-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
78 lines (59 loc) · 2.33 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from src.get_mnist import load
from src.mnist_dataset import Mnist
from src.lenet5 import LeNet5
from src.train import train
from src.predict import *
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, random_split
import logging
import matplotlib.pyplot as plt
import numpy as np
logging.basicConfig(
filename="logs/main.log",
encoding="utf-8",
filemode="a",
format="{asctime}-{levelname}-{message}",
style="{",
datefmt="%d/%m/%Y %H:%M",
level=logging.DEBUG
)
logging.getLogger('matplotlib.font_manager').disabled = True
def main() -> None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
logging.info(f"Using {device}")
batch_size = 1
epochs = 1
(train_images, train_labels), (test_images, test_labels) = load()
train_dataset = Mnist(train_images, train_labels)
test_dataset = Mnist(test_images, test_labels)
generator = torch.Generator().manual_seed(42)
train_dataset, val_dataset = random_split(train_dataset, [0.9, 0.1], generator)
train_dataloader = DataLoader(train_dataset, batch_size, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size, shuffle=True)
model = LeNet5().to(device)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
user_input = input('Do you want to train (y/n)?')
if user_input == 'y':
train_loss, val_loss = train(train_dataloader, val_dataloader, model, loss_fn, optimizer, epochs, device)
fig = plt.figure(figsize=(14,5))
plt.plot(np.arange(epochs), train_loss, label='train')
plt.plot(np.arange(epochs), val_loss, label='val')
plt.legend()
plt.savefig("figures/train_val_loss")
else:
model.load_state_dict(torch.load('models/lenet.pth', weights_only=True))
precision = evaluate(model, test_dataloader, device)
print(f"Precision: {precision}")
fig = plt.figure()
for i in range(1,5):
fig.add_subplot(1,4,i)
test_img, test_label = test_dataset[i]
plt.imshow(test_img.permute(1,2,0), 'gray')
output = predict(model, test_img, device)
plt.title(f"Output: {output}")
plt.show()
if __name__ == "__main__":
main()