-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathIndexIVF_HNSW.h
146 lines (123 loc) · 6.21 KB
/
IndexIVF_HNSW.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#ifndef IVF_HNSW_LIB_IVF_HNSW_H
#define IVF_HNSW_LIB_IVF_HNSW_H
#include <iostream>
#include <fstream>
#include <cstdio>
#include <unordered_map>
#include <faiss/index_io.h>
#include <faiss/Heap.h>
#include <faiss/ProductQuantizer.h>
#include <faiss/VectorTransform.h>
#include <faiss/FaissAssert.h>
#include <faiss/utils.h>
#include <hnswlib/hnswalg.h>
#include "utils.h"
namespace ivfhnsw {
/** Index based on a inverted file (IVF) with Product Quantizer encoding.
*
* In the inverted file, the quantizer (an HNSW instance) provides a
* quantization index for each vector to be added. The quantization
* index maps to a list (aka inverted list or posting list), where the
* id of the vector is then stored.
*
* At search time, the vector to be searched is also quantized, and
* only the list corresponding to the quantization index is
* searched. This speeds up the search by making it
* non-exhaustive. This can be relaxed using multi-probe search: a few
* (nprobe) quantization indices are selected and several inverted
* lists are visited.
*
* Supports HNSW quantizer construction, PQ training, adding vertices,
* serialization and searching.
*
* Each residual vector is encoded as a product quantizer code.
*
* Currently only asymmetric queries are supported:
* database-to-database queries are not implemented.
*/
struct IndexIVF_HNSW
{
typedef uint32_t idx_t; ///< all indices are this type
size_t d; ///< Vector dimension
size_t nc; ///< Number of centroids
size_t code_size; ///< Code size per vector in bytes
hnswlib::HierarchicalNSW *quantizer; ///< Quantizer that maps vectors to inverted lists (HNSW [Y.Malkov])
faiss::ProductQuantizer *pq; ///< Produces the residual codes
faiss::ProductQuantizer *norm_pq; ///< Produces the norm codes of reconstructed base vectors
faiss::LinearTransform *opq_matrix; ///< Rotation matrix for OPQ encoding
bool do_opq; ///< Turn on/off OPQ encoding
size_t nprobe; ///< Number of probes at search time
size_t max_codes; ///< Max number of codes to visit to do a query
std::vector<std::vector<idx_t> > ids; ///< Inverted lists for indexes
std::vector<std::vector<uint8_t> > codes; ///< PQ codes of residuals
std::vector<std::vector<uint8_t> > norm_codes; ///< PQ codes of norms of reconstructed base vectors
protected:
std::vector<float> norms; ///< L2 square norms of reconstructed base vectors
std::vector<float> centroid_norms; ///< L2 square norms of coarse centroids
public:
explicit IndexIVF_HNSW(size_t dim, size_t ncentroids, size_t bytes_per_code,
size_t nbits_per_idx, size_t max_group_size = 65536);
virtual ~IndexIVF_HNSW();
/** Construct from stretch or load the existing quantizer (HNSW) instance
*
* if all files exist, quantizer will be loaded, else HNSW will be constructed
* @param path_data path to input vectors
* @param path_info path to parameters for HNSW
* @param path_edges path to edges for HNSW
* @param M min number of edges per point, default: 16
* @param efConstruction max number of candidate vertices in queue to observe, default: 500
*/
void build_quantizer(const char *path_data, const char *path_info, const char *path_edges,
size_t M=16, size_t efConstruction = 500);
/** Return the indices of the k HNSW vertices closest to the query x.
*
* @param n number of input vectors
* @param x query vectors, size n * d
* @param labels output labels of the nearest neighbours, size n * k
* @param k number of the closest HNSW vertices to the query x
*/
void assign (size_t n, const float *x, idx_t *labels, size_t k = 1);
/** Query n vectors of dimension d to the index.
*
* Return at most k vectors. If there are not enough results for a
* query, the result array is padded with -1s.
*
* @param k number of the closest vertices to search
* @param x query vector, size d
* @param distances output pairwise distances, size k
* @param labels output labels of the nearest neighbours, size k
*/
virtual void search(size_t k, const float *x, float *distances, long *labels);
/** Add n vectors of dimension d to the index.
*
* @param n number of base vectors in a batch
* @param x base vectors to add, size n * d
* @param xids ids to store for the vectors (size n)
* @param precomputed_idx if non-null, assigned idxs to store for the vectors (size n)
*/
virtual void add_batch(size_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx = nullptr);
/** Train product quantizers
*
* @param n number of training vectors of dimension d
* @param x learn vectors, size n * d
*/
virtual void train_pq(size_t n, const float *x);
/// Write index to the path
virtual void write(const char *path);
/// Read index from the path
virtual void read(const char *path);
/// Compute norms of the HNSW vertices
void compute_centroid_norms();
/// For correct search using OPQ encoding rotate points in the coarse quantizer
void rotate_quantizer();
protected:
/// Size pq.M * pq.ksub
std::vector<float> precomputed_table;
/// L2 sqr distance function for PQ codes
float pq_L2sqr(const uint8_t *code);
private:
void reconstruct(size_t n, float *x, const float *decoded_residuals, const idx_t *keys);
void compute_residuals(size_t n, const float *x, float *residuals, const idx_t *keys);
};
}
#endif //IVF_HNSW_LIB_INDEX_HNSW_H