Aythph{k1^!l3R^KUCNksM!JmAvo%a>0ZXQj z^kDXUes9#Yl8W9Q$~0WNdp@&q_AqkDaX8cXUl7q^qM6*L9unLrOFX2$FxxjqF#iQb zlc0m1qR$G=%$f_C#AvjiXokZ_!H)J_l=MM{R47`IB};3WQKc#%Kd4l+d1xB*vfY5V zTkU2Jj6KKPeO=9Xn|hEP4i_g*XdHmgTout44Pw^DMv+rxAIV2i0#Vm8A;lZJiMPOu zcx4bT$`SqxP7VJhTDQ4bosj0H4 zE?$=;CcY)NAKzwzOr0RxPn(!zuwb$9g1}e|CDW5^$=@Oyvd3-?b3(W$NG&@H)7?if zDUnJLe&8PStGAOpncPmYWG)iJ#wbYGuuio2)ih!yRn8o@u_BLd=aF4n5rm!N4nvk+ zG^|+|%r894a_!Gux$1f&E-ULONA~M;t9Q-ghO4Uc=NCqEKC_a!+$-%|{WUKx^385; z!`32xr`>+;hxAkNNm*O&kES{ApHt4&{cIEO6mSh8y|v=RLF(MZs7vD3m0n!RoRNH; z<7zJLi6*~9C=1{Y?Bos3>Wrv8Rz`Piqq-t7qexS zT%CbDf4*f59ebsai*60z{>TUM50=_+zh|_Ftu_m7lkszT^Uy$X#fM7Z@^6y1ZSf+X zfmm|TCXrNG9V54jzB6;4x09G~OL)GmQWUKE$xm(_sk&h;>F>q_iPcLlTIk5O87DP#=m1l`(M z4IQ%=1_ZCmzlJ-|)+dF_N(ZsG)_LLgC-+dk&l`%A4Z!*FG3=2FXE)}~ zClOOC@l%t)0jiJ1FWo=!^5;=(ky{iF$}k|Cnh#-JgfDCixQu63Md0Fmar`@X;@-1nthNx7Iwy-Wc!Vz@zs+M)ZNfX3{87+AbB1;CsG%e&U}Zh-`>NN zM=5~HF6N9Bps!ZwR~+4e~2<`eYv6lMD3_7mFtcA=yw zLsrtU<}XjSEupWyUh^kw0%+t4C7L#PEbU7)lX#qNrmNYZ5-a1ARJQX2b#Th14(E4M zbB$BHN9$es?q@bF{OLr8hnmqp8*OONVpD4AmPuc;g_8FJQIfOc3h0)4OG(e^Lv(re zLn^J%EE>wD)%aqBiW7d{U5}PU zXGrII1+?7IObV7u;XR8m?pgmgESvWkwB19oJ7EIEG)b}1@7!Qo$!N?kwg6=46SsviL=00Ql^l zMe-9hAU`#ntn%FknhFegv8;D zu;P>sjw>}GHNiJrl532UnFICqsi7%qx__(^@Jh{+f<$-{Otd zmy}U&W2I>v^rYllTu{!E2U}=1uz!@*xfP z>ApsHe(SDJoQmstJ}GlNU7GipZ{OL^O)gr*>)dST%zw?~?NYnA=5LfA975^r8HM~S zl^%ZfK`%aJ_*Gu6`_}_-RM;`TCD{xt*Tb{I{gLe0I=3&dz%&8&Y_I#%TR%;-Ya-{OnH^9LzaQUNmfhM<+vx z+lyxS9khuU{v838zqT=t8m589s%A(#8Ay!t-hzqUYhv?s66{*l1#a6yV8ipb@FDIj zFi;gYOg3D18LucIGaq{HY;x*Byu9mCxW)ouDs0ya=6<3=^_C4Dw$Fku7Hj zz}z{-}=FDan>0Wkf(Ua>9W9eyNzvcI*e4(9*6_T zVl4kSMewq?;mr-#aip7w4KhECmRAx{#-{_{kijr$AOVjW#6s&7H+-j%#eM$oH~v_d zfbY}?u{O*l;o$|wuCJqz|5J*AVXAD;wgYU!gTZW3+yMFI zy@YMry$Y0kO<8sQGnlArz*_3(u#fhzqMI4FBzM-IrqLb#^i+I49e6*2j$(pnvG-ZJ zyQ_mbZ`7jtEv0V%hGb9eI=VY@k;E&km;Y8#Knryi@eh>m z(+Zzx>ME7XOD~%t{u?ZVv*OdCdG37d4H$~#{#9%VU4d;omGI^ccl@t&6}c$n`Q!^8 zleyw7n6zXyXLdOcLl)l`8loLBv&x4YF#L-}E+(+8w-+v0++!|-6F#~VjK9wBgdffa zFaiT$#%dWj@6d%yp7EF}Q-{k|41>{p6M1KG91k}+vR|*}Fg^a+C`pJ1#>x?Y-@S&$ z8)R8~r`gzFt3!^5gknF(K!v4{Ls%yGN~~(|{p?(P(0Iq_P~ZjJJiU-?+^cQxftcQ#4$D0Z|Wm$|xC7vh?>ycG>FLuzlG>viN2n`Km8w ze*1L6)9DwPr4Gx;6IC72HQ(2yFfx-Ja z;QjL`c~US2He|Ly-Vl8}zGplnt&V0Kv_-gSR4FrCS;!CEdP)Y3XoK(v%ds~u(a=|5 zONE65@I%BZe8Q4YzB?(4n_#caw_n;bI&{x-yGA)eJ@tvwaY5FffISu z@nbi4fA>vJx8WF1j`i?~{6}8!1ac0FE4ZNJ3&jW7`NDhAEjIkD!zmU4{V$NTT(p8hSSY)u&i z`NcCeHaE{WOeK4DOKposKoT!h1IanO2056xfi0llhSP}x}vS6ZGkF_T8X z*Wwmtm!QXKWH^g0vWDY<3o_t3Nzk&}gNa<*3wR+DN}7^Xpn33FrsK(M=rwu+4RvXx z`DZEY-~5hDbdv^W2W{*+5(|x%gD~Jm7&(48n5?~%1($9MJSuiO)4XY@z@mCXo^|BI zy(uG6Pi+or$(F#B*YlYCt|UmdOeJ^P>!H!77^=Va!i{07xMt-vqrsCuu(<_QFy%uS z_!)G-?d>zL<3|d5c*&x%-DjAQHy2wA_L1tyYIyW-J9$@72cF%x#0x98phHe6%-J{z z3-pah)~BO*OvL~~RMJ5*fhB*GRdBK3sq_xD0sYP2;QmS}sBSz;w$}J#|D-E0dXg{3 zJuD-sr$$0~(oS?~)nyG|sgfL>0=%kt8025@xO@4lv&H=3?THG7iy z`0ZQyQ)fr>*Hg#yA6l;S(>BUTDwG;|=?WwMoZ(O2ZLAypY9dS3J;(EBrup+;M4vCd z6~_mbPv#{b?fElr9B6IaZ@y)bE?qO}DjzpYhO)Dod6Qmu{;6jdx69xT|KLXz&kZ9{COvy1SFk^?(^Hk>1DJ+=k2lmPPz zN^qr?0V;h{MV)7R@Zz_5gzdcyHy^wvlNC}SN01@k?_Nq3++_InCk-Rzyv80Chx0>e}!vH{P7jac(R@aT3P$KP3BNadn0~DiNQC}N@W);y1f7uML*EGtq1?>GQ#h(mgD0rJB56o%wx z!jhN%n3jK%b38VT4LNlYKiLjp*EBbfgX(wKKQ-kLB-|TyjY3Fj*(Y=#FUQt%e_%*X zAWm>P0&ZbP$oYgxEVXe)?b*8QU%RKEFXIcv?S5?4y9V|`ULiSVv4#z~r-JtDYw@Mu zXf~tQhh1bLbc4*(fy=Ax*mWEHz*I|z^@mHS@pv3-J|~xrIyhbAs8A`n)lfopUmc_t z{WbKcq5&P*6hkNFl+YEL?R2`yI6CP~HQ#(&nO-=oLyH^MQt!WQ5*0^R>MxR~gVgG1 zlZT09tgDjbIg;IoFSW{{1k`KT*l=QY+&t{beP7wiVQ+?K16gil);q-J(&& zTj;mt)9J@BTmHRc0X?t0no2clQFnbQ`e~OseZIbj|28&}RvVs^Xn1mxwc5KW=ebZ4 znW0AwqSNT%6YKejPa5c-sBro>u8?=RWgyl|l|^mM2$T)zO@eI!tz(p{j-JC9XJO&pV)AFZx*5Bj2}?iY=<|#>?P}-O0oK}BVoEv6=+De zFb6#BaG~FEB-#O>^IEid>EcDvdHk8(Lk^^TB%?LsaT|;5{uytX z`SO+c?`8<(4YkKVt12;ha}T=R{ttUK4M?l>HjKF;f!3yJT7ovwRd^y+hppF<17FS-H)St}0Y0Sr<2v#y8b_qdwvXi{pe(@?6kp( z(cY|_`fC(tPiLp@tA#CpVqn8IEjFrIO5B`#il`m7Vv|?vVL^lxTm0CU9aVRf&3)R6 z@J&_$K4Py=O zJYy^O&t;7gX0pNCa@a7dv#|Z+WVR?w6Yn_bu^At&c!%&NK;!*bB47 zZ7X)-N7H^>f7cvh%J;JwpH8#QtB&Cg_l0aaS%CI4AHw2!&)8gT4R(8UHJi}09RGVM z!q_{*#KsyC;>BLeVCcL)R@43(?obP0H|#55<2%*GoaJZM`&&Ld{`QjnJ$xK)9detE zkl)KHJgi{H-?kCof8H-Df4JJXe}s+1=9_`UV&h^-qIVNL`35CtXUn0!>SXmmTx zs!5_6q35YdXg>XzrzzQ9<7?~|tteS?;V88`{hwr*`vZx6+%ZYO`!&?~++`XWXF-FF zlq6lVcF-pSfwZfyKoY3ATC!QnTe2a1yyVV_tr98o(UQ8A?`e>#D&-RwNj@u$mdsPA zq`QV?(|);X>ZG1QkFPS4n2xtHUbyVLgq|BK@p#=LQFp7Q!L9QpDnAYBvb|d*9_A*J zHBviid*@TJ$K)y;VJ*R&_F=5eiTh~$+KcVG+bjGBU&GE+o{cLW0Y;C!@qXH7NYGo0 zrnS=i*TU88{5o&+>z87kAMSy{QZa0uK{K>Zk3{L-9Fpz%6TgSqu`i32aDK7@`)92f z{|E*_QGW=#_)t5JxUrq}@O}h3TQa~*!Hku^HAuX1R~9jvyn;QNIR*0+HP{qEdo&a{ zWt&gvvpXwm$nUEoS+jv3pcCoKK05vd7uRiK|CVoL<)UIlelw-vVFo3m=j;@1-fv9; zPfQ_gRu<%{=nON*LytT=@tADnWR1dgMNG;19Fbp@42l2s1Z@Pyv;FWdOqFLNV`y=h zc@R}XD9DN$yS+qx8D)m_)-^__A&UfU_%5oxt|oASXE0GG#*&p+RLSTUe$1}vmzck8 z!Hi>{lW4ERfV{r5n*=?UW{T_+h?=beW8&{d=3nw4filLzjFwKGe=0MI_lROFr;K2Z zPS0kto{S{M-8MwAKZ5*NH-6%cS27qq)`uj`JjXa~*-kFb{zWd%Y$8FL&SZW4VN#Z} z5YWBWXp#Ix@=ba!qb!n!{X<;X&0AZ@mQ`s))*_lbucFMb$OEvvty=V8?tErS`81=g zSW1jk5yVH9GjDw6k}J>cn98sBnaQbPq+uY1*;TidTt0A)vH0{xbblhiJ|j)wre0xe z%nTs6=nOMtN(Y(o`8fG4?EY=~EV1VE8pej^lGLJ2%&)r}$r<%f@?b(4xw|$1E|nad z*r6oi^FMlWt94oK@&qUD`1#3PZsjB{>8Uwaf8iPzG|8E3=%34d&@B}!J@_eBH?80n zWS-ztPi^7+?LUg=k`>(0GiLlFQpSB)fMTk6L_DTOPdsj^Ij6DZx_E4Rq}cJq1}@;y zLhh+n7595-i+D_nEjPKZPyEy%h1=)&o*i^9iJPr;SNylwQt%MBi2pb|68ENk5N~hL z;IgkS;>)fL5%RaEIkUspx&7k9T)!;kUg1n}vC;~z_HQ8fJma*`iKh!kKPZv4(rKdP zY17E&`nhD1oQS*|m&F_viHW>zJ1H(XXvBpc5jJD~B3V0zd{%#hQL6&Tb?0to%!zMI zv@>NA@=ue37*&yTth;FW96Q5D!JUlrvVX)|)qrV}3?jL=BuwJBL1gj-X|mzBJJa*y zGLx>ki`l%*QCW(D z>?fKrx^5?!g!$U!*l2xH`@okBL@Q3*9+D{jm(_yXt@aFxP-4? zU%^Hf6}Dl-5U6_WgpPlGAY{7^;@*4Qf2Xb4H>HO#O5hKAkdr_Q6WP(x)v!NnCFV&L zla4=G=uoG~MrO+4eLsD6l&%HxH^yS(NMAN%?R)H+Ih`H-Pq;q{JnnWC5v%`lkl1F+ zLDKNvfsKDP67P8bz#T)P**g~!SgX@DXmsEdF_s&|{{5Z@x1R`EZS%JnOB~p|@&oKu zn_SVL%X_#p+eWh=(wkBKl!$F|31c;q+u7mei`ffCGueMbQ&``(`EW&HHQTIdj?Z;f z*uC2p@afj4Si3*-*`{5m*bpuZw3Bv=vpc=8-n$1k_DzNHQbDZEt8DgOc?!;wEM%KY z?a@Xf5}ZH2VN>Q%QVIAGhVcKous$JK(fci zSz;pln7$&W65Y0Ck`)J%C10LBqy<``^pI8q-Pv428>S7D=ye}4-onXAehHbt&cTNz z=gM0p1HOflG51!|jD;8ICRZ~$c!IWMtjP}gZihepoO4m~BEVD9(BUZ=RK!WP{yroz z9y>~+x2uP4>Q|uuey^9*>j~#W`xUxU`z&1&P)B7HQfOh3xx`;>nekD%I!TJMo@CQ^ zX=5h6f_}YbFIg`=mRbrqEjo3M#q%VYjiB6DvVBD@|a7&t@qz9PZh$!d1gBdzz62>kg)=}p_jQU=npgU z{Kaaoba2xFWmwsk3c)`GUdNVR5IH81ETIyyF)xz|tKSM+xIU49tp>5pPgW5subRyt^hBIun+c6#=BeZ!j_6?y!5S##D7d=j5k20=5+m~BL8^0 zF>f@gk-w6xCize24WF*Y@G~rBXr2858dt4Mi{~)>blYgYcIX&Ba!58m<&8BT)v=8K zF1v~Lxye%P3_?TiwD8ZBRp{EW9emAsA3l722X}QxJKtx0lOHY<%S(^l$-m>=`I!rL z^V<52{11aRx@!MIfp3T(Sik!Q`_J|;dC!-C*PRX~Qgb220&D|DEqt`xUK6PTe!W2CIaVKus zd>@^+9wln4Kf=YbH{|2%25>f8!M&dS6sL85fXOLqG2?L@3^?}U59fJsY~*{m_0F0M z)-l2^yL-a3c?foFyM~WE-oVvS1atg`u%1bNXy17UT}H=4*QxQaxi}l=%!*-epZ6mp z1{&~NWHEePcp5(+8^Wfg>99J@nfQ683HkkcKYqP(1j?*0qc)$6f4;uK&o;x^#-rAv z?#~_KXSManZg9nCGaqB>_et#Q;DhXBmzOAar5p3TTv#owDR85^1uLA6!8DmW`0(aa zZn@V?_E~cUW}Yx&yXidmA$N<-emDqcp9({X_j3XrL)p47o~+Vi1H6|b%WiTLdJy{V zgSEF8t8?HCzTdozeLeXT*frF^xKr`$yG(ttM+^_vW^rsx%o=>1X2RNKTe86!sjU6( za(14BBdpC?$CmW}g51AL*mJ%j_E+XIR{zRpc2a$c=bQ^(%el3*V zd47|A&1s-Z&oYwMH%Zi?-i|hu2?3ajxiq|`l2(jTGQMw}PY)AA+SvGm`jzaG^nV;H z+4gVYW;|3#-G ztuW|pJu0sHi6d4>*vRq$^nd3;8hp~R!>ABSHRaf)rCE4bQHhN8qX|9vFB5E@9hoq0p^SD(u7zwwPenRT0?{?hD%u!ieG85zw0PQXK!w7WaMi zhhuLZ!|bE_&}xw@a8+)Tw=qj$cK#=(&o~wG9&i|QY8bp8xeOJrdqbGzWf=YVFkY-y zK>yg8=-Och*55CZzULDB?WQK|`)@F-Gq+;S6(fj9AC7UpnRv_mB%1LPaoU_V=I@Mu zaJWEOV0xOO=|g$!T_bR9Zq~Y#wJ!rfct7WT=pr7 zq(C^TXT8Q$*URwVzq7bp&>gK0`a@8|0IrXlhuTkGqP3t8tBiMp8A+z>)anxU(%YTn z;2m?;uk|(L@MkdY=N}w#z?2Qwl4D=X7nAve2D4Mm*FwPE=NNc38{<#6}z)$ zQJ-q2B<|)BdUaqH?JRPp!TWUR`XlS36l0Naoh^H2Z)9BQ{b~Mjw5r0@ZnSSxuLXVyN$Jf=#(v&n!+Wn!9Uzz1ZH6I_8 zxc)Ja#GTwg#TD8T5BCXlb($M(9krKVT6mP6yqrbf`wI;0lY_<2){Mh_Q%%9X#T;ec zk3iFybkuWIz=`XWFz>ZDUJ6}KE`$|8YQ!0GbA+H-789;W$j8|QU4dKbx>zLe*<)*d zphv|3Is5tqEGgdws#rkr24D0o41}OrryyfeDylBhLzM%;Xs3UH z-Qno@{TeQa958yl%95=!kAlgU&k)w(JXFk&fq_Fpc1!S;{LS!(%uCl{^V0Xs{)<&`;X`5J0IGbkQ?jrdo!(iK&Bjn-uZkT>1gw%JBg1M(MnQK>Up#FRt#M@_+ zO0@)CK;U9w+K(#g%d5$50KasB4pSrVNhT&32bnk#}~k(hb5uw)$p=<04|VS1zqEYWBm~okW0Nt6ok%*MQZmTwM5{p zPJd2xwbkInh9fw6l`;FUu#Hh4U5w6r1lW5|LOHXA*fQxlI{%KufLY$;>=+-s*C_=p z&%LmsW(KM;LVw)67r6SrDx;UT-qXLQp7C!=9`jBM6{*>Q1U_^8JN{c$4}Zy%r`^FP z_+L4md=IhZl~Qc@lBrdEQ=_tE=8QZ1vr3+Kc_&TZJG)bn&KSC8*F;{%ESkTOJf8RY zn#})gx8MyU*7H`!Hq*Y}gXoH9HAE}_Gzzd4e4etZVEOwQxo%T~cAd{V!Qo%+?f3X zjtji-vP)Gk%<~EvvcLe9S6>0Kn+jg+9*6f|FER3LPr#p_A>BHlKLpF8AM-i~Q>Ear}n+pZKAEJNch}*?ji+ zWqjx7ME(O~!VMqD;7ddXd~C)M-f*@wFSY#(7rl(*_x^Cs2l*msf-KN!r%r=@bWLkjTxpb^l!!ZLPa>*-KtSmsoyU11|F$s@NOWx~Y0Uy1R#O)#V3JF|7ibH>fg6@sFL{*Sq@ z1yA?|`1&w_XhkMKu+;(>u3Q9h4nr}>+L@728Vm#3tI3R71yFqG27Wzz!1=GRV_y<( zI4wmT?<-i4WcgM`s;+`8KbAtC+*5(LmBD0BG*5D&fZT^OqItnqB=kX?=-YE3Qrc#0 z_f0KW^tY3#D~TkP$@fKZE2GKS_Yq8MzA8zlo}wX|j^w3NGkMw^$?$;-$i~iN%sJ&T zjI`%ySUT5*Se}!HYw>QPxyx5F|E>j*!8N{++#4pEJG+f+OKW7dJ~&C{_&p}|KSVH2 zHB;q}!ic;0v+`RpD>0+Vi%pS5bR z_vbeFSo@w_x)DpJe3pg{Mk40i(`)2zmMjx)S4Vn+1XeL!2%}Tilf!~>{lf7Vo3oi>+TTP_7DwvD7f5)MAo62YJ=m)SkU0HkX#F&BD7pd=a! zck;(U-lPrC_$18msjD;p%t2`Oj>zOPcq2Z&&yjoc{5&VFy1_M_tL7q#R&dp!L%HPl zOSzSD=f&g4CUbV?mwDry+uZ7;Jn`I5LSDm3m)|x&mb>!jvv^M_%jNIL7c*Us-1t&u z?v8(__=nnHo>_B}Gfn)!-Sa)mWqID_zQteQoOaCQjyENU$?4Tx)7&kbeZLDgE&YS| zkg74~l|?v@p&?xU^l08^Qw(pvER55c{EW-@KF!H!U*UQ;pAu{Rtl~BnJ8>f(Dsw4$ zKE^$ziTNNMM|O%<5~uks5qh@Qb6Xv4}yX*n?+Q_;K_8 z;t?-HF!s|#vDH&wY;7?sndRw+>y|CW7K5kQ$&5_#3Z*-q-dZb;AFx8>f~pWDtUrTk z5DmD^s6XPwPk*pcBki%F%>^MAx(UHUB0;c_+Whg&yV<2cttel z{ZzcU*$LZgJ=6M1BGA0pkU-J-`*-gX8A0COfo9@FWYjRL3J2QNG;Y+bF+yQUr zt)(UoXK>?^!T7{INjQ-M#A#|RV#%E4n2yt1ji&?`-@djMf3Ql8&wH4N_1-haO$Rw( z^IRgt)!cpDIrS4lgs!BJE zvM9JhPV}~?nl!x84I}4MJALnJm_ED6Q;%1WWb_Vl)(~ULV97Mul=GIDArAnR ze6EC2jh;n)tDjBA@@L5LJ~DDg##^!{A&MN}y@@QEv5%6Z)70vEKk93!4Q1;$k?LnV zj0$;to?Ir=BX@r?rzXtpA(iDd?yg_0IT6FMok6Mj`Whow8)P-$` zJd6$AW`h4ZsxK};nOJMGP`q+}AlByDD6uG=i;vSdTB0t##&(?^DbCX5(yy(m5O3^T zgB=$ni{|FGV)-8z;QYW2F#+ykp-L?*fh-aazZi|*SCwHC*adjZja2bw>Y&)r+7R~? z)Zka)F_ElAfWQ7gU?DpUaB=l0JbP9mZnZ#@2R(F0w0(Ua_N@M^*s*F7zSOb{Gl3KF zhN3a}gz3J5QppND``l~slxfdIk604BJ?V|Oq~BC*)rRw8rkEAGJr!eZpGt&zenH|7 z3WcatZ?d>Zae=r@d0^3dg2XGLu8Siz7B=dM54Jn(n8@clC8kHD3L`G3ieEdrU|zy| zqIKI0uyhUUMg44&cz*R#EY-PD9N<0%`=s;|Icq#)+8S>974MhW*_*F~-f0R93)dAd zupWkm+XiFWz8f$%^*wR#jLpJ!`7N>i?tP-)`2#WYZhfqu!!)dUp(j?TV4d`1#DvdZ zQ|yOku71PFC78G1D7M|N5qqxr{pc}A?B;?(>_MKtNPFBkZ1*W0%_yD%D|8V_wv?a6 zhSd_7->SWsLy()ODq$4UVL@-*Z?X>m>df++V!=^=GUvBm#HoDi*g36y z#p}qaTPI2DW~E6L>jYBv#XIS>H5pP9oh8yD_XP43CMU-)_amLfL&%Hf(@Edw{mH7% zFVZ5fCdrttF(i|&O?prDl@~q*Kof)Ue>JsTB`(snVH)NQrJCxyQtW z?D@a+v)EA@oaRNwjkh6{YZgm`2Iu3xd8Oh36(hy3I47)Qu^#pxI~^N6uSGm}Wx3eq z#|W&sq)Pa5#7(hL5)}21jS@fUX(Mu>FLwIWI`P(T&&7K$O%zRUU5@RlJRypbd58o5 zn<0$-RxeKYwG;c>@=|nvS+lrlqn>#5vQE*4>A_fz__p}?^$FPBHRD89W&er3ln%${ zpRdDG#y=5mPnTiDYimsp!vcHUI|kc7X&0u@ z0=DJ!94!6gIwx=D95GAd(i3yTu>M+_xvfuDNdbG7CQ}PW}XI{~a&RS)PKsp$_r-mGPKWT(T(MT8#}=cVi3Q z=wU0*3h>r7?h@YI&qj|smaM^jyI(OeFR+x;zkCzT1s;>r#mYb6J%rtw< zTjLC$ zN*8ws`-lyv&GF*gH5%7@6CNy^i{IQn4UZgm6z`gITDMg26vlb0Bag#(lE;pgM<_w%x_h`(Mq>^}>8c`!^Y zebJ52a~y%+{?d%ocb8)4HM69CJ|l?ci#dd1u7x;s#bf--$ZD+2Jq-8i;Bdm$j)?R+ zhNte&7GEBzN4Q<>5%)g&glm#Xnha4RKBamtF{PkGFly8;nU|3#wP2ixlFH{%M)sG< z?WIC0GH)Iga_tD^9#~Coc(k58yn`oe^-4*nE5_8nroA%TKYvIA>tu4FaU`{AP&1{R zn@6o3vw*C9$damrfg}`JQ%|qCk}io0$ibU=%Jlwf>IfD=*>e=-z9pI(s<5K8MmCWz ze1A$8l`f(Bj7C$HCk~SX=f{zs(i=!})_!uXPU}EH$mhmD*!Go&4vdEfM2|n1#Wxd7?u#+_ z^3H)`Y3oAF{pEJCVb475ME($ITTcMK+H@l(*kgc)YVhrUM;^lqsjuP){xoLweY0r9 z6=S?hdlbGTYZw*=G_HFq8cTA#DL%CMFy8e26IMng;8#qJiI1sc#Fh$qr~<74BA(FUcM=g+D55QlW}@n6~a{0+bGb3Pxi|Fi}Y zK7$?c2iy?+`0Lfgh_)KMTOlRPpC7}Dz<-#0;cy~%M;DQOe5;r|s2~>T4!{qrf1$|^ zL=tsxSMxmlL>BeL`A3^=Mul2l|QmNP>h)sl{Ldqww#$wT`KjXQp@sW-J$bj1|J7}L=$?fE@{@MzqCn^(QUfo8e;HYHYyID5Bk?5)azpMU;*##*SvkU{#w5Vo+;45f>36M)@9u zqvoz~zV|0yX6-}NDwB!emH%)*@dfdFFGHen(jBbs@G>HszK#c8^de^LpG5rgh!+0Q z-9gkn=){JOeJ}P4>5mVd)`WE*@WQ9xJca!krQy>@Q26QcAEKj<3QWCOAs)L)f#qLD zlC72#@wwh^*y6rQtml{(cFtrnetjq__JGr{S38PDPVdt(KaJlzXGn`URAh&rl}y0? z;Tc$3+)8}L;Wq625(*FO{w{uEohe>7q#xezbr0@;wnJp-EyDws4acmu4aSEM!T9X8 z@wj)c4nFxtnkc~dA@;ZFiFnh8k+`46kwq<=f?KUyjN?W50u5MJGN4|7m+!2_CXZL( zp3zzOIJd|6yxE%XoR0_Y8d-&pHq`j(G;Ae7c$c`nmckn@(9$RkFWYO06~3+_6}S6U zBz{|DNhn&EVWVt5U=bP4;@YXfc-PZg_zL$#%plcI^e?ebYQ41w`6LY zSeMEwDkFg+hqUp|Cx?bQQ8wekWJhmWQvcN?kcz^Y)Q!M9)b*=dDQC+tvTju+d2Q?h zk{t4nGP*lR<*I{k}0;%%w9t9Ve0b%s+Z z^V&)Dqm%~Fc$|NTS!6q6j$eo2-P?Mw-`fA-SK>Rd+XVhvyYgZRz9lj1y2O+S3lciegAPto>qvvI3xh&_BE z!bQz}mXe+G484F^VGuSf1C3SJlDqjOghNtZ40O_yu1 zBFl@!_bIj#-31QVkk!SSzV9M@S&V?#b|`>o_D~YdwPy)eovm1?ZVEA_qZ9jL6+oP_ zuq8IztRY@3*O8d5&JtQV^rLrF^pjQnzDo5SG?De`?4fpFZl(Gs{-YLu#AU`|iPUCV zOg*#;rryk1P5qe2Q;%0T(C0R(sDuZzsl*^N*%q@z**;w_nNG`3vUH<6b-C`jh7F{m zGD1gFT}@V$;Uy1QjggToW{Rmy>rMj|N}9>CZ!4*=??E4W^Z5GvNqDxyK;mcEIIltJ}YVf zG2^+MnC5#2H;#xFU%XI+Z&{s=Z3bEdDNVzngAP&B+mG-xv=^@F*($oVcC)a2exK8) ztg*t+zbWC#DY?Rr{YnI0YbFWnkERLtOxW*quqjSxP_fTRbSYP09BYnkPd+XTwXPEU z{a!C%-FFBK3}m8l9ygtydkheaJ~P9qp?0;vOpzp99Z=&mY0wej$V*j%H}CC*+JlA& z3oNXK@eh23?y)-sF~=+fpPDBLZ3aygB|PwPa+engzZEzOW+wa653q+g_R^2iW(nu3Qy1bB3$nn zDp(NfFFv*Gh+t604FLmdoSdw82rrKpiX6Pt1XfRR(URVshG?fON%ZrOr^qDOMKC#V zq-aQem0;BRpTdgIYN0V2E+Vy7iM{(sN3U(uq{TtDl7{bFh+Eszi8pyAgue2IW=-!U zOg#5VUhGOF7Q4fl$qK|o?JK}F^f7Q8Li6J zWQx1+sh4VTm!ud%ZK~l&ZmPt88@Wn)HkwExF6v2USWhL6J#~_d?n@wsjT<9rP#?!% zk8_fg`j|>yf0|9W{Fz9ULv2aGqdNRx=260Ro33>EAGIXHxm7dor;eMzC~A&F;uGwy9NSzK(!2}?%m3TiUag!*>ALcXc6g--*Q2$|*y!aLI#L1Mxmk$^W5wCr3in4>Ro5_^0R z4EXg~xbwsi!L9kg?5LEpXh?WgGDVpN` z+_5WvxajJVJ%Uq=mvB;toyb}=Ty!EaNZ2sH!^wZiG~rr@`GQYxk+A)#r|{p;2H^wU zqoVxomt*j=O_bDgBDtB{FFg{ljLi8@PM-F>L*~wxldT#KOa>W4Es;UM^&EFp!2Uct{2gVWcTEk_tXKNKOv1CLc`NLAL3*OW!FY zNS&Zu>8keo(z)H8Bupa74^uCZ%MDYcpO*`y=Z{2^Xy61Y{~sZVDXt=SauL!R<2B^y zCvVAA4cD)sJCmGUI7xD&B7l50BSc!N$|B7#2a#*Gm672&92xf047c(-E(_b8Mk@12 z^1j19@?h3W@>jU4#urvfPB6$PPXriK&QG+Y-!JB9a-~tyfbcl7ecNH$q{oB`Td|+) zc>j~!@`aQR(mPIFzEvfKt>Z{t!&1qcrM2Y7`zF+&lsi(S*?+l$ec_ z+ApG#zQ#&j%ZE|%iBHLzJ}c_mha;5eOAKxlR3mq*xDS(iPQ#JGpW&8i z1!huu^7c1j5FQ-~4LjW6$E~igIV2mJPW~nzD9wY@*IL32<{#kefAi$`nup0d54{J1 zH42zh(FC+FCBxib?I5Ma5Pn}x%J2C9fQwVK<-x}1;M$|_U}eTBSavEIO5;mF2U!jE z=4Zm0Pkf-u@2ODU;{XeHi=c0N6@2f<%BOE#D~D4r!0k7E`YVb<7NaNLgTV8-Px z=yT&bY>qU6uQ6R&f~J;sa9xV@@0pe4{RS}^nRA;o+V4Tijm^n##p$Ha>;Oq~?{(>x zy>*f|YF_HR4bZUTH2L%8W9hHsQ%Ivwp;Uk54{}h1z4V~tC8^-0o#f~=lDs@Kmkf#- zFYPW!A&*@PX|qr=x*^P-#dg#XMIBCt+xxvg|p6+quMTz)D}B@)co7P zgdM{fjp(n;xj&H$`1J^mEe(U$@(04UgZ)tWr3{)co5esLv(w|0d8ov z0r&2@4V=TIKtA?1%jK7`QGdQ5xVsB7U9BkVsex)(-g#s)+6a7{ehi*13gWg@ec?7; zOMyDWvXNCK!)a{n-Bvg-`!Gx#pc za+}W87wMz&4-w#y9k-$IN4JeIlp#IA|6e=;HlYh+TL~pGieI^51 z^^jn7i5@t;_BdL|TwsS;SJH8o!6;Yz0J1%Pk~2-n<}N>ohO0K-f?7x1ly!n_EN`yE zm6nZ`cZm9NZgQdO;Fo8pVNf<5ob~|bRMKeIWqsAT9Xo;GK1AH=OGp~>9^C$>#V!AP zi(Bg$!_~WQ;%+oR)Yo)Hx$5{^;JbY}bR^2aZOdD5l4s0?x2E}VTyV0vgGCRCrsGQwS4==gZvzaX^PfG$Kd)4-HfH#Fu6Ktr^

{pP@Re)v}l#ji7&eBb4KraDGPt=`J5zo@I)KXcq)Q^{P`NaDQgsWA}*EPE!0w( znQvw9fPwI`cL5OG*~h)_)k7kQz3S+p{_!GUn3#S27#e&s3XJGf(;oN5DSx|688+c=lAZNi4 z71?Xaz1%qhumPJ<$BbaEIK=}LR9vH@B_rv{!Lw<>`Y;&xdMM;Z{6gimRb0_e8G0k4 zLHNgA-00(vxs^||!R~o);f}UF;I2mm`sp!)o84{)dNXR_$DVgwfVCYcvzP(D7o;Ms zaqq~o(4+8BNU7kXTm%bdK#|&6bbQ zU?Pvg0~^YaU8jL^_@0woVCHDlsFrbtTx1LcE^TYLy0f~fckw-dF8Kp<5VwJhN_8lF3Q7=Fkcfl^v#1Dl3F2$uI# z`%L+y@}h3=zC*stPmOU^IANOkQ9H(afvUU8} zsCeGy%Nzdl=~~7wGnrZE_F0wRy%MGjb!Tdbcz$T#HQwQMguLWTAYb{UKc^>t%gi|S zgx@%aR#^An&y%=|LM@xl_kBI5e*WneA2`OD4<31z3-EGQ>G>#_gQK&Ujq*gkC*`54 z=9)--#V(mK*Sf$+yQj;2_07~_f4|BfWgd{zcenD+xw(AZkvpjD&R z|B2fkvX-+v;tI5?@3Qw_ALb^=9l_P+BTAPkhVX{s1>F_f31dIGL%i}cN*ei=dpB$> z`skYl+=gawxyN^K|Ewdyq6`);?R^8h)G>(Hp1@u5Glqq3FJar(ek!vw1@wmcESQk< zm0dL~7Nq<1f-UD~!NuoJKx$b5(2jYFb|m_s6GKaoR`qHG4*4OI5?^?K&^@qi-4JAW zYK(mS?P3_C^#s`sHbOB|PNIQ_gX<{ zJoW|NpMBOa9Qc-v2jAC)fZhltJ9(gh>(~8=p6OP?{&h{_KGbJ%+It%4sj2O>^u|Dx zIx-MEQ5JJGr>0Tf20mQ==^@b4zL?$XT@NaIYNTIpZ$`(z;<6U?08m{Z=7=E{w5(qj zhc4e^&GJry1#CNNtg+@6lx}1P)a$DX6l-DoRt(v0f6Z+;$g^u-Sko`_hQW7{4>{L| z*_`Xx^=^IQZ3U@T+%&*)*^i@+;KcI^WBWQLh9RT81yMe^H2SI+g zHCq_w&uv+42x<=2DKjIQxWP|qxcmQ3$j0o70Da}AV5`9&#&<|F|87^8MogpT*Z56P zP@XL+zmPxjlCl!Uq(fhEvtC=(D_1a=FFG;_xfzV*Wk*GLlb+)D%;`+(b{ECOk9AD; z*$t9K zhdg`cMLyv2D8=~gUh;+fRP|Et`OyDL2s3hzEr01mm%MXPI1iT8Gg@<=Gud&gnAZ38 zywPbL^@;pjyyZ?GMm&2TL&|g%dGViVfy-&mP-hzJK5Yb-S7HFIpNFBpya}u2nu;M~ zA=)x#Bwb&kq(?-nQ7*TKUf+3#%S?0u`%xtQZQO8f%l&W2=T0Om(R{C`oazQK{mR+* zV`@27su0aIc}5?z=>g}O-*c6l7IMr^9d^|uC92;l;Ifj7>03whP>9b}w0~SQ(uw`X zA^r_(zDt)))jCZF2X9eE?1%y(hTW`@XcD)P*8??Q{gt~H9p;{|FW`8?4qEca6qJX| z0-p`_q06>6XtDHpna_$;5L06#-)or-{rg;L?K3`f<-!=)UpNL$Cw!2!+LhjIJ&YcF zx*A4Kw8?U}fT4c4Nd)d64KYG+t7PDx$Sj8@6^Lop>Hxnt20utf&Fb z?bkW1_6LkE6_kAqmUB4)Kf$7rDIi63oa=vU7?-r}I&j8)*w$@5fKTcIE(I>|-}(a} zx?+>^#Q0*`wO|0ZW#U9u@=8|~_w6oc`7sDcw13d+elLJ-N8RDenhrYj&I&r>n+y10 zc>p@yYk~nq2HcBqXE6TO7x41*0#s4Ehpl{S&d$zjW^2+W(uObdxr&cbaQ*>jc}chd z^i9fD-ZB_0*B)yl-|ni%8G8*>Y5D&{z2(;^{=Z}xIw29Z2UL_OT4}-kq<#TF4x^ z)WS5KZ&5|yC8~Kn&V1!6Z*|I(I%dZ$SM{)e_KZu9ty<^RE~ZcamLkNZi0NTl<;O(l z89xzH<%O;1M>{6-(}&(;c04^Lw=JBZ$hbqPg{Y3-y3&vd-)p0=-Im3>A1~pr&zZ{j zypQJ%?zzC=KdaD7w{J3=`8=B!>@3&U;^EX+X58Sf3_HoL0V)Fqp^^teq?PxC-B-Dp zHasT;Fk>zE#;Xx{YSa|^NA`laavE)w*~qO++M&*tBk0jvLX}r<&E;B!g6jHrz;+(s zM8Quu=8CpFFVGDMwhiKbUpW9A)piJ5J(DZ{_W`Z#8_czqA4P7Wf1obx9e8|aILw|` z11yi}z#3MU z+YBdMh=L^-`lFF^lh_`QUm#2GJ8NBZfM)W)BG*NM?D)S;-1Mhj+~qq0*phr7E)@nT zQyyudtl)vb_g6Qxljw6k#^Y6{tviu%Nd&k&nuix14{)yr3RTBS(_yXdAkz$9LE^4F~uA0d;FUm*Zl#wdrBgCcL>_#}h|@Xc zsY-G!-j#biC^eBK5wGv&=q@QY?LxsFJ=JsM^+(#6L?7 zk$(?esHpsH%I*4ipE;X8QEk7YfLXNWBx4#RPy~^GL zjMW$~RZ_`1#R#1TOih$r4iB#9L%%Bc<1QoB&W+RM7o?TUkUPGL#cPH@VpAbkVSPmA z=XZpY*bI@UxDha~_y*nAI~YA~F#g z4kH>*BBO~TQPSsGT+MI;dEe20sH-JfwJqQY%6PN_3{1WV{T57Di7Gr)*x?zFY4=3S zO+z`o9|llr9l@15gm7i69Jy%yH=M(W;Egh^_S_6s=vp}KZ8tbjQmD}Q*Iz^>s@-MHoqM@QDV{KLdOR%A>>syn)vV*$v+T*J35c-~(OvH@(FJ58 z(x)DCW0ps8ZdnlOCAGlI>j*e_$_H7*GXTxXu0iCv9~IC>s@w5L(DjzHvdclsU|ZfB z^s!DyHPPM?R_a?V6?)yR>zpS+vNo0-D5^tj3^;)?m`20gy>S-sq9(;p`8B&~4YaD?%{xrYDU zn#Qjm@Ic-XlOkVjyN|!Ia42II(#iBoJFcqC_yLFQs^A5K!ucuDhKlGHaVoc)1QT(1 zsG5k(W1=5miba%w$+8>5)E>OVFFNWauiIe2KlP`16N?3mz0WTBi#a0|uhvw^dD&iW zFYHvU^;0re=l)eycaD|^KDr>kzs*N6+pQG1uk+>R4bw+6`&M%E-s{Mt(xLVK*Cxdajt=R>!_B8V@oo4>*P>xI2>=)x>XzY{%+==F4n6@Q5(SI=;Fryvq-je{` zlh&Ynn`u>bV>$9P+XQA#I|$dc4pIp$esH2WMKELT9oo*ujf-SYfS$E=Y}lMZoIksW z<3E4mlAawxRwwU*khN_fDo+e*z(ueqWHst_N#T~SPe+p57@`8JxnWiL+<>+!&`O_V ztIT(S+t(L^oef27rb~3$uU)Mus@D-t`znGv|H}a;;yPA7wUO>SKT@_~!B+agJab@M#`3^>ixjONHk?+y z>PC$#n%KP~BcS<3f7)59BfHc6lYQ2FoGm|AM(^Hz8J*_r(TV=Exv4jTIhSq;Jg0XA z4t;J9x|g&ou^D>+)GC6ewXx_V-o{-KjzXgK%jq6BIna75qdqOH41uc+_h}g153qtX_AcCyLj7gv z5Y*?c_MYeRX)#(;Ii7wpXAU=>e8aq4{}jeG&SE09;#JFbwejbVcQdTkRMj)b1g6(B zf#=hAaW;no`PdJKvEbb<3Yc|^R>%V`X)7Ea6>L z_Zh}%iG2Qt!ytC>HZE>Dq166q#^wFq1TFSy!%2#1@MpURdm+gmc^wyec!;!E&X8FuHoF^_5@b?YXT_sOoQ4sF=+J~Q`Lz~Yc%5TFyNgN z3gb6MahvWpbCxPkO=;s0Dj&meYXj22!I(ox)TzZ;XrD!c?^bXE$Med8(hqc)j}$l# zIt$XvmVgyA0+8!1F&EXH!_FZeDGv?$&8bh`=E%u*Agx#hO!m}*4U7ID=eS02y84lf z%(?)y{j0f8Q+>Ivc?*@Ij&}B9w1B(z<0##c@|M1_L5(bR#>%26A=!@n2H;+I3AMW1 z;QV?TQRuo1I&!Izs!LG7-A-Eyb{0g#pM$o5^TBRt4CTZXU3$w_&kBJ#2X=8qb4Rn@ zaeKj2*BBH&;~QJRjDVvq)Bt0qfxW_&(0V$)oY-V>bv z{&gVbb2OY2lMH6ALhR%zy4)R=8|Tl3!mgYjXt>TORQk40);ii9HOziOpE~IWP1O3Z z=%+rnmR<n3vWL{M|n%c(7%#JX<~$YfU}SRfa{MOq|O(~R#Z^!CR%R_kv(?Y-wba5>zL z0`XoX9#FZCe$AYU_5m=d&KF+pJVZBYZB^d8dlX?SZR9_$q;he()7USf(_mHNBIL2r4m6rA z23;!+xJJ&DK7C0`RSwdjCmkW5eliXw$d9t-(g1m5Ryzzne;6_LMI7Tbi(5KMAhWyI z2Ew*m$*p`(bGg(0gA)#10%^C@NO$ahV3)s|of8|(y}M?|>3#VId!HsF|9Pokbl+cK zYI_*2O&$y^E(@Sr&oQ`TybHG{D;@=IdjdYz%ehd&b~LB|e1tqda6PJcCZ+#1=7UKO z6H;Eoe6!Is*n6@RU*aox`naL$?28ihypgx$n}}KJrQOY{oV}m;Hx~z}_1-^MrA*dV zyzX~Q-8TCv|993udCMr7LQ6Oc#64Tfn9n5{1MA7WM@p$m_^VqEg{A7NTZ@>|r{~mq zXSC!BxAT0#%ygzq{!MY~OA-Hf+;X`f!%X4-bAc*!XefVm%4VJq`pP`AVVHsCqZC{E z!ql#vgVbmKq%eU7o{BzJPoDgsp6~LQ!z64SsvcbX3)D@ChJVFXq_h28Q0k7$v)Vtw z&Ym{T`N3@DkyHguTZW=}U$oH6sxG@p7lyxzK#rXq4Sp zBJbT(3$Of~j6S}Z!47R-~dcza;{=kXQ^5K5^&4DqktDJasENGr)%D%jR8$}-z zDd)64kOg(xf(wRj=;=LxnssSVHK#)PCOn;uu8Wb)d`r>te@EEJwM$u-`>yQaNpqE5 zfu8h#`u?)!sRv{p*&cL6?|WHgiWM@6%~0kSUn|SnbQz_5V^GFE3H{)gl=eF~8}xI{ zr5#v1G*)zvbYPE^oj(*0%#JLi*$WF;*PQ32VeW-xlS;3Zb-wVH6(x*j4<01g!5IUQ z)#nk&DtIWKqlzof+|=S&-C_c@KWy0-;5WlfY1-#T1wyte?B)+fRt zX*S%mNfKz^N2oF$4CDN)F?o{bMS1z!59pSIwS3&b-CW7aR9Ke+;81yDR=ZtSRxtmaWZ}K*%>hQSF+5mDW82X_fy&M zQ72{gF^kIT6KIM%v-24?Adw4keIeHgOV2BR3s*~*+AEgWitnByr4d8q# zWXrF7L3Q_)luf6Q4sclkn5;xJt#|?o2B~1fbY6L)@CNI@!AZF};}yM8#{gCCtz!qP zpVLjBER;5BD`?;1{`7{44`p}P&81hFZlilfyj1J$- z$y7u(XiNQr>V~^Rx3*aNhJ6rJ8SUp%-@ZYGwGNy%QOlnF5Y0M#9zpB)y0Jae+d*!h z9cvEvz~uFtfkRXuimW@1hSpsHj~^7#@1K1JhWWKzYG56R?KfB+_dW^qY+%sEYh_&A z$FZ;?_8T-3J8-u5mV)>Xa`@(T6S7x^fph&Q!T0{(21mDC}4##XD~1x2L67lybu!) zQ@l5Gsi6+s!=B%0Nlh)=a{L%r+#F3quc4@4-Eg@2rxx%@u7W0rg7*J>IXlr8l=?XZ z@U4+_rP~>(WiUWB!?zPyxsR6jvuOi01HUWB+nnXPW(2{&@FDWiq0#7VavF$lwuD#g zGtigg1K|&g6R<4a0=`h|%Nv3$K%egvI+pH1uSt8ZtEmn(mi3lh@*f2go(N?R=7)ik zGt%Ik@rLr{_LQBxjl>*BvAj5SfYa8?;-S#U{+(&bZ?785F1y811c zJ~9lE-Irm-d<&4RrNvzzPlLAl@o;&u9w5LV`IPm#s>+xv;E0)r+$@9zqM5T%*WF*7 z+kaMa$MXhq)5jCI-=^OIc6&AK3Al^e6`f$ny(w_~k9wf<*jDbxN7FreyO5t-6|(x9 zfl?L^HJaJO zgxzWo^nHhtaOL3OZ>!kL5oxlvJ~wFCeTCjq^^*E}s*B}j?tzypY~Zp#mPan&k z1HzwKvt1=t@LoX@aE-f4Egg0bUcJQAvTJMTv2T{LYn<|E;G=`uO@`6`HCw^d+F58^ z_#iMh?=d*z;|}TgH?mj$y2y9jNpN?&AM1H*9K0HmuAGn}fMO2@DJxF_ZwBa4 zE^!{O->$3PYx0GE!|BTX$6BjTJF5AMRtHu7x^J0?E78o~cym={zcu`<_CfMDmv(_s zmsT?WZP!AYM?T=l_+w18+hrGy(luplW$-9peqdMMoo2XS`)E|pEw9*HEL7rDVLf4RBJXROyp9{5L5-11dIh2iOJ zo_E>8=$$yuk2&$1>7DfgUg+tS|0k_yg1VH9(TnM-FS5~0g>xta%2Sw$TP+kz-#91; z{vgxO-B2-hvYLtQ(Pd68)l%=xHdl9kJjjH*zhLHbm23EuTh8!rmn!}#9&&TN>$ zF&@9RFwdQ|)tkQWXF8o@d7Eqhqv%W=srcGBZYN2SkRn?MmE1XJ=9Z*vr9x$^BuUb) zw5U|}U4(2&5`~1^bI!~a5<(?KM7yL?$xkI(_1^byn3*%@d7jVr^Q`7GtApw0ZOesg zPq~ZA_yf#>btylk-zR zU;Q~e@ct+XE?NQb?F_W@cL({o=QR;OB?}tc=YcTA4@hT48bQ9MaM(73H+aq&`sQ9> z?}OaW%P>RKo>*AOq7w>j2lGb;V#0=yh)U&&nLQi)5w#|BhbL$FqH4!hGzv{p?j*` z==7S6WM82MS#!3XNU?|%@h$-sFFO>xYBf|Tm_S@E9A~qw>S5hrLgkIf7x;kdBk<5P z4n6EDLkk*DLyxqTuw3U5T{mk2Tf4r8MZ!WdX6l*7BMiRM4JAx7hs$eNRkf`?^kmX>%u# zn*A}P#a)se`ILpj#&;9__VuKwBOK1QN(7_pB4aHyn!Z}RmHqwzC@3$g3uQu^leiv-`e`fxYl5VejeGKWl=@eu8JT*#O3-X~0T zeaWvrbe$`Sbm6OI%@8hV4p~g>hUM;klQ_Ok# z<_J+O&3B8^XB_(NNPUluWuKiSS&s9mYWT(k%w$LB=RZ*{XMyAmn-Z)GIA zQ(2ykkCbCqow`O@KFTG!U7JDGkT?F=#HWAh)KM!6LTHC@J7}!mOY)!JAlY{@JX*gN zR4*$*UGDkp*3j2<@%C#g$Zv}jlJKURBrMoL%ujj3!iCm!M~N&x~WvN=%bQb&Dn+YX=qFoJfEZeaJPaU|!v6}4etIYm&P2xqD$o6gn(?L)mV)3 zh$nFA-wAh5wkF&A{^B1SDzSeBF&|hG0iHI7Qr))S(BWYhNHy;RlFp?t@?Z%3S2LT0 z&N@McRTc>BY!)LkpDeJqdXNlb3?BXX4n3-TsJ;Go1t=tjc+Ka*$_e-3-rm>9X{sqm zk&_WEi3!7B=PiV1_5?xkoe#myUwKge*j=ikrqTSHX9xZ{rbtky*ZHe=7u@tNjKQ$ z*h}1>ibL$hfGPCYF$w0d(PAzz@fbIv)50l6mG1m1*8oWV&kkf zoHv+;C)WLksY#A#wn98y+hc;N6rWHF&a9zJBn;@MZ7H~4c!^&1y@VK0m;FsZNq^`{H4mkZoRg*M4^Yd{h{0?|;XT$sDGl9Xv_Yh6-qpEjZ!T$n9e8%O=cx{n4HoAO?8jkXSeN!pw z6@3v%1>JyIbS~6hwb1;F9gTCsS}2{b*KkSqU*O~9#IqmR0L|}rF+@u0Cr>crKY_xV?NDhhCKc&f zV2Sl4T1MLpWS_q!Fmqi;K00iG1Hz~9betVN@H>&$nDiK!ij22<(~Y2r*Mz%YC4<8` z-SEGS57Cp@g6EmX*n*? zO#~Wp-#E7kS+q^>Qm&)ZooQ)IVCVbZ=L(K1v7KUZoI*(#i#_Jhr7sF;vB5FWt7FK` z>3`2zR@e)@>`!ni=?7TvkXH7(*-dtjMFGQ?A7WJM_i{4xKXW~kn&6VFUumuMTE_bu zpWgkupSy58i`&~bhnxSZizzt}!{yy{XQ?kT!jN-c5s8xEhs|-L15B++yUPm3T+fy( z-oc|Y&;R0<$ER|Opaxg70x)TxQt2hL;u*2!qG^F+G1qfkK`6FFi08%cfF;PEinzZF z`tKDGkMsvP%j_KP5iF+aCY(o(O+vITPYg>wvjGxC4b+M2-(XI+9%$4x#tZ)_5tp`X zpk=g#%FJB{KX*qFukG$2wN#Dvn^+1oUMgW(VLoxYLZIHPW~ia5NE)9!qSUWXg~nFF zSapUtd`{WJ`~!qK&Gy6ar}CgS?GYZ++=2Ty=;N#U*KwI%ILa9;g%8Vy%wsowrb=J_ zfFJ03X!gMztM>Qft}A;n+1r6fLL#A$x-w-l%0ScB81l|+B7q_{;>jg<^giw{KHPMT zS9xz9vYk^3wC_}*dR+_)UuS{;%4_iT-Yk;mAYS=z(3MKH+64F6ULbiH0pQmCH}Lj? zV(@gcqv-u~A-c-ZFhl~uQKfSt<(DHUoMi~jUY)})hA3n{6*)l=lrdGWryq4$48g@6~aw`#YSS z=nYSQ@)CI7SqU2ty~T^=mk@cCTi|li9)Vru3(6r}i|T(wqqQOi=fn(o@Zkdo*IF-x zHmB9eksmR{qg;dMP?${(%WsCQ?)602C7QXYNYWlZazRnD0*YWP$w?0ns2J1+M5yN_(AX-Mkh!R;kKpy~}3npLMZZ>KM1|*EC_Zdp4)_N|MXIdz1BwSK{89_c13z znwa{T>0FG`OD@Y^NSi5nlFc9enE*v`)~B?e8xa?<>5kc)+Pd$Isi=ncd$of5Dkdj1 zJ${9abCuvf*PG8S$9v!(hZW4jEt|MiU?QEy>*o4K=5h4~HSFE>fZ6*bjc(e_GAMH% zD=BZydH9cTPpAIC4K){FQQTH4MJNLYaXaZ>)QJyF&jlTevrwHxA%5nx967nHMZ*`@ zfiv4DVBNVQR;fcAmIir=YRA1~&xd5*!d(qiqb{r4S7=o=DRzOKO3s>mX{` z6G{4|n&G~yjqtj=HnH&!1v}?!!CJFKoLln<*ceWNm3bN9V8dkkoWCV7bAN?XHguw# z_}Td8wQM|kHVehat%YJwr&O$ZaE==KI+gBt-3E`uL}T|-eH@ypMEqN%v0zmVR$J%E zo4w*bR- zNV4pD5>6Z9QwO^qlJT@5Z1=s0sxIaWZk(wTh^!pw@f=f3FV-f#mO@_l;vHmTwH8)- z7lud7CZU__|Ka55N2qr{0Q&KDWZK+Qf=L~+_`sel^QU%CP@IGcm9Xm*3Xn;`k~@OAv3f7Wrfxz;hGz==p0i@u}v?0Z z8NRxX&-^ZS)V3mIqe{33lGbi2k1_`ZevF^S>~#r5f3Dyg)Z><#?y?GZN4CzAVc z@jbJs+MaeSlHjwMO|<&K9(JHb4fi$~3yT#qn7ffWY@zscVbQS}NU&uaBbGdh;?*a! zWu8WymDEQ1&$J?`>^HI?UR5RO~NOVCJTBFfvVwBY^{KYaFkAD;5e3V3!s z6l4wYVNhNvR(>*oG$&-Bu?#62Nb#bJFvR38G$^=;gEq$l+kGdX&2<6Rzi0@D=!x)aMG4p-bqDU& zLjuRpxmaUP3RdeV$Mf^+@jE7q_xppHsOH{qmM=U#cTAA^GacStG?o09%i{jADy;HOnpddBg0V^WsdH22;wbffu;Wr3wea;s z`unYe&?CZwNG4yyRi?I};{A3iAg>NK-ndVugrtLMKj+ieK`53|HbuQpW|HBS+mMp$V`JDTv` zBVUno_W>Ao@jM0FPlMD`-(hs$M0#+^9bQD{X(XpiD2vQR!V%fkOp0bC_oAwc8E=*n z+SIM)!d`WPl{Lr-X+~x*N;TN+)w$^Pjb8>$v<8$u>x4czesGRM^%?|G2Htbr==iI}% zp}(`3K=sMOzeA<$rMp`E;IVr&yJ#}UPYz=COmgGQbG#U7%0T#fR|luw|B-!flgs!_ z>}KZie=%Bj%o$l6@ZJJ8swkj~9h2z&JFkLS`@(U>dq?w_(jUNRq?W2~l%*%MEh6p4Vc_;Z zhFOh+#*Kck2Lh6Mtp2CQrE1isCVgJ)l6A?n;zut#DFz5n80c-YDvk4~J8|GOPe ztxQctBa((tf3->Fm1-U6H{^@6XXPWa`dgU4p@v$Oco+nHIxNWe)QqNom<;8gJ>z-u zPQjIzfqgJM1*i4M_mhVSf?d`F!X*Is0 zDFGaFrb82lG*oqmqxLP`1ZQSML%-wo==J-bD9&{&K&hg-#?%`={(=NjtUdf)TaGoC zrSeY6$Pw{!A!QkNc@~g=XIT2v<>dECR3V48zM+&3F#??4i1S63S@&MX85o!&FoT z#}9^3Jf1ZkGEb*Y1w7&&Zj5E7=1$=dj%9e1w9q4;qD#l5xfRndaksmAII1^+Hoqj! zef?m`ZB5AJj>!Jxc63Sz{nBXe0h%C`4n^E^YScmImL=j!Vg(!*Z_e4oWHWzw6^zmC3dZSvE9;(^!D+tu#I?&Op-m_o z-uoBNlQiK&XHO+^B{BjuX|!Y8d)3s(eF@;--)hkYt9o!G)89;UeQ#l$_=> zU~pssY+a^_Yg*dDmSjn|PazaM+#*e9r|hGcs5`t1b}!K7kCo`)$|!s)gaLCdxkCAx zA>{w|5Vdw*EsP7f3fG>$iT21F;!$^X{MS|-y9EVKtzreAlC!iV(r?lrR0sV5)aQOQfoOr7R=v&Ib77uHx zbwVa&?$z@ameeCd-b$R4dI`5_nBk3y->8s%3Xmx_5NKDf2R$Q>@VVv=XeQN*E)E)F zq+$ycwngCQ3v0KCxxoF}BV_vTAy{m4 zp88!E2WLMm0cO3AuxR*%_4W)=$>p3NrC|%S+89S{(-wo+(^XJotv%XkqD);#olV}q zT?z;5GNH;_2*TFcgIzw7F!AgGJX|~xPW(6(T2@a7%I_+nQte5~+0Rg*mlcgyXtiTO z!CY))f4$OcP#VT0e-Ws?IRUkSU%|bJV_ojl8i_~JJVy|!keuucnKDON6W3|j3 zb!+a_78$1HEaAjFZ3OfB?l4Ak9q8ib^Q?P2WYTso=F;RU=$S^ZxDm}QTvw6`XI)T2 zr}j%Q4O)Acq6`{dy-~yogFbPTUO2vMmJAaWQ+dy%R>6dcyUDkXX<*-qP_k+WRfZ`j z0?qa;aT-k%fj&d2mUy3Q69LOI1{EwsPgizcf+%?F(mD#BUmyd zL2n3)6HIx!8of)*Ar~J!hW`{U!xSz+w9NTBNLf1@7Trk0)4&igyr~1Le#n7izh}}F z6}CM8{nF^tB`0iU8ijMMGVv$f6`)+!AMRJz#9!K^fvfUsSa_C&EBi;#)eni7ucAnH z_sR4A^Ug(P^Op)5m5p)k~U(Mq)^a#u@qH&j=3%&U(I{AYzekF9ECh5MsIZf4JK64RkqShNvc0{^nnzuG5(s4iAf$wb2h!UOK zBBU$5H2CMHRMThqn(wD?+ znP17SJlUViaP}Wr!Q|>dT96pVkhYU4MlB~ZKsB%r~2{EGFzybVWJGI);)o= z`fGe+(sg9810PU%2AJcOlg6!=mrZVhqX1=p+85`Q+={Xu(Uag||cUA1`@*k9qy% z%aqCeuYv{Jim>$2om7CW71}cMC;oomF%IxIqF#IDQ5pLcP?`Q|ET5_g4T@8#%jZ_Z z2?OCI+22%Dd+w)XD-1!1MiH(bDijs+QBKsSpc-53zkvPt*&cK&u^k94QSiEvX42y+$L+y-(JTcx1-uUtn zxZLR~G~W9cwJfQuoSl+{x0rmu#!CaCSmgQ&%dX83Ei1r*R=VWH27mA!-{;k(+JoQ{ zZ(iqw?{aR(>$5pWy+X$Wmac_*YdlV7SNL&Hiv78r#yf>=LJ+wV2a z&yg4UxhHT$F2E11h8|JbIeB(DE}zVO?(MtoNJ0=(iY0p48X!A8BS zWbNN1e6@5JIHt3P>Q%19*=Op}hTwE$zAOOjUps=%-fo5qxBSDofq#*adk)S^ss`?n z8B|xRJZ_V8iAsWwJ@d6FI?Iy>&GvToxk}xQ#4(+~gjuTUM)0TI&Y2Sd$sLXdCFpGQ%)e=*2 zaJ>V*`c@XYO)ElHuQQ>=CSS7p;W{|=#C5uMhClQNv+##KSLo^0fIe$jg5x@Flbm!l zqSe<7lyZnma~LpDMKhjrMe&6ecrWdpd%KMmY1?S%YcQ4ZkR zQ>cAF%)IV|E-x=4mO9bvMmvsL5#_&?RH=qIbPcb;5f9v{ij(u;@P@(sWlVc6pjae!ev)`o(vs#E$^>&hVmRKJ}5&MQnlIepCTVv%@2Z? z)3ysx@-OQ5G5h|L;rp$fQZ>c&6W`L~ z8JB$B9;PU@3zZsYF5l@_LF zISG50MAP2UC-@!x@7RTzvxOhy2s^&-Et9=lj(`5M694U6H(^WrLg88)YktLYj&G$2 z8Lmc8IIuv6X|NX)N*k8KI-h4eMmic*)sI{@HlAUqYMo1cR&$kiX&dn z#THJFsk_ErNbH9fRs2-cFMV+h9&)-!FME6gXpL&(%DUt9l7=9<>a{k>d$5wV?N%dY zb42+gK95eO@8Z&jGuTV3w$U){9k?ONaTXn355=scv6bvZbc?r~)LHs~CFT%(+1>&T z?k$DO@8v@MC*Q!r`8_~IACtv4E!gE)5_>Dz~@ppagr;u~y_0K~C}-vT|QGe)dBR zw2ocph3%h-pNtj=fQ%Yh`%D@x9TLYa1L>l?`Fb??%!S%|s{`cc0irhDp3E|z1b#Qa zMM0mgVYR*eR9~JKcF3y4XJ0E}%Z4cOo?VJg-Z@L%z1>AIKRPMt3? zyyYu0xKv5nH0)4k@)zDb@6TXn>3ZU+v5lNz#;G#{WoRt%8vdSILDgoY;@$RluusP! ze9a_*gmbBgt@oea!i-rrOPcYh+DBKf-ou@UUd5fx`j4*oagLep8cyVP>>}$= z*m1M6)tR12A&j}90y8~oDr4Xs$%TuT(vMBT*a;kE5}@@NkIOhiDa z96C;0s-9&(2c$E91Lrcg8qd+o)oi%Y3;LX_P?TE?kDv?ZFJbnoL@}q14pJSN%EWs} z9rZV!!=>~TIR51T^;M%ma6@_$x+|@TGNrY6zJhI3(6@1v*Z<{upwU6H(MTUF6}nfB zPMOU6y2cqhUE!e${S`#xa0{r8$Uvo3J{b)kKnLsYQs3!TP;C-VQd}*F))fRKmPzC6 z%xbKmvVuC%CqzDd3D_lQCf2FlN)lu)p^!y_uYPoG*7Dg&0QC*pUN3!%SEQRPO|Q21lhh%3|1EC zq8kNg$(jLukg?(kC1+ZN^ZCXo*L4n&`}-IC$!^Atql&DQl>#|DQwG$L+3Y-F8aWfP z10=p9;77X-$jP$7)70K!Io$vzfVHB(sU3IBTklIxWv zh#?Ppli+4AiWsdnWP9|&$eV?Olw~+%4|kRl8g2%wZXXB6Of+b@TZra`|`NECol7T zjaLcNZd_(;#_UWw48ggAe?`HNSUu` zeUyDVZ-$7AilN=&=CQkL%;?n}=5((>9cqWwav!^P@|PF%v119w0SF^V4V zS)*llgq|U8Oxe}P?9RiI!i1E~WZuVG=A&CDZ9L$`DI5&oEaet*Fy4&6@ykC(T-Jg+ zE$=Fv=^@9(=w4;?t3v4+Hy?_EGuzRhV_R{m#A4poe$idvRT{BKUrD4&sY%1BSabv4qGisBy}Gtle@LX1q@#J7!1XlleQLASMYL9E_x9Ni7AA$rf-^xD9kH zoPa8JOeI}D>)C5uOardk};$y@-T z4_&dcd@RV#h=I?`e1O=J$LMfVBFxcT2@~TT@MZE4JHnG_MxZL_pI!zUC&y7kxeBCI zJQvpWgi)O}9$4!iqEh0MfXfy?Je*sA&C<^RH;=1=HA?e={+D)2_Um0m-hXk%y81 ze)?}JoHxGEs!+o;~p) zMwaj@#gg&EOAaWYaTs!&e$X4V0CU~Yl@>qkEKCWP;_ozf=OXwS^haFs!4T)fQRdnUl%fWg7?js8Rr<)4YWFUv$on97P znX{EM^{-$kevWFA{6mR7yM(`tzr+W%&*G?_^GM{M1*=v&fe$uoK+dKM)T&iqsG-TT zadyCQ{Au_THFf0((Y-x}WpB<06W2`#kD`@fMf`oxcGwX%{@8>L#-0}SP#-|4f)vP| zOT<#Aq=0KR3qu^I;QUvKxcc{Um>cg(nc0rOJ^jCs*rY-*=%PmdS+W#P*(92yn1|5j z;~U|%$y!LPw$psJR5U7WvjYcK_JPZ9C(`=U9VkhQSu~^c2*f?@1~)ED1Ye3%;0Es) zT%*yAPj6U3D;&wBj2ArsmFfqn`} zq25>xKD1<2pI#He z#P^%?zs&h6I-5iJ-`*B*stGCF@3S|Bt&nC8Jg^oH=w@=yE*lFSZyy&%X&VZ!s4Zd) zvu_9!7OxhneD!6c4jt!vI!x#51!l6e$nqT1B+9n-Y@(ltSi)Ib1j48?H7@X2vrxV{ zh-)l5KTpjjN5(0hkdUB)dy~HqVicH zXYWHSjyJ>b@2QmMTs_bb6AH9CXehRBNMMxrAJ5Ny8a`<^lN6JG46x{XTKT@R&JOlS8fCXw9aEYPt+8r=V?O}K4tl)9@l)%490 zcxx;W7*^!NtC_}dw~it?Tw}zh>3v5*3m1avR^dc^Zyyogp8zbk^XX3EKal*p8~?4l zN%~ZS;e{1qbo$0Va@XrT;0!OoA6~by-6nN>);$^?I2b0frAxs-OIoS@tux5pyYcwL zZ#mN0a2pSfnW33eH$j`HgWyNoN;Gp|E}iE-0zX9F!iw9i@q2wc(%7O_W! zg|zm??Ork9OL82{H>-sK2f{!?f)D7dDaA9kYmkv%Te7KpJ1%Yhf|t9#q|TYX0jBA( zRA@&A40|s|JLIgvsZQQV?B-TM&)N6f!(fi)d0yb=ehOiFUTo(tp64J;{&1JktDYe2 zzpuy-F#HU@xKHQnueV^8?VOmd*|I{3(N<3PG~pDJdzsjm>dddVJGgjtFJ_=)52ITf z%KdlJLRe8kF}|dmy_asuXbCfz$4fMYzaAR$o!+!^QnqgV;n`lC<;H!&FGYRaH0lT^ zHo=z>bNMWI7pTI_Z%Slbi(SZft{vw^XNMg{zUGj4vzLY%T_tAFrUQ z7hXj<+9fb2l?UB&<;a;o=B%^*Yii#^KA3GgOwP=i&;I6j1OIiQ^s{ISIM*Z!i*1_5 z-Ym<8|E*M|$A0Os6)j2NZa@VreO`uTo5e`nz#{m2PBfhGO_dJDVbtqK3rJ~MH=Zf+ z1Bcun#oyhkaMKPm*fG=$bp2&;ZelonZH*lL>FgK0Z{JFhd)b7wD%_91UTs6=1tpYe z6+tyF66|P&Au+T32@b(%!DgSG&UD?)$UcLF;jNql-#bcflMhIgKmg<3oB5l2oDTRrfj zQf$+aZd?^UCO!wO*$@Hpw2R1@nb)Yc{92rQDi66d#30Z17f9un7549VEztdS0*pp| zLtv;FE-AOf_AVTr|FDwk?oTBSGle*=VG4OLm`O=o+l{qSJc<4zA5y$918Sc!#lwa} z*!9srYJtrVMLl&SKl;{z-4i#FX@ycy=SK#%l>AFh>qe1F0pe6zh%#%l(3*Vidq(Z= zss|xEW6gb&+)>@dV`yex8X53sMKkgw@-#RLb2=|^okjZfTS=3#9r*&@{K^2$vXU(M zx*Swns^XCG|ByoW7v%1JnQHD%!7}4!WVduIsGBCkI}%lZUw)7x?cegyUr{z?-nSIe z@PwnKmt5r57ZtK@t7meZf#Lj{_YH-a#qErnoF9G7$btWuOJWr^|6u%_PcvV#>zKsG zJSOCz9{Hzmj&+!|gzr2@kMI4L#~L5*=Jxs|a5-CL7`goiiP)`CfqC{8?&6s{-0dxz z{NvuS?D^(Je9xWtpyStXv{|DbD|U0YFu+xc*?Vw+v~AWFhHQvuB~J<%vsJ#h!f6y6 z9y!C!8}VlEG)VGyT?%J5hFs(Z23H98M<;MsXWBE_)FGyKT|6xKUWQYa`QZ~aZ>V_u z1|RJoBX2%0CYAJg_;TG;yp|V3J}ZS&mSVx+`_|cH%9>~doX!&S!8ssL%vCU5wU-pU z-bY+#yr32htY%G<50l}uFR3)|51`I-6J;UYfD~Gy@Y^L@Memaw^p1N=91;?6WkDa_ zy-W*Ds*)jJeNq9vH_3wHb1SIuyn$EA+%oTJpG#@iOf*k?7l%uE^5oEgi{R~k zNn9_#2R{DgjzcvH@P*iWRNS&hM0xlZj#UbV`#KG&r;HjzuTn|gCn47IS&L#4t_aqy zNybLA6nLiDq2{IQ>p<*c4ZK079WE1{^_I7l(ys0>U;%hxOfKS zm`$Od9^C|HoHxR?@loXAky_X$&B1UqnQU9I4TK+`3KI%z@v+x;fEV8mdaC7vpv6KM zw!E8Sw{+u$e|@mQl~kM- z2E7s^?!BtOJoy`V!whkN@&TPOkt9#oN(-6j5M~q^aFQV+&*-~Yj$e|* zEj%y7ROL5w{vXO&)0x)vA0->w!MA~}P?^KI7tIugb^hW!WCFPblaja+=TGd@2|66T z=sSZa)iE&m6!&VTvamnUlMa6C%vyil&IDgQ#3ihJ%PCa|*=((JZg|Td#)dx5b-o{G zP1UCe@7jtuMo}NP!sH=Y_D++1ZrVftbrKcL_!(L$hOc4t~b>J3-Vxau3hpKKbg0H6Mk@SPPV7Lg~$@M+UT$l>h}BxDynl}*9;oWN&kqe zMznF}S09wzUyk+5uTn{Y0Z>UclfISF{EF9`-*fRyJ^k;A7VfpQ#= zLsoK+;J+9eZgRUIn7!SBj%bLZP9GOgf49cKn#D(`tt%c57}Zb~h7p0=I0#`rZn!JkAQ++#^q zo|hy+^5)e16O7R7%S8U{)&;EV8bdycXcBI16uGL#o^VpVZ#d_uNMS_aC~c7>BaC_1 z!mU!9DXi1nC+zEADOB?@Bi zbwK9#22kBQ5x%rghc27G;%9#=i8t?rAm<7ZITr3C>=Z)+jbea`;2!J@DHD0(KcTU@ zJbb0H81px!!}%E|OY1e^)`r){9?kDPT(KPCLsS(aU z`V3oIe@2}zKcYOrDG>GPEQn~bME%Ei!X1wcVQ%Mf6cK-d7c_7Itv=w%jpk_5U7~)H z^M`aCHRUq1J>@+&&uuEx7Us?^t4GY|-(QJN55t%y<**i?_R>df=W|8r8QhKEq1@6` z9VY1Q8@Oqy1lMp_ifKABn>k$I&nd^1b4vex17dlB*VV5d6kVi~n0L7sxca1%49~-z zJ#Z|7u`Zj(iwV_S?Eb5)-9RDja$p|WZEiq+*f2=91n@b!`QXIV(5g4_vpK56*nxio^4pN4R4P>4@dUeQ1Kg-U~5o5xlo;r#p-yZ z`=JqUM6m(S;MehlFTM)&9US2o?L0K+&ULtBT$Eqh{toLeZNg1?Z-JeaXtpJr1poTp zA+cx5z_YXov{-LF!k2cZdLR~agGit>H^*1T5U>A7yR0`Dv*kZfVQ_#b& zftS34qL)s404QadeBLX?`V07eqBe1+ENAzR|V7cW*L~48C z`uGsCcS{43Ju;o#mGY%t4_H9I6cbdw=@cH4yAIcP>r+3RR?`3Oi@}doYe+WA1GNdx zFm0_o*qXPB=2XYXK<#a?GI9&u=vEBweUwHm+b@s{j5Xc&LYMxrXb|-NHv+8AoPiCh z7qC@!0(4t*26i@VfWLgA>1~P;zK+3kVgM8n5EW5TQ89}FF(7x&FTAzRd3T*Z?t1Ut_ttvz$JE+AyJxz4s;aB^{`U9H z1z(FS=?I5e^niOs?0~9FGaW&)e-Lt3Go;5gB-h9@^;6H;*F~ zs>n-GwyvGlb0qkS>~a3cK6QnG$st8`exic7{EQDio2d9WX}F?KX9M5Uu|ejNHeWWq z;2Fy-JttH7^$Y6_&*dvm%9&EbExhT{M&?29ctx6vL{a*omRE~%klj2BWW^_E%lM#6 ze0k|}-lIKRVY|&9rKp(E+6OeLmK$a8=&B3&LOTy?cWdG5u6_GxNRro`@KNGYw6VdIo0xeS!3Ip# z0XyoVz@Sxk2YAyU((?=d~whgTsO>i69 zm7Fn^E9uAk4}f(O2eGp!C*m~gPiUaEm`)IQ;!XT8l-wzX$>uhA8dd3(YI?q*Y zH|M+4w3$Df#0uAFBSm`S560jR&HVmr&9AYzKu^f{#`typ;+aV@C7(|$9g`izOz_>x zth8ff9qCSrn^_}eT=i}~MnTKIaB7OYx_ZT@_22lxR_gpimz;Q`uI%YZ4lsRSSx z=qkR2ws0LDI~3XT&NAsw(;0{Ht@u-zgQ8-tl$kRvjagTsqEIQK@K;R}?ET^*yyZI@ zzy(twQ#y}(8f%Q((^p}4c#o=CIa0~(L9%n6?V*U4Yd*EPZ|hc#vh~wZyy2bYy?7nw%nf`ZAvb*iL_Cq2{&+HHn`e* z2sWK|#b;h?U<;!R=vyID;sBiKK#)Z3wb_H<<92qQzY|_{={bt6RPyd`SOOiC@yv#G z&!sK?^XYMFPvP4Sn)rZn_{3Gb!3pFLYV2YYJZ;BdX}?F~(D!OTsyXcx82mJ!YB!3M zYj2uC)xFnZ*Zsak{roXnxi~D8T4@f#J644w?S-Dec69^Qc7Hb-Ft?SxOb@}q&-_5J z$wXwu9>68v+fZYU7U1s>1zCX`(CZUB@vr+OV9H%L^e4{+cc=-0*)^WJR-l2Wy(vT^ zhOERrr73LEz=dqZ0WGk*A|31^c2TL>PN-Rt$}R*KS%aW?RKgbnY;1TEKXg&2tfTaS zaq@9g#mxl2>FIch{%>hRS3WYh{s^VsPXfaw1eiMOFm=Y%lr7vlgY_vh05exF!u4AZ z$-_hUV0`@)`hzZlOcX?27ALxoo4CN-7FCCV6 z4y867!O>kh=)lbw)Q~+6E3<>3SWO)*`{am^7wF<^CyVj1_KB!;Xepciawf1Mu7W71 zL13uWUCQI44SJt71~HDasfnH*IM(DjPFQI|^;a;U^W$m^F00F~svYHHgp-)IMH!ss zTxBTCb0`jb=}U)wPiOXzxIF>eWQrk`f+G--1zKBtVt28V27Asdo1fG4MPaVl)Mxn5YB#b}UA} zOONAR>pnD9QA1@n38`?Mez-@e_m$Z*pFLP2M{S2E;o}Wcft{`)YkgK1d(R6&&N_#% zxzlCVuwBSDJQ^!ah%*J>d_GVkOd?RwjE%_moIYzY%z`>IWd#lx+kjVvrc>otzEQQz z80;@Tj$~0y5U#J2NDdu>3#a|XVY}|4QFEqYW#S&>4u}KV^He1_cPcAyHgAC{`rE|8 zH%8I-PX)qNvBU8y|I?`5)DymI=%#!(mcw0-UgEaHL*d7iFnWRX74S>cL-~V$VEYmM zmFv? z4czs|2Ao z%^a54j>fqqPI#T^S<3aT3KSiRq)vNF(1BSe;Lmpxz&&?Adg9L0@QBYAyeB0LM;}`Q z<3ATs5f6sYGsXH`we0}t(waj1v?%L3x;L}hyIBXB3%_*Er|Di_z-vC2Q~i8!YxhQM6Y>&`OKN9x+n>Sq8VCnie(;Z z3Q>6jy=`b9_atB&uh}$6VH3Vjq2q8?p*rd{e`B79;@5)_imIg^y#Fs>*_w!PGQlQe zg>TVzg_o-llk&udsT%Ap(;D=epX$9!(QsK`aXmsu(eC6g%WGqK?f5#{yf;gcwPZZs z)SD_Zm8Q~uV`lPBwGWxPFE#v~n+uuJzbh5BA^wUepFIB6^kK4z8Zb%!1uiaDRb(*xMaw?uP}GC}Jh@G;RP)&Ix6mR}pTy zHy5oj&82)^9K|1>N8|ZBCjejlDKM1x2Sd+0A*a{oI4V`O?3H&a?Cgxkx1W4t8*A=T z^HON(PJ{TBbl?xc%ihIhwJ^Nkiy3R#ed$SFVRNsUxiYmd~OfhT! zZ3!xi{78L%J4@d6BN|<_&H(2F1|xF7czDsI9ntUmaQf7j=+vH>(%5UcxaG(~++}SA zKHheOCetH8?}}Kq<8v@Nkfw!guIz*1dLwboSLe$C1BB}k8EHBKrOq&5##b&9%&Pc{sc`#pYKEh`kV+{k1__DQK{f_@gQ;Dwiare z&L*(QxsMa={J^CgGvp7C&*s{)p)9#vPjN%liTR9lc(Y|XGKUUZuCXtcDK~ygFWc)r4Jo4jZ0knrN43f||K37v?gJ^WxsIseZW(^0 z%CQBihpDD1=WvB+4_182q|B6fr!cq+ES)Dql}`blmB$0ewb9V|ayGWv7b7*jQbGMu z=%ORx@o4LgOv)&CD9BW5N9~H#19p=RqtNFQQO(T$XjH`%^zEt+x_4CpCbY_cR-y@; zKUNN3?7j%FdoudH_cB{KZyhd%W8ia%Kb~BZ%?>ux$B_*r{bl!QxZuZbWo+uY)Nia0 zGz>>vmZ2d!N<@3?l=8JNUzYXBJ7XmurjX8LuQNSLlFoOr;%;@ee0k)qo zjLV;L9Ce6qfMF(G&@Ai4Y!%2*aHC9bXY>$=UJ@!{vEnbJ~g=v?SI;VhI!v(|2SH3epfU(eyk>3r$_~A{#W34 z7Xke6>@ezl{6PBgf&ib5h=D$CuOUwM!rM+3QYofhDDCHB6nL>fLRe%Xm#2BkwUm-W zChZ(Pwk;ms+d|R8*ilerpN2f)fi2M19ZP#0R_ZZ6v*iq1PoZ%=ZIsinDtJph5tPle zOB7&^u>KeCEssi>v>5yB31{O#)Yz_I89m;+YF}PO@b_S4CwYf z0HwJGz}4b6I{oh)yp%XiTOIzBThX>s(Up?ei3 zX1ipsxl{b|{4^$W)l2@DO)?$dJwy@J)r<|RPN0e@N9obsV%d(F-;~@|&-o9k`}voR z<@B<_8hrJo54>@?mdx&smMqNpC1(}7fgiH%6>pGhspx-7BpdZnrkGn@$oQyfE4mZv znMG@^$|e$BOvJ2#jP;Lq+`tQuxGC=G{BP?(e(Bi`CT-$R`rM4kGWV@XeDKpf{DC*) zm=`Usvhx*J`B^(R@YM$UmR9_nfEV?3)%f*(B{2`is8!`2gD(cpOu63K4i=j$!#OT))t zfqNL2*8T%cP)`N&8c)3B@YCmb-v4E9t3Z1gu3&(~UuKNOmA z=4y%3sdbic-IGcXO8UbgH%G#32U{gaR}p4ztwIh1R>tKEj;e)lk?_rVN=2OmZy*N(Bh zi6>Bb>jY4_;sYvL`w`DMmW%uynxz^KKHzOnpW>E?LqMoe46Ca5QwFz1D1pnyp7YhQ z&+RzaJLEOa%bbhMcMkxwn=!hnb_UJrX#jOxHE7%!jm6z*lzFx`j`qtzZexC;+w?LN z@bnzJBjOv?dAtB<&-g1nwC0x*Y=*n_T4@D?A~ZF%pXt2XXK97vR#d zcO?PttvI0kj6 z+s4O$O&=}6uc&6gA03Zsb9jynDdd}WWb;wYI(+KFaM>Adi=uMm4#pN4!pa|`WGc@O zayMqaVcsmBz#JL5o=I;|Y7D5?^975e_~eo9vVa%wncoGIxCg-(_=H#moj;N1oY&d$ z>D}*O!sre>_V+H>vC&=Txo-#Gc||5mh|q*yyQ7!`?*sX|wnD|}#8Q@nTIS^iW(KiQn}9L7{Bd*JUpL9s4ao#(;}nOs_*cB2gO z#qpLnL@)*s^ATlxuuuBbS(AIxlZdC(Jp@5NJt+(KS@@W40_9gzAdQ-vT$b>vT)M96 zB{(%P29O_Cpz*dwT=UfyCGBSiHQ-G$4)e;w*9cRfS9J##9#049Gd0lIg;Q}-*bul- z?+85N{SHq{|AJh8T?GSLLeK_NHSC)51I&~tz?skfxbn>@aQa6#dJ=gQb%fkN4aR3t zX5}*0w95drjlBZg%%drHuR}1QeJ*TYS&B+4ZGb_>YCLuQB2+i^G_rfcODh6n!L=i? z_-vF7rj4efZoQE}A2g!n3(BaJ@_W+2GZRtNx-Znyy76f7r;)I~bR`;P%;W3qcH|N7 zFO7Jl#5+ZA#!2TT!1TsUs07S|PLn+Lrp`!Q(R4-{VlWl%-<6G%VztnvLKX0$IStu! zx?tfm05WI_sACOWy6B_Su;vYFUDU^#kK3-)+?|i^XO2T<=MDj#;j@5Y-+F0TZvrH~ zs=!f+8ZK~+;_+_Aco-e?m5lFAUI#gejOod;$M}6*T1lDp@-l#s4 zcS;?}o6KFS)DqK`l}%7n=ns+6`}Tg~VjJX4!;kg2D0Lq*Rrre57_o&GwFsD(#7N#D zWf&$SQlBzLw_wuj$ac);Tg4!wYGrSsHw_56d-7IK_=V z5x_)ywbS}xYxqNp-|&86&*9pwK8&ULY3yUH%l%oFg|<%JT=vImAmym6TYB%2jW;*` zK<+*SqH1iZGQo2cI9^U^mBmVJe{DylW8&prqX)8vBNu_paR<@suw-n@KVgG^J4)TR z2jJ=Z6LGG`5a2-^hy8CFf=r_q?1M$KarC*jAUkLkeAN?=_fC&uZ_PSFeTm(V(p>ff zc5O6JYr+(tIskSif0YKWevc%To$N)4QrGBoB1(OxizvYmKxI9mDt25wKY4Bm#EcQV zo;@86YpZ5AObEayiKVDG_#oUM{w8?|PQtP=Cn>Dt7hQI95H>tM8gz|`2iB?Wa(HkZ zvaY%YD_(h@zkX4j-rM5}S~^)onLGi3LR(mU=mZ6_Jm`LJeX-N%LjWi1(9&(Hu&^_S zUA|;6p82gFu2}ON<~?BLv_EQ?^DyE6*&n=JiW> z|9K@l@p~OSdZ-SZA}&ccYE4k;3tpBo+NSVVN-`V#dM!FTvKQ9NZPCyMclwWC93@xA z8D_3POP1_1X zddI*oO3vJUzuM9HtFdtQxYKaeHwnbs_tK7MrU1t^Rv>Yg9`34{g1zdLnsgRERHO_+ zQCShI71>EG8DmJRMElS!xkoAA4+HS2dplrYPncrOEpyq9`YL{`&|2oOZ;N6~=mh3( z)K1<^s-x)KL@B&>w9~0AyZOkY#){~}W(qa!b&6pgaSE^f5BVSJM-(P19tv$GWj6VI zuM7limYFyVRM=d1Q55m@^nF=6Q`9(K7V^{;ote)jX0;3DQyo6ue|&HeBNuZmVZ(>NhL22fHW)cQW}rO)FWH-xk^H z*9&BR$)|X~$AJp`P8l_6^+3#~cS`Kv$1;PN985KCLPo<9K*fm(SY)3?)p<6719u$I z-*@5Yv&|!zIx`TZx4O_1SD!~7Eh;D!?}Z!R#=((?bEwUa_R=qIP&g=1sYR~E(5k~V zpyiFr>-Vp^_>6B0T6&ljELMh!Oab-^|J&fu;e*l|90x0+7 zVc0G7^!a$_{@AqZEL&dkh%IW#0279a*x;=vk;z9F>4+&c)Wzk$QTs+kX`@F1UNZa) zJ7ab~FdgdQ!@8G{LTD|&wwA*uKjeVytt#m6t_bXK--aDyBap6nybtusw&78)B)B|M z9e)xmL&L1!qgXS0Fxc`ViaUD(X(T>iSO09nNs|rP#H7cp3U`?r6Qj%vgqVO0W(Mey z*&k%I>=iX~?labLk|~a9*@#n5jbMY_O93vs&?N&;nL<(am9KpKkiuAnt|V?rKkJd=oi>uM_b!YzS&-w*WE z`5qdx!Vme5>&IPMK8bBv9>lg1wqQtaH8rka2Cz!S?5{%;@RIGOz~xd2dvajA23+WHKY;dYHNq9$azT zQf5t-$H>n=W_;#qGfw@6%F3gzFh@t{(?d@@;9uz0^X)pWOvCkDra?1_ z+HQW2n?K_mKh^3XlbEuP(faX~>G~7E@N@Ebs^&LsGvf!ZSfVSFebb}U>II6{tTUMJ znaKp~?Z^LOR?>!d9C?ikr@8jkbO#i(%lBvD_670mm#b#f?VB|~v+@R>*9dV| zegpC&c@*_b7poq9LY-IU$Y0s#pbH!Bu`h3{b9G-n()gC&19r#`-&uN`}PM4o!SaO=sp-za)QmzC}TI9 z`6K&?44BmsgZ4_^;iVN3$mW?h=!o!#9e?NJr9zCuI;^4Lpr7*Rg*y0`^)X;J{vt}s z)WQoabWm=UlCPzDII8}!1(g1Y20o4ZfouCd5Swg`?zWrbB~Gd=Ty2epZ0E4ES1}GZ znMkqC)?jO#9`ZYM2W&Vu0GF;DQzlWaOSRov!OKJs82GG58sL+|PMZ{tPCq@!I_7GE zBJ;yY|8*RCbgv$pY+8ZWJTQhyU@si@utjuf3 zW;5?j1o0atxH6ql3Z|_o1nRfuGyGO-y29%rTN0MVIZR#xw{*{?H;jM6)M|AxAyfA; zKAl&gU||cr>`Ff-EO;g#xZ*Bve94mmlj@mU#w$3RH`ZMI%M{)RU&E_1pEBEiyrk{c zFJwOVyx_}Sb}Z=WD4Y3tYFH z!8N%wyG4h0wk_lC`xNk-_RfGgZw@knZ+e-xS{uPF)E_Th7R%0gScA6DJOf=^GC<0x zE;O_;j-6)V0~pnG`4Ynd>81NeLCMEHc^-8DKUnb_U6?NfSu2v@1tTl)RPz&Sdjhdl z^i~+UaxvOF>ju_+`vpbqSpYOk$HBc-d3dZz0ba8<651pVlKz_Y5Uu`{3bYe0vlEb+RaeEdV<1+_d{HOryoyI}M;$&oyvIL%70pN_35x}t4hz=N)FLj&$gnDnS z#O6-PMCsQSq0zDckfk~urn`qDXI~`;7cmP)R9C~^XX*0p6-MaA@nBeZUnbcJHo5BOUaZ6>Xl7D>|tQ;4}dac$$g|1nU4qwAY)#}nu-CoH>9k6q^CiQUNAL-Cc8NPD)2VCx53qvlihpy5d zK=hvh-9{Wo{TGG9Ev2sTRlh87CBmDI(p2h0=okTs;1IgW%TY;FDw=lK9IP)p0c%Eu zBbR(HWVKh{~NpmPlsgY@5XZ_hHa-A3bN zh9#%?VBvi}*J2^4{1C&qPqUDz^!8Ky)cwRqD@eul8lE3>`v()FvW#!^aFoq)o21BY zapzvKn`O1(wsde?0{_J|o(UQv=FxtJKpo|}2_ zimG=!eJxNiZqPjT_;oo9dH%BOO+z`XHQvigvbsU8_HulB;3dj4VmREP)B}pQ-iR{H zIe2XPGj^+d6zy;fqSR?!Y{!!-C>o{2XzW==y(x*I6U@J(ucGPT@s3{T=6g#%{rs4+ zFP^q|xJ*QUFsy`y^@;HM23=TL5()3$%0xw;$#B6#eaLtlgA$`iC1%T-8l0s8V9qS$ z!@OosMdl;h+PmQPsk6}b#yhlS2>_`}I-uRc0kox+8Ed~jAAR=Mfz5X(0ngiR`0~1y z@*!DzICI4uc*gP==uHt)dtIkUo4)hZEpj5;eq3KVd0Hj1NK|ss4)Di14VCDL62Hf~ z9t1m!m3)x3MQlg9G3M+7VbsVhRPIxQZ|g_1W}_cc^#vBta=AOMos)r0UF1LyePkz% zG{zwfSzyph1|8fv0H?6MsP*V6{9xP$)+@A+@@1z38qWiL^eS+yL5h9_T4Lj3S2k+G z-m;ZZ)%Z<94qiXg7QpgZlrxzLew>yAsqb<;&@)GX{8B-bwlR&fDzpuT6NQvTEO>U?MeD?o1VQ z})1}bjl9rb+Yc50PJs%5ao;RWmM!lxD{B>pg zzrJIRoK=<8z1qN}J>i*Ur$;b}OTN&HTMBr5td)N=KA$mlZekLKJws)e)41AdR-DsEzc}-f&z*D$I7nC0Qw~n!-Ch|f zH4ZAdMXtKCJ6kiDC9BTUi$XH^uR+;7sZz|B*gm1xx9?#BTKbs0$C_YKngXY2xw1CN zN`2E|2};hT@hGYy7G$gMqh?Nd$-Zr=l~2EXQmOOjj#JJp1yd~U;)F_*Uh`e+%*_5q@Vdh+gkw4{a}zz|GK| z9eeEoh>;_9DsfqU{EDcc<3Hm;G@KJhh6=GqrTd3PZXJu)BCH;i|{x-y9<;IHN;7(^|&7!ieKkz zaHXd$QJLgCI37_A1okR$s_{GUt#!M+J1PSo*|-434QCLq!f=C&MO=O0PcXFqJdkQL zn=0f*aN()Xc*W(b(uDyvc-j0kc=e4d^xNi<{Yg0`;qnr?_ntjL)=E>hQe- z{pCBT+hHj<`0FmzGtLq@E!O2W?wY~fk{qBWRaR4ND{8?u)%CK0E1GyBI-fY1>FaP=&%ob|S-q!hq5CnW z1jjRfkGU$CwRVbv++)o5>`5|@j{@F75XUvPs4J#Dmocf*Su(FWUB*&vu&f&fDbga( zG9s6~jQ+tK*~edNn7?6OiUc&A)?WJons0i0LgmOQb_UZRbfPWetxV@EM za3+)UTm=-`9TOS77hjlJKiA5Z^?wdxdIa24udQtJ$7|T?oDKbI>>!~1R1;++j6{ii zK1i`VD6cS`T;{uJARZ&`qw3C0;XY3mqZC#IRc@?ed-wa|;M!TJ>6nb0{au^>c%~ce zY>Ma3&2_>_2@An_tD8{NGoJfZ=E!yQCc{--YIs;*0}eUX2LgMiVOq@MIe+%x6&VCq z@N+aOUDOOhPPc)nNo#XzLKPBGp zf>QTPi9wa9VI^BH8+1jE`eiBCEspaczT<|DWIUttek_2iH0{yCz<*{RwGdC z?$_wdM~wca>O-ow5iU759^g&_5lQDv74BxM^0P=Ts_@zq)=$!eQQZqY?K7^{{>~+I{-_Oa?F@A4&JB5i%|~3#$KwExLg2c?4rH&G0N-?JKvR7elsnu-()+3d<&Ka* z@%2M+uCD-ZJ>*8Y=?kft3tLds+^^K`A?CPb1Bae##bEcHyRl#1L^#2_6Fyoh2bEXl zthTo!Y*y+H1uFGFKUQ4B(m5B=E6rn6Yt%sa{!uQ-wywhi?~a3R7CB|3;x+Ll$NgZ! zjhSff{@qx`Muyj4)qq}cpV_GTR>}Jcg;GO!B+Rwm3;KqqfT>@tkquFdDA84R$0t3k zefA{g++RtvPcbM^XCG=@*}>S>HNkxO2`2yV5bna12Yl&3J6YcAaK0OjWl9!j@s3{2 z^bq+SzH!NKnkug3Vk^^_!{c@{ksEF>dDg3VEA7ABhp%dk&pb<7Rw(E5)~;kyRk9e# z!INBCuOp{nt~fR7y!!Q@((Atrvf%utzI?#^}K&FgfyTYiy@@nnBqJo7HMxnwbOYRylOy6SrbjWe!(ks0?m`sVM*DY&1lm4jZe?5Pqx~ z*aD?)-O1~q=(HW&d{zzbqpi@lb)#6QUIFW0C7{I-J-Aqs#RiLm!J=1=u*I|xH&l1w zQ(L2<{!67++1YE@&ki!j#(qlyP#XtoS6M^nXKgr8yH~o&sS9tdIsw^? zyI|M8*)Z)wr{uxKN~NAz2(|S{E*O`09t*NG5wm%UvS$ATTHGNCY4hV&MpUA=rq-a->m=;#apkHXh`1;ehw_&bI9PlO`^_E$O;oO9 zqsf(+yJdt;>QlH)M|6=?bt+|KrUxH>5y3|9d*h1HwwGWZtUgwR626cVXn=@jE$LF04C^!;WWX=)nVUDca;1l zhEs70;Y<=!LALo1z<2p0bY%f+wBf$AyUk8~$fkmwQBldh9qPj_6y1>Ax^+*i`Dq6G zxR{qXl%z*if-uthBUaqkQX zGi%76!2a_dBISAN^ztdYk0@=Rs1lq8RzF#|3Px%iFR58yohU z=To_g@^RpN&(X3qoBX8x>+j38=k6BHG?8&*=^mJ8(V*DR^OehTUD?UyAX zx~i=6*_*8U(mAa6kmJ%FjbqM-_k3nAwLg*%9C?hrx_F+v{=#8-s>e;Xqn?oXJ~?~- zi{ngr?xch=^M%dwA!GZbR;5<*%^eGoq04#ssO)n>4EDl@<4xM2h&Os8`@FM9?Kd-`HSbuC(PMMSgda^V^S3c&1K(c|zt@`u zWOjq#fYvD7Jbxbd=h|1Ab$yO@d~OHM!9S@z6aT`uby2A5TqGQ(y#>9f)TC$0`_c6A zTXaR19qZ|mKm#WiW&9u#ZC~Px9r`wM3g@#pt?xOG2-koQmE0Q|8)k5CmpIbrAL!!1 z+$?(Y=QA*>!%6!5hAv*HQp05qg4oW<18NP*#LbbeK)j|Nn?i_pERDyVNAI%-3Ou=I zff2O)krN#?)PRlh&Q&VUCsE>0htW_~L#|-LPx@V&C7Y*tR7x8vB*e&B=&YJGGCWhv z#!oAv3f|bugVzm0()Q~Tw^0HrM#e@}#HYQ76b=XJ}@L)WOt%+qtrRe+` zSqw5id|W;cc*`5Vrb>Oss8bEEE!g%s$~kMjF`B88#11S-N2OZJ*e7%c-~50N}rJUDaNx$inNjHk%N>mr^>b@En*kW zlAyg8mdH2ryQHU{$dIavri!YH^7W6m|7dLg!%|UI`{xG9KP(lMTmNeRtF5kL{*PUa zEJvtl{KLmmWstVYpq>Bn*HqE|$LDHl|NKI2rT>4t)Kwj9|LO0R{V&&lHR1o+{D0W` z-*-Jis{a4$p`z?9|Lz~9ftvsL@BiQ4KmK{Vs;d7SFaI7V|8D=+$H(VC|2%(7_5VBs z68^LKzuEdfkC*?uu7{zD)<4em|7+L7_8&+6U+2?*O}8rlo=^X6|F8F#PRoCGg@5+k*B{y#>Q)_?Dp`mY@f`~CNR{~QG>Dh^QX-#_s`Z7u(`)s6n|{r;yr|6j1N zRxd}GZ+lqu)Hz0QM*Rs{dr6gy>ia?*xS%E~C{`gIq+iHMY0rceMehkajVAK+<}z|# zubX|5I7n1mqe3n#QYW3&UXg2Vo+lRc{~z9rxH5NE9`AICzDIF-wA%Wzal0s z5Zj*(%@Gyk$;k`7HpByDAR5+cPHdg6BHE~}CK}bgj!d;XESgj`iReVPg=H%7#M1m{ zgx!;o#L{McVt*SJ#m+e=yte&5Vc0jqKFVaV=uoc~sh4g|{)~(xdzURF20r;FI&2yx zFtHdWice1=gSZs(QsP|EoSW9<0L2WE|2AEs$5fZp>t`$Kt{xzovu1_;Qs-*Xw1MuV zZoo(~QMg#NdYl@0tJ~bZO?-^(w0TYRKCZJTV_L{z=hcK6IlkoAq51X}+CN1$ex;;g zs2SlQ4iNR}I}!#T7l_7Z%@GZVzC%W8REwsw3B=V=qY3%kc7j?UBPV6-CVUS&6Mowb z?Q<>{3%le05GhGz_EukSh@K0=$@eZh$V)G$k`WX8Ni|wCrM0J$#YNHT(t7I->7>!m zBpX&AUzR#Owt!~OVZKeOsOB*Bh3g}B&iay(!;N#q*>a@ zk|#O`r5oB+rPmiBNovt%>4la+Nd~l*{P6rF@mV#R`t7SL-O`aJ-7|HSq+oEXgmif! zp6z*BdVTE}D(V9-9zN-(v?BkT*piEtNSQCW@$xB z)2c2?Ed=AG2N$GD0(8en&2CMTzCN~7=ycXk)Hpm^hJei4$USkdvB15K8K0r>9<9FAKnsR ziy<-Qu$TSf6?@6fX^jH?q2tKqy@vMBEJ8$oDsGX@s#U_S2}j6|U-yL5!sX=W@?B(P zj{~U)$q{|lwISxW)(dslXA)+Ee-m$}5QOLcuflZQU81j1D}-L<(Zu8TD)xtKokixt zN5rzduZWFQ63NFO6Waa0M1J>l5V*Dkl3_!h5;HkZBJhh7X>hn7@%pPXX*|PNs5XHi z{1?ZQ@ouW*#3}KjK?Nx!VdFq327DsEBn=^Jzt0!yS0;*v^ZSWA_b&>!Hz$ZzEqXyH zB7y{i>!JzAB1h4nNr+sMw}Y%pw>9*K_c zvlCsn+C@HGVny8E`Gp+us#JK|tbz1Yq>%dt19Gn3anV70GeR%0L3qb`JF#`iF~aF4 zNwgl-Cek!QM6-5Z5Dr~Bl5o7!AoATkUv&7!9-=4Lf>an}kQcX{lAP*(CP}gxERK7V zAz8ELh}3QSTFJM8rjl5fYKeR2SZVAtiTJyGndH2hyCfdZlSD2`mZlqONT=L{oG6dLw1Fc+hhbN%G@$;_g2i#3#m`5VuZUEHMxP z>DysrCDX4WiF?#=sdL9=Nz>kI;?%lJl9ngdQi(&cP(0}!IXC~DU_ihT(&?cNX)-#O zcvP87{v2vgG~bUSLyBd>3ZwOe^Va)hwcL@cEjuF8l-7`p?gC;xwjsxMtRN4T9~PSY zt`d!1R8HtR<(Tc{Vy|K%!e^W?EI&g5 zTM=o#|D(`9!^m!VpPul+<9u@ZfggnR+)u(~r!@t_W}49c8X`#EqC==#k0EwDvofD8pfKY#Anjmj`lt4V|4e>Rs+^%)DyKsmaCZDAh6Uix8g~G+o zLesPDh%>kOpMW6B|JJWnn)QX7AS#m!iXO) zglE1^BLp{!$a{IJ
8;jyvZf{$-w2(8@7LgPQH$ZhR$!df*mVP*6Hk<4cRG2zK* zyZkM4gu+A}5%d9MY)O}J^cpjPg=HEs`Unu5i(EyF>N-a_MF zNlT(1A#peYfOy|i6^XaMwb+;R7N=F^iNlN<#UZgy4iy`gi}~$g4u{8&6tCvvBpHA5 z#A^1r4vK=|5&#d2?~oee)aZI~&}$X3)umewkyfY0{l0S!Q-)1)*kR)!Zn?Kx31$os zS6bDG)jdx-To4Jw#Esz&shwxUF13p#6UouxgEU znB8&TVOEB|WOPlJ!{x!h#d{S)B-@@wiHT2U;vpk!#A79M#e>%)yUKgz#BsX8_O3&Y zuxHC(!K9*lf_;iX#Pv~fLGt!P!n zDp)VQZ>|PuJ`fe!sPw82{#@onoA$UA5OtfsW^U0sksMFl?*6KxNZj z!d=bM?$=yBVW_1QX(wJm9NOqC{H8cBh&aOt3%FR}ot1_n>!rW!_%o@bVUs5L6UP%e z+&1#nWe=jix(7)o?G|<~bs%hGL&%1BQ!@WeqR4CcIr8X|sYIEV3wi&O8+mZiWg$Cg zohZ0WP9#oJBMy-#L^1PpNyn|b1X?JaAiqV4>TT-Do9FkE8OtXVKdzLJnj4Vt$L}rV zl>mm!k9$D4OoOR#@! z>_-=@BA1%16~r~JAU_0Z*h2h)&)5Eo>2ABfsp-AvBBRloFv!&-M(;}$>21svUf)L$=DphX{a?)y>5rBZMp067 zU`Gb&Q&l8+-mWJ-v%o++)AxqtgUeZ|*3v@pnA676@XzHE@Aux4#-wJ+o-T!0aDI>2 zzAaVK=9DcpNf;-&{l`vvGE^Wr@U}#fcy^+A#5R9v+S04iVZMZT{?cM8zPd!*|EYx} zV9z2kwQ8H#)#-}1ZN8BuFTkkx{Lz@=K65BCScdH7CuTP7(V#Q5~f2zCGW@WTc zH+qDq>iYsgsBJm<(LK3zvGD2=2G%~%x+<5_ab5(ca|LAV?ag+m5O$$ z+#q)wL=#1!Atd~}lJux)7seDSL>C(`5@8A1La*p%(fBDOsbtgSR$O5$qT>LSQAg-G{R;^tFUB~ zIWcUuu}GM8NSHlSmB>5dBuerJqA4oQgwC<^M5|>nIa1avB;Scd*LpV#tQ335)&4h$ zYYhp+-SN%jy=Pm92)}V;@RU+v5*JEH?j9!d%$&#tlkbR>Xh+e4?dJ(Mm_r;GzLC_3 z>lP*zr-<%Oz(n&H0r5W=y6(6dzc8M*R7yiuiqL(}bI!f*d7DHMDl&eN5UC`QtWZ|k zdm!zhq0&M_C8I(iN@%Dk5~+-oG77)`zMs$g&pqdPp6@!3Uxz6FYZ-^Hp1Hy_%)SHV zjuoU{3zGtkSlp!Y9;Lgb;mup8K;)c8{4Q}no>)Bxd+f|6-^FJ@d_^s4+_n|omPA7P zl;22a{M%bY49KfRc1ZW}7AQ)nBD3x0k=HYxL+*{~SXV6o-~4C*f8T_VnKy!&`a5rM z@YZO2_JKNfQr9Pae+z(n+lveFb5x{Q4)afc#><4W@Qn3B{P{Wu$?6hCd^T7F4@-T= zTjDpsx4a?}CGL->%#e*>GTP-V~IAmUGf(FobE>#oSMwd z309<1hill_S7lUtM-AsMl}WGHd2tE1OvkaxMH>D+iCtZ$fb;|2%7@yL;O+TN@LjeF%U!pq@n1>OSI|F zM$-CdKMHKv40)fgk-laV64`nY&P9yClRG82^1CY=?!ur(##~4LU1>LE5bp z3w;TJ5lcUu&~X8&#`(ZMvkTbT&j6dByhU^bAICdH3K-0;1*O(t9HlG|MI@Az=to0O z>I{h7^oi)jGq`GQFvAm0fsTCzB;wh8^4$A8c04W*LMAzQzIOx4{n>} z@B}%RFoK?b$wzbaRN;5>L3kM6huTFyA#0WO#4%wX@;>GdCd+S<^%Zi&?a&>NyWR%s zF8+9<#3XnzFNLW5Sj(uN>cguey|HT;gFT$4k+9Zla9h3?$9QI=nz}+baIP1BT$PEl z7mbpksP*KJ#$VX%J_Xk-7A9*8JfOq9kkmLY!Cx=Mf@s1Peujh>4)uv;B-hQw2Xr*~ zlk-DJD(8Yd4orsol1gN5+6Wr9)g-(dUomut<9AY-q|>}hUA$@OPJY}sRI82{;H z<2PibkV9Twk3)~G{Nene^?Wrccam>256?GM!wn6NxIE%26=GL#3P1H&p^698by_-C zt9F5Y9lswDx1_kzQ~z9T@IHle12U53ip>2^N!k+uiN%eSUypU&jWC;!Lo z{qd2W@6@4PLQQn8q=4Hlrh!y1O(9lB{><~>P<&M4H%xx-0xe+^Ntx0Tn5uOUr#&!7 zOT&_(r6CPVFO<$LUeQ$Y#ZDTwA1tZI8{uTOpI&Nhw99z7goF zjUjkf`@xBbEL8DN49rd<656^QiQVDBDK}Y9aq3N{cYxXJpGBrCJT`(GaNB%nFxXaCv-vN zJyhyTAdRSY$f;3p5}vcvR+qBi{F-!{rOG z$8bFpEO>yT45YB|w6|d4tVML%60oxrfuE23053Ped2_PS6rrzJ?qW2|ncjo~7SoFrzpr5M@+Kv`}nI^J!JC-h4rUD>7hxHZQ2Qf|YV#qBuIC=~Ud z6+sr!jmUOH8%!oUAkp{h(0s=({JL5lwa_xO=wAqNUX_o_rRITz)>3>4(_0|BrX|!0yhSm5aMfaVsrDm?-Oy*Pz{GiU6*H&2qPs?V4;^=L3 zH+mdzK@f^M;t7!t9GGz7^XQ$HAH+6n1CP+3c<%K1*rB`-*?F14j;j}8ZoE1AwLTMv zPpCjjEkX#_E+kzlj_~7XH1Dc{9LyJzCMu5W@G`gwl0iBs{@s08ax9-|in#-=ZACCL zX(hZDkH*K6XQR`Skxa3k8QLrM6|F6lM^W}VXr_oGt}MLHm`g>Vgh3$^_=94b@K9vC z`y1-rxgR#v&qwuH=kRgiFrMQ^6@0}x38pH_!O)LRh!O5VJtsTiUSKp+o_2Sfi<7`+ zPp*QBJCDRDIblOyGx}ti3YtkT!D7S|6}e9$HluRTx+4;W4VsZQa~DW7lV)t+{z3SM z2w6LJ1poc2f;|fh(b0W;oH11aP1$RNzxCC^rPhORBw-jkM$ABs0~j^Uwn8oS7g1vC z3M6p0MKP*{_|ca8OkGqWx@GhkZ=U3h_tjoO6^0aS?C0Zqw}X&eq7W(gSi?KIcrX4n zsRzc348)u7!90a|uvK#J`0Ucf6x5EOf#&V_TEJ{P$heaD`1{yTWH;O?EQXiZ9>>qi zMbGO6WK-ZUq%Bi{rk&S`zsxPjCC$8Js~$qns}NG}-;AS;e!+|%rRez6^SIuWLyFQF z_^9l5Eb9FYtOIpPon;tmG|)yX?0=&gIW;IL&PV;bLQ(Y1Iplq_6jGX3i3(RH5Y-<; z`1?*x*r^c%y>}Gw0?#?Le@z@sObZtHepo_}?a||so{7H9WAbn%Su`hkoX~2h7)THt&d(Fd^KGf1= zbJxnUB~$0q`VM(cdUY4uPBc2i^jq?NR{AQTi*icon<{m5 zXrK&(@lT%RCI{>g8xOlw6=D9UHRg(DLyz!$T-cV%*eq^B`XbBl3e6gLq;5+R#*X3E zV;YdPGXgx(D9Cs0K=GP$Nx&Li_+k7Q#f{Gh-L2km_=pVCP;mre`R2sDI1l%5FbIzD&fvOt#aQg-2(idsNbI|g1629qmmlh|<^2;Ns(YW@y!8zt z-zGpyIN{sRHNn>oU1!v+Za|=*iyV;NK=wI2#3QYzVW$m{Yvn5-xwr~v-#d@@=xgBF zPEI5<{{?c{^$9I_{1!=W^@g_V%3yD`5B6(&6Ty@W)IaMI2*Q;4msI$~PDB=?bzAVn z@w+n1H56Wi{~+@^ZZigFCX(6G_wl@*0zBPAooq^zz;+Lu$a}RV@MhOzxNBaIGmU4E z$EEuGYs@vW?4csgG%3LU-Yq5pXYN2<+E22+r3mL2O5)4kviP0}>Db`QZN^Q<6)*eX z$v@$En;iL*i)|-|z?7j_^6R$;7|Jdp;W>-QoR>*>sz?g?w9^zUQ%!)Z+7C|_4T8JP zZqUEx2VT_^`5re%Q2gZ&kUFh`zu!8GOmp(xJ z%Nd#dM|+mXaQ462X=_9@J*2jR3vHi4?)G=im$~_G^tD7+__17tvKEt2z$(Rt(CjZ+tmTvuHh7~D{jV&XPAzKTRIF~(d9O}! zQlyOAy<3|bx^bNLogtj(&LiCE@%sBsx`5nK&Sx-+!<)tB@CBb)_}%nD?7E-|KJ^S? zy;EK2ZfhzS$)w|r{0h8SAjz-0beP#=2>j!+e9??1*kU=}zX!bd zQI!Tbz^#Sxs+YwpV`uTR{k+JJ!%{>@C>wIVttI!3<>0OHUwqS{5ywjG#&be)NQkBq zR1GGfL*FIgoMjd`-;oDq92@%OCKEhz9wnH(hUAuo{CCgxlEjcPxZx6oCmNr|SM5ZZ zk>D5LQt7WLSlNt@g+(*}a{3vq55>sj!vHfpPXq@4JI81~>|$J{wjr6`PW0ujG4|S% z3c(HUnQJxOOsuvLI3&GgUMuv2d)p_*8X}kp|ApZ5vTkVMaH*zOTmtj!yDkp@SquyF z-y;5uue^?dnV_=aB-8U*0(Abgp|lh$q}2Qw$^Tc%yWRGech!6@b7YJFkCoxly8x6OJe!S6`ppLP*z;Eq8FuWgEKPhfon5oCQgCl!CA&GgoBdNhO^|2E zXEP;j1cLTa!P@cj+n%1swjMARjK2BJ^1LfqzI3I)F{+JC=;{;Xjm8Q(WaHV(-?s~{ z7?$w`M?C~jf`X}1E6cWCbYszi?E*e4!43_p2}~^?vt1dU^wFMM{Cm&V(7v2!{O;RV z1iUj(`4+Ec3L;Bf1V3nVNtiex^JoT9Q&%uuQusH>DOC8X+?lR5AS4xTLu~7 z%^5IcWx|V<6Gq#$HE_%A7*L(O0~H(&Lw_zlKnnT3C}7P1ey6Lz%qYb8O`j2D&0htc zjz;(>BLNd)MX_vWDEe^dGZL27!c$9Mz~TG@WWX^J_o-0$=XVW8OH}d3zy0XA)fk@t z`2raJzJV@nP9n-qGT0#6hnXL<4}R}jN#s&m@ay@)xXS4w+D)AC`j59!sH_XVw^9r5 z_}K-~BCm0BRyaER&>78`a1)(zv4J%a4hSXtp~!uou&0j_8f|%r-Yi*5W-q&ek3I;3 zB|lz+^~D&FmidToAJ8SM*BCKRb=+|#qlX_T$YGG+gH6tanro!Ogn)aagSE$)*skDi(E zo_-RR;fzYs=%3*+w(f2+%?hfcxpf#lSy7B>@N8z?SBfnbT!2@{ro)94J3Mpp2+G$R zh3aA#WWqF~+(k3+F?a+M^UTQ0+0IyBNfdG%a=|Bh0uK3k7cEQ^C%@y8;Mcz*w9GkW z9IJPMU7!UMx+e-2j&3Jmd6hV}Mg#wav*`27!&p5$3|;=P31>}I!dC9B@UX2K%L;j- z3Ui9KpE-{*^UT3j!3TA2D@V1Vt$6nNJVrY92HM(hL<~xDa9xizY?Y~izk1JLs?uC$ zvO_ZHIc8`ktMuAxm}^KBqVf zgm=DRzVa>6A)QiWF_O(FeRu)Cd;6H4^~ag4>P6V>#eXQ~TeIfOgZT_+A&2!#PQgy| zGW33b4eyuW8*=#@&vb2QL=*6Bz&o->%u zj^VKE!x`Q@mlDRuW-Au@NuZ`T302N1K%;G@NOfZ(6PNP`-VDcTS~UDYcKwCOin^dp zIZBWt+s7O))P&B51Ao zm)0RIBN5b}mxTqRmIHIn}Ecwx-w0bvW%4SXUIRD$LrXApOO01kDvI*z*T)o z@Us?yg`z;unt0`#cJj)*b;XrTi%;4YNV?Y}ZH}F4c z#|bQ#DG5q%n+kl5=Ly^v9TuD`9%k+5+!CmtdB_Uh3DGQ{CG4^M_kxe#?AWNAj;!0- z`@GoLBjD}qq`B*v2@;biWz;t&Fm|=|DCO;8=ECglXymdiqu*)C_&)d#DeqW-wA*W- zpYug;Pu^e_kDsew%C1PDx{vwK{sCNwtY+dSEn^n_n}z$^)KK=iQq9(a8%({GC~lGA zpz_ptq}TY4C+zbO9jC@jV}LUXuwIDWmmUY$oq3{-KR zj0qUulLqm+QPeW3i_DLA;WZr$&v5wz$aFdi+TxC|3Uz>ZrzrTO3FDM6+UTZJHp8PiQVY@p0~KZR1Mt4N|3NnIN7@-4DA11;++|; zM%fZkME^rMe$%}Y6rwAc+y_c{^Gpt1mzBeZs@1WAMG@@VcNE|MC4!!A{mt~r+n^=7 zBA~R=7-wT~#DS_1wIZIXNhYMzg zWU_irQS?ODb@tq~OXIbB9Ir>&(3Pd{1*3c4u+5z+tdwgItH3I7UXu;!`X)K{r`=V$ z!jVsBt@mebluuIY7jf*;Dcjh_BXg-!$$U09w^iWimBbnZYH%gT+E_ZOPG?rkVV@dbKA(u&R@=(VZ^@zd)C@`TJGS@?$%D%p;xtu<~c) z_W96xZ{q3xyOZglL=t=0`XhTvNP?chgc+Ksg;%as;%%1G051CgDsWvnu8U{EOvVK5 zy(AhOsI$u2pDr|+DDd@_2N z>3?41l+u|n_lG{uL-#lmNDts7&8hgts@d>Cbvk{781Uf ziS9RwVg)^Se#u%-bn-?S>F-n~EnXvdLs%M_``Qf;f6XB9?FnG7LQL#0k?4u;L~Q*S zf1VJ>@0wnKTPJNN!I{=%{h%Bc`CZ93Ah+>)*ERTRqJqG+Yb_}nb4Q*rcW|U>17E`0 zn*Z-%2hl&U8qd4cORSw{;D-~0_?Ep7h;p!i7+=fhm*+{~$YU~CLSua9TIY*Zo2Bt$ zk%f4t>>>W@+7x)@R)pVG_VJVLboiln+HgyaJy~g8P8J?>!K?4z<2%O3AWQU*#4Jo8 z%Is0nQOV;MSH8lt!qoYFRBLFKpXk_%@-vtF zmR-mn?Y~HFpTxNP;ZlB(w?0m+ z*5UyN+xyKm_O^X1oY(&n=Q zN6jR@O{FObT^vmgyuU+g^?z^^a-Fnx{Mk$SD(^UlXD_vmFS^f(8hCLBzEiCTg8;2J zsE95Nc*`k$J;AMBdWBPW|D}~#eNao^SCg9)k*BpQKv%1PDs#F4-dfxD40B60Be^rb zG_?*&D{xP4RML*}HcsdBZ!M$a4>-s2gIbDY758uUV{XxvB)UT`QfsT;_)c}%KNcMb=Cn3kQ@CuO|{Lab&>{5pCstzg`-m`>QZ%aVcn-z%N z8+k!M=|29y2i4?mx*`6-eIwDa;@Gyai|p8Vo*c~3A_r4i`0Z_yc+Sn=P!w#3yIL+| zV@C!rANL7OLVNj~b1WR(l7*EP{pAm*ujDVSZ^ZVIEa~}`KqPeJ;ki^0ak=2ckjXK) zeY6K$SN(v)aY^{pq-S6_)Q%g%C&T{dxsV@ikNv}+<3r7}_~+Mqlg|eu;O?{zFx}mN zS1H7SaApm0oAVlGR9%FZLR{1dk_Vh99wXN8PcTDGAMj7?hr7z6aJ`f$xuva%7wmE-r+bY- zYP270!YeRRrX=g%dj6$N&q>EkdF*A=2WR(Kl53mWz;1~IzrxZ6Td$VGEB96L^Sr&W z%>F1Q*KZ2`x;Kh1x~h-7-+v3+hEIcjuTauDxDEDvwk3P7?jrsBa&Z0j2*R7I4Q0pX zLAO~l)W$ypF%eJ5EN}<8?Nj-=_NS4Utq}gvQO;kmBZu6RiXL}YW#gWsCb+r2m*&1p z=DrRuVxtXmY3S5P+(_mC<+Kjblb%kT?WBv`s)#!FNBS6@E@e);J0H>6Mo25a{RsEu zf*Sq2@CJ8(!3j>jn=?$Vg)DfDUEIxd1gg~lhPvNGve^iZ9q*7KSn>icIe zH`#h2HJi{z!yT*H839Qge?&{G^hqc?r{yU(a1Q-}Dvo zzu&;gmP2qbq7R>zFGUZPUco#eOY9>26yGqPKmHu5H%U7ng}vTKfya|xtm@|n%jdU{ z_g@krx;+N|UJK(7$!g%r=ibbMo<}gjdLe(6T09y4)PzSOwBW8YCEMP;M%%5#$)VQY zIJ3eMoBTXNCOOq2jlo^$=J(}rJJ}x=sZ51_&4ZwM;TD-;YJ_BVzJ&=J1pMB`tH=SK z1U|BVGxi(s$JZ~MK+^p$aJR!r?7bk^eT~3cW-FeqKNT)neuCQQ-ep559>9|uj-ycBBk0YAT(mxg zf$$VlbfMZ5oy-v;mWw(V)v_DN#oUt|Qi;VBLh(WBg7v(rGiVZOEJ%7&cc$AcJg8UEE0d_E!+=sLXx{7zX+H_iu~j4A8y_I@V@_?ht>!!(=F*&Mb$TKE89lk-J5_yg zfK|6KrQ6OvVohD7sNSP!F8Ey|Rh^#8S`1F-_KY^tO<|2}!N-480`%!qT`6kDrqQ}} zx7fc&1#C~~6za4hmJ2UmOfN5}r!mSm*tOjnG$`aKyKzA~^$Abp))z~&cZyDME`cU& zfpZJ1AGVGyVK1`PN-NnwsYW*HKH*MEic^sPLLDS$aNn22(%&U&wDd+KwYu|&s#nXS zC9lRkK98m|PIDA-&!+MJz`6s8opHimdQZ{R>o>vt+d`Ds*^V|0#e&R^-LPM75m~r+ zHExw(0FBA|@RuEfrD-=%-m*?yv4@3xvqdOG`6Rg~lLz^)m6#?;3)ptlkc`?z(O?u|fGQ#TWr)I(SyGzivxKM#h%jWB<)A^K30fv+9C$2c^3kPOv!p8ZA zc$4iUm>MsKH^<8%hoKkfvx*u{*f{_eZ+4OkhGopO{yxJJF6MYe>X`G|c}`0L!Z! zU=UK^*OO?JFr-K#+l82onH%u2v%|1x=o-}Ai^i&<8(~uaX)Ih~gyPhvgH@<2wkR^h zb&JEu?C(P4#WycVUJ(d7hrRLX%VLlyJCnGcZUjT`sqm}lJ@IUk$KG2OFm3wdwZQTY z=}eqNCbV^dLHmBBmv|Q6;U7mOMVZ)ktrxaYlEb&jEb`}aBMSAmMxIAC;g-&RSoNV2 zRbI|>bQUFRtCJfoeqPi??PWJp{i@H)B2?Qf_vQtbnb__ zT$ROCnj|rS9+ZovSnDoTb6diypD>{7#QNC!+R1cGY$x|IvW(7rkjy@qIe~jJu6KAH zOK0WgX3(FH1=QQ<4_mb+fO7jUvL($%Y-gSV^|fBXZMvyOclkV{%gyhy^KQ?fF2Txd z=tN;|*T4==v_p)2U@@69>DOV+mL#x)8gombw%bPYsbMnGt93*NE6tcc3uDmlHD=7aGwYFVO}^&-x&$WKwFb%F7eVfs{$Okp zi1-rH%;}+>XkkSiv-@wN=8fk2V4A#z2~SPqiAmdnRm26RInqGEYUv zgjqCHk7Ory@-o$5@#0VhQr3BiZebo{u>CCa$y65({awIBl#TNT-3gjA1OK5Mybtxh z>t!R&32FypJy|8tGFcZ=Jly|S&7nGyC z!KvpE<9d1;y3Tz^*>xQP@n>HJ8J_z5J+764)$*^{#)L?Ls%*I6^_L<+@ndWD;U*z| zS+=jBdzF_U&uWbzFfo7)x0YjD1&#bHTW>azKO~r9t-yC|=Ge!X((IeE1VPW0{KFMv{OfAPg4a3*Y}=%8!Nrhb!O`&*;|))m1o3;`^Y``l3j)SW z*bV1rGE4WU!7&Rdp763UbY* zRR>OtK-0f|2D{IJzIEZeS>jeOPbUTWyfQ{X;x2fW%}nNm@=V6IJ)3zN<-mlM>oWg& zWHJF3PGFlpiP2D)!8|-44kiED!?LmoOtFwET6jDd&ilVbDaCWiNe{|wvz>>xhU&xm z-N)c$xGfen!{BB~Fkhi{yf>MFVp=z>-Kc|OcZ8F`YhQ73xEU~hVtj02CQ^4+! z5!qId1S&~0ASup8$%(Pr(tT)i{mJR0w@yY6{% z3qL4x8AW2$TxJRP<>6jBVqJJ>EzJO zh<~Ey5rmA0Fq@XGg4)BSBxX#JJenJhC;8{2sct3sN$mr4``Ib1DZLnDr7@6*c!eu= z8lvon#z-k|T(dG)hL%+Y$mW|mn2f{jM}3c&O;tcSdLNu+%0Q~0`gK5w#XebxPWlAB)aYE6!?mQQQhl;^$>Ux6z zUBmacyh9(dN0Dxv9RBP+6~bd%aMU9ySgjI)47bD(unU2cr}B8EC1+9OrA@?q%5Cg< zI2R6l?qsI>Xko)W4ruz4S=i@~0Gs^|hLZ8jqQ~kArgGmW<{DoGRo;DsR1;UD;)EZ} zo9ugdjsms zzV$*=niY1DQ$?qhqR>vyK(tU>2Fh=SAcx(*7)5yjF*+a2BWdFL*p_8U6HY593vaWoF1o)j?t z5jD_sVLA$xDjw%d#&e;wR)P568MtOFj=8fqjxp_#L$3K1$mNed(tf9i=3nr~6GJew zqC*kPuelJD@X7emE)Tf=?htft5r&w2brcsBk8jnj31PVPMd^&*@T00vQgTjo5*(AB&>Jj0jjAg!Dr%Mpi2j@ zp|5)DiD39J1c{#G8KrrmoG;VJ+>hsQT1`Ccb()0sG^pbnX_hFNHwHXwF}yy_9HOtN z;jp&%jN$hTrnONOakbHCULYWoY<)BsRXUzM+R9{frlE@HbtHwX#LAnD;OqlGxafi5 zM0En1@n;B!k8I$@A5*|v1Xp0;@oUiXR0`V+PJ)U$2b|Zo7d=_miYl#RK;yh7&d}XX zCM4d(e?Ccra`$J1{<&kxU~%|x=L7zBX9GOYn+DZpmBdas1BSJ;c&k1QB7>16qPzAD zE=f%QzL6;M*9*hDZhNEF8fQEqe=AmPDTB2?4e+dnxkz1Y37Ysf5XFS`pu3X3$X|6e zx@w?EG!D5kU0KhOf?fxaib%)i>N#-CCLNqEJ3_|U9yZ}fIz6D}AQ+YW#`;I~(-+f) zD4uebt=HN|jdU{Ugw$Svc%K-(Z?lj+sZzxTB`x8~S{&$DGiG(GnrPm>V5&^cvikh< zR4VT>``sXjRjFP>d;1r&mlstF?1aNu#@v8gpeaOuxtdUoGfUZ%*Wa^MKSu=5N-xrF zdknbpwhTe?m0=1Z<${;HJlN9x6#~hfQ`y~?Qmmc6Gdm-+llE^Na1+KjFOd!a}mZ7%89f(cufNhr!qH^I#(3{=ESWVl4 zRMfSB=NSO244SdUy$rbf!WTt;Ux}u97k~xLMnAv%;GygzXsO~w^t^ZudE&bTvVWc6 zO*{7&?U*=`3>I48s5uQ_750<~k^BfwZ$2^^C+Yw#JO_zwY_YeV?P}vo{XY@PM=W{)bXqx^uYV6 zi)K_w44NE1eh0UPGjskuLZ>IkGuygi(TNwWybEi7GV?-0(P&B#QY>f#n=V7pElXg| zSYBcrQbW<1R*u<08$k0*95djf%Xq#}!`3$$wDrYt%}H8W%&%2#)fyEC~z+aRk=4L&~YWhxWbq8-MOXfNx_1RqO+mpgqmMX!iM{OAABs-?Op^V%YK zhkr0zR`KA?aXDt-IYtLVzoAu=JJ7>#)A6MK6d(sx(b4t?jFXxYnAHR^+owoi7nk{H zi9$1TzxD!tB^rVj`4nq5@BYCY$uh+cov(r7Kn+@V^e%5r+%!m7%4fEw=)l>{%{6s(q1dryfI!7sG!3>I1<4+WR>tAYWE1Vu2>3a zK$IXoNt`YcGi8r#nkjJpaF+dg-GbfY&J)aebCy-e$`#zQh!Gs2daUIqH9?h24Zq4E zPjGzWPqvCzD=4^ef;BT(C-B{NS#YR6ldp9K;5J(s$ z^AD@t<8K(L=O2{y6b#SGVNHEK1=9yMv8O|l*hwau?C68Tf;}V3?B3mcR;=eb&*=3M z`20OUGjwGEy8kYN*}gK2dEMNHA_N7Duv!D!H>;TUH=&)$iA_ZlTaKd0N&i6R^E$X6 z`IV7hvz4)NNke0Us?3+;b#QB2I3ssx6EkIt1FlRWNbu%_W`@pZCM{|ZCZG*)zEu=- z654q065b)9O?Piq%@7|PHX06gUNUKqXgIptHAhr|*o8%zJp&2Muy=puM@|mYGo^dP|_Jolgs!&P{ zuv*)1jS`x=Ai%@ZhQ_fk~#>j556?_xe&e1|p|d6T`$;dt4)^Kk#$ zRyZJ^0xoZZkkokv5}Evpw^efsK66V1-}xK|U4JiNiv|JM4K2p9;~tW-XX@~>c@6d` zn1zjX0?4MuM(keY3u_}cz{v^wai-f$xUqf-`R8;Q+8aiYEFL5#HW;t=+0IDW#ei{8 z1G&0n22m5Mfsn6a=%=17&U_w%WR?bC@lh{)u~Y@OZJk9=x za$C}rsFdq8irnI<&ZcZ?I%Ny%E5DMSNN-?M#3kv)*+;l^(aZG1(u=H_TMwNwkVu!B zKV-EIyr9a=BpPA=ofUnOME$>1vbXl`W6!?C)UU{f3*Kr#hb8N2!<-a$!4w&~_&#D? zUbfQ4)O}nKR$+g7&F6mKUCEC66|j0AZCJ|_m)N5lma!uCUs#dP6FI4&5%x&WL#k~3 zm$tt)11vVnlfQ2k;bqs9;r%UPNZxw`a=8RFu>CQ373CcZO z&dmE+jP!^iXoMOd5l$B+dtSine~;(dzduIJH#N!2TO07cCkx;~iZbjg&4P?6Yd}IH zk?gatWcKnz$#wrI++|t6kOmjyVW?7?MXpGv&$uLO@*b7~ui{R3NM<5yZ5ljbl;X-a89PN%Jj|XHS zAr!QNoY4D;O)g!>QTkzIW1|Yz zN?T5fR~f^r9kcKi)|p%mP$35|F5w&6m5~JjmU!FpA?$OEBP*xeg@W4}{D1`mxar1M zSSVaP9?|NuDrj4e{YNCXXFf$MFt{7WaddId3lU*{wF{r+>bFg3u&R({ZTku|mPWd>Ko80q(KI|3Z z91ifcmOM@8GVdRy<<3G{@$LTHzKf2u=t3G7md$dHX7SvN&kgPa>0*A*o)r(IG=eoS~=n$+1P~nT7?Uz((%W5=^r7M?tDyX zSCBEC6(v26?Z0q0jfd#Is&m{Ww`Q(>|4#1yP&~~raN_J5^ElBu3JXX)IR+fkaUWOc zQ`7LnUch2oR+FG*RWNo+n4C2Gf^JP7finjGk*AMp@CH1Y|K7%w2ptr|8Vee*Ol>Z1 z__q`IzX(6(qzyK0ii44v?))sX1iUIv1HGP^jW;$M@!#ZJCaymFNb{0JSl&E`$o>_; z+ysu;CqBaqjuqnT<8KIrD*J-nc~O@!t!QL^^DBDlDHLGy|(lLwES zA+zQRuT^r~sjz1i8I`<`=Z8+hPj73ZTu*1br6~rv?wpC+2bA!~<&NOzH5og-e#YFq z`;yVvBaI5;)6m=<3lYk6N8$}V_}!^xjM|ZDpz|t_$o3q>K^C!aJ#hdm=NiI6ECe6< zYstjQ8s7CHz#48{5RfT>?Pm>wipX)OJYIy)x3-{Z-7?TKdKN;oeX&AD68TX+oit1{ z1m#dqPyw%RCDI>*Ezn#Igv8hL*5LZdYua;QabeGfk|A+mXm@nSdNkmJ?>r38d_-<#r7}l zrs4rAT!1&Q&ZQ=F=e+~0#gD1p2Sth2-CE* ztL(dbnRIK`F4leIhG5pgV)nUxKDR-}faYn&Q8lkatOqQm?^_L7wOt?R-GDUCE##J9 z)6g-FJMvth*!ztAxU^mH(t8p6WZFD7*dmM#->T0&N|2+=tA;7xQH?v19z-Yo>SH~8 z5@?29I3-E)DEUGi{uPtL+o3TP=$>5kmYoF&p*3(}`X_Y6su%7z2K>*^dH7TL#c@0` z6J;c!h{QeTd(M3ZqCrGMB`YbRA(hIn(o&R7G>|P6O)DAE)T9VWrAU#Gw4_ubzx%rX z!F`@{p6~d4-XGjmcpYaw5CS*pGML_*K()WkCAFEc7*=V5yh$Q_iyRHZ>OYC%@a1KLpnv{44;O52c%_BnduJ1q%$0BJ8pyR zhHXI3&BgYSDP(Kh3&D?*%A{%2Oc>a#0uOJDCw41qaO%59@Nz*bIxi;!^3@_1#2S$f zSzn!w@e3iPHF>yC;wN;(K7{ELCgFr6J-Y9NEO?Af#)@Ex_Bu zO0m7gDdL{_1qoB%;gvB}*HvdwE}W~zJsh&c?F|` z?t{;oi)7I%EyxcEBmIqLI91C57Tn%JLTwh1rMn%d-WN&QShfYm>rEjI#$M#`*d+X_ zcM&~otx7hA3PC^WHNAJR942h~A=t987rwM-(B_(FWQN6LlI}K)+an*7gbYt?R-HoT zy*4Bh7T1E2iwC8z(=cy*7@rdThhM&q0hc!q@Y4--c<2J6#gaT8+S`uTp1n_}j_M-S zp)){_QzQZ2h`4)e15-aN1yT&WI+>5!){5u+aMEedt*ff!`Rd?mD89!sh#hO@~ z+z(8B-d*NPiy14iPMLGwC(hf7JcpBmytzW_UT%Se8+WUEJ=^v#l*`)if-8tTjQw{! zBdnJ#(s2wVV;Wb9v>>6dY|RnE?ox%XvfIdpqf@ZNe^%hNEP%{>tV5EH?4=)%R}p4# zKA7t$kn4S}WW>h@zqNCxGu?MX)WIq6@LU5;xOx`U+J^;C5)VL_bRhlQSxV-8Jx0b~ zwt(!=hvcWI_x#>mOzhw4lUcQe@c6ttHG3O^%R+4M==h^}u1y8D$T){(7gG>SlBF&d zYWV8APAqoLjj9j#lC*&iyjv0^P7Y?Y~ z8b>PahxNBx1YT;kxaxE)Ox&#t$Rvdf{~LgkJS*&>MqyirGqlf)MI(VxL?t!}%gBgh zS&w4!^?Mz5HrXeTx3!3Ji*K&;CNZk*aM8F0tvLJ!Yy3F} zaqARuL5?peRu31vJ$?ruax2^`V!@+Ko7~!X4BuMx13nI{MBDbH<2x7s!jI}yn6>|| zh{@ndu9$S;YP%pX4f_Un2mc_aqs8QXTrwCeO2G$?^K|iXGZ=ShiJ8RW9kwDzDC zS;D8m0$&HbU>T8-?b+3>_~0YnQMNOqhYPJh;gR#+{^*(LG#P{=~;HMkIK zTV;@rz*bZfXN=WGO{ce3ZX;QK;W%sZVi1U(hO4Tg9)TUly`4Xq(R_b~l@6=pjtm}W zt!fssxu1Jj$0GsUq_gVGlED+~*_5^HiIhF8eqa{obwbD$*9=na?%cv@n;&IAoO#H)W>|6s zOP;a&o;_!FdB0`5!#M7*Wd~XwvV@F?z8_hX8P`R;J50%@s55v&QVcZDsRi#h_mSI3Gubmo2K?L?;No{v>9(VC z@clx9z(Y?QPDs8XkLnn5$V-aEb)Lq*qBY1Pxpaii$&+)Mry+Ky9xUAdiu7-Njbdgr zp-+8ExO%n&wpgf+4_xL9zOx+l zSy?Ga(@LbN39JC?L>m+rBAQd>=#pfUKPYClDS5MJpJ1kQ7uc`2h0hiq(o&!y-TjZzV4~XGXu!&>#id0UJVL4CBEuCaJ8&{R z;_QD6%Ng8pW?!o`vp!R+g=Ze+a0h+vbK9qX59k|?28svZr$@#c4}%ATj4gD%c-bf4Q$Ua_mnHxxVCUkSzUl{&^g4Yt)H+4#*6>y%nxk6DtqX!HiGxe4P3$=h*ME+)@k^LT@THZF>>Bdc|e zk_eM@l>1HvR?ON$Y8;;6xxumY=QSJjpQvtd_GCzkXBC7;d?KwrC2&9M5((Q?f!*ET zLeHoi($;>0IPAc}l}2KHH4x_Cc}pixY8EXlmO$WXTj7SbU4*fG zj_gNOLZt2#Vf)W$nlYi9EPrJIkHckXnb$u&<-7{TlZMCy^Z$s!rOR}No*w+#Q-#ku ztc9Mei=aMVq&KMWgaD&#Ix4jmd-Ys`5Ibezw#^Q78-5N8H_avC=J_PJe*-+9*e>eH z0#JO@6uRltV>0{PR`OoiohC;q5_wBIYIWre-oAVaSrsEqwFkuMFNbBq?$@vAqOSQQ zRn?#Dy0Dy1{(B2XVx@#PqRxAleTc_K;aN&w|2UJx-#LHP8s z9C)651Q$m#gcGE1(kcf5iCGdydcSuQQSc-`wIPx}ByunOog>M=3i!)U3Kh+>QqOUN zT8_Mpc?myZ^mEq#sT{w1Ae7TnsNyDTXc=aoJ82Q;__uD8wLjraNp)e@LFsAxQy$+xVCNQ*g=!Cd~7xt z_8cx`yUITDvQl^0i&fjWqKZMbE@%?hzfprTxL?G{9BSZg8mhSB$F6+qhb%sLg%NMT zuHeK|8UCwb2+x~{f%w7G^lU{sy7RM}XxWF7WmeswJ#R9dC9DTIv#(@SSQbX3N0AG^ zpApr%BjoSbsY02JJ~UCpRrYKyA(K}ABJQ*I!m}-6!W%qKf;)GDbn||pm2M!3i@k!B zgmX#KqFKTtBeB#tYdnpZ6A!h28Oq=4!@rwH$bFq=@_9)Z`Oz&c^qa+iWaJcs+j^`4v2gu6k*PUko20&uw-P*iq)c%bY;O$PYYj6x220JT_E#Doj@zP6(`)5rB5~-BipNXlJeWh*nO&~ z^%1K>u8~G$clTE~TF*ejSuuLnQx6YGi{nAO5wBfv1V8T5!JqbC#QIMz5W2JqEebn| z2jX9o(s@3_Y-<9(S``e6jiDsF_7a}p^p5mA8H1+9IuW%)A}@Sr3RJii68TJHu-UPL zG%xvv`qD$8Z^)87PM<+~lpHBt)<>3Y-vOB#qH`DRM4aNY@XcaJn%&k2=Wl(+`{qBS z&5y5vi{wLr;gQp@JvEu$Su0MjcsLNRTc@x$BhrP02=VZiL=ydE4p|y|1>SFUp*|V$ z`02dGc-P-S{98%~l)|s!i&E)$$qIGanInt6+i&3;PowD3l40V|Dg^ubS1>-yp0pTm z;C?NP=Y(UEnJw3hxfyvp|M{{yCxg3KlQluyU)etH<+BRL*B)~R>~FF@g1@YfALX;J zlyQlv2iY-3{hUi*Drc1>U}Kiw;9mPK=U#ps&H2_JlZSSL$BMTHn;*)F6i`FCNDq`n{aLZJWjv%gpAF1T``}wdL%fXBT4=CdJB`n6hzo z65Q<31KhCT7uImxc5Y5m6({cG&sm(`$Ht5g$&2MHmA2&LG+sucB#>kHE+KhQ!rck_<`Br8_!mNORvbcq7pRCzPK-gpD_D zdw7hFzcvr{k9WYCx6e_l%0TF;68ZaoXG2ZCC(RqaO-_Z~B1@B-@x-d-V#V!})Sz9d8YHGQH!oBrH<0Op04!^;&8WYumfkwUe^>Fv`dm* z{%cWM;VOt~tEDTSE~fu|-AU#heT;8htR&f~!?<$oB_b`-Up}vrB+FX{$-*|#u217C zuAg0pJ!U(C+Q=nr6EYSA_ZCv6mPwe~PzL9P9rSHcFHtfbL)3Q6CnE;$!Q_Jvtm&_& zX%bUW{Nz%Cf6O7X0~V16lhY(Us2j#v%F;2@1)v-m3#vYA$SR2@a+Z-0&Tvhq-9^t} zg5W)*e;6b&uaaTe<6NqAfsn-4Wng#lxDaBk30Rw>4fUtN;f#Z5cAG~Zjd&4L-71_s z+l0F4m_oUpJ~g{Mfle|ACdIRKXlT#}tTas>A}<=j=5Z&%yIL9gdyOG(>}_h^Zj58! zmO|fxSYcO}8?DmbK}^j~l8GA)$Qbn!4k-un4y7-dz{Y59xppL- zQ*XZB;1oN)zk+jJt;lV;7sg3;{^0GrX7WEmKe4le5_yvjeSVXjKBtnpg}2@(>dW6) zb1NAQev0lp_U~91_U1PSj=D%0Y9?Ld{)tcI%gx0&oxRzd{G&wn!NwvY!QF%{c=w4 zzcKulLTO&SEFJG8?(_@$N$@s&Ir*2C0|j~6a9_lDdMBExxIK#|Jpm7~>_H*)BzHsh ztUcuEnOpSgh!*|uCLEe(`9f7iIQejO4ya!XqsvW#p-g%yoF1_dUVkb>{y42h|9+o< z-Dkg2tH1VipYvg&oLYyE{v09yR-MNu+isIrDj7suq^-ZB@`12--LYTE65KxbIX+*$ z5NF;uR|vjz^{m0u{&1vGYfh{@ePPu%8<=zZ5^75}1k=%v zQDV0QY>|0=R73 zg-#S0;fjM2Fw6fg?j9XWY!!})&iD@$ZfXJ7N9^HsqZW1uj3LMFq~W>FKaoX4DY@C? zkELAq8Qgi8fLBj`M%vVyV8v1aNPPT`9H(W%f5vLKDSa8#?_Ub4Avrkkb^?i6RVT=6 zd4_gpyh8&5S-h*F5T)EpN5&&#iSU;a3iN%AR2F?9t5n}W5$b0Bv~( zjPzkV&L9a#sg;7i_9v8mIYN}Da8`hZ`e3lt6lAx{ig<>~#Amc<{`BV&bO)rMlZQn! z+Rgn?XM6$l>(%J+p=HDn)nV&xtHD0H91e#DV<(kXa;N(N{yb!d)uim`pKsA%W+;Px zEcuCj6vt945wpvGXeueUT8C%M5GN8F>rl;=LAc%92v;IEgU|FVQlNmblj3_MJnW4_ zlAqyG-2(hKXdABh9!0yH}KXas`TI!ZxW#S8Lv|x3%?u7V7!MFUX)r(;`Fiv zX0}Eoe`f~xTZKaAf?y))CJ9e|S`pLyROIh356Ab+BV#9yA^D3;sPWoDA|~Qom!|uI zcD)IaFTaV`NsOg3nNiR*<2H_Zl}}gc)xjD zKQ+-*?7$16_+mD!4mE{EA#o7%>L)u##gA*(FJY=b09RGr!o8*~?4RZ~cI1K;XTKql ziyoIki>eczgZpj7M4p z_oieN3%ggcoQ*hZC1J?wuQy>*FNzvRNEgP;}{1E#MDRMuW zEjYrIp`kQ$q8#&75T-f=i`19EjwO}2?Wh%*@cjgy(R>C%3>F|i;b}qX)BX z$ihq$ve0}P&YArP691hm=O^w@y{irqkKY$W{_BT4rrJCcWsGO(U?FewW9jvFQfk;IDm zWX-z{Sm@kM%4&||8~aY-$;V3Z+|jGyL}Lk7)GNm)EvL|pYzLAM-O*ECUZa-Xm84tq zC+rCXvfZ{2{1xWHS+D*KFzZ*><+~x@>=PSwituu*myBb~hR=dV2nkO0rPF7+JS6Z=-JCyZ;&xumxeUk68UE5dl z3*yG}+b3vnmv7AGACc{x%O@dsukQ=z=<$+0eR>X?bHSeL<$CygzR_IhXEk2ivz5)0 z3g*;f~eqjA$PN%|=^YiHDUS0dlSriCx|E=FdY3x*_S}8+ps~1CchB}N4EFq?1 z6G63HkC5OuxNNQhn2JAz^KK*H))Yu9oKnfTW|5A4feb|SO(WAUNI+rx99nQ&0fHol z@XFl{^uLzd;5%Ohne?s$>B4ksP}M^=TbmNq2YxuY&xKrW%E3kXO9^S!AZYGyXJQwpZFZS=gk~2^Nhz59glFJhd6C>$wZF~^DenQ?1K+^s~S;XRXfwpo##4_&F`i8N3aaT4TxC(!u^jHv0g zFyX@1VwycLl?*KnCrKHzY1mIGqBCMH%t|sLdl@yde?^sW%!X@Z?nzm^{@z?tXB#X$ zpzwh@{@OvOC1t_{r6d})Hw#J@Y@*}q1+=^BA=$sbipGf;_4el%z|EcUknw7wi1nTb zcSXI@$wQNbg2(~yz4*WK9SU|3L=K1uTbzx6-R9epnq1Y z)9asgX==(zszGCju4^mx_;&>wBG(f)k3IAuoT9Q9?+JS{41{A_;>nuiax(s15uH-F zfSl3|7S4UGOrv`JNJ9?GY#UIckDQh9Ynu{sDs?Q=cx0(CLDilL=AVbTh2p|*)$P#W z_L(LH2O&Re@`@J^fS zc)PD>xZGhkPA|xqFILMlJk;mKPd5L@OMHIJ{gw0L9~v*_6c+G?CbdO|)2B`4qUFL3 zr%klx-1fK_5M$*$lIu5?&b7HC_$V2HBjqOFHJ@FmPO%I@I*^vWFc{s5?1;l(n)ICDxL_4g-PsmuhrO<;AszLT zs9F3x+83gV)zu83tkg{qce+Z@%-IWkDxFZ=#u7otvQ|OYAtkJ!S0b>okwHo}gV?&T z2w!-RfmWrYplR!~@h7uR!E@U#k*{!qLF0pH{Awb_9E&zF&+tOjkgf z!-tS|NGpE$=!=N)Wdq%>60o0bEZXT2kH?IR#s{aR3bHGM0UfxFgLIUToX!C-`+Nwu zgM?t;%hNbpOT@-+sK7%jBk}#xIq0=Q37-Ae1bu#>f)8HnMB26C*l=AGj6YN$h}(Ws zu%h9y;E8u7>V05>mdo`BN_O7G(m!;NgRL(L)k=V=Z9LqUm%>kTJ|c~$c38BQ(z_XJ*{l%u0%+e%B|cFeSkc5^m>0K_F*I1mw7zm+OeU{lQ9vV; zx2j6`@$(v1yt9bGr~HJA6eQTnk|rkaw+>U$>c=>hz80RdZW4OvmNHRaHnUg8X)z!E zNr;%zO3e57sm#;$$A!=9=der9q_N{weT3<+quEkdEumHFG)D8?8sYp0*+N&YMz}h~ zkI9O8%Zxvy%g9e|XKFr(v-?(NFgC~j2|GWD^zbj$*uTwDf`be5vGcoS24By6;*vv! zs64_Q#Xd;HKN?yEoZ}*_b2(73Pkk>snsXVKwtPhY20dW!-(YN*tc@;Q*T+vvrLemE zH-pmcK@fT-5;>*~3tWUD;QdJkgL}Gxk<)t-dvQKwemsm$^U3*cG|1;e6p;u5o zbp{q2euWgjtKnAf1TeW4E%43RD;T-`R1ny-0DZmjSuk$R7F2NTFy3EvNDxyk(s}F< z1Mjt3@ZzKk@;nobzQhgUspJ2H6P&WJ>&su%n`c6Ej@u9y9}nWBIErQ!ZzSsqT<3gfJCXleSX5m54 z+vF`j9yd)iCR3-y2}}HBg+-q8==;bEfShBfo$gb3AMZoo>=x40x0eax`shf^A^82? z4jNYE!i)Z~WSn;j%i=1YP$R zM%+}wiV#KXPHNN7qsCE_${o~cOBxYA{!DL?SFrcrcH$uAO4W`hQ)!pS!m=R;p=-zq zGJDJ!@=W6e-FwoW9MTUJ`fMIezxu_K>qFMeTaEn@CYevR)0mAK!qg^d+X z@*fRyxvUr3e88hCh8ZH}$==QV{P*V9oZgu&JXhz=HQk+P zIP~#>VZyYDTwXz<;i-z5+_E_myiOkF=1=qCMjq|q_9=|wk3U*tcwl%YAH7A!&?3Xw zko|jy@759Lo8J}j|F}l}XHPJ^5!V);e>Q{`iRnTv17;W&7&Qp*ljdgQ~Q~5ILu}_9{9^W8b@EDUzPMTzSkQ6h6 z%O+QU_M`rztBKgFa#5A5D4f~1nlAaA3aN(^=_-vFh`(t`4?Lbn*VVozhcwlN+Or&? z>!Jd@zj8&imy{HN(G=59kaSwQzIpAq$w~`cbDV#LyL++t9L{jWE zgm~N{Z*_C9T)+?t`PzqHAEclo6@}Y29Kxp>$J1{X;`na-D9FDZPsKZ)5ygeG;jx_| zc+M$@__yEKiQ!S)#j9tSk;F-ymsBsOdFunKApVHGerG9nxGs(x71_efdM3jSzfERe z-F?qG&eG@GgLiRR65ecfkBASaCz{`WaAMbGL~{4hD9(D!L$)w;HMdsNmaX=bVpaEy z;X;$8`8we*R()&+XCM*IdL*~Aidi?A_Zc@h?a%tWyIKviQT7Tq>BU$Ur+Bi?&xV;v zSLU+s{8ZWYOJ(eXTTi&?nq2nqo#h;>dw~mnKAQ`h9?aGkC~)do_S{p8(`a0N40-fr zL@@u&5ZpSk0iF%s#b*Pi5}AEZaH4n#guYmc+)vlxuPt?=`BO5~bZFCn_%$RjcmP}c z6iI|0-G|C;8?b-9IGwcr3!c(wg~uL@pbdFDVZyHGf;3(qyeQlYs@C`SDzsD zX?gfh+6Qv_S`>+uIfIWl|Hf1LXOVleMO@^A$LYd18OYA$8}U2kMvialgOP8_w2Z$B zF^}$(zHy)MbI;4L;&;1+2jByIq=#!Cqvw*8I*n~4Rt3qV*eil&ZIUHYdUNQVPz6{h`~cPe&7n(kCeh2X zCc>08kEuh-Y?0^q5}A8vCjC1-4_2O26#CjdC)JHVVWpr{sB-u<`7-bn$?ZHz{(V0# z+_tTjiph18uQ{P`{7^I_( zNEm*3*3C^Wzr{)2cji_4FY-OPP3&%^f1Isc8CRYEg|iJ-G+e8b!pBZ>=Z;Cg;U`6{ zy)_1$0l;KKfU1^j$Y#hfvsG$ z^Co_G$!Xqn)-3+aFE@_NVEK+CfxJ;nH5SyQ(D7@pp@H39WW;?p8L5*bqkGk9URo)b zy7ZC5kx%d)(QaAacpQCRbAc3Ink2NUUr6&;ya0m$AJXrAofx&Q1+6nvga*;$$lYBj zur)YRcrP)TJk)!EMlaJMj9{VgTW1s<>@%Q~x153QU-qK@_z8AZnL|n4J+d_@m^e(6 z5jG{8!rG-BcyiJV*#GqrSS*+g<<}EndQ1i#P;SEW-Tq2w-_tBQf)=Lkr??k{50TN7!& zWZG6NMVFcdf;kl2#OT1WEE5eCdl-iIlX9(T}3Jt4EnWX=qL*9w|OhelVC`{o#vz`ri_R!egYZ)P&sG zXF^|@U4*rwd>(F#9;_M31h1Co#A5p`(l7s()=N6jw>RHGxq~{fzWIxk&DsdHFD_D} zc_+xjGLb*P)>&9k5ljZ7($GdfZPH?-D(u$`pg-mxB^`_$H1|%UzPFcyx~e=?x$%zN z?zAI41=pynz5veE&jiWpe6TS%3!Q4}B7MVHxDs@UF3~-Y-xMta{YDpIjm6zUO&6Dj?Tv?kv@3{Rrmo(}y7ptbok5Q85bcU|8 z$2!tDV~IDs=CW9>Vw4BJuaM_#a6T7vA&ZUD-^w3QQZPJwWj5P&=r8XyEuOXQ-NZ$8 zUto_fKg-URDP!&Cr*i=!e%2E6aIPnFHm@1CkKcT6B5(Q6f^$al{5)gCKadserC!U@ z0~&28(e*M}+&!7Z4UF%S7VwdgA!Ah#JQ$(5hnv z@XKu)c`)ZFIpwARlil;^qD^gJ6t)a5%1;&goyH`~G#U*r{tZ9x=FlYBqHV|ZIzLQz)_9ZdAuup{Jj>u3tI5TvdOSY*@^BF z`rz|BHQ`KoEmcj>r|Cf=kBAK=ft#s(hv(TG!>j6E;$u21@g}++?+Gd+&uS`=Gb7^s^k5np7fSTG=lI@&#Sr4G zLAIKOVGHX~G-pePz&pv99D6D9osUfbqeZ#o*`0~7bJQMUe!deG*sKPfqpn2%rZlmz z@ue9%nn+OC9+>ws5Y|5MCHFSQo{OJ& zhG8vJHJZ_@hI2K4VwIbBY4x+OM5@gh!m>mj!vaZiMv~=9O_I5FyJDHS=X5xqoN0VZ zrz{uN{geH!>&*@Kws8J>9~i$Z$}Ku@jSb&j&zi>>^Hk~tw~Y;9pO(Gn<|ZBGp7n|P zblW^`#~M}cwca2bROH3wPIqQgE&}`Fs2tb%QJ0thC&^t(zrw9QRK#jpt8va<^^D$} z&)k$TLcVtY4Q6AA4FA(dj-4SB#J0Q2u`O5Uux5u@R(@v-o9*$5Tf4HIwff=Dt+s38 z)HXP94X0yRrB@c*DgFd!vUe;t-;zykg{UCatKE>>Y7aX;eZemML8M4pRCD_Lfvq2o zpsKZc;MQhN#AaLp{eBBtT^&rS4CG;f%r5x%x)~C4w&CAfoaj^djFVd<@XD#lRD9S6 zieoQFGqGW zcfmaBDR5ZhF7l-0W0M$7{M;!563eU6`q#hk+T&-?9}#O{${8D&m7k2wE4Px5;!@!H zTNF>jB;jBOOWgYMKJvP-ft>BF#lLHJAfsLfGHTgW@OFPCxK^|up9^p!-C8GLz{VeH zLUT~@g-xQ|wjLzdFoeggzl&%4j|Zk|Kl#vJh>FE65r6dqVnlPON1oN_Q^^&yYRCot z9*ROtnidYKP$a!Su0ph7F0Q46=wH3aTUk|!RQ}Y!)`_ly{_)SivRxC*lx%Ule?R4>)#&ZXa8!TY5j%NT;A_%aEDzXwUzlUS;Dq?1#|n~&tMNzKlb>EXx94z<_hX!7;C3h?Cd@R_CMdP z>}V3sU0wB$-Er>KagGD zPdKk}5Y3vq7Y1}h<9Fy!uM>zxdk)O z>dE8rUfC`K=dbgT|C~;A)oc{zoGwGty+jf7e@_FZ}F=N^8!6+O-)t=vX)s_L`6f!P9Zg?L7u%ivyAK zT3r%xcq!<_BK&k9T9CWG509E3BQQx9c@Jc6;?OONu!5~Gr2l9Yv^%y4Hcd81pX72; zOv@L+5ARxmld&^|1`@%N*O6$(d1a#Ar4R9gVd(H=3p{B6@TIB{rgy9w8<%xb_|o<= zGc@A>d)zF9VZUr;R<3)^bYw=eQhQy5pPIv%(~Z)MI2XnLM)#EFr;B+c5UKND_4B|>8(Zzi<8iuK(d!NhKu$r_bwGTW*e z82w>K;mdqA*4Ms@4LZ3-DDHob&3F|g>^GNZhGxAKDjWO}D#~0CnuS_2E%j^IZEk^# zqo*SK*U_4-JAQ>Z#VIle!cQ=xEH&8Xc`*X>-(~pf=5T|ZH)OE3fhyXQtb&AJ9r1B; zTd+#L1>NA21si_<6-*cD8g||eLvNBqK2Vdd$a9oDx?w&AuTsrKiG7U%%Te=T$u(ni z=z6Un*ee>|Z9I=ASgIH-9b9+TfP?0)_<*SP=J>Sc)-pzFw{0p)jFp5l z6;{;BDT732pMf={b3{IwPY~EV3E!b2zLxhd@US@sn_TmVTgO^Fysr*zXpO6oOi zzbo?OM8f8!t4Ymj46>6La*@}-k>!uDsR|-HBxK3qQEoKX;R^YF))ut)d%)xlmb5F3 zh8r=8wAJGRH0-a({;O}$#gU!hHMv({lXd`_j0&j2@;=h-5Cd_G^s)4rndI{vB=YvJ zAkgkcjku=*C>T(NHe z>(YQ(&vS}g(tShz`Gv7uvduB>Ac|uRlHRfh4}W6HdM|Rj0|flNSIx|(!gkKRe>@xe z(}N}c25gOHBTf)Wit%WFM8;xdJN4m*kWb#8_}NJT3xXX5vRJD?$egG|Yvb9d__$gLoQq^|!DmsfY}7(X zxY>-HF5SWL=NBT^UANKBffsnHD4W<;+?Gf@6a~nay+f56W3l4PT73UVF>3oIM$$HH zz^{Blk-@{x- z9ujGp9+sX$6Xkz{x^cU~g0GvQKBEq6{fNL8o0H)+L+}Yo;iFqH+UFyNtK1kcIUxoq zSrG)SFNRz@OOb%Y7ssr!f+!KkXyCN5h&z7|hiv$QR{2~ddpEX;{PS}K<_X{pHBJ&a>F zk4<3gm)vH%tW4R=d#%j!%?DV`>3f*r0L1iYYqGlSj@gCepR6i4RS2_w#7f(d@74pzzx$98;AsL!_RdMLEcPJ`U4UVHs zd}zmHTAm*yIN_^C zvOb1IOj@G1zZ|XVPo^U1v9 zneeOS9r<0@jz6DV0Qa7YlemjnWZ}U_G*e+d)jH`1d#fWrN2H~yJSEBz9C4w!2`^!K zTPj@mXDlpf5hHJJ_Y1tNtl^T2rtpZSEB*3SoAl3*!OGXADAU@H)m}CdwF^&3Zjd4& zExU-?_C1(Z-NAl}kFYXj;2ZZCo3`D;i_Rv|GXLiyhSv^=DsvP*c&bE;(uCy4(|N@0 zOA+vqo4Ck7I=p{r0aM;&!ZB}Md8ekG+|`l}HvG{iPV$B>zoFiYU8)?&8EBkm|CShX z*~g0c(}O+S8tXWAWY%)Nc9$6ME;+W{O0@K|=t`@gK$ ztgHOi%Nx1wntV=sYcZR@*Ml>av1L0(%kW+)#XOPy!rbui;r+bi**uZ{J*iBS?Qz_} zW?bFE3YI@%jW#>+y{f8Q=a=!kuKaA?{y+iuKSO684pke5afB!$dqQ?*=FDKudEYrx zNT@`MN}EcO6e%k05wa(1sVq@RRF=$n&p9JWiceB$v4o^e+EA%f)aU>CZ{F)V&vW1R zbN`HNRfS&?3Wcf-g+ku0c_u=21R~U|^CS?j-KFSDY^epB-1=+l_)3)>Dz6bL{#$ns`fgJwxh54A$>!bWV z4YE8};Y+T>gy4-|=kj=$w(~ky#_{CtDGB7&v$%EN7hvmyE(!*AQT*-0=dpFZ2y1>( zian7w^DNMPL5*TPw_=ilKvT_$f4&;>+cLBS9f6;*p{EUe*Y}B7(cjyc=QziWDQ@E{ zI{VwK);c3NX7>}j-510UNtYG;y5Ef5nj&vw`^9c&zTM2?w%j_|)etT@5gEKa5 zM24RuA+S7|5bR*wb%D#J%RG4f4K{biCYuJIG{OF@Yx$2p)$zZrxWvEf&0?=JaU1Wr zCtR0PO9cs?fBD$QyZrB$Vg%Q8*Yc07J}&srtpuABuF3a|vk>UGI0(Y{$8B6{lx!BL z`0?G29OW-kN)TK&w&a)Sk~R(xU-PvO0)B4sFB?0%VZM*`CvJRN5Z}D>uFdF>z71JA z#vj@chIzsYf%`=%c1tr~;NToD_;+!#VEYtWAgn)$HS3?i4hG-Fs-JuDty3>yTVyIR z4K){=DXSE)%n(!liFw9dbC?urtKiKm)sF*X`2w08WV9ht!AA6 zM1i>Fcnp`<=@Q-)#o{J+&fqV`XBdm$PX*gsUT|CR5&l*KoPTYW#W*hATCk?Zk}r^Q z1-xe)v2}mGU>$y+`TAcK1)bDdo3Ow_!Hyw${(Gr1KVNm4putpv%`i8&DICw8Q#r3N zIk{S!$&<4AC#K)wdb6f{cePNP`HPzbAC@@_0(Kq8g831G;5Z)E>oH64+ucf_v;GR- zFseu}&}5Fu8b9QD1estNDT7$;xDIgo%^)^a{f(e9E{E6nU7LTx&fBJQ9W8Kp;l>9W zck|;e+~Nn@`0xU3b5afyyB%KSk3Fla#!{jKOTae)|g^@p;_SciN9RJnHAY9w`>sNxosubHcbA z&xo;$s+$EblKc33;6{Ffg*=wFZ4F<{OXc;C``a^WJ^8BxYq6wDzxiy&37)w^+_+AV z%zJp#0&BUI#H(q%!kca)FSxKkk9Xj^KGyg;Trlq^!}t5P3|re@g&j?t%#X=>$y*n= zRFM60D)&=M1b_8)JATyPiTpFta{hl0g0Tn5*ZGgdX*^0h1iKrR$**V$APSCu&+_x$pN1#_NUo+f!FyextfJisRkMHwgpo5!rv(KFtq;bK{v` z3%;1IG5-;7p+Px6-~1Y{H~$X*O<4ioyny8I;phlrulMq<8|LsX|D1wVv}a>SPqy(K z=q{e6Zk#~IA8k5PZ*Z?MJUbsVr#g5x6tSH z8eDs5k+ATNqVSK0RG4*94}WFnHokZ75*puD6}q0sg+X(Z@EXqn;iZ8(yOiGx@wdjU z!t-@ic9g-8@bSAq;m$3(!X(>rVd$)jc4jBVc9&v(gqByLab1h$!f75OLa=kt&bM=( zaGp1A*W|;)8$3?o(NCw_E&M(kf7@hlx8TfsJL8phc5Z>$cKa&)?37fY@O~!;UmP=4 z_+aO4Vg3Bc<9Wzz;cEXkc2ATtggIgTLd_owcvRA7{#T9?x7C8j?>0G!+14$K!m#7{Kb%}d#Ols|s1 z&p-6A8S9d22|^U(d0op1o(F!GCu2ci)9;k z8Y^78i+{{$KVNL~LeRKQR}g%?2pg`k;7>SlhX3M680HuhElAIp%5Us(!otQ3ZOX3f z<8LV~;5t1o$JSkvw<&R7D`;Do%D?)4D)u??4nI(C1y)_%%dOho`uPz$Eq;vDa_McnYRHyr6lp0s}sm*R*0Trt?zPW@`-)xS1~G3qEG>je~gn zbyz;u68$Hadb;Z{K3^OH>4Vm&aqG$EDbfyt{nvmlpnx zZN@g0#>WL`krw}Mw=2IiUQJNErVJCQNCf||-jc~Hw=Blq-6^p7bUH`SvR=y9pda#gjo)fsKPH1K9!tXoA2-;2 zpEoE>4Q$1W9J__Vd*XymRU!D-Cpq}vp$WpkZ$E{;i>S}%}n8PFEKvjl9RB9_teh(=ecoz#Fj`|+9Oom9ELYe z^$<>Oc`1CNCL=TyC*n7^iilfUWp)cEnGx$cUfVtVb4)0x>b1MRR$Iszf3j1U6e;}v zy#a5?$`R_vq>gi>uHjC#Hh6{7IpM3_BHXZl1Mc(qCGXF##e(=V9$d$Hh5THDdaT_j zACsh=;NMorz`QvH{I_j=ys(jj*vc=<_#LHg{Ect=1%c&yf@AGDSYkjWHlE7nUn#f8 z+-(X3H|{;f<{}r&ZOqkXGz0K$&K%;(HN3>sRCH{dvDJbS>v!ZNONyj!gja#p>svwrpJImeNSwH~y5 z$$2{IiFKp!oOMPjpCdebisRfX%bWDan(Kc($NH0DEoa)L{T%O?YpqW>UFX(d6z8Nt zzP0d+D=#Wdi!(=pS^aBIwElJFDmO&dg}ZOTWG>LzZ(TH=oje#YXuY&HmGf7+h0{6r zv9+$DA@}luGOLTrW2}vu1^CUTv5(VQ6yTeyy| zHLZiK+&Qr)Pgx6>cUqq=NU{!?an;&8(w-M`_k&fAYJ&AQIbBRUwt#!0(S)mB-^E>f zk>Czb&$pQ#&aqXyc82eKXPJ#wT7s>`q60QDGb#m9nfkV4Bd2Y*47iLl97&tWCSL@? zY|=)-tjboT{L|(TpA^JTce2$`;oBZ?&JqmeJJ^_~Xxb)BCQjh6QO-7P!Y|uw>@Z(6MbU0^y{^Es1Gibx z!V&DDTKSVqJq7!H&I#PkAGYm&c-%&8r8dq0(HgH+tF)=P`AKl#`wyF=XMfp5CQq`? zyHd&Bzg@{nIQ<5vaTlL+(|6eViLN8}uy49`{Fl$1^vJztxXOFJSgrm1+Dhtk$huUV zZ_Q5%v7W5;(>i5o4wn%9w0eK#xb>~=zq!3xv$(JJw{ny{>p1d`)41m^ZKWpV0`TSL zb-eobY4GH{Dy81uC7h?OLnL<5GN0s+3A@w)UF;GxOd?~iGF?=_;FW6I11A# zi#|8Ns&hgAPgGf(EP!d<>yi79IO54@7jSdQmpqtLQyDX38gj3=3B*SAU}?ujuxm7$ z*i^X%EQ)wSE#Kh>^zI%91NFMZrn5Q_uGFT|->VQFHZ_#|l2??(E1gn!eFh&|Zws2P zg;D1^rxQu5Mu6U7ZTRixI*H|$VxehXGcoVkb?V@r)1bBuNDi6Y09pbYpy3fikZ&d< zpWeNaxi>99^8>5Oi+#nE|1D$abnt?Njr#|>&6_2Aqjk`+af{xo>@4M;5E5%_1; z4|J-zgD8J*0QD9aP-c}AE4BP>(P*S1M4e-RoQXgzE&~*%9|aFupHrA;1aOn)fHLWB zV&nc$=rQYuWKv~1QK=(~{8MyL?B_wszuQ?NuSkKsZ4uONPCD_XdlnR{c|u*E6rx46 zm)g6D04BvY?0)_CqIvVGn3obA^4I;tY=K*(DBybtvwTpI4R5z(-#niO$MR&@?FA%T z^7tE5vQLklvp$Laz2+`c?OMb3a`vfG12e%*oBVY&ixG-3vb*&%>l@-v2TeFaY6u-ga{Ep(PeSTN z-saKF=P-%r@H-dQ)!B=!O+Lmb#yk=|_;rSKj#)$YW+{Qtt&`c9)6Q&)HcR=A{RGuU zN#lKWpFznoIW)XM6%?I{MgE%#B!yr4h^iGsl0PQp)YL96glmpdk?v}+NXG~@coazP zls^aZ$Ik=jTjM<~^aVJSoPZhxp~RS#9Gt19Lm79eUpr{B67^j2hYqD*K-II$VAx`S zSUK?!u$n#rMOS2jHn{~L)NnO5^WH^RJ3edXE+`{j@6V*F1>w}b;3w2S=gY*9@(u7> zMFsu0*@9TKW(#avU=PE0M%jH;FQsZ0#8cThsGS3vZc#P0Pj)#OqeldJ!IyAJT2~U;an%Bz_oq3GJCmI}R=1F-EkFZD;=V zBASf%1Z1ZO=C|$ul3S@rS7tpuPFJTDXL6zB8OAK%REAE6)Kdas0Fos6(%r`vfPi{A zD07<2^hWsM2P8A-y@$0CRO&*m0V7mr$s#0Qn}`l?ngX}Z-G^dlRKsQMI!JBFCzP=u zkxDyup3ZQ4i>@y9p%ZQu;Px7t^k2Dd)b!vxt@R-Xu8)|2BEJjhk*G*8hDpy zWL6Ux+8Ix~Oelw`nJ)C+_+Vy_B#(AJYDko)g)^ZY$LaICHvl(HIrw~g4hT?`Mc5*F zRC?NwiG216cxE=yAL~D$g4_}m8r)7rBYoN^XfjN(@3#s z#63`CYBP`7!lm7Kz?F2A{zsYl*hteZc4t8U z-9+l6b15C+X9+G`Fa;~-XwkK6`IUmeX*9iUDoiudq!lHQVVpGRe*f=8UD;a3G4lZ} zhP%NguWYEkCIvYBK8j{fNT;XzMbgjh4?rC=Q|6dg1{(SDi3m{3MxTBQ>DtWuVErO4 z9KNi{$ZVCR{z5G}IPV~W+o#jo=6nW1cZX`#b0Q{aK6Rw%l$8Jgd_03I=|s84-} zGSP~p{XQB{-;Wi57_E=jPMO4mqN8!>4q*sFy3bNYrzTcrs4pPSr96|k9Xy3=ou5Fg zMq$)I+IKK;UQBE>zC;DeTY}qrIY7;$2G6Q7h1c+FXuI=4LT$Pn zhQepU$NmFg^?ECyTc-j*;T)h+eNz(MQ3_oA=KyS^fEd_d2IU@BRrb@F)SSb|DecJh zmHFCNsKrXt@Yn4U;PP0L%G(`DJTvD)S+j0nXL>|p6mdY(d5(f~Pl;q`@<%)7x*W~F{DyJgyhEf@(4Tv3f!_FJv3rbS<2flMSV>T-?kWnhh~2fk)|vRwt53CdiH* zYIM>JMRu?M0G(w|(c+LYk@2K7R{fzWyU_ClTR-nNBUmzlocd%geR}X18KGyzeouFy zoi+JnE-Ar74=MorR##D4umwE(FH!VsZa>}LF^e5Y`Ng!FnUXV~Od^M|m!b)kI~m2e z0MW*`$?UUpJE@?ECt!8)BuU^qZ{Ymu2^tD@0s-pxiRzyL!Vc?_N{tt?RR2yjLgo(; z>dZJwb>AHXddq$jU!>b9c@2GH@Pax3iC^%?!#dFURvLP8ZM$xCY9 z`Jh2T2;A=?1HF_LaObFNgsN>d(V;rKa^TkmVCP;>sEAGz0X@FZIM9r^iw{$+6L(P2 zb2k!xAIqrsr*BApF02ACf)l7O*+1~2lk4EZ3BN$}v`y5x2rJ6FjYU@i>(E^J`NU{c zH|{Y*jP?!<(!-kS^vvyPV5Mv#wR7e&S_YXAuV?!M!)MX7>+W{R;$_D4z{VS(tSbPe zxxA&j+Un8ErI(1X#;J@xkxK8llSia8*TLeWB0%n*jwaSGpnKcmB~C(Fn0fmNz0)@l zE!cDc^~Bz%3{LMrPDP%QtGcJass-V+&cr%GLtTRws(hk8tvgIvS-qnIJd)AVKkJF| ztBK(F`4^OBe=$s0HIcd*UxGAt#8E>%d9>YsR}h!?2L-+A!_k)%N2B49UD0USJYB~2(FXclkS6ZS;WCHi z=FFm{K!JEhVw0d7B`fXuL|EM@7$#7FZi{>Lj ze#dnX)-A(um5f1FMp9C5+mOIkop5+ASY zB0nuTPjbGoWWnkmqR5w4D0_R5xN4HJ*mF@4J)kqjR;{_jzWOnTEd5X^f*;O^yq03@ z!g3!rqT&x}t~f?3jyQb26XQy-JFe*C77xNAxEZ#pu-;01Zx z_yb)L^AL6YIms5EH6~Zy))s%Afs>V4#Vp*hP&)H`7#mQvm~0$8N!~fSiS({~g0Q>M z677sZT=Zlux?%s9zN>FX8%+)eM^?p9M(UerRX2Zv_ss{4Tuq^|$rFkD@456jb6L1w zHVqYOO=R?bKS8VC9wxRIaTtrJJQ|<(iI90sLWOVJ!1UebNXB+8Ez{X6?BLIUg_{QH z?Z?ieo3$x#}P+;txo@c?v4^ z`cxJ!T}5e%ARN8lO?ho>1S^JZsgcb(@WFIT=s)QUDn2!R97yLy4C!76QA*Cl2=tI1LnSzp-RtQfxSn(=+_(5fZp@-kZDi>Ysv@k zs%c8}n+HK)&#f$YELaZ?&Nu^F441+1%{!1Zei|HOU10u~0+3nO2gmt)5;uC7C^kw& zZ%$01Pha68PkS!DrFH-uFpnZ+itNFMs&=3=r3FSFv;Z#~&Co*22>7n%6`M5sp-8PG zgS~yfUv%-jE4ykWhG|M&$@V*JW9gPyw&k4#Qo5W%H=amg+gT4*U2OyV+)P=D?I~g3 zSxMM6r<2$>D`V-orD^1X-Z8Rb+BsHmESV{`xIBE69n0`%j3@md>w;TFUga{ZWBC!XIBpj! zm)6YZ3lqqXN;}DZ*L$S@qYWaNJ#X0}i#B%G76aeLm`Y!m)r=c{F`(-%9;WABJ4&y*y%+@dt4ey`htdl)-V>eS6!By5 zH9C=^LYSuJ&}4QOxL_B9WW-9$&Y(&3qWc+y=|LeQzikTLS6V?lUZe{I&o%&2_#71T zH5c7`PSIbj4Z-oacG}gg0gVh7P&ZG^L5GLk>3JUJgme4`(43>fc&ZXO+;I$X%lxT1 z-et&k%1ON95I`~?2T}Fr5snyCsz*ctG#?DY-Zw?ZFf2DvyjSH02MGZDvjnA?NSfKzer>`Hrk5(I< zp!BCB>i7O>w6E!UPzp+b-rAW=MB8U#zfl+E5$iym+AU9azA^=eJlj!NbSf=-WhyKv z|0MbMpFhninA1`DxA0#juZZl-1URU0SCn=-hh4Wnn9Z*F$bLKaSd1R(OE=rPlk)Wh z>GbZ9IF9aMo*wv4zEsp8<&6K4VowLLS%$oLG|-jJKa(hKtQaCSwCic}uZB{+x?0vT zVixoF${Z0VB_Y;H(L>sr*AnajuDWkDpdw^78TMNFd4wK0S_s|L=OhJn@7`6!|! z3hixuN)N3R1CnW>bFVg{+HGohT=`0LWbrJzJGh9j|7-zv6&f*-bAqmIvpRtmow`P? zaeIN1r|A-_PkSN50B!p5`3bPy-v$YNSaA9NRkYa24P{@}Lt594qT@~aw0ZIv`jgd7 zw5|_B0%Z$k^W(>~<(cR}(IrM35b^7urX%fdm5vu`(iyL~Zy zW9rB>DwCk$n zVQo|!m@+M&vA=96tyQgHCuuxj&C`d(T|*Vplvn@A?&Q1hd&qfl%O6E{XSui7rZtKj zbdVKSSsRHH)z#VE?>bqngEz$P35&%2-&QjyQ6z0feaySSTISR8`;1ZjQ;}13B7Aco zgqy$-=^5t+z+mZHAHPqMWE$iAgWD$N>@lMsk;1$qQI3#OiGF= z+J(IWH;GY1jcH#>N4Xwip{JqnHct*}mCU0i zZc-y^R1X0mQ~QTMdZsC$!YT)1mZ_2Bzfmn209z6PfnA+;{h4PcSgB90` z2<&SqD2Tr)IWjm*j2=j$MtzLX!>k60(f*~xb|qix>`p+Oj&hd#9Zsb*Mj7x8n<(6S zOGZ+Y`;X{w`7LqIrGe2SeaWzGBv`B;3oiHEqk?X5s1cDHHv0Z&d57tNcf zzE|Gpe8z4{=hIHgcs7T)x#~3Gt070lsP7^aeocYJrOCKXQYrQHa67<`e_>9TaLHY( zs+pU+UW(c{hneW1NYR(D23l@)AQKjNhVkTIrS-Bhm~Pq0?8^}Zt>q2aA(%*?rCu>V zY-X`SsTJ#5K9RA87#UG2OCDZi&bIBHz&^^b5*=hyL|#taBI}jYm=%XFGwewnTKqkm z`Qu(9Qdw@t#Kit#;+T_c#nh?Hj~}Z@zjrP0pi&=`+tn;8e14r#n3^owA3K|!SG0uD zFo_cN{Y?}VKQtlZ9vG5mmF1b7MYGux>kf2IIW|TnF7`N5kh_`09Q|^8BAR11kY7R7lj+<#zc5|BK;&@^qYNH%*sw~9&Sa;|r z`=Zil;&gl{shyZ|Qv>{)6d=hytVYa`F$6uH6M^TFwZci|UBrrEJMi}Laq9VjG^%+P z7i2cZ5QZ|NAorJ_guu@c1b+qfq*@oPT-_w$y0;76Ut8c?QXk;HW7DWOvnJfT_&e~* zjmF>I$fUZA=71Nat%SwEdg5&2QT*fFLh#;V8tgQ=M8vL?MdVvOe0D=DXlS}y8Qt-W z8tM24_6uG}SfeLEO~k%Hex{Q=PjaT$_t9VJQ4IqjL%Z8*T4?m0P(E)F0tynKHRnP0U`Qb z4nnmiNsh0(4Mw>CfhP48z&y$s^;c*K`|1yZNjoJHufu?H&@zN3%O)UwO)d=nSAuGH zr%N8JIt2fHc?48u=3N_Gmk$F&W>fAr3ki+Kt-yK11gjo4!@mrWVv>X(#u@0i?hNH*Ndm*5T58v;HtNy%Z`|)#fZHd# zL6b%XHNv}0B)e_`XL*LOjz}fAQ*$ckri_B)6BSq+nMq{+k+-y3;4Ct^Uq-q}@Ih3v z={Dn6HI*&R_h%cAOJM9BoE2=wS$z<~zKq<#_M~5AdlS={cS+ss#fJyjh@H`N{?0w5 zyIBgU6{5fvc1&ew&UiOIzl@3+{NhRRp4Dv7K1KG1>@D`q=T?S$ekys#&x)CB(na_x-*U#^n&nJt zH2e>hZ#5g<3VK6jCptoX=Nxp=D2~AQCqbuw?Lf$`l+=1Wg^!e!z^!<1eD~Qr(3g!< z1D8$_wMTZ?dHr^PuS2T9GvigTIV=_o*S7+9kI9ts-S?o6oD2FI1|{!%p2HVoA(Ve? zELh-sj5;)ShPrcT0yW^d8^@C&$G&P00tyNJ}?Kfr-M6;#A|KdNOV518KQ#NTx91rG}R z(L?vSU^x6Vq}Ln+zfUitQjGJU_XQ=Gm^A_YeWgM_y~{y*OGb!Mn^77lbnJV2$FKQX&+0&D@nV8mlL$Zu-Flg;)4#em<$1ir~v!Wt^CwQ=>$}%>T%t1-0lNVa#@# zEMz|AP9!~7e-O1~1(KL<2K&Z7f-O|iCWn8XB6aU>5KZ(`Wjz!7K-a`5HdJpLPx*-4F z5TI*(6k3;mA!_|hsiM*lSV>w!@k&1O)>=io#!pA1Yg>qAbM4?(m;Io#dj>sOcobG> z+$HwyQbpxjV&J&-6nJTpimC?gq9}6!tIzO>Z`SeP_);C9msSiO51u7HuCu1l!-f!{QVT#1cj%qSAckLy#7*GeioijSh#dyA;wNnI#um&drLXoY8a2cz!l z`*uIByrUXNhH;H>>~Ug zJVmvy`fS5**P!SVs^hwsDp)Oh9@(rjK>q!~c6BRc=w6jV{O=A6D$U9q45o&K^=QPt8He{p6noN$ z(3aB!+9RRFlz}Z2+onfsu%alJP$Q~BEeH6YeTJsmCQxl&JBj@^!L;p!>10JxKNIiU zBT}Eq2Y>hEh(6AhVPm&;iFO(;7EKYCir&PliPAnNiK<^{kS*TzP{aQ+)Rn$tRz8;@ z(;8gKTXST|ft7n9fq!O>$my|dj;3VS{CH9K0w?&Gc+Au#g){H;1Tb<{fXK~v9(`08 zDk?iLmwlt_A{uk)7Kw+Clglo)!V?Z%%wMrGqjuty$b~x1^lVQV_dd#);XP5L|Em!C zQf4_F^Tv^pYgA*+t&Q0#x102eSU0koH^9u+T|?#i-KV~vPZQ=FJfq_4wP~9gTT1SM zImq?rQpxj|Ag#7xi8lU%I8!G}H>JJ8O%ne@*AqvG%)oj)c7*~xQ$`b2YbM}LSAFQY z3d>Q^9%X9v0a)31a1oX2+AgUx^FgEUFlxPeF!e!t54GCJAolt&8v1dH&}zx1}a)q|r#1v(5g zQXTvHgfPwv2X-iD~uvH+ES zJphY}&56p+1o-s;pI)}`7kId1zG(P70q+N!A-Cs|B9jSi@WT1cNcPe`dV$*p=E5)E}6`d4ubaJ!+vcz*nk(D|bP_bVBIaPK!TsBk)TS)UG{ z7XFbKZt{RT+gHF?{UI0}PSJV_z5v1v@YeBYl=##foqU)JGu&E`gZy=P*7_+8x7v(D zhhs%Db13NlBbE|8pAGC?{oay_ZL^?@|T+f%w{={C_6e3dv{ z{FVIbagEUtOcK2^InT_#7ev->)fZ3Rc0u|TwTi+5uS<0_O<9>sbD4y;iKJ`LgqeE0 zLH4cjHj!>{ve^996j9TRuk6*em*9*^R^%?j*JQNPYO*(akCgdsE)~xHPTq=65MMo9 zL+&^{4hm`KvDRChqz0PS(6#?DaIEvEUPjqLhBsbp1OCgd7>(Pax2pz=Lm(T*7&Q2(nbQp!sayTty%vGW?A3VUHdctaT)m$-n$eHyfy zmnJIwlRzYa8mi@8I=bJZMSWUvlvvX>aXc5oNNUTrP`i#?kbHSzi_A+jiO@ufV9laX zPt^rttDOzybUO(}@MaNr`tDE*;}#R7VjFJUzOz!#)CSFIUsHML?M|XOY7n?jpGddQ z?E!)09O8ke!nG!|Od{xT8Wq}1P_C;CiEzsxL`RhnS)R*L#@4B{?YbJYa$kwWr`3v% zxK&Pd%H|TsFJGWicF2H!dZ{F~#sWNBq(>V`Pl46{8B)tTLnz_QTeM|7z4sLN=Q$5fE9`84r+WHGJuW&*JN zFsIU#qXW(@RD=h64Hzfy*`UWQi=hpq%+}WPWTL*1#Y{#-Z!Av2Z?_9bUn?Oq-eOG_ z*Di#mMkAsX+W$oHtuIBvHk$0lX{qFqQjCoL`jFP1*~b)~xGb3(@ ze%zlc%J^Etyj^~l89Yj|gJ))w$NRsDfXy|=DQN*4=x8SL`CuZ_s7z+G)7wRg*Hx)y zO&6$Vt?O~~j1dm>zBt+0-Q}a&-N$eM|Mg)8~;cgF&P5No{~f~1R;-+ejKS91B)pR zi1}{;A>XkV*QdvggK-ha{}L#?(Za8|Mh|nofz=-S`u}xTMgzs9)n9g-QbkP ztLS?dl!4u^EZ8oUP+A+4k;cAVuwd8QYx8fV!ra1>=vit2n4vO7q@1S$jVML5wc1G} zKPLk|nEH|89*ae*o=irkg$uxm$7WD_uOr;je+}tpYKWZJTVNUZ3uaIrglDP~bhK`& z^inNHB@W7>8yB}z2h-(Y)8|>l{(6FV5jkEHJ~Ik5fBr-`7ra0Xzy$<6sib}Hy#~uy zyaw%(bCQs6ZP2*kBDi?`2>g|lPj#|h0!jDN4E-2+hZb~&qLGD6n% zn~IX>-6lWf)JTJD1I7BYr$~pt7_;BErAti)Z;BS}v6P++y2~d1(32iNt|-+nz0KAx zxeP1)E=UufJ4*fBCD7H%MjZFGpX?oQW`lOivvmso4Ea2s{HHik{PTjBv||4#9db2Q znlenXGVy~Vrv=M^6iCHpCuT@LZqX4LHysd%Z*>%9HjJ{*`%Z~Qp3jAE)9#V%r#le#3E+;Dv?Yv%Nm_QcQ)R=C=?Abw#-?k3jH?-@tM-muL)kgPkea zROYRRX!BzmQQgWU%5X>q!dYl&34hr-JcUL1Ts;;H2C` zVCC3IJsi0VyZgqd|8OPrzNt#MBkeG%*egX>Z!6R1EGfd>YzOtB{s9{CKtxBgQ>AA| z7%}}3OI_XaAJt<28aGE9k-M=C4Y55a>{1e5b@nj5?88YktN0iZxuuavSg-)JHNT)T z7S>WtuYG8Hv+3a6;8Oa{G97AR?iFD8N)BC6)u9V*xL{E|7sSsnpqtLxAUh;{~Ylb0xT0YE4Ifp8zt8v65_e|#1KYLT zXf}TnT{|-VUzuFTgTl7b>A8(4SS5zQ{`!D-GLb;ZdoQKsqX1sM$)NSdcOjqkX~;IZ zU6Ql!2559-si4DMXw9=cuzzzAC~C)PGUOSaU_TRIC8uTq?-bd^u9nyM5-B()3TbE}*47pRAT{W;kMC?NFeBMRT)kqVzeW4Mfv8sWsF`>!TGn2?=TPm120e=|w^I1`- zr9{-B8Oo~rP^40v3fk)bP_m!NtZbR;fHs-zL9cI)A(_AtTYrZ_N)M|l zJ3=|>XCu8&A(E}5(}Ay5Hma;%4kiT;P{Fhp_1AqO+&fqxnVXP8xgIK)I2G{GtY{&~ zUI=kv_BqfyYa3m+;~nz3uo!Jmxi9fOmyI-6=@5K%MI!X26J-E)3wsq8gX3n`fN)k4 z;uHqcVXkUacGx-MM@Bu0Ne!fhxr@M`aWK%3Up=mOpof~*VMsR{ECb=HfpEX2F1>$4 zC;m0O5}bT+6n$EJ2(-QL0*SsSfIP?%Gw|9&6*Y3z-96Xy~Q&m4gvC_zeKCH<;68h7W0~d7GJk*@0c%GK{Eal!%@d&66e*!hmOgi)GUnXPWRMPTErzmccIr}L5IGgry9%>4=grWD$ zB#zHH@Lgjl9q!_e;_i2%`Vu$d$`(a*eTB5L_)M5Y%%K5$D2TdoVIz#tm4d_8vFMuO z6Lh~M8%$krk%+9h<)|ekACUh-?ZkQ>q ze?*12;QbRGxzhyynYy6d)2XPy^eYv7BM>M*=E4Nk@{0HSmcqTaPQmQNCGf{YMcV#D zDzWueB+T9Nlsc8N5Z$<&3hR1y<0m|;pv_<<#f3^>z)VK;%)u2l>CL4c)GZVx72E`g zqw|O|ZA0i8l|#9;7z6n>H^7f+g!5|JL9^a#IB$Iak(sRm=l&281()ODm~TEH=l-L3 zZlujMp~1 zWKI<1JW>Et15ZKMiKCLg`?f*#fdfRrz8tu>IGCR4kwwftITQA69I6%Y&0A$l2Jj5u9<}2b|rf6 zHAB%6a}s*4%7uST3}Ny;9)w+bRN1#+c>jNj&ioOo?+@e1zAur=5=9ci+;i?7Ns7>3 zNGfGXNRlK;C0q9FB(j8LCv(racS=%8+9XkEFZoDGMWvFy^Zf&6ewjJaR>smHg!y^KHchvW~QXQB1M628crrF=V`I+Xazj@y207Pn;cCq{HzCR_hlm1*OM zQ~ur(+|=da{F|+N*kAHl{FZmctj4hH#U?)F{{lLB|`a$h}xQ07ALxyXyE1!*6wvkN@_2fIRItre7 zpMVzLbxm$-gQ5QIFsKo78m{=NhFg9|6NOU=@I#&ka*JTr2GZe9RsKsdaTQ{-+TTZ3w0{SrP)dQ1JQV1@LoPn0`AR1&oTbA^)ob^f8V@ z6>$#40qNyXxw(q2Un7n#^jrZ;yaQ-dY6>aAZlKdX6J)zRgq>;c!BlP<{i{@woa$Hw zS=X<0kX0`_cUzn`LyBO*Xf1Ht9|>3bwINaUtI*`KKKN2wNY}T&A>5X#!v;}RlqR$X zJx2`eiV)|_nN9^77JR~WUnB^Q+(^t>bCR%BN(0lQ)o3yPPV5lul=N*BfF0fo!Zh!i zH%}-*54}XN*GvbhljS@zwG@op(gGkb0m>Q9#{sp1yNmB_AmO5f+MnyuoVpJHz0E~$ z$PF;}h#B@B`3n5=1oy70jZoz1C7!Oj8u@pw8SL<%rmekL^!l?fZIsRrv6L2&uXI4E-|Inotf<2KMM0=x*cC z#hXq6Cd(Isjw@)U)jZnYOABUAwE$#)hVze370eVa$RUz}L52C$P~jr#^x7@d@{7@Y zvl<=lzPPPy38=;w?vwo1Z7rnkk>~8@uQS<`pB}K%GH+P*o(T4)g*!EPek)&T^A}bm zMsU{eigSlw$WZ(GQlO;uJQyjP$g`yU$bx@alp)`NpYt@D9O&M`f0=Zg8PJzt|J^Pj zH*d+}I`m&)t!&gu_WMjOE6c~5T%y=-mdQ*-nhMo?-=3PPiK1p_&E|V2U1gVU&8JRz zX>fl@Y@$TSNY=V88Jga$WlfyiK}xwHIJovB@8-JugtBx36pyij(@~=I@p6BTwxuDQ zc5A2W6?5op^M#-~(2))?%mid}9Fo4=0Ln9~Vf4&0aA&BL2K^tQ9d?2>mUEE8ug!Sg zOeK11PZ+Snng5)Qu`C3Yy~Au3)C4Dwz8+k$E|xULF0iUq^S*G6U_ zcMp&Xk^z6dUIbTXKOyE_ztj|Rp_u5UD^aFl7LgUQ3P;67B6le-0NiW{tCky}_uFm4 z(liak*Zkp?dM+R;peJCrE5Uu9=Aho}G*6au6olyo(~eVaoV`3(;OxiSX3Fy@-YM6ac~tJ@*r1Qp?*-DKA0D8ReUE`KVG0lQDT0z7WTu`v z4ZfGnfj1>Yk=>uC$SqTn&c5Yneqoa}2)cP3_IoEG?ULDOQqSL7q`gB=r{*vdZB`Wah^0 ztk$J0vVL-m@qa+F8xpO^IW^IgdGIl|rK*O>EYgP785Fhqu^qeUl{j_nVImoM=m~Kn ziey_0J~9hRhuQFJb) zvXEuvH`-J4>Lj3g8;?r0PGEl>Siy#9^^%%VP2_*~D5mM>Dt6c{imJ`uz^*JFBm!dF zXx7t^m-j3UxtZ(+;|^6olCK2wMzv`p>jc7ZeGP9wqnbFv)x~b}ckuRd-k=zM1^u-* z3Uuuc;&k>zq2UN)+NQ)4NxT<>lt9znnz91#l8UAGy@$l`%2JRLdY*oHN*cSEivrIo zb>yh3jSE+M0TWk-{;~KOy5;kgZV}`$s>K(9yNn7OEnNYZG_fvjgjNG zw>(#?ao#MIC3pz>;&*w4oY>{FK;-&UsJ-15f7dp^*S7}}hw93)`hzu0ee!Mmu`dta z8{UF)%4RUXPC{@j>baNIX-aBeMP_APph zg(QW+=6!tN^*R#l3%QOutm1H!+7y;tb`%sToM4nCIe5HlCBCsSl`foh2XChn(Z7U` zK>lb1)7rY0FqQVh=RVG+zkJw&Ds>O>w4BD#$n}{xy}}t@KHG;*Cw_&ib3-uyfEvDh zCYrWdrO%xDql)<%LwNg@9Kz!49ejD@6po2eWx5JgN$o?K$mD7%E)y*VYXe7rVD?WkK<0`mlc^y+&FV6ItC=uO)`Jv;EGhSTPPelH8MWb_Cz}1B1D553> zh>9O$=6yYlR$PEgX3#Mlel8CiJbpoR?C0VAX1j?XRvCVNe20lFa0j8z56}WbV@`6@ z10`b{r znIDU0C4Vf2v$vWE+LSZ6HE0Q=c5Q&aVP*g$?r+IWUC(8m4_#;6R~qsS(@v3+cGtMu zQVwu;Wv$@<^SsMfvm*H)QslV$GbOn(u@&6xUk*6DKNWxa8%oT$at$B8Xv4gX5N6)V zRYQwe2hjYRGECR1Xdr(09dHaE!R^B(#EWa1j8VZVC?2AYAAHDTJTee|rKJp7PYy5# z*M7h&O>ID*gc#&4$pxm=ZS-X#33Kx}jP99Ikbga%nQyWlPf4xC8Y}wfl9(6xY*HD0 zr_cZHH` z76B#fiKb|WB+$R-5-d$EM#*>Tuxq6@@?ZO%Bg~bB=QUP9O~ZV=T=OFR&C~$pk&E!a z%sfyrQH#7+Zo?zJVmNr-9~7oK!rO7SjQ(#E3+8NI3Z*@{;GDh;i2bMz{I~B#HXY8W z<4hQmO>f4u^jDgj6i>V5F2{|1Kd3Iz!}wMtrb3nrGahEAS$mrSO6uMpvakCv#r0Xk z-n!yRLODTw9{Rh?O){0BU5IQPBl4FJ`Wcs6*tm&Q-YGYM2 zH8Cd<>+XtS@2|>W-5yP`x62x+sU;U!n+!YZvekDsRdyd0sXdE3x%&h)=TIGK9r1*D zJ!gPP^{rvf8YZ*5nJh|ij}u;YY92T5fF5hZkz`FQRmegcntU^n$MSpUvF@me;`W@T zM)hLAb6H<}@OdmxN05ao9oPn=98QDDN6GNU1c#@%c!T+`xj%S|vmOz2`Z?V7R~_u% z%ELi_xIA04Cm`kb22`!6hV>ib=qbN299f-W@E5S z>_a@T^b9z@{VM8Ol!90NcnY)(N0C#U3+602i@fACnAmj^1npZ+beF_q0tr~wqiZ~OL9AH*lYsmDR6z%6r#Lcv%%`eHn8cfH1L}h zc6Z}!)q--r`(yfmW z-C97W?@{JiIxGVjHQ#7u(=*^!!UNR)B^<0PI}E!SFHqNvIg;rqFy^o;xP2v`uJqiA zPTKP6CnXYunfyJX^6+kWwf8X{FryCag#Qt(O_$BX)2lhIl|Eo_PZqt^yo>IdJO>+V zG|clNiimAX3E?uP#fP(Om8)&S1(^ihsmX* z;kX=}r;$LWtr{nf>FlEX<9@R0$-5}pNfYkcdyOgZ*uqX73nR-2Mb_v{I3xa5o!#J` z${t-A$v(OHiG0pnVTZlOnY-_UuzOz&_5S2%a-z42w6-w;-;IXwfG+X3*LHVhFW_7LcFx3Yco|LGI6HLZSW~VtO}^Hmo{J zq@*|lgToSN+v+^Jm@fqzKdmFwUKxYg!nXz5Loj$!6Hidf7xH%b2m?p;Imm5y11I-N zJ2D>gLd*E;iRhiKgvG&7K-|!UdyC@1LANSeDqajuHWB2*p$qWtwfVTE;5M<>kq-x7 z%||u^)#z`t1MKpt;H=wt3>q5%oD(e!t8>!E7+RxC>XjbA3L}5v zxT+ca*{=+n-~1+OJzs&+lPfS~LE)Kpk!0vW1+;7ZVUSR|1;je2K#yA?w9rvu2t*5E z`qM?&=)YdNNO=*Ed-xof+z2O3zNz6NXAWHO;SJ-epv>j3^PzZc;#>>!asGy$60Yu1 zHNL-SG2;?>fj_cVmHP4Ch5v3_6MNyUI)B@*d3?81F|6muqm)AAE&iW%o_u%d<8aA; z8@Nnb1J%4R5;yvnkssbJVD6_ap$^B3bN{8B=erfGp+0WB$lsx?&n6TwOroe9bzWY? zB72PxU)&>y%xBZNu`7~s_O4m{(0{c!KEZ-=(|%4hKZvI0c>41DgXi+^92=!Z9CEl0 zVwh4o_L@~w-orL{|7AO6O<>pPPfl>m85$qE2o70Wl8&oupua#{>px#Z{H{T;cDn_N z65LJH!gXM4;V#~~aD8}wdM*CZDi2#MH;}93bYOgt1`7V}MV5pLlb`-vLmmGKF_mH_ z=$uGAm_AnuyLRcrfudG?-_Vj=mNNn(yVnvY63&5CH&v+qSr?Cv%*Pe_KcGj}Pu}-a zOW}?C(I8^iC$P}K0qD)$3QD_-f0fu>lmlCxyH;Z(->_OTd9+N#IMD0WNv+nimpRhql&8 z!q6o;m{_!m`H?n=zCN%7794k`;iEJobiE#I{eA;ZALW5zwg&l{6l0I+MfkY}4S(Em zU`A#iMzKChU=34^x;L!DoJceH&T>@&lczs8`i^5R%x(IHg*-v`?J zZ9I_}tOse16AJg#Cfn_;;iCz4+^T(qHd!))MJ@pR8azUWYn+H6!T!4qq~T|Re06Ht zO;|aefp`-Di{42FcCFID+rtIRD0~HXe#zo@C+#;nTrEu!%H8pS%}gOZmSzPqrL}jr_rP@`jPRZ91yjxD3HfW2i6lG&C1G z4L8brFgpkWLC@D9uh8`rP{@7{8gmlg519FyZ#Po8DMjLW#*v!&Vk33u++b@^29 z$_3o<)0NcZvh7r4(?ix-x`Z3?em-~cz-8vgBVGRUvT^43qgPD0!Ya07)hF`!ZwYq# zL?D})kjUNYc%JPnY~qH=_TkcV*_4Tm4SSZ5xI9K|qlOo1uZ+>0NL zsi#je+1z28wXKOaC#fsAm%2;BpW1dFU$DY{e&=@P6a~0P7+Z|J~Ual&qLb-9fF=5_O}t zgn1qVTn8kHU)u7-zY_PR(b!JjN-q!EJN^Lu`Q{BG{)##;-1`&9T;MY4im2sOzx>S$ z@?An4iP?g79M`3HEt~-cFC}wkubfFN_^ys3T{38^!5XkkQG*gDCF)Mq4Xa5N$9U7~DxEX63Kp zsSYAqUC)KU+4dl$YJ`q>6vt`3=}i-@bBKT657Mr|M+t}3%ZMPU0kCez8e*fb9bx%B zpVR8;Ykp>_F#RI4kC!Ca8#a|?@B-$`niti^1KWGgdF?ifcz(hq#C{`hv?*Ex^li_D zkG4U$?v6Owd(D8!I$gr3ThZi<>S!if7(-Hm2HA=C@x9%97~Sn(;NV3+X1Zw|<1`tM z^G*x0#?MEQRk0T1%IJ`<9CyL$$CFsuIgdH^whPwFs4y14Ft!qXg|E29G9Gb!TJfX~ znOe<+qDHrHA83q?>d4SCRPrP+U72&U+*Xf|7QFC@e z3(36*p)b9Q0&}l-qaTsYV9Ki(ib%-;H=jz{&j>@&8@r*!#voML7KL4B*rI_q#$f69 zAHZOzHe|yiu>1W)c>lz0LVJB5+7M9zEcRU>9D0AFX|Dq0hyQ|qe`5#(_x&K$Yy)^c zB?JH5>n6nR<Gq!LD z=`S5Zlq%gH2@M4Ukmy( z8&LM4WKd9Gj7DYcaoUnkXf@|Mh+Ms#R$QKKF3J>xX0!#$%qS!3@1Fxz0mGnv?>)5h zq!>yqI0ELpJ&gSio}y)Y`Y+v>lZFdUlv15mhSYFIIrVyc26bt|g@4z57B|%MEuQ8+ zAcxAt_>C?uWXfThr81{roR%t^x;2SCd*%f7o4G-~-6z4fyC=uG)sI2ji(ZuXw#_V| z=0PdGai<-EZOjf~{a%#`3J(&=o0o;T;#aHL@LN%A^Uj%+c76#}J*djA{Sw1A zzr03e9}s6{!w!R>6~|HLQK_bHrcyXZ$Pq5eFo#==jA6jl9C}4oD2Vx~N88LS6Zo<{ zaQcFU9LKwhF%i><M z+QaRJeJIHC9zHXy1D{v@puL}2;h)7XfWn@0s9KwYElkqT+wAjr;8-N_{IoZycE|uN zRkNWT-w7;?R73VvN_f*u8Du@_LN6bAiti48#F;;qfelA6xP6(6+UH9_byZ>Ff_gMP z_enbN{HsQONr;0b22-e&n@%*o$%SJ{{q)s$KIpcw1$6Bb=joJ5z~>k5BFE%=V4tfd znZ9QPnDZv-Goz+tdfP47w0;{JSrLS9Y&wR@Q@4Tip-5<@GYaC;oUt8HAQ}JjKykud zz`gPT-A0dq8*uGGpOv@&XmI+M}Erp zKjggsqWL$pVwhHIS;lJlIN8$P!0piLW_!<{Aal={b6P z<#K(1Ojgq7J4aq-m6ckl+zNlLUF{BP@8Tl1JtvZFs|yvJCq>BHHXFUjx24l9f{CE* zbIEk?Xt=v55iQ8hCb%Dy;H@uDX}5r-=$rQl__F0gQyx-?Q zn$vswOVKQHi1Pw|mW@Fpi?8Bv)lfA1@p|ySz8reIUe)@`l@g;Xe=Cf^E5f(*z^l|sn%7sGzG_lOMP1}K*< zikygC^hM-2bg0v!*F27d>J}WFUik|MC$1v1^>krzs{-<450iflp2OkT1IYi#Hr#J` zmsYHd0+toWV6D|g*d2ESZ#uJpbl=nif~D)hvuq!5WXB}f_i!n4{P+<~^~sX+TyO9) z4=jgxnH9JgoerjZX94dw=fS4mmpK-5exu!Ym4SD)B-46U4A@Wn0sqa4CU`3MpaYPA zhb*(9Sd9gJaY!64blMH)OTL29@9J^SqB$TlL=}D>-+{JrR-zwYiy&?C4%voOL&b-W za6s`A*n0XPsk*!hQn!1WBHl%lExrQAPwYvws8tF#{#HPiuLlXQcYa`=sWdr$)(T4t z94;epHoO|V9LAo%LZm-V1eY#8L*6G;u)M$rc$*MLc}9`o&UIffxBNT!Aaj8pLBD}Z zVi7dEB8iJmW7_m3%X@09CNYPgS@ns~;SY{}zx zbWgI`x09Lqob&vlIS4bhbZhOi_V_px~{LsKNV*37aU8$w5=lbo_av7t3FMhf3uw*|7VzO@EoJI?o8zJ za@(m%?mbq?Jb|6Ls+*nlPz|fj|Q}I3A(5n=C(_s zhhO)iH4}F5{X9%3?OO^b^_+2;ApaJqw32KvlZD}%1RCwTJ*4c;XK>(dA{u&yu!o!k zx^^xM1S+S%iof#k_1uft+fkFWmF)(fMwLNGSG2%0S_xVm>(LXXUr25E5o9lR^NNPJ z@O4c92tIQS1P)k&3YiK3tL@PrqaR4r{yec^zcS-&ScKlOlR!*N0l40*g5QpEfCRq? z?8t}|bP#Qa0X_#|`DPPN;2sL=x7HKi$`-)R=gmA%#{gt^DGG`g?jl^D#KUx|fEQgR ziZbkvK^Z;Z(aw#tL-npK4%Xo+8X^(t`;)sZg)u z1sFNH8A2V1w#vyuA4VMBkNL#e7bimAbxNcoS}uV6Ba%q}^ifndD~z5MOM^{+r9fYB zAX0f?3m$vfqXMN8=xwwBJl}Ye^IEF{iX5Cv9Np>zHR89^9~)1>W|8Ia`%(d~;vjsW6*6=6K9QjBRfSJ;Pmw$YRTt*YfNM)hp zF$Hkx9!)-0FQbaD8?%EgKdA`E2!7-1a0+VQWb0k-vt^&>@MDVhk`*_LSa|met5QX? z`9ag{qr8Rud2i3Nm1(>912X^E&YZnWj)fApBWVTKB&LL|lFndz)J&NNGtN*yWM#NT z(T`ctqDIzZfinL~;#pSI_X`!$tjA7_Q{0a#3;9dM2qx)G0JoLXPac&@WtpyY>d(Y1 z_TAZdN+v~=A9qQF-$5K>FN)VwHs2R;Yt-bqs^_d&UZNEL!wz+R%Eo1&JIxQ;q>VSJ z*%m;{X&0DzQyf+;%*1P(TZwyip77_gZkpPek6tR>grTjS^zBtY;r@9==)*EG+BbFz zzRB@|o6^#o6dw7I(HmHf&*6T;xBnFM)8_Erh87Y*O0#*5Z(hP)?|pFZ^mSN$ay~qo zkpPb+TA-ayYhhfzGW054MbE82K^EEm=IPqEfSNmB=}3DqWO3FK_3KW8qGm3<{`C=> zIKC2;W_|`mSH|J7)_GuHi8i`yk_CmBB2Zyc1< zq`5uCyZo;Mbd1>3CFe(**2R9~S?8?>Q`=sFnt^-hiFXJv*!T~vj$8t@%Ax@E#ex%O zT>}TY{XwYE2H14Km>&0cfm%lD@ZSR;vaX6x_$@x2L4SDcQF`yq^3jc2e zf*<{0B(NHeDEf^Pl3OuxpLWKN(kqD1DlY5MJ(l=yGK+j+?ZCY@ecr(i! z5s7EOd&djVrS&OF-CRdF|Jwss-p_$?CmINY(pu!T>?sI%UChc1oTpp{6iA6LuPDc_ z7x-XYj=P$3nN3{3hy57i#~)gHpFC+fgMS^Bu}!oh|N4+3f8}2b{-*vK_{24qZ?-^# z|NYn&oEf-)`z!G~)qPTt4HD=k$94k7Xomx(WB!Yhd$o+;eM_1BH;}-8a@U%*VT~z+ z5kKs|xq^Ex@gI9y?my^~5ysXIA(-7) zkgq#(c}L4H0n;Umd9>an5pX|){xT;Ud~~paa*8wXoU7Zxnox$0z3v0)xjTVA^M-zP zEl$8*zKmWy=|kv?8X@bx1izEGhm%qi@ov#b0H!|BeN+IZPOK)X*QA4h#c_BWmZeP| zmSF$FJ>cvV7wxR=#eNY#k>TkqVl&s0>07cxkbfizc}f$hmDh1Bnnln-q>8t1i^EGl zu0TLOo_?0xf1PL#`O(9FcpAgp?)dhDBm@mw5w^ zY=}fU8w3o--)DjB=S8SMDi9vpx)0ae#G`}8T7-;29bOo*9X0)l#nKaLg!)|%{MT|B zzW!l1K7DH`6cy4$pAX36r-KiP>hCVVM4?8&lk)-+wLLf<5wLuxJ?j6V#$5d!i#<{S zZ_boEGfP_>PwPt(>t88i9sY4*Q!7FLiWf#g_eB^tX*I04u@29qexu&YF1S*}ns~5W z7as|KMZfg52X8G8Gh=b52r9u|z#rxDPDb3Kdwv-K@is4Xx+xFyd<%g`@f-6YKVz(0 z-HtPtec=sho9tSM7Q> z6MRa6`&hh>dfPcJh?*F4eGm6h$G1I&YKJqq`n5*fo@Z+0*0weL1*6Z{@bXX!KM0{- zOEtkyH|MjR$FH+@EOv8Ce!5Y2EKYD^U-Y&Lo(ipCXd3<3B2X4iVSWsb}!7t1Z zXGC`lP$@-x#zQp=9nz!OmL+b~P{dkp-6=%XI7{(6LWB7aNICw|4wh=MZ==lTsc-}2 zZlU;k32b#(jcDuS;L=;2cu&$&{8TRs%+Q~r!(JT5c_x>MRG%zR9h`<`n>KU4uRM#J z+e$!AMm`Gc8OP7IsNlweP~ySf^~}XvA-LiET_ORC5&30m^rOAAP|j0h9F<*&Z6E5Q z4&QHh?)r;JdXEr(@@obCjnTnVy>9gC-5Ee>hB@PX;FI|x^&zy|YJi?hH9?I#?dY`S zXHipAJz@o(`cg3|WTxQ+H!C{g{mRkkkV^>>*?bloJ}*P(Gm8i%)`B^ z&R9OlAMEo8r=Le`$3si+63decL5NeN6c&2KrO}7D2v#S_uhO0RL|VQb|sPMctjn&Dx{PSG7!O= zRJZVw#A5&})QdHHlxUH$C+NhBMmo+d3^~`u@anJ4K&gIv(e9IVz&}eCt>Q(&++VAa z-uOWzmU)l2PSXV^rlg{Qa0_gpP@9`Pd$)Z%p|)T^BebfK*_7cRQ3~HXxJga3K<<{>raTW z{io-0leS%@rq4vP8B3)3+6MzzgWGx30PZ0-aQmomdm2r;#iHe_A_Gy}n8tdS=O@qLHYYUQH^#`AOdmmjA67bc0 z7BJhb1M#p01=Js|gp&@PM39xhtEi!gpKv{JekuoA@ULR;ZGoudwL1|N^NDup>=LjU zS_y|kr-1MKGq@#GjCSU>qZLpPKTOaUDtCW8-Q3Djjg9~m8;FzC4c%YZp78ZnG=TXSdO`bD$=L()%{17RM+`rVEF`J(HQNz)` zw~Su@r3^W&_)RE#T_!@W7~)j-9Vql=I|?~i!8=776LBU{$hvziXSae5&M%iEUPh%L zx93W{b1sRTLc46bV>}-DToUN!sg=ZX&QbdKHZ@q^coEgyoP!RgNYRyF)p37&6D@Q| z2yZBwK}-k&H2q!oQ1{;!WH2cPXXQr_^2w@bB1DZNy0ehrN(1~t;tp|h&Qh#wssz_A zQzd?U&BdmFX!t zaU+$8UjCecc?7#Ll)+lTn zd-vu~a>6Q<5|a6kEVa@`W0s{Tyx4}bj{Zo8{n?4#_T50Khq8dkp+@tqLn2r`QG#rJ!L$HNvKR4_@$s&lyuH zK!-hlG?m;9F|TZ$;H@}cjk+GE@l4#sfa~ac-cVZyxGVn$B?#*xb&54#z zoKc|Q^QAX$fFIub=!gMr+RdvI$OrV(VRoY&+2VJ|4jF>B(kS?H(QL3lJ31Kuocr09PG&>N^)8`2GJQ!Z9bmB+LlDB zy#*+BWDj(j^O-i?6hd5AJU}?I4Mf%7&zxV^7K84Y>7X{7MAG+Ki9j!m)CbunC*fS; zfa7Lba@kvY=RO|X(4vk9{=}1_e-Dr|-u1E#mK0SQ^oVH*G$x<4#k1^IIZ~Xj&-!G% zV*+y5v8B=R7$>=~mR-BZ%c?usnLbra2+xwV>TM#gToHJt0$yTW^ZW3hi8vFh@RqEy z7N@*F^fTV0HBc!yhdufH0i?6)m=KK=NIm(F`qcAXz+$i?l@G0;a$sQd zNyxrA1~T^7(faaHaNhL{Fg!8Jqx+N4n5_ajA2UkW#upP;*IIzLN#!)H>;Q)f&k`M{ zzVlk8+&Q`t`9Rz98ol*g7>bw(hxOHsv_b9?@Y%GElN8s%**^M=(}1|(h>se$TpWtZ z-V1@P?IQS2Z84#|RszgBtU=s$2?Cd|?1IOin-d2I2kFy!Ts zo}yiDFL8@gJ-VOO3f`@3f%Drpz|QzStQF=T@KZjP5U-@j;>3@f?8&wZssjhv6-KP8%3rK=QwJuSz7-NJ?Q{>gB6%(%&S|L($f zQ~ykc^(^I5U2914(JFMN!vV8~7nM*Qp85ety>$P4eHvMz*{n zk?KA%$0G1=3mYe4Nqtg_;Fj#(gnz!!G$q)C&R;yM0iOye`?N#3A?362^-8 z%bAqu>!^Ms4VHR-hPG?3pqu+=F$>>pAVb)G;_F6TY+5W0x0PN2K^f7wzB~=zI=&j_ z*=(UZjU1t)%{W-pybzvCHOR0i35f{^IquQ z!Y2;a0;8-ONG)V1b9TTUXPEvbS{>6EHJ7W{bkRHz7cd1b6rC01|8fxa567!h8nO16 zEbP>AWTNW?{+3}QT$Cb(tR)k$de{wK=bvft=)o#xO^H6?@NOv%{M$$ub?2ZZLZ$Sa z_B+TR>oih2YydSX3emx({qXq0MfmR{RlMMh4lVs#jOo+^V4 zMdQ=>+)W|!?W#p+SnMQD*&Pc4HMWCK^dp=n^c^Iu5@XCp${~I(gKdAMGm?T%sNs=B zj_a&4#puj5&96!rZrIHBXRo1Hj0|fl#BLG%wAmi`32ETmr~Oz_jexFi{b=WXsThkP zT&u7QDZQHwMK9{%HK%&0f;wrwPrN?6U_g(5LsQ;jTVfvnagr%lGdGFyoao?s(i-gG z)NbzEh8f(QIa|11_cwEEcc^jg9*MKh_l|I#U+m{ve6Gf#xuN_|8z}x#D<$gZqX7Y_ z@f#Ukn#r1#FW}F8d!8HgSrcX^_i-!Cj!_=M2U+LbIn23m*~{N<*>aE9r7_J}rTkXc z`AmzRF8AX0EXK-Ig{`j?;rq2MC8a;5b3f&oaHsd{^1oX(@yB}=`8W4}qlD;AN?6#5 zE2N`~{XZz| z#b**^pm^|iBzGp1>7F`_Cn6?^{FBAZt*l<$c+?$uO{qceS@mF!K{`q?jlzN-53f!% zfiAyXnY%~Tu)L2UPH=_@^xBpk(Do_t_6wg3<}rn)o_AC`fxN*N@Rm%Y^otkmCvRzHpai+^^*nRQK|<$^f+ zME1eR`Cf2C=QFzV>U_N2Nzh*vqY27%#o#8XD$p$O9fptHg|hCOLDz-%#BFxpQ1rns3_JJ1bo{k%oIxnl-I)+Z6Ae)6C_BpjV>FGDLg{vcAPZnRZS0} z^!YpSFSHO0$a>HRy-x$X#a-Yv_ZmtcOXL~O90ZERbBRzLbztpzLEwFP02F5}hb@nm zQz8Cu$@d*fRO*62ez=Jyw{NnVJ<@#*e+!}bCHNe9>*yC&eGlSq}eB?Ew2+DU=L3lTPVhj-?#WXfOlg%gI6aY$kJRipfcI4kG9kO(1!$QD0I#eo zNcEElmQ;v`AcIf;&b|Xao&HCxsXqW(eqSO~gl7Ri=?v7ATaFHmr4v`y6=NxbJhXI4 z1JD|!3AfFwpzZp_U}3!?tUa~D?Alis_|D`ru#+1T@IO>AJf%S#UbPMe-L|85rTnH9 z^Irk=izA#BpR?iQ4O#SCqKzXG7z4f2zJd2$*}RB3!eqIiRT8g0N(`gdfLIsVRKM*d zG0)~3{iLG~R?Sd?k3{pK)j|eLjz$3b>Rn#l3O|_7s{)ZNCpmDnFj;Ht*d*;-{6C7$ z{GW>di{ql~Bq4i};?8pKoqOj!_oC1)v`AT6h(voTN-7_OWGQ6dQ^}U?&U@~V5JD=c zq_illD(xz1``+(AFpv3V=6%k2zs~bXx{Ry98q~Nhh(AP!e^mj2gfX?otOk1C_XiI& z=73U91WNRG_iN!k6Vf;9pW^+ey3G1F(sf^sqC zcD$U{+E^=a>(-=}C1^ssnHQ)Et#%lM4+>W;yiaj1lGOaDtCEg%BhkM*L-1m+97s$w zqx}8*>h>c$$dewPOqHITsK96ywSCNynkXCuv4;-c_Zw38L3Do+josb!w21-LnYUV4N3O=t%*1IY~{rR0R z^m`85?-C=P+OtOF8gW;AU!%DG@1kV!BrJ*5KH<#D-CkASZj~$Awe$?zqj6ul>%j}Q z!+J{nizughJ+}(xa_+kNaLEI9z#as znPgW^qD)|5guSJWf)ar8*W7S@&KX^6#d-nlZ zWYR{>JRqW`#vhbOjT}TPAL9~#?QHVC>Qbs`+gV}GjBli;wjyt)Y}-! zL;D+y9tj2YzwN05>zgUB^JmG@H3PKzp+0b8n^3l2UMYFnPSL)XePA{xh1z;ZpCUKD zsJpKuN1IQ$3T#+gy7$BkI>M@w9MSkG`7p&r66qx7ZdV~nJGDaDVQ1gttrC1LMEWZa=}ST14U z0)h*>&KkjC@hsuy%Xz@tNfA7`pA6>9_=epwH;KICeOT@=6)H}*p{1LWna+4KX4vZx zNZgi1wxw2rV&Xs0_96_J@vhd~bvpqkmRo|~f9F#D&JW<|8=O8gO%C30E~VA42&eBljbZC2T^Q8JVZLmv0Y~!^sdZ@(L|7&Y)fSEbxswYh z`m-SX%qh@PmCBf3?f?_?yUD}f6u_Y*8<4l{F07d^&-{@&M;)tbX-bxDeyMRoXlObU z{z=mh?{Vd#Sm6%%~>guGe1)|t5@C{$#T%!`tr$9*9d8%T;6|p*^)_%7w$IuOquj$uw(BT8X8o8c-50?O9a#&OH969;@&3$q=OI#%`I)Tj zafRcKox+J?1133Hm74MVG2D4cO*-Xt5A@c1OnO)tN^h!_F}aZmU}WF~C6}oReByCv z<7&-RuCZa%FCC+{j67$WdAnfCejaT?$rx2n_dw*xMX>G8T|mmkFrUu!3r4cX;LvOr zSkiR~?pm%4yW{WEE$=6TuD{v9VK7{hI@U$GX3@Y#kiBDxF6dkW-3{Lw{Vvjg_QJg-sqD7#_kV_ix2!M6QG>&$KR0qw1qQvCc^T)aLr|Hsj5K%vvN}*DD{n_w$f%Gzc!cF`WFG6usaNu8cU(-zRd5{CtzRD zGKlV60Odq>q&CH&$oHDmP4gaR`i3Er_oa#FeM}bK`+76V; z2;jN53YLahfd0+5C7y0&pvLPaxi(XY)jLwhzKRK8<-TlWm-I(j|Mc5Xub-4Ej$7O$ z{T$++`|yT|JXL;|U#w1%W#A^ROm%H`%)NANX0=3*@E3sN4>qoYe-gD596Y6de4`g!x1o(6SUHgY=|<#-E3I4-GM9Am}QW@=Dd+}nkX zXA9w8I2|aT=g>Q4GrP}uanP(>4~U0sgl;zifrI%3aA!^~2(6a`qubZgU%4)@=gc+Q zVRKB~i7o4xS*AQDbmwA({Pb32aGyLPsdX!6^^F!jOF};P;*&s>I9^L_F%NUAyi9P*1X> zP+KuGiM0hluCeE5&>i=QKmg{Hc0fpDooEJU}WeA(j3_Y*BIS_^q#Bm zL}4QMEM7w2ZOf^(eF9pu0w~|o^5kP^Iev*sSjnh;P)Pi@2iMKd#4A8zU!BX)~!;I#{Ih}edesd zM$}_sr#(qj-=r+@yYyR9v?x;AI?qUSK_)sm5qe*0Iq!p1O5sb_6jYMHPT( zb*CGjK7rScuLoUvnNa#)GcOtCUt5|Yp-z6A{Ag9`Hl33^SG?QgXJuM8V?fDi)h4-t#s@ZL|Ats3wFI$e7)u%CP zgON7vb%rIqBYpsJZwT44CxNukm9f&chET5_4}l{SHdE(1>%jg^EdVvhrzI1oQQ$>C z*nP$b7(4V*scZo4eq}9Ckln#;by!PV3`07=XFE_0k^t2WelRv)7mODAgRLqDsd%K0 zy!+LPG%DAku6m3MU84OcaFr)n`q7NKzC=p5y)dA#8Ux00rd?hB?;9ZObrfxH7AUE# zbf&&{8o=qN3aFQ8Ih?L8ptl4xQro%ns8w4QNUphQiM|!fGfx}7lU0!vb@ZhZnf>>< z@J`nvW`}PhRrlPIavkPU_8B)pzEcA@F!q)XaW$gU@HgNW76P`N&=U0&meJPD6fk|j zgB!O%df3Sc#%!nBFN-s`07-t2|9=)rZUzWgjPdX{K zQt^}aDHVzJowwDqT~Xp_?gF;d*c-p^&U9!#))s`o=|n5n~hNE}(0`~WJjdZt+C??mg$JyYs8x~*cP z{VeLItqfvsdu$bVMr@Zp?O9;0H&4BOAS6P%<;E=QC3U++&G*z<&pvZ8|GlB~d((RH zTbJ2v_ma=7+{Sp8+>j-{(ELGMP|_*>@)~0;Zh5e|p+@!Qo=?ezUjwLau3DXCjw96) zp9=PGu%M{J4> zs1CL8R1M`REF>RnYNgMby#@C5y8(A=HV905El~`6PnH#*rex9>>X@+~e7<~4xNwb+pd0B!oo}>av?g-N>>bfSVaWujV$x3UeY}QhQVW94 zQ&v%0iUQ`WbtU-7ex$6rH&gLPoP~>RCWus2#8mi+5!yc&5&k~4Pv+k063#ldiwx*3 zqE7s`3GUaNOFb$+4ZaVC0_I0G88`DfS@ty!e)r6TKej%hG{$9f-KsC7-ZD$@-)I3a z=vplEVnu=~M4Q?=DG36l8k+f}KppIl1V`+0g_k7}urKW(Xibk`z7MyG%hwHx3f6GN z?Os9k!?(?>-#Tw%_kJsvX4P8N7hO#jjop)Vz_DrUsA?MP6w<-2KYp9~7xGIal3P}9 zRj6EV-IL9bIm6-;JHCs?-(*O?4!1~a%I7hw?YC`f#JdXDJxmA7pC zDQ9+wUoJiogjkmtFA-OCMX=sXf>i%sqO@!K5g_`f398kbCHUE1I`l>=mDpoIMWjNy zH}HytvsIgNKb=aG{VjCRgkRuFBt<)zq=MSBS#Zn#B=Ds29Az?=0j$;~(6_%`psbH> zqYN*Z!IYmQGZ;LVPFmAWMkU+@y_017fDYD7#*tXc(aI3`*Dis-v)w^({Sh(`&x8T? zr(kOYhx+}%i!Mljz+HP9SUVgFg7@AcHI*_*?~9o*uYDOLf4&vYnwP|={&)kIh_{2@ z8#1@il&8R{41obaBJ6g{5Goa>(-W>LGq1kYz>k{%u&XVU%-vTDHH$EkerQ6rMCy_{ z1WxniCy{uGF;Fnof=;nUjOPJG*khtghQ0a;q2e|8L^YP|vwa2(pEr;rS9)k2jwxL8 z+6tO~tpXX>j2OKrH|P7q9@Y-L<&LfT8a=1}za!BnWEBZ3War|AC5X9DB@ z&eG+EIN9Iv0nS*{0M%n#d4MvP7oa62vlOl}kWZ0X4e zs)aC*B*>=+M&W7UIT(3zEBQrr9CR6vla9W2w27%~r}1So{C+?R9Q7~4lZjSvOT$re zg2PdI$98?_v}g|yZsmXvem~%v!ZH%CFrruMwn`?%C_>GsddbMxdwS2uLvRjGg6?cS z-5&_Rd84i1OB7#ncS|~{vt*sDUOy)d`1hGHwe67x&pj?ZIy@xijm%+h&zmR?S*0Nj za}N_AzGEQu7tRo`T+z%di%=H3GLuAy{B*=>zq+JyCl86^D_ceGPD`X|txD2~%Z^F= zgelUkPkN*o8W*XJvNZjNE)nbW&P#0f^``W@f2MeYnwjYQt81dewg;tY`r~Zet;bR@ zKbP62Rw7+_-3u1&4x+pYBdFr0b<%Cq&7~p6^Vr{~5%K2;LcCI|fl3W7miB^XYFCx7 zX#F!MsdP9{Y$fEuEcH~f`p{)zlROtnNG(RZxfFgKDDCd=3>*3N)i_Mat`D}gA)%}i?i|T_<=T{3qPGji1(Pt!G zGQSab=|uV|gVxFFU3y-gDToNDpe@=zgQ^ANWb5ijbjD$Xwudia@bPYme3BRhZtsvZ zt1qJc;sRN3&X8BzDtZ z*!g2A{aeiwEV5bxhd%>JN`M`$K1#s4uDrU`PsOC&RYa2Pokp(?Oo4LACghvkV`Pn^ z9(m`xA*A{#p-1QwA@Sn^w3{jxKC+)k69yO{mG+avR5sjbvVfjOv%*t%j>54I7>JRJ zrbon!A^%T}WTKtCz^v$;q-4c@u$gs)HmZAIl=BhVN;Xpqk?rmVq}S0M<0~P!d`sB# zF$5miwVqse_ zd$Z`QFg=E3&Lzv1|o{wwbEiqXmHMaDizMPAe zT7Be*DqI^6ft+JZo4mDp;6YNWRS>FUjhw_l z!wycg%qQav^_jSG*}NF%(}(j9gIyEflk&S|H!<&KQ>y!vng4!$VrX?mc=Fd<^3hHg zW?@YY^VX9FVG{?alF*~zDMP^*3Z9H-)fqamtCh;`%xA<~vLprOE2+A{%kb&aPr`+q zRn!^LA27$$0CqXZGG95>@X(K1nXAl#xj!!)TK9Y*<%;uVJjMcWcxEc8Vsf3@m0U|H zeNTlxH{a5ZLkjd6r`zz;n-TKeU4jl%R+epLM1f~3>lp5IA7Gd|i?kT@A%m9!KsPAD zM^jiZp|=?{5SysivrbcgmTzS;I{z}WM>3$^J`Zx?!DcvubulUp_kp$3KkCbjY@oZ) zhyFfq0;6Z9&ZKobq{611fXUWpg^SJYsTWEzK8pWkAXk5iD)C-K9X3^iIZ_L-?0SmC z)@}?o#qMTK-`xZUZR23@)>!(>tA4PU^a2E@4aiTrL!H}PPv-i*AaA}Yq)x3GU`uDu zlnSQZVp|NWf!-8>b?#yL=$4w#5(Ph7m_tD3d{zE5ms zgq*c*?(G=WhL z71tA$i^V2f4>3FHz=Sn9!=SOqpStbDAp>8xQTRfAs>@W4NuQs|I675;$MH(Q zP1c8OYL+tkU%Eh3GcGz=Tng?d$?mU4l9(A^N~ot2d6D78HOz;}GlBZL9BTdhmvE7& z8~jZ0rxq*z1!=P%Qx@HdWTI>j&Tl~zEFGJ{EL~9#7j^o8Ie!jQ9`ahCW^n_#cGC=z zpx98fPLK$*`>((}i5C5A#GHA)ekrW4Pav!DI;i#?l^W(>kTIb&C>kojraclyZ+tem zZFdT!z4u{~-ChcUe>*de0@bPbY7NFP$VqCdNivp-%0M$?uXK6CTjq961UM9Yj9Rfh z1`ro>p!3$_jD_+R=C)!I_3Mze6kk#R9ah*&-lJRL{c&d|g=WEOKUJ#N;}3&1?Iz{- zEn(vSTMXadu7yQkP`GeIFx=r;P1jtTLRn_6h8N@IL}pEwWNd7C#!mAAt$pJr^W)u2 zCjC|*lRIEcZZv%dIkUGjTlRip)MYWwFJE`V-tiesq4RO@S@xb8HStVe_BbGj7$$j3 z2lc(xol(aRN$V!D%%DM*a3n8M+I#vobN@gx;AX9$esgMoaEmUy7?lX;n`%m3Z*HU3 z{`tfxgpWgqj~(zsas@qbW*n|3=TbMd7EtUjS7~3kAE>a2gWEa+V8x5c%8N+~e#FVw?)oTQ40Nm5LrMmVFB|Zn3rjDb`aWJXyOlmDb_kxuPvQZN#fh zCb1D4f7I)&`zjW^sFWVswy8e(l{@2|JK4GwCq>-3bJ_BDZER>>9Q)zQZfp9drgdY; zXLj?9^m>~M>)G1DE8?bqQ^h66hQ%ca&Pc*f(~<2VWMl7kIOQ`gRbVB|PZbR+?$$(T zR&{}4j{u+QXp_M_8$_73Rn^q<3%1gs+1ap2W1M8jldw@4XZ{Y!Q`IWQRO8@n zCU$)%xpvHkS?28nwPWtXGOjn&+Hx3n-Ek#9*y>U>8>d1fWwL0o`a0_8v42p*)B^G~ zTbVi23?`m46-&v1+0FVQFo83qK8i_Q@@Y- zkazNRDZQLsU@-qI9XIzisnIkKblj5@>SgYr-d4E4H03{J)hUwFR+>tu*8CFOnuJ5D z<0)|4@C^hv{s2p+XoBYl`$2H{Kib*pC2;C51l1!cBx~qGOf z@ReujZ4u|mn%-j|)^!OzSpA$laJm1doKO^-Ji0X_F~U;U`JQn?z8&&XRT; zybjKV=7A#KY~g6|HCR!gKMMJW=(g9KM8u2Nw+Bfw&I9 z@2mpr^%W(xmKoHBBk8bX@HzR_`#&pK{DbzoaG8s1PzRl@uPpTUm@bwxiEx#r;Ym&0Dn|8AHayuA{@&s|5X_7eQ zjsa`zyp`3wHpYA|P#3S+a#XBRa$V}f5wJPZlkDY6RW>tkjW|)EP1+;P5j!ru$NG1j zVaWJQ@qh0kMfU$`u$$B6#21NsQnB1yQO~hm?9-butV7_K)IQBpJepfAPTH|p9PtTd z%H(3%krO9bt$NK`pHMAIabS^TbNVF8Nh6p{zIq6Zm&|7L9~Y4pow=aX#F?ITMh)^% zZ_3W5S+b%dk-ppnGNfHEZ*~Aft7&U}Enx$~|Kq$dJ`1WVQv^Shw3A7CyC|ar(NvOCj&g=D%Pi~Pt2rW^EzSek?TMKDpP&j0Vp2dEo}EC zBpnK`B?-?=fc46KKs8~Qbn-m`BI2*tE=rGsD(za(;-CTj*x(|q?W+dopREAu8IwuB z0X?#Lf`Cfcdkg4UsX)2L!79$$Cs5H4fh(_slClO$@J+o4?B8k1tP6>RP0!Q7&0GhW zqm~tJwhtz4=f(@069eI!l?EWZItXle7z0$^+QXfV8cggICumlrSsQ=e9VQ|wjEm7- zvhs5enBr0_(eJ60q}7$cOP^%SsuP;jp0_vQ*rn}~6catTaCf|9#{&-7Gsh1+n6C~V zJu?KJChLVhw-3|L5>aR~5=6V6&7yU>lwn5md@%F*b)lbg47sHcfbz!sKvFt(;-dlAVjC8*i zsN&CoMVS{f98SWp$ra>=6=M2^vk1O9VnW^?J}RkxI8I;Mh>+0s4JZvOB-85UVOydm z!`O@Ib!wJm^4+~O9MEEHVNw51{9# ztHMJ$>*?^?ND$)30lw%jQcsqfp5}^>F*l=OX~18)t8k`7|Mo2!GyY72!HJaewwrbO zlU9*8Lyl5={!OP&4Vl93A$NL?+Bf(n)Rva3lL+m`HVIps)F?BjaiD?CVBV;iG5402 zlCF2Ikf~d=X$zow=F_?p&#adv_W`ztSO6?z1aj`QvUXUh6!J z?Oq9bQw~!#&daDVr^J_W?e%6f|W&r;OeGnb=9YWUikcYEDT58S(FB?cW*Z zw8QV?lD&uXDbIpN}AD=32Z zF1W~KWGkViWg`7iz7&M&%jQ@A0Z}+V?H+CHt^X$0 z*WY=?3WB8UB@v0l8mV@17d zmL6N`ZYoNR@Db0gP`18uP2GA#RV+Gw&%Qob;heNUX%X#YzlxgMe!fn-B!+T|m#5ZJ z19ZWO1V-EaIjK5HHgkILP~w<>0S0e*Mn!9m(}u4eQ{J^9^b4J%a1+=?xep2{qFRB> z70Ud9>nk98XEB)8dzZq(FrejsQc@V;4f(aHRDADgs_yMN3f=PqoEo`E$^GkrSJaHD zaupF3G4?}nHO*P{h)AV7O80|?=oPSJk|N`=Fc1!37zWQ0^eBAZ#I_t8ZZd~g{m0oH^-_qn1>czOhx7>?L`VsPeg|fa*(E29KFNegxp-V z9KjYbh?FxA<<`bw!{bA!;i8Y6vk$G&W7BUUec`V-H)>+Bv8*-(H{c<)H8t2NaSjr; z+TKdorhvR{JAnzi`uN({&*m>x~j3>v<}qS&;~ZM)fwe)x77GdOqz zTegQqdWs{_w&qi)Z|*u|?gti|ip8TF%?1(0y$kV)vnHS;4}7iOS+Pj2n+P|`566zs zmFT5iuQ^M-xY$zXVx)AMDn|cTfHp?WLT62I!IZD+a$e|{A+JVNkO^E9#CD}T^53I} z93S~iENRJ1&WwvzNP}B8emr#pW@1F6uRoh$n+o2e{ipl+6(=Kz_>`aA=EphwIcx3{ zo2I_!o9d48f=@dUEmc`Wq{analWr0J{;C=LxBL=*_KWYt`enNav^}1;ZT~$Y_4``F z>bW}q=-Ue7Yb(vSKj+IgT&YHwJSpJKKDB{&xqJz~yaE$!h|TARE_Nk2j{kV`lD_j_ z7fX1zQiF-2NKCLUScA9L3kbM&EbGW~1u=;(`NNK4a z(s%O(_OqHs6iwW%bWDnow4^2so1lp~oxFkmPMU<+-@b}2yEq-W`0^Bb!;?hqr6b5M zD}Ssp<*JqIjSfzdZ3JiPvxgj2+v6P9Mipf3*ksIF<%iWtD?W0h{sWqGU@q#t zG8PR=N=N6q`J*Aj6S#&pU7Y5V^YQQF7ce6%3QLI5z*kq8W8ktQ{!ovHwqR=5`YJVi zy0!`K@n<8~i>J*nl?8bio^bVEC-Z8Q9CjDctc?5sI9TMUz$L zqvd87(3N4^(182D(ZzbdaI10~^yzOMtasrC?hfxvT#}`Qsc>#!#(j=Byf=d88ijEY z#i_`##tgjDY&xE_dNv+%{WPu-7=am1xrdv?C!j`#OR;5({qe0Y((yAZbGaQ75x3Yj z3;UDnj(-p{c=FQ8*oV-gT$&H?{*Valyu_TxEK$MdpHW4&gTL6hoFVSQa4z?FvJy(6tDjyKSW0=q-7D0Hh-dzSbiMDy-NvPYTD3T#_f7?2ze+Wsn(QXLx%9bU-?kIP zyfRf`T5g=+M}wi@M;jEpfa{3E`*ewj3#$c7JmZCTUJC@D-+mFm9UqCyKVt=WwjyB@ zwNQAV`;0KD^ecasPPA}h?nGkvj*5U8`o~|w}U+cOPcnh7qbuI&Y{k@ed%ND*F1`Q zjoOX=x{!d*+O-AkSuqh)Qiw-;thBM{@4DRP>Go)FjxE-hkiuOv@e&^W#TpB*c!XtJ zQTY5zDIANK%jlZC!&Voo%+OEslu_>A7LIM(0d)JBzZ@$$d2}zjgp+&b3#VhP9lFse z1gXgO!iN7t(MPi|geuvJmhfq0II7<&AZ;HO-qVac$U4ZuCiq}F^BfTmUt25fdLLw~ z=L~G9`~*5yN8dhlhYN}CNW&0d{)PMtj#f)+yJ;#{XHKT!N?$;k)yEh`y(l z{1v_Lc*Etb{NI2438Eiz5~pcnba1oPly`pU!*pGAi#|ZK9-KzSHItEOw~eU5tX7U+ zu>!)cJ%L7YJ|a^;CSc8DiRc$18o8bphxR}XR9J4xaXEYj6TW+j%-2ysdYMPqDsCcj zB!9cr>aqf)8VSL~z1`>vP8xb@@_eNI?JaculOfIltqbVg3^mkx;38s;)L{PoPdJ%# zhB^9!ddQKWdB~f@Do$(2KhEbj3fK+*1)O;D66XdlAM5=-2~$<_LhhaQK#wmPL)+f3 zMO8B{;iaO#oD^F=zAvZ_Tg|n{zO_upA1~Fz?D8qx^w$GK;TDE%JdNTFEA;Vm3;em~ z{z>q~vSRY_%l|hKADZG7v-aEhVJO+ z*`uiN!WaC_VO_L+$!jzlo5c-`K95%&??L}YmSDDa$M9=ek5S*<6xVMLA2Dt`g}-u8 z#;=tB#%5Qs_-Rt|IWr-`CVLJca(cob2qMHtcdxnQ0E4? zc%!#xf5N{mE5L0UHSo=ad$=6`%jos2NR(4*gGEe5u~p_D(KXZMF`i%_cfn~LbjBh@ z%%6GA{q<=U*97`umrhT?mqq&Ht$xvhlNApI3-;vmJ@&c^G^a)guk2YbSm6DO$o_s- zpd$0MeBb_&zwWi0VD@`?LDK}Dp!wN;;jNXg1VP2Q#IlV-q05hJf<0eX5-)y^3ND6* z3j$^!0<*L#!Mt5IMECRA#OtmZ0^f8u;o`S51@7<11#HnTf^a@0_{qP?FRu{@|FJ1T zsP>c}_GX7L{-8Qhx8Vs9eA$Tj>ZMC0JlsL_j3R;~b2-8t$AO?TGe;0)peg+AmMvH} zH;%aPlrGqm^hN-jcA}))AAC)d3SxbDJ)W-6g5B*5$LbLjztlMod)VcNKQC57ot`bj z7!^-E9k;=!ypHCY3GUzroH*Djqi*c$H(Olhpgo0k*5` zFUKp_5!-$vmTT?u3;!^35})a;fH^#9!*xEGqA>-9_@fC+@s_(R_Gx$#SGzq1#fL=b z6@^yRIq(%)^D!0`^eSViuV!%P*3UrwzUg7h4hC|uxexIHR~3vWkz$p~F}U#U0Ozl} z8Kw;atu&wCL_bD$Ar{|i5zP=ytX0tmxxCO8eLmS6QGb_(pnp5ix3w1N!sKr3;>tnv z^Xhd-#(GC?Qoydi<3JfR#tVA>uZ3+oSr`(aCe&-UAW2cT`3pARnToq zZ%^ef%26gRrq34aPQJ!p|1^hK80yM59aJJ>)eZS~t`rlm{BeP}s+dP@m?fy&|C%S? znan4bPvs}H;{0QXGJlTF0RKrq6>&7Cgg@X0HGGOk3Mf9>7NCrM-LM1mn|B6JYJG=Uihm=m;n8Tq`Y(m6bH2B3ZHvBpb z39nm+DX&?AStaJ6ZKFfj0{?MN&`2@T`A-q?{9KKko|J&R8sMWo%3R!kW+DPffd0Ih zhWl_ju)7f(P}_B*=z4h#Oj)3f29G4-o@RYkts82vj21VnZY&#Xxw#m-S6hMJs4&ML zVgm@}xfNyBdt*qZOpZdCC#^If4Q{XbL z`6CoNwqQCZ=8FNgZ>9m)gY?0l=VfERQx>DcoV9pN@H1q5?Mp1#egwN{Vu4+=#PQl| zLC723ZiLEAMMgWF(DO0cXi$tR+EB*e9sX~TPfFWR`P>!UQPstG#HTN4Vbl^V%svC# zbs}CS)SWI!M0$BHNI9W6)FW{ISWe8Ztl^Jr{6-w8IVc#9H0Nv9r4W-N#`xQMQwYVL zn*uF$eL?jR3BRK!Q;?!IO>k_|6~4|=2Z3$#al(DNDWO*Ngm|nH$G>HQ@y`oZ6TwZ#U+BipCEh#q@> zYRC>Xu_OP zOzZ6_t3ScfAO57E?zXo}NSkRyw1rH`w5(CB?}7 z<6BVug%@zg%daqR;}|rss{?)HID|HMoJZd@D{zU)+YqbkW%$jl0(}3Sc&t(3F@ANA zBj%O18CNSCMj8svVrm2T@SOS?xQh?NRcIf;Rjwyu3!*pTZ3j2tdi!$G>Q(2tNh|BH zPubtlgj>zrsf_}B;T#%iZM}izo`~i~u)pv{-)`b}>^-n2FQj;aybunBkf zRKr7dw{Sldt7822yJ-KvIoN=~CahrOJ^JnBTvWU+kZQU zOuZX}|7}s{9qHQ0{Zg8bmmgS;>3A7%_qRyU9kQBh(R3CU9Xf%RA5`O6PmaLe*|nm9 zUwSbt{x^0sbQgB^w+)urlf!-W?=M=Qvpcf^65j0`%NEVfFYyBH(_tpmK7Cz-Bm7Fr<4y*u0by zj`$#g)U;hfhfTV|1!NJSreZ2|*HsiE;T3{N&36KQn|}nNcZ)c=^|9c{@ngcq^7iD1AUd_UPKHr5K zrq`ppdWyLpqgpWCxCvN{jS}y~dq@0(?ImRD>ww?5bKdnX(fC)M*emrU?C#^g=q57}R@*<1yQ;AYjqd`O zL{_Vr`SH0;&sDJCfIQ4+LJQu$XM{7Xdk{OC5^ANV{Tv+|kVgxi$fLvR8&UuK8%Utu zTQqgUW2-Sv$fm(0 z!aa&q4YHk-c*d(Nt3OJ*HF@O}^M;*=wtyWWPF_Qcodu0R#E zCMN~cpI^rD3pvUO7e3`Y_%X&21gao+EO#SGvaf!7>qSnLOBGTb{S({QVTm=I@<4X| z)kjy<>tfiY%}7Y!D3{&77=d+iP17cUUXp}fBj!)zM$(4zv-t9m?r-GVh&_lo zmXZ9f$vT8q!y?|~VV3aqnI<4rHuJnA?-EwcvAo?m+xhaM4ZO%5t9VW)75G1fO8Cbg zT_pZwF#HE5C?UV5k$8PqhfwoX$@3pX<5_Yg{E!hx|HbuuB0QZk>wW z{9S?0jn6|3Bl=-Wyhp|wcV&2i z=jBJJ)P6O|-t+)bFu@(m9~0v>OYp75H;k`XUq}8!-ejG^2l!-g8s^=pMe(n@;pDQD z%FcG=yTzmBiss+rPmYJtKT;d5+q8qMKd2`O)8VX}r||9;Zn1w=P!k!*;EvS1i&+e$@edzI`f}GkF*9eeD!I z8r{dwl03nI<9cei?-xH-CYL+*PL4k9oyreuROf4cxA52USk8UdchLiVZQkKn6zvFd z;hnZC((1-uE}<)pPyBpbl)Kl04y;P08PzXEWqqrucEClE_ShTT%7FW#ewiN8RsU43 z=OOS*cRSK?#lTya*70|>Ea*12oPV+^hjUAggHhhS?O!7(<$-d+cmV%o1edHaaK+b(IV*GcEhJ@aYxUka|3zcbDRkwuq`?}yv-PBSwsUZL9!)y#g4 z)#%M~ceGydA`;&khC^bl_C}YTiRgVEFHA5I~_~)?m%fz6|jf(6Er`)3w>M{NvtIHp=~#Z<3p-( ztY}|1sH<#-I7wAfB(onN_$F_!lINuAk>a zc5GbVzjiFf-uus^F8}lRSJ?7zFMRo;hn6N=FL z=LjqUzN2L25pd;XwQ;)dNj!S`B=~yrAKo3ggt)#s3~o+$QNePIZL1P-O3X2)eV#A5 zzN{NfE?9)#2%CxD&=_nT`Ox_56?Ob+l@xifHW|Xws$hZnCZx329(>mOGR;zskpBHS zE}AZhM`%wXT3uh6UEgaNF8wg_h%!eq<{OZ3^*hqe%LV^xb2R)yCCd1H5h}kQh8b>J z=E)QYbW;0x?au8ha^%^rlqaiyp z6O41W!R^>wav^m%QL2u|!%P?A{qq(=Y>O`PlC2`GyJzC#IYUS?{3rQyvj872yJW2W zJPRwk=93c&V~D5tJ3sm?6ImU-1Dn2FX0BB|fJy30pz%a5-WMBB&dv`m*Wf=nZrJSu^_FznpNVDY==|h^Tuh{xK&P>K)GTJ?&@t{j08u zQXAsrwJ?3l zeR%A||GgC@+InmjT}JI_jlltt^3;{o%KV}zaCaqVcvF`PRVopw-U#FD3Wv3FOCi4NS9}0p_!`a|GJCbyNdJGc|bNKtP1z38f94O}Kpt$~{B(z%* zw`G;0{#VaPXhAx@Fs{$|LAD+K{$>TSSN#OddIN9+7os~RN1-a<81u zcuS-o8D6#s&HvHP6mAgW^5-@*{PRelBINGIeM)`wOs7)2a+eT2fX;YhDD z8SmF_fy(zG_`&l6@}W}~y}9c}1V0rrnq2_=@kk>2HxW#q&mkda7bCX?v0$+wl{8#Z zAY=CUi*;~18D3=#PY0ApXPy$7f5j4W;i;@a%NnTjIfYYq$FpYJ8(`&^?MR|G44#cO zW*7F{B3kRO5!YL4FllKt=?xo+FN9|h_s7GDUdj;|7QT!1zFLGout~TsR~kA-eZ;T! zr{eWF#*jF>mmFG|k0tcF@b{V8Y|`mgLX&fG(RMco2x=tl)vvIM?l|_#cZ!lHT_OEv zXOc&YKZD)5vFv2+jj*NqCb`*^gDieGf^)|oQsM1Sc0D-Bu6r-V)}f~mre#Mi%IA=Y z`FXfF=sMeCz>@oTI{cH77TxQbPFBvGjJn3@l3^38*nHdRESFPEY~JX>Sox16LrcK& zUIXMm^HlO86Ua`pI=26V4#?!i;L3(%$XXc*LKuQ=s+utB;~Lh}{|p{?Z8)raRLc7F zII=1>#?bZoDm3h@A+J`Sp(8CDsX3D6kE>PE$e2Qb_uE0kFR!91t8!^vn6cn+T8US+ zkDwRhXHxYubEs1OUcuG7lZKD$2oDp-gtqWFmG!yt;uzy-D>4@vs5u3 zJUp2f%}k*s2_P`L=Fy|e<_OYZ##GZGiaLKCL|yc22tD;+qkipMMhn2%QY?jFj0c zvZwIId{t1Bo5Nn&D#zX_s==Lkd%>)ro~()0!@CZak!Bw!MnzMNSUFt6C2JPIGd>>F zg0%raAmcr{(eX?Mo-SApmeYXj!Yf(LpI6CF*+ML3_Zjc08BW}#^RfL46}Ig{8@{yt zIbIoifIZx%2ez4sOnhc89%iS{rUacKD;IhYx6D0Qx;2Ab?SGD5Y3PymW(A^PZUC3B z+Y?hR4jr74iW)4c&>Kb-OFAM9ukYiquia#3Z!vlw@fCZ!2<*(x^(15UbDaIB1cp0& z0@e$oH72w?*y69dU)wuLQ?V$ zvTu7Ro0T~qPPiLFbNCSw^;-_w=gem(dnbvxsvQthI##3|m5Ok(5DJi@-OzTv>2Hui|g z3g{|IW~3fB;<-{=S;>YsWV&i7`TZgaFFaX9nmgX0@}pD9>=1?wX?nu337g5^do?I_ zegaz8^%BLubH+BK=3uj?HVj)8S<~Ug==ZoW;OV@RJ@X}v4C@;P@3o2{3P#M}0lH8Y%<*9@1>{!mmij^B&2Vm_kfW z3_wkG4BIJJh6|4n9Q;@x3WZ_tO!o`cx%wH~HQBLuBMBaV|1FmDyuyBSQ)6NKAYO6i zI-H*DL7ZO(QDe_?8n8Bvt4y}1#m?IWrf?Qj`K3r7$okQQovOk_|HIripQ&`dPCK75 zW&+h}n>A`C*-MX6Jwo{o8 z`tKcg?86p5U1}OVJxNK}>8C|au6WTE27^?)DU??1pUZod2U5xT4RjylikEO5ggw;F z$WS*T@$oX;WOqYdi5qEqBfuzT85tw72JLV0gblB3$=zI2V%`_Zj`;ABD7R09by6=O z)!vF2Xs6@liauv9b|+Dl*D&dv6^% zDe)Es?%hvH2Nn>?@nul$w}sucat|JCn}a)l+{Pv@_pnt@GWNNn4Lk0RWWCeoVXfy9 z5M|=RuFtwj_NE@iV{0;D{iaOvah^6Fk$HtIE?LU_J@Nq_e`>_P-cE41++k9Ep$m=y$FR90W zeN)*r$}HG~MKbLt;<4X-j*U1{MwV_NWM54PURW4PDikH~y5V|6s!N@?KAH>?mz~MK z%2YJ#^aYe}_7Yv5jq%Lfsn}^@4j$BeN#^vIA)`hAaM2%2)~C*i*d2R^i>~CrB&AZZ zCvqDry}|4ar7$L}%8WD`mP0`40JylykwT@7uzyztQJo>+h+9^0W@-}{%cqlE&nPzT zr8rowG6T*3JYh-S0g`Y-0(QKmteojVIF`K}$_}WC7Dp#T?67R6Ax0k-F1x|L@fpkh zUZg`tm<8iSA3u;iI=0w0@-XoT&LHYPu7KC_{bbhK;aD!r9LpVv#P7xzV$0jtaRokx z=lomFX0NOk>%viB?Ij`7UEfNUh3OSZXNo{_9t&Ru+SuoHhQdcuRjjK$ zWpUS(&A5!W#Pdro;JMfTk;Z35DCEj$csF+kYxQX_x#Xb+rQI3u@bLi{pJ;_WjztnW z*v?d6`U5hF2r@1?hOvE z*bV(%2jNdJ!e3^|uz9a}_@Nq)-M-9YHC6;cm(@FF`AQjRIN3y2JdGoXwoc>_k!#DA^3@^5iwkl2bFUy;ClUQvMyP`MPm`x*trYG>Bit}F|hM>bvia(b%0p5JVleQ z9mdKcWp=yOZlbF=4hD3eLgI6QWO{1?h)Hr$nl8%x<4iiHe}bH>EC|)jAVFy(Kr;ZCn96`CIK3>CwVEr#nt!q;9!mnTW?Bk)zu_rv{V$aa)EbcU2K7)TX~62@ z<9O?WRxwMX241QfaChr9eCopi>|ZgSl}i7FGK$XO#yU*j8+dH)vQ9@Zn_Jy zrdR2&ZjTa8qZO2qkQPi{=F+6lbG+HqY+8BZ71eH@f(^aTl57`bQ(BAO-w zP3@1kJnb*kEqR6G9!QZhGVb_jrw;5Htx4id_w(2_VkR!u%fe+n<>bVeMpPkRi|>7#%05|_ zPGqcXpf0)r2J;n2cl8jnGg20=+#<%2a#8qlbvhn8(2EMTtiV6s$)FfrD?HrxAv4dn zmkF>b!1k*%5K0Py^gxO$J+c_jG4o*9gJ0;ygKbR5E-ljkqz3)ll+S!hUJo9U7txj1 z#m0B;FGJ;O{!lbO0_Xi3z($I_Xi&ZtYwTu_v9>qf8>^1POMH>8;%SJJRbWQdgdzX$ z+RXf6Rm^zX5N7GdO~_s6JYMM`i&``PGST^3VD|hIj@y}pEUoOYXAE6}FFlAiddXqC zRtlGXWTD@s)%e{?XKXT23op$aPeh9{m>=UxP@>H%M&2SGS;Q!!$;T|w?5)AD_m~yh zwDLC7`^$)I3fKYVr&vr}y73qv1IVA-#08YQ^W$}mMH8%=IIk*QYX0s4x6sUrW9;qu z4VM~u>3y!EAfs{)erIw&J(@TtcPaYeunk`xa6~jR;y3?9$C>YVbz0=M;V@s9%JZi# ztl@^os`8Q-kBX#+4vWrAQQ_TRjHRuA=WGo{QP8fUbkrp z7hQ>X-S|@eMEGd*YT_dBZdhRKq4N|kv=76xZ_mev7u8~|>C))Md|!MzPzLoNW%OQ6 z0otwOkiF+gSo+WoFPW~3CMP99g|iiQ7ez7STAj%J*;8=y*$>QAry|gb<+1(D%f{En ze@E@wS3pC(5NkbFhC%-^_>RkP$l1RNDTL+XABI-AZgn?WVKk9E{?%>l6nz=6O>-!XL5Iu(;^_(vnNy@L83e5wM-uR>a{~Yen#} zuN!``mRRLf1qquJj$9TuLs3$}5ppnq`*$t%f6IO;TdoO}VzJU9%;X$+w`%eLWn8tKH`G!so3OvY>c zK9ZISO|tvR23)sL84i^11*y7u_zY?$5zlm(p~Y%sPG~rcR5$`g+f>LIRuNoYc#_R; z!cpLl7MyhF1~ln%B;9Np`)m1A@}^S_#vSy9E5CM;oKyKYRQWBL{nZb;Rx5+_&l7Bz zMhr}>k7Uqyv6kEz#L637At&@|!F8-3zOyNt+>xk41&IqtO@k##l1l=Kaml1?^eF67 zeiFr{EyoJ`4`Rs(KU}#o5?4-BWAlA$QN2$&R@;!nYSyQaE&O+Em9P%%4TIplTN^*^ z&jxC@dKhP7^MSX#`;Q*7=;Nc#*zgncb!qRgY^qeblq-Grf?wNV!q1#|i~qS;PDoql zLwg4iKQf?@hCFbizsLwa`_y9UssETCx)RUpF5s!!?AP2PjU3K0uY$j^>NCB)`yyZQ z$AL!K*z>&e06*{0O0INMDZO)1Mff~u&y|-H)1)XrPPy5Me}BlHTTqe0P2gU0Cm!YS z6(J|7S7Zr4zDI}7R8OL|d*$hWQ3`zGL-7?qy_t0F?-C>z5=ruvrJ1Ki7h&_mHoW%E z82FbR17cSlf4DR!!%gXFmVFkHE*Lq7~ZjCqQf{zm!y(}d4AP;X2P-hhlFu8Fs z0j~}p#BW??fk|XE8iA86BH9h>V>^WH*myF+D_+dP) zFAH5aOe9;Kzr&QR=#isO}B$MYGEiOPQ1a$UNlE_X%);V zt!%W>U?D2gX+qv$)T z_e0cnAN*5cFEPvl$c)U#^#)FCbMb4;9adt}T-M;xrwmx?v!1NFDL_>5dsN(NO`PAq zL{Hs6fKks^_?|ft_N~tXLzPL$=|nzKBVMR!&nWy!?G9>;lE<$yipcCVj20gj=jS}f zo*1J}d|d|d+I8!IYXZygg!ng9f^Uu^^)pO>$x|D2Q#rIc9@NXA&@psKE zINvGCoa6Jq+@Fj0=%S$2eD{+YK6KJUuA%BU|G-I~yT6^%Ylmv-F4taBn_W6}kGw9T zcEkA8GtWe0YesMx9&@?Y|Kxak>Pa_TcI3U@{o(JYO`sc-iuuSZP28H;3V!~>c3xp+ zAabZ5Lq>IMGd?8N8`sqDqqFQ`JPcQ1m)YC!k1-perzr_Z?9ss2B4e@lnT2q%@erBk z_5v1`SD^U|H{f`@4qD$EW50DatTJUZCVuklONV24)v>?E8Wr~uZ+Vs6_^CmD zs?UO_6)%x)2s#KFl$=#|&4NLs~i#sMhl-l8|yk^EYG3e0CN2f5+?syNas=Be*b*^B?!+{d@R*WqW1**N^ubCNo4B)aFGNc=m1Xw<~P zK>aQ@X*cN~h@ z1&f@)Z=Ja3^}3oZt}lgnc`u~D)D0BpyRuHtUXj~3Ka$TYrof7+&&bLnia2Ib4l&qn zM@-iyf!VFyEP3vVwX|yRtC~h!pqzu>Wgo?tyw}0aYg(*A=Q-^EdlYzTtYtrSJ|&Gm z#Vqv8Ye_)VL{zRAsour4LGJR=+V{*WLx zDoteAwFgA>?KL~p?#Al(K87;2bmHmwiHuy_jb&3mvC{t#`IRnyPdzh4ZT;e7i-!%- z4bKV0agmhh%vJ{$R<;xL+ZpD}wqg}r7vhJ@)Y$QRZ<8l7`lLCfmE}&n$KGZK@cVgN zVSA_8KYMNirs@{3=|K*w-gFNCRGJP^*7BkmbzW@38ht3)q(Ce}I>@m*59#r<5<*C{ zG`~Bko-QqUC{!KIq`D(KY3-tm^sMC?;lRI#+~Pk6=!y}>6xGC2f3JhW>%56VpXUIt zabca%k)kS8eR1X=uF(<_EE=e4&3c-8sg1@+Me+wm$MS9ZCDbO-LpZ49NaNSc6C%6` zbuqd?eeJurw|Xf;_1e?IN_7eT!QDgwO`XUmXX(>ZGw1U;JqG*>=R3ShXdbPva}cT{ zg6Y}!r|F}YQv_|(r*!$b41Vs?TeNC}sW7+TJU%Uh*@`6yJr27@c324Hs^U}7bGc6B z^5VdE*eQ~`AR8%XbprS748cWdo6p`PZBMiu0%dm?L}aA9!BrD!XER&tX8->%QJi6VwV;>Ur)^2mA8^{mT4sX`w+Y; zzsG*ubOCGJeSvpA(Sw6;)!-=liCcq{LHnr_JA6wU<~VzB*Eq)7$Q!aM5BjlP*K=5~ zU5*_SEQgOcj3qJFB4+6kcd_>pjdxV1;FT|TLs*zBmJAyUJ%6TSX^Zd3PiG^HzV!t! ztXfL&_Z+z0H4;aE4~5n$1u=jB8l~!uBK;L3q5PW)7P5~Lodd?O`(r+1WtD(i_00&< z?hzMh9YFP;9#;N-3W^sxpp(9ioM3=ho%&M7W)SuJnue%Dqy(SJhz2&heI|AJ| zszzEG1K?I=ff|*}ar5G6vM1pV#8(VrbImMhy+0Dn@HI^GQ;Aa7F=pYpb8wUvL1MWj zWUudm_fJ-0!?a^?Y-=t)E7Hevn9C5fEdo*+Q^@w)lgXO4ChVki0i>GpVgI+y_~&v{ z;;pDginQ}`;h zi-ga31MDu|N%lRE!%|v#c+WNl+Z)}$VJ5%O%i4alc5E~$t$K&PKVN}29NNk1Iogof z>6y@xu1WBy$MD|wAHU>x04<%&a@eMUcj#=T1qJo|%Zf3)S)M1I`1uqyuBzqM#g_1? z)8hE{&jozckc=>U@p?M{Z7*m0;Tk=l=}8MOi}iFxG|hXhL|5iS^IyM=p=~`sxp{I? z+=0P3ewz^z)RrXk4d3i&b>$eoFGHT1qIT}XoPD%hWFb71w&8xAwG__fXL6+OFkkZd zFlTnBh@0@}1Q-1)oPV^Tgq{hm;(LA8)69}2DtlC&ejT}q51(sE=XVBC$KT(O;aDy5 zdX@|mGhqvyIaG!vuKDAhE(e&tLk$-W%E9oARoK~20-M!t0U7rm9N@H^$aaUoxL6fz zep3%r7LS0s?-KaAsyZ>mKk*dt^K_h3H8DNKLj2(z#^?S)EHM;FRuBAxk3VLE%_14 zOo0{tIrlV4JT{a0z55)5kC_iY4fewPIWypG_Eo$yf+Zr%;^c^>c+cPaSbNzZ9D3SE zY?MREgsh|ZkHbia60-pJ6+^Hz2`A&kGj3nc0CutQVYj;u;jpWpjg^PO@$ReR*;3PO z#5OKL?6D}|l;0jC;4EOZxHq8nxF0M=j|8H14t{^tMJlUC;|kgBXvj$hre9WvNgPKM;koT6+}d+j`JvI?oT+Fj z-P7Dp7w_#5y*>Pd1}^^~`gM=zU)M--%N6yx*)@l_F|+@24~86=*o~ zNe{sD;=^&<&OI>cR{=4o{0rBnj>KOSu3)4R1u+vv*k{CA5<1QqtCg?81K#6V>B>X+ z8Y9UhcT5s9D3^&w)p)YVdOxhTeuKs#Y4V@kWz=G|368t01236cJb7yx^nJd^gwI`p z_MMSNZKrC{t?#Ai=+P-(6z^VcU8_T6One9CSf>nEB}(8^l; z{sjgXlgOqCn6*(Xf<@_6^k>U7GSc}gJg+DfjVTKyI%fyb{pN4bc)(J`r`=^WmTqO? z$CEq3ZRDIWWq&uTkj&~8q82R~EMJ$vW_8Q6CheN+;|cMs z$BKQV;qPnxwGvU^ySbuh@e!YsCHIL>`&HIzwkEmt(@(Uo zS%O7-;z*?UIUerULE<|zszKB*S{kHeo^4KNQG@(Rg7!iy&{2~ zCB#H-B(d@;V*l2@z`5KIeyOJf%&*f2>_ zU9QAVkd$GcMvM~aUaepi6owOa>JjpMr!G6W$rqBpNQqKD9wl-`^`N13K%|(OO(I>g z(AwT$qHDBLG_>h7JDoO?J8k>m=I#L2&-ybSKW-)KG);$n6j4Ar>c6l_%ND?BKMm+z znGL5C`k?k$0DM*33jR-Cu??rcV-vjs2z~7#@^ma=)AYWA!`^ff_@RNATKuC%GERae zvzY&vE-zfTC1rAKpotb7j-vW;f}qc&36{s=cw@I$^qWaE&Ha3yp4|UgFfa%g9xq~P z_~tT!SS=M+&i%z-TIDOm_Wq&r^NOgyx2X^UU--c2bNrWQE%cJ{E8)h(v$R7lMELtD zl>XWImF}3dmOq_ZCpa$|ZURdJdHUk5AeynCSBs3Gy)GHNWWp7GN6Q~R@LvthmOn1s z*Sbn4uAU_PQ;86+`|1b>v$bgVaUH?aB~Vy9suKr~4`emmmm%&(6Nx%9i?lxY2S@bJ zk}uX}u;yMV*_M%nUtFqz#uefY;E{Y%y1R=tcC}%z)uutGkuUkL^CT(1#e@8$$83Y` z6RJ;S=?$-_+g6|Y-94uWfvV2Y9q*tqThmk}}S*36SQxb+~cf|u<5B{uBf_I;54 z)s*P;ULo}IFlMTY7QUr=!)U+DeYCx63@WzDU^ceN>PV|D#_05} zDyHt`Bdi!W9IqQY91qOm7=G#qJURG?@s%-Wkw-!d(q1Zq9>?6mar-V9=ctz(=hsRx zh8M3gO;rlajjr8{#zYOwm3kSc1TJ9eLVa<6lp0RlY|6OX4lu_@O5jZ!LYUs&2k?<7 zP2*_svPpa23uuv~B}$Wx#Oo#;V{SyM;FjnBO?Mj--IQg9@GzJel!c~$dc-spu7-!3&5`~7g~oFdERZX+1FUvui+SEb#O-rt zjFrS0dVIa{kwsd#L+1zDxj7U?JR1cL*2>Iqs>s+Gonlt0PD0;WBN&4nH<-c|*?8{s zcH=i+E->>)Z35dF1-L>zn-P;+$ieLv>isOmx%?7)sqP2a`fGaJkE~8^Qico{r+r;y zVfIs0u%wfVa9hU)Ug#42ao8+M9qbbwXprW$UOI9qx3xs)rpxlK>z8rpXbXEoBa-`9 z{6lo=-y>0M&^Yctw>mcCzprfnT3OC`)gP|M`G|=Bn!)Lt?-iNkPT?Y!IIt3dS)B4R zG5;vBmd!Ph=GWx!W*whx5z($8_WG}JqFd8JG}iT}C{!Yu>#D04jjNu)#mJuF>gAO= zy((Tb)b>TxSdq2#KDptOm6!;YhYdT;jP+yfn0wPZ@E0*#Y`4XpNkiet`BE+NpHYSS z!p=c#!%QaL*$2K4-NX{NBJhG)8PKv^9zQo%g@0;J=v=!s79Y!i-c2i=DHSU zB}~N^#BA=pf-CsL^>++=JA!WB|74ne&xynCi`a!&YGr4z~e0Jq&uO^ zaSGPBwFyw|T@+`P1F`D{aBle{Y-CXfTg`%ElAIZ)T=0I}4-IW8g=Z23(8QB3r{L z4%`q7TeR<@($gterdN-s29JW&kR4<<>VTTEHXNvW1O}GP0=7E@-JPCA8pQiHPG+vb z;YqK^0?#P;pr6WQ&B=f@*NVx_TgGI-j)50N6LG@Ci*Rht2z>SGTX-)s3j)QR=N~EG zNyv5=T>5GlPU$&^qfUOtcOy8QiX^Z_ngwZIBZs4;#$mlRcgZTR&BVz11oqo$4%GD{ zWcxPoY8Gw0oabb2mdq7?c0@V-DeUCqr3rs2@EX6RXaQYdxSK2O*u&TNrSKUc8~81i zLDa;09Np>mj!ROHp&kcc^3zyzZc&XMO}qMrpENasFWOhhuWPu?UHDnWO+1muTlnsv z+5_hN0v#(lw{|L@)^(iss9MT>tJyXK!2&iB5S~&sd$cHyMwP6vYzvW#7P2lmc1iA!NI(4_Nx{CMWCF zasTr;I4K=U0?=CWu;2u{Do2Se{B8xec1n>Bo5dtf+)+9coys1Wx(y=6sDs154z?$u z16F_~l4uBkEoMpV*2U^<-J0{{^b%9Vq~JM%1#pwE|fdlM2t%R*5v<&L+ddC!@*E8YJ9!qUe=!IJ1;wocU z-KRq`ykT{?0jh-RxNh~OQuDF$#4ty{=7b1 z*gb-MbfK0QR*xa7)hF2!(N}y>;W=I|2XJ3{E`+4XLY-AC1m_=QkMBHz&)&!br!61Y zs0%Y#*QJNSa)uY#G**>$@5zOogYVfjITz5{Yb^Ws!3h#8{(MiyIS->3Uq-Gs0^vh?WfMm{;_3Uv=0VPeqK zM&}0X7k1cZ(En7&3-97{d6Ql3f|`_tiP5cn{OH^w6K*PAnmD_ur86 zJzHSUIVn-&=f|KmQQW~bPZd?}SWYS*9!J~sTA;*VPxR^cA(j<0qh7n>!2X*9J3-?I zez}ZgpSgb~!wa0q$BWf$R{bdGDtUs}hgm^bO9J43W5L)j8;)jGvt{>B;_lP6pi!eO zY9wy#YnKO*d)JfX{1_rd`^-`B!@IEdnIvQ5z7r-|U&a5bm*QRPhryIDGjaU0B#>S- ziZS?g0M9M#$6XUb!FWUzfg9gp>!m&v@iZ7`FE)VRCqvP=^a%2UHNvg074fKyv*d<| z;`;vajBegD6q_xOu}#@Zb}K=cVlm;cL% zDkh^7!5l)ONc3Z*Eq*{`NokT7Qva=hvC&MTPL9EXTM?+;B^k?lkfxINb`js`I5xw{8MsW!Cjo0RN&r2 zpRtLpG>7iK8 z)s0L@Rzm$AQY3e5J^Y>W6EFIgPnHE)p{m`(5&J>{E1f=t4DZguYO%Ah;fDi6YrGPg zJ;M;25B^79nJpl?l7r}H!Czd}Ek&{mDtYA_gZ#rMk40sVF7g9~m+71Bq5OY?ru^xL zx%{*kZ~8oOizsWXH*ae8gqx?I#_tMBph5nl>3`d+x$^0&X-a|weV8_pQ@b~kx|}`3 z2S334>Ah|ILSBMv?YHA@XIk+W?=GfZewMt$ym9pUg;D(K^eSFkty*-gcP;geNTUCv z=*+`ndfPaz(7vEWiZ-b^&wW2<&N-7UB3opsP$5fMBZO4+v$d;KN|uTWEm{?oJxdXh zQg%uuWQjx~lJ~s-&NbKkG1ttw?&p5K-_IxW;dSY_;i1Az-vd&&jUC*xFoE0mB3Jr7 zG>4mTXB)r6Yl7fb>B!d(ILV)M7%CV$-{I#gX>+z4Pw~n82;uI+Ys9U73N6pJXZEaa z#^^zJ;N$MsFxx#B6P0t}ulf&M)11U8W)H&eE|I9X^8vn`{)Q&cbD)b;y+D#>fCKxd z;Jt!Nn-7B}eJ6%(od>dAC-jVIh^7f|ET z+9b*5Esi>vh^zM8hw^FVbh6VlqC9jAu^sn=90)o|J|7zdwq|KC;@?i%GbNMcL@tE_ z+v}8B!qSgtUXpG-QDQlN0zI%@AV+%^W76UP$RdImHYHsSatLtOufBNIY~;G6~fAsGEK0XYL{ ze>_Ac&$}n78M=@Bbu2=c&4bYN=sdit(nFFReDRi^9kXQ3BRE)b48l6=2%7byZ@HCB zbiYV)!R|WaD3`#@wya`yo%~MDSJ^w}+gmUXE3X$&A6CRuWY>7}t$qP;1dhikFV! z^~FEP6)}h0sVl{gUnFGen#J_7Z6$P1=q0_q8MKd$IehmDlGvNxfUK9xsloZfxIca> zemlm2zCjaC)2n9Q9dg5^5hi&5YAoFI+(wVs$&vTVHj>GSk>r?01ew<0O=_dw65nTv z)a%u3qW&P5B%k%74i;tT_c?_uJ#hkl&6|m1UMuhig7@$-KEBdsLnD4g$uc1-PM2?d zf0}E(Z^KI>>-h2awWOnbKXJLwu45QGUnQ5uAR-K%p|%oA1^;DBW#x zlJED+h0n+;;zp}X@?V!7;yOy^@fz8BQk%1i zLh*c=aPZs=>E_2HgvQy!rF~1TaE-GQrIr`Gq$8gX<>XHe;&aMMd5;hMdFjRh{L++M z{@V-_zHGy9Y1bm2@7z|$4+z^%RJ!h9vGRFIVWuN~-dh7UbB@4MHDhcR`oQseOMJRJ zh3P1g120n>3>()CksUlOvkt)xYMEqinLjo-4MK~H>g1405M8f8VC>iX#A|FKyQ*#L+6qK|LD2*{R~CU`84=?7bT&A3-NsK?&sZ;?hAIR5~MxefHw z+ES*ycs#8e9D!L{JMgDW>~eQlVuG(9EwOw<#@-!`US5|`OW&Cu{t?Cw|Miy6-r53t zmV}^(#!R|#S26Ulux9sUA|4&Ag7GDnS<7$s_`c*bGi!A%tb90^4RyIk+jhlKo0A`* zdC)_;XrLC%2wF)WUbdi#e;m-L`w3N3dPo`#mB6&e5VoEg10G2$p`}F|o%d<8^M@%w zjkre^qMcd6Hj)08tA`z@ZlcrWEi~waJTC2ZWBV0pl6l1`^x=gbT)9+A+x0`}jC+Ui zoZ~>Y+hZIQl!oCSKw9&smR7jjVci!kVB7ac;nHij(f#Xds;_T=W{1Ps|601R)iV({ zT1}D0=A6UY$Ofj#)&{?qb+J`0Q`q9XBsx%818tS(u<8L~?(knb-M;xQZ4)zCf8TO! z>$=sj{=N^aPQMSQrq;rxwMtl(F&r09OJ)_`{v<>EO)z%rV5y>&1?xL92uTZ1(>rYG zw#CuH?34Xu4bg$zhRYj-tE-b_i^oR@-EP--k@9K(3ewW_ix{QzP9IDJ9xTb;0Hq9Ko6^8A*k3WCF_ zXxZpK6NPg3Ujim~@~c8pg}0`!xhzi`*~KHNvKb0zIr#;lvVg`yu5ZsbKIZph4xUtT zLq3M^)nTTBed|0~zUmA?Yg3tE+ioQLvZ_$9DvsnkW*-;Q5%$@D8S!Q%7B*;KEA?C1&E^h(G8aVA%0 z6_l-Ei`yZp^m-$Gv?>!T&JSik1zNy|Xj6Fo%uD1dXMsojLHJZnahG&D>(M*}&J~Zt zJ?hEq^1A1A|KH*GUitxtsqCPiwl|Z!p)EMAZZxC6Yy$3e`UU;}%m?3$5vUxX3N;yK z=;-vF98gz-$)+K2xE~!q2L+$;kf74O)9JXKV+^PX>NmwEHb)-8hO&4l8tRH0lulyC+6d53 zSWgG3KgkK*W&o6xCs7~ayjjtbvrL-nY1v76%z{#uJ+_n~~8d*2szd_%>KjvDQf z6vIR)#tQ#9OdQui&MY`agS?7ynM(<{G#asw+lOKI_=${bjTBqHo};wPgnIT{j7IV% zAPv)_ziuA^on4pF@#|FFH%}eCs*CAE{W6l_x(ie?C&Iw}+u=;FDi~DufquWX(4~t? z$%;HxP>Z)=x7bT)u$>j^XxCz+?_;dm{+h4PpCI)58F1?@v-z#jcZI(~F26_RFZbhz zMELzBNqDNZgxfo94_~;{g|8kPz#r;=Ux>CECTuu-maA7jCdd`d5|U@7aAQR7+uoP& z`0NEccn8@JzWe$?F4fzOo9N-kCp`Ef{Jm$(Z@oTRXz|tHW4rJ3f7_08dNm#bjkC7t$a=M zAl~HVKp|$evyeaR6^U6hoO;`iVH&^f!Xi_74Dvb*5gyKX^%o0vNsBO`R0C2i8Hi5~ z#leR((XwYTogJT!*L4x9W{07D;ZU@xKS2f`J4k0QJX$|E7^MJPTrGs5LFYe4v(Ow%@8l}t6`^_D|Sc5;yU>>a&*xG+PUA6QA`QI zQO#xWt)LLPo95uUhFI7yaua8H&mn_e#(|pk5-hAfjJH-ipk*;L>3995(7EG2-16Ch z>q`cJa6OMMPjZF#{U$(Y+%R@wU;#{39>C147z!r8uTs8ZG(Gb33O;l!5CSD-E0@PKR$VgHm7udoNrK zB?g4i-VzTU-Lu$9lhf$0l3bC|E5I>BFIr@EkL*Hs>bcH<{v`il!P!EpIHMnwbX_M? z+M)pY&9GKv3>|zu8J2i7P$kp3q+;S>=wJ39d)jpmJ=^{sDyMBjhl(Ohc7DWXhb<8{ ze0?W9-yF#wcRD2u_Pop&C7bj9a{Yy`J9Y_uK2GN3PL}W%4Ho>qk4N|e zsf}B+@rdy3fT3Vub(c$i;4Zw*JH@BC1@lgcLk0ETa4y1cDW|s0oqv7&j<9IS0e-EW zxv=Jxj88Kt=buu-+3gAxKB>vcf<9Yw^MuR7iF?zyRe9$8Hzi;0Wx#yS*7Q8*zIqLx zHZ)F{|2>Ycx^E!dofjsY_W8=IhkfE$)pq`~$oQG>ok?c;1yPqnwv6G^cvPn^L3=|j zXvS>Dk|)`qy1Ez}N>`COJ{Kl0k3`eZ6ByO>hPF94(9hc=VAaVEz|SeTa={qbV{wG?+?UgHBjAok{_K97UM zrlB}Ey%yKTy=TlE?jspIQ<5(I4BB=-$*E#T;9a*v&Z;3$c61C@3=d@1&~{>&IuZKs zQ^jE4DKtWofhYH$BYiIlP`6nNrtd`3)!18UD9dEhiMc;I-dw_&9uRqP@@ zSbhNB2lT-Qu6^)jp)WjfzK7;>Lm8huBUsRp1GUl}c=b&jT|Qo&_Gz99?^~iFQ-pfN zeOH6I6%*<7Yh%FA*ajx#|D%1y@5?+lL~^0g0xUAG(fO5wX!CwubaziCms@Kw|Ib`z z<>6B3>*4%6As1kD)XJVuX~h)qVEwRWGsl=dgT=V{MK`B$A**Kt1r9x z^we(Y4{;yY^rew|KT#^Y8m7tD?b^c!x(9Ox7j^kmFPT)o?J@uQ2?(5YpER@nBcFFM zMA~Axp8NNGqI9R_M{&QT%0<0D$JICW5fU|jNr>7*gA zloUI^NB!~DOv-dK7`oD*azlbqw(1gzEq8A@*mU0M}jEe)Js%JzgTVF&s>#Ghm1*kJbsIRDsu zc3+hN8+v~q?f51q9g}N=i*C-vyXL!akIO}zJ#0Nr%zuopO1s$2+M1~TP@Xmy+DUI+ zNMLJ@4HNUicd5O)1v{qv2OfVgMf%@W1!&^;vI|VL*l=ehw!3dGTX1_lU6EJH7VE`g z5?xOJ{aeTWG}y;#Y9&cOd?C_RTcc=0Vh=U=oyqF$(WIx2FOeqS9>&H7uB8)Q2Xilr zl-Pu~3h@2Rbvk>(Q)!A1N;k$^vy5Rq-tz7z-LfSeSH|68CubdJJ6g5b)tg62-twKc`Wt$0yvY@d+J*yrtLj=c1{cF4w zsP#!EsZZg@RIZV|8x&w!5#}n>`utw_J+EBW?Qdwgaj~AD<-A08=2M3-&tas@a#)z9 z%(PSHsc~GW72%bWxmU7nI}QjRBt5c(qoN~p$1s`y^g`LS_Km_Ou{Y=xj-o?5*z)`V znQU{}XIZW5YoXwqpKPqZqR?(bEr;vTTKmGU?d?mgN@`Wjb*M!kqOdWd2K}cJ~r2XLt zcE*4Mls&(R7CM@+)4mR;nV}Mvjh}&9V-4sd9bI;|*sVQi;ws(qJ%_z^P>ya2Jx)7< zMzAX5EAiPQkfMW(7EgSI`wJ_jk%^^rso4-{=qIDM7X(P-hPH@R7$^49mFuXuC7ylP z;Dk!&Tv_!N%1&r2p`Irdq$mF_$IRC8xKQ%|el`7xO{U)Xso*7+>{pZ?`Kp56J%j1} z1M8%9d-GZU(c@^k>v`(YsmNa4JR0OPw5dyN9TSvkK)X)#qwgY~La6o_>hww6aYp4~ zoaR&J$;dA737bPZibrF5%md0+i2K?4vk-onp*vT);KoswWaVxdTXjJb(+>27h3=1O zefVPRUp|<8jWNX2i{j~^8co`rzmRIV{)W4EwW$35G@^T#QhoE|D0h@aom+P7WHJv@ zZtVq=&P?c5I}RHx3}D5}I(VfvofdC$1)0xG7&&e!{ph-x>YZ1H?^ds%#j%*KIc^WH z4y4ej|K!Q42^*+caDRIDvmY)z*g_>rS7BR{Dy`#~eX(0`hBI)_YPdMpwEymx?XMO9d;h)qQtixua?_XyeIJXpZU!Mc1(QUf@ z*FLx~#2++9^)_j2bH4+@KI zqlDEDO@)zNoM0zEoFDm4;JXKS3qRu%g7IMXmq^+*2~+{F$Y`8y0xpQNox(>IClWs3KLo9c}L+^RvaWZ|An^q z@>o2;5uTF25dB{?rFDT|J1Q1dDW_A@enm87E&=^@`j~1`NH45b40%?#Y=OeYLPomv9=z2%Lt~~gwDgPuy=Wc@+RMAKaDqRH zI^K^CaY#bXzPgx}Q%yT^HQ-d=8nV&S2A0K%{`~RDOUDkc*v)8|QZ;hG4 z>Awt@Wv(i;UF#>?B45H^ERE;eSRG-|%Kd^O8_KDs*YSS+&hXh=Gx;H#>V+9ow+PP# zOMXh{dEr8xAe7v>&-G8*EVz6HVeRxPe$TgI!Z*)9T(8(q3+M=nKB^ zbc#Tt&+|8~Xb5xf>=e!xnG3^8ba?COn!?DC06`)2GwEpCOb@1PW`;ffig$jj!|ugx zuu{^O${KINp0DB@wN9Co)Kx%Xq8h#3k%%8}{1DZZ3#cx=2*-AKR z&+^R>xo{RJpKxX;EM0`{u4PR5%1*d3Ns-MzyqZo;)uIuahu~w5ChZs*K~z=|8mw~* z!_F>6u2G3Sj@A%V@SOBd-T(nv$KdS;Eoht=2{9c9Xu{8LguICa^M63zwimD>2vGE`!q;{ojxs!9FB5Hk77F(`YcNS67U!yU;q^5m=y@z+WO zmx;$ozG4I_%=d)1AuQRv_yKtOR+5aj$&6}e0lExsCAD+EF>xMi(f0FAB2$T%d=0T9 zdk1>r&V!9G|Mx}sF(#Bu^*aUsmD!QCX9}R#Z*%quG7!Lo2vsQm%1*ZaZ(yI2^MngqXRr;)hXkvK>7vm|GE zAsm`p1kbd`LDxckeBLvP92fWCc`9i{~ndByLC&!yYenc>r|xX%XmosxlW?BWEQ+zH;lR+b-{(Z=fJPO31r@%e=t7q zG%23=3)IRPP_D9p(F!loao!N(Agd>*R_`Z!RBn@)$3sX^)C3YWWH;9DRw0`e{xAcQf(_2SLx7uIiidz(g_c^yXf1}mhUgKH3zeORh z`}4W<%E${`h{k^Ine-U7PdqT%F}b-Y>O^t5Dp-znE9Se?2&mcU_&tX+ALL zH}+hTxAQgJDSPF4$zV3#`w*AbO89Y1*MvOs#4iK3+Z# z(|Q9y?}Qfhdlmto?}cH_O&wAb{S^M?454ke9Z)CcBVFpJN~dkAg#T;}@uirl^o&j- z>k@y{&i?P9ZtiztD6hb-__qlEO%qw{HgXtoI*nF597`uzDbd?2Y$5pVP26Z$K@z4} z(EFM@asD{OjYa+0^lNtT&ZmKVP{@YBQ7JG!Y7i{+nG7?sX3)r=HN@eF6TH|KE;=yh z&=N%op99-LcOgUDLRLb>FOm5Zc9#KXbGl??5xTi)VvEQOUE_ZS#y)Jr0nKh?SA-dU zE)1d?7FoDU5cl(!*NZ#$N!b0@7LBJrMwbVF$qzpx_TlEExGf_R`fl=OhxV3YtNv4F zxOFhT%CunbB%Pv{wI85&ksTcUrcZk-TFD2^T{QcC4cZ;a#na(a*ov|XpgDO6te-g% z!|RQ4s?I_1GG7B8Uvud7#J6PH`e4XSF=3OHuTev*`*2=7cYQgjKs}5(VcX16LhmIH z?%!D*K{L2X=&ZiTyIi`%Pw(g}l>YP*zNZ#(rudBS-G7I#{+qyi=e-p4LcN63!>#${ z=E;KD2y@}v%*)(}_dA4Vx>^DRz2*0Nn+vCkWV~FQHh)_8JMZ%-Qn;d;&o5n2C~O>- z!k=z_$#Xj+xwKD@gile5vd|ePxQO^BL33pfH%H!?-x=1A5BL1SIW1M^)5_X-JM%c< zOsvz7rHaLn!(%$|5T9Gml+atP2TrwLy@DCaZ<)VDl` z*~8T7jNWnZ>}n{bmA4t6NDI2rC<)ixP{SAIBreOz@&Tvy=f`>e%3Fd_fkINo0nl?-o%6rJ{1An>-liGIUgRJc`EjFonTX8 z0%+?L(X+9GU~WVf^v!RjUrR&iv&OTKwRaV!{hLk4JSv2qZ$Ih%Q-7G#$v*USm;$X9 z-Gpa!s_1w-BkZTOgf4tw1P?Ba$IM6RbW`atx^?dwHhfJD9cmwpAHH>9@+&vWc^?Ib zH`Z($>d{AQHLx_}2D@ERnM#|D$SU)C%()fL+RkXFQ@{16$H!iRri|mX;O2i~C$WH9 z?w(F#Ppi)Ei?z@LDUIDc5&QX=(<=BD~2bs^VECk z(1%mdYO&Z!i!c~~~BuVJJn!+`HauaU$nIyBTH4_}me({GC{u9hP8U(qO%KX_D zb79iM0m9_6K7#)7k+K(9B5WRignwAmR~DF%AiSD9n!i_4DEvKs`Zjh$L0tp>cesWqSBZ1L)`j%%oD%%-)s#)I zUriOme!t6d{%;g4U3MAf*DIiJuQSZdj)x;` z8MWA?0;AGziMb;+mP|^ZJ(Frde&JjkT5C+T3X(}!zh3NIJc0QzDg{4^4206=RH%2} zg6<2q!biO%Y>2xINnm;+lD^q#Kwmd0((XY+AuOZ`|G8}?>F@7~-Jso=8FK>+ zD>qWZ{1kF-yeHW^;svRF*axcHpA)&k^Wc!Z7$B)wC$@$a!FEEp$G z$Ezx_c5@EWoz`DL`=1<6S*J$Fm=6Qxt*>aM|2&L%ctbpYZDP-Uc1J@?0KH;r*D)9lq?{tRIUguf+y@?q zBB0k}A%rizE$;HuMV-(F=<*)N&QMIGXR7bOcjK|BK0O=b<~H)Z?qdTedC8}MF_?jg!_86kRO#{&1YGs@fFVZh2-Bh!r}C9oM~HtK!}Af zK`)2f83 zZNP<|JSaSl_R%=tbIuH4wCYq_B**SRriQM_dEULiwcGhY>` zDp-A3D71L!2x%{C&Y*s7y*HHQ6k!{kfchIR%)Y^AVm$*TIxj(F1WS3AC*q zVV~y=Ib_%d?ASwC_vS1*D}10O`D3YhM=%&AWP=PKiJ8fTf2X zF#Q(CqEiu(G??9mpO;UN?+NO#xqCc#cV&^Dd;PFj^zQI9n&hokg;B%)!HDNp^x9S* z{3XuT8iirdU7(A;!)(Z~&e!NrvzeseInqC35^aB+L7ofCB{Me&WKh`;tXw4e+Ais% zTyQMeX1Wp6wv{q@7cyXRc`lHom*iUDRD9q(oLTnv1f%#ggc-U-ohk(-pX{$pK*n8ayUgQzl((J?ZIgGd>3sEX~n+x82C2f8eA>NKwtYqjTTTk#qwA8qfn~w6?)4p@@UdOqtn(6#BjYU$&+1sV3 zq7QI+h6cia+Y7j^=K*})d0%eXml6CU)lliT_38Y-;6Z{b7)ZBff8h5{lar37v$%a# zUQ(x&1=98^9qv(ZIJYg}Gv6Ch%sH;2JRe-l?{3lM!)GwurW!fE!Y7{Ba|NQbqY5t{ z36kik4ZxXp_sO_~y`bQC1HN*9$j(2DQ9V0`DO%n^j-K5Bqu1Kt^T!_aRa`R8yzqj| z`A`N1T{Ce{mOmN&U@Sei;1IbIp#rmS7t+qgXJksQx5U#=yvLa3NT1J0#F00Au*do# zaWB1#*Hd0I2bG5+_3nc&&J2f}KX2jigOeBy{fA8cfxhHM)D#k3zKtAkR09=5b-G^h z9g}-Z{H)6xsr{b-oS#`nOvgq*X23A?a+iU8R~DVbr!n8nwCT<-F5(_#B>JrVg!4x9 zz}cB*bR9e(kJa_@$BR!We?prczB7-VIqMV+zfuL?qu1lXi~)4u^FYYcFknmd`eK!F zHP}83XYI@9p;yLD=GULQutnd5J-_87eYM7k)~22VP2EuX9u(n2$5eW9mlBoO&cx3b zI_dYML9mHa1Pjg3cxv!9ZYLuw)Bu`!#F8bXy?s^Ly~JnoAe zMc13(7rTqb>?YsmKSrH#FCpwb8AK-$Y4NB?jktUESI?xjBX3`B9O(!SD zvOjI~#jt}1+8d-{aB2z-ReuT2Cmq?$4R>&tm@x=Cq$K^h?;`#en!_xKTZg@PiS74P zhgCG6PF?ohh7xHfb$z@5YPw6PPTW2^>vjWvYZ}Y;=i=eS$aygO(-$zj_6HKK)x*8b z^`KDY$#&YmA!{|iz{jsm?9yRM?Dw}`ST*SvYA-jUYmA(Q4F$IaFVFRy8*44-FLjoM z+!-%yJ9?RaJS19tT}@V?RK~4<(L%FcDgQyuRB-ljmtELiAtY<~^XcB&vP|`hf+{%j z+{;=)W8QpWs`~(;JMoCHGtP|P{Y;Tx9rTee9Wq^(7p5a<4ZSC<9e$ht+iNQ{lvQw7 z9;wS}0=CI&lk&I?^JmK};u<;Ds+8X|{v|ir`W=^cZY*En`W zzY_JMW}?GVm5yF$PTy}@!+srgo$5^Qf|chdV!pW*%~s0<)AzuRspy9i&sK0&tYYWO zN1^|%GG=ePI==DS%ywiyq$R3Ow0Zp%SZI8RCJ6)K+x3mKHG$AYQ)6*=wGyi}Y$B|% z>m`F9t$_VgPeJ54PZ;R&0Dj)kWVIf@5P4e)cvx7-Qmst7VY)ItxD$)}_YR`bB46ay z2^UBol5WwI_LfXdizP)?V@RhCM5(b>(owLHS$wn)9QM#8w(XT*w=bV) zC`B-)Sr*{9WfQqJd7mWSR)$I)9O)EVBtOocgYAqp(UqSq(NFuuG|spTE+(4b+S&(R z-_|5slOB_Dx5-n-&+IPzh z>86DZQpX#gxQr3DoGG!93gZUx%2vxb*RCtc+oilLTO+06IH&fbFXvkgJlF7zA`oYyo^!X_^8LUFrSMJ!!Xx6JdQflYh z!)AU~lTPp+A$4w1=b{q>xc62crS-Wk+`Pi=oc(59E+xoUnj-v>{wpfy+-#JYXUc&P z;#6vJ`@A{~O3WZjA6k-eqg7#NV-T}{eIt>jHAvRF=Q27cM2^T)FVg+u1N;n7fQBiV z%qVBuEZPc4uwIaJQkPam)y2THQc&`M*=_o0UXUYZ#&56|k+*8n}}JeEzOQ zF5Fjzh&dA&v(_`jEW?w$yS$%x&(XrsxyWz_W-%34wlVT6o5hayO2#+*3iIPDz{^z; zOws-r#{0)funRg2XZ~|%be6tlIFVD;d}lGUc!eeYTh&+6A;?3GnF&em*iGbaJtfcM z=aawt!(jBqQi&{jF6rHMn5;7khxPm7ag?G7&a+n`citzFp+N|Suj-h#qgzqOr<1v^ zZcbupD{fP@AY$j%MShaE@jqiuxH+szhEBh?@#2L zS+Z`m8gWp_!XEyOjwEBiOf2sF6 zH*488>4=3x_@z#Bx#Dv_q#sIZx$6&0+4)2Cq=vo|xec!2d_?3V?#+~M+&2H;(s%!o zII9i*?DbH>-=7!7zt_LbPP269Pa2Mr`Tb;$WZ&VYJ6>aq?G9py@+isg!sRfnNOUnSyi3$XQrS0; zGi33FI&cp+VuH?Ol22O)!kB><07yC7Ee=F8VG}W7o)F0PhL*=Y%;nAHD7n6nDCc;P zjY(_7yY*3Ib(x~1f2bExe$|IwPo0G)msUXMb}6ZwM9|=Sf2O?SIi$?a1JkqLNZs(A zVitEa^IbBN(L8;C5ysXqFP9A>zn9J;2V4KcBk|hIlX(xw-{t-35|QHo{jA8v7$=dn zwHl1CDdOk%@vL6`EaJE30!{CY#z#MusO_R%bnxP<*!t)hZM`L+k8eEoFP%!e#+|2^ zHV%|p4Bx_*haJFE8N+G5$qTxG7jwMFPq1=VTX9pL1hEq~Me5>UMVEQ)AtqCTaG}#L z_L!Ux`%U9I{jhr+E*MSN+ikYUg+HRVYf5R*ZWFpt-H7eCFdzEv5WVa+m*DEX`MBYa z3hF%{E3(&8*{V^Fpz!$&Dl3^uf5qyvR}^*V+KRdWifr(qtF( z1kOLv(&-EEzv;Fx_JuEp^s@%F5r&p*9=G;QFGYY~+sw zoMAVIUDRU7)&(A?iUqdp*<>Buy?!eSTC?$%`yJf<#~TM2Y{fN4^rig^OF&!yF}9hv zNU!Q1X6^OUsnyRvRE-{{)l>S(awcWSIEPWZa=~YzT3gYwY)4<&-9{(jXK0vg?TBhw zH9X*VzwIMy-0315Sx_eoi?XuxD~*!fUob+LxV=SY`s$!e)y7jOP&zKVyQD>!aydn4 zZ=EljpP(ajzSzr~c|-{-Cd{zhr~OeFH_}~pcc_B^Bb7z|Pb0r!)d|^96+6q^&H(;R zUo%UWYsvhBX$OS`XOsEy~R*V648?)6FCRAN%J^h=dOg}}YLsOOpd&Pk#tIsFW zQ?^5>O>44vSCBxh|1QMm19nj}g~6bEI}~S}K1}};dyiYLppxoau=H}`Uh@EFHxOgJ$g;W zA8zE8(Ei%1XsTQ*nukTPpHJR~#2ptwu1F63M(g2+wO8Sc{8-FgOIeq~IGAW8auGHM zvvg&7Bv;rhrTmSHak4JUr?S+Dnf!%IX|nep!uhvrQTVyzKVHN70I%(T zoBx-RB*ZNDkwr!C5LT%-3Q5T>GKo&TkTJB4A7}SMDA+Jww%+wPT&-rY-w(H6-b=qVXoG28GHFU+=uE8=w#>eVUL6vK@;&3|5%nON zZu$X+H0H9^uMVMc;1CQLI#BA_G=gs6!b!DaftY72U_-kM*+(0$($$J{@Z8`Q8k`dZ zmcEtr#=cN$k)lU4bx*L0K3%Xe_zI~09)Q{ob1}c)3$b%C1rIxL(M@}!{0=i*>@RjaFlLW%KQY_X34ay6L*L55XxrTnC;0Yf zQ}RlfG?1q&I@0k|OD?+G#9~0y0K7D40}WaE1Xgw=z=EzO(5y#lv!Aj#4pmh9_80Jf zupPH1kEI!rV%9yTik4XC#Yd)wB7$)zYZtmFy3l~RN)zjfhg zOd7R)@(+yWjH7ZoqiLmU5H5fH4>fHfh{nn5kiw}#=w=5{Suq9P-E)EB_Caj+6CHA= z;~d<&^nwPt3t3iogkF__T;20W{3f-&vfuOdgocOuyst*4 z(0@rE*{|QN+}pfQ{Dhg4d0qb|e$)vU*|OS5!A4}ON7u;9oT7>Z$pjzXad)+FUEvLX zbKFth)5c5qX`{%W>nG)AB#q=B>@e=@q&xg9@1va7(>SiC>kB6u2Kc}u3NqyjkND9ZrGg&!N!aP=DxA2T z!H?i~3O%V?1m|6Ypy>NST5wOoG_Da{eQPE|Xe)30!Z*sJk4_;j75z~s^RsD|!a+E-Ap%OqE@E2;E8@(aVT{N3 zMG$1K#}*9VPL=oqF}wPXNX(3=?VH{3LjDX+c$tqxO#{ofsnYisw8-`5E99Rjg8a7L zMEqaAB6$OKpxP>&BCTai>Mp{?z!B_5!@l&G&Q_f5or7P`tKfvI&&Wpqp>$x|SjI-f z0bAe40$CUcHK|rO;UEh|=WOxe8+p*Vq5}@M>cG2rGQRxeLZ2GF!f;~^Sh09Go<41i ze}>&8Y55#|KCcYAt}@{0c7YoD9f8BmD;VD`3ZQzxhHmHT(Jnj;4Tt|F3Z;**vQ{2W zZg<5ydj@0M%~064RE|D%8%DPF$tNy@9ZAl+V?@D!J8|3bf_Pt6rK7U%Gi~)FV4B!p z`s$yAUwlL#)2?W|TN#4w3$o!~bpkEDTFM+)UxK$ygYeWa(E+V{4>v0ZfU)CSTqAP@ z>g5LEPpr`BLoI-!O+2#F8bTF)sQITD^ji2Cei|%d6$fbH z>V0FFr4N&#;_P4QFFN7ItO-HmS1Rzs#(^GC+yke7cjAgZxj0;^k8W!xQV)eF^7myB zl&u&9v*ktso8KRNhslG{)Z_F==SbqwYz8ML?PZNUkS>UI#($~*ee9;o#scI1o2ne2MRM!#BkSrdG3t0GOwepCi~0>@=v>Y zL5wEzlX`ygTY3+0+af%KHMfmr$CCPRPY)Z*;^YW7;B^T9?8s8?+sP5!8Ob?r&SDk5 z@KBmiWm&-QZ=E3I-j5bG_IB_wg}~o$0U^37`;?~+%_Nwnsu*0 z%p!Z-`fMdw1^VD183VE-4p18M0c`1Z+-4d|O|EIs=TmK9p0y!bop8mRHU-$>zJPjt zdIY+H6FdshX75-&hT3coX8WoMkSumP=CCHT)GrmgljXt6Pl1|EHiD(kV=?E>Vk|Ng zT~GRhX}|Z2NmhC}nW%JxY%=&tUWFx+6`%V-)WwN3CBB(itK|r4W83M%q8FI(`UiYF zbsFn^cH`=PM~GIN6TTc{$wYi*MJ{76>=-f#M)+7`=a&-lEB+lgeSb)P;T$mEFdIib zp93CKRp@8+i(v1SPWpN)V$A?mDE{e8id3y=QfvZ**e@c5?HO3LB^?Ha%wRGn$ie#h z0!)241|2*1iuw-5iC}zKf!XjOoJje=+@}6PMgRRV_hj}<9 zQa~^3R5;9j!G@1UaBIXEto*45vd;z3qjetjs$W99W*~j`&K{@LheN!!EoR8Kz=G~P zF^6-MuG(&ip<_j++^7}wpJIQ!*6hzr@_hs!wnx%Ux|LYbQi;2l7(@BSn|OK8SSU)| zfM4u7A>U8~I~-roqx(Y0BC8%!zTXZm$ZdrY1*$M>z&TPIU583ykKysGdSVh;A@V5u z(6e`pF@dqh3%aZ6%vb05wDkAjK6%$M~FF7!WYlW7PbX6@_+kn<66Xg%AASi{DHnQJ|uD}f7g5; z*L3a}*AaGzH=i6U9P9pHd)FQg)w+jgTxQFiDCF8nm>DzQx5lisW~Q{;T~SfaF1m=2 z$}Lfd6X{5(q>bd#E~)UK+-7|*-iZ-VoT8n+$)biUHa&bFqEu6!yYO17sd*#8!71g5F)G zQ0aauc(6AR_?4xAtl$J#eM1hj(B(i{WEZr(FdxHPGvV_mF9HAUbr`h48uP6yV^%L6 zKTqT0W;JY4!#-Bo$toI~!75sDi+xjt&5GKzh@EPf&a8j>g0<{vIr~&?2Wz4BaqIpO z5xYB|#VT~`WbxbzSiI=*gXgcVS~L1)vqV;L%<@gH)&}0Wtj2}wt)``{VQJ4It<46r z*pQ=O-Sb$$%CqQUzYD8n#>vjGf%6O2#y5?uk`6h}&kv6=)xmNmtw_kyxX55_c=ds~ z?jN=+fmbryvFZeKpm*8LXB=8n`#n0%cO$DG+DO7%J195oW+0wg7HXZf8Mo9V(BErjp}#f1LrDHQ+0?gy(zdff zYXvbxlE{P5+;Vbd-xEtOYm+WT5t4;% zu0)5QJ(UqTpK3m*hX!Lyabd3<%JZv28Ae8={l`Z*XCa0LUl^esCum~VXR2g>=pkwm zgDpe@W-^6txdQXSQ3QTQbt(Wr*LOlQqWndzb$>Ds<};fsnb!iM*zqFcB1P}SX^sEoLL z{GPKq8hkZdlC`P?ZH?3==YQQL-gl=Gz4tUH#x#qFirazcxRsN*sXqthZex%OY3^@{HI?x+DuEKW2AP zr@WG=q^!e~Q?VWDXx~VtHGtH9SZpbuZQbC-^>vHqHs9ODzGU?^W3-qXne=C=!B zoL&qVLc#Fu50>^>f`D%xKqHG8Al9K6>Qx0mceWbr zPm92sFFfIPI=6Gv6g9vI=?k3I>bavVE@&%Uf_18=a{ZlGfVix3?9q~G*y>gHL5{r_ z^zUtg$!`yUKIOC6EtJi{3+Y(-op`uXxEjun=VA61mEfI331jRo>+;^i}D1$7fdjh*k`cua6A;})?(?;7Xx#@rC?oIDkw>90fWVx z!Ln8W+K<;_qgTqgi(7nv+3aARVe|NRq_bV&PK~>8X=X1p{Gd!c*V|9LOIX4eB+-ey zCvS+vpk`dI>N{K^avNa~pGoBHui^WFQGB`oN!$(<;)w@!$w=u-h)K!a&vq~^i{t3Xg2P~RVDAAt-~D!kwn4O&G@t@-T29> zCcaU0DM63mkdmAfe#j4cq?xFaZ@c6O?x=(Kjd7#=g99pf{*U>%3hxGSZ)QH8AoC$Q zOY(?sDL|NS4#lVMvm>&zB8i6L2i)`1Y_MGS<($00Ea=>>1FuBngQ)y-uw>lAWyE9@GrY`VGz$o{Cu)brBmQwsd5!>{q*=YPp;ir$oJ zU#K4XlKu~5|2aL%{}g&SInd>FXgZ&F#*CJ(b8P*B@oK`J4Q; zNJ!R8&OHYl$F&n^1V}Ix?j&!#{2R=SurVAv3n0PB%nWw!BJpFnH`veC`+oiLv!6H1 z`(C38v!Wkz3QG7=QK{01Y8{KdPkN96nz@ZwY{1T)2sl;v8qdGLXSizSwy$3OJw174``+p6<%Mz68>X4KhOmWkKiLvnW=9<+JI0Q) z6Rge74%j*8(RBLHUw__it?xCW|%5Wd1lBjZS^~()rI1cBX>**YC;l zn_I&V-#g`6&3CBctA58+j`M#JZoX~r{@8xsDciMQi%h;Lc|?_tQ(+%*&A;ql!aVeU M11!FElFtGF0H0;$jQ{`u literal 0 HcmV?d00001 From c73674e37cc0dbaa28e1cb0022ec8608cb5e949f Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 10:10:52 +0300 Subject: [PATCH 11/25] chore: add mlruns to gitifnore --- .gitignore | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.gitignore b/.gitignore index 8943095..ecb2aff 100644 --- a/.gitignore +++ b/.gitignore @@ -120,7 +120,7 @@ celerybeat.pid # SageMath parsed files *.sage.py - +mlruns/ # Environments .env .venv From 6e95e4ab50c908947cc3b719d989abd9aab3d656 Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 10:11:15 +0300 Subject: [PATCH 12/25] feat: add max draw down to model column --- backend/models.py | 1 + 1 file changed, 1 insertion(+) diff --git a/backend/models.py b/backend/models.py index 1490c62..38c9446 100644 --- a/backend/models.py +++ b/backend/models.py @@ -47,6 +47,7 @@ class BacktestResult(Base): initial_cash = Column(Float, nullable=False) final_value = Column(Float, nullable=False) percentage_return = Column(Float) + max_drawdown = Column(Float) total_trades = Column(Integer) winning_trades = Column(Integer) losing_trades = Column(Integer) From 24914a6dda7c8c7b6f223f7118557100a1c8e14a Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 10:11:34 +0300 Subject: [PATCH 13/25] feat: add max drawdown to schema --- backend/schemas.py | 1 + 1 file changed, 1 insertion(+) diff --git a/backend/schemas.py b/backend/schemas.py index 351b505..9411591 100644 --- a/backend/schemas.py +++ b/backend/schemas.py @@ -83,6 +83,7 @@ class BacktestResultBase(BaseModel): winning_trades: int losing_trades: int sharpe_ratio: Optional[float] = None + max_drawdown: Optional[float] = None class BacktestResultCreate(BacktestResultBase): pass From 53d969c8ff9f68dd8c2ca5585f822098b475eac3 Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 10:11:58 +0300 Subject: [PATCH 14/25] feat: add error handling and features --- frontend/src/components/BacktestForm.js | 128 +++++++++++++----------- 1 file changed, 67 insertions(+), 61 deletions(-) diff --git a/frontend/src/components/BacktestForm.js b/frontend/src/components/BacktestForm.js index 1e783c5..e0121ee 100644 --- a/frontend/src/components/BacktestForm.js +++ b/frontend/src/components/BacktestForm.js @@ -14,22 +14,30 @@ function BacktestForm() { const [stocks, setStocks] = useState([]); const [stockDescription, setStockDescription] = useState(''); const [indicatorDescription, setIndicatorDescription] = useState(''); + const [loading, setLoading] = useState(false); + const [error, setError] = useState(null); useEffect(() => { - // Simulate fetching indicators and stocks from an API const fetchIndicators = async () => { - const response = await fetch('http://127.0.0.1:8000/indicators/'); - const data = await response.json(); - console.log("The Response on Indicators is :: ",data); - - setIndicators(data); + try { + const response = await fetch('http://127.0.0.1:8000/indicators/'); + if (!response.ok) throw new Error('Error fetching indicators'); + const data = await response.json(); + setIndicators(data); + } catch (err) { + setError(err.message); + } }; const fetchStocks = async () => { - const response = await fetch('http://127.0.0.1:8000/stocks/'); - const data = await response.json(); - console.log("The Response on Stocks is :: ",data); - setStocks(data); + try { + const response = await fetch('http://127.0.0.1:8000/stocks/'); + if (!response.ok) throw new Error('Error fetching stocks'); + const data = await response.json(); + setStocks(data); + } catch (err) { + setError(err.message); + } }; fetchIndicators(); @@ -42,12 +50,8 @@ function BacktestForm() { [e.target.name]: e.target.value, }); - console.log("The changed s ::",e.target.name, "The Val =" ,e.target.value); - if (e.target.name === 'stock') { - console.log("It is here") const selectedStock = stocks.find(stock => stock.id === parseInt(e.target.value)); - console.log("Selected Stock :: ",selectedStock) setStockDescription(selectedStock ? selectedStock.description : ''); } @@ -59,54 +63,48 @@ function BacktestForm() { const handleSubmit = async (e) => { e.preventDefault(); - console.log(parameters); - let a = { + setLoading(true); + setError(null); + + let payload = { "period": 15, "start_date": parameters["startDate"], "end_date": parameters['endDate'], - "indicator_id": parameters["indicator"], // - "stock_id": parameters["stock"] // Nvidia - } - console.log("The final to be sent to API is :: ", a) - // API POST call to backend - const response = await fetch('http://127.0.0.1:8000/scenes/', { - method: 'POST', - headers: { - 'Content-Type': 'application/json', - }, - body: JSON.stringify(a), - }); - // const response = await fetch('https://localhost'); - // const response = { - // "return": "10%", - // "numberOfTrades": 50, - // "winningTrades": 30, - // "losingTrades": 20, - // "maxDrawdown": "5%", - // "sharpeRatio": 1.5 - // }; - const scene = await response.json() - console.log("The Response of backtest is :: ",scene); - - const scene_id = scene.id; - console.log("The Scene ID is :: ",scene_id); - - // const response2 = await fetch('http://127.0.0.1:8000//backtests/'+scene_id+'/'); - const response2 = await fetch('http://127.0.0.1:8000/backtests/'+scene_id+'/', { - method: 'POST', - headers: { - 'Content-Type': 'application/json', - }, - body: JSON.stringify(""), - }); - - const data2 = await response2.json(); + "indicator_id": parameters["indicator"], + "stock_id": parameters["stock"] + }; - console.log("The Response of backtest is :: ",data2); - - // const data = await response.json(); - // const data = response; - setResults(data2[0]); + try { + const response = await fetch('http://127.0.0.1:8000/scenes/', { + method: 'POST', + headers: { + 'Content-Type': 'application/json', + }, + body: JSON.stringify(payload), + }); + + if (!response.ok) throw new Error('Error creating scene'); + + const scene = await response.json(); + const scene_id = scene.id; + + const response2 = await fetch(`http://127.0.0.1:8000/backtests/${scene_id}/`, { + method: 'POST', + headers: { + 'Content-Type': 'application/json', + }, + body: JSON.stringify(""), + }); + + if (!response2.ok) throw new Error('Error running backtest'); + + const data2 = await response2.json(); + setResults(data2[0]); + } catch (err) { + setError(err.message); + } finally { + setLoading(false); + } }; return ( @@ -125,7 +123,7 @@ function BacktestForm() { value={parameters.paramsRange} onChange={handleChange} className="input input-bordered" - placeholder="e.g., 1000, 2000,10,000" + placeholder="e.g., 1000, 2000, 10,000" required />

@@ -202,11 +200,19 @@ function BacktestForm() {
- +
- {results && ( + {error && ( +
+ {error} +
+ )} + + {results && !loading && (

Start / End Portfolio

From 8c7e4acf3b32675a07d36cd2ebe5d3e34a9e3d6d Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 10:12:16 +0300 Subject: [PATCH 15/25] test: experimentation --- notebooks/backtesting.ipynb | 30 +++++++++++++++++++----------- 1 file changed, 19 insertions(+), 11 deletions(-) diff --git a/notebooks/backtesting.ipynb b/notebooks/backtesting.ipynb index 8ce8e8d..82e8045 100644 --- a/notebooks/backtesting.ipynb +++ b/notebooks/backtesting.ipynb @@ -340,7 +340,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -353,7 +353,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -370,7 +370,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "(36, 15, datetime.date(2023, 9, 1), datetime.date(2024, 4, 1), 13, 3)\n" + "(1, 15, datetime.date(2023, 9, 1), datetime.date(2024, 4, 1), 13, 3)\n", + "(2, 15, datetime.date(2024, 1, 19), datetime.date(2024, 6, 26), 7, 3)\n", + "(6, 15, datetime.date(2023, 10, 20), datetime.date(2024, 6, 26), 8, 3)\n", + "(13, 15, datetime.date(2023, 11, 10), datetime.date(2024, 6, 26), 3, 3)\n", + "(14, 15, datetime.date(2023, 11, 10), datetime.date(2024, 6, 26), 6, 3)\n", + "(15, 15, datetime.date(2024, 5, 26), datetime.date(2024, 6, 26), 4, 3)\n", + "(16, 15, datetime.date(2024, 3, 7), datetime.date(2024, 6, 26), 13, 3)\n", + "(19, 15, datetime.date(2024, 1, 3), datetime.date(2024, 6, 26), 9, 5)\n", + "(20, 15, datetime.date(2023, 2, 9), datetime.date(2024, 6, 25), 13, 3)\n", + "(22, 15, datetime.date(2023, 12, 27), datetime.date(2024, 6, 25), 13, 3)\n" ] } ], @@ -389,18 +398,17 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "from sqlalchemy import create_engine, text, inspect\n", - "from sqlalchemy.orm import sessionmaker\n", - "\n" + "from sqlalchemy.orm import sessionmaker" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -432,18 +440,18 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "\n", "# Execute the DROP TABLE command with CASCADE\n", "# drop all ['stocks', 'scenes', 'indicators', 'backtest_results', 'users']\n", - "session.execute(text(\"DROP TABLE backtest_results CASCADE\"))\n", + "# session.execute(text(\"DROP TABLE backtest_results CASCADE\"))\n", "# session.execute(text(\"DROP TABLE stocks CASCADE\"))\n", "# session.execute(text(\"DROP TABLE indicators CASCADE\"))\n", "# session.execute(text(\"DROP TABLE scenes CASCADE\"))\n", - "# session.execute(text(\"DROP TABLE users CASCADE\"))\n", + "session.execute(text(\"DROP TABLE users CASCADE\"))\n", "session.commit()\n", "\n", "# Close the session\n", @@ -452,7 +460,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 10, "metadata": {}, "outputs": [ { From 777b3624bbe32ac725275bbde7741b2f98a0b48e Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 10:12:29 +0300 Subject: [PATCH 16/25] chore: add screenshots --- screenshots/workflow.png | Bin 0 -> 59672 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 screenshots/workflow.png diff --git a/screenshots/workflow.png b/screenshots/workflow.png new file mode 100644 index 0000000000000000000000000000000000000000..93f989159a6a1c1f16e5b319a655718371e63dc3 GIT binary patch literal 59672 zcmc$`2UJsSw=PNt=_*CKpooeD1QC!fARtW;DMA3HDM%ASO{gL$B^2qsC>;c(1qdKY zKza$i1VWKeLNRp6U3}mF?Y+;q_a9^5v(Ff3je#S{%Db}Gd}n>;GyU*HSDk^Dla_>p zgh5k7)qsSA;(&yNOr3`6{1dw0z`rDoXV94ee7z&kFW4K1=QNNW=WFJ*vrqiUQnAM}~u0P64;R?5YYyZwXYCAQ1;nk&qSNFSUC93cftQc&g|Kc9^c0u|HDuR1MNxFuOali*(V>QV##;=!|_yC^JVw zO)D76ii$KV4o8QFuYti}#G;v&R)hstYQ~rYp*|xcV`yrsL<=c-|30oJ#}rl;UR_&P zw-)E(kiDh6fj z|H93Y1Uwxv6)yERYVC8ZIhuF`t~{E0m$6c}>-AHn{o|9YDOX0ur8)Fwg9vlLm=e@J z^k|x`5PzrScmcnd?`~GuQeB!kwUzn2j6CS5Z=s=g(y_+fnQp|(=xU!+&{5-~g$9u) z8*V}wQ|sSQ8E>8G2wq0g=~EA9c)f-idU0;#5a;S$ubN@ry4z0zjDfE`Jj@7P;XTNZ zEG5YT?$yRf@#;Z{8O$97M&yq{+qX;oW40cY`R7pQ4$Uvx5JKKDRiT-hGk^ypCS|k; zN53Zga3SD7K6a@Q$I93EE-^N^UWWZJ{$Zn(8$691ZXT`F%6J@z!;Olfl?B*5qelnA}=ii%=KM~%Qc8`BN$fJz(f|8&PnngkIqpSc*Bz$&(8u`X6>Dk>rO z027FFIVi*yqjP zr~%4(Ap6Y7=zQ_9mxssiI2X@8CwvPL39Rl{#09YiN!QKGu6+-sLo9Oj35$q`07jVI z=Y&S1fft2E0_ zWdhU^-wb@3vF8o^y3rI?y6&)1KAH$eBYI6j2>Yx7LLHnZ0nT(N6P3tqyOL@$&-ZKhxm#Q~ z96t8BZC)iQCMH`8IpO1m>sLve{%ao6Ue`xwczvOqk-#g|( z_^RE0u8Js&($iIKk4dtFqRhCyfL=K~S4%DJg{c9by%{-#=52-rpOVbw5Wl~Ak5E!2 z4Ix!wKaB!WSn3sMEZqfP%?;#~*S`)+2fgbQE~EZj1E0gI1|@RFU*~(AB6{I&PBSi` z!XSTU(k4gsp7wU7z}V7zy%_xIqp^poL6Wd!}NIR5>6D!`08W3RpRQV1im4Szk%;OT=Q&NGNk_HZfT(DLfc^wCE@( zIHK0u(3S;$n4f|@)lY!=~0-l}SIXS_K=4P|L4AI2TyT+Y+ zmd>%7hff7XBvtT|;?kQ>6^TJjCmjJAZHp=5p4y4XuwW68{&f*E_J`S8zKiDU_UH=< zI})FFy2I+a&XVR5;#3N3zejd;)QaDdF~5G;foN&k>4|VC5{s7KZRs60yTx(?wW9I- z&8r)O!JhY4%^*R+&MSK&JHPtuZRZ>tqYNUoZ{Pf6pXF`B2C`h5Y=isnbdtx#B;Uje z=?t3P9Itw+DjtbHbbVs?ZNpEx(qDsxPxfky7)}OvnvzFt`?5`2rV6i9RB?OX?{wNx z4uu@^>`E6D{=-IFyC{t{P@srk6AS5o@$qrD%_&b^cWs5@Rkal@+x|8c19MO1)aPbs zUp1$UNv0(*zG)5A9yF}xaF>+}wF8ZOy%s%Jh_dF-9k_W*Bo2~gE~*H1O}l*!WBe9r zl4_P}GZ!Rp@NA8?71MNkIoc z_mUIBlGlvwaDz&LprFW4@8}AxlFI%I*t@DMoVJ2LcMhXEytY)}-LuACU6gsyDX{FJ^Y{W_l{t%}BT0oj%ObJI0rkBH z3c5*B7SP$ksU-trFu$MW)Kd9MpzlUmCX*byw?fA|YvlI#-M91Rm9q~A-;pX%cWdax zE|1=?iMHY;^Gpjkilpt~Cuh1Ze;8o+#HBmhvc!rvaR%R1Q2WA?V!sEK%-ezw(6C^W z@CpC^vwj`QnjgY`cGC2#$!}3T&CsWNFN{+0$Jx&Q)Y9)F@||gXZMPrwULk~nvc#c# zsZr5aDK+wa>*z+>3@WGqx!)Ao-KDY}7S>WRGke|Erv%`mk zaLm;2WDGftn!`UKa0khbY&h|*ykE#OCJPEgL6>qw5UPXk0U1C1>fCM(FA1EDGnGKs zLh5D(*6=6qK8=kOmm?fq4!_DCgk81pH%i0}MVyXJe|_lLyqnpRF4vV&6lQ%<-+SV0 zn(eS7kIM$%CjWN#*A%)|*2PT7E5M=o*J6m?Y^~Ar=iru}YmQ7o2;3wsM^e0KcT%~5 zvH}H7CBq)C_tTkFW|C>d>5GX2Tf41`p_hVvh-c^keNu!O{_x%8eW&?54V!sVg`ab( zbk92K)skkk5^6R}kt2~TuU(wuWm^zNwtM{2;dhXg*y?9u15eW`dEi=_de4rT^?zdo z&W`uXo(462KhzqjMSGPeG~Rz>zyYHKe^5Xy{pHyLNY?Uf<->h)5V4b z(%~DcwvFZ*bZtq;y6qJ=Bj^>$wDtGW;fNXQrk!ACK*=Z>*w{e5ZGQMfO zL}DW*qwX{md^@?$#x7^_efI36nX^$FlG^{o#bGKgMPg}>t30XK5}{5jw3`GKs(fnc z=j;22Q>OQ*QK|@pfOACr`X-UjWw~=hLR!jY?^23lH^j}gJIc{;%z}dCt{ordEX}0} z3_*dBi#KW*%=!5E3lcZFARVVBoAoYblT0x+VcD}~mQ5=1yeUu? z|ASLr`2n?kGd%@SELE25<wTm6_I+-yFjn+1SoCavF2E8<@XN{)j*fi60zyi)7S6hvoR&=BxAW*a&+dqT*_@88 z?%uw5zyySW@TV0uT({96GPHh|vHu$2ULX^&Gr;+L*kD>KW4R5K7H`i^e1HO^s>&cW zwcMj_Z>c9m!Z#`%Bq*;2X_Rc7&7IopZy|j8#C36nB>8v8sq6R_M0p{l{<3wJwNYPN7BpN z5MHD;FxK&exA6-TR4+8-7}WfCsPrM;>NL zp8Dr>XSE6kp2cnO5x6@R(t(8>m?ZmRF6 zVq1qdz3rk{yO`SEq|P=u-aCDee8P2U7MHtnzaKK!BD&){^xy3R3kBa4gUtfC#RumUM zuDGaQU;Wf_4Tt-adJfPG4G!jxo1EilU-H zMm$eiu*bI2-~l^>52d`mi~ zWGxeFzZi98DQGUw)|Lny(HK;k|ZF#_UYT_c*EgIS%Y6QLJ~%t zg&0^q`yw^Am?*XpAW`KYZSJ;Suz3j)7<t@Sk%c?-p;pgjcu=Z@9&yVHYv&Ok}TLzxIvLn6@J~ zl9OUAE-=dc;v^xK-N>rM+}><-FZ@YgbU`A~@rN`ovr?(;&s&-%C1HltfUYIQHp zXPue%85@bWu88_v{!t%1_Sg3IRx9J_$S5=0f}?L>bF+y|WcRcgl5mT$0WhWL421y~ zpA9FhmShL(Z>|g6D-CllNp2H|$``iePrJ)@CS@CKNB{WHZyjo;57KCKN5?KMmXIIK zX3z6+IXZn}5MGG@t;V{8BY#s5uM!{J5S2d^2J(x9H3iR*$-Q3^qQCe8cFc+@O5@R4 z$I1CN`NbO{6T}_ajx!=ZM@rsOsw17vd>Aq9TI1oMoh(l$IBpXC8DIFGjlYM}2mky@VxuU^yqebGB+dtgf&w!_HOG6{lufEa$etR_M~yQaiy$A z{iIfzX1^k9VerRz{*qexoj~r1{V&DtA3kUrNGonRZ78+Fsbn*cg3NE;GU`4qfOm6= zZvGWX{fAf}n@5{Rjf+2mnm3Q(>oXzUiQxxCYLzPes9iba5bzjgGwfqz9fnb;@2?p_>`O3sYVY1%My#xf zG3=QL>};k8c^288&ZHS0hLWbhM9OpwfKq41_bJ#cXOoY1uYI9w%6eOFJlf2%--+P! z;gvUYso#>l=;OD(#V74>qNez6xs4q^jfwvk?U~dbCoz{Lfd*{J+Q^a8ctuWb-Wot7cTD59@yhM>s%^k!y`!Z98d;`7iRd{MTQ7?Vb0{n>IqQ zjEfC;t7DQgJ(}ft)O(=D(WzZOiGcbxuOSxers|5P6y@r`JdV8x!VW%QT6E5@Bf+-G z%%xy!X*1XHLgVkF-VG+G%55CZW@?NtMzGorR|cB0^wz9xsn;4cZ+Xbb!dirxJhRU< zn(?iiq5m@Pme%3{U$nLFS|%PxuKVxHPkh^}KHZx*nZw8al%QL>YT zMtN$c)v{c1yeqxU$^6~Jj>@rV*JfXxn5+zue)*Fa-1~^u+4m@3FGY6Vh_P@~)1Q`r z!rDO^h9NbnE8}Wo0mTl#mNKKVo~#9&1RSHCo|RQ@oSjV}kMpR3qEt94z$0j;{!BJ5 zF*Ro|;N@|9u`I}HDud5d*el>|v)q2;#_bTMHLn2NV~z=k9t`g@;mGY?vTY*aDg_d< z$zOe0N5eVAt6sO{xzNbuQ}M7Ruv&4?b(>QM>SzRH3C%cLR@|Z7DtBJYbW~g zHXENEp}d}TWED^c?27LEwm;JpN7;9W$P(2!Z#&MQnu+#lg2JL^nLb;$WW0WV^MBU~ z0TN$@ZFEhsnJ8ty71$#r6!;?tySl}m9v-(`Yw=!q0SStXcs*R#;@XH{CeHSI6=}Y76)wXA5Cu_qJcy2@}|3w@e66!P5A9ayOzZ?U~eQSksZ ziR$r8$xZcrADdyIUS@hPlk82N{tKUgsG(j+ZWz#oe=Y4?xG*31~x}$5l<|A0ZK;iz4-TH%; z1df$=waYhBq{{|Q$92458mGh_ck09YUn88qiiL>&VE*)!RKD5U?)yCQr1XxdUw4@8 zm@NKRB2SA^Pz@fsN>`4VTNRi%8Mgm33o38Ly!Dcr6X|c{4aw$7hO1{Y9t+fm!73T* zXa+XCmmoEw_iAdpf}R%G0tiZpk^ou2IQ4m{KeF}{>k92x;=kxq5DZjmRy@HTo7zZ4 z{FAn3rV8_GOs5qnw6`x!&kI@T=^(@Hdav^`)OyHZ812>*n00|8$j)mf?945KmR_Kq z+M7Gk4%^KEelIUUu<&!ND>Z5Q#q+hj(oHegpJp?qqQ>fN4(;Z}*nn)=&6WVdUDkJv z=vV1}RQoaLFbr=8_V|0={;%nTh>>wv#mTy0igl?q>9qe|n`klQa548{8C%>@p^2uHtY3ET%n%t>gZ0@eO^E^;V;?OMjZVRo;1s#!(P z+ggV~fr-7Simoq^0HMaYnUY%m0ncNGv63D+iZ$lN-Sr0%$CZj?o>o-!F3+2u%-H3B zDMVc}vDXa`!b}gDR*zV}7;7wVLy*GfPUc!}o+A^bjXx#JdBvHwn>z3Ozz+6~_ncf4 zm}7>v2e+CdwkbbQ#)trQh~=Vt*5uXU@|0WHDzGK4v#_0lvtDh0kptE_J+;-Kb9;P+ zBVX3|`JJh(socHe`H(3abKT7K8RC~oYPe~oN5b<&(FRRh*38}CZzBQ)s`g?M!mN0C zhleKbRJ1HPu)L}Fi+@11xl-?^dKRK&4hwaZj(q>?Oy$*`)87m`oqSnwfalS>q22PR z1LxdGV3oXWCH3OS=2^!Eqyzb-cG>9gFhs8yEAXm*N20EHLl}>E#)Gf*+cZR}eBq;q zS_p8;*vylX`B_;=<6+IjpLyn2Qd>7W6%6uNk2=vv9YbxXT4r zRx%&AZoNaX>G~pCTfqFswPgEQ7f+(3<+Y38pa;Re)>N&%fek4CQ(qi9q@7JSwQ%gH<-WiU@F`)=@wJTR(c1jmxc%+{=_az+1 z{!~{ztKKO$Gh{cl8RiK%er)`jf++U7V_$JsuVY8DJH?Y`3p|3|)iJxLHS_RrV#puW zzI##Ms%bm8WX-JEjr4T=GE<{ydaRDrR`68(%AG``WH3oDy_|VdT8d(F&REY`8|BeY z_n)_u!zekRcFS-M==EIT9*j&jV_KUJ#ZS5FWfCw>p5aa!BYx%@V6x4)&5xiXa&m`2 z7_*_u7E_yC;qc`Q-DFQ&Id+KyxVA$4$}Zy`Ckg88I0^_10XCOX+Z3wlS}rJZT4lM& zA2zuKgyO2?wurj(p?^!>dNrlnN_@ziRF+~{J9Eu5CjxYp`L|3Lb)u6cF%{9zE)i$~ z;M6n0GW^sR85pn_o#7yHipfmxN!H(u*xDM0OVP(I(9c}aDNA9cvX}RG#?{zU{C4d` z^p8)6>X~AqsIOS}r(@d9W4fe1-8-GmY*TViR{)eavds%+JoZb(cbX@%JB)u7=X7(+T{Do ztFGC4ChgL*B=={?fci5a@5TaG9*HrfNP9;uJBo({s(OTSbUwt;5l|8sDcA4ZC1Te^ z$!wPw*?y0%UFauFIhl)(?z=8!9%l6F@y>48>!$rH%>e)oqA z6qjQYXl~0Ue`h0yGFCdomPCjkwsZaNbYNAK7=j*H2DJr=ec|ocRaxfc4Vwbvkp<3K z0R+i}uDVmTv3H!vt0hdz3UZ7Ulvq3iH&aY_`TJ~cwuFWPR26^>J)MBMcK@0Zl$QkW z@p?cuNIkODvdioYd= zx%u1oIFxU?pkuwHq7cGYQC6fj(+6%)<-uoUaQne;GWRHvAf^P4f13AzAj{t7XI4}+ zu7lBZF4JVe-ZW?Y)l7BEYBIq-b^}bx%Io%0jxjff_#+sDKsE@U(H9gmR+xHEBdZ=Q zCD;$Q*cWRY_f*9gI6S;9Mur!xkDu+EdX!0_dR62fZ81#s?9$vAtRzQ0jJXI$Rc>)# zv1Zyr#E`zRySPBW_?M#-`y)>}Th=63`3E;a1d zLU3n(EzP={lUq6d)@z@+j$dfYQ;=Qc{_&=FX}Bqb#5 z^2PSpgT3pwP(SNs<~!bpnFlF&Ok`w>cJ^BFihK6-C`t&2g_lbguWbbfK}^PYMl2h_ z&-B@o0=%Pq?}+~v3#qY}dY;ZMClPS>kTP-3d8(MV5h(tjZ8-rQFozzw^@t;QipNGP zaUQ!iS~3=7JukBr(B?y4P5eIRauV$eYPvBEf1_~HawR8MP;ast&zrGuPrP64L7j5gwtR z_v&-%>Wl$?$~6g*llsYlfvW(8DlRRpr0&YpKtA7@hUj95jD!g0q3>0Rn}Hw~J7e&A zSh-JUu`&rG`{b9PDQa1T=m=P4f9ndt^G*NQ3##LrVzlb}kNuu~(9Ti-yKtE6=tTWM zp}NN_tpNlG=vo)uSD3`B-0c^^b2=SI^ESs)EtU9Z`^k1RtH2zbUK_0~`y1g(OpVz~ zO+NEFZo*AHdSUYO_0kH-L27d4u4e`W=^C&id<8j+YZjUgSR%&Z3B->p;sKGZYkb~{ z49?oQoeRR2jc<1rH5>LO9RZrnw;B8X%rdPIM+XN3E&sEGmI~R{v6-1N-5Uyb0esUu zgyH~z^BCAkjgSY_F9F!on;Fx6w|qFv%o3)Ytq9;(NlgHDd9$91ZVNyh>kR6s+W~}h ztA|rqTtV>O9R9}c^mpI`S9YhyGq!wx#!Pgx~zLK4Kgo1-x)2)3*$pQo5Rp zsop*9L+C7W=bZVk)F|k``g_4jg5p0^jMxz1rd0oRELzcT{d3}?%oTFzKPOZf0g(2e zGymNs%Zyt*4?Hx^aaLLHt!#_kvXT-l-AuV6EhIqjc?@h7=%W7Dnz}kIH@8XvWi>Lo z@i!PBdrdvRqCyW~ETo${!T0y}epOndJi6*8C!gOE6&({4psfX%3f&vqfC_hSxTTZ3 zz7a09kY(1l;#Po;8~AY_TUiPNw6yD=KYvCnUb5zH^(|>BFk7tfJ7*?rB9;W)wgF~B z?=yiU(cfejDGhgC#g?ujn90DfnVrW|%GlA#P_m0rJ%p~Y$GYkI+ba1*-LHnY=5|$C zym!Ub-Wovoe=wrM?|Gar?nzdS{n>zER^20mK6!e}Kp!+TQziw_9Ts(5Mfist%~!^< zF0TU1!*5<)h@?{T%+Y|x%`ywDAZ{<3tWYCVRfEJOUIh2(0+gVfUH?2s{@m6JXtgsd z=4nL>p`i{fpWHyra8}b#*Wxm>r6^)g|8pZQhBD|@DgU!a|67|^Yd^TLx*EIb+*hK* zqEVRm;lqbZTwI7NauzB8^ojS zwIR&bXZXqwG5~kKovo)D6o!aKj7>}waZ;)%&!}d%(vB>B`osd>i6&&+^nSueUDD!- zoGTk~QflOh@Tm-ql1G<6W@9^nH57%C4>dAxaC z2(n!3>k*5x{d|lwFMb00(tKY!-PPORDlOwkO`AVh6woI}@jQWynB+8t8v1C zN&rnq)c%g7q@-_z3!s(7mCm6Fc&~F2aI81-l=`>iMLl`;41kvR}y&`ym^X4crYYTNwAgW1P^(>4%GbGp9>cIIy&gFhp_`6?@` zUJJ9_R!Nw3ta1D6H9=(}D(w8ZAA;v%HGeq!0{7zCgf5*{T7byuyN2Q(DBO!B|Bv3t z4&A?H1^xRL$bWCiG%0d-rGHIQfYyr-x)lUiFkqIyy1N0o;g>HrUOPLF{>v7Nii?K? z=Quez^P8K&0KG^=1nsEGvI+FXM9u57$Dod{U&nTIJOT^kT2&A8s-H{eJ5GiKWYJUz zG*(#tOaJUG^+888Psw?^#n#RaCpia1B%43K2LW#1{I5 zFTWu7^Uu5xWdzVH{tS?C0ar7yCCJCcm74jdXZac}FH~9R`t{!iTb0PmlzN40e(LIB z9uUatrHho8CbwVphjCV5KLiUKj%{;?{QqWg{%`CGK<|p?mdQPr%3m(^aCBxyq(Cl@ zSl^cLMSVCYgbL&;Y3b-BjE@gopS&+6b*?kt^7F520xf~h7;BgiZRV4)eZXj0T>;xv zk>%Yue1iR#HfMr8KKw)N`X5td|GjX5t{)(Xe|7y#>ptXi^^>ahwE?Qq$r66_YnL+C zouUMZAcvx&d4|umH=0+z_-`WZ!oo|SkBvY)cW`usdH^dZm*1$+nK8hm|yfjF*}1X?}! zDV~$qBvH#z!2dS#%x$Z(JP11H+)@W-z&>;m|MCe_0G%GN)dq4X!1Dzp^&JdIo1Mg{pIw#37r3_3+WnTf4-dO_{kS2lfE$pV!y9E~ zg_E`S?Kh%fZX$t>WO{cyE)?ihFkN8hYkG2(Hgjae@Iw@Xj-GEximK|pw?KxkB-G=DWN;DC0^w5Z}sU!Sg~wl+Yb-QscaZ=t^3>Xm<2=YcOk?zR6O>aXk& z20COymJDXr0b>%EzLLwXkeJJ6N6ov`WLz*9a@a^$V{u-1d1TX8X!JqK`P2ymY0AKR z{Y})VFqJ2{7@CR3@S42VCgHqn#Ki(cD5GFME6IB5oD+Z1B;V#oi`s2{3N=qH%PhuK z#E^5q?+Q8MqK6%WUKGeXCuFz-rn2#he(U%Vi-tVx?hsr4`cpv5J@LhmY2-qVFEyzPmr<_&dwu zQ~+-IX5qNby>Cap2WOZ6s)W=y|7#M}!-M&&$hns5>V;_~ZC>W;7?*Kdcn8!qrlz;h zXl~(%n}+`%{Ohgx_LtW6U;$eGfAOz<{}cji%*=$BmX?4dyY2nnL07yGkZ}P9TLiFA z1m~i8WWV%L8gVQ7n*-78ril~Wns43l=Vz^?{BPfg>8$BCAsX20T&I){1E+hFs?p@^ zFZ1lFmR+>kQJVJw$qP+WB@7`}9MdJdkpQoKbnQ3gS_4H{x z=&%FtC9v}Kx#eIs5fj1$#EtGG(Gt8jz>x!kRqdgbm0Z z{T->X?=I48)O;AyXScw+f8&ss5DPHlME*xcL}v&SjlF&ALlKZcuiX0Goj}G>pmlZ; zcQkuG4E83Ii1<`K7M?D2tJat;a)$^3{T0}sXP0BOp2vT#m9PNp)ZWuK&E|*MnzFTe zVL4WY>i<=sD`d#~jlT6#5_k)uzZ`fp3yj{>G3)26z!d#Y>J5Pz8xhq-!@ny2!E7-$ zX3)_^%v7BVpD0PVfQge+SuwtFtw1l!E*pN67URbY@ZESJS%l2ahQEiEv<7~oC|l1? zk9|m$Smv2~6rl%VAxEnE6muK&TbE_n|I#BHx*JOvpa@))2stXmcW&|L{tj$az{!WL zTz$*-m;Jml>7nQISiLrP&hk4s8q7K;#G}nlN=~$kns%z$XXt*lqo3#(jD?#s|8Bnm zrpH-2;Y%8A_T8t@2GI4uS>Kw`#2YmS2GBo&0PSN`kSLaQxxyXq*ob}*`;0r&`k-f* zED=!*&~NHSm%o(YiW1zz3J?yC{c5ov{+h?)LNqp_Da#d;Mn^|uKs-D=7MAR6CjqcF zg)5)3*hxaB049uqrM@uG#WDqD-hxmc0vK2Y?H8X!H%0ns>Z#siZT9}e$1vM6ZL@n% zMXXWw`+n&S3R^Ojn?7>WXShM4AKLwqM8KGj3q&kg%giioY%J9FW~QmUN(NW%Pk@%I z1#~l6`pg7ePW;1~fSxx@k4U$nc!mA&SPnGpHrE>ANkP;7_~XnJwMAi?ZT|*29Lqu9 zx&cQbm1lHsCl^`dHOx#?_gH&7Ut8HS>TedA#mTV=&+T$&wj*1vtdNb!+&OQR0vJ|b zDg+o$n%l>LYMe*Aa{72O;i#j_h(6$|uv{iUDdObQizLrE_<>uoVz=qbkpK znR``BW90KzOls=w%F3J%?Rj(-SHF$jc&rZgZtfqn`_t2U;&hFNDyKtD#QC)=0DLBy zR@)U3E)~VaB|Fsc_QvRkwN9K~*zNUN;u^Ru&glx31}rjP!w2yk1|c{c#)LK1M^=R674Pwno>wX?fC zhhai3<l zFVorm3XKyu{0J)eV%rJky5Gg;-vI82?vKyIZ^ZUc}R2OfOP}Y6ky47-~u9GFHE)MKL3EtfP&Ykv0Q8^n4jQxqUy~iKkditf%T}jiiYQ(c+&98H~4j`TvHx~9666btzJ`;O0 z)JN#kJ9&%?$kJ&j>-6zS2fkCZR$(34?09;^XYWJrraQH`+r^$n*K!T?%*Y>lh(g!B z=yC{ig-1z#a2Tdxixq?|Q?Z z+xWfbfMMJ1?Q+poARU9Oxy+Qg4GpuMyH(9T#-6$Rar|FV<*!FEsGtv*g^C~PgnZLb z(T+e0`SJ&jns}L>9mLQ5I#X;G8fNePMD#u(b`?m$ER6h@jaG5%ak!z!x8!|v6Mjl> zWXT#{pXu0J@+yr3XmIsS&AXB*hjYungcbcXolh4s-u9-yuG;_Ea!#O8mZv6r|Co=}*6u_?>Ze^_5 zym#v%!(LI}+ter3*d2FiIpHgYVo^k+Gn=MS&0)J@?8)$D#U#oOB6cGwKuF6)yiY~{ zhQb%UxG9Hxpd_F?JZZQ}V+;n10I1n!c6tL4Jc~T#o#m5&+OXo-T7!NX4xu=FNIJJ` z-4UrzXvq<_c_rsNpVoF#v-FPLuN%QHmQ%;k8I45DZwh?)?4z^5po5aQZpy)xk z@9}4s6QzzdnA>LZ1NZWi?Zb_o?f$YP4!Xob-!!X{!_9JCQ~&Obsvm`Qg}dHz{)W;% zRuzbTIX(=xs&TjGdSbpww~R|7LsPUmRnuX}_>zc1@oS~xFY~w zR}&YaJQ&DuE}-S{Ohe+`47r%PLF#LvNAfa=74iZsj{%(#jEykuZ$D#T&hvC=wD9aO(l zZ7cqw!zN)q40Tl_Z0dv~egu0_x~KU@KY`m`OVAw}eKJ#r%opFjbm?;B>5WG5vp$O$ zrkT^bw~i{XaWRWW7pdXhQqf^nSH(%EQq7*ZGQ)q~pN{K%H^R*^lUA%SJc~oQvQ;Df z%t}X$-CsK(5L2v^425ASDJh$$R0^X0SAWR-0BnN}_h6D-rOoHX&SICt-Mg(xIpUBQ z$|OkzOaDqpwRYA=a?YK;(Xuk3frlgYxtOmW&rgZnK6F;7cl^p+)YZ=8D9FN$MrxQ9b+=ly2$Qj%N+w zvOcaA5AJ8~x29DTp5`%-K`E^-k1!dYnLkmt>r207YHIp+qh{=}va)iE?a`lAaR|<^ zt5>pIg+3}O3dgn*yjI?*YuBH-G0P5_ZQ^^vL_NCS#%4~388vIJJC<*8oqq_qV-@J) zO7qPL`X;Sd56?kx{WE^&aAQy86sOQfM}vWjZ>qS8^7HGXP1np)qdq@rVn}0*WsQrO{ySF4ba{NQsT*=M#6F? z7dAK~P*Q37`t?awb@eG?ab>0Z-G$2|aY;#1i@_u$RkXc$ zn|t5bMJ?_Ct;_}oOLHsw>HDs2*yd)?9qBN7$y(k%zWRe!KdevRi@^S+fi>bS{5ll< zYQU>IbLH%+yR*q1fZb~|r{y<5iHcZG*75F)^aAHzk}O&T><^U;FcntW zTf-#&hk22l;y|~_T>~<#w#OIzZW%l9U7eX}iup&QU7yEcx4UTfj;wLlEc?DWD@Nsp z)uYiXURz?Rwms< zYGOdMin~1r29xM~JqFd7`{~65(zX<%tY4agnwIru-Lqt`2Cm4zZ2Izwp5kh<LGA ztlz5Quehf(l8nzn0MquKc+3S9@)FIU^d)X6k@eNbvpsR{;+-}bBA(sgyRo2@%@`!T9&$nEtKw$+gJ4)7=o?LE%8WZH+(|6j z_MvB{kG9fRrYDbLnD?>X-VEL#?uxd0CewiBH6`QOSH=TL!j$5=Nhj^jFuualQtfld zTdTYWY;%;%A*rH_vHHrlu0JME9+nx?5ONf4=8_AcSD=`lOa)JTs*ibegO7W*QGI4X zfEWC#l4nYcjV*VRrlZJhXJ{A<-lgv(Q5|KB4l|RZLaApnkv7o%-UKFH^Y&*qc&F(0 ztraCS!dF_c7wN^SX?v}cQ9s_FVv0r~_z*NImYMa%KnMPyu z({$m)JEple>PSBUNTzcGG7SnwVb$g6RTdbKQ@wZ}7ip?F%#(iY}HgMM4m1Bwz2iExwtpx zTX|-iYZWc!qi!z(uu)RcH%&;|FKo>V@XffvDCIaX*9z!RBy(IYO@kHk(Imut&3KR3 zuRO`2h1mL56#N2G)iF@i#FO~8G1c{2NBvtBPsWaU0pf)M5C(9b|9Gm=l~GH%B zr@l?`+A!cq$`AsG^;KR(UQNC37+WnP&1X&xhGT|>upX!7?U)#OU|djBi=oA`d*Oy5 z;{e!JqdX844$O^yPO+&-=7 zJnDBcoPaT%V%ci?!(2?Pr;Yiq81PF8>tzy8hc{vO{e7xwHzn)tYql*uobcMx@%bGf zU!ElhO?U9_-Ld+$7@W;UmB6UFZ~oQ24IbfVzGzLHa&FXd;o-0(@MN*t++{@Tptz_G zI#<7ow1#mg=$&`&a}k>_pdzwR%7ZO(GJlfq_2%`hb?$vY*CqYVG#NB7P}Z(Ta&1k+ ze`FWJ1AhQVxU5ji0a)LnM=TqLPG>Rjgp9+db3meT&ghDeeL{xRFq*Z_bq8%pGXCBw zE2+Vz;~d8L)DKv|V!d;|&wTFtzMhkLb@r0#qgmRl8^Z;M!2FtB zcG>#;lmClY9Q^4Am`Cfp7JY5cl3Lze3ANLHH)g2;#z>)URGRX+Q)0|P!#d~Ox+OOZ z70Z_?68%Qv%w5>%==+0x($m$%Q;eD0-|!@{?$YQn-KdzpvZ`uoaeRhh*{*i#f z3-axHrE`k;a0bTdk(rodA~%Ezlv|o7VaGx1p69`2f82Jn*W`XLgewwKbcMoC@7 zr=*Z$q_#YmhOE5DP~XD8h;9Yd9D!*XG)HE_p)c)^U)=k2v?8`FZm`^|nxjViU6Cjn zMjnDMAUcI>iuX8X&_uBWEnl;^DwSrDBf#!%Qj44-X%qzoP9 zujbmcm*&u9&13qyn^Hn2@>lQ!*huU~wegIei&U+%*|Kq(CphcXpoHus8Hgo`iisV3 z@O7zfmsipSeT2}Pp}XII5p?@yc`XG>NpQPO`$SJwoNGWS?8=QwH`lJ`-L`RxS+-~u8YS0^U~!&*N0iEE~R;8*BI=WHVNzi4W3 ze!ojf%He&ut#F?d{dizZHj7waF_tFCyFo(mg+d7;X-Ch2v|p;Nt!Kd2}tTUvog>N0as9lkMlus{<_vvc2@ z_n%UMK&eTzlwm}lqEUJ5zdBoA|X*Se$F&?3bcH#N)H z8~YEB$O1$c{O|A}s1hu{<4I<2gFn`w7q%S_G4~P^CZhj6swLP@pz9*`TG4bVC-%HD*q)&S)$KR;hRwQ?Ttv=Yi4!o$KK zaS#g2cRqXx}$R2Il8$Aolr zbcA#zKnp=jS8pj zZfr;aFdFpt_5%Gs4BV%5`UuOeEdW4a^b-W~-+iKfP)j>^wRu0rRu_7}P}Z;Ly%Z=B zC>GIS5%wDehMtMoJxlEr(J~BWP|ImTdf3wA6dDa{jyN+g;IKVwcp3H^Xb9JD-`XHc zPT>3DqA!2nu}Jg(-a}XEe4fnvh%=3E_4c)@5Gw#RWK}xBo#^_D@x!khw12%oP(aZh{taBUzq{Cgpgz~GBd*kuHriWip@>i#^00w;ivlR9#8_^ z-4`!jT=&W+7XJDO259BLD|WoI0F=P2YdQPj|5O)1Np}6J0e8VFq~C^F(Xm z%25L#hDXAr48RKp)O>$V5fN=1TwIq|mODE;;K#(kC4KVjSp*QXg>@?|V-5CTc-}FI ziC-aQ+%md9O+q&jF5@+|YR}}f+!ue1GO__i!T%J;+ao9#;r)RrzRE2%Oe${EJ8Ebv?Kx|{w;7Zi`IqU7n zh}b~Git5-il2Q^5s=We&$I?bMQe)D0?;|otSMBlRAW9`1+^B$#i**Yrwf^AcM}oAp z1izgYNO29g55FzghufIb#a(MVow?Ut`=z4#&39*;^-5;t^p-&=)Tn0U+Y~n{?0oh< zvhxJljFFu+?DdIluGeh&UY$AiOC05Nd~6X}=QC-?JNcD)@9+#fAyy^Hlk6YDvL!^tzwp*Q_6DPUUP#<3CZq7hes;P4RZ6}8? zz!lyh^I&jFko?>bXdp#(e;AaX_z`hCct&<6zhhD<9#jUx?mlJg-uJeZJ7s|fX{-$( z>TR81ZT8;>J7sgzH&E^Z1rPY^J_t8dzlo5#?w`|eCp~<%-_vqc1?;MM zxE!d~D>`en_&4tJP4=$qgxhqke;b2`lX9w_&6fvsc#4tEmi{g+DL&EKL-_UE&=Qnz zZyxoKQm-FmM9gL{b8dEcr}YOL!D#JlaRdL6o0yQUTQh~We0+RnZDDt;yt7f&k@cVD z6u-ZhkL3TuDcg5n*(m*<>Y*x*Z@Q{A^L&f!1J%Y#|0#*TM!*|ALiGk*r$3eenVeHMpYr7e%O>DEsJ)o?AGnI5CG~H;&;z4r(Dt`Q7 zP1h>o*mi4kb93|yfNnqsf5=xoAxw^W%=%7*tyvS;y)iH_>iC6+#&>rehv}$)0Gr^j zQ!<4z-Zn(?Y9-)09{dD=0z0A!87zFwLcn;D-!8cS8*QQ0{>OW^x<&m@RF{js04?Bn ze(X>wX+3f;KJ;ndEJw4@3op3v4ap%pJ(Ss$8-BO8W3M(QtCcQL-Zs&ro-R^b>MjI} z0S*EB0?`V1CYm}r>|p0q-3ZP|0k)8`vNEtmqe5wzj5}p-epiXWfgTbUs?fc`ZXPbmHsE8NuVUH;<-jwyC_Cw`^K5kJhVOyEl z2b^M@7)L064;XN0t}zG<9PUQ5GZVu%{;pE+XCM=_53*Vg6cXx3uHQR5+Onwn=gvm} zwgnaCHfDSD8Rf9&E5p_qekibZqOx+MbJi%Le{P4u;Nh$}x8>aA=f}80pRdLz9ZPm_ zrb-kVRExa~RrnJ-bl&_7!|qP|`(`aCSEF5&DA=RFH&WrFdvzN2r21i|oaM_3hI%Pn zfx#{2gZP-{&j9zaOjR*mvd~;cx9WBB%v0Bw=B)QL<{I0*XuIIOc_J|);kM@HUkbEJ z9~MTFtkv%&Ei=yEtLroViXh-m(RRj~2mcc=#~w4-r|q1Iwc%dxGQ>Z0ug(?yOf-#k z0} zrl#KZ%~edaWbJHyK#1D3IJtpIR(NW>knQzaLksgbsfElShBKgmA|$Aw?7?o2BqiPq z68Hcfx79{az)eA#Dkc2C{+1nN1BS(yuvtd09!wNo(=T9OtA3{j&Z!3EvwPfnIUlrR zXJpj|{BKB>fsD#BILohtPB$d?hA9Fq$4zSCY^$kww6m+nHeh;sdNqMTOhcEgE$CBHu2$c1Z5O+nIe;VUHMKr1Et~NY zTr&r95Vx}QLwq_rgAX zWPP;!;Jk^VhQ%@JK}E;TbQI(tNCp4ga2}b zXFXf3Q@DOvWi=sxq9u9eOY>19={Nm7dV6|*>jMUB=>A;RnerX8MFR8q9BYfIeM-hn z-+b%u(i!gnMP@7p$ncgEI`*hu$&92~XzKqhgUUe1g@FNA{3{3S_3u&pfl(^PMtwd1 zM#Afd2C4#*Z81SEh+gRE>bius4yH+X4RN9pmYesgt}W^%?XbV#o4odHKD6%#;?b|y z<7H-65>w6s?Fzc;?{Ici?Aw_4pPs%K3=OS3kDpLdRsE@6ZiH`sv^l*h2tq6x1zH&+ za$yJ49)LBt1bn1cG{~d5^KWPe!018X3<}m-`#FEE&;otGMTwNb#(p8H4aYoWnhK$wf*z=oh}OaG}!L>8lrGz>Erl&W&~Zq;+>(Hl?iy6 z!;J@aZ5SFn)~tm1TT1|z+0HyDvW59)`$42-)WE9{Ks)vBwYRm&D=J2@M=$!rr0?s! zG1|e45xG;hlqs3+FGNI}Y}ldYghrTB(GN+Ux8s-Az~ZHo|qPYQGuUlsFw+XKpI zI~wY~4N!BxOHGw9eX|AX`PC%LCW0l9h=CLkeahNjy=*_nB=+}i2Y$>RGf0k~A>Dp} zY+iGRTz&4FD}z~OMlGm~X7))aWdJVA{QN_9wY&4+QX=rjLJ|cf3Gk@B376rk5xR{{ zvW{#rbg_2vv?uUu1WI!!FdcuBtdZ*r?w?d{kx;5ZDM7`5n?Xq|OF|3BI10l3=YA1< zSQ9@>`$-~7)EXlwvh?;;fQZxYmC9J_l`sqYXzKhdAq{ph;HPmfsOl(<2A?{6I>c9l z1?ULZukFM53EXd8D=o#?#{z?R>+~po{l=c2bvOpX7zRQH#lt91Ym6`rElb0>FmQNF zFfSvO+g+R6==#djl&d^rpR}}b)m?9nxYrvsNs+#@wHR@Bwtzfv)v$<_D&VM!IkWLR z1ZQ&;!?!QraF+?QH3tW=@E-Nd&U_CgRzLjs%ik1O*9XQPA zB3Q=tX?eT+60Gjb6_EWQicF%ILNj=Ao9Kkh-^;bHaBNh5Aq~1~4ql%V z8H2h6o_+iC^s%fgfZMqwVMv3y3H{Hz8y6{421l0#7@1i0oDLY5?ZcVQr4E@NiBn z)B;Hgf7L4$)s<8|QRckf5Y5|$tbJhEIT32||ZKn8@4#0l@; z-@UHJDq6~FFhB5FL_ubQ+mBGukHrH#QnVNyq3!`A*v#4^sjg3@z(5TAvUz?=a;SlH{Z zK=i1LEU0`8l=6_}p9`|WF@TPrh7E=o5A_2GX%$PHv~llQML7^T8{<<@u9pEYgfYuS zQ4f9wh@?2F;)Vaql7Nj+z_Hiw*U0&iPL8vM4&S+LVls~du2ki3Z>jJ$uWvbTUEXki z>6k#7mu39y@74J44o2+WTNkqFw?U%vby|4}vVOz7PEq?zcUM*2jmY%N0`#3_!u6dS zIpRfgiOd(`_9Eh)*<$qccVXbbUk`{awSWQ3dM@iorVrK(Kj!hN$(w!;u%QB&aFGUM zq~qP+4O~Pb{r(8+yK>;3?hAaSu7Dz>2flwGEUE>ntW4G7DuDOgV%{RD^@hJ!S~Ymz z4EQ`~Nyw4}U9-&fZXh;oqf`{ZM}YC%#l_{?cn(@7fb(wgZGg;q{LebI!O=q~|D7~A zHkP9xQ!d(y3B2YhkhNTWC91oJdpWP5V91&)O~0Z`1hTTbX4qL;4p_^Smva-Hq+b_0 z0Crfk>bZ4md#5$6Qv_u9@*~kx=y)WthypQDUH!<(!cA<5MC9mJIS|Owm_0hyMb74q zH-+V6Cq8mPUxrU9L)LCE;NXe546Gt*Tw(4Aa1Pns-Mu#ApP$2lp)w@}>ZM_#w%w%w zq*L+`A*huWL`qBy0O3?pJ`H~t^`S6g@)uN3rJ%Mn0_WD+yPTVXC^zVyRkhNkJI$U= zfZ&JAu$32ls>T68&T4Bf(}_~9`)k#8+|27gIy(oL$o~F%!S4{0C;w!;+(MnOpW4n2 z9Am5w_4qmgTf}_i0$4A}R{$ElI!Q7=;F$beq_OJGO?;Pk&ZRFBLs0YoZ89Uw`%`%X z|5^S(rz{$AlQ7UGpV@sjs@DUSNLG?}WuiN;vWoa6dNg&j<^_NUDDJe8))Tz9)Uc%R|nJt5YuW#gVOID0|sD-zImM_QR z12_yqQPRQ%#ILVPh5{NUIi5x!QJT*LicU~KPTzP^hx-4sT>A0;BHzO(vES1xY^J)+ zs8nO`W+)U;EaDE&Q%uPW*lteMZqCxuC7Ijq;jMazY4DJuKi)ymuSCr9`E1h&o6`{i zpY}f;MUp#&NfS-JSL)@13`V4@7|HhJUN@&51{qPc9cJkA?f(4y%nSCbN&?#D4fhr; zLTCQD#z#T)b+MzvEszznid&IanE}`pSWrNLuz5#HP%goNqPrA6PJ4a#DbWF?P2NDPy zzC$U`)i+$VuZ60#E03CKMLg@S7C0h_|eaEedtEAlvnQ5-ndsJH(qR}Q-|4vKwz2EQTguaWKlsmfIu%o za^0bjQtpMt^K=%hsLgnPYx6L2*a6v9gG`=P_pr%r;&($A{TDu7O&tpk{a2T-*w{D) zX*F4)Tz-nAmmUy^*#F$PtQ<-_9-^&P_Er=KyN^VPjSf>OY0 ztm(HGbje%(51C@!60X^fU*33so0VxayX+wb2GaAy?dQnP*HeZ${=s7DGwcWI zcUE_B6N}#+g-7Lj?~G0NOM&>FsCAkblCS*`e6goib$ec2$GTQ}#Sza}20u4rgR?^Y z%I#O{nUk>k6;Y*}`V~ot)U_hWC8lIHB(Wc@n_XKeZ}U;gx)i>EWf*Hwg~%>DgS65g z4GId+6HVF?*nN$seO#3i5}f**7bDZV-|TGSvc4WFsM`d>cdIIQr&(xYd=Xa;wMUa~ z-D*fLMFS7(>U&9zvIbsWi2$mc_))Xy<||EPP?74%r^6gB3?&d;Bq1gJ0o3(<(lc-m z>lAYxjHGto>WSd3P+v!v>!dY(`axPUf`z=deC@P6d=p?9KLh_}Dw@B?b6Z{uXLB&AH<_rU|cgDpI3*lgfB{NQMdsJ5qs}rMywXZ{tzBuB(u2rm=;bsE^Mqi=%&xy z!-&HjcIA5#{D7YJ?DE8T{Ia`{{Tso!FAVWA5`H8{(0SHg`ZFTv)}c_Ma%-D0Yn{hj zB3uup;qr9Nfa?5jgsxQ|KsbQ~Lt|Wcun%vOe(d|KfziunGQ?6|MThR7O97@w99fqX z_5LRC#9n6{6MET-o-E~yxTjTO)QRCs?3`6q=6-qcEJtXj>erpl_h&QxZe1T-*3^H` z5E~+AX@d#;#I;I{f^GUGcS?rT)t`JE^m)t-{FqFTr^s~4 zfMS{QhWJ>mcfKbcYA_68lGJ8?X+iYg0|I0VtMvJHC-Wao7f!cw&hDRJ`ooj7 z&`kE}!wGzjX9d-1g-MYB4!*FHzX)svZU9kD;{{hlh?}oR`!stUG2-%6_(>2`Hg)1q z^f>}gNFL_dbD`;MTW?Ng=YZYy+tCk@GmT!wIJ-NL`~})5a?!Mfh=r_Viv&l0i#Uw% zWv|y!9^}0PwCNx|27aw|R!e+g7f|IL6^?hALAoA}k{aK(cS3~MF&5VOoxgtNotu~8 z^k-C8?AAhrQ{jwNMZeC6{fRsE>ByqPljG^Ng9MJ4z+l^2U*9XYAxXa9+$wRdbYsCN zw5T4;=$NHahro*bIDSJ@SD(x9WVvGra6Y>GY(_c`vYN~GE`Xvq)a9^ndc(6+F2+?|(4e1Z&0+eX6bbZZfkSVdX=7?c^ zLm*#f{D<9RtC?0n!_Y$WE8zQyCcpQM#JM|vOrFL40;u%Hp6Pj5u4Me5N|W@D;GAu3 zMTXX()>^DvD^kOEix>>pvKW$y7!R;v=2*rBKlq}4NyjWz9%4T6bS|Q0c|0Km%!1hd z7M#5FW)>p=?iYMSg_H;8Qg%y{Lggc6xx%UriM7?{`^T6gZelj@b!!VeNmC*Q_mBvL zpPxij%Q6kB4LOWJ8bJ)UV2cqufZ5bm)jss2^deZ;d7tu*0BL(IO3*~QnrsUe@c7BBR|HXG;2;Vr<;TDSEj+ajl+!A|0!0TCR;$liWEhsWY!i4l+z>+Wve zlY;tX^_aMuDwg-OeBxF!!{tR0yM*=AKWCxt8$%dM=NMo4AOGCc0X4g*sw;d8Giw}7WBarLFt|E0$PeyRf6CUEh{^e4o=kD zv(ndUZ?hkoXRpxtPv80PH~%uV^YZhdEHZveITTN({7`-WkZ@Mv$rI%@;0S$D9ZUdA z0I{k{Nosff-rioTpHbdthh3lpL9xP!Lud%Zfg?~xxO9mQO#^uXO6JRWor4BG*mQtj ze`sh3Ox^)W=(y_)IKI?RB9)c@o-})Ltp&G*lU?Vy6cX+MF!J0(U+7o8I0^brOhQ7M zP_`WCHlKloH8DtV%-xHa`I&Nc%_mkiwpgGdKLwKT#BYM*`zZJXQ-F$fViiqx=guDi zFQ`=u3KHny1GG)oT$SnuFs7rc3*_IxR>R`p-~hf0NRC1Wa{uAKlSm>!{-0SXtw4cm zJ#&rld10Yv;gu**8o$2!_2rL1EQrS9aV%J{b^>cEjQ2E#1|Tc~*JmKD>$;aR433gc zOYMQbHVn^##J3l&7}Jj@gg$3hDY`c7exMe%+0fKmKiXDGA7qN%;BL4Jv6`XTEI)zo zy@t;%wyoN2%Yco8L(R-r<`coR&zQ|o7&PPq3bq{mRDQ*Y;<>3DyY73UukQ%qlwVm_ z9cIy{EdwuQ-6F)YI%`ar+jV`7bIU0QzklBbAKw!`y}R!gyu&9cAbZJ3u3MhivL^wyO*MG~Y|@*f#VKW&n#9~mD6ERNBj zpaRqgtRSucViv_AUA8gN)!PS@fe+zU(KodCd)6781qAB}K(?6wdqvKHrHZ}|8-BdY zZlK&&e9w;dE(9ZPCAboT@We93SBcr?*-xL=S@V*hAN=S~klz&WaNOK}^(rSP?p3&X zZnHu4;Ed-^m*GvsjiO|}jl7PJ03t`*bhYGWx)tsPkt*NCis;b5mZ-Ms9)S=CjpMXj zv8JCWIvw9$*;%0%;uboIf>MfFhd{N5m}><&$E({;xw^xCeh0=iAQ%`9>;N8x!D+aw z>j0#nt}mEDCDnJQ1_qMVtF&&v*dxXR_a5@M5D@+@L0$RzHW0P@HPyV>jc?7eppxDg zQ6XLxK{P%8mb=C5YtT^*)ys)TFCT`a&4R_16IfZgt5C@ zUan4O+u!nyy?hH|MJM!pVEdEHW(6B7TNt&Hx;JSEm$%u&^h3}TBe<%O_Ko6Kc?S^> zfGtJIvWD^aXj$q?d&YeM-wmbt?Tu5Z<5@JI%XX@F=c;{uL7G;L5nYONW(=3KBYqA{6*t!e7^s`8LR4tdwjSUL6-z2-KQu(g^$T`8&IFYJr^B(r4J!Q=5+as~oFC zdmf0WD&|q^{NjT9n_kk2bm8_fCUR&_J@R%gCN;Qa293kt{BT#}Jfx#=1A$v)jPfgF zT*w3_$d|X0-5{VZ&U&Hmx^H({K=8f16V6?w=y{LL<9tXqD6(b^i;5H5jM-b!D}fy{4E&o;I<~=_Vgr~H{K(-c`CH} zRu_$-K1a3p&aIPrJ0E!o+pF{$6~AiTCikyD3aG>+<$lkUX!WgbmUeD;Q*ZsK>Ha7w zPs732KepWdh<%Uy*BDIOHI1<5+x?vscbYB=w!HJvL?jiE(uV?-d`IGnFZ@Szk^htTo118X<9H&yjt5q+<}2)e_bWAUTA@5K@Q zM}q1Zx@}EU@%EIYtf?^q3g03ZO_c5CKgRJppmWt1V5^+8-pcn2i|-G^WXCG6*Wv4A z0qca(HpObM^?K(&Kcy{>BT2D?=pP(jC+kjk>+`xdbj1u+rcL+0*87`w{b6G##3t*n zLrmh5_Ni85H{-wUnA@qISy;6dvs=1d+ook_W94A6xKfW;*=f!sxIXirhVRr9}QKf?FKpBCR&s8>em4sSABpW`f8ZKhkb?Z47|<>n&}=YAQqvu z`&H>Zh~s3Rub<>Iue$%~GOT48e}HLp34pn?HTz)D%h`^o0dE?bz6(*re!KW#Xf?qq z=OBhlv+gwc=DYOttxDQkdXFP1KN~`d`QU)@DbM_uN8~YNXwFy)4`ovC>N^X({bN-> zCR2a<4XpN_r65M)fKQydgtsWVG1z3!mfQq-4HreY!-7S7= zWXJtAR{uq_E=7k>az~4+6O8AG%DriMM|?C(UfQsTq!Wy)BM>{7rW%rSQl$buTa6Ml z;tg3{O`ra~vG;6hLl6DTs_=I%N}vX{!09I%yXvS9JcGB|7x?kNB0ipb&=^i8(=ipw zL(qotP<_>yi3|llqP#WtBfk0Wv=j`J4f@Vtv%SR4LEXX@6A`B(r;HZU_~FOm#utL~ z7qTQMuFPL^ii_QZMg|33OJ)t|5Xjii!MLXA`yy0J!-TAS0cOnT?Irlt<}p1}=0#q% zLZcGVCXzFYwJ>*%h5NsacR}9v;@R(unu97uKjNH2;eSvgQ+a)gYf|hJ=r2^mtRHwpM8$_W9v8JYTz1Jf8e;P`uVj>*_ZOQBv%(t#|X ze;*P;{rYae!8J=k#q`>R2i^zX{`cu_tPDm~1K)xPj&vdL&eomWf`WYysd1=w1~j9l zRf#rNOIusSs$~CJXh^5;bvX~p@Q^nsGr$mW%8AXJOsGZaF6HkJoC}@=Wm#2K8k}fI zHR733zoVBs=N}0H6#HL70MScu(wSTtZn(bjg zqm9Y0K16Z>Hb7_hiID!U`(Xq0e(SUobxkeIYOZ ztP+SEO8;#YIorv$Qvh`xYHY8pti%9QsD9Wp_vjcVbBqZt;o$j%AgpvbvFQ|x-VdKq z0|x&W!KbNsLCn+Sb5)$QgCi~a(PIqyW-_px+};qdnCsm={#POrBmy5C6crUEI4lGq zgj+BW7K~t$*)q^bD;`tMh67eyU7aXYrt3DAQ_XU4b0-2N0$|+0nP|(OX109y!d9qx zbYz4Xv?Jf8ZJtJj1cCOgmwS3a$QL6ux(#F#@~7L)8S94SK~$SHfPmB8aHzoAPRc-q z1A81uzCq08fR=6!-&Rw@uUYN{~ z0Lgb6#KyhopexuijKT!3@n}{AdrNS-Zc;AV42tOd_{IZh>HG>AnoBPZF>^ zNkJ|dpq40-S$!>^q^~hR<~Ydq!4!9V{6S7U^S5_cMUSOFl5-3`fD{2F`5;L2Z!ZX z)B(j(u7jVAc%@`&=)&6#j{pur#eJR}-gnr71SqpcRMSRJko?F zlSXRl*{MA(Aeg~%hh5;73|QdCOlz+)>jCN!e%0d^%aS*${Fg~2mhQz^Ym^&nb^tbb z*#ZP<=qj9D@bU}3C&`x+)*~Sn&`nG<2qH6og*YNyZLg&JWGxb|ckpkatMB;meR?WO zBL0t#s3P0l*JobB7SdBRK)n_d!s`CdYKKnujy!H}wt$HN((I;zj|9y20SjLB#f$8} zI1nJ?L7S|LvvVgj_PnMbf0mo z6L}QH|D~&?`_-;t;?FbAv7ob({^SJH+Of18+R2G;Q&{;B^(a?Nu@SjE`EKYep&SxCEx{dY@JpgyZFG0di2@ zW+q~xyzNwR4p^E@5+)YLux#8o0A=hR8J8XyutL6ovZ`%Q3@&NGTbL{{5Pc1&;eQiV zpIigk@|)mb)yAcIO8`{iT4e_06a*j|b)g8e?u0*uvLhSg<#N-;ud^*vY`EFjavD;h7`A9az8aLp(qYo!ZL%FZ++-!Sqva2`~<{Ub@Niz-k!W$)%X-W@nwT zdGvX?ep1z&e9jd!(BD3jfj>(({eILr_SV+rBS|;x$usQEVX7?=+Y1V63bTfOHiyP{ zxyZdI{=m$#Vn49}7;_gsLohAm26Z{O+gH0=pM!%bY1f7A^p1*8J5(o(M*LLukaWOFMTZZEKW2?=pX(aU?nub$wE zdn{0B-4F1*#LGMWIY^c7FPzpw8pd^u2WHcqMok()U#Vi)E$rU)1+MbI^huZjqvIFT zo5dMonfP4$4yBRnH0a0vcT6cGDBQz_aDDq9Se2l0%;?>$swrb-D@#70@!c}QjK?DW zbCAmLx8X!WD8l;`=dLF2-SOkZ=C*zXxLbry!*qw)BCcfp39p9l2ezc12fsqUZ1>ED zeaH26Rudn5Pf6-GCxsm4^L0{4i6+52lRds3KjD zmzU80yjs}8m9}VDk~a}!5~M%JB>a7s%I~A;x3CA#%cT7RoHhX+W?1y{5;AqCwx*|^ zZa&XeD)YOKB)5-=?tjCU)pkLZRpK--p<;madt=05_N&8yF!;MLC>WUpF< zC06~oduMUs_Tp#y7Wb{V14I9ilyzWE`Uyb1q?nd$x0AHR$@hBYwRt7l*SG`>gxbTM zbX=9perjv4e3XSjM`*Ao)QLAVGK};K&Z!Q4voEHn- zR}ppE&F-(k7gFq+{T9d!lwyM9M?VcdveLNVeF^%xk~~L-XM_pkJMK*T@#CooSmio$ zsnXN*7DkxJVV>BwWYT4fPM~%6FTPi#_((W2E`gmx$4YVY2Cu2w%bS`#v-LW6hmZV+ zZgquh4eEvz0f7rXhIJg0nXHBicLhmtPjG64fsh{X8>NKbKwMgZ$$V?9r-al5(d@wN|w3sle(8RcuRlG*ry#R&$;S=ZMtE3dw#()%Ob)Zs_{ zIL}@XMM>kCDn8P&Ctx_Zy7NjI$;erQm9wQ4(&{JHynM0-;APb^!MFYhAVCam2_$_$ z;}FahhZ=_vf{FRLu+#4du9JSyH)(rZCP@@XShjZ#4I^h~XLn|U&l)$0`*VlI=8`Bb zgg^2myqCg99DCo|T#o=_d>q*Iz~&fA%#!`JL+5B9jzwv;a-jM6L#!SW%-^bk%LbHA z&~`|UjfO!Sr)P#rnZqF_>U}MS+*c*+%t&1mj-hmR(FEmR=k;D5+!1GbXM0F^-;P)UC*s z;FiZf24CG2^CWZQipDmRGs&*iBg$k~B?r{EBxXFiuK;iPe2LpPHj+x{haVc&kn8J7 zgtu1{g{Yy=iJ8amWQ!qpx;HKn1dFx!JZLO+$CoQ|QmVLhss@ znDzBmC$8@VeR1Q4=S;!~vs-Oh)fB6fs}i^of0bd@=C`Pt&4ekG(AC`OO@58N8z^(M zVi~ykXOMh~j~--7TSNUL!303oxY$_w=g*(-Zhs@lZ=M2F!R&?xJ+p(By?&`;RPXCp zNsoe(QX;p{PPmmJpHXlqN=Yv~$hYomrJS!BllWw!mUCySq zs`Ee1R2hO!#T4SOk4wbUs_DgO5c1P3C~{1rljTV_2xnzK@sV%q4bD8jGo6(ze+Qnk zwf^OY=#vakr>MNwE;9{n*#D`pN(wT!hcRuz&B)V(HM7Yon=;o8oug+yTMc_rIGf4S zwo(^=l)5b>_b4iDcsfV;&;s11T@uAgmV1xa;k9RKYi1LR5914iBM{K=SgKLGgsJsy zN|F?C*jbl}2_&oIYDv;2)AzSdmdKthA04u>VZhlXi1J(cX)@$=St8v6m})BT$1AN9 zUr*PmYZU5yM)mBRK?Cr9X|ib{BwP(+MWaZM?dr7nik(36_>&G6I%;D}f#K1VQ?w3L zzoNd;8c-+eX!UngcL{v|o^(yl!)+5D`=Zo~3tT)4_s51{Wgk(;T?XSN+6n}ek`~`C z>|kKEPn+0p;h3)ThQId*q^wNVfM%e`RU>`sSHFaF)oB@)n@7S|WMHb(PO;N&NbjTE zp89C-b(7r=sY?}%6~gam{VqIc?q9%)?2?n*C5rzOYyt<#rT0{}HPRTzBfbY)OhRIY zs%pQOIGJRoAA)J4DvFxp@Rhu?$SvPTILu^uHsG~d6vr0anLo5559e0aHgj*H=vn0+ zkXCn`J6oq&H7%+8P29HsGUncYqJ019ei&jS>Sm*4y=*d_hjzN9-aqcgYwCIO>=G55 zx*xFa3+3Xj12QFo$92oH!aNT1vI3>OPtfxaYO_XDzd)-f-(`rRAEwXRFrK?LV}uOVj9tT#$$w;%kN!n-oiq}RPYZnZeQzAp&v*`H@0h|Sp2 z2*m$~t(hcZ%^ko-B6%g<$|L$=kD`_JJL=O*0Y(!#KY*E(;Qao#ZvFX-cHQXd(L$fqfh=F;)%{tmjF18cn8_0dt^ujVQVxV&(l!Pk zuG&7pAOoA0;{k};f)VXBv(}Ie4bbye*Ve$8+?;(#gJMF0>T2krY=$4EH=V!3xew%V z9~wP8JdA-i@x{Hiyj)idN5Soo+{2enP<~be=#x>fQ)P?78s|UnfGciz8ODW~7~EcZ zKkFj^T;`uKF#66$V}V^+U{o&)vy$!q<<9)_%d*aViOiZ?P)> zJwxF*bTeKZ-h3Rih1`DWNM;^=D_zRGpLw_af)lzFCzbmYlKjlRINo0FeYu3^-^542Cft_EmG&t9qHaVimXc{a~6 z=nAO@yl*QjD-iv?$OSC(Yt-}Z-X2&CUvQs5~sFE2=#xD$>sj0#(ehyYPj z>f9&#UgrSS>sEZlf;qTG6LRATxG8}GXH9kXtti!M^<>pkef2arFK_E8CT}A3-ZIe~%eTq_`@V0Gu}f7(0VzfY9e4{?4NfFG+f&*KelEsOFiz z4c(=p1FFxx!cArX@)wNQzByjD$6a5_39& zf6fnb-iGn*FO8p6-OUB{;c|!`j_M?n*nNA6n*&iW+gaMtX}gAS@gQcL55 z7N=ygJR`FNdeLP7wcoGmW^FTtgqLM$i0Fer=R9&Z) z@}p;|q7r-xh~8ylDUBGIB1T1|LGesLsQ<GR!iYDN$-i&#^7~EMZyQB1k6(ps$Dac*KP&Sb(MV_ z&H1G7Z59Y$%HVt_z@>z70$gv4+g@Iazt)8EE=mel#%^c>^Oq^*8C|{ILF(Fz5^icO zd|`Yco;O``gxGDoW3qQ$lR8>&V*{hpodJ}BIMjQ7D>_?|Cnj4)jlvI!^x7>@%1s&H zz~ue!ci~=VJ~~yRQbp+|#r>^W8CNvbb&GxsSKfgp#TLo{UoQIsX^GT`1MZ((in2|$ zwP8UgB>Mt6bHBI5hQ#(4gZfr@L)X0p((MU=y8)ADwXOhtkcxClYTM;ggs$(yPxuQ+ zU{0e;=N=<#X^Oq)e#>;@<<#TyxsU=0bhfd!n2^roR{D>4eq#3kL^2-)dOp!GPiyVf z9+aJvYLcecatdtx$fgDpkQaQO#FxfFY*N4n3)6<*W=(8p$tO(9gn zqUfeWZcDL98$(~`fS&Y9*{C#0I;y4yZL^uB-!+sw*hx0$yKbgy04TC7S!+-wQT=G+ zY{pNb%t0b*@-FxJt6+x$@yaa|0$a7{0I$ufx8i$mt$FN}lLPHGG|ni$YG_~8MzVvU zdXrxE(Vpv!O5${u#B(ls;)-NnNI~_mQ_$^EPPHdR>{Z$=*!`5@t zdkmeSpO{}?oMN8*kdop$Gng(c%i?M3SOz&%YbWGBZl1<`=tOT3q2>@1GL&q5nI(QIHJW?opx0azVu?0g`7-WD&%*)C1!iNt z@Aw1~Gj>;iW=C&$ziLCk0M{U{xC5VsFo|T61NSk;=Bex5xYutiygTgijvYv*T{}RG zrhU2GldFYEY87$E66P5djpuIb)G#{HhtBq@QjnuWDrdX|=J9|QzUrZluLH zsUh<9jre>5=GhHfprudBV+8I_Zs;-rU-^$2?u24E)lF1yD_BK`!&S$YL2*<7-cT$& zDu`nsu0eU_Er{9LmV>P0O_m^|&zLfLULU^;>5qURHmg7S1SFm31O~Ve6@`lNTXw0b zBOP~T8BwGeOpWQsW)=#@7+>@s}1#Hv~jPr;)R21*Y3t6@ti{m*V9iuA0(A7 ze1kbeCJ(AXqa^{fvMXs{9~V4J6W2EH{m|AUfi@E@9KM`BKhL3^2{e=(qUaX$uZXy- z)Yo-%_3TI8PGrb;zMLlk=iSL@Y9L0xx_NZ~yc8`W9Dxx_Cs zf~|*l%$5qb^L@6e(7-_{z3 znw77yRCkbB2^o5?VKdR6u>l>-B4;*8n^rU?Q+?P*PfBsT`!_y|r6{QAW|8)LMCOThUG4DrTccnst z!pJc^{!!?g*+!(7>TmK%S3uJfaJrwi+~m8Ua;N5%^{a$d4~40-rh{GIPJgrfMT=-} zh08yo7N-)Mi++vl#}<-(=ThT-6yY5#;MykLsEI}2msmSPp7$c30ITlPnpc*V$`T9% znAK%^0A@qe{li!?o#mV`q)M{g+h!v)E~scWGC87uZRu3>j;W*xysAjQ?jcu$;k`4Y z=c7%pMft8Dy@~BXq6g!$%H-1r)!tjy?1YV1y_$<0R}GKqB3%`S0||yKFr}?bw;0Cs zYm9Qw*MkZ2Y%h+d=J--#$Qx#tKqFl~a&PM-sZ|D;h-Bg@foOxu-Z{d;{={|JrpVCa z<=SEJ5{M%t3r)sPkG$p=fBuKIsXbY`&TruPh}wr8a?{?W-;3R+^+NKthqKde+j?UJ zxV#v#W+Cg+)Furb3*v^s%XKVv#U>@*a;Qz;jq$kiZwRgjcSM-B?9or+C8x12JWOPr zp!;-GzGv4taiP@d-}L%j^wt?dT(vpNOGeR?-BiOow#@)8l zWp6xE)2$2|mtW6?x;_Y4-{Xdzjdhp~=cy-@4BbiWq9i0M}_`#n=iVn@nWPV1o0uPp6T&$%8Q zH?LEoul%A3ve$`*8pUv5k)0y0CEmoQ&Gi1LYMr5wSnJ%Osx14jczkvP|kiCQs zn652{mMfSj z{pIVBmUV1}#__Sf+ac4nZ}B|LqxAg^ze4$&t(>N|l0v#C;zGMqaO|_2`|T3)>+y2T zhm%Fd#)eLKSr?>P&U7ly<>Y|@m zY9wWqeu3KScw`{}LbJ#%aHta(9T1${)J?Nkk?FZRk!$1fB9kRday9Y(fZ>(Viww~- z(ZD|b1C@@}UZ;KGn>%~P=-L5q#+HU^Pj65AX}TL_xd!QBK`oPB5LAN!`x3A_i0#n- zLLB>WKI||rIG+kB=~}KBL1%cI-g=9is5;V}jAwmAQsv1Lt?9+{P4Pw>xN#rtt}=mouf zAKc1)t8c+V%|yRje??7QdM|{&%9Q@Y3_nhPLGivN%@yN&X;16#nkes8N#)vqb~oqI zTQ1ZYh`hVfM%xcJeDMW6$K@C#^kI|g!;cCPSPl7jrwnf`B~&&x*trc=x|hacw^ z2#%*DP*76-#m}9zjx`kYh%<&mE1%E9I-3hF{JEykHV|7s{V23VVFe2z$@Qw!Je|;P zv+`UZFncY<1|fM3>450kkSgDtM&`&@Aib9_OL>{3-KyDlcSGJc{dy2$@}1?==6)p* zqjfml^bqO68%()`p+iN`2Y>I@y<3~oXy@XAk{h*v#YeJN0ILdcX$SoPx3++2TY8&h z^Yj|W6mxE-FQaz~iSH~@ps5`69K05uqdFc-0HM|E&2HDOE-1~7tMIvStkaJ%FL8|n z5LnMHGI_E)#?Hmdur`=X=G-lwV=+8bOD^#hj5n^S-_-!EHGG&Dtpa^W+qK&_ew4KF1vaEb+n)c& zuTtne(9qG%Tc42ysi>82xQdxCN`V~Dg?UOO&)|p9RXe{yMhm16rec;Fw$v7lxk`ft z3inS6Ca1R+k7i-iG|Jb>@sqW)#jmYCc^{@~w&GHqI@QASJ+EFm1*1jz=un{wi_qT^ z+sQGP8KgO)DWU~9pcJC7P=0HOC$v9Vd~Q0rtI*dHfgnM3$s2 zT0|gcf`SC-k2(rf%(}n&dBiL3!dKWB@n!D|2;pGDEMLU`c2UmNxTmf5qE_pTkkcW? z?f~zO&AOGuq@FkY{-})0MG4Nof+Gv1p_`5mO?^?L-{&bp4>Y)e)(4i42P`?=y+Z6eRCfOGDvnO)YttI+aY3?IANyVZY;Q^xGB``M$~#;{ zo!pirfqZ5Clyd3yU@@q~b7mA}T?pVN-M&q|8rU%Ud_zFbll;IaTmEaARx$HqNm27! z&d-4mCSoh!gl8948qBFDEG@*XIvWMid&I=9tv?!u^eoG(d&R%Jlk#d@(##hRO96Vb z9fWkTaFzZlC~dWJRO)Ko3fPYQK0k7>OXED~X_rdgHK7NU!@Jq`S7-b)?0yyy*R7_s&J9uA#bsr5b?re${_L_IadX(Xg-&& z$J_!@i9+G-$WHEor@Y#MFHis^RY1&3$J7N~lM=2p&Mh@_SO28%-O(66J?+Lpa$)#g zg9V>JI5LJ)x9uev|V&5|l5w2jLmj{8MkedFCb%>dA+)bzY*lr&arLZ7) zDfE$ZU5&}GI&Afv3$q_gSLYf601OBRu?MJ*#DpX5{YNB_`!`Ei&6ZxPRgZ(&GDC~? zk)O{xlRwy(4zZ8hUl6N24N`b^xZ>?rcI!4*uukd!3n3D}Md{ z6@2i^s8HelM(Q)yd%VwoifFyWmJ8YX!GAh}kw*7zCh^FYK%@^sw@%J{df5B4nb&n$ zoGI*C$7d!9^9W~_)+r^N0XgmlJzzGj+56n1mjZ$Bqw&gn&=`4U42O9Vi5i5C=eV+nTjK6@?h744QNSFR?t#9^ zd6JHX=1J!rs+Znw6!?$-R4Xe$8)#V^>*##fV+~kh5saCD&?P}qVsLnvf4(~nh??;W z30+}McZvwC?Qg-!{b-I$pQ?igeNeeNQ$*-y0B&b?e*WOM+TV|7$W9$;_;mel{V*ZV z=AtTO_ZL55BgO$kHqc@Qju$_QUM3SfdnN&!)0ee_gH=9NAe{~Ik{^|poe?b+o``pAa}kO3t=sr+K_N> z+vTo|^VF1Tw|6yp8SV|px(!{t%xN>HRN7pu#J4&=Z_%kezrXhrE<|?mUr!;BJ!a*l zS<5q%qlGbh(8N}BHMMN@(JMIRQ35_$e%` zE=$oYLU@aF@*M~JEB^#BWv0(&wY6;3#wQJsBDq$_xs`_hv{Rlv2PR*?=x5*=3uWjB zk?&v04Th>RdHtliW^=w!*MIHL`JZ@3lFY%)F_pKV{R${;4+Y6__ouDCp+uvF{azQ+ zSZ>mErkT~F3&}La#k7na;JU=)%_-7TWKrp)voxBfEL9F6W z`*_YV;*%yF7*;{caeZaw6PQXfJSWug^Hr_AjZR&Y&u2gN^MwX9hH*-AwyOFWtFpc!vY~vUr~QtRMH!Bq;o@=KF_l}iO3lj>29> zE*lX>gt02bA|fe@mab$zTz_~v^NCiR>e20hzfuiNpuTW8v zFnzKf(_)95;&Ee-ud6Uzuf(i-m9F4RWUk_YGVPZgkIK_nqFp)Bw+ZQ&m;edt?YyzK zI@wHV%}>?Aaai!J1aWP`B-PXW``uxm(qed^4pktC&IMjxJ1;9*L5mx=w@s7sigJQi z%~)7Hc7Z0b+`9P^*FcynnHJU3etvti(?5uZ_tDre?C#4)Pkz|y;XIZ$hxRfz;|UV( zF@Q6bOg=7$6F1lwx^7jA4KZ}%W)R8wy7-ly@$gH>btT@*=yQ)$Bj^B&HS|2Y)Ca>T z_J;|dfQje>!r8i&jpd>j><^nsZbk%lNR8#!Y%{>Z1tQ#nJ~I=)r97bFkrRJNcJ$L0 z2#!|`fWN$m?MTjE8$J34&j6!--r)ib4(;Bj+CVY-K0#$)CI^JUR{lSo+tXo`HuR9IiwYc4Oft*p4og^^->U`V8R(A+`@@j(<D zv;1C6P;_3!`2JU*;rM*oI~;hnvQ+<{+DSrygI;JmEK)U40W1&~zf+@dQX?U$HpdRC zb&)^|ii(N~FwEA*D|QpxfufhiRDA$iOxAs=LYre7Iy;ITFr#*B+h6JT zaG+(EC-85dF8@bKi7@GyBY>Z-qsatnWg6mHDpn356Mt=g4JmVwOos>LY}-B78n|=R zZSsq1zJvd498i-xZ#~n*xP^|lcM1MAQTDss8@{41bwFVbXs*9LM^skl_h!hRZ*tBK z*%503OS3;Cm>pDouyqbG@bG!`@F=vPRz9t(VSG=JQ$?pmVaG>t zt&6v(9u=#7y7+z%Pq3aOcu?0fpkG|cD9v%&Pad)G0BEqI-8$xaP^FJ+g2C&lvH+behjc_iVy~5lDJ&z=ZuEh#ttDn z0XVubojN!WPo-+>>WTuR&&zpTb+vEsA{8rBaQE-7J{7>@M|Ecbj_W*n z;cJfl^^Jjtm?z$$#X@M3FVxtky$9K=#e-c`;-rZY_pYqHf>#^do>+G_b0Q|y+3*S1 zJcsT6$p>UR97m_Cmnu@s{whDXHATLAjL`pTu;i@a-4cG`{7TPLPz@Lb#w7G9+4YHIw>E%u?qS#R=dbj8guG^4 z+hsLdea%H}i8=|1H>Kk{ziYa$WYJBYa;zPRA1_Wl$3_;E zHR6vRI(uie5_IkW$RY*#TeVJ3_=5OHiC-JaxVxmO^w!kP9Wj(QzvwUAn)ccpYaI%X zrS|StWcL%Si{HI;PtJUK>e$kR2kkZJ(O+jW;6WPGdC(Oi=gf6BX4JX~u*K|UawOLT zC_-n~h(8o2d}qV?AE|YGNKy#BNqqsmqAM$QK(K$&Y$cSG*p{-?WKi3@Z)(t(h_Mpe z`bot9J08xZFPw;V0DW#&H%Ak1oU)`5=}yN%7&?sXo`ugzYui5pO$!)vdYcA-*&RQ` z1K(hzDE=J;Lj08S5~s?$gqM*tfz+O)k+O`o4c?Turv9>pw=~HWHvbHRnBEo%OeU|B zuk^62opopy%h9j2@~qkPfx&AEJgc$z!}xVck#8LwH;Z;#8M_a{>?KVCY6p^?+ar3jQ!x=M>ZTI?$6d-@wpo_E4IqUQbVe$l<< zF&N{9)KVW!-Q&2l&OYH#nKm)ua4U6P@&q`U*kpi9>;Ci#TjjmiabQnQwCQDWJAv!+ z8A6}2PB!31n|!6Qgc1hlcmK_NNR3p(x^kK9hSb4O{QK_;U=HKY7p1c~44{<>=rzCr z-5Cf3{!=d?FmMQ*A0X`fG5DDMyEG_O@9aKw*SX~09V#C=qAm$Cr;!moeqmt@NM|Hu zRyRL>JlDRu39^;Pn&Bl>oM&=@VDbzEX4`DJFz=tJ%W*=6Q9w`D(AkLsPf*Jw1Uo^a zO5l1Q8xg@lQ0Nrem+(3AJkt>XInvCGIsdI&{XD0yeww@`2m)%&+|yD2KTd#v8C%)sr6G+Q;>GwMI+CMWm!KmRqw_GTaSk{z&Z08q%4?BAW%WkCwVQf!5S zTb<6bszCp<6u|kqTCrl!s(Bw7H~}zBJN|F+DN7HxPHGhYONmOo8 z_&6+Cj`EC%?>!g<0|nnvc>5L)*$V+0AhNBlu7V81eUC<&a*6YH(D};r(CnMHgE&}4 za7SOjM$B3RT&XP%IZfVAiw-HDn9d&pzctW*gmpFS}&y`o>#jB+)fLpXPGMSi^Gz-QE2nPr5 zc>=yWm^;goGkW&ywbWJXT^Pq0$IqZ#S<>Bz*WlDlT(cie(qHqj#2AsDzJFA&0SpeR z^YZevjEzyMLVz6!q;d&qSp|WXE{-)dGn-9><^zQbKwuOAK9IdUTfBhIh>|*udwNcR zkd6b2s^L}|LC&J2^`gyNR;Fr|gIl^b;gS*(KlDj)xukeNTe}WaEaT3UGyW;`fD@Dl z8ektj6kJ(J6tVbdQ%*9&hi>?H)4Qv;8|Yt z;K7wpAgh6*D&l;9Kes@p5N+AJA^zx@j-Bi19TEiP7>L;yNw*9VT&5V+ME%1&?M{}M z)Mgxx%rEx5=iI)*l#!KHaf({t4Hb$38iYNU`Z=**`ICyie^)_$P)ihh43?CXF_^np z`WRfWUVn|)doF{GB|W^J2D|`brk0o&uKJ-fpX00;pByOwpNO2n4>#~k72quq>WS)n zWni$v<}b;^Ls;t{DJkP$Cs*{AW<7b8@+K3{iG;K zBEE)A!6$io^Fn~)cTs$PcdDQj#x}Z#DjOEu8Xkvuh#xonj3nI9LAx;{47 zdQ;ku*gDPDH%72-2Qahk?Bn?uQE@f7C#jV`x9*jkXH1<=_fmEJ;P(w!oDyOakeLU9 z??4=dYyQnrSTut=f3pWHdE)Oa%Q8b!z7O^H)Y1mBJmdFq zrwz=M#BZCSjxbBu+~Mml8%9NUMB`I^jt_!xXnzJ_p~%+!3R^+=LV)OQePzODk8zi8 z>BB}~LO^?PV;Q)QNXgmhV3PoGuDs{tfef^@9L$qRj=$#~@I%;|zqGN*?rYi_0PILR zo7liEAaGMw60=!UV-e|PL7iY^7W>1Hl?(1<^ zZ4Lg=+csz`l%G4YIL(>mVc76qn%OR__6$AxJ9s!3%V$%IyWbu@%U2beS?zHwIJbME z{a0$ILOxbLO&*8-yH%bxu>0oXDGH?;C+C7wp0Sc#kIm{vDCu#@ZRLE}Wt7+9m4#zk zW}YIHtsg}!Z}#lg<6$1MRdcCtG>XaDNW^sNde={Gb*YO_xrR_b{g4la_>E>vm zhf?S@eq1&~ce}^Lp7G40DAKOJbZP6!_9@b{TX|NKsah~?{FumV?XN<+!=R7j-aMVG zWqnzidS#dnjOm-t!VfPE@3AjKx?d+u>(OaD60K$Hr>s(2=~?R5S?#+er=0_Fo$ni4 z){bynwtqL%%ICS~4u$PyB0M|!GAuh+D65SXHpTZ3zF=>6e?#rAOb(Q9+-8v1-WM8{ zsq7haj?-u#@UAK>>=k--jaZ(;n-YH|D}BP*>5Tv{LOCTqv}_s;6Bx*1o|`O^3za=fA0IaUW-c;Yj>5S*;~^yHoGt9E$^)+3dVr) zio8|@q{C+AO_xG)P z@x<~aL*FG*(9)+&-sNu`9seM{5$3aoG1p3%?MV?Q7OJ&bUv!)=C2PDGfY_G%YGzF@ z?MzfHLuW{Yk9Az^s?2LWW}33x=szR)o(*1bhE-K7pLB-N7k6j9P73rnFtqW_Qb4(} zUj9BcI#9sIP|0(OJh^1}4P~snL^ImsuK;Ti-8zXoZ6)lb8E_( zT`a=>3{Uoveu!fn9B2K(j}|(t$WKq-)4H(Ksa#8uK}UpT78~nJ(t407>H-YE-XU5& zYcajOT%bg0Ii*F3FJvb&wtw~G^)J}&k1^+V!O~K(@hUgh;lVup)u?ZwAtCYedSE&w z8@2P!xS^`KxjE#W;r_>Cxg)X3zGD=axV5j|x2$k=@*$}PrtcOg%){FGv_Kc8C^_5# zuG9K%ib&43i}?Az&zf27yvlzT-43Fr5(7Qgk&EFSFzKonO0qPQCmEaibDKW9v1JK1 zh24fn)m|(qVL9nrQGIseLw(OYWM1kdRJ1I0BTM&4=H{ch@fnI8VtQ2?sj#`V@I;%6 zHcWaqYNwg`bhg7d3A4ABN1-;EwfI-TE%lQQtP5~b>rzhA$Povy9cljqQEBIA${UL} z?z66Daqo*fB&iN64VcelFnU|9ij-X(DS;MxAG+)7C+>}l9~qR{r(`pL^^)G=PP3#l z!j3zKHyDL{3y)k>_$3)0)24U}dBUOI8i&1-+ETI85^aDPm@a3Vmb6EhU1>0=l@t@Z zzKlUhQpeq|jXS2qJGW~QrL~_VX7H`SI!kA*=Z%FA44;e1n4dh-#FucV8^)>X`u2xkNf3DN9pZ>_>OsjI7q>?JO$;z`(P&kCsQ{sJh9+M*kVyLxU zT~_VOeQa7ibeewU-sG5R=Sz?d=bLQ5Ly9Qp(IJ-4h}H1VN1vmb3vK`Gn2Z;U&k7*$gflLqH z!5$cOgY5lRGYnM)B%goi=!{&1aOgjn4shnzvV`vEc@*kOZ##Yz=?(X#gWP|Ds*pTg zDMexEkgP z@!jdU0IiDNcWE(T>=Pw(PPhQhe$AD&~pz-@vbFi*Apnp1W@ZY2}6GNo9T&%Co3!eD_%q+&&0Lt>~IArlka8pJ>LC;|2V)fDpJ4V6; z1{)cyOi@5i#QLRk_mP`EEF~9)HPAfToQ(sTad&rH+*l1UO@IDG6ql3?kL3C_lEho} zIFOM|@E5xCaz(z+<78%)aqmE23oU~C2L}^H>T|&S;yG#*yY+Hm&BXVfo@e^^OaIim z7ibt4_I;Ne`{Rw2PpJpt*aF)6^4qs>S_UhFJuT;?mEWxhw&l{P^1rQ#!qqlap?z zI>yGDy1~iKV&g|K!5EVnJS_+1qP2c}>T-CPCrg59BezyCbc0AyC3hyQ9MHSR-jhhJ z{^2FAM(lQV9@4f7jV>KlY)=-;{$4Mu8)5+zr|m*tnge)&>YOeSQ|O>x8( z|AfX~E9%hTa2g$!zieu4tpa8RZS7v(`%9DzKOXUYz;!`iNkW={Jn|WbjBQ=%>c5?> zeo>c67FO009`mBQx_iI^Le!!vyBSo1)UQo}(XX4J=vz9s3OG@vVyaot|EzhPJ=|3G z`<25UD_ffKg>Q#xRL8rxqm}i0e-wDFCm|f3{{hwP!d}G4nbye53NN3|Z&pP&f#~=K zs+$d<&`KVMRT~c>K08x@Fm(YT{YEou1yuSmLS$Rf8a>Cec|qXIAC(D8VjvMHkp0`L z4*N%1W#36*XAq1aC#*wfrj2pr>G7B@iHfH+e9b6L5bMN!8M3cNQk|K}tFKCzGLmBq z1UTH=lE}PpnCdlJeVCH-u<2>sxyXVG+cEYqK0}Vn`0KOrGgQ@Kb3_mh>_Vr6^Rcwu z{`(#{WGlreN{OV}H4wqHvM4S)uX#CDxRu!!u`9_Q&3Jl3rq7TK-;I|&hOUcS9M^Cp zpS0cCPPU6noPlFKCxpoAxtCFOI${zxbI8Yq#Lh)7;NO+=VmkH9hIn*eK8sX)IdNUI ziO2okUh4pKBeXa_YU-suMfl2#=eM-V;aVRtnO0q-m`T+<40+7;yuRWuS zm`Rc?=?^hU$>?)l4XJxGJQg3yf9_0gITpbbUJ8hQUiyaUO@;SLDbjV6+sk-9 zUM#qIw_9~T@toJfCSNCxV?|$*_gg^6K<8!fw7ZvlQI4htzlF(NTG&mhJs*E~;67mi z9p+{vsh%2q(YwW+8O3!NlN;LJMVC1ruUs1k(;Pq=p5#x9>np`CE>sDxdN&T%gI%?i zJ)0K4Q_$Sf(rM^*cz7u4PNKHzvEcUEpB69nzE7BD{$xqOn4a}EeuiD444~v4=I$iL z_0~g$TgInL^RtnB@@cx#W?y1lzQ6tAqp)=nG`pybe4M)9j*Q4G;+q*bg+F&+ ztLi32$gE45EQQMga%scq&TFrkw#I4eH&LD^OQRl%^H0QytH+|UxA7gqoql~K}!E6G$#2@WzzBMs9ek)S!+S>Bjx zX!ilOpRGqBSX2oVGh&tUE$%HExIC)=ilb#(tHP%+cC=O~ttY3XRwSEq3?b&;u^czM z@b2^t>n+Z!@8BhOqlmtyX7V9lJBE+qU`zv2?(TBN;+k`C(&bw zseY-iOraH=fC-iKlkbIv&ci76B#DHlUF(>mW%P2t0nItLIYsn>inRLt0b07_lb*ta zGmgk>gFC!Ei0w3FMd8T(8awlyDJ+9ALPIE7?)9UkMQa7`l~PO<3W_)XYvuZTJs7*6 zX&40ynNYe3LN>%Vd1q5UOvUZm)KlHXQuxl5`+AVpOEh?~g+3Ea@Rm)qIvuW7bl|*$ zkoNXF6Jev4SuIPa-m_(FlE%oxqqt6y7hZiY`Hf{{ey>IHDexJe{+^%hMxOGEZfVqL z)WA9n+SfO_YcRQoVK_Nkuusn~nV~d}a)mHGK9M~ayml$DF(+NL+p-5m$`iQP+e3<_ zi528&MzY!-M#78LzjKW)*9{(ad(Y#66HECW;dFW7g1#M~@z5d^O#l znt{os`uX{llXyJE%q+#MBkGu)C0tmGNX-6gS z!l)7czMo@~1OoAz-ak&8fgxV0l(ogJ!5Rl4kk5L-MzThYzFS@+QpDe`+G(bb;EDmT3ZiJ#!|@?P7)}rV!_!8w$qoO~-s}z$yH?QI zPp8OT9vE}wre0umanpxD>T`aW|Bjtx#N2*x^8(?GsoVi8h1cZ1CE);OaDW~7VeFHI z!_tpE;VNIseSs@wTP(y}26HUV7Tz8spkv!PT3hRTo`zpg-QY>{DH>RehCP;38?`sI8DYPG# z)+dRu2jHR5qWua0IE2-5G4_6IoKa21veG-as-s*rsPM%lV58&`Nx|;04u4qHeh)h`#wq4tdx`yhBJ61KS!rgn=oIHjd)RR<2u)>U6IGj#X9#&);iO`o8UN3Fn1B|KussL_LdCR|AcKx| zQpP;*bJWD@=a*AJ${(Y6T0Ut@f)Ji1PLlnomI4AXS!6Y&+SgLWwy(1uu&%{YL!>m6 zH(z@tsb*#rNA!fL$N`)S@$~`;<8K`8Y1q-$pprY)%cYbgTmnuDs|``K7Z40-m&i4eX5Dg zQA%{_I;V7R36nqr04swgow*092b5;bDY0!o5Ca zqqlF1GcGC;E`L%*dAn+-)N01VL+-(!xX-Usjk2C%86K??L85j7nVGiknVW5XqQd)r z?j%D1KkGv9*wz5AqjW~_N^l#P54Y{q2hAl{506o>ev{(kBhGMK3J@zyNSG3C&feQh zq?ift*PPi+ad(qmQ*}5baY?zK(F~?{?Ak_mc8UqK%)!dty}c)Jcm-Hc04S${jB&6M zD9Hg8fbcx8J_*H9Vn#p?E&XJ~WIKDfi{C-R#dD~nw^N`<15A&b;dxrxCqPp=uk)sg ztgj17fh}D1`o)5h$;)&*j~7cMYfLz9fE^+#;qOI#{fUKz?*`@04}p@ld3&s&yUm-J zxH#3}0EvXAKJ4+%BY@w>m?Cf#uCmTVf5;?#+ZEqdx z02N^9KS>oHX+E6MG*-BY#B3%SMvaQ~_dnHC7Ohvn9LwG4vF<0Oh4^J1d#-k)KBX=I ziG+kLAfET~NOw^_-1xg!t{S;%j;$ba;nHl?~AA-IH<)XlGeFHxK?gZ|9o#(^Xgl96PTCJf{zvSzv9Hk5lH-pw^L zz^q=e4lriQv@b!AXYGPIpbE!f!byw2Uc-(dzANdRX<^pwyMI)(X5aiOD}U$mD1#j{ z+3t+>-UrhkulK$#Q@F22QLH0#_z&H_Zu*5>FCBk7V%Xa=$|nPLA3D9)Yl@ld3!VVY zxI|wEevlzMFFd`i4gBWVH6+-hwL4GWK)L7?HZnfNy&M|Jo%lk#UG?Vp<+iu{@qS{G zyWjy**GR&^UlSGcZE6Cvj?}$(mj;}Hd#2ZB6Qgg>uTM2K9?U* ze3fQn!mCft*}6f)3)6W>xkKD2j`uyP6UXOEiffzXw@He;Fpry|rNM1+Ha2dFxUp&0 z#?8u~Dx7Fd_+Wj8U%ue!M$T7kZOE|4Q!k4BR3&%QOJyIk@q)hi_9{OtMOOUqv}`3J zUAX3E+F>K=@x#ALS?!*5PVE7#x65jqH@X@f|3!YI4oi=|3xNhn}(W#I_jYkcO%nLs3 zQT=+Gu=ifsEPLv)nW*#nf`CHgq5Enw4Ot8K2MhJBgdk*7u1w-kDtF{&`Q+_19uj%E zo&kS;Z72VNyvZz!ttIu+z*%d>tf}#14+ZO`Dy7ve##21maLKfMnw5xMi`eyyQ6#l_hRHjDO8j!s7!5BO%O!+rcCx`V#LHB>PsIe8YbvD*Q7ov5!SXA(?9aYPfq)^F@0-@F)gNL z0%xRsI^q%bJ5GL=eRdnU8E2Ug=!#wg1>%#ML4`QaT9++An{T~YD(2{-E1+5Ngjz8e2o!PPWz1&3J#C9>eNq58F{L27O|Sr5EIhWZE=N5 z9Fy&IOnWpfT$b;!j+1OxpLVM$;z~PHP^UiB4kMa)_DLe>pu{3S5m}Uy@W-X z=|J(Ak$l}JgIhPJiPG2>;+AdcH@;zy_|ejTHIx@^ZeS)be4`inyqOjjzss}MW%bz_ zUa6=9#;c(SBIc+1MNf#SoLMeXp z9R7#}yGuuRp!|q&#Pa&7i3;cxX^Kqh+aSjTCb#>@)ig8`QMOs>`}yE)U(Xm_kD-F) zRV5BY7iPz|OTD(C?w&qo!5-(z0Iz~M;%YFKF$}x|U;Vm7T)oqGThqb!OP{@4V@fZx zeMgOe{nn{#0=Z`!njA*$kQ#Y3Jmc(*Ff?Z8!wR0qN5xh|+k?XA_I!6cFjKa*vl&VF z6R{O0v-VRpb`XQHN`(SadZtEg94n|~Fq?PO*ry6X7vG4~rD@c>2o>a0dxeo1cI`L{ z350DUjgY+M@?#mIlYI?N09=g0mh;>fdw1yQ2%GBcEO9lc%(dnlPT0v3fgH|=C`}b< zU<2St1^-Q=4VyD?evC ze~x-_9A9QPY6%^7uth)BYgR2<(x{MT#m)7`Cxo?^?EOp*nBPp~12ycCL`jTW$!WeZ zY`f}u<^u7c7LjpO>eJ;quc_j3HBtltmSrGG)7aH|$m(r)4&j8v0(5Qg`(Kic_r)H1 z+=*PgzZhca{vb`GX&}k^d5qeHmAY4%UDKk`ED+9&wqN94(&%QlyRrZTLuzY4;jX-E zyxQ%8OPn6fXfLOf9?E_7*NO(>&KtVd_i8Ed8AMo6JDd-!U!nv+7i2(7F;|)`TpoA4 zvupdQsXP#qu|Uqqv|!`;E6=v~9gJcyyiG7Cy--N~Ef*m}t37A^J!|{#dd;a1p<--! zj_@6nPefMW?TJ*wHTG(IFCVCRfgtdlCl>lNi~DqEt+Y*MjJN&Z+bL>!k+N#EJ$-Io zT&#cNr}XC4cQ8s(V);q(h3AHu%fy7UIk1Tb3lDS`Yc>4Q!+-2M5XU=#J>`Wyi>J#l z>HC`g^2c78SS}qx!Q$-0c?RnVe|$&ix}1IJO$iw%;iLE-;MkOu6hgTd0L-D@Ef^eb z*QS5{V&sPpRD=u&^g4R60NhPHQU(MIFR(oljs*#>2f(;dW!7SE!ZslyeD6TFLQ8{xw(1cpe6VXV^o(Y=@bs3&z?mJdiCv|qrTQpZ639JvSejEi>G}T zly*GeW@smTx0)p3a^ne8<30pr)=miF8#jL0V^g7W0GtxCw9!hhB0)h1u;fc;Kw|X# z$&)99tZ(ri?D$}}bS|&5ax6Ah=hZ74RY+k9NY#PBqivf$5TX1O69e)|wV|J{{lV|| z9w<>*8zH};uuQBXcb1HaQyO?`)TV9!yD7f(+=K+0@VOsC$TA2Y$~%NCg7D#JBxJ^f z&;NQLc>94khCXq`Drg%)RVOktGc!QO3-JBUjtVe4CM1m3VmCpmS}5)S7-yx$m4sIv zq_%lPt(G8#^pq6>@)jT`1!Wu{e`*J=)&^Nw4xBVWQ)%SvxfIjp%JZ}46I96%6Mb%hp+}pV(}z5Z zAYjhKf2-2xa~`1qd$?*EUXV=aCq2pge@OxSe);(kSM-kp;!P)RY3a>y4YGz`xcM6m z#0nG1;%*)A%1|vS&@_>iwm3v(wJeza6vGH9V z5#>nzwx`13@{>_&ah!I33Kb+_-U?}GGY#Q5HfWGjuqN@{n8ef0WOD53D1<+T6Pdq6 z@9FHh{(BVvA0Ep8_4INHNzna>k54RZsakyk#Ha~hcb_ANq&nM;*&L0?%Ok2wsI&gO-VO~56}iR+OxYb#?6$XJ$^7VF;P1%hOSR^4nB<~HCp)cWMfeimWV z)6?hRPc!+buglvA{Ne;gTc6(6aSj{m3qUdX1*%Tmt}{l`4OM`HnxMh5tf!}EKHrrB zg1Mf){w(NaW*Qh83IZmSC&Yk9t<@MNwGmbjs^1hcB`ER2h&duXTZ-z zSFBf$3cb<;1j$7@p!_+|51M}2B$TOp({4yi^$6%`toD8b;URuE=f@AVDxj?kS~F_< zpba=T#*tlJJt3R9hmCXDTX|K!S~?0|$v^*^ zr(MD*-)_3D>9;$-`@Ik^HG9bZErZEW@V@#+yxsv%XP+mU8%gwzgwSg?c=ak_KOgg2 z(dQ}?Qz1_z(AFHi2nxzP)6>&)6@hRN4`Y=;0f4jYbp!dfx2dULgs|pyR7-jk<6m+J zq+F??3iNfg^S^(;jU}q3CVXY`gaP;B?-+s7cLv{BPt0qx(s4Hh1k|sAqFNZC#T8Y# zD3k#CNhoPhO0m|(u{33I<3S2*{kv5TRKpLJa!Pp%UFJ3PL0m8Ynw`CZ(0?j3IT_4SpKbEu4j3*Wq1Sn_T0 zjt_|LYl-kD;hXTimB(%D+jqk$dIbQ*z=a4qG!&ovs;K#v!8sa|2qRVT^Gq|=*3^6@ z+I_&7>@^xQw+vMH8pM}5V)5A9*?CJn&KW|_vf8rDZfy7~tXZGxKdX-bmYTrAJbDUz zAPSck^GFY6BIFY$K<9kH4YNZ^e}1)v;@VjGUs-THpqgRDEA?-!LLx5ycN->@OV2+4 z+kXAu10@(Y49lIHK>4(SP~?m%OGvn81BDieJ2W&jh)7GnA@CMpFg-9p1gcU);j zv72fxi5d@y4PTGK6F^Hf|brlkFs%RQp|H{X4C4 zdO-i-0U?;|Ku{@uY9?X;l>SfoX|d&mHbXNLhXcFkfA*Kd&EX9S*Z+AapvU;{e*XX5 z!T-BifD2z*S|Y#@88D$F=tU?_|M_DAodBat-?Fk=zzrM)8=07-B)G|7hr7nY0&V~y z{()CYUND}Y;|Mz}r7zP`FzBJMCkuBNF8eiQ(J(Tl!ncY%bv z_P=u8Lb)Oon)5%^JYyM#NEJ}cCk1c^a6d#v|G2xl_Q!(114Q%@M0UaBA?(|oww)8U z&`0W%|LJ8TGM(7yGIRhgPWXDZ$Nj(I!T+wW{{=Yy_du`^o2H!zDCcMeMc~E&fJjzQ zO*lh)f2h(`<$OLw8>h|+L)2SrJ+vaoj1!AGqi3#ipl30xn98wjr!ouZH!0U??LL_}UmLxccX5-#1} zMLYhvJ3F&sCd1r&l5^&q?|i@S_qaLpKMx6s6wW$%o%#IH%N_o3a4>ZJ7nUpU8LZud zEQ;MmIWH}W9L@5z&5afPtG%M18%%Y*ws{^YvIW|Ldoh6<|sRuC`0MWl(Lw8-*ID z$i&3fj+(iUvS}UVhsmagSFBh8iZv~*GjLN~N9F9xi^a)ot;sM@n@H6{Yv&ia3j(kduU<=y#2luZ+X}OWa{HPzDRXzi zb?>#vg&OIM!DAM)j&w*+jkb{oBhu5r`)9v$*NVos{;cyKicm_<@{dG{Khe(ndtI>h zOfP)BxXji`m@iHT6KA4#X_L zE{4}La>)M8!-&va9jo5%{|AMvDB@eA{T6I67zDwTihmfdaBLwbeWE6x5pYRQd9Ssf z;6!;YDTg)SC}0l98{`5(W^}cZkZEdff7nkaBI%d^sf7QC+}ADtd!OeHr1GHD?b{l) zO0^xL>Sd{P>KKl6Mtd{Jp6D>azhGfq%lD^KBIu^kogG{CxG_+KrH#gpj!?Knod{8&rtyvIy}Xvg zkwGvOellC0sHYgUO<&1|3ad6v^7|ne^qDubHV)Z5Paei&;#O;OX5BA&G<1uLwlX(Y zAc9Khx|K1QQ%xc;qc8*=0skJWd2H?2_8!VFf&@6?oux*gJKek_gyreX0K70D{hy`F zKG~NcnZ9@48`9VH=g6|9BRw06mQdTkp;k5Y9sZ8XhZIluSdX)l6U3a98MGAbsF_SH zBXW#3--|_hy+#Pf5{CDTW~>?C%BQKUJ5f}vtYZ-7o1>Pga2*k@V|djHqVZwe&`JVE zC53)Wg*$RVJSk?8!u7aaV`1D8+)Gw9wUcU%5_Z9E>>Y?)8cRDniK?fhLxtep6VfAX zZqlz|ixaOBvR&TDq{x;3gFF7#n7?)Kfd@B%Lk9M|u{W__wTNedxY{4JgaC9D0M^UL zCtBDIkJ*Ip?7r6WJuG-{o*Tp}r38-ng;Nk--4?3IqizmFlUkH5qC_ zGdYSnN2YDlkh#BMytdW4U-6Z5msE)abe1qJieD*l9N$RUjJH5HfCkJL|CDLud~cTz zW6vpogJU%BWrL{tOWsW+bru)cjtLIqLIa5)EEBVisiZOhR~ExHIP_>{+u=#ez@Bb0 zC@}B=9Zpd5Ky}Ok>u_1IR7YODx~vL{;LB2lv9ZCa7#@=D>m=cDDIWzo=K7>DrN_4D zbinfdO4AnmI{;F-+jVLg)3&c&Q<@E*hV3;pqjDrV7EFq-@0*y1vXC%0?85zEx2-$$ z>zJFz8es!U?7ak-f$3{Bh%1Nno_vLj^aHpfJl32^UZQWNwCe@<2=fiv8`rY;8xq=R z*iSI!`sZ8h%XDrD?+2vw@fwKmmFmYa|A!{p z1`PJs?w2pGL&z#B>UAY0n8>M`P;H|~T+pO3n+Ga>0^u~uVzbfCW{YJCq%3$PHpyhF zYAGo*9xnll;b&CVWnGzgM~j{xa(nm7YNdpv;HqX9UKmId6urexJ|&bv8*2rypic>y zKgl|$_P3j755_N%$uq@`w6^cz}71*yjt1_0LW2{Gsy+IsLIEzRi{Wbz}lr0-ErCMi*0^rmdpet*LeKvsZqEiVL+ozht P>1#W-1qTpY4xIcqla$2V literal 0 HcmV?d00001 From 4756d3793d29c16e9543ce51da0aa1b3d8f4299a Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 10:12:43 +0300 Subject: [PATCH 17/25] lstm: experimentation --- scripts/backtesting/strategies/lstm_strategy.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/backtesting/strategies/lstm_strategy.py b/scripts/backtesting/strategies/lstm_strategy.py index 47a3c58..dc05233 100644 --- a/scripts/backtesting/strategies/lstm_strategy.py +++ b/scripts/backtesting/strategies/lstm_strategy.py @@ -42,7 +42,7 @@ def calculate_sharpe_ratio(returns, risk_free_rate=0): excess_returns = returns - risk_free_rate return np.mean(excess_returns) / np.std(excess_returns) -def run_backtest_with_lstm(scene_parameters, df): +def run_backtest_with_lstm(df): lstm_model, scaler = load_lstm_model_and_scaler() predictions = make_lstm_predictions(lstm_model, scaler, df) From 295a46a5e63f4a96bb338d780a53557ddc8149b1 Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 11:34:50 +0300 Subject: [PATCH 18/25] feat: update frontend --- frontend/src/App.js | 7 ++- frontend/src/components/Login.js | 46 ++++++++++++++--- frontend/src/components/Navbar.js | 13 ++++- frontend/src/components/Signup.js | 82 +++++++++++++++++++++++++------ 4 files changed, 123 insertions(+), 25 deletions(-) diff --git a/frontend/src/App.js b/frontend/src/App.js index 57c325f..556d831 100644 --- a/frontend/src/App.js +++ b/frontend/src/App.js @@ -5,6 +5,11 @@ import BacktestForm from './components/BacktestForm'; import Signup from './components/Signup'; import Login from './components/Login'; +const PrivateRoute = ({ element: Element, ...rest }) => { + const token = localStorage.getItem('token'); + return token ? : ; +}; + function App() { return ( @@ -15,7 +20,7 @@ function App() { } /> } /> } /> - } /> + } />
diff --git a/frontend/src/components/Login.js b/frontend/src/components/Login.js index 7209930..aed28a9 100644 --- a/frontend/src/components/Login.js +++ b/frontend/src/components/Login.js @@ -1,7 +1,7 @@ -import React from 'react'; +import React, { useState } from 'react'; import { useFormik } from 'formik'; import * as Yup from 'yup'; -import { Link } from 'react-router-dom'; +import { Link, useNavigate } from 'react-router-dom'; const validationSchema = Yup.object({ username: Yup.string() @@ -16,15 +16,42 @@ const validationSchema = Yup.object({ }); function Login() { + const [loading, setLoading] = useState(false); + const [error, setError] = useState(null); + const navigate = useNavigate(); + const formik = useFormik({ initialValues: { username: '', password: '', }, validationSchema, - onSubmit: (values) => { - console.log(values); - // Handle login + onSubmit: async (values) => { + setLoading(true); + setError(null); + + const formData = new FormData(); + formData.append('username', values.username); + formData.append('password', values.password); + + try { + const response = await fetch('http://127.0.0.1:8000/auth/token', { + method: 'POST', + body: formData, + }); + + if (!response.ok) { + throw new Error('Invalid username or password'); + } + + const data = await response.json(); + localStorage.setItem('token', data.token); + navigate('/backtest'); + } catch (err) { + setError(err.message); + } finally { + setLoading(false); + } }, }); @@ -68,11 +95,16 @@ function Login() { ) : null}
-
+ {error && ( +
+ {error} +
+ )}

Don't have an account? Sign up here

diff --git a/frontend/src/components/Navbar.js b/frontend/src/components/Navbar.js index dd71653..a85cb14 100644 --- a/frontend/src/components/Navbar.js +++ b/frontend/src/components/Navbar.js @@ -1,10 +1,16 @@ import React from 'react'; -import { Link, useLocation } from 'react-router-dom'; +import { Link, useLocation, useNavigate } from 'react-router-dom'; function Navbar() { const location = useLocation(); + const navigate = useNavigate(); const currentPath = location.pathname; + const handleLogout = () => { + localStorage.removeItem('token'); + navigate('/login'); + }; + return (
@@ -13,7 +19,10 @@ function Navbar() {
{currentPath === '/login' && Sign Up} {currentPath === '/signup' && Login} - {currentPath === '/backtest' && Logout} + {currentPath === '/backtest' && Profile} + {(currentPath === '/backtest' || currentPath === '/profile') && ( + + )}
); diff --git a/frontend/src/components/Signup.js b/frontend/src/components/Signup.js index 8377641..80dc530 100644 --- a/frontend/src/components/Signup.js +++ b/frontend/src/components/Signup.js @@ -1,11 +1,14 @@ -import React from 'react'; +import React, { useState } from 'react'; import { useFormik } from 'formik'; import * as Yup from 'yup'; -import { Link } from 'react-router-dom'; +import { Link, useNavigate } from 'react-router-dom'; const validationSchema = Yup.object({ - username: Yup.string() - .min(3, 'Username must be at least 3 characters') + full_name: Yup.string() + .min(3, 'Full name must be at least 3 characters') + .required('Required'), + email: Yup.string() + .email('Invalid email address') .required('Required'), password: Yup.string() .min(6, 'Password must be at least 6 characters') @@ -16,15 +19,42 @@ const validationSchema = Yup.object({ }); function Signup() { + const [loading, setLoading] = useState(false); + const [error, setError] = useState(null); + const navigate = useNavigate(); + const formik = useFormik({ initialValues: { - username: '', + full_name: '', + email: '', password: '', }, validationSchema, - onSubmit: (values) => { - console.log(values); - // Handle signin + onSubmit: async (values) => { + setLoading(true); + setError(null); + + try { + const response = await fetch('http://127.0.0.1:8000/auth/users/', { + method: 'POST', + headers: { + 'Content-Type': 'application/json', + }, + body: JSON.stringify(values), + }); + + if (!response.ok) { + const res = await response.json() + console.log("response is signup :: ", res) + throw new Error(res['detail']); + } + + navigate('/login'); + } catch (err) { + setError(err.message); + } finally { + setLoading(false); + } }, }); @@ -35,19 +65,36 @@ function Signup() {
- {formik.touched.username && formik.errors.username ? ( -
{formik.errors.username}
+ {formik.touched.full_name && formik.errors.full_name ? ( +
{formik.errors.full_name}
+ ) : null} +
+
+ + + {formik.touched.email && formik.errors.email ? ( +
{formik.errors.email}
) : null}
@@ -68,11 +115,16 @@ function Signup() { ) : null}
-
+ {error && ( +
+ {error} +
+ )}

Already have an account? Login here

From a6096e0d3067e04032d4e788009701b0318826b0 Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 11:35:08 +0300 Subject: [PATCH 19/25] chore: add logging --- backend/auth.py | 1 + 1 file changed, 1 insertion(+) diff --git a/backend/auth.py b/backend/auth.py index bbfa9bc..b609905 100644 --- a/backend/auth.py +++ b/backend/auth.py @@ -68,6 +68,7 @@ def get_current_user(db: Session = Depends(database.get_db), token: str = Depend @router.post("/users/", response_model=schemas.User) def create_user(user: schemas.UserCreate, db: Session = Depends(database.get_db)): + print("The user post is ::::::::: ", user) hashed_password = get_password_hash(user.password) db_user = models.User(email=user.email, hashed_password=hashed_password, full_name=user.full_name) if db.query(models.User).filter(models.User.email == db_user.email).first(): From 987f9dcc0e4d85b310b30d419708386fd29ab08f Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 11:35:22 +0300 Subject: [PATCH 20/25] feat: add profile --- frontend/src/App.js | 2 ++ 1 file changed, 2 insertions(+) diff --git a/frontend/src/App.js b/frontend/src/App.js index 556d831..3351250 100644 --- a/frontend/src/App.js +++ b/frontend/src/App.js @@ -4,6 +4,7 @@ import Navbar from './components/Navbar'; import BacktestForm from './components/BacktestForm'; import Signup from './components/Signup'; import Login from './components/Login'; +import Profile from './components/Profile'; const PrivateRoute = ({ element: Element, ...rest }) => { const token = localStorage.getItem('token'); @@ -21,6 +22,7 @@ function App() { } /> } /> } /> + } />
From a40a68a5faf5abd512a2e2d58d85fabb9df45115 Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 11:35:32 +0300 Subject: [PATCH 21/25] feat: add title --- frontend/src/components/BacktestForm.js | 1 + 1 file changed, 1 insertion(+) diff --git a/frontend/src/components/BacktestForm.js b/frontend/src/components/BacktestForm.js index e0121ee..1d61002 100644 --- a/frontend/src/components/BacktestForm.js +++ b/frontend/src/components/BacktestForm.js @@ -109,6 +109,7 @@ function BacktestForm() { return (
+

Scalable Stock and Crypto Backtesting Infrastructure

Backtest Parameters

From d1b1858af2b545ccfd389085148bb83455c712fe Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 11:35:49 +0300 Subject: [PATCH 22/25] chore: add logging --- frontend/src/components/Login.js | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/frontend/src/components/Login.js b/frontend/src/components/Login.js index aed28a9..0b09e17 100644 --- a/frontend/src/components/Login.js +++ b/frontend/src/components/Login.js @@ -45,7 +45,8 @@ function Login() { } const data = await response.json(); - localStorage.setItem('token', data.token); + console.log("The data from login :: ", data) + localStorage.setItem('token', data.access_token); navigate('/backtest'); } catch (err) { setError(err.message); From 42bb207e4095feb30d963bf145f9a233a2476734 Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 11:36:12 +0300 Subject: [PATCH 23/25] feat: add full name to top bar --- frontend/src/components/Navbar.js | 32 +++++++++++++++++++++++++++++-- 1 file changed, 30 insertions(+), 2 deletions(-) diff --git a/frontend/src/components/Navbar.js b/frontend/src/components/Navbar.js index a85cb14..ef51654 100644 --- a/frontend/src/components/Navbar.js +++ b/frontend/src/components/Navbar.js @@ -1,11 +1,39 @@ -import React from 'react'; +import React, { useState, useEffect } from 'react'; +import { useFormik } from 'formik'; import { Link, useLocation, useNavigate } from 'react-router-dom'; function Navbar() { const location = useLocation(); const navigate = useNavigate(); + const [user_name, setUserName] = React.useState(''); const currentPath = location.pathname; + const fetchUserProfile = async () => { + + try { + const token = localStorage.getItem('token'); + const response = await fetch('http://127.0.0.1:8000/auth/users/me', { + headers: { + 'Authorization': `Bearer ${token}`, + }, + }); + + if (!response.ok) { + throw new Error('Failed to fetch user profile'); + } + + const data = await response.json(); + console.log("The data from navbar :: ", data) + setUserName(data.full_name); + } catch (err) { + console.error(err); + } + }; + + useEffect(() => { + fetchUserProfile(); + }, []); + const handleLogout = () => { localStorage.removeItem('token'); navigate('/login'); @@ -14,7 +42,7 @@ function Navbar() { return (
- Crypto Data Pipeline + {user_name}
{currentPath === '/login' && Sign Up} From b02c9409168e4852880abacd1b599a04e406ef5a Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 11:36:22 +0300 Subject: [PATCH 24/25] feat: add profile feat --- frontend/src/components/Profile.js | 166 +++++++++++++++++++++++++++++ 1 file changed, 166 insertions(+) create mode 100644 frontend/src/components/Profile.js diff --git a/frontend/src/components/Profile.js b/frontend/src/components/Profile.js new file mode 100644 index 0000000..a724063 --- /dev/null +++ b/frontend/src/components/Profile.js @@ -0,0 +1,166 @@ +import React, { useState, useEffect } from 'react'; +import { useFormik } from 'formik'; +import * as Yup from 'yup'; +import { useNavigate } from 'react-router-dom'; + +const validationSchema = Yup.object({ + full_name: Yup.string() + .min(3, 'Full name must be at least 3 characters') + .required('Required'), + email: Yup.string() + .email('Invalid email address') + .required('Required'), + password: Yup.string() + .min(6, 'Password must be at least 6 characters') + .matches(/[a-zA-Z]/, 'Password must contain a letter') + .matches(/\d/, 'Password must contain a number') + .matches(/[!@#$%^&*(),.?":{}|<>]/, 'Password must contain a special character'), +}); + +function Profile() { + const [loading, setLoading] = useState(false); + const [error, setError] = useState(null); + const navigate = useNavigate(); + + const fetchUserProfile = async () => { + setLoading(true); + setError(null); + + try { + const token = localStorage.getItem('token'); + const response = await fetch('http://127.0.0.1:8000/auth/users/me', { + headers: { + 'Authorization': `Bearer ${token}`, + }, + }); + + if (!response.ok) { + throw new Error('Failed to fetch user profile'); + } + + const data = await response.json(); + formik.setValues({ + full_name: data.full_name, + email: data.email, + password: '', + }); + } catch (err) { + setError(err.message); + } finally { + setLoading(false); + } + }; + + useEffect(() => { + fetchUserProfile(); + }, []); + + const formik = useFormik({ + initialValues: { + full_name: '', + email: '', + password: '', + }, + validationSchema, + onSubmit: async (values) => { + setLoading(true); + setError(null); + + try { + const token = localStorage.getItem('token'); + const response = await fetch('http://127.0.0.1:8000/auth/user/', { + method: 'PUT', + headers: { + 'Content-Type': 'application/json', + 'Authorization': `Bearer ${token}`, + }, + body: JSON.stringify(values), + }); + + if (!response.ok) { + throw new Error('Failed to update profile'); + } + + const data = await response.json(); + alert('Profile updated successfully'); + } catch (err) { + setError(err.message); + } finally { + setLoading(false); + } + }, + }); + + return ( +
+
+

Profile

+ +
+ + + {formik.touched.full_name && formik.errors.full_name ? ( +
{formik.errors.full_name}
+ ) : null} +
+
+ + + {formik.touched.email && formik.errors.email ? ( +
{formik.errors.email}
+ ) : null} +
+
+ + + {formik.touched.password && formik.errors.password ? ( +
{formik.errors.password}
+ ) : null} + Leave blank to keep current password +
+
+ +
+ + {error && ( +
+ {error} +
+ )} +
+
+ ); +} + +export default Profile; From 66a3b60a6b60480bc137ae5b52db9879a0a17eb8 Mon Sep 17 00:00:00 2001 From: dev-abuke Date: Thu, 27 Jun 2024 11:36:43 +0300 Subject: [PATCH 25/25] ltsm: add calculate return method --- scripts/backtesting/strategies/lstm_strategy.py | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/scripts/backtesting/strategies/lstm_strategy.py b/scripts/backtesting/strategies/lstm_strategy.py index dc05233..888d7dd 100644 --- a/scripts/backtesting/strategies/lstm_strategy.py +++ b/scripts/backtesting/strategies/lstm_strategy.py @@ -36,12 +36,13 @@ def calculate_max_drawdown(portfolio_values): max_drawdown = drawdown return max_drawdown -import numpy as np - def calculate_sharpe_ratio(returns, risk_free_rate=0): excess_returns = returns - risk_free_rate return np.mean(excess_returns) / np.std(excess_returns) +def calculate_overall_percentage_return(initial_value, final_value): + return (final_value - initial_value) / initial_value + def run_backtest_with_lstm(df): lstm_model, scaler = load_lstm_model_and_scaler() predictions = make_lstm_predictions(lstm_model, scaler, df) @@ -66,7 +67,7 @@ def run_backtest_with_lstm(df): # Calculate metrics final_value = cash + position * df['Close'].values[-1] - gross_profit = final_value - initial_cash + overall_percentage_return = calculate_overall_percentage_return(initial_cash, final_value) returns = np.diff(portfolio_values) / portfolio_values[:-1] sharpe_ratio = calculate_sharpe_ratio(returns) max_drawdown = calculate_max_drawdown(portfolio_values) @@ -76,7 +77,7 @@ def run_backtest_with_lstm(df): 'total_trades': len(predictions), # Example, adjust as needed 'winning_trades': sum(1 for r in returns if r > 0), 'losing_trades': sum(1 for r in returns if r <= 0), - 'percentage_return': returns, + 'percentage_return': overall_percentage_return, 'max_drawdown': max_drawdown, 'sharpe_ratio': sharpe_ratio }