-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdpo.py
191 lines (162 loc) · 6.58 KB
/
dpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import dotenv
dotenv.load_dotenv()
import os
import torch
from datasets import load_dataset
from logging_config import logger
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
from peft import get_peft_model, LoraConfig, TaskType, PeftModel
from trl import DPOTrainer, AutoModelForCausalLMWithValueHead
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union
import torch
import torch.nn as nn
import gc
from utils.save_model import save_model_locally, save_model_locally_and_push_to_hugging_face
import heapq
from generate_dataset import create_similar_dataset
from accelerate import PartialState
# Examples for generating dataset.
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
def get_top_2_exercises_rankings(dpo_trainer):
data = dpo_trainer.get_train_dataloader()
exercises_rankings = []
for batch in data:
recap = dpo_trainer.get_batch_loss_metrics(dpo_trainer.model, batch)
exercises_rankings.append((batch['prompt'], recap[1]['rewards/chosen'].item()))
del recap
gc.collect()
top_2_exercises_rankings = heapq.nsmallest(4, exercises_rankings, key=lambda x: x[1])
return [exercise[0] for exercise in top_2_exercises_rankings]
def instantiate_trainer(model, tokenizer, train_dataset):
peft_config = LoraConfig(
r=16,
lora_alpha=16,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)
training_args = TrainingArguments(
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
gradient_checkpointing=True,
learning_rate=5e-5,
lr_scheduler_type="cosine",
max_steps=100,
save_strategy="no",
logging_steps=1,
output_dir='dpo_mistral',
optim="paged_adamw_32bit",
warmup_steps=50,
bf16=True,
# report_to="wandb",
remove_unused_columns=False,
)
dpo_trainer = DPOTrainer(
model,
None,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer,
peft_config=peft_config,
beta=0.1,
max_prompt_length=1024,
max_length=1536,
)
return dpo_trainer
def get_train_dataset(dataset_path: str, tokenizer):
ds = load_dataset('json', data_files=dataset_path, split="train")
def transform_to_conversation(prompt, response):
return [
{"role": "user", "content": prompt},
{"role": "assistant", "content": response}
]
def process(row):
chosen_conversation = transform_to_conversation(row["prompt"], row["chosen"])
row["chosen"] = tokenizer.apply_chat_template(chosen_conversation, tokenize=False)
rejected_conversation = transform_to_conversation(row["prompt"], row["rejected"])
row["rejected"] = tokenizer.apply_chat_template(rejected_conversation, tokenize=False)
return row
train_dataset = ds.map(
process,
load_from_cache_file=False,
)
return train_dataset
def load_model(model_path: str):
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if tokenizer.chat_template is None:
tokenizer.chat_template = "{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\n\n'}}{% endfor %}{{ eos_token }}"
return model, tokenizer
def fine_tune(model_name: str, model_path: str, dataset_path: str, conditions, example_question, example_answer):
logger.info("Fine-tuning model %s with dataset %s", model_name, dataset_path)
base_model_path = model_path
NUMBER_OF_EPOCHS = 15
current_epoch = 1 # Arbitrary number of epochs to run on 6 hours
model, tokenizer = load_model(model_path)
train_dataset = get_train_dataset(dataset_path, tokenizer)
dpo_trainer = instantiate_trainer(model, tokenizer, train_dataset)
while current_epoch <= NUMBER_OF_EPOCHS:
logger.info("Starting epoch %s", current_epoch)
dpo_trainer.train()
top_2_exercises_rankings = get_top_2_exercises_rankings(dpo_trainer)
if current_epoch % 5 == 0 or current_epoch == NUMBER_OF_EPOCHS:
logger.info(f"Saving model at epoch {current_epoch}")
model_path = "./dpo_mistral"
save_model_locally(model, tokenizer, model_path)
if current_epoch != NUMBER_OF_EPOCHS:
logger.info("Starting dataset creating")
new_dataset_path = create_similar_dataset(
top_2_exercises_rankings,
"groq_llama3-70b-8192" ,
model_path,
conditions,
example_question,
example_answer,
dataset_path,
)
train_dataset = get_train_dataset(new_dataset_path, tokenizer)
with PartialState().local_main_process_first():
# tokenize the dataset
logger.info("Changing the train dataset")
dpo_trainer.train_dataset = train_dataset.map(dpo_trainer.tokenize_row, num_proc=None)
else:
logger.info("Last Epoch")
current_epoch += 1
logger.info("Fine-tuning completed successfully")
del dpo_trainer, model, tokenizer
gc.collect()
torch.cuda.empty_cache()
base_model = AutoModelForCausalLM.from_pretrained(
base_model_path,
return_dict=True,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
model = PeftModel.from_pretrained(base_model, "dpo_mistral")
model = model.merge_and_unload()
save_model_locally_and_push_to_hugging_face(model, tokenizer, "dpo_mistral", "cvmistralparis/smol")
return True
#if __name__ == '__main__':
# model = AutoModelForCausalLM.from_pretrained(
# "dpo_mistral"
# )
# tokenizer = AutoTokenizer.from_pretrained("dpo_mistral")
# save_model_locally_and_push_to_hugging_face(model, tokenizer, "dpo_mistral", "cvmistralparis/smol")