-
Notifications
You must be signed in to change notification settings - Fork 14
/
cooccur_matrix.pyx
43 lines (38 loc) · 1.65 KB
/
cooccur_matrix.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#!/usr/bin/env cython
# cython: boundscheck=False
# cython: wraparound=False
# cython: cdivision=True
# coding: utf-8
#
# Copyright (C) 2014 Radim Rehurek <[email protected]>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
import logging
import numpy
cimport numpy as np
logger = logging.getLogger(__name__)
def get_cooccur(corpus, word2id, int window):
"""
Get raw (word x context) => int cooccurence counts, from the `corpus` stream of
sentences (generator), as a dense NumPy matrix.
"""
cdef int sentence_no, s_len, id1, id2, reduced_window, pos, pos2
cdef list sentence
logger.info("counting raw co-occurrence counts")
cdef np.ndarray[np.float32_t, ndim=2] cooccur = numpy.zeros((len(word2id), len(word2id)), dtype=numpy.float32)
for sentence_no, sentence in enumerate(corpus):
if sentence_no % 100000 == 0:
logger.info("processing sentence #%i" % sentence_no)
s_len = len(sentence)
for pos in range(s_len):
id1 = word2id.get(sentence[pos], -1)
if id1 == -1:
continue # OOV word in the input sentence => skip
#reduced_window = numpy.random.randint(window) if dynamic_window else 0
for pos2 in range(max(0, pos - window), min(s_len, pos + window + 1)):
id2 = word2id.get(sentence[pos2], -1)
if id2 == -1 or pos2 == pos:
continue # skip OOV and the target word itself
cooccur[id1, id2] += 1.0
logger.info("%i total count, %i non-zeros in raw co-occurrence matrix" %
(cooccur.sum(), numpy.count_nonzero(cooccur)))
return cooccur