-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInformationIngestion.PRD
1357 lines (1150 loc) · 39 KB
/
InformationIngestion.PRD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Research Platform PRD - v0.1
## 1. Product Overview
### Vision Statement
A comprehensive research and news monitoring platform that empowers journalists, investigators, and private citizens to conduct deep research while staying informed about relevant current events through automated tracking and analysis.
### Target Users
- Investigative journalists
- Private investigators
- Concerned citizens
- Amateur researchers
### Core Value Proposition
- Unified platform for document research and news monitoring
- Powerful search capabilities across multiple content types
- Automated entity tracking and alerting
- Research organization and synthesis tools
## 2. Feature Requirements
### 2.1 Document Processing System
```python
class DocumentProcessor:
"""
MVP Requirements:
- Support for PDF, TXT, URL ingestion
- Automatic metadata extraction/creation
- Content classification
- Entity recognition
- Source credibility scoring
"""
```
### 2.2 Search System
```python
class SearchSystem:
"""
Required Capabilities:
- Keyword search with boolean operators
- Semantic search
- Hybrid search (combining both)
- Cross-document reference detection
- Search within specific time periods/sources
"""
```
### 2.3 Alert System
```python
class AlertSystem:
"""
Required Features:
- Entity tracking across all sources
- Configurable alert thresholds
- Multiple notification channels
- Alert digest customization
- False positive filtering
"""
```
### 2.4 Project Management System
```python
class ProjectManagementSystem:
"""
Required Features:
- Project creation and organization
- Folder hierarchy management
- Document organization
- Access control and sharing
- Version tracking
"""
```
## 3. Technical Requirements
### 3.1 Performance Metrics
- Search response time: < 2 seconds
- Document processing time: < 30 seconds
- System uptime: 99.9%
- News ingestion delay: < 5 minutes
- Concurrent users: 1000+
### 3.2 Security Requirements
- End-to-end encryption for sensitive data
- Role-based access control
- Audit logging
- Data retention policies
- Compliance with GDPR/CCPA
## 4. User Interface Requirements
### 4.1 Research Workspace
- Document library management
- Search interface with advanced filters
- Entity tracking dashboard
- Alert configuration panel
- Report generation tools
### 4.2 News Monitoring Interface
- Real-time news feed
- Geographic filtering
- Entity highlight view
- Timeline visualization
- Source credibility indicators
### 4.3 Project Management Interface
- **Project Creation and Organization**
- Create new research projects
- Set project metadata (name, description, settings)
- Define project scope and objectives
- Configure project-specific settings
- **Folder Structure**
- Hierarchical folder organization
- Drag-and-drop file management
- Folder path breadcrumb navigation
- Bulk file operations
- **Document Management**
- Upload documents to specific folders
- Move/copy documents between folders
- Document status tracking
- Processing status indicators
- Version history
### Project Workflow Example:
1. **Project Initialization**
```
User: Creates new research project
System:
- Generates unique project ID
- Creates root folder
- Initializes project settings
- Sets up document tracking
```
2. **Folder Organization**
```
User: Creates folder structure
System:
- Maintains folder hierarchy
- Updates path arrays
- Validates folder names
- Ensures unique paths
```
3. **Document Upload Flow**
```
User: Uploads document to folder
System:
- Validates project/folder existence
- Processes document
- Updates folder contents
- Triggers necessary analysis
```
4. **Project Navigation**
```
User: Browses project structure
System:
- Displays folder hierarchy
- Shows document counts
- Indicates processing status
- Provides search within project
```
### Implementation Priority Timeline Update:
1. **Month 1: Core Project Management**
```python
class Phase1ProjectPriorities:
"""
Key Deliverables:
- Project CRUD operations
- Basic folder management
- Document upload to folders
- Project settings management
"""
```
2. **Month 2: Enhanced Organization**
```python
class Phase2ProjectPriorities:
"""
Key Deliverables:
- Advanced folder operations
- Bulk document management
- Project search capabilities
- Document status tracking
"""
```
### Technical Requirements Update:
```python
class ProjectManagementRequirements:
"""
Technical Specifications:
- Nested folder depth limit: 10
- Max documents per folder: 1000
- Supported document types: PDF, TXT, DOCX, URL
- Max file size: 100MB
- Project name length: 3-255 characters
- Folder name length: 1-255 characters
"""
```
### User Interface Components:
1. **Project Dashboard**
- Project overview
- Recent activity
- Document statistics
- Processing status
2. **Folder Navigator**
- Tree view of folders
- Drag-and-drop interface
- Context menus
- Bulk operations
3. **Document List**
- File details
- Processing status
- Quick actions
- Sort/filter options
4. **Project Settings**
- Project configuration
- Access management
- Integration settings
- Notification preferences
## 5. MVP Scope
### Phase 1 (Core Features)
````python
class MVPFeatures:
"""
Priority Order:
1. Document Processing & Storage
2. Search Functionality
3. Research Assistant Interface
4. Entity Tracking
5. Basic Alerts
6. User Authentication
"""
````
### 5.1 Research Assistant Interface
````python
class ResearchAssistant:
"""
Core Capabilities:
- Context-aware conversation about uploaded documents
- Query refinement assistance
- Information synthesis
- Citation support
- Explanation generation
"""
def __init__(self):
self.conversation_modes = {
'explore': 'Open-ended research exploration',
'analyze': 'Deep analysis of specific documents',
'synthesize': 'Combine insights across sources',
'fact_check': 'Verify claims against sources'
}
self.context_window = {
'active_documents': [], # Currently discussed documents
'conversation_history': [], # Recent interaction context
'key_findings': [] # Important insights noted
}
````
### Implementation Priority Timeline:
1. **Month 1-2: Core Infrastructure**
- Document ingestion pipeline
- Basic storage and retrieval
- Initial LLM integration
- Basic user authentication
2. **Month 2-3: Search & Research Assistant**
````python
class Phase2Priorities:
"""
Key Deliverables:
- Keyword search implementation
- Semantic search capability
- Basic research assistant conversations
- Document context management
"""
````
3. **Month 3-4: Entity Tracking & Alerts**
````python
class Phase3Priorities:
"""
Key Deliverables:
- Entity extraction
- Basic alert system
- Enhanced research assistant features
- Initial UI/UX implementation
"""
````
4. **Month 4-5: Integration & Enhancement**
````python
class Phase4Priorities:
"""
Key Deliverables:
- System integration testing
- Performance optimization
- User feedback incorporation
- Documentation completion
"""
````
### Research Assistant Interaction Examples:
1. **Document Exploration**
```
User: "What are the main themes across these documents about renewable energy?"
Assistant: *analyzes documents in context and provides synthesis*
```
2. **Deep Analysis**
```
User: "Can you help me understand how the conclusions in Document A compare to the findings in Document B?"
Assistant: *provides comparative analysis with specific citations*
```
3. **Research Planning**
```
User: "I'm investigating local corruption cases. What should I look for in these documents?"
Assistant: *suggests research approach and key entities to track*
```
### Phase 2 (Enhanced Features)
- Advanced search capabilities
- Report generation
- Timeline visualization
- Source credibility scoring
- API access
- Enhanced research assistant capabilities
- Multi-document reasoning
- Automated research suggestions
- Custom research frameworks
## 6. Success Metrics
### Technical Metrics
- Document processing accuracy > 95%
- Search relevance score > 90%
- System availability > 99.9%
- Alert precision > 90%
### User Metrics
- Daily active users
- Document processing volume
- Search query volume
- Alert engagement rate
## 7. Risk Assessment
### Technical Risks
- LLM reliability
- Data accuracy
- System scalability
- Processing pipeline stability
### Mitigation Strategies
- Multiple LLM provider fallback
- Source verification system
- Cloud-native architecture
- Robust error handling
## 8. Future Considerations
### API Marketplace
- Public API documentation
- Rate limiting
- Usage monitoring
- Integration examples
### Analytics Enhancement
- Pattern detection
- Trend analysis
- Network visualization
- Predictive analytics
----
1. Detail specific conversation flows for the research assistant
2. Expand on the technical implementation of the context management system
3. Outline the integration points between the research assistant and other system components
I'll break down each of these aspects in detail:
1. **Research Assistant Conversation Flows**
`````python
class ResearchAssistantFlows:
"""
Defines core conversation patterns and their implementations
"""
def __init__(self):
self.conversation_types = {
'initial_research': {
'trigger': 'New research project or document upload',
'flow': [
'Document overview generation',
'Key entity identification',
'Research question elicitation',
'Suggested investigation paths'
]
},
'deep_analysis': {
'trigger': 'Specific document/topic analysis request',
'flow': [
'Document relationship mapping',
'Contradiction identification',
'Evidence assessment',
'Gap analysis'
]
},
'synthesis': {
'trigger': 'Multi-document analysis request',
'flow': [
'Cross-document theme extraction',
'Timeline construction',
'Network analysis',
'Conclusion generation'
]
}
}
def generate_research_plan(self, user_query, context):
"""
Creates structured research approach based on user needs
Example:
User: "I'm investigating environmental violations by local companies"
Assistant: *Generates plan*
- Phase 1: Document gathering (permits, reports, news)
- Phase 2: Entity identification (companies, locations)
- Phase 3: Timeline construction
- Phase 4: Pattern analysis
"""
pass
`````
2. **Context Management System**
`````python
class ContextManager:
"""
Manages conversation context and document relationships
"""
def __init__(self):
self.active_context = {
'documents': {
'current_focus': [],
'related_docs': [],
'citation_history': []
},
'conversation': {
'current_thread': [],
'key_findings': [],
'pending_questions': []
},
'research_state': {
'verified_facts': [],
'hypotheses': [],
'contradictions': []
}
}
def update_context(self, new_information):
"""
Updates context based on new information or user interaction
- Maintains relevance window
- Updates document relationships
- Tracks citation usage
"""
pass
def manage_memory(self):
"""
Handles context window management
- Prunes irrelevant information
- Maintains important context
- Summarizes historical context
"""
pass
`````
3. **System Integration Points**
`````python
class ResearchSystemIntegration:
"""
Manages integration between research assistant and other components
"""
def __init__(self):
self.integration_points = {
'document_processor': {
'methods': [
'extract_entities',
'generate_embeddings',
'classify_content'
],
'events': [
'new_document_processed',
'entity_detected',
'classification_updated'
]
},
'search_system': {
'methods': [
'semantic_search',
'keyword_search',
'citation_lookup'
],
'events': [
'search_performed',
'relevant_document_found',
'citation_verified'
]
},
'alert_system': {
'methods': [
'create_entity_alert',
'update_tracking',
'notify_user'
],
'events': [
'entity_mentioned',
'alert_triggered',
'context_updated'
]
}
}
async def handle_research_query(self, query, context):
"""
Orchestrates system components for research queries
Example flow:
1. Process user query
2. Retrieve relevant documents
3. Extract entities and relationships
4. Generate response with citations
5. Update research context
6. Suggest next steps
"""
pass
async def manage_research_session(self):
"""
Maintains coherent research session
- Tracks conversation state
- Manages document context
- Updates alert configurations
- Generates research summaries
"""
pass
`````
Example Interaction Flow:
```
User: "I'm researching environmental violations in California"
System Flow:
1. Context Initialization:
- Create research session
- Load relevant document types
- Initialize entity tracking
2. Initial Response:
- Suggest document sources
- Identify key entities
- Create tracking alerts
3. Ongoing Interaction:
- Process new documents
- Update context
- Generate insights
- Suggest connections
4. Research Synthesis:
- Generate summaries
- Create visualizations
- Identify patterns
- Suggest conclusions
```
1. Provide more specific implementation details for any of these components?
2. Expand on the error handling and edge cases?
3. Detail the specific LLM prompting strategies for different research scenarios?
I'll break down each of these aspects. Due to length, I'll split this into multiple responses.
First, let's look at specific implementation details:
1. **Detailed Component Implementation**
``````python
class ResearchAssistant:
"""
Core research assistant implementation with error handling and state management
"""
def __init__(self, llm_service, vector_store, document_processor):
self.llm = llm_service
self.vector_store = vector_store
self.doc_processor = document_processor
# Conversation state management
self.state = {
'active_session': None,
'context_depth': 10, # Number of recent exchanges to maintain
'max_documents': 5 # Max documents to consider in single analysis
}
# Error tracking
self.error_log = []
# Performance metrics
self.metrics = {
'response_times': [],
'context_switches': 0,
'citation_accuracy': []
}
async def start_research_session(self, initial_query: str) -> ResearchSession:
"""
Initialize new research session with error handling
"""
try:
session = ResearchSession(
query=initial_query,
timestamp=time.now(),
context=self.initialize_context()
)
# Validate initial query
refined_query = await self.validate_and_refine_query(initial_query)
# Set up document tracking
await self.setup_document_tracking(session)
return session
except Exception as e:
self.error_log.append({
'timestamp': time.now(),
'error': str(e),
'context': 'session_initialization'
})
raise ResearchSessionError(f"Failed to initialize session: {str(e)}")
async def process_query(self, query: str, session: ResearchSession) -> QueryResponse:
"""
Process user query with comprehensive error handling and fallbacks
"""
try:
# Validate and enhance query
enhanced_query = await self.enhance_query(query, session.context)
# Retrieve relevant documents
relevant_docs = await self.retrieve_documents(enhanced_query)
# Generate response with citations
response = await self.generate_response(
query=enhanced_query,
documents=relevant_docs,
context=session.context
)
# Validate response
validated_response = await self.validate_response(response)
# Update session context
await self.update_session_context(session, query, response)
return validated_response
except DocumentRetrievalError as e:
# Fallback to simpler document retrieval
return await self.fallback_retrieval(query, session)
except LLMError as e:
# Fallback to simpler response generation
return await self.fallback_response(query, session)
except Exception as e:
self.error_log.append({
'timestamp': time.now(),
'error': str(e),
'context': 'query_processing'
})
raise QueryProcessingError(f"Failed to process query: {str(e)}")
async def validate_and_refine_query(self, query: str) -> str:
"""
Validate and improve query quality
"""
try:
# Check query length and content
if len(query.strip()) < 3:
raise QueryValidationError("Query too short")
# Remove harmful content
cleaned_query = self.sanitize_query(query)
# Enhance query with context
enhanced_query = await self.llm.enhance_query(cleaned_query)
return enhanced_query
except Exception as e:
self.error_log.append({
'timestamp': time.now(),
'error': str(e),
'context': 'query_validation'
})
return query # Fallback to original query
``````
This first part focuses on the core implementation with robust error handling and state management. Would you like me to continue with the error handling and LLM prompting strategies next?
YES.
2. **Error Handling and Edge Cases**
```````python
class ResearchErrorHandler:
"""
Comprehensive error handling for research system components
"""
def __init__(self):
self.error_types = {
'llm': {
'timeout': LLMTimeoutStrategy(),
'content_filter': ContentFilterStrategy(),
'context_overflow': ContextOverflowStrategy(),
'hallucination': HallucinationDetectionStrategy()
},
'document': {
'parsing': DocumentParsingStrategy(),
'embedding': EmbeddingStrategy(),
'retrieval': RetrievalStrategy()
},
'context': {
'memory_overflow': MemoryOverflowStrategy(),
'context_loss': ContextRecoveryStrategy(),
'citation_error': CitationValidationStrategy()
}
}
async def handle_llm_error(self, error: LLMError, context: dict):
"""
Handle LLM-specific errors with fallback strategies
"""
try:
if isinstance(error, LLMTimeout):
return await self.error_types['llm']['timeout'].handle(context)
elif isinstance(error, ContentFilterError):
return await self.error_types['llm']['content_filter'].handle(context)
elif isinstance(error, ContextOverflowError):
return await self.error_types['llm']['context_overflow'].handle(context)
except Exception as e:
return await self.emergency_fallback(error, context)
class HallucinationDetectionStrategy:
"""
Detect and handle potential LLM hallucinations
"""
def __init__(self):
self.confidence_threshold = 0.85
self.citation_required = True
async def validate_response(self, response: str, context: dict) -> bool:
"""
Validate response against source documents
"""
citations = self.extract_citations(response)
return await self.verify_citations(citations, context['documents'])
async def handle_hallucination(self, response: str, context: dict) -> str:
"""
Handle detected hallucination
"""
corrected_response = await self.regenerate_with_strict_citations(response, context)
return corrected_response
class ContextRecoveryStrategy:
"""
Recover from context loss or corruption
"""
def __init__(self):
self.backup_window = 5 # Keep last 5 states
self.context_checkpoints = []
async def create_checkpoint(self, context: dict):
"""
Create context checkpoint for recovery
"""
checkpoint = {
'timestamp': time.now(),
'context_state': deepcopy(context),
'active_references': self.get_active_references(context)
}
self.context_checkpoints.append(checkpoint)
self.prune_old_checkpoints()
async def recover_context(self, error_point: dict) -> dict:
"""
Attempt to recover context from last valid state
"""
last_valid = self.find_last_valid_checkpoint(error_point)
if last_valid:
return await self.rebuild_context(last_valid)
return await self.initialize_new_context()
```````
3. **LLM Prompting Strategies**
```````python
class ResearchPromptStrategy:
"""
Manages different prompting strategies for research scenarios
"""
def __init__(self):
self.prompt_templates = {
'initial_analysis': """
Analyze the following research materials:
Context: {context}
Documents: {documents}
Provide:
1. Key themes and patterns
2. Important entities and relationships
3. Potential areas for deeper investigation
4. Any contradictions or inconsistencies
Base all observations on the provided documents only.
Include specific citations for each point.
""",
'fact_verification': """
Verify the following claim against our sources:
Claim: {claim}
Available documents: {documents}
Provide:
1. Verification status (Confirmed/Partially Confirmed/Unconfirmed)
2. Supporting evidence with specific citations
3. Any contradicting evidence
4. Confidence assessment
""",
'synthesis_generation': """
Generate a synthesis of the following research:
Research question: {question}
Available documents: {documents}
Previous findings: {findings}
Create:
1. Comprehensive summary
2. Evidence-based conclusions
3. Identified gaps
4. Suggested next steps
Ensure all statements are supported by specific citations.
"""
}
async def generate_research_prompt(self,
prompt_type: str,
context: dict,
parameters: dict) -> str:
"""
Generate specific research prompt based on context
"""
base_prompt = self.prompt_templates[prompt_type]
# Add context management
context_window = self.format_context_window(context)
# Add citation requirements
citation_guide = self.generate_citation_guide(context['documents'])
# Add confidence scoring requirements
confidence_guide = self.generate_confidence_guide()
return self.combine_prompt_elements(
base_prompt,
context_window,
citation_guide,
confidence_guide,
parameters
)
def format_context_window(self, context: dict) -> str:
"""
Format context window for optimal LLM understanding
"""
return f"""
Current research context:
1. Active documents: {self.format_active_documents(context)}
2. Recent findings: {self.format_recent_findings(context)}
3. Established facts: {self.format_verified_facts(context)}
4. Open questions: {self.format_pending_questions(context)}
"""
```````
Would you like me to:
1. Provide implementation details for any of the specific strategies mentioned?
2. Add more error handling scenarios?
3. Expand on the prompt templates for other research scenarios?
I think we've done enough for the PRD. Now we move onto project implementation. Do you have any input on what web frameworks we should use? I'd like to stick with Python as I am most familiar with it.
For a Python-based web application with these requirements, here are my recommendations:
1. **Backend Framework Options**:
- **FastAPI** (Recommended)
- Modern, fast, async-native
- Great for building APIs
- Built-in OpenAPI documentation
- Excellent type hinting support
- Works well with async database operations
- Easy integration with WebSockets for real-time features
- **Django** (Alternative)
- More full-featured, batteries included
- Robust admin interface
- Strong ORM
- Great for user management
- Larger learning curve
- Less performant for async operations
2. **Key Components**:
````````python
# Example FastAPI Structure
from fastapi import FastAPI, WebSocket
from pydantic import BaseModel
app = FastAPI()
class ResearchPlatform:
def __init__(self):
self.document_processor = DocumentProcessor()
self.search_engine = SearchEngine()
self.llm_service = LLMService()
self.alert_system = AlertSystem()
async def setup(self):
# Initialize services
await self.document_processor.initialize()
await self.search_engine.initialize()
# etc...
# API Routes
@app.post("/research/session")
async def create_research_session():
pass
@app.websocket("/research/chat")
async def research_chat(websocket: WebSocket):
# Handle real-time chat with research assistant
pass
````````
3. **Supporting Technologies**:
- **Database**:
- PostgreSQL (primary database)
- Qdrant/Milvus/Weaviate (vector store)
- Redis (caching, real-time features)
- **Task Queue**:
- Celery (document processing)
- Redis Queue (simpler alternative)
- **Search**:
- Elasticsearch (full-text search)
- Qdrant (vector search)