-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathopti_pred_metapopulation.py
193 lines (171 loc) · 8.24 KB
/
opti_pred_metapopulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import scipy.sparse as ss
import numpy as np
import pandas as pd
import pickle as pk
import matplotlib.pyplot as plt
import time
import japanize_matplotlib # pip install japanize-matplotlib
import pyswarms as ps
import math
sigma = 0.2
gamma = 0.1
migration = 0.1
def SEIR_Single(df, df_flow, beta):
df_flow = df_flow.apply(lambda x: x/sum(x), axis=1)
for i in range(len(df_flow)):
df_flow.iloc[i,i] = 0
df_out = df_flow.apply(lambda x: sum(x), axis=1)
df_dec = df.apply(lambda x: (x*df_out), axis=0)
df['N'] = df['S'] + df['E'] + df['I'] + df['R']
df['Beta'] = beta
df['S'] = df['S'] + -df['Beta']*df['I']*df['S']/df['N']
df['E'] = df['E'] + df['Beta']*df['I']*df['S']/df['N'] - sigma*df['E']
df['I'] = df['I'] + sigma*df['E'] - gamma*df['I']
df['R'] = df['R'] + gamma * df['I']
df = df.drop(columns=['N', 'Beta'])
df_inc = pd.DataFrame(np.matmul(df_flow.T.values, df.values), index=TARGET_AREA, columns=['S', 'E', 'I', 'R'])
df = df + (df_inc - df_dec) * migration
return df
def SEIR_Multi(beta_list, day_list, df_seir_initial, trans):
df_seir = df_seir_initial.copy()
prediction = []
for i in day_list:
df_flow = pd.DataFrame(trans[i, :, :], index=TARGET_AREA, columns=TARGET_AREA)
df_seir = SEIR_Single(df_seir, df_flow, beta_list)
df_seir_r = df_seir.round().astype(int)
prediction.append(df_seir_r['I'].tolist())
return df_seir, np.array(prediction)
def loss(prediction, ground_truth):
ground_truth = ground_truth.clip(min=1)
mape_lambda = 300
return np.mean(np.abs(prediction-ground_truth)) + np.mean(np.abs(prediction-ground_truth)/ground_truth) * mape_lambda
def opt_func(X, day_list, df_seir, trans, infec):
n_particles = X.shape[0] # number of particles
ground_truth = infec[day_list, :]
dist = []
for i in range(n_particles):
_, prediction = SEIR_Multi(X[i, :], day_list, df_seir, trans)
dist.append(loss(prediction, ground_truth))
return np.array(dist)
def run_interval_PSO(day_list, df_seir, trans, infec):
# print('Start Particle Swarm Optimization ...', time.ctime())
cpu_num = 10
swarm_size = 50
iters_num = 100
beta_low = 0.01
beta_high = 0.4
dim = len(TARGET_AREA) # Dimension of X
options = {'c1': 0.5, 'c2':0.5, 'w':0.5}
constraints = (np.array([beta_low] * dim), np.array([beta_high] * dim))
optimizer = ps.single.GlobalBestPSO(n_particles=swarm_size, dimensions=dim, options=options, bounds=constraints)
cost, pos = optimizer.optimize(opt_func, iters=iters_num, n_processes=cpu_num, verbose=False,
day_list=day_list, df_seir=df_seir, trans=trans, infec=infec)
return cost, pos
def run_all_PSO(trans, infec):
assert len(trans) == len(infec), 'len(trans) == len(infec) should be equal'
T_ALL = len(trans)
df_seir = pd.DataFrame(np.zeros((len(TARGET_AREA), len(['S', 'E', 'I', 'R'])), dtype='int'), index=TARGET_AREA, columns=['S', 'E', 'I', 'R'])
df_seir['I'] = infec[0, :]
df_seir['S'] = POPULATION
day_list_all = np.arange(T_ALL)
predictions = []
opt_betas = []
for i in range(math.ceil(T_ALL / T_INTERVAL)):
day_list = day_list_all[i*T_INTERVAL:(i+1)*T_INTERVAL]
cost, pos = run_interval_PSO(day_list, df_seir, trans, infec)
df_seir, prediction = SEIR_Multi(pos, day_list, df_seir, trans)
print(i, day_list, cost, pos, time.ctime())
predictions.extend(prediction)
opt_betas.append(pos)
predictions = np.array(predictions)
opt_betas = np.array(opt_betas)
df_seir.to_csv(BASE + '/{}_lastseir_{}days.csv'.format(NAME, T_INTERVAL), index=True, header=True)
np.savetxt(BASE + '/{}_predictions_{}days.csv'.format(NAME, T_INTERVAL), predictions, delimiter=',', fmt='%d')
np.savetxt(BASE + '/{}_betas_{}days.csv'.format(NAME, T_INTERVAL), opt_betas, delimiter=',', fmt='%.8f')
print('final predictions...', predictions.shape)
print('final opt_betas...', opt_betas.shape)
return predictions, opt_betas, df_seir
#################################################################
POPULATIONPATH = 'data/pref_population_2015.csv'
INFECTIONPATH = 'data/acc_infection_num.csv'
ODPATH = 'data/od_day20180101_20210228.npz'
OD_DAYS = [date.strftime('%Y-%m-%d') for date in pd.date_range(start='2018-01-01', end='2021-02-28', freq='1D')]
BASE = 'MetaPopulationResult_test'
TARGET_AREA = ['東京都', '千葉県','神奈川県','埼玉県']
TARGET_AREA_EN = ['Tokyo', 'Chiba', 'Kanagawa', 'Saitama']
NAME = 'kanto4prefecture_metapopulation'
# TARGET_AREA = ['大阪府', '京都府', '兵庫県']
# TARGET_AREA_EN = ['Osaka', 'Kyoto', 'Hyogo']
# NAME = 'kansai3prefecture_metapopulation'
# START_DATE, END_DATE = '2020-02-03', '2021-01-31'
if len(TARGET_AREA) == 0:
pref_population = pd.read_csv(POPULATIONPATH)
TARGET_AREA = pref_population['ken'].values
POPULATION = pref_population['population'].values
TARGET_AREA_ID = np.arange(POPULATION).tolist()
print(POPULATION)
print(TARGET_AREA_ID)
else:
pref_population = pd.read_csv(POPULATIONPATH)
pref_population['gid'] -= 1
pref_population = pref_population[pref_population['ken'].isin(TARGET_AREA)]
pref_population = pref_population[['ken', 'gid', 'population']]
pref_population = pref_population.set_index('ken')
pref_population = pref_population.reindex(index=TARGET_AREA)
POPULATION = pref_population['population'].values.squeeze()
TARGET_AREA_ID = pref_population['gid'].values.squeeze().tolist()
print(POPULATION)
print(TARGET_AREA_ID)
START_DATE, END_DATE = '2020-01-20', '2021-01-31'
train_infection = pd.read_csv(INFECTIONPATH)
train_infection['Day'] = pd.to_datetime(train_infection['Day'])
train_infection = train_infection[(train_infection['Day']>=START_DATE) & (train_infection['Day']<=END_DATE)]
train_infection = train_infection.reset_index(drop=True)
train_infection = train_infection.drop(columns=['Day'])
train_infection = train_infection[TARGET_AREA]
train_infection = train_infection.values
print(train_infection.shape)
train_trans = ss.load_npz(ODPATH)
train_trans = np.array(train_trans.todense()).reshape((-1, 47, 47))
train_trans = train_trans[OD_DAYS.index(START_DATE):OD_DAYS.index(END_DATE)+1,:,:]
train_trans = train_trans[:, TARGET_AREA_ID, :][:, :, TARGET_AREA_ID]
print(train_trans.shape)
PRED_START_DATE, PRED_END_DATE = '2021-02-01', '2021-02-28' # The last four weeks.
test_infection = pd.read_csv(INFECTIONPATH)
test_infection['Day'] = pd.to_datetime(test_infection['Day'])
test_infection = test_infection[(test_infection['Day']>=PRED_START_DATE) & (test_infection['Day']<=PRED_END_DATE)]
test_infection = test_infection.reset_index(drop=True)
test_infection = test_infection.drop(columns=['Day'])
test_infection = test_infection[TARGET_AREA]
test_infection = test_infection.values
print(test_infection.shape)
test_trans = ss.load_npz(ODPATH)
test_trans = np.array(test_trans.todense()).reshape((-1, 47, 47))
test_trans = test_trans[OD_DAYS.index(PRED_START_DATE):OD_DAYS.index(PRED_END_DATE)+1,:,:]
test_trans = test_trans[:, TARGET_AREA_ID, :][:, :, TARGET_AREA_ID]
print(test_trans.shape)
T_INTERVAL = 7
###################################################################
def metric(prediction, ground_truth):
RMSE = np.sqrt(np.mean((prediction-ground_truth)**2))
MAE = np.mean(np.abs(prediction-ground_truth))
MAPE = np.mean(np.abs(prediction-ground_truth)/ground_truth)
return RMSE, MAE, MAPE
def predict(trans, infec):
betas = np.loadtxt(BASE + '/{}_betas_{}days.csv'.format(NAME, T_INTERVAL), delimiter=',')
beta = betas[-1, :]
df_seir = pd.read_csv(BASE + '/{}_lastseir_{}days.csv'.format(NAME, T_INTERVAL), index_col=0)
_, prediction = SEIR_Multi(beta, np.arange(len(trans)), df_seir, trans)
np.savetxt(BASE + '/{}_prediction_real_20210201to20210228.csv'.format(NAME), prediction, delimiter=',', fmt='%d')
print('trans, infections, predictions...', trans.shape, infec.shape, prediction.shape)
print('RMSE, MAE, MAPE', metric(prediction, infec))
return prediction
def train():
predictions, opt_betas, df_seir = run_all_PSO(trans=train_trans, infec=train_infection)
def test():
predictions_real = predict(trans=test_trans, infec=test_infection)
def main():
train()
test()
if __name__ == '__main__':
main()