-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathen742_final_project_scratch.py
557 lines (444 loc) · 20.9 KB
/
en742_final_project_scratch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import os
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
warnings.filterwarnings('ignore')
np.random.seed(42)
kaggle_environment = True # True if running on Kaggle, don't forget to add the dataset!
if kaggle_environment:
data_path = '/kaggle/input/'
else:
data_path = 'kaggle/input/'
for dirname, _, filenames in os.walk(data_path):
for filename in filenames:
print(os.path.join(dirname, filename))
# change paths if running locally!
try:
original_train = pd.read_csv(data_path + 'optiver-trading-at-the-close/train.csv')
except:
original_train = pd.read_csv(r'C:\Users\marko\OneDrive\Documents\MSGIS_Assignments\Sixth_Semester\EN742_Neural_Networks\EN742_FINAL_PROJECT\train.csv')
# revealed_targets = pd.read_csv(data_path + 'optiver-trading-at-the-close/example_test_files/revealed_targets.csv')
# test = pd.read_csv(data_path + 'optiver-trading-at-the-close/example_test_files/test.csv')
# sample_submission = pd.read_csv(data_path + 'optiver-trading-at-the-close/example_test_files/sample_submission.csv')
# split_ratio = 0.8 # 80% for training, 20% for testing
# split_idx = int(len(original_train) * split_ratio)
train = original_train.copy()#.iloc[:split_idx]
# test = original_train.iloc[split_idx:]
# y_test = test['target'].values
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, QuantileTransformer, RobustScaler, MaxAbsScaler, PolynomialFeatures, StandardScaler, PowerTransformer, MinMaxScaler
class LogFeatures(BaseEstimator, TransformerMixin):
def __init__(self, columns):
self.columns = columns
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
for column in self.columns:
X[f'{column}_log'] = np.log1p(X[column].clip(lower=0.00001))
return X
class WapLagFeatures(BaseEstimator, TransformerMixin):
def __init__(self, shift_sizes):
self.shift_sizes = shift_sizes
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
for shift_size in self.shift_sizes:
X[f'wap_lag{shift_size}'] = X.groupby('stock_id')['wap'].shift(shift_size)
return X
class LagFeatures(BaseEstimator, TransformerMixin):
def __init__(self, features, shift_sizes):
self.features = features
self.shift_sizes = shift_sizes
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
for i in range(len(self.features)):
feature = self.features[i]
shift_sizes = self.shift_sizes[i]
for shift_size in self.shift_sizes:
X[f'{feature}_lag_{shift_size}'] = X.groupby('stock_id')[feature].shift(shift_size)
return X
class WapRollingMeanFeatures(BaseEstimator, TransformerMixin):
def __init__(self, window_sizes):
self.window_sizes = window_sizes
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
for window_size in self.window_sizes:
X[f'wap_rolling_mean{window_size}'] = X.groupby('stock_id')['wap'].rolling(
window=window_size).mean().reset_index(level=0, drop=True)
return X
class WapDiffFeature(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
X['wap_diff'] = X.groupby('stock_id')['wap'].diff()
return X
class WapExpandingMeanFeature(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
X['wap_expanding_mean'] = X.groupby('stock_id')['wap'].expanding().mean().reset_index(level=0, drop=True)
return X
class median_or_std_fill(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
if not isinstance(X, pd.DataFrame):
X = pd.DataFrame(X)
columns = [c for c in list(X.columns) if np.sum(X[c].isnull()) > 0]
for col in columns:
median = X[col].median()
std = X[col].std()
# generate random number within std of current variation and divide by some noise
try:
rand_fill_num = np.random.randint(median - std, median + std) / (np.random.randint(101, 199) / 100)
except:
rand_fill_num = 0.0
return X.fillna(rand_fill_num)
class ForwardFillValues(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
X.fillna(method='ffill', inplace=True)
return X
class FillZero(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
X = X.fillna(0)
return X
class DataFrameWrapper(BaseEstimator, TransformerMixin):
def __init__(self, transformer, columns=None):
self.transformer = transformer
self.columns = columns
def fit(self, X, y=None):
self.transformer.fit(X, y)
return self
def transform(self, X):
result = self.transformer.transform(X)
if isinstance(result, pd.DataFrame):
return result
if self.columns is None:
columns = X.columns
else:
columns = []
for column in X.columns:
if column in self.columns:
columns.append(column)
return pd.DataFrame(result, columns=columns)
class PolynomialFeaturesWrapper(BaseEstimator, TransformerMixin):
def __init__(self, degree=2):
self.degree = degree
self.poly = PolynomialFeatures(degree=self.degree, include_bias=False)
self.new_feature_names = None
def fit(self, X, y=None):
self.poly.fit(X)
self.new_feature_names = self.poly.get_feature_names_out(X.columns)
return self
def transform(self, X):
transformed_array = self.poly.transform(X)
return pd.DataFrame(transformed_array, columns=self.new_feature_names)
#
# class proportion_transformer(BaseEstimator, TransformerMixin):
# def __init__(self, in_ndarray, min_val_from_X, max_val_from_X):
# self.in_ndarray = in_ndarray
# self.min_val_from_X = min_val_from_X
# self.max_val_from_X = max_val_from_X
# self.in_pd_series = pd.Series(self.in_ndarray)
#
# def fit(self, X, y=None):
# return self
#
# def transform(self, X, inverse=False):
# # used to normalize values in 'target' field, target field is also already gaussian distribution
# if not isinstance(X, pd.DataFrame):
# X = pd.DataFrame(X)
#
# for col in list(X.columns):
# max_num = X[col].max()
# min_num = X[col].min()
# median = X[col].median()
#
# def if_else_function(row):
# if row < median:
# x = min_num / self.min_val_from_X
# else:
# x = max_num / self.max_val_from_X
# if inverse:
# return row * x
# else:
# return row / x
# X[col] = pd.Series(np.vectorize(if_else_function)(self.in_pd_series))
#
# return X
# Column Preprocessor
columns_to_keep = [
'imbalance_size_log', 'matched_size_log', # 'stock_id',
'imbalance_buy_sell_flag', 'reference_price',
'far_price', 'near_price', 'bid_price', 'bid_size', 'ask_price', 'ask_size', 'wap', 'wap_lag_1',
'wap_lag_5', # 'wap_lag10', 'wap_lag15', 'wap_lag20',
'wap_rolling_mean2', 'wap_rolling_mean3',
'wap_rolling_mean5', 'wap_diff',
'wap_expanding_mean', 'seconds_in_bucket',
'matched_size_lag_1', 'matched_size_lag_3', 'matched_size_lag_5'
]
one_hot_cols = []
preprocessor = ColumnTransformer(
transformers=[
('onehot', OneHotEncoder(drop='first', sparse_output=False, handle_unknown='ignore'), one_hot_cols),
('passthrough', 'passthrough', columns_to_keep)
],
remainder='drop' # Drop other columns
)
y_std = train['target'].std()
y_median = train['target'].median()
y = train['target'].fillna(np.random.randint(y_median - y_std, y_median + y_std) / np.random.randint(101, 199)).values
# Main Pipeline
pipeline = Pipeline([
('median_or_std_fill', median_or_std_fill()),
('logs', LogFeatures(['imbalance_size', 'matched_size'])),
('wap_lags', LagFeatures(['wap'], [1, 5])),
('matched_size_lags', LagFeatures(['matched_size'], [1, 3, 5])),
('wap_rolling_means', WapRollingMeanFeatures([2, 3, 5])),
('wap_diff', WapDiffFeature()),
('wap_expanding_mean', WapExpandingMeanFeature()),
# ('forward_fill', ForwardFillValues()),
# ('fill_zero', FillZero()),
('preprocessor', DataFrameWrapper(preprocessor, columns_to_keep)),
# ('yeo_johnson', PowerTransformer()),
# ('min_max_scalar', MinMaxScaler()),
# ('std_scalar', StandardScaler()),
# ('scaler', DataFrameWrapper(StandardScaler())),
# ('poly', PolynomialFeaturesWrapper(2)),
('median_or_std_fill_again', median_or_std_fill()),
# ('abs_max_scalar', MaxAbsScaler())
# ('alleged_robust_scalar', RobustScaler())
('yeo_johnson', PowerTransformer()),
# ('standard_scalar', StandardScaler())
('quantile_transformer', QuantileTransformer(output_distribution='normal')),
# ('proportion_transformer', proportion_transformer(y, np.min(y), np.max(y)))
# ('alleged_robust_scalar', RobustScaler(unit_variance=True))
])
# def proportion_transformer(in_df, min_val_from_X, max_val_from_X, inverse=False):
# out_df = in_df.copy()
#
# for col in list(out_df.columns):
#
# in_pd_series = out_df[col]
#
# max_num = in_pd_series.max()
# min_num = in_pd_series.min()
# median = in_pd_series.median()
#
# def if_else_function(row):
# if row < median:
# x = min_num / min_val_from_X
# else:
# x = max_num / max_val_from_X
# if inverse:
# return row * x
# else:
# return row / x
#
# out_df[col] = pd.Series(np.vectorize(if_else_function)(in_pd_series))
#
# return out_df
x_fields = [c for c in list(train.columns) if c != 'target']
train_transformed = pd.DataFrame(pipeline.fit_transform(train[x_fields]))
# test_transformed = pipeline.transform(test)
def proportion_transformer(in_df, min_val_from_X_or_y=pd.Series(y).min(), max_val_from_X_or_y=pd.Series(y).max()):
# assumes fields within in_df are normally distributed (gaussian)
out_df = in_df.copy()
for col in list(out_df.columns):
in_pd_series = out_df[col].copy()
max_num = in_pd_series.max()
min_num = in_pd_series.min()
median = in_pd_series.median()
def if_else_function(row):
if row < median:
x = min_num / min_val_from_X_or_y
else:
x = max_num / max_val_from_X_or_y
return row / x
out_df[col] = pd.Series(np.vectorize(if_else_function)(in_pd_series))
return out_df
# X_test = test_transformed
X = proportion_transformer(train_transformed)
def generate_features(cumulative_test_df, current_test, pipeline):
transformed_df = pipeline.transform(cumulative_test_df)
# cumulative_test_df['wap_lag1'] = cumulative_test_df.groupby('stock_id')['wap'].shift(1)
# cumulative_test_df['wap_lag5'] = cumulative_test_df.groupby('stock_id')['wap'].shift(5)
# cumulative_test_df['wap_rolling_mean10'] = cumulative_test_df.groupby('stock_id')['wap'].rolling(window=10).mean().reset_index(level=0, drop=True)
# cumulative_test_df['wap_diff'] = cumulative_test_df.groupby('stock_id')['wap'].diff()
# cumulative_test_df['wap_expanding_mean'] = cumulative_test_df.groupby('stock_id')['wap'].expanding().mean().reset_index(level=0, drop=True)
# cumulative_test_df.fillna(method='ffill', inplace=True)
# cumulative_test_df = cumulative_test_df.drop(columns=['row_id'])
# cumulative_test_df = cumulative_test_df.fillna(0)
# Only return rows corresponding to the current test dataframe
return pd.DataFrame(transformed_df).iloc[-len(current_test):]
# X_train = X
# y_train = y
# import lightgbm as lgb
# # from sklearn.pipeline import Pipeline
#
#
# # lgbm = lgb.LGBMRegressor(n_jobs=-1, random_state=0, force_col_wise=True,
# # verbose=-1, boosting_type='gbdt', num_leaves=10,
# # reg_alpha=0, reg_lambda=0.2, objective='regression_l1')
#
# lgbm = lgb.LGBMRegressor(n_jobs=-1, random_state=0, objective='regression_l1')
# lgbm.fit(X_train, y_train)
#
# # lgbm.score(X_test, y_test)
# std_scalar = StandardScaler()
#
# scaled_X = pd.DataFrame(std_scalar.fit_transform(X), columns=x_fields)
# y_transformed = y_transformer(y, X.min().min(), X.max().max())
# inverse = y_transformer(y_transformed, X.min().min(), X.max().max(), inverse=True)
historical_data = pd.DataFrame(pd.concat([X, pd.DataFrame(y, columns=['target'])], axis=1),
columns=list(X.columns) + ['target'])
total_timesteps, num_features = historical_data.shape
num_training_sequences = 3500
def generate_sequences(data, sequence_size, prediction_size, step_size, num_sequences):
past_sequences = []
future_prices = []
total_possible_sequences = (len(data) - prediction_size - sequence_size) // step_size
starting_sequence = total_possible_sequences - num_sequences
print (f'Data length: {len(data)}, starting_sequence: {starting_sequence}')
for i in range(starting_sequence, total_possible_sequences):
start_index = i * step_size
end_index = start_index + sequence_size
prediction_end_index = end_index + prediction_size
if prediction_end_index < len(data):
past_sequence = data.iloc[start_index:end_index, :].values
future_price_sequence = data.iloc[end_index:prediction_end_index, data.columns.get_loc('target')].values
past_sequences.append(past_sequence)
future_prices.append(future_price_sequence)
else:
print(f'ERROR: Calculations were incorrect start index {start_index}, end index {end_index}, prediction end index {prediction_end_index}')
return np.array(past_sequences), np.array(future_prices)
training_set_size = 500
validation_set_size = 500
num_validation_sequences = 50
num_predictions = 200 # change based on iter_test
sliding_window_step_size = 10
validation_start_index = -(validation_set_size + num_predictions + (num_validation_sequences * sliding_window_step_size))
validation_end_index = -num_predictions
validation_data = historical_data.iloc[validation_start_index:]
train_data = historical_data
print('Creating training data')
train_inputs, train_outputs = generate_sequences(
train_data,
training_set_size,
num_predictions,
sliding_window_step_size,
num_training_sequences
)
validation_sequences = (validation_set_size - num_predictions) // sliding_window_step_size
print('Creating validation data')
validation_inputs, validation_outputs = generate_sequences(
validation_data,
validation_set_size,
num_predictions,
sliding_window_step_size,
num_validation_sequences
)
from tensorflow.keras.layers import GRU, Dropout, Dense
from tensorflow.keras.models import Sequential
import tensorflow as tf
from tensorflow import keras
tf.random.set_seed(42)
Init = keras.initializers.GlorotUniform(seed=42)
gru_size = 200
m = Sequential(
[
GRU(gru_size, return_sequences=True, input_shape=[None, num_features], name='GRU1', kernel_initializer=Init, recurrent_initializer=Init),
Dropout(.2, name='d1'),
GRU(gru_size, name='GRU2', kernel_initializer=Init, recurrent_initializer=Init),
Dropout(.2, name='d2'),
Dense(num_predictions, name='out', kernel_initializer=Init)
],
name='RNN_model'
)
os.environ['TF_GPU_ALLOCATOR'] = 'cuda_malloc_async'
m.summary()
m.compile(optimizer='adam', loss='mean_absolute_error')
validation_data = (validation_inputs, validation_outputs)
# def reverse_scalar(in_df, in_pred, scalar_obj):
# # used to reverse transform scalar that was used to transform the 'target' column
# copied_input_df = in_df.copy()
# columns = list(copied_input_df.columns)
# if 'target' in columns:
# copied_input_df.drop(columns=['target'], axis=1, inplace=True)
# else:
# columns.append('target')
#
# pred_df = pd.DataFrame(in_pred, columns=['target'])
# joined_df = pd.concat([copied_input_df, pred_df], axis=1)
#
# output = pd.DataFrame(scalar_obj.inverse_transform(joined_df), columns=columns)
# return output
# with tf.device('/CPU:0'):
callbacks = []
hist = m.fit(train_inputs, train_outputs, validation_data=validation_data,
epochs=5, batch_size=16, callbacks=callbacks
)
from sklearn.metrics import mean_absolute_error
# predictions = reverse_scalar(historical_data.iloc[-training_set_size:, :],
# m.predict(historical_data.iloc[-training_set_size:, :].values[np.newaxis,...]).flatten(),
# std_scalar)
predictions = m.predict(historical_data.iloc[-training_set_size:, :].values[np.newaxis, ...]).flatten()
# mae = mean_absolute_error(y_test, predictions)
# print(f"Mean Absolute Error on the test set: {mae:.4f}")
import sys; sys.path.append(r'C:\Users\marko\OneDrive\Documents\MSGIS_Assignments\Sixth_Semester\EN742_Neural_Networks\EN742_FINAL_PROJECT')
import optiver2023
env = optiver2023.make_env()
iter_test = env.iter_test()
counter = 0
# init 3 empty lists
test_ls, revealed_targets_ls, sample_prediction_ls = [], [], []
cumulative_test_df = pd.DataFrame()
for (test_in, revealed_targets, sample_prediction) in iter_test:
if 'group_id' in list(test_in.columns):
test_in.drop(columns=['group_id'], axis=1, inplace=True)
# Append the dataframe that API return into the list.
# test_ls.append(test_in.copy())
# revealed_targets_ls.append(revealed_targets.copy())
# sample_prediction_ls.append(sample_prediction.copy())
cumulative_test_df = pd.concat([cumulative_test_df, test_in], axis=0, ignore_index=True)
# Generate features
test_transformed = proportion_transformer(generate_features(cumulative_test_df, test_in, pipeline))
# test_transformed_scaled = pd.DataFrame(std_scalar.fit_transform(test_transformed), columns=list(test_transformed))
# Writes our predictions
# preds = m.predict(test_transformed_scaled.values[np.newaxis, ...]).flatten()
# sample_prediction["target"] = reverse_scalar(test_transformed_scaled, preds, std_scalar)['target']
# max_num = test_transformed.max().max()
# min_num = test_transformed.min().min()
pred = m.predict(test_transformed.values[np.newaxis, ...]).flatten()
sample_prediction["target"] = pd.Series(pred) # y_transformer(pred, min_num, max_num, inverse=True)
if 'row_id' in sample_prediction['row_id'].values.tolist():
print(f'Found extra row_id field in iteration: {counter + 1}, deleting row...')
i = sample_prediction[sample_prediction['row_id'] == 'row_id'].index
sample_prediction.drop(i, inplace=True)
# if sample_prediction['target'].dtype != np.float64:
# print(f'Found characters in target field on iteration: {counter + 1}, filling value...')
std = sample_prediction['target'].std() if not np.isnan(sample_prediction['target'].std()) else pd.concat(env.predictions)['target'].std()
median = sample_prediction['target'].median() if not np.isnan(sample_prediction['target'].median()) else pd.concat(env.predictions)['target'].median()
if np.isnan(std) and np.isnan(median):
std = y_std
median = y_median
else:
std = std if not np.isnan(std) else y_std
median = median if not np.isnan(median) else y_median
high = int(round(median - std)) if median - std > median + std else int(round(median + std))
low = int(round(median - std)) if median - std < median + std else int(round(median + std))
if low >= high:
sample_prediction['target'] = pd.to_numeric(sample_prediction['target'], errors='coerce').fillna(np.random.randint(high, low + 1) + (np.random.randint(11e9, 19e9) / 10e9))
else:
sample_prediction['target'] = pd.to_numeric(sample_prediction['target'], errors='coerce').fillna(np.random.randint(low, high) + (np.random.randint(11e9, 19e9) / 10e9))
# This line submit our predictions.
env.predict(sample_prediction)
counter += 1