-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbaselines_locfin_nontrainable.py
126 lines (110 loc) · 4.1 KB
/
baselines_locfin_nontrainable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import math
import argparse
from tqdm import tqdm
import pandas as pd
import torch
import torch.nn as nn
import pyro
import mlflow
from location_finding import HiddenObjects
from experiment_tools.pyro_tools import auto_seed
from experiment_tools.output_utils import get_mlflow_meta
from estimators.mi import PriorContrastiveEstimation, NestedMonteCarloEstimation
from neural.aggregators import ImplicitDeepAdaptiveDesign
from neural.baselines import RandomDesignBaseline
def evaluate_nontrainable_policy_locfin(
mlflow_experiment_name,
num_experiments_to_perform,
device,
policy="random",
K=2,
p=2,
n_rollout=2 * 2048,
num_inner_samples=int(5e5),
seed=-1,
):
""" T designs at equal intervals """
pyro.clear_param_store()
seed = auto_seed(seed)
mlflow.set_experiment(mlflow_experiment_name)
mlflow.log_param("seed", seed)
mlflow.log_param("K", K)
mlflow.log_param("p", p)
mlflow.log_param("baseline_type", "random")
mlflow.log_param("n_rollout", n_rollout)
mlflow.log_param("num_inner_samples", num_inner_samples)
factor = 16
n_rollout = n_rollout // factor
EIGs = pd.DataFrame(
columns=["mean_lower", "se_lower", "mean_upper", "se_upper"],
index=num_experiments_to_perform,
)
theta_prior_loc = torch.zeros((K, p), device=device)
theta_prior_covmat = torch.eye(p, device=device)
design_dim = (1, p)
normal_sampler = torch.distributions.Normal(
torch.zeros(design_dim, device=device), torch.ones(design_dim, device=device)
)
for T in num_experiments_to_perform:
design_net = RandomDesignBaseline(
design_dim=design_dim, random_designs_dist=normal_sampler
).to(device)
# Model and losses
locfin_model = HiddenObjects(
design_net=design_net,
T=T,
theta_loc=theta_prior_loc,
theta_covmat=theta_prior_covmat,
K=K,
p=p,
noise_scale=torch.tensor(0.5, device=device),
)
pce_loss_lower = PriorContrastiveEstimation(
locfin_model.model, factor, num_inner_samples
)
pce_loss_upper = NestedMonteCarloEstimation(
locfin_model.model, factor, num_inner_samples
)
auto_seed(seed)
EIG_proxy_lower = torch.tensor(
[-pce_loss_lower.loss() for _ in range(n_rollout)]
)
auto_seed(seed)
EIG_proxy_upper = torch.tensor(
[-pce_loss_upper.loss() for _ in range(n_rollout)]
)
EIGs.loc[T, "mean_lower"] = EIG_proxy_lower.mean().item()
EIGs.loc[T, "se_lower"] = EIG_proxy_lower.std().item() / math.sqrt(n_rollout)
EIGs.loc[T, "mean_upper"] = EIG_proxy_upper.mean().item()
EIGs.loc[T, "se_upper"] = EIG_proxy_upper.std().item() / math.sqrt(n_rollout)
mlflow.log_param(f"eig_lower_{T}", EIG_proxy_lower.mean().item())
EIGs.to_csv(f"mlflow_outputs/eval.csv")
mlflow.log_artifact(f"mlflow_outputs/eval.csv", artifact_path="evaluation")
mlflow.log_param("status", "complete")
print(EIGs)
print("Done!")
return
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="iDAD: Location Finding Nontrainable Baselines."
)
parser.add_argument(
"--mlflow-experiment-name", default="locfin_nontrainable_baselines", type=str
)
parser.add_argument("--seed", default=-1, type=int)
parser.add_argument("--policy", default="random", choices=["random"], type=str)
parser.add_argument("--num-experiments-to-perform", nargs="+", default=[5, 10, 20])
parser.add_argument("--physical-dim", default=2, type=int)
parser.add_argument("--device", default="cuda", type=str)
args = parser.parse_args()
args.num_experiments_to_perform = [
int(x) if x else x for x in args.num_experiments_to_perform
]
evaluate_nontrainable_policy_locfin(
seed=args.seed,
mlflow_experiment_name=args.mlflow_experiment_name,
num_experiments_to_perform=args.num_experiments_to_perform,
policy=args.policy,
p=args.physical_dim,
device=args.device,
)