-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
402 lines (332 loc) · 17.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
from models.resnet import resnet
import argparse
import torch
import torch.backends.cudnn as cudnn
import numpy as np
from utils import experiment_name_non_mnist, copy_script_to_folder, print_log, adjust_learning_rate, convert_secs2time, \
copy_folder_to_folder, \
time_string, AverageMeter, accuracy, RecorderMeter, save_checkpoint, get_1x_lr_params_NOscale, get_10x_lr_params, \
softCrossEntropy, interleave, EMA
import os, time, shutil, math
from load_data import return_dataset, return_psu_dataset
import sys
parser = argparse.ArgumentParser(description='UDA with manifold mixup regularization', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--source', type=str, default='amazon', choices=['Art', 'Clipart', 'Product', 'Real', 'amazon', 'webcam', 'dslr', 'c', 'i', 'p', 'amazon10', 'webcam10', 'dslr10', 'caltech10'], help='Choose soure dataset.')
parser.add_argument('--target', type=str, default='webcam', choices=['Art', 'Clipart', 'Product', 'Real', 'amazon', 'webcam', 'dslr', 'c', 'i', 'p', 'amazon10', 'webcam10', 'dslr10', 'caltech10'], help='Choose target dataset.')
parser.add_argument('--root_dir', type = str, default = './experiments/', help='folder where results are to be stored')
parser.add_argument('--arch', type=str, default='resnet50')
parser.add_argument('--epochs', type=int, default=20, help='Number of epochs per round.')
parser.add_argument('--rounds', type=int, default=20, help='Number of rounds to train.')
parser.add_argument('--num_classes', type=int, default=31, help='training data categories')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size.')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='The Learning Rate.')
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument('--decay', type=float, default=0.0005, help='Weight decay (L2 penalty).')
parser.add_argument('--schedule', type=int, nargs='+', default=[20], help='Decrease learning rate at these rounds.')
parser.add_argument('--gammas', type=float, nargs='+', default=[0.1], help='LR is multiplied by gamma on schedule, number of gammas should be equal to schedule')
parser.add_argument('--print_freq', default=20, type=int, metavar='N', help='print frequency (default: 200)')
parser.add_argument('--dropout', action='store_true', default=False,
help='whether to use dropout or not in final layer')
parser.add_argument('--init-tgt-port', default=0.1, type=float, dest='init_tgt_port',
help='The initial portion of target to determine kc')
parser.add_argument('--max-tgt-port', default=0.9, type=float, dest='max_tgt_port',
help='The max portion of target to determine kc')
parser.add_argument('--tgt-port-step', default=0.05, type=float, dest='tgt_port_step',
help='The portion step in target domain in every round of self-paced self-trained neural network')
parser.add_argument('--ngpu', type=int, default=1, help='0 = CPU.')
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('--T', default=0.5, type=float)
parser.add_argument('--EMA_momentum', default=0.95, type=float)
parser.add_argument('--dataset', type=str, default='office',
choices=['image-clef', 'office', 'office_home', 'office_caltech'],
help='the name of dataset')
parser.add_argument('--pretrained', type=bool, default=True)
parser.add_argument('--pretrained_checkpoint', type=bool, default=False)
parser.add_argument('--gpu_id', type=int, default=0, help='gpu id')
parser.add_argument('--run_id', type=int, default=0, help='run id')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id)
args.use_cuda = args.ngpu>0 and torch.cuda.is_available()
out_str = str(args)
print(out_str)
exp_name = experiment_name_non_mnist(source=args.source,
target=args.target,
arch=args.arch,
epochs=args.epochs,
rounds=args.rounds,
batch_size=args.batch_size,
init_tgt_port=args.init_tgt_port,
max_tgt_port=args.max_tgt_port,
tgt_port_step=args.tgt_port_step,
lr=args.learning_rate,
add_name=str(args.run_id)
)
exp_dir = args.root_dir + exp_name
args.exp_dir = os.path.join(args.root_dir, exp_name)
if not os.path.exists(exp_dir):
os.makedirs(exp_dir)
pseudo_label_acc = []
pseudo_label_num = []
network_acc = []
best_acc = 0
cudnn.benchmark = True
src_cls_prob = np.ones((1, args.num_classes)) / args.num_classes
base_path = args.exp_dir + '/data_list/'
trg_img_pth_file_unl = os.path.join(base_path, args.target + '_img.txt')
trg_label_pth_file_unl = os.path.join(base_path, args.target + '_label.txt')
trg_img_pth_file_psu = os.path.join(base_path,
'pesudo_target_images_' + args.target + '_img.txt')
trg_label_pth_file_psu = os.path.join(base_path,
'pesudo_target_images_' + args.target + '_label.txt')
def train(source_loader, target_loader, model, optimizer, epoch, args, log):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
source_train_loader = iter(source_loader)
target_train_loader = iter(target_loader)
steps = max(len(source_loader), len(target_loader))
for i in range(steps):
try:
xs, ys = source_train_loader.next()
except:
source_train_loader = iter(source_loader)
xs, ys = source_train_loader.next()
try:
xt, yt = target_train_loader.next()
except:
target_train_loader = iter(target_loader)
xt, yt = target_train_loader.next()
ys = ys.float().cuda()
yt = yt.float().cuda()
xs = xs.cuda()
xt = xt.cuda()
# mixup
all_inputs = torch.cat([xs, xt], dim=0)
all_targets = torch.cat([ys, yt], dim=0)
idx = torch.randperm(all_inputs.size(0))
input_a, input_b = all_inputs, all_inputs[idx]
target_a, target_b = all_targets, all_targets[idx]
input_a = list(torch.split(input_a, args.batch_size))
input_a = interleave(input_a, args.batch_size)
logits = [model(input_a[0]), model(input_a[1])]
logits = interleave(logits, args.batch_size)
logits_a = logits[0]
logits_b = logits[1]
Lx = softCrossEntropy(logits_a, target_a[:args.batch_size])
Lu = softCrossEntropy(logits_b, target_a[args.batch_size:])
loss = Lx + Lu
outputs = torch.cat(logits, 0)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs, all_targets, topk=(1, 5))
losses.update(loss.item(), args.batch_size)
top1.update(prec1.item(), args.batch_size)
top5.update(prec5.item(), args.batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print_log(' Epoch: [{:03d}][{:03d}/{:03d}] '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Loss {loss.val:.4f} ({loss.avg:.4f}) '
'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) '
'Prec@5 {top5.val:.3f} ({top5.avg:.3f}) '.format(
epoch, i, steps, batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5) + time_string(), log)
print_log(
' **Train** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5,
error1=100 - top1.avg),
log)
return top1.avg, top5.avg, losses.avg
def validate(target_loader_unl, model, ema, current_epoch, log):
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
l_loader_iter = iter(target_loader_unl)
with torch.no_grad():
for i in range(len(target_loader_unl)):
(input1, input2), target = l_loader_iter.next()
input1 = input1.cuda()
input2 = input2.cuda()
target = target.float()
target = target.cuda()
output1 = model(input1)
output2 = model(input2)
loss1 = softCrossEntropy(output1, target)
loss2 = softCrossEntropy(output2, target)
output1 = torch.softmax(output1, dim=1)
output2 = torch.softmax(output2, dim=1)
loss = (loss1 + loss2) / 2.0
# measure accuracy and record loss
prec1, prec5 = accuracy((output1 + output2).data, target, topk=(1, 5))
losses.update(loss.item(), input1.size(0))
top1.update(prec1.item(), input1.size(0))
top5.update(prec5.item(), input1.size(0))
if i == 0:
logits1 = output1.cpu().data
logits2 = output2.cpu().data
else:
logits1 = np.concatenate((logits1, output1.cpu().data), 0)
logits2 = np.concatenate((logits2, output2.cpu().data), 0)
pred_cls_prob = (np.mean(logits1, axis=0, keepdims=True) + np.mean(logits2, axis=0, keepdims=True)) / 2.0
# print_log('prediction class probability', log)
# print_log(str(pred_cls_prob), log)
logits1 = logits1 * src_cls_prob / pred_cls_prob
logits1 = logits1 / np.sum(logits1, axis=1, keepdims=True)
logits2 = logits2 * src_cls_prob / pred_cls_prob
logits2 = logits2 / np.sum(logits2, axis=1, keepdims=True)
logits = ((logits1 + logits2) / 2.0) ** (1 / args.T)
logits = logits / logits.sum(axis=1, keepdims=True)
if current_epoch == args.epochs-5:
ema.register(logits)
if current_epoch > args.epochs-5:
ema.update(logits)
print_log(
' **Test** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f} Loss: {losses.avg:.3f} '.format(
top1=top1, top5=top5, error1=100 - top1.avg, losses=losses), log)
return top1.avg, losses.avg
def label(ema, log):
print_log('\n==>>Strating pesudo label', log)
# switch to evaluate mode
conf_dict = {k: [] for k in range(args.num_classes)}
f = open(trg_img_pth_file_unl, 'r')
unlabel_target_images = f.readlines()
unlabel_target_labels = np.loadtxt(trg_label_pth_file_unl)
pesudo_target_images = []
pesudo_target_labels = []
true_target_labels = []
pred_prob_mod = ema.get()
for i in range(pred_prob_mod.shape[0]):
value, ind = np.max(pred_prob_mod[i]), np.argmax(pred_prob_mod[i])
conf_dict[ind].append(value)
cls_thresh = np.ones(args.num_classes, dtype=np.float32)
for idx_cls in range(args.num_classes):
if conf_dict[idx_cls] != None:
conf_dict[idx_cls].sort(reverse=True)
len_cls = len(conf_dict[idx_cls])
len_cls_thresh = int(math.floor(len_cls * args.tgt_portion))
if len_cls_thresh != 0:
cls_thresh[idx_cls] = conf_dict[idx_cls][len_cls_thresh - 1]
weighted_prob = pred_prob_mod / cls_thresh
weighted_conf = np.amax(weighted_prob, axis=1)
for idx, pth in enumerate(unlabel_target_images):
if weighted_conf[idx] >= 1.0:
pesudo_target_images.append(pth)
pesudo_target_labels.append(pred_prob_mod[idx])
true_target_labels.append(unlabel_target_labels[idx])
pesudo_target_labels = np.array(pesudo_target_labels)
true_target_labels = np.array(true_target_labels)
f = open(trg_img_pth_file_psu, 'w')
f.writelines(pesudo_target_images)
np.savetxt(trg_label_pth_file_psu, pesudo_target_labels, fmt='%1.3f')
acc = np.mean(np.sum(pesudo_target_labels * true_target_labels, axis=1), axis=0)
pseudo_label_acc.append(acc)
print_log(' pseudo label accuracy:%s' % acc, log)
print_log('==>>finish pesudo label', log)
def main():
global best_acc
copy_script_to_folder(os.path.abspath(__file__), exp_dir)
copy_folder_to_folder('./data_list/', args.exp_dir + '/data_list/')
result_png_path = os.path.join(exp_dir, 'results.png')
log = open(os.path.join(exp_dir, 'log.txt'.format(args.manualSeed)), 'w')
print_log('save path : {}'.format(exp_dir), log)
state = {k: v for k, v in args._get_kwargs()}
print_log(state, log)
print_log("Random Seed: {}".format(args.manualSeed), log)
print_log("python version : {}".format(sys.version.replace('\n', ' ')), log)
print_log("torch version : {}".format(torch.__version__), log)
print_log("cudnn version : {}".format(torch.backends.cudnn.version()), log)
source_dataset, target_dataset_unl = return_dataset(args)
targets_nums = len(target_dataset_unl)
source_loader = \
torch.utils.data.DataLoader(source_dataset,
batch_size=args.batch_size,
num_workers=args.workers,
shuffle=True, drop_last=True)
target_loader = source_loader
target_loader_unl = \
torch.utils.data.DataLoader(target_dataset_unl,
batch_size=args.batch_size, num_workers=args.workers,
shuffle=False, drop_last=False)
print_log("=> creating model '{}'".format(args.arch), log)
net = resnet(args)
print_log("=> network :\n {}".format(net), log)
net = net.cuda()
print_log("=> Loaded pretrained checkpoint for {} model".format(args.arch), log)
optimizer = torch.optim.SGD([{'params': get_1x_lr_params_NOscale(net, args), 'lr': args.learning_rate},
{'params': get_10x_lr_params(net, args), 'lr': 10 * args.learning_rate}],
lr=args.learning_rate, momentum=args.momentum, weight_decay=args.decay)
recorder = RecorderMeter(args.epochs * args.rounds)
# Main loop
train_loss = []
train_acc = []
test_loss = []
test_acc = []
ema = EMA(decay=args.EMA_momentum, shape=(targets_nums, args.num_classes))
epoch_time = AverageMeter()
start_time = time.time()
for round in range(0, args.rounds):
args.tgt_portion = min(args.init_tgt_port + round * args.tgt_port_step, args.max_tgt_port)
# training
for epoch in range(0, args.epochs):
current_epoch = round * args.epochs + epoch
current_learning_rate = adjust_learning_rate(optimizer, current_epoch, args)
total_epoch = args.rounds * args.epochs
need_hour, need_mins, need_secs = convert_secs2time(epoch_time.avg * (total_epoch - current_epoch))
need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs)
print_log('\n==>>{:s} [round={:02d}/{:02d}] [Epoch={:02d}/{:02d}] {:s} [learning_rate={:8.6f}]'.format(
time_string(), round,
args.rounds, epoch, args.epochs, need_time,
current_learning_rate) \
+ ' [Best : Accuracy={:.2f}, Error={:.2f}]'.format(recorder.max_accuracy(False),
100 - recorder.max_accuracy(False)), log)
# train for one epoch
tr_acc, tr_acc5, tr_los = train(source_loader, target_loader, net, optimizer, epoch, args, log)
# evaluate on validation set
val_acc, val_los = validate(target_loader_unl, net, ema, current_epoch, log)
network_acc.append(val_acc)
train_loss.append(tr_los)
train_acc.append(tr_acc)
test_loss.append(val_los)
test_acc.append(val_acc)
dummy = recorder.update(current_epoch, tr_los, tr_acc, val_los, val_acc)
is_best = False
if val_acc > best_acc:
is_best = True
best_acc = val_acc
save_checkpoint({
'round': round,
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': net.state_dict(),
'recorder': recorder,
'optimizer': optimizer.state_dict(),
}, is_best, exp_dir, 'checkpoint.pth.tar')
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
recorder.plot_curve(result_png_path)
# pesudo labels
label(ema, log)
target_dataset_psu = return_psu_dataset(args)
pseudo_label_num.append(len(target_dataset_psu))
target_loader = torch.utils.data.DataLoader(target_dataset_psu,
batch_size=args.batch_size, shuffle=True, drop_last=True,
num_workers=args.workers)
print_log(str(pseudo_label_acc), log)
print_log(str(pseudo_label_num), log)
print_log(str(network_acc), log)
if __name__ == '__main__':
main()