forked from EDJNet/internet_speed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2-lau_nuts_matching.R
29 lines (27 loc) · 1.34 KB
/
2-lau_nuts_matching.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
## Libraries
if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyverse,
sf)
## We need to match the data at the city level with their respective regions and countries
## The dataset obtained by this matching will be used for the maps and the density plots
matcher <- read_csv("https://raw.githubusercontent.com/EDJNet/lau_centres/main/lau_nuts_concordance_by_geo/lau_2020_nuts_2021_concordance_by_geo.csv") %>%
select(gisco_id, nuts_2) %>%
left_join(nuts_2 %>%
st_set_geometry(NULL) %>%
rename("nuts_2" = "id",
"region" = "name"))
lau_matched <- read_csv(here("data", "lau", "lau_2022_1.csv")) %>%
mutate(country_id = substr(id, 1, 2)) %>%
drop_na(avg_d) %>% #some small cities do not have data and their internet speed is NA
left_join(matcher, by = c("id" = "gisco_id")) %>%
left_join(lau) %>%
left_join(nuts_0 %>%
st_set_geometry(NULL) %>%
rename("country_id" = "id", "Country" = "name")) %>%
mutate(City = name,
Country = str_replace_all(Country, "/", "-"),
region = str_replace_all(region, "/", "-"),
"Average Download Speed" = avg_d %>% paste0(" Mbps"),
"Average Upload Speed" = avg_u %>% paste0(" Mbps"),
"Average Latency" = avg_l %>% paste0(" ms")) %>%
st_set_geometry(.$geometry)