From e63c605d0709151f63fa258ae5669be99c8ea0b9 Mon Sep 17 00:00:00 2001 From: dcr-eyethink <151747088+dcr-eyethink@users.noreply.github.com> Date: Wed, 24 Apr 2024 18:24:54 +0100 Subject: [PATCH] plotly --- .DS_Store | Bin 6148 -> 6148 bytes analysis.Rmd | 11 +- analysis.md | 147 --- analysis.nb.html | 2006 --------------------------------- analysis/r theme-year.pdf | Bin 21937 -> 22009 bytes analysis/r ucl_all-year.pdf | Bin 6077 -> 6077 bytes analysis/rzall theme-year.pdf | Bin 7197 -> 7197 bytes docs/index.html | 1936 ++++++++++++++++++++++++++++++- 8 files changed, 1942 insertions(+), 2158 deletions(-) delete mode 100644 analysis.md delete mode 100644 analysis.nb.html diff --git a/.DS_Store b/.DS_Store index a54dd70654d1120b4b17684480df42cf948f05b3..0031aa0e8cd976166a9f4961b977015859599c94 100644 GIT binary patch delta 123 zcmZoMXffDO&!o!2kiwA9kjzk=lWrKCoS$33fB2016 & year<2023], qkey[,.(QuestionNumber=qnum,theme=theme2017,q=item2017, question=set_full2017)],link="QuestionNumber"), - pid_merge(full_data[year==2023], qkey[,.(QuestionNumber=qnum,theme=theme2023,q=item2023, question=set_full2023)],link="QuestionNumber")) -``` - -Now we want one number that summarises responses to the question. Right -now we have the distribution of responses for each. All the items are -framed positively, ie if they agree with the statement the student is -saying something good about the university. So we’re going to code into -a response variable between -1 and 1 that is positive if they are -agreeing, and negative if they are disagreeing. This is different to how -the NSS processes this. They have a positivity score, which I assume -just calculates the % of responses that are agreeing in anyway. That -seems to ignore some of the graded information we have in this dataset -tbough. - -For pre 2023, each question has 5 columns giving % responses for the 5 -options from strongly agree to strongly disagree. Convert these first to -numbers, and then sum to a -1 to 1 scale in a variable r. - -``` r -d[year<2023,ans_sd:=ifelse(A1=="",0,as.numeric(gsub(A1,replacement = "",pattern="%")))] -d[year<2023,ans_d:=ifelse(A2=="",0,as.numeric(gsub(A2,replacement = "",pattern="%")))] -d[year<2023,ans_n:=ifelse(A3=="",0,as.numeric(gsub(A3,replacement = "",pattern="%")))] -d[year<2023,ans_a:=ifelse(A4=="",0,as.numeric(gsub(A4,replacement = "",pattern="%")))] -d[year<2023,ans_sa:=ifelse(A5=="",0,as.numeric(gsub(A5,replacement = "",pattern="%")))] -d[year<2023,r:= (ans_sa + ans_a*.5 + ans_d *-.5 + ans_sd*-1)/100] -``` - -For 2023 onwards, We have total number of responses for 4 options from -strongly agree to strongly disagree, ie there is no ‘neither agree nor -disagree’ option. Convert these to a -1 to 1 scale as above. - -``` r -d[year>=2023,ans_sa:=ifelse(A1=="",0,as.numeric(A1))] -d[year>=2023,ans_a:=ifelse(A2=="",0,as.numeric(A2))] -d[year>=2023,ans_d:=ifelse(A3=="",0,as.numeric(A3))] -d[year>=2023,ans_sd:=ifelse(A4=="",0,as.numeric(A4))] -d[year>=2023,r:= (ans_sa + ans_a*.5 + ans_d *-.5 + ans_sd*-1)/(ans_sa+ans_a+ans_d+ans_sd)] -``` - -I’m going to exclude the questions that aren’t in the main list, and -that are about the student union. Then let’s check the distribution of -those values over all questions for each year. - -``` r -d <- d[!theme=="union" & !is.na(theme)] -ggplot(d,aes(x=r,colour=year,group=year))+geom_density() -``` - -![](analysis_files/figure-gfm/unnamed-chunk-6-1.png) - -So it broadly looks as though agreement in these statement overall peaks -around the positive, “agree” response, but that over the years, -responses have been slipping down for everyone. - -Now let’s plot UCL’s last 10 years for each theme There are vertical -gray bars here to denote when questionnaire changed, making comparisons -difficult. I am going to exclude the themes for mental_health, personal, -overall satisfaction and freedom as they only have single question each -that were only asked in a handful of years. - -``` r -d[,tm:=ifelse(theme %in% c("mental_health", "personal", "freedom","overall"),FALSE,TRUE)] -# this is a plot element with the new questionnaires marked. We can reuse it -yp <- geom_vline(data=data.table(year=c(2016.5,2022.5)),alpha=0.1,linewidth=3,aes(xintercept=year)) -pirateye(d[Institution=="University College London" & tm],x_condition = "year", - colour_condition = "theme",line = T,dv="r",violin = F,error_bars = F)+yp -``` - -![](analysis_files/figure-gfm/unnamed-chunk-7-1.png) - -So people love our resources! The rankings seem pretty stable over time -here. Rankings seem higher pre 2017 and there is a drop off in 2023, but -as the grey lines show, these changes are confounded by a different set -of questions (and responses). What does seem clear here is that our weak -point is our assessments. These are ranked low and if anything have been -getting worse. - -How do we match up with the average psych dept? Here’s all rankings over -the years, comparing UCL against all other psych depts. - -``` r -d[,ucl:=ifelse(Institution=="University College London",TRUE,FALSE)] -d[,ucl_all:=ifelse(Institution=="University College London","UCL","All other")] -pirateye(d[ (tm) ],x_condition = "year",colour="ucl_all",dodgewidth = 0, - line = T,dv="r",violin = F,error_bars = T,dots=F)+yp -``` - -![](analysis_files/figure-gfm/unnamed-chunk-8-1.png) - -So in general terms: we had a relatively great pandemic! At least up -until 2023 (the cohort that were in their first year during pandemic). -But again the picture is complicated by the change in survey. We can -split those responses by theme and compare against other depts. It’s a -bit messy comparing all individual themes for both, so let’s try and -simplify this by using a baseline. We can z score the r values for each -question, each year. - -``` r -d[, rzall:=scale(r),by=.(year,question)] -pirateye( d[ucl & tm],x_condition = "year",colour_condition = "theme",dodgewidth = 0, - line = T,dv="rzall",violin = F,error_bars = F,dots=F)+yp+geom_hline(aes(yintercept=0)) -``` - -![](analysis_files/figure-gfm/unnamed-chunk-9-1.png) - -So now the psychology sector average for each year is 0, shown by heavy -black line. Benchmarked like this, it looks like we had a good period of -growth from 2016 onwards, and in the pandemic years we were well above -the mean in almost everything. But again, our assessments are ranked -below the mean and perhaps trending down diff --git a/analysis.nb.html b/analysis.nb.html deleted file mode 100644 index df3e1c8..0000000 --- a/analysis.nb.html +++ /dev/null @@ -1,2006 +0,0 @@ - - - - - - - - - - - - - -NSS results - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - -

This is a notebook to analyse NNS data from 2014-2023, baswed on data -from NSS wesbite.

-

If you don’t have eyethinkdata tools, install from github

- - - -
devtools::install_github("dcr-eyethink/eyethinkdata")
- - - -

Load in the package and the raw data. Note that this has been -filtered to just psychology courses, and students on first degree -only.

- - - -
library(eyethinkdata)
- - -
Loading required package: ggplot2
-Loading required package: data.table
-Registered S3 method overwritten by 'data.table':
-  method           from
-  print.data.table     
-data.table 1.14.10 using 1 threads (see ?getDTthreads).  Latest news: r-datatable.com
-**********
-This installation of data.table has not detected OpenMP support. It should still work but in single-threaded mode.
-This is a Mac. Please read https://mac.r-project.org/openmp/. Please engage with Apple and ask them for support. Check r-datatable.com for updates, and our Mac instructions here: https://github.com/Rdatatable/data.table/wiki/Installation. After several years of many reports of installation problems on Mac, it's time to gingerly point out that there have been no similar problems on Windows or Linux.
-**********
- - -
full_data <- fread("NSS_2014-23.csv")
-qkey <-  data.table(read.csv("qkey3.csv"))
- - - -

First we need to translate the question numbers into the items and -labels. There are 3 slightly difference question sets. Annoying. So we -have to merge info from the question keys to three different sections. -For each, we will have columns for the theme, the full question, and a -one word question key q.

- - - -
d <- rbind( pid_merge(full_data[year<=2016], qkey[,.(QuestionNumber=qnum,theme=theme2014,q=item2014,question=set_full2014)],link="QuestionNumber"),
- pid_merge(full_data[year>2016 & year<2023], qkey[,.(QuestionNumber=qnum,theme=theme2017,q=item2017, question=set_full2017)],link="QuestionNumber"),
- pid_merge(full_data[year==2023], qkey[,.(QuestionNumber=qnum,theme=theme2023,q=item2023, question=set_full2023)],link="QuestionNumber"))
-d
- - -
- -
- - -
NA
- - - -

Now we want one number that summarises responses to the question. -Right now we have the distribution of responses for each. All the items -are framed positively, ie if they agree with the statement the student -is saying something good about the university. So we’re going to code -into a response variable between -1 and 1 that is positive if they are -agreeing, and negative if they are disagreeing. This is different to how -the NSS processes this. They have a positivity score, which I assume -just calculates the % of responses that are agreeing in anyway. That -seems to ignore some of the graded information we have in this dataset -tbough.

-

For pre 2023, each question has 5 columns giving % responses for the -5 options from strongly agree to strongly disagree. Convert these first -to numbers, and then sum to a -1 to 1 scale in a variable r.

- - - -
d[year<2023,ans_sd:=ifelse(A1=="",0,as.numeric(gsub(A1,replacement = "",pattern="%")))]
-d[year<2023,ans_d:=ifelse(A2=="",0,as.numeric(gsub(A2,replacement = "",pattern="%")))]
-d[year<2023,ans_n:=ifelse(A3=="",0,as.numeric(gsub(A3,replacement = "",pattern="%")))]
-d[year<2023,ans_a:=ifelse(A4=="",0,as.numeric(gsub(A4,replacement = "",pattern="%")))]
-d[year<2023,ans_sa:=ifelse(A5=="",0,as.numeric(gsub(A5,replacement = "",pattern="%")))]
-d[year<2023,r:= (ans_sa + ans_a*.5  + ans_d *-.5 + ans_sd*-1)/100]
- - - -

For 2023 onwards, We have total number of responses for 4 options -from strongly agree to strongly disagree, ie there is no ‘neither agree -nor disagree’ option. Convert these to a -1 to 1 scale as above.

- - - -
d[year>=2023,ans_sa:=ifelse(A1=="",0,as.numeric(A1))]
-d[year>=2023,ans_a:=ifelse(A2=="",0,as.numeric(A2))]
-d[year>=2023,ans_d:=ifelse(A3=="",0,as.numeric(A3))]
-d[year>=2023,ans_sd:=ifelse(A4=="",0,as.numeric(A4))]
-d[year>=2023,r:= (ans_sa + ans_a*.5  + ans_d *-.5 + ans_sd*-1)/(ans_sa+ans_a+ans_d+ans_sd)]
- - - -

I’m going to exclude the questions that aren’t in the main list, and -that are about the student union. Then let’s check the distribution of -those values over all questions for each year.

- - - -
d <- d[!theme=="union" & !is.na(theme)]
-ggplot(d,aes(x=r,colour=year,group=year))+geom_density()
- - -

- - - -

So it broadly looks as though agreement in these statement overall -peaks around the positive, “agree” response, but that over the years, -responses have been slipping down for everyone.

-

Now let’s plot UCL’s last 10 years for each theme There are vertical -gray bars here to denote when questionnaire changed, making comparisons -difficult. I am going to exclude the themes for mental_health, personal, -overall satisfaction and freedom as they only have single question each -that were only asked in a handful of years.

- - - -
d[,tm:=ifelse(theme %in% c("mental_health", "personal", "freedom","overall"),FALSE,TRUE)]
-# this is a plot element with the new questionnaires marked. We can reuse it
-yp <-  geom_vline(data=data.table(year=c(2016.5,2022.5)),alpha=0.1,linewidth=3,aes(xintercept=year))
-pirateye(d[Institution=="University College London" & tm],x_condition = "year",
-         colour_condition = "theme",line = T,dv="r",violin = F,error_bars = F)+yp
- - -

- - -
NA
-NA
- - - -

So people love our resources! The rankings seem pretty stable over -time here. Rankings seem higher pre 2017 and there is a drop off in -2023, but as the grey lines show, these changes are confounded by a -different set of questions (and responses). What does seem clear here is -that our weak point is our assessments. These are ranked low and if -anything have been getting worse.

-

How do we match up with the average psych dept? Here’s all rankings -over the years, comparing UCL against all other psych depts.

- - - -
d[,ucl:=ifelse(Institution=="University College London",TRUE,FALSE)]
-d[,ucl_all:=ifelse(Institution=="University College London","UCL","All other")]
-pirateye(d[ (tm) ],x_condition = "year",colour="ucl_all",dodgewidth = 0,
-         line = T,dv="r",violin = F,error_bars = T,dots=F)+yp
- - -

- - - -

So in general terms: we had a relatively great pandemic! At least up -until 2023 (the cohort that were in their first year during pandemic). -But again the picture is complicated by the change in survey. We can -split those responses by theme and compare against other depts. It’s a -bit messy comparing all individual themes for both, so let’s try and -simplify this by using a baseline. We can z score the r values for each -question, each year.

- - - -
d[, rzall:=scale(r),by=.(year,question)]
-pirateye( d[ucl & tm],x_condition = "year",colour_condition =  "theme",dodgewidth = 0,
-         line = T,dv="rzall",violin = F,error_bars = F,dots=F)+yp+geom_hline(aes(yintercept=0))
- - -

- - - -

So now the psychology sector average for each year is 0, shown by -heavy black line. Benchmarked like this, it looks like we had a good -period of growth from 2016 onwards, and in the pandemic years we were -well above the mean in almost everything. But again, our assessments are -ranked below the mean and perhaps trending down

- - -
LS0tCnRpdGxlOiAiTlNTIHJlc3VsdHMiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KClRoaXMgaXMgYSBub3RlYm9vayB0byBhbmFseXNlIE5OUyBkYXRhIGZyb20gMjAxNC0yMDIzLCBiYXN3ZWQgb24gZGF0YSBmcm9tIE5TUyB3ZXNiaXRlLiAKCklmIHlvdSBkb24ndCBoYXZlIGV5ZXRoaW5rZGF0YSB0b29scywgaW5zdGFsbCBmcm9tIGdpdGh1YgoKYGBge3IsIGV2YWw9RkFMU0V9CmRldnRvb2xzOjppbnN0YWxsX2dpdGh1YigiZGNyLWV5ZXRoaW5rL2V5ZXRoaW5rZGF0YSIpCmBgYAoKTG9hZCBpbiB0aGUgcGFja2FnZSBhbmQgdGhlIHJhdyBkYXRhLiBOb3RlIHRoYXQgdGhpcyBoYXMgYmVlbiBmaWx0ZXJlZCB0byBqdXN0IHBzeWNob2xvZ3kgY291cnNlcywgYW5kIHN0dWRlbnRzIG9uIGZpcnN0IGRlZ3JlZSBvbmx5LiAKCmBgYHtyfQpsaWJyYXJ5KGV5ZXRoaW5rZGF0YSkKZnVsbF9kYXRhIDwtIGZyZWFkKCJOU1NfMjAxNC0yMy5jc3YiKQpxa2V5IDwtICBkYXRhLnRhYmxlKHJlYWQuY3N2KCJxa2V5My5jc3YiKSkKYGBgCkZpcnN0IHdlIG5lZWQgdG8gdHJhbnNsYXRlIHRoZSBxdWVzdGlvbiBudW1iZXJzIGludG8gdGhlIGl0ZW1zIGFuZCBsYWJlbHMuIFRoZXJlIGFyZSAzIHNsaWdodGx5IGRpZmZlcmVuY2UgcXVlc3Rpb24gc2V0cy4gQW5ub3lpbmcuIFNvIHdlIGhhdmUgdG8gbWVyZ2UgaW5mbyBmcm9tIHRoZSBxdWVzdGlvbiBrZXlzIHRvIHRocmVlIGRpZmZlcmVudCBzZWN0aW9ucy4gRm9yIGVhY2gsIHdlIHdpbGwgaGF2ZSBjb2x1bW5zIGZvciB0aGUgdGhlbWUsIHRoZSBmdWxsIHF1ZXN0aW9uLCBhbmQgYSBvbmUgd29yZCBxdWVzdGlvbiBrZXkgcS4KCmBgYHtyfQpkIDwtIHJiaW5kKCBwaWRfbWVyZ2UoZnVsbF9kYXRhW3llYXI8PTIwMTZdLCBxa2V5WywuKFF1ZXN0aW9uTnVtYmVyPXFudW0sdGhlbWU9dGhlbWUyMDE0LHE9aXRlbTIwMTQscXVlc3Rpb249c2V0X2Z1bGwyMDE0KV0sbGluaz0iUXVlc3Rpb25OdW1iZXIiKSwKIHBpZF9tZXJnZShmdWxsX2RhdGFbeWVhcj4yMDE2ICYgeWVhcjwyMDIzXSwgcWtleVssLihRdWVzdGlvbk51bWJlcj1xbnVtLHRoZW1lPXRoZW1lMjAxNyxxPWl0ZW0yMDE3LCBxdWVzdGlvbj1zZXRfZnVsbDIwMTcpXSxsaW5rPSJRdWVzdGlvbk51bWJlciIpLAogcGlkX21lcmdlKGZ1bGxfZGF0YVt5ZWFyPT0yMDIzXSwgcWtleVssLihRdWVzdGlvbk51bWJlcj1xbnVtLHRoZW1lPXRoZW1lMjAyMyxxPWl0ZW0yMDIzLCBxdWVzdGlvbj1zZXRfZnVsbDIwMjMpXSxsaW5rPSJRdWVzdGlvbk51bWJlciIpKQpkCgpgYGAKTm93IHdlIHdhbnQgb25lIG51bWJlciB0aGF0IHN1bW1hcmlzZXMgcmVzcG9uc2VzIHRvIHRoZSBxdWVzdGlvbi4gUmlnaHQgbm93IHdlIGhhdmUgdGhlIGRpc3RyaWJ1dGlvbiBvZiByZXNwb25zZXMgZm9yIGVhY2guIEFsbCB0aGUgaXRlbXMgYXJlIGZyYW1lZCBwb3NpdGl2ZWx5LCBpZSBpZiB0aGV5IGFncmVlIHdpdGggdGhlIHN0YXRlbWVudCB0aGUgc3R1ZGVudCBpcyBzYXlpbmcgc29tZXRoaW5nIGdvb2QgYWJvdXQgdGhlIHVuaXZlcnNpdHkuIFNvIHdlJ3JlIGdvaW5nIHRvIGNvZGUgaW50byBhIHJlc3BvbnNlIHZhcmlhYmxlIGJldHdlZW4gLTEgYW5kIDEgdGhhdCBpcyBwb3NpdGl2ZSBpZiB0aGV5IGFyZSBhZ3JlZWluZywgYW5kIG5lZ2F0aXZlIGlmIHRoZXkgYXJlIGRpc2FncmVlaW5nLiBUaGlzIGlzIGRpZmZlcmVudCB0byBob3cgdGhlIE5TUyBwcm9jZXNzZXMgdGhpcy4gVGhleSBoYXZlIGEgcG9zaXRpdml0eSBzY29yZSwgd2hpY2ggSSBhc3N1bWUganVzdCBjYWxjdWxhdGVzIHRoZSAlIG9mIHJlc3BvbnNlcyB0aGF0IGFyZSBhZ3JlZWluZyBpbiBhbnl3YXkuIFRoYXQgc2VlbXMgdG8gaWdub3JlIHNvbWUgb2YgdGhlIGdyYWRlZCBpbmZvcm1hdGlvbiB3ZSBoYXZlIGluIHRoaXMgZGF0YXNldCB0Ym91Z2guCgpGb3IgcHJlIDIwMjMsIGVhY2ggcXVlc3Rpb24gaGFzIDUgY29sdW1ucyBnaXZpbmcgJSByZXNwb25zZXMgZm9yIHRoZSA1IG9wdGlvbnMgZnJvbSBzdHJvbmdseSBhZ3JlZSB0byBzdHJvbmdseSBkaXNhZ3JlZS4gIENvbnZlcnQgdGhlc2UgZmlyc3QgdG8gbnVtYmVycywgYW5kIHRoZW4gc3VtIHRvIGEgLTEgdG8gMSBzY2FsZSBpbiBhIHZhcmlhYmxlIHIuIAoKYGBge3J9CmRbeWVhcjwyMDIzLGFuc19zZDo9aWZlbHNlKEExPT0iIiwwLGFzLm51bWVyaWMoZ3N1YihBMSxyZXBsYWNlbWVudCA9ICIiLHBhdHRlcm49IiUiKSkpXQpkW3llYXI8MjAyMyxhbnNfZDo9aWZlbHNlKEEyPT0iIiwwLGFzLm51bWVyaWMoZ3N1YihBMixyZXBsYWNlbWVudCA9ICIiLHBhdHRlcm49IiUiKSkpXQpkW3llYXI8MjAyMyxhbnNfbjo9aWZlbHNlKEEzPT0iIiwwLGFzLm51bWVyaWMoZ3N1YihBMyxyZXBsYWNlbWVudCA9ICIiLHBhdHRlcm49IiUiKSkpXQpkW3llYXI8MjAyMyxhbnNfYTo9aWZlbHNlKEE0PT0iIiwwLGFzLm51bWVyaWMoZ3N1YihBNCxyZXBsYWNlbWVudCA9ICIiLHBhdHRlcm49IiUiKSkpXQpkW3llYXI8MjAyMyxhbnNfc2E6PWlmZWxzZShBNT09IiIsMCxhcy5udW1lcmljKGdzdWIoQTUscmVwbGFjZW1lbnQgPSAiIixwYXR0ZXJuPSIlIikpKV0KZFt5ZWFyPDIwMjMscjo9IChhbnNfc2EgKyBhbnNfYSouNSAgKyBhbnNfZCAqLS41ICsgYW5zX3NkKi0xKS8xMDBdCmBgYAoKRm9yIDIwMjMgb253YXJkcywgV2UgaGF2ZSB0b3RhbCBudW1iZXIgb2YgcmVzcG9uc2VzIGZvciA0IG9wdGlvbnMgZnJvbSBzdHJvbmdseSBhZ3JlZSB0byBzdHJvbmdseSBkaXNhZ3JlZSwgaWUgdGhlcmUgaXMgbm8gJ25laXRoZXIgYWdyZWUgbm9yIGRpc2FncmVlJyBvcHRpb24uIENvbnZlcnQgdGhlc2UgdG8gYSAtMSB0byAxIHNjYWxlIGFzIGFib3ZlLiAKCmBgYHtyfQpkW3llYXI+PTIwMjMsYW5zX3NhOj1pZmVsc2UoQTE9PSIiLDAsYXMubnVtZXJpYyhBMSkpXQpkW3llYXI+PTIwMjMsYW5zX2E6PWlmZWxzZShBMj09IiIsMCxhcy5udW1lcmljKEEyKSldCmRbeWVhcj49MjAyMyxhbnNfZDo9aWZlbHNlKEEzPT0iIiwwLGFzLm51bWVyaWMoQTMpKV0KZFt5ZWFyPj0yMDIzLGFuc19zZDo9aWZlbHNlKEE0PT0iIiwwLGFzLm51bWVyaWMoQTQpKV0KZFt5ZWFyPj0yMDIzLHI6PSAoYW5zX3NhICsgYW5zX2EqLjUgICsgYW5zX2QgKi0uNSArIGFuc19zZCotMSkvKGFuc19zYSthbnNfYSthbnNfZCthbnNfc2QpXQpgYGAKCkknbSBnb2luZyB0byBleGNsdWRlIHRoZSBxdWVzdGlvbnMgdGhhdCBhcmVuJ3QgaW4gdGhlIG1haW4gbGlzdCwgYW5kIHRoYXQgYXJlIGFib3V0IHRoZSBzdHVkZW50IHVuaW9uLiBUaGVuIGxldCdzIGNoZWNrIHRoZSBkaXN0cmlidXRpb24gb2YgdGhvc2UgdmFsdWVzIG92ZXIgYWxsIHF1ZXN0aW9ucyBmb3IgZWFjaCB5ZWFyLiAKCmBgYHtyfQpkIDwtIGRbIXRoZW1lPT0idW5pb24iICYgIWlzLm5hKHRoZW1lKV0KZ2dwbG90KGQsYWVzKHg9cixjb2xvdXI9eWVhcixncm91cD15ZWFyKSkrZ2VvbV9kZW5zaXR5KCkKYGBgClNvIGl0IGJyb2FkbHkgbG9va3MgYXMgdGhvdWdoIGFncmVlbWVudCBpbiB0aGVzZSBzdGF0ZW1lbnQgb3ZlcmFsbCBwZWFrcyBhcm91bmQgdGhlIHBvc2l0aXZlLCAiYWdyZWUiIHJlc3BvbnNlLCBidXQgdGhhdCBvdmVyIHRoZSB5ZWFycywgcmVzcG9uc2VzIGhhdmUgYmVlbiBzbGlwcGluZyBkb3duIGZvciBldmVyeW9uZS4KCk5vdyBsZXQncyBwbG90IFVDTCdzIGxhc3QgMTAgeWVhcnMgZm9yIGVhY2ggdGhlbWUgVGhlcmUgYXJlIHZlcnRpY2FsIGdyYXkgYmFycyBoZXJlIHRvIGRlbm90ZSB3aGVuIHF1ZXN0aW9ubmFpcmUgY2hhbmdlZCwgbWFraW5nIGNvbXBhcmlzb25zIGRpZmZpY3VsdC4gSSBhbSBnb2luZyB0byBleGNsdWRlIHRoZSB0aGVtZXMgZm9yIG1lbnRhbF9oZWFsdGgsIHBlcnNvbmFsLCBvdmVyYWxsIHNhdGlzZmFjdGlvbiBhbmQgZnJlZWRvbSBhcyB0aGV5IG9ubHkgaGF2ZSBzaW5nbGUgcXVlc3Rpb24gZWFjaCB0aGF0IHdlcmUgb25seSBhc2tlZCBpbiBhIGhhbmRmdWwgb2YgeWVhcnMuCgpgYGB7cn0KZFssdG06PWlmZWxzZSh0aGVtZSAlaW4lIGMoIm1lbnRhbF9oZWFsdGgiLCAicGVyc29uYWwiLCAiZnJlZWRvbSIsIm92ZXJhbGwiKSxGQUxTRSxUUlVFKV0KIyB0aGlzIGlzIGEgcGxvdCBlbGVtZW50IHdpdGggdGhlIG5ldyBxdWVzdGlvbm5haXJlcyBtYXJrZWQuIFdlIGNhbiByZXVzZSBpdAp5cCA8LSAgZ2VvbV92bGluZShkYXRhPWRhdGEudGFibGUoeWVhcj1jKDIwMTYuNSwyMDIyLjUpKSxhbHBoYT0wLjEsbGluZXdpZHRoPTMsYWVzKHhpbnRlcmNlcHQ9eWVhcikpCnBpcmF0ZXllKGRbSW5zdGl0dXRpb249PSJVbml2ZXJzaXR5IENvbGxlZ2UgTG9uZG9uIiAmIHRtXSx4X2NvbmRpdGlvbiA9ICJ5ZWFyIiwKICAgICAgICAgY29sb3VyX2NvbmRpdGlvbiA9ICJ0aGVtZSIsbGluZSA9IFQsZHY9InIiLHZpb2xpbiA9IEYsZXJyb3JfYmFycyA9IEYpK3lwCiAKCmBgYAoKU28gcGVvcGxlIGxvdmUgb3VyIHJlc291cmNlcyEgVGhlIHJhbmtpbmdzIHNlZW0gcHJldHR5IHN0YWJsZSBvdmVyIHRpbWUgaGVyZS4gUmFua2luZ3Mgc2VlbSBoaWdoZXIgcHJlIDIwMTcgYW5kIHRoZXJlIGlzIGEgZHJvcCBvZmYgaW4gMjAyMywgYnV0IGFzIHRoZSBncmV5IGxpbmVzIHNob3csIHRoZXNlIGNoYW5nZXMgYXJlIGNvbmZvdW5kZWQgYnkgYSBkaWZmZXJlbnQgc2V0IG9mIHF1ZXN0aW9ucyAoYW5kIHJlc3BvbnNlcykuIFdoYXQgZG9lcyBzZWVtIGNsZWFyIGhlcmUgaXMgdGhhdCBvdXIgd2VhayBwb2ludCBpcyBvdXIgYXNzZXNzbWVudHMuIFRoZXNlIGFyZSByYW5rZWQgbG93IGFuZCBpZiBhbnl0aGluZyBoYXZlIGJlZW4gZ2V0dGluZyB3b3JzZS4KCkhvdyBkbyB3ZSBtYXRjaCB1cCB3aXRoIHRoZSBhdmVyYWdlIHBzeWNoIGRlcHQ/IEhlcmUncyBhbGwgcmFua2luZ3Mgb3ZlciB0aGUgeWVhcnMsIGNvbXBhcmluZyBVQ0wgYWdhaW5zdCBhbGwgb3RoZXIgcHN5Y2ggZGVwdHMuCgpgYGB7cn0KZFssdWNsOj1pZmVsc2UoSW5zdGl0dXRpb249PSJVbml2ZXJzaXR5IENvbGxlZ2UgTG9uZG9uIixUUlVFLEZBTFNFKV0KZFssdWNsX2FsbDo9aWZlbHNlKEluc3RpdHV0aW9uPT0iVW5pdmVyc2l0eSBDb2xsZWdlIExvbmRvbiIsIlVDTCIsIkFsbCBvdGhlciIpXQpwaXJhdGV5ZShkWyAodG0pIF0seF9jb25kaXRpb24gPSAieWVhciIsY29sb3VyPSJ1Y2xfYWxsIixkb2RnZXdpZHRoID0gMCwKICAgICAgICAgbGluZSA9IFQsZHY9InIiLHZpb2xpbiA9IEYsZXJyb3JfYmFycyA9IFQsZG90cz1GKSt5cApgYGAKClNvIGluIGdlbmVyYWwgdGVybXM6IHdlIGhhZCBhIHJlbGF0aXZlbHkgZ3JlYXQgcGFuZGVtaWMhIEF0IGxlYXN0IHVwIHVudGlsIDIwMjMgKHRoZSBjb2hvcnQgdGhhdCB3ZXJlIGluIHRoZWlyIGZpcnN0IHllYXIgZHVyaW5nIHBhbmRlbWljKS4gQnV0IGFnYWluIHRoZSBwaWN0dXJlIGlzIGNvbXBsaWNhdGVkIGJ5IHRoZSBjaGFuZ2UgaW4gc3VydmV5LiBXZSBjYW4gc3BsaXQgdGhvc2UgcmVzcG9uc2VzIGJ5IHRoZW1lIGFuZCBjb21wYXJlIGFnYWluc3Qgb3RoZXIgZGVwdHMuIEl0J3MgYSBiaXQgbWVzc3kgY29tcGFyaW5nIGFsbCBpbmRpdmlkdWFsIHRoZW1lcyBmb3IgYm90aCwgc28gbGV0J3MgdHJ5IGFuZCBzaW1wbGlmeSB0aGlzIGJ5IHVzaW5nIGEgYmFzZWxpbmUuIFdlIGNhbiB6IHNjb3JlIHRoZSByIHZhbHVlcyBmb3IgZWFjaCBxdWVzdGlvbiwgZWFjaCB5ZWFyLiAKCmBgYHtyfQpkWywgcnphbGw6PXNjYWxlKHIpLGJ5PS4oeWVhcixxdWVzdGlvbildCnBpcmF0ZXllKCBkW3VjbCAmIHRtXSx4X2NvbmRpdGlvbiA9ICJ5ZWFyIixjb2xvdXJfY29uZGl0aW9uID0gICJ0aGVtZSIsZG9kZ2V3aWR0aCA9IDAsCiAgICAgICAgIGxpbmUgPSBULGR2PSJyemFsbCIsdmlvbGluID0gRixlcnJvcl9iYXJzID0gRixkb3RzPUYpK3lwK2dlb21faGxpbmUoYWVzKHlpbnRlcmNlcHQ9MCkpCmBgYApTbyBub3cgdGhlIHBzeWNob2xvZ3kgc2VjdG9yIGF2ZXJhZ2UgZm9yIGVhY2ggeWVhciBpcyAwLCBzaG93biBieSBoZWF2eSBibGFjayBsaW5lLiBCZW5jaG1hcmtlZCBsaWtlIHRoaXMsIGl0IGxvb2tzIGxpa2Ugd2UgaGFkIGEgZ29vZCBwZXJpb2Qgb2YgZ3Jvd3RoIGZyb20gMjAxNiBvbndhcmRzLCBhbmQgaW4gdGhlIHBhbmRlbWljIHllYXJzIHdlIHdlcmUgd2VsbCBhYm92ZSB0aGUgbWVhbiBpbiBhbG1vc3QgZXZlcnl0aGluZy4gQnV0IGFnYWluLCBvdXIgYXNzZXNzbWVudHMgYXJlIHJhbmtlZCBiZWxvdyB0aGUgbWVhbiBhbmQgcGVyaGFwcyB0cmVuZGluZyBkb3duCgoKCgoKCg==
- - - -
- - - - - - - - - - - - - - - - diff --git a/analysis/r theme-year.pdf b/analysis/r theme-year.pdf index a72033b7381ad7a48ca3c8f7fb5e8dc26c22da1f..0eda0fca646ef1deb7c0860b941fa0020af8f249 100644 GIT binary patch delta 18043 zcmZX+bzD^6^FRJlUW$T%fOM%y=YqtNDgq)Uy>tmE-AG=Q?(PKyq;u&;T56H*hNZjv zcTs%(zK_q_e~#R{_s*GfX68KSIkSt%xpk6rD}?`F4o(PHs4(%LQGE)Hn+qB)aEk^g zpsBP%)wzkXrg;`{hM!Dy#6TYZK>PGehwv-WtID>hU*biByTq4A;X8s~-yaH=n~xiL zs48l{e(l!qhLV=5LC2ER4Jy^N!0u@c?n_ zELD9#6I;DT!I{CU2H?nZtbEaoscF8`n$lv8dH0O1KJ1ekvYbPua{2U!#`f)#&&#JT zVuQ*zGI4x@(9=HxWGb~Y)a@4>mJMioy!8~4LOMl`GZhit2e(2Gz7(-pbOI4LF}XO* zB$8)tew~oz2zKL94o5ZNK=mcncm0RJEnL&=4)pMl=i(ILcct<0JsXywq=Dg zecdi*jRVeb1KpryvrdsfPT=|W0nX0Mqu>iz$K4v)(#?#VTR2UKn!Gi3DwX*l?Qb0U zq*~tkuIe44UA_Ck8)g*JE`j1l|EN0Eu&B?ye!)aZqc1GtY00k^T@v;qm03YvjatKG zZJ4e8Td9gjO!;mZ3pZ5&&D4Rso$JD${RK4jn`H96*!l#9+PIcPfEV`{<6c9>l&$2% zBdWyGuOTP&;qs~?8YU)jfR>p-jZ<3pbBW_@zJ;k;Zlp(7Fb7Q}S957u$2p5}PQ-P@EB8r$DOXnk)!?zc29;V#Hd@oq3-v0= zd392+oXIW~lN!@ROs%Pa9LXdvGyg9JTEDK$&c+2|?{Su6+J4^;U~K~x@)K_vnGd!c zCesAINB&D`5F6G(I;W<7GH!M(x8xWYeALUHKNk0ux1hipn3|5_d>bef_4-jsYPYWy zu1fVoWb>*}V*pJZF#p!&$B^2Dc!ktk11!sgJdUeVD4P=gX^D7K%#^+2G1n%tpS*jX zaoI`CBYWSNLQjLcMMVOB|3lFvXAHHn|+^nbP`r>ovA1QBEs32B?L zy46a20QkB2edL;LRgib$3TCi+`fV_fjyRQ3z;fqS;LzJwfpi@aibD^F$Kp`h)C0B= zAL@g>5H;QWW4f7YsW`sMRk0x_X`tHNrf{FIBwu2i8c(bKagEZimgBu%DIdZiW@Qo9suLWQRt~2 zVE_wCfXK>@j9nOo`OMT!;-l}!nCn$Q$sU_^#8yB)4Pm@Ov3Zk}-K{_lIrozxK8zMn z?w?*|C)BM>rkOhNi#Iyf5z>5e#6L5oNAX zi%X|>@Srb%=8{-tF1VD?A%yjhcjR;>eb$O5=Ap#W54?13E6^BXu}pU0N@ffk3$YbV zyHBULv;AJow^e^)u)ZgYpjl;zs^k0boji5xA7_=EQs6*}b!jx&lf1ZTC&`CZTDU<>Bp>tE$RqE2<=x6J zKA75fJI%HuPUq0mbGFOCjFvzZt|jD0?(sH6SwCqyv57nN%fLkaief|L%P=#nqWb47 z>z=H0g|M2e(zax%mMs=3jtrS!hV*lNOoVP|@>)p)NW9{ek3#RJxQ1EIL=zwtey7Z5O?8`5%!7s1W1FkM+%+Wg9*o(ZyLr-67anwgpvWyp@F#ia42ys zzIuxD+sT$r1hcyJsHmw?x!Yi<@Kxyuy+R#;$*ZoYzU+V3$`T4mdFiuT{aQc5MNfoa zXkfM7)tZpGB!C4X|9x}r#5Ibga{Xyp@%WZ?bIr3M*Rx~?Tq9p>p0}_@9*iq$--o98rv zO+>`jEXEs9;lutJW(2@3v96?(RrS&}l7=3%4p3zW*XWfGD$(r?9FVCi4oRk;^cIX8 zw>j4<>yjdDSml|dz&Rb95DQJt)yRBc38A}Y4b3^F66h75AR1Tcon zdL4UUIX-h5R#?*-9pxiJGP#-EGLZ|p8qW8sXC`x<5%U1F^N+$C(1S<#X`7nO?GCZ! z#wNa61&)-M4>Rb?rI-uXOGCdzR6n5n+4i%h@Jf+IMeP@0>`6(MLg7YIA&9h zprjO$FJnE#WS-W0{3bVZG+w{`OU`oyHR|6XK_`IuM%G2x;IWWi+hLs92A~!gU#x#` zO3r!DTIUls(V!v5kQY&oBGfIT*>9|dB@|B3RF1&BYr1x~B}3_Eb1$;_RkrMin4u#` z3`ViXo3^5kOGD-!o_4cLg>Ze)B&^xMdjoHo53A)J%)Jdp!+x*OTD6qP+K4Q6YY)Ay zl!e>C!t=5^;Gz({7^7WfeUOBSaq_JFOVSjqYCEsm=~xqtR-h$qp0XOW?aha6$yX%( zvu23&P0>xM;fU{0=2SkxnD#_`&m7;njij86M-bgv%Z!hhrs*ith{6CZ2vpKfC8qNc zvO>J`rTcxx8rw9F9zoj9UOzBK5QtcIK>npu1|BIMf3$2J@!_!-(#ILDk^t>M?vG^i zi|lAGShBWFoScoZjf|;~7XDStzgiKw{_RkPsB%3&lM}D|nTV8c@v{EKy?namAIh?v zZJvu>$BD6X)F9{s#GB)v^Kzy{;hz5R`~4L;Bd}TzZ#OW`1yyzsNj(W9xC2aHYW|3= z{efnWAq%YDU7Wsi9bi4oHoyS8$ImU>COA&a%W3aB96ROnbyS0yRz;zVbsgc7HZ1~^ z`?aBsOa3pCq&n%CJ1u@dr8I>8kJmbw>B}XL6H=|DF0OC48(WdY&*mO2%Sen?Z7aj- z8VYnl^S38MGiuociV>Lh@I0~zz$OBmH(puk8BNZP$%r}!=}fQn3?G)meKmoJ?Af;s zM4`HO`?+4QNk%4}$9WJ$hTd)eGCl|s!-qLwaa-Ov!9k7|T9r$RXfc}&cWwb&mw^7p zqq-8w>Y*QprJi@3BdN#*Jp^m&%BULQcM9H{HZTFIJedXAgO2%sqRsT3&O_La3=KeJ zNt;_h#Jr$CNOm!%6E} zuiXN7e00Ojs7-)B1r6mwWNCQVsBvN8S<8Og{q<;7%)Dfs?%5DbK_Ne&i)8jY!J#~< zjM@rqi-Yd9;(GkmYt|(;eU^f^9Pe3AwN(qg~3QvJi=m+6_<6 zYy4__@d@>dNIdt#c3|>!2WH=4kX4vBSpW;{QD~Ub(F~+BGK!eTv$9t+>%ni!t|CpM z3utCoB6<%-NARA3OIji3JXspQ%Dn1L(74RTeL@1kqo!R7j&g73|N312eRH!AFvk-0Va$8NT4Nv^fA=sZU;dO_D-qgMr>7x}ZmmJL^ z32E6SzVrS>EI6VtMXX1y+xK{j20>jOm=+(g#?Vm)wQEr>bRT`zzj3AX{?GNVj`ATq*x5M z*+ze=oLXValUj3aA=VLFAk>0CC?QT26;?xf-2W6&PW|CuJ07UVYdaz?3Z#4|#FQ3v ziRob8J>MBp-6gaJu0CnTwU0b)ph=Hk-~qj*rhXLD1_6O(;+?ULC&ZW)&?qb$)4rBD zRyPfKAlGr9kU{*PS9+o^d6H-|;M@9`WNp020ck(kV$;r#(TKdsOC>rP3!}tIW8OP; z<&sqC0pI}p9GJeV8N{d!r65p#WV=*tszv*Zu+w7zt79u=g>fOAZth1Jh*-o1x|Mz= z6XZh4^5RDX?3?vH4*MT55Lj%;!A9gg9Y8>l`lOPhu=>gnAqH$gW9wDz7i`x z^NOU`&;T0@!b|F)gO+r3I6qk<{EgNA*sNg@xi>mKlX2M+6pCNA5

fucb?$R=|ifFnWL^X+8Eh+_tU%4(vv@N%%+K|7MND4Hd}OTmNbB*>;K2 z^uGynh)<~6_|ZdsUisl2w$lNgDf@ywSff=i8(0vM6OppZ910b9^q#o~Q`JFGX5q#e z>Kohe@}51~I*y}a@z#~0P7Twqju78L>8<7rKUL_U6BEER!KkX$`p4)iX3q$&ddLu# zA6N2U+^QmoSW^;=YyYCckvU)3#_?8ocqo-*EgqqG0!UFkL!|em#*%-c!N&|XSd|Gj zjFPV0_zkp+cy^?MJ3^D5t)_P!CVO}pn7T6SHiT(KXFB9UeQ5@dVPR;(zJg4cN?T%<96b6!OLL1>j%ca*|W#L}(5IJRe!yCiIE>zPr<%7;UK$Um)d#fSVO4@R=d zM<3!bF`iM_j5rW?y0ui9fS&#*a2(aIeosvMA!0w_Hb^D80UakM2oe7p=3XqgZMO*h z=Gds11toYc8lj@Tn@y_=gEfF+CUvT(FWX;5%z^)k9Kj|g>lUt3&9-o41}ED-L~HzKiHJBdvaFedu~J4KSm1De(YX_ftm6 zcmIJyChsNEkCEi88c%nhQD>zHz>j<0YtBGY2PK@)kQzMGsdZvWl}0V7zhp z4Tmq7$s5qF+2MM^&HIH$K4Y+|#Q7qfxEz{gCR|4?C3x4SAEIa zHk2qXiEND1g4irL7Smt+>^CaImNO2cijg8?V(dw!K{x8a<42^Y@%N+}jD`dEN5I4H zh{>fI;`7ASi-R5Df^%tLLl#84G@m_EvoaT04SSTUNocql0B8Jdkgu<R=iJMQPN&*)lqG3szTG3)H~MJYy` z;)`uYU#=HfeR(zc{rGuj)P((p);GoK1J>bci+$?NRcIIRrT+!pag$Aj6{m5$RAqWo zzYg@P6F$@G&(L4wyyO8aWYO9K(j69*2I{|Ip_``#kK0@!YPAO^kF`s;uyJst(LRAW zC~vgoQEuP@k4+@iHWx9IvCV>xweor{aW(tIyDB1a?7yL7@)f2g)JSnAb(VcxR)G7$iPLD0b4y$vmhTy8G8owD=GEC+6B{}H>Y?0mNjxi zHF<&kVOf{Jq zcBW7KhJy~t<)u3x;zSDG!>xt;^;K!n#|sYpVbP3i_lP)^6%Vd&eMjuW)Eo{zRGD^| z5rM=8+s+2-{;H;AjKtnMD^%~3$GsFkaW`cM5QKkHNcfb^KW&Y{TEV%$<{o`fzh`jirhyvT*`zEWIoSp4fUcHH) zld*p9sw8$av7Os&yYBp%u*1g$au_@g$*#x3D*uf7tE-YNw zdiBbo0eE*z%JITGBJ|lf!0|86et5_jXghvgj?0Yf&lK{eVFmS<8%(QK?aVQ4|7(beU17i0ui}~nCu~eOL|esF za?#^1ruSxqau?_v{5=Vjj(`@RmomR_Y&vq&@Jhu%U8Xv~Y-6aviR0r7!Qp6fnKYSn z;+e|YLIb!LN<-TeBgk=+Ez^dFJ4;|V8s7bKTt9JKa?&xMt#gXJM9{qT(0ohr2eq9GRd8{))w<=;XH0}mtXhiS1eu}^9aVxJ6w(H8H7!}gIW zFwbX-e&XyJ9ogCGPL|%Qkw0Z<X)#y9Gze-q>R#Je#NsCy=Xq&Wu8G@S5#>_AG+T|Dmk5J zr!t-YU+x4P{8;I+6w5cN!{p^v#tmOg;5?69Y~ZR)V`H{X1BDeq3zGD_-kU1@^Lsd*`H^8za)JC^Jq=p?*h_zgDDU2m-JeGQ?a;uS z79;ehLOd*;plB01Japr)4z5K1UM!9-FLc?G(!VYoX|aqtG~Lfl1vQnk+zPGWvDP1>6mLA@7A{{5h;7nV)VO9@Py7PY zQoE}kHV_vhcs@UIE_@42zaCILhWnL3z)EEWTP%ocf8C z3WtGBFfcWhdJvQvl_WrOaJp_+Hx?L8nuv{8-W<Q&6H{wmRCajsg4u%GFBr{Fn^5dq}+u;h*!I2Cq zcQN&(2Yo1Qh$HoL!$>3@0++2uBgU_@e!&hZdi$0YAMwuFGW+kh=)W~KIX?a3Ltigx zixJhc{K$igi?41BPJ_=%)g@+2nFZ2Q25bx<(7Gmb7dY~T2mzaAI_RfN8KH>GtiBVN z3^bEL*zubzOkuE15BYvAdQ~5>xvFnQAB(7>b!Lg~FI=%mL;Mmyev<)Rt z`TuN9>)?4#t1rQ|)Yb)slkO}qny4x`2nwUFT?7P^&S}r9W$k~f2lYR*we9u~+%|8k zLsuy?<4_}|+wk@{4>s#b)W-n8Q$|pUu zcTkq>IRZI9ynWzO*|K6p7@wy=RXJZ$8}2xom7t>#!sFriHKBK8`~Ewbj7|< zNPdWE8he=BzDaOoJFAy5hgp|?mx;01nZ{_JLVIs@U2{mY*trsPlIt_YEtXav(m!LgqMu#uN-GVTO1U$K5U)1Y#Et+BS0~;AQwC2#aderMSAn2~kRu0YsZg`dL z4MIviGt|BI243wb-#v=1TOExWXm&yGq8d+v7BG!?8~r+LFlNRroA5OBaFOg1fe(lte50VrJ;8MB{iRC8DaF#57*J@Sn#jS9MG=Fh?rT!r1zy5sM2dldjRfBML*#km-xE99q(5%!HxoFJ;aR2%a_T{!Jjk z(o8e1Y}{ ztrwpW)J<~OG^K0l#*%BkZDJwUQXnA%+Rr$im&01cCLn1wmL?J~1;@}dXiaDztcowU zddgtsCaGFe34C@dLHj9mn?+}y{{nC1`T9BD2(Li4i}@~`CeqD!;YWE0?3hB{;gqK6 z28+2xQ!EK(moq@OiSHO9KPY|>R=2=seshKY3Tvo2?yZG_^$Y}f%UmOo#a}CZ0~oK( zh}yvFS+~jQJDU+4nVweC{*mrk$m>`<5Hq!Y2`PLI?^@VCJ+btM;o)l4V}hP${zP(YwB zK_rwU%)JJ~m!+mty$by3jnQ3O4sim~oQf6-t=cf6I0?CvO-2&S*Jy3$Z=<=cl3is3Z;XF6-=;M(yxlE``s#P!zl$mkyffg}Vx4amz{OR%#bLz! z4H0lqyh)0=e1qA~G?iC7F?GV-<2BGYmuL!-DZ=+^(8@kY7(%1pxB7LM=!A1ZMpR%L z2XR$!(|v(oFU9<{r&|pG?*%d<#YR81 z8p#Ow*Vd2g0nciN1jqH0ZeT!Jc^11Vzdka|y#lhVPNCqni{eHxugA7BF5P$07d7Zo zwchrmA%qxYfgk#to*!rq)d~{Cki*w8w}!$pE>i^3EaP(Q#$k&!XB{v(M@Dw&2;UoK znTxbdK!70TMwFYc#nHP8=PBVta`HQ@vp>e~PC~REjjI$qX7jr$b~y+&))8G~S!iz{ z4uO#;gSZ#h@y2M>>sKM1N)P4v1l6#yZN=|%;+JXl`&+X|3o@vecPSyej$6%TbiaS9 zTF|)yDZ~efRc+*1e;6hJER|yJHFImduvu>Bk5N+As;hw6Y}S0%om5?{E-(5_pj7*L z?q@h%ZjB3=72HxPTP*3kuCHQlX?{cvpe(gqwxbBUV}m2f&h2De*AIz0Pm7Ul(u2@a zD4d9_6IyIH3@yEZyBFZGER+(+!=;NoZMbybu$CbeupEmU!F+1PvZVSEq$}gty)E>a zrw6J`r2is-QzdGPPh~0Mow`i^D`#;mmPw!V<;{}Mx(cz|jV?LDr_W7Y+C{7fIy{sx zBR11LvwtIpgh{7piY%-6z283Xwrt`T;@uV3Rt+y1DQqvD{D)DmKVXx z2Cv!^u=?xlGYy)S6j)dqZH`m-_%aD0Tz4K*d558#CmIsI`yR7JwvyQq9cl|u#+R7L)Jh+A}^1hAK%wE)c2Wzy@u&o&z9Zuq{RHZHRD? z@GBQcd4sogUUNh_NT@p0nsgYb*Fgm#Al3o>nKAD*X9lC1+h_V-2{WKOgyzPI1ut zn|@Ha%fF?&L3~d>$jrOhuYd9(>7VZ$V z8#w}srY@So!yNH*7&^fI%lQzhaQyl^Lj#F9Ha3n4-w zMO(`GQ5$2chiN1aSbM6@iDBf-n`bW_I)8T;iwG-h`z>nq;MrtokT@@{4Ysx3%qe8v@+_t_ zXr*30Hmr|ymQ-C(Q$5DB+I%doDNsd*u$G}(*KNXl%-nQ2YA>8!S#h$2%bTpA(O5yb zDqdPW5-__d`fg63d2cj&3yd{9LwZdw@e)gx=%PJEK18PLZ1|?SMzxiaI_pX22^mL| z=Z@p6Z*!_Tw151aM}w79vy86RoC4CeBwp*OjeB3q^tWDQnynr4$A0qOt?*0X!;)5N zOM+TY-Dhe`wB-pBj{I9bxeb)dRNpeg<_X22CF;G)N%4B)?tX**VH9VeFW6afw*)%z znmdZDYe%3|McOsy$`!d!HLu~OO?7vBL>n~ut@54l+ne%}l< zD6Fs>*0GKTR|l*_RM&MnooW8eva5a$25T3tdPx$_`ulm>t6NXAPc*x9Co$HXRIm{! z2Pj8jRv$=|%H95~u}p*R&vm{V`w%ZLr3ACKP$w??+?3E)V(}Fl6qZXvh*=2? zBw*GutM5wL{BuoiO;mP1Kk36bNN#^ATp`7|7m^&TkuF92O~|%VS+q@cF{ilyHduA| zweT&OmeBS6DpCk!m0he4)pUNhz1&ku;@Ou1yNg?*UPe}$+nL5!+$cz?9-C z?%M0_)!BEeg}a-e@co&V6&$qW{-T2XEj;lco(X~N4^TR%*-V!7xd5$CiuaC|Jq<>R zrIe7LEkPVAW1I*VB$RD6uUMO`k~q;!`J1Z|T^3RE!NH~w1#vS#^HdC;=Ro$vV6AbK z`J}nJ3C!7@;~Am6W=SIuL-Q=>{VvwO$0vrvCdY2k5@|M5P@`FNs0p*z94mE^;q&CG z&YzJ9iyHeRnA!ISrLh~$JeBD4ZF!Qb82SIS++AhYxMig4zQLAf_?LhzL#p^;S{uD) zKl^Jyvf)BBZ0~b1h)A(StY`eCnfsW(Z%Q?V+@O-7)0qW(9oOiEpNY6Z56Af$N+;?t zd8pQ^TbDoPW}-BkC7h9|V~msC)tT#&IWI;_tvyG^F0N;4B}gGBzbeuV)g#uV&99>t zv2pRI3$hNMJNLt8Yd7KpH7#`ps`;QJv~QT_UMn1}ZmeE!&2{V&KiP=-#Rt7dfGH*Y zfnv;RR@E!k^A1o7zgCBk!?)8H;2LzmMV~Ee<#;q)Ws;fS zS@yfdOmlj1y$`rUht2?qOoy&~O%)Jb&v<tW<^;h0rJ~ren%r%U{wGu6$N-NXJCp zaDMfT3Dw(km8(cDG&IXDS^H`m#4qE?O3Z?a;zz220o0+J8l3E=WZqU|YW)do91Op^ zv7K~;KiMgA7W${&+SnIWpr+H=>%;Quf9+5JEN}{}G{$ASCqu~}1TN})nC#ZcEaHN7 zuws1&+bt}YSoen?TP4!w&%t?{3CtgTw`jI1NMpyrVW?8Y=$Cn0$G-8s@OviMg5;h9 z4-mAB47Up}!bGRDqxntyob4?r-R0s*hjv+1Zof5Otn(;l;xs4{crW$VaW?W%V;GQK z2?=*Uk80&OO0yfDhym$B^|zn_OnEwpKQB+BL!XtA(`we;w%;qf;}Ep8u_V`DktMbp z=`eN=1U14u-aIj6o#Wkk)l+VpH>rAkb3!#mos`s(1ugn)x@7LL%sPGR+`1Z8emn!L zdM{nM(=j8bFg=Rgyz6BqV62A=kE>cDH`ll!CoZzdh`OBRK`VQH*dGKKst!Az&kMC_C- zqzsb3jupF4J#C;rsf&$(k}~DSM>84?Jq8g*fSq*+nh?T=LweGNui$T=#A&tEYB}m$ zlNR*`U>RWFH9TJVY`_0CJoRbgSI2DYDvCfF(Mh+x9ouPx^&lN!jdtSFe<+cbCA%@D6W z0`_y_Y{dAn8TDe>7*Q5Xz}`&QX|@yD5o3~GrG9P}wb2Yp$D0d5R@R^E+_}O1mlCXB zz2|!VhKdE9%KDw0Q`gfG*4EJob-CBfYFaUYZ((w=Jgm^-@q2~g<2bgm$i2S+d#IYZ zX4D}zWe;qVgjQu5G_;iCZdA*QEV$7w#sw`KbOIzx%(+?ZJXSR5Zmjy$S^W`UO%3eo z3j59PUa*cx#-ru}#@bagZ}D67*QhnQ#aKI5=z8wj?Q1d@VJm(#AtmP{3rN!+tIC=G z-5d?}?wL=~q#MY{e!Ocxn7nc7{<(&px$GgQ7Mp2hRAX4a?K(c4o`c?7&W9F8d#SbFEdNDsu?oznH$e=z&ZwG{T=o3qXJ8 z7Y3ZBns}a?zHfxe^JEni{hMgluHtyaKq@!0PpYb=q35Hi)LJlDyqvxT2Gr|bwv8t ze*ajXjiIc_NTJMJAjd^-)m~3}W5tOb9pd8K;^wxRABqMdW#AerA4%5ql3BQoa17d5 zhvYksej;l2Qbcxgg};=NO?T2N8+15$f#hcd`**SuyH$I~Nvoem7TXoXu8!W6tPWol zJmzp~R9yiN^?w~AKBGOUxG(s2S{xKDoK2oJgU6J8T;X6H5=w)>*KiyXgmQ4)xGn%z zv>oTW$paUAtudYgPZd2Fc%SYX=@YuiUuq)rI(YbYJqWmlEo>ykrxg)zYQc1~UFE;^ zl9AGa;nv&se$c~4QDL%G$2f|ajK*fiJ|bF}xP>4W@@e+VwnCrFjj1NC)+^JSGzsK? zHyYK?s(+2v#Jad}W&!70=EzrFewrIUH`HKLri{}dk&0INC6GWVTV0eKP9x2n|Buw9 zqo~e}(D5w}eLlXy1Z5k`73Fu3$OPVt@z~F%+5JuQ7P;19exyvC33Z@yWGq&l^nK$NN1f>EgAbW)tO_WWKT2jt=HA^8f##ND5iDWD;@?=IX#0C$M zZ!Y@3>{hmsB9llKIlnNn(Nrw+hBsh71W;dhPbOOq8QrEV^?qG)2qQ8QVmAbK+j8jU zmtKExB*D3Y(}{e8Bvf>fk@$4YO#0WQ!`n9b-?N=A(3Byt9tsx}&}(k5c%P7k)fZH7 zvUg?hL}@pPS{TdF2!$PWZDl-04=!s9H7aSnw``=f1@-fP%%btwueeY5vV8!X7pwsG zGTC41MF?#>E&2UC)t_AxuZ8E}SZnP!#1DKDSmSU&og~6E1K0tBv1#{${MZuKxR788yVPdErUb`t<)s!`5uU5gmSgE;oyp0!F%O@joV*i-?DEIZ9$l;)u1;WO+V$#w>3T3;SV z*Za@n2}i4npfgE-KcpAc&D*nlws-7Fgvye#?8b6iRfLE3aEO8IP>7N%zeHvGzr()K@-3-SZ2|B-&e1^x+(|)P@pewY0 zZ~OK!D5UYT$m8o5!e6Yzn$FgBWZM`czZhH_)rS%NSuQ5Ni}8M7r@`!jyVKjFo;|eY zc3KwH^&S-B*ZD4iYb5-_E4S~-c117ZeZt4K>*)$bHDdlGJbCF1ZWQyC@b7(L6$q|n zKarMgL%07C^!u?N6h_4v=_I9T%9j3aJI#( zUjU1hn6!PHxr2B5L#F}gr{@Rv9i54(Is;xPR$5Z>oSqWTJ#0L|yzoY225=NquN^9RZ=u0oB-C7xf@%U~ zvXBI>#`!<7ITMbfpk)=}-{%7U7@OmC2q*V}?XjQX$WBC^U~sTOYaz?g1h^~c<&D3U zvenW?){M0rRrG=@)^)HKv6)m4e3qU2)`>3j8ubZ*kD#u!X=? z8@jjt#`UJ3|HDJ>`py01`c?cN+rR*nNcC7;i!Te@V0deV-vQLsx$f#8AZe2$I(TB{ zL*5|PRBvyej8@hKsG5=F>xXU$({}rwm8}QItBHN(OFNjsoc%9kG;|JZO9Yxj0Wbg* z)38Elhdd?4#U=SG7Po&tH{oi=Sm~k6^ek$?pxZ%cViuJOj;y1z zDC-vLT5r1w$9JlG2~D;Y(AVI2Wm9p&a~5~yQEgpONv%qgaAZ~CNVM~2ONtx>F*O!j zWaQ>`!pag$t7PW+0^nFlW}aAi=_)+?fy_MUd5zQ-51F|eq|RdLE}6MGD>x1Uq~=;o z0)6~hUh()CTjOVNuXx$}!TYS=XHid`>fa_hyLe4yxc8(V%|76v!V<1S(r`{_ux1ud zHE~P`(C3~YbvY);pMv8RWa6AGb7(37GBH5_{>=}WsKEipQT7S=eQw{+IkQxU&jX=uEJ71QW4R~h9|b3(ke|M5GvJg*vQw@Q)is&vcE)WDA)3q* zI^wpX(wfXheT_F%Vw=nee8o>i=PlJA9dcc5a83Oxn1k(2W}8*yb!@+>zei^7&pe=7 zpH6CSLObMA{+iTW@-aBhk(e`)Dw@=PCNal+B+yqN?ltb@4scDguz8K|e&L$VBlH?K z{+4$lE4}GGzL22Q*FESxu0hV$FI($9J`e}~{oQ+9DpsjaI>39pnP_Xg$HseHfG~K! ze`uDQB~bj*?RfaAuU`ASN>%>i0OxAY0)V&#rn@RN{kjY;9R%uIuV#m@oO!3;U0mY4 zf4`|6vaxy!tN<6pZuUy8J>J?^mz}^F7skoI+<5hby3t8qq8;-RBO4jI5CuU`!GMda zbiMgT-+RM>vdpG6v;j#4aL<=tSdRNk@o#;L;pdr|FV@j`C}=n1c+SilmLR%df|)3M z)+CT~EGK$=l|Pq}#p7=KdP5TpcTS6q(`~Q#>iEO}7}ze}ay!dNx@y{9)1K-+ktLXn zI8q5Du>vUA$m-oLGTntQRMb$IOa`Q}qgO@iGek#Az~$!7WO;5*8(Q3)FrQs(+a*dx zmT;sZ_Bqi=|90ov^j5*3M$EB;_TA^M?^9zFd>ElL>28ptq?jvwCbZnf*PCbg+m7%@%CTWoo+XZFqKqgCQb%-uIsy!eQdx_eS)3{@MVoB*HaN0+!Vra5bp zSpQ_muDSaOeZ(G_*Q7ol;0t~^x-cQj`Y9ttdth*kF!;L*Y(9D4M}+C{95+86MNX#&r-@7v{t(rErkH$~}w(s=>p3T2YeK`2MA|mxAjqa3v|!2Xmy=D1fAO1UUsu3l#jElbnU!$wOj5u?+5=?` zt`X5WkSjs-j&jn8T(n=M-jdi(SwDGU_D4FQCG^OYAxc&}q844t&d?Kp6_HZpEg2N{ z^u9kOvz-x6^i8^ODdz56peJN*Y4!P29)&PGEcC@zu^=eZ5tKQ9muK%b%1992atSrc zM|U&EIg+c3X+1v@fF+q)O5;S6@5`U|4!UQ_Jr{(NN_X^r1504e6${^@-!eND4kQR_ z{7s<%GOW#7zY|6GPD&Z9&3;e-#PzpQo2od`dKYkGOW{)Qv*myjepLBog9Ud*PTGLu zQ0ih~G#^g-raq26NB5hJ*~SEj0S@t~5A~gg2nmDV;(ZNp3@1yy!S7sbb)OfMpM_)P z=fzk&udqRR$O~%t!YBKeoGXG~0Y`PZBRr%NQ2y%EYC(AOCA6uui1MnPa`R$-OPHhH z!QZW@p;QnKjqjHVE=AW*{ousQMQSzh%|rTHA!dPgI%a3~wR}N1$irKpfZE9la4AO~yO5}eE(a-AYUpi0CfImx7(OB&mN689ZPqTlYX@yh9 zN%yM1iK5CvcZbD7yd^Fhl)XM1Ac_-JRqWk)&8CD~eCE%PJ-jxCHmv+@4F^#F)Ec19 z`;7ki8kv{t#Ec$w9=WVDuYa*Of1%kp2RHBkT;t^C`k!mhA^&#*9FXVS j|5q3XgbTv)KhJV;U&{?QP delta 17970 zcmZ|$by!s0_dgEb>aC~<)Q|>hfsi8qh>CPdf2I(&8 z7&@dIeg|)SKiBpBT#x^pVehlgUVHU=?d4JSwZiOcUj+Z<;Na#B6@B#IQ*-hL4?kbH z&^0I$?4QNCIBvNBj>@O-fSq>sxiMJxtCLOkiv>Vy97%RQ z*Pef&_s9o0<-)H!v{5-||Lk$Gfm>>cHP`fRiL#-xTxH$%VXupDWL_NOQmb4#{!#t) z`q4-5$wg^7ra*n4k|2I;Ok26mC-aOe|G7{%)_h9QqDZ75XJ^cP;RgNc4eX<-U?zZ? zL!CN$5>r$ARK;n0Rz8<&c_AUbf2@p$;ETm%Yi$i%niE56oI?@fCZDAWH|sA>Am`7JM+b>@1uWx{kq$W}x#W))*|_EFUR z%uR^D*#KZRT>X`Cypf)b#A`I{a0c*q_7aC3JtM7az9IR$%8PWGDAu>D6V+v1Yp8YZg~P#p4;QfDK)S+ zGL^pCGBNZ6vE;<_%>&gO*dFM_1%9Eyl`~Jn%r9;>yFm4RPZk$bBu`Um8PImRXFld* zSY72Cx)5MpE9>&l(0jO=ApF(lUP8cO8?_0wk~2n-Q|{lAtaRPAUL!AbZD=N(#V_9# zP)JWL@~#+CjRBr-7D5vU1agma*oP!{(WEFP0D_b86z`)9=Iwf!FLb*ZjeN0MeLx_xJt@Vf$D>vHZHn9=h`ku z$GTO*cOFx3rsz%g;&SL@8NILGg~Z)?XjdH>rWnYM@q<3XNKJmA>N$LzBZXv?io(8DXrQ!5eDA3V?=YAgr_ic)-+#L7H|xjTu3*L zujeVqYDoS(WmHnspaqw^ok&wgG0#1|AN3Zw_prZmI#PRcnPaBBF707LD7bLYQuNUh zrx#izboB&?QhmTB+7_Wa6nM_`ICpAmMp&7x*PR+KrMlB`MlClZyD|EAU!F$57un%B zk~x!!Vaq4+e$7dKWIJQrbQaEW*{b(VP8k0qeD$nRG{4*)FP!|mMrKL$6s=5s{!mB3 zwYt5nEr7Gx<=5LKEu-D*jLQFZR5MqlJoQY0h! zA;>B>_jnyLG$@y!Wc#b{RJX$sIb5>;xHb=i)V(QE$Yuq`%ODSh`C z53rw;d7f={-N0G1s|k_R7@_f^DFs4wPxA(--8IWWaD}y~+0`l2duwr%h_>`{c1{9~ zg(D5luiHkfmWw=JA`a7|vb%-yLY9wB)QAqF%a(-MCQ=??{64A*F=KY^BQ8IR(s(hg z5Gk3N^E9tCvTmYTfM3hLB^^hzXsXyG<ok&}%^3eU^U(7oh@0ZsFB<|(e z8g=|z+NG|46Bx>~?ZL1iQjm`rXog`%Ry8yfYFvF9!!YJ6ovK+r+f`ZRklFd<;D9Xg zYJX;%%wB86x${9fpA1_Pc!>ALE3?0}NMxTmX|5Qm`VhJE!5Y6K;WOf3=`bhmVWR42 z*qEZeAo}Q)N4Y*qGhHJpQfVUmn4|-lzlDPZWYdcv5|Q1#eL*}oC)A^+J2=JY>>I>- zs$Li(P!VGgaHT0ie_l}DIW?>}(4d3n)f7)M``p9+pNyNaQvo&zR81RaCZ#HIc$`SzH?*A`5W+ z6wnA)Kxf=*9o2skF~TE~G=S$XpKaD=P6{r~hY!mQ3t$`MS6B2Pu-^x=!-`C?$Ah!^ z%rZpPqRG1JpRX}uZzjbQCJ&t^bTBz8VIa|yng_F3IEt-u?Lk?oW}S&63qC6^$ywHd z8T>*Ew}g`f$3-UpRbxrCjnj@YfVGv83gRhswn?JsuqQ${y$P)%?cOZD+P@UC=z*Ma ze~0){52rrP+jJ7(Wbob2dm$FFYGa`iy!8{V6hO(;8neao*ai8-b`Y-(`C{}xuBk-b z3CCvUaP9yl@oeeG3X?oQVjC5tr+`j`S<%8^n1T%(-NOK=KD09?$CYy;&+te5_Js2> z)-gox%<8H7w!b`P~=p5U}QNK*WJlLoM$S4-(;s@#pTP!f{Vh{ zraFZjiFv`N8geo$Bqbpz=v--#ZD5+7Z1wb3EETbmnYbzcW2M^K1cPRO4+~MeE?+?fG9Ib+HYt$O# z@Td-$$;;TJ{}yK;xnZ|*t2slZY#u0*9vRwD%Sp=kfY-bp=ta>jkk{N)u@E?~AuA)z zXHbcHxC6%;+uiUJUKYrNlGyUEJ{f{OSg|l>WfjC0DUS?U9DFmC;fk`xE~qt*au#SE zbDaFzV$#BP`Y;V+O-`9aVJ8njCWG1;F_J1}cIV*z$}McwSF={bsDj)HAP@JkWpR}Z zKFUv_Axv5-!o3W)qhRB>gEeVpgKJ1Rk2Bn}Ik`|vLc;-JRAtuwXHh=fNPgJPMN{Ed zR&Nu9Gk>FS?boJ}pVjo|h2$^&k(!MW5thB;&r}DDGNf!&^MpTp^$j4_9J`9>q7V&b z_AYV={h9tjaf;F6WMD#Bb5GC^vA^_1$-U_vV_|Y^l`pN!=g8c?i2-p#V}#x%m3i&k z_GTk%<8p)I@pMC5pZs91hwQ5FMU9l)`wPF9ySB_u!4-=6TEaXN`kI2HiQorIXN9c) z3FbgrbX*CtMoCSaR}LDN&d)fCW*s=bhlU3z?-{68-isDtfB>t`Z?b_#~!q* zrz}dF`O!IFN$65Q7H3(4yb7_1f_Ys*77n_D`j;+;LMyM~@PbI@sX{g5obThf()hfk z4+75e1`@{f)XV1oEE~QF9mNzTQ3NJ^Qdbq+{3eVza(7sTW8w49RF$g^!f%KIHHCIF znhtxv(O10PbEx$8cXVexLdTEGf7v^^)3IkOvD{+OHk6Ro=HSYS2}`!PfJ|%A&LoZm zD0aT&W4eGSl>O0!ji?-q+OgSEl~YMPnRHPkRpQN!m1qH<7Qcr%2+pN+SFd%9zsE}v zHhisDm@Wnqt3FwOK)xOQ?60Tzo!7k`+aIWuD{aN0;8Am7R;=}SxwGz zx2hOYKl(nQAo^X}MrZHC%VV0h$L6Yl%KzId-*o6E#lP>oYMs0Z3!N*e0+!jBh7Cuv zU4uBnnm}_Kz8OE-^+1uNo`n zN#El^rLe!rVO+9D{CJ@pS9s!QsZ=Fd`RBNoLK!yvyvpNo=M?Q*Jl8Fi-(f#3U!B?i zuwAp@SxNQR6EGIop%@J zp)A+Xbh~$Pqh5KUZ`xRW;E%T755IVn7Je&MKDrlDSCIZSPClTxVcpQ|Q+{iewD}F@ zIGZtXGvo4;gmAQ!61TTRdrU8`4xJgUeRDEtE!CKWQkjJ)kVQe>=SR$gZTlHdxM8K2 ze|=aO89v(&8qc4_t2VlOy=&!uDZ<6lUpt@MIT#e5EKH?s{P04~gg#JJE}k;NKj`>8 z=pJjwcVf=0X`?A+W_(Gnni?gje}(r#P)a>&h=Eqe#^^|i+i=e2s`ahTRM(Jvmcrz( zWAcC}lypDNIk>-2f3J_Qi^z}4nj>-`13L)FH1O00MivbUU= z3#PU`tQ-x*u_i(=xB>%7_WA%ge&t*EfI;6cfr#EhvAV7IFqZ2Q>@qoAEqI)1M6~zc z6bjv9f@|wr$HNtxYm{v`+~n5oIg}#1CndYDj){gu183rn`$CzJSs4iXX%{J!0!_3K znhc+m%1@amKkdT!KNdFSVVJFx)^EAt8EY55?Gn4soPofUfp+sGp4Zbn-1GbBSN+_U zkH31{EzGOUM?4EOS~(A-bH3lJ6wzl84!e)6(a~QTmXOJ6GBBD=BG5%0al_j0 zh?W&t2hPb%q#kl#9XwazeD*^df0sI`Y)In)$uaNS8JB=<5bh~}NN<4d(yd73XqJ|JkT!`L8bMn1D(@wJu5Rb3nXqb&AVSuQCBMe4e}=xm)u6D! zUt=|nB;yHH<47}49KDjOh9SH5th{M+nSD0IC!UjMww~fOTf9v-NAlD70twQsCkd!_ z^JiuPp+ZSqK7ax)hAX+g%CyO|J$>AsaBTGK0d>3e8HKdVZAKV>CzO&u@~( z>}vt9z45a;lj5kR*tV4Ct@SZf22SHGRjVJKM44Bv(UcXB)iFmY@4c0_goOCsx`H_@$`p$=LZTTlNV7~A>fD@$?jvUVKG?f06DY<)v(7k3bbN&(j`#lU7 zH6heR5%-u-@qq$2nkiVDyq2%s!8HKmAG_`(*VU9+T0omI)FmVDCQ=PfPZ{)vorQX_KD!hlcIPT1yQvLf(ipm=0qA!~!0fqgR zq9>thA4s6;ymA!ft2S04JZ`MBKjl3f!h6Ty?;?j<9&GMM1KF+%g$DYPJR+$1AM!Lg zu8e&Xhj8UGY+1xe*MKe^$dA$(iT)w;cW-`38h3Ft1HJSOn@NtQawqSml0aXjP{SQy)Q!= z>&{RH+_Fl3yB(fE=|voQ77SYx3^c6MpD3NO9!2#-3^dUvI!MLtq93p9$K3}-BY)Z6 z$}qEi1}f$lkw_$6_q9$U(FSMc_lfvT#&Gv-A&-LOZQZvvRt*e=M8Yb4!YcBptLSG= z(Aj4A0^`kqvo%rdG5qL+68pire7Fjrkcfm@b-@+L$P+2ti!j^ar5k~G|33#w{wgkG z1vW;pMnU_wnyqZ*y$B(Ns?4YWj-rHBgD*0zAU%CIKE@NlW9QNMIyIm3h!Qc|uiN^(;JyTlybL5@XE~sVWs7`-<3~_+cQ)A0jElr0MLx#Yt8{ z`5duW?M$F~K!QTv?5GI8~LcKWo@n2?-S1nt7&ej1rpsO-|3U zIAutHwG|3mFmGd3d8NZIFihA##Z@f*54LK0F{1h_8mc-FDqIaa?fA?_jvyb9Z9~Q^ zGXKfp(GXl$q2U}|HSjR_lsAcIbiKkI#6!O5JCTq7i?Z~!;sBS@euD{83^YK9HL8eVSmn4{thkCZE zlj$;=>A{oiNG0%%M(G;QG5+T3L-~)p`_+r8AoKC#GIK+v;|;}S9bln#JGG2L^6mp^ z|Ei-BejJk71}ecSw`Ka~4E6sqWH4p?relE{)trJ|>ljdocQ*!p#EH#<#LTa&>+ef?AkP&6$yie5nDjVzL4~53Fc`I}!(c_;jzW3kBChVmM zlZei(XraLnuUI8J1^4PvOY&F~W70PD}Wg|X2n{@53sZIi{>L1gr? zqon)y6!CfdhzC1rn|km0!@KjoqZ8Z;uPP+auJdH32OQTrzYV*otS~swt3jyAL(a0A z6vCj_2jL2X2A23W8<;+)_Y;E#n^yunQ4{|tLnIm%AM}aLASarbn)Gox*Ytfu4%pDW2(zw9J5hp1~YdSS2X7$zazKJ0HY;7 zMLy@NQRBA^h;Ytux@M}2rb-*26*sKzv8l<9q~H9H4{;+6PDyrA0_@6v-L}Kn{U?p- zJMUpPsj{S}WXgNLn|%Qbd&5yh_fY}0oXlnhqcG@J=WW5QT*-s^hpAV_y%BY2ANe`z z#%>C>18y(zEBWS>bjgTsQld=#FFgF#h^WJy2P`IS3B-Wy>k_!0L4}SYACpKYn5JD8 z=qH*Jg?jzYT}_gk!|}C6w*wlQGM&3-k<#k zG7_m>ZsL#|pzpD-L26Y&r4t&{V!C&GD;8bqI%1pdI;W)wS3H0k569W&b)-L8)}4?94!`Bn5*hwgi;88svF+s_Q zP--O>!&cVL>$-)*>Eyp`2n|OW8ryj7ag+h&V@TK%Yd&G(0*BO&*btSt)$3&?jLWYo zr!1R5wFde~!o*f4{I^NabSQH8wtQ6QZTYe0+udCj!(J>)WQ6u1-bBXSPL3vvTtQB&)$RNbZfIbkN7RK) z%Rcb?KM)vRsHM{n+^d`CFCzMVB}?XU`@lFOCAA4IpzLAw+^IT(S*L7$n&?> z^ZkKZIAq-90o@-~PrnUcw}Ys3y^%1G?7#yQFq6FtuDX+xk2xQ515x zxEC_^hhhh?;;}!$S+F9|ZBgz#xuGyQvQDiP!gGQmBRAz6cprd zScCCWH-zNluYxg%9L^QTTSXuA+Bm*FWPaKa>&VSNo|v6!CT<(q-wJLjoU-1bPU%~~ z`JI-6eW=E$1W33_8`i5>M=VWU@T~`IpXed?Df}68g{>6@ z3Rg&(%kI1bETcx=$XlgaD7wqfMO<>%*dZ4eRW;b6kAL=zuvOcQF{A693Uxb7a9n&S zs#srKg*pJX8~#X|+8?P#9dH?9Wb@QZFL@i@{$=4bnqT0Cy^UV-j-C+U*_TKy$fuKV z0~XRmCY=QnHNx-ycqe;DuWurrS_uSQ6hY9XMlm+py72XGbmRAUTl-tu6F`AELabXo zzTUw|x0_cj=lkPc1N;=5K*OeBvXZ zohMZyJ<0DP3+*h|nUAb%vom9fw`@y3(69mqXE|uh^{T&k|L^tJjpIx7zeaB`7#sb7 zZB7Kdx<`Bdb)8+Lk?I3ud2!p|xmRbtUiqR-d}#fK7ruY^r{AOcJg-zonW7LWH?Y|g zrz%_3*WclTNNG$hhurm;8Wt&?#c!<}H&?rurzn!IuPxv?bQXp;O7DF(+=l?Gd80L2 zV0Lr~Lu*9Ab8|-Sx^u_lX*N4*dfgF;7U16JeNze95{K7vx_K0&eg{3#JOlgzTHj#w zFBS)a&>L!p_H&BG#bZ8__?V+KjvbN3f23nLax-l|r%mI?z;^P;SeO@Yx7PC~!7T_i z9J&aL%*>y*LG%GZ5K-Gc!j#8R92?_WxD;%bbqIB6x}i%T*i*wmVih;^LQlCVYxuUt zfvRcV|9}&_Tpy)QB%yIL8;gJp@<}SQl#ZNI8Dv2X1&t~!O!gO!Z&kOF2q=VZ7#41f zGT;|q;oVv74MZHsizl%08;rDP_TvCGa&cKBV@EpIBRc1YSsG(@_XMWH(@8kyBU`zR*g zd|+kIF4=I7O8W~x=pfUfX~%S7#hmqpUA*<1_sb|WSEGCZ^CsxogTf%kR2`bkUFl~y zwO&ohWAYQrQ9m!w3g&>rRTN6A=2G}n+DmIue0MfW15^BDO1CBCRw9itu*D)JR}rv;Is48Bzlu zCQ1pw;Ii4}K?XY9i>#FX07e&t&3!JSGw)d84bdZG~VUfVc(`M~<#GDclm! zi%gKKid#c63t|gc3Uep2+MC24b_R-5bPCX?r}qTDGm0}YVukkW!@DBL8vMcE3syr< zbBvz#O>}_O?fjqWcELe?4A3HLRe!_HI2$)5ZQ78md7 zuxGK6WF0WNf_5r7R{<^L5`#i}L82o=d=8Go8XL=n0I|n7@6^)tMP(`>s~T9r5TB%4 zgIw03^{S7Jbae%^6W98{s)xxS@(NxgCM4xycxCfN?P;6l>qV{Gny3zk*~F|ImAq_O zu!M$@g?Zu)G|?=+Tjf3{f_h9W1R7$V;2YYRr!2FFWs~pXkNiATzGqd*- z@nB%!?E80G36IbCvo-{{s?1s!EtC_`3I~EgXwxWCQJ8O^)}yoB+j7sI#s9i3|1VRb zN-ggZMOfSI?s?s|7&w)1`9|RHj{g-apIuxVUmQy`jxx|g#kR-3%AtJBy_ht6lRH^j zOPzRNJo;}366*A=@PTuSrq@~ZS^q(85NU#L@2rXZ-|OByCqtdDI(xNj%=hb(z1D3- z2`0vzR!Z+br)FByTh#4()!Zv&XSog6dp5$a!-{OT;bn_I__6JKjO#T~p8F78r*WA4<`2rIin`cw^@?i`C zvtEc{bbQ6oV|gX*7+KB89U4vpamub6VH8@&=4PibB|fI^U`%G)pIfX%^cJQSaPDJ- z;oQg|gEfYWeRHGsSx8lY-{%xZL0`AP6`a6Hezu5_S*Ixx{7%UfR~ zWWI>oy~}GxkLc3{WnCMq0o=qYp*>Q|mH08GPYRR#sz;dkga-dMrBAK(t+h?t$8T4= zls^4cK`@>XOgbrSQp@A#LE!j~vB;J~8xEJ}K#hkh%oUFs`BK^M2f&`e$8~B zGX>dc{-Q9eYQm2ushE@pH=~Q2+PI{mW8Uyx|3zRy5?X|8*TxEl>)&QEu@^$v6kLSD zQ#qt241$&as>Eu8R(=p^4~6qK{(@g*)TS=gC6+FAb_$G|BIq4AP5_O^mARh zI}-sWijTG#YA(K%O%&VvPrlUYa6Zc#R3a|BzQZ47U6bLG1L{iWzK~a7~If8Q~moEMC z0@UJLMMq5~8w~cwtKzr2!-RMBZ;yk8vU#uawhULpJ{3K2ta)o|J!farYz1btm6vD1(kFrhC=KEJqclarXa1*-`zkB-^OJ4j;oc^Vj4!N(mAV} zb!Su*pH+ud-g++SbSKh^W`Sb9=?C$3Opw)E$<^p{mPmk!DVH#>aIl}J^7~49E^OR! z!jVcmu82GV(V4!UzRMp54GjiO{?8P#YFts@gxRmGzetev;`ZI^jz8CRAK*Ccq4*=L zJpA!|!>x-_b=la3-W+u>GV9CcikL)Ebkq_Bu)1ctw0_9D0=&#KI(qpRsX+hRg(hl@ zqHtMUYRuDaN~}h8+h{w{=47rMLVdaf4VFiWH!xcnMc6|@fsC167;#;A`yxrKAwFMd zNG@KdfEAe&`WmGm9uGH*kt%ZMm-56%UZ1$17#q*gs?}R1?I>6CSH%KootZASogpoW z!}t6`zBX*aJzHB}q++avfMQsaB25V^yCieFubc{8Veh`Qjn(~TIF(}IhO=)oh-UK) zKijw8QDcM3j}Gc?&p)B({|@zResxk&T0gH>ubdUXcn!?U>gQWu#OD^?BPri_EVFS1 z!={Ep&WJx`~Ya<)vK`%S7}VWoU!?`6IT?OWURZF3n0}lPO5*42BqV@ta_* z(E-bNrJ+W}r%<=|Ha!HWOpcm=j(>9Hc1fj+l*o`PB}mpnQ?d(^iwI=#kL#O~Lu4jK zeSp7OzL(9FeO~>|*ct2=x;5WJ+A74GBY|ss0d`o;j>lnLI?{<)O!mZhV7|kWtjS`E z2eZ=Ef4yTKE&~a_9(lEVD1XI(!%5uD#;Vgbq9CZ&LquvSc;DX{Uaopnk6s3|LA3z}oZ$`z61AR; zjq2pT(I2s@=%}<>WQ_O$>%|3hj%NijDa*f0I9bQXfcKrlmFn)lv-tGHDdkKOK@AS%i zu-oOts^2R5CcIaQ%zRdUDSEHi+ndVeYN_$yy|Urp(TF(n|3CtEH#wL-_AbEB6KXZ? zi1L+X?&o-h)1TF(PZL=M#e0RSvB5q=tL9~CfGu=(@^6$#t=}g5!G+P2BTl*7QtU>wEs|*X54!LWL>T znA6!_t2{nfr`;XSnz#4v;N~|2G={^U!%)w=PRAPjlPyHpx`Lm+7zywfPqPb`au|sH z(@#<^Dlaf)Vj*MeXg822K*bW&SDxD$L^d?Daj%s$@e>J3xict+fWq^XR9Nx-bmtSN5u$*H?WC;6fdFx2c~V>>c}Ea-ePIY; zDf%B&Du~vZ?Fw4Qqh}pHi)*canrD;SYrnyWnPqil_hEvQ$1#~k+6sICf!4+#n6%?< zBEd$(cN4bwe1G#^_d)5Y4x(OxnJ@7~l+*UxGz)}N=Ux4Isc$E{To&0DKd9@;V(<9O z18YmSye9Z|zkmkLqn23ukV~9b%yLp$6LIki=q*BRBTvm!6qT2`=TLJcc zVB-xH->v?!9G{$Ki%r&wvd-S_gn;+M=!TjzJ^XTxKdd<{+Wwhq;t9G^lv(cLuVQup4|h?9U3x%ldO%+Shq67lVlv*p90} z^?@SNu_WFjO|zcz4lwhYz~Om40rHQAQcYOQa+hk5Psl?fTH z561NQ%Ui4s4bt(%BK{P6o4Y(e82CC_q$TEK7>92yb*q=t>aK(Xj`CCBz zjaouIhK_~YxB)fwWYeA}e?XcOA6A)O&P5RvY&Vp6jjs9rBatGH8hY?TQ9uQ@p9x-6 zbh)wGa>U8AHdurGU#ow0UuRZ5Bs+k?wM*cuo?JXMiQ{4SX)32-c6G8OF%h9gYC z!Dr&q0m*V0j(wjCY=~p z9NZX|A>^^s(iHove^0jyW1#|HTg=#a4Ex)%R@X#cQy;`@8M6WwX~PuCtlu5!)6HZC zs|~Xji#W$eZEn3LXJJ+njw_~7iz#GLglQhcW+ozlGHgjZ*vrVi`^AbQ*fB}_V?eR~ zO3l*)hqsHqeb!IjAsaFp;O!9x1VV+$B-96TT@$OP^@I7JKmXTV(s1J=!$us~ z_jxl^lsp7C5qwyC4VtxC9zV)<#ZG=NNM1PQ?Tk4^Q+68h-5XwTMm4 z1+*bhn^SvqDnAar*Oz;0r1vs|*wTIx%bIG25R1|1O8p1puaTuGPSNq}L4dmEN*BxZ zzg1}|#QL{+mSFC}G{BqCLt25mYez|NIIlV4smOgQyW+8d- zuesy8i6k*`KD`KGuRHhAqd4Dc=Rcio_pa18Bc)k=+k{lEJ0sAU9hq!mGwKUV@x-&N+YCe<;mT$f{yzZq`$gdZp# zHariOUAes`W^HrQJVqfAUAJX2PIKhM1swj=q22x_bMLF+)P0zk<3*FI?s@R3$xTgS zJ&`h8{pFH_prf-H9#s)sXe15$^S}Uu%-kE2!(=N#7|KcnDt!x*1?;#+qFI@B!H za5OS3+%H=^ej%!%1?d(v_$ zc?QP~hsZCTJ1wzR4@Xg+&b@B=SU*qHy$p^B6+Gzqx?R!RYq}HmGh=uCsE6!k4va(C z!fyApT5^%e&4o(9VGaM?gp0uIkU`1Sq@J^#Z%{e2B-nEi3%h$?eNq;ZdVsT?p33b! zZr=HppkM`qcVb7-<9*kqz@MOlS^(fABIHSD>ICVJ zFrI@nDpdhg0^O}-4glZoDJ3Pfmfn}G%Q0%{`1#h%LGU#kpUm#djYXe#(DMkpj4vJj zkV~usqz<}wZiqo%$Zk>b38V`_w@XFREW2MZgman39#-^j)#r{7ILTeU#5!`#hAKEQ zm>}?|D5?K!=kyl9x}fu8~yW&UQTO_*zpaJ*j##}PFN+#llM;KTEv$! zDHDrN>bpK;osyE4Q0=tKG$GoJ`iY*c{OJhpDo&d{Vtc%QS~Do*cMG1#ZlK>*&I7bZ zCkFfRvRk^mo=R$A*DBcUQ(OYqNB(xtT)ZTsvu*k?#%Ie}K;z~x`=31?vtHYAM<)i0 zH~RAX{^4z4I5Q0DKE4F!+d4hB{X^NyTQ(m+e)LN5PA!~&-bnK4Lhh@TG@Yz1FXi)2 z2_1q%z|aFrO#rtY2X|zY%((F5`cG3#fuP_z`rQS`Eh9q$?Da$IlzeX&w!JTM=VWd! ziA27h8EQ!Tf((PmDqX!x28MVGbFF`szu32PwG!w&ir7e6#HrXyg^}!pkW*5R+)?WV zsY#@s_N(f7`n#gH@Lj@kp7ZOe#Fmz#-@%PEqVMH_7MvE9(?4%L>Gtg7+yZ6zX@+Ko z0MvQ+kAfa9HC1cNaQ6@q*l!V#1nTK7)6(fDPT*M^Y#H68rV@dR8>iujuh>dlqeVPX z`+B>10-bql$Cr~-n3e~{HG`0NP>TuhMFK9rxHMjX8}3x%B5=y;E8-|OmADAt{9Kdn zQW@=^$?j#7>t4E)^Q)ItDWG3GKl#me zIPxYgFb)!ef8cycT8f_hz3^1%?&T($G2+-ug(I-S4mNt(gCfx#$vXLXDU$CW=M+** zBz(e^<@yL&-UmUTg` zI{a~ee(&1lm%kho_eq{r^v-Z6QV{Nf@~FM|CuxI=ow~A~PiI7&&rw1`y3uL;lG9~k zmD|E~t4p|z@8Y^a>pAp7T10Ogf@epS+vM$mnqn+Hfbt*(Ae5AB=9~N3=YNLAms?Bt zN>kWn-iaOig8HSJLMt||0b0+9^V_hk43PD98@KQF>^IH5mS}%vwF|PfT4NT6{E@9p zl+BHlsp?0^>wbENST{la3Uj{cP47us}8btoa=lW-QY*@+|ItK+9yo|taz?4%4ieVD)3bCPznASk+PwF3ng<_e9E zV;oZt9uV-cb7-4x?owLFA!?7hd<4f`OI&vnr0pvzwYJ`D>QP!yDTCvB0^=0P;P{1Y z#Sz~L-^CpVtd*_AcBI{8%gh3z381ZkT35hu6{aTn_{UuVSGt63%ZkeFLn(po39Frs zy}h%~DdrWhzPB-xmb~Mq`Z<=1x5zClAVcLlCU|`L#8k@(%8i|OypH!pGG-Q(8fa^9 zKU7ruP6Bk@!XmFW`|FMSPprJ-LcFPU7Q@IaAf(mBlZ{;CLX03yjqfS|nAqWh;6;no zj^%Xe{zl-;Lf&-TW;Ib`=gAMgDHyqT9Q2cA?GEKVzNsHBmggyH=RNETTN)?LCsvyA zbD{2RBI859Tz4k=oGaK8w%*h!QdzL*3H7nN`iwQ8ENeAe@XL|RQ?BK#losuB)kE%) zuyNH;@Uod3zg%4JVxbPG!H^%TP=IfkkXvMPfh!xl$7pajb99vO%6W*uak0l1(obrS zESjO?s@#sbXV;A?*xvqrQ%6N+v5E(dJ8_Pq2tW!<^eS?1{o=dGY(2AztKNyUv)!BF zC6zEd&OES+(*Xa5F3<2PEwC)pV;aq81CIB1#%Fj#fM(jW5@dy}^jv5i_4!`i?vz8F z2}&6_o4Yt2+w{)wEy*9|D7nx#-3Kt~vCm}Q?^ zY|M8*z}B7J^>V#Vz7-x&fX&bg-FAFnfARtTE?v}1IPmOZu{p1z#Ry~k=(RQ!BR|aH z!E4|QOnG#7dxU;lTl=wdI(o2^bDrY=yAE-dk;&(2_is0XnjnlBVRU+Id~vkX{(Z)H z>S7^8^ulLGt*#<&$C!8`;y^8kEHq;4Ikk=K-W=uWR$bq7?L$R