-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTFLite_detection_image_modified.py
268 lines (212 loc) · 10.9 KB
/
TFLite_detection_image_modified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
######## Webcam Object Detection Using Tensorflow-trained Classifier #########
#
# Author: Evan Juras (>97%), some modifications by Christian Baun (<3%)
# License: Apache-2.0 License
# Date: January 10th 2022
# Description:
# This program uses a TensorFlow Lite object detection model to perform object
# detection on an image or a folder full of images. It draws boxes and scores
# around the objects of interest in each image.
#
# This code is mostly from Evan Juras who did a great work in providing helpful
# tutorials about object detection with singe board computers.
# https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10
#
# Evan Juras says this code is based off the TensorFlow Lite image classification example at:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/python/label_image.py
#
# Evan Juras added his own method of drawing boxes and labels using OpenCV.
# Christian Baun modified some path and filename stuff in order to make it work for this prototype
# Import packages
import os
import argparse
import cv2
import numpy as np
import sys
import glob
import importlib.util
import time
from datetime import datetime
# datetime object containing current date and time
now = datetime.now()
# Get UNIX timestamp containing current date and time
timestamp = datetime.timestamp(now)
print('1) UNIX-Timestamp [s] at start: ' + str(timestamp))
# Define and parse input arguments
parser = argparse.ArgumentParser()
parser.add_argument('--modeldir', help='Folder the .tflite file is located in',
required=True)
parser.add_argument('--graph', help='Name of the .tflite file, if different than detect.tflite',
default='detect.tflite')
parser.add_argument('--labels', help='Name of the labelmap file, if different than labelmap.txt',
default='labelmap.txt')
parser.add_argument('--threshold', help='Minimum confidence threshold for displaying detected objects',
default=0.5)
parser.add_argument('--image', help='Name of the single image to perform detection on. To run detection on multiple images, use --imagedir',
default=None)
parser.add_argument('--imagedir', help='Name of the folder containing images to perform detection on. Folder must contain only images.',
default=None)
parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to speed up detection',
action='store_true')
args = parser.parse_args()
MODEL_NAME = args.modeldir
GRAPH_NAME = args.graph
LABELMAP_NAME = args.labels
min_conf_threshold = float(args.threshold)
use_TPU = args.edgetpu
# Parse input image name and directory.
IM_NAME = args.image
IM_DIR = args.imagedir
# If both an image AND a folder are specified, throw an error
if (IM_NAME and IM_DIR):
print('Error! Please only use the --image argument or the --imagedir argument, not both. Issue "python TFLite_detection_image.py -h" for help.')
sys.exit()
# If neither an image or a folder are specified, default to using 'test1.jpg' for image name
if (not IM_NAME and not IM_DIR):
IM_NAME = 'test1.jpg'
# Import TensorFlow libraries
# If tflite_runtime is installed, import interpreter from tflite_runtime, else import from regular tensorflow
# If using Coral Edge TPU, import the load_delegate library
pkg = importlib.util.find_spec('tflite_runtime')
if pkg:
from tflite_runtime.interpreter import Interpreter
if use_TPU:
from tflite_runtime.interpreter import load_delegate
else:
from tensorflow.lite.python.interpreter import Interpreter
if use_TPU:
from tensorflow.lite.python.interpreter import load_delegate
# If using Edge TPU, assign filename for Edge TPU model
if use_TPU:
# If user has specified the name of the .tflite file, use that name, otherwise use default 'edgetpu.tflite'
if (GRAPH_NAME == 'detect.tflite'):
GRAPH_NAME = 'edgetpu.tflite'
# Get path to current working directory
CWD_PATH = os.getcwd()
# Define path to images and grab all image filenames
if IM_DIR:
PATH_TO_IMAGES = os.path.join(CWD_PATH,IM_DIR)
# Add image formats here
ext = ['jpeg', 'jpg']
images = []
[images.extend(glob.glob(PATH_TO_IMAGES + '/*.' + e)) for e in ext]
print(images)
elif IM_NAME:
PATH_TO_IMAGES = os.path.join(CWD_PATH,IM_NAME)
images = glob.glob(PATH_TO_IMAGES)
print(images)
# Path to .tflite file, which contains the model that is used for object detection
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)
# Load the label map
with open(PATH_TO_LABELS, 'r') as f:
labels = [line.strip() for line in f.readlines()]
# Have to do a weird fix for label map if using the COCO "starter model" from
# https://www.tensorflow.org/lite/models/object_detection/overview
# First label is '???', which has to be removed.
if labels[0] == '???':
del(labels[0])
most_recent_timestamp = datetime.timestamp(datetime.now()) - timestamp
print('2) Seconds passed since start: ' + str(most_recent_timestamp))
# Load the Tensorflow Lite model.
# If using Edge TPU, use special load_delegate argument
if use_TPU:
interpreter = Interpreter(model_path=PATH_TO_CKPT,
experimental_delegates=[load_delegate('libedgetpu.so.1.0')])
print(PATH_TO_CKPT)
else:
interpreter = Interpreter(model_path=PATH_TO_CKPT)
print(PATH_TO_CKPT)
most_recent_timestamp = datetime.timestamp(datetime.now()) - timestamp
print('3) Seconds passed since start: ' + str(most_recent_timestamp))
interpreter.allocate_tensors()
# Get model details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]
floating_model = (input_details[0]['dtype'] == np.float32)
input_mean = 127.5
input_std = 127.5
# Loop over every image and perform detection
for image_path in images:
# Load image and resize to expected shape [1xHxWx3]
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
imH, imW, _ = image.shape
image_resized = cv2.resize(image_rgb, (width, height))
input_data = np.expand_dims(image_resized, axis=0)
# Normalize pixel values if using a floating model (i.e. if model is non-quantized)
if floating_model:
input_data = (np.float32(input_data) - input_mean) / input_std
# Perform the actual detection by running the model with the image as input
interpreter.set_tensor(input_details[0]['index'],input_data)
interpreter.invoke()
# Retrieve detection results
boxes = interpreter.get_tensor(output_details[0]['index'])[0] # Bounding box coordinates of detected objects
classes = interpreter.get_tensor(output_details[1]['index'])[0] # Class index of detected objects
scores = interpreter.get_tensor(output_details[2]['index'])[0] # Confidence of detected objects
#num = interpreter.get_tensor(output_details[3]['index'])[0] # Total number of detected objects (inaccurate and not needed)
# We need these values initially before the loop just in case we do not detect anything.
date_string = now.strftime("%Y-%m-%d")
time_string = now.strftime("%H-%M-%S")
# Initially we have no objects detected...
dateandtimeprintedout = 0
# Loop over all detections and draw detection box if confidence is above minimum threshold
for i in range(len(scores)):
if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):
# If it is the first object in the image detected... (first iteration)...
if dateandtimeprintedout == 0:
# Print the date and time information one time because we deteced an object
# dd/mm/YY H:M:S
date_string = now.strftime("%Y-%m-%d")
time_string = now.strftime("%H-%M-%S")
# Integer is sufficient... we dont't need the floating point number here...
timestamp_integer = int(timestamp)
print("===", timestamp_integer, date_string, time_string, "===")
# We have at least a single object detected.
# We will not print out the time and date information twice
dateandtimeprintedout = 1
# Get bounding box coordinates and draw box
# Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min()
ymin = int(max(1,(boxes[i][0] * imH)))
xmin = int(max(1,(boxes[i][1] * imW)))
ymax = int(min(imH,(boxes[i][2] * imH)))
xmax = int(min(imW,(boxes[i][3] * imW)))
cv2.rectangle(image, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)
# Draw label
object_name = labels[int(classes[i])] # Look up object name from "labels" array using class index
# Return some information about the detected object in command line
print('Detected Object: '+ str(object_name) + ' with ' + str(int(scores[i]*100)) + ' % ' );
label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size
label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window
cv2.rectangle(image, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in
cv2.putText(image, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text
# All the results have been drawn on the image, now display the image
# cv2.imshow('Object detector', image)
if IM_DIR:
print(image_path)
# Using cv2.imwrite() method
# Saving the image
cv2.imwrite(image_path, image)
# Print out some information
print('File '+ repr(image_path) + ' stored\n');
elif IM_NAME:
# Create filename
filename = str(IM_NAME)
print(filename);
# filename = date_string+'_'+time_string+'_detected_'+str(IM_NAME)
# Using cv2.imwrite() method
# Saving the image
cv2.imwrite(filename, image)
# Print out some information
print('File '+ repr(filename) + ' stored\n');
most_recent_timestamp = datetime.timestamp(datetime.now()) - timestamp
print('4) Seconds passed since start: ' + str(most_recent_timestamp))
# Press any key to continue to next image, or press 'q' to quit
#if cv2.waitKey(0) == ord('q'):
# break
# Clean up
# cv2.destroyAllWindows()