-
Notifications
You must be signed in to change notification settings - Fork 225
/
train_dqn_gym.py
187 lines (162 loc) · 7.48 KB
/
train_dqn_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""An example of training DQN against OpenAI Gym Envs.
This script is an example of training a DQN agent against OpenAI Gym envs.
Both discrete and continuous action spaces are supported. For continuous action
spaces, A NAF (Normalized Advantage Function) is used to approximate Q-values.
To solve CartPole-v0, run:
python train_dqn_gym.py --env CartPole-v0
To solve Pendulum-v0, run:
python train_dqn_gym.py --env Pendulum-v0
"""
import argparse
import os
import sys
from chainer import optimizers
import gym
from gym import spaces
import numpy as np
import chainerrl
from chainerrl.agents.dqn import DQN
from chainerrl import experiments
from chainerrl import explorers
from chainerrl import links
from chainerrl import misc
from chainerrl import q_functions
from chainerrl import replay_buffer
def main():
import logging
logging.basicConfig(level=logging.DEBUG)
parser = argparse.ArgumentParser()
parser.add_argument('--outdir', type=str, default='results',
help='Directory path to save output files.'
' If it does not exist, it will be created.')
parser.add_argument('--env', type=str, default='Pendulum-v0')
parser.add_argument('--seed', type=int, default=0,
help='Random seed [0, 2 ** 32)')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--final-exploration-steps',
type=int, default=10 ** 4)
parser.add_argument('--start-epsilon', type=float, default=1.0)
parser.add_argument('--end-epsilon', type=float, default=0.1)
parser.add_argument('--noisy-net-sigma', type=float, default=None)
parser.add_argument('--demo', action='store_true', default=False)
parser.add_argument('--load', type=str, default=None)
parser.add_argument('--steps', type=int, default=10 ** 5)
parser.add_argument('--prioritized-replay', action='store_true')
parser.add_argument('--replay-start-size', type=int, default=1000)
parser.add_argument('--target-update-interval', type=int, default=10 ** 2)
parser.add_argument('--target-update-method', type=str, default='hard')
parser.add_argument('--soft-update-tau', type=float, default=1e-2)
parser.add_argument('--update-interval', type=int, default=1)
parser.add_argument('--eval-n-runs', type=int, default=100)
parser.add_argument('--eval-interval', type=int, default=10 ** 4)
parser.add_argument('--n-hidden-channels', type=int, default=100)
parser.add_argument('--n-hidden-layers', type=int, default=2)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--minibatch-size', type=int, default=None)
parser.add_argument('--render-train', action='store_true')
parser.add_argument('--render-eval', action='store_true')
parser.add_argument('--monitor', action='store_true')
parser.add_argument('--reward-scale-factor', type=float, default=1e-3)
args = parser.parse_args()
# Set a random seed used in ChainerRL
misc.set_random_seed(args.seed, gpus=(args.gpu,))
args.outdir = experiments.prepare_output_dir(
args, args.outdir, argv=sys.argv)
print('Output files are saved in {}'.format(args.outdir))
def clip_action_filter(a):
return np.clip(a, action_space.low, action_space.high)
def make_env(test):
env = gym.make(args.env)
# Use different random seeds for train and test envs
env_seed = 2 ** 32 - 1 - args.seed if test else args.seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = chainerrl.wrappers.CastObservationToFloat32(env)
if args.monitor:
env = chainerrl.wrappers.Monitor(env, args.outdir)
if isinstance(env.action_space, spaces.Box):
misc.env_modifiers.make_action_filtered(env, clip_action_filter)
if not test:
# Scale rewards (and thus returns) to a reasonable range so that
# training is easier
env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
if ((args.render_eval and test) or
(args.render_train and not test)):
env = chainerrl.wrappers.Render(env)
return env
env = make_env(test=False)
timestep_limit = env.spec.max_episode_steps
obs_space = env.observation_space
obs_size = obs_space.low.size
action_space = env.action_space
if isinstance(action_space, spaces.Box):
action_size = action_space.low.size
# Use NAF to apply DQN to continuous action spaces
q_func = q_functions.FCQuadraticStateQFunction(
obs_size, action_size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers,
action_space=action_space)
# Use the Ornstein-Uhlenbeck process for exploration
ou_sigma = (action_space.high - action_space.low) * 0.2
explorer = explorers.AdditiveOU(sigma=ou_sigma)
else:
n_actions = action_space.n
q_func = q_functions.FCStateQFunctionWithDiscreteAction(
obs_size, n_actions,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers)
# Use epsilon-greedy for exploration
explorer = explorers.LinearDecayEpsilonGreedy(
args.start_epsilon, args.end_epsilon, args.final_exploration_steps,
action_space.sample)
if args.noisy_net_sigma is not None:
links.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma)
# Turn off explorer
explorer = explorers.Greedy()
# Draw the computational graph and save it in the output directory.
chainerrl.misc.draw_computational_graph(
[q_func(np.zeros_like(obs_space.low, dtype=np.float32)[None])],
os.path.join(args.outdir, 'model'))
opt = optimizers.Adam()
opt.setup(q_func)
rbuf_capacity = 5 * 10 ** 5
if args.minibatch_size is None:
args.minibatch_size = 32
if args.prioritized_replay:
betasteps = (args.steps - args.replay_start_size) \
// args.update_interval
rbuf = replay_buffer.PrioritizedReplayBuffer(
rbuf_capacity, betasteps=betasteps)
else:
rbuf = replay_buffer.ReplayBuffer(rbuf_capacity)
agent = DQN(q_func, opt, rbuf, gpu=args.gpu, gamma=args.gamma,
explorer=explorer, replay_start_size=args.replay_start_size,
target_update_interval=args.target_update_interval,
update_interval=args.update_interval,
minibatch_size=args.minibatch_size,
target_update_method=args.target_update_method,
soft_update_tau=args.soft_update_tau,
)
if args.load:
agent.load(args.load)
eval_env = make_env(test=True)
if args.demo:
eval_stats = experiments.eval_performance(
env=eval_env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit)
print('n_runs: {} mean: {} median: {} stdev {}'.format(
args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
eval_stats['stdev']))
else:
experiments.train_agent_with_evaluation(
agent=agent, env=env, steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs, eval_interval=args.eval_interval,
outdir=args.outdir, eval_env=eval_env,
train_max_episode_len=timestep_limit)
if __name__ == '__main__':
main()