-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.qmd
99 lines (62 loc) · 2.22 KB
/
index.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
title: "Course contents"
---
[Daily schedule](topics/schedule)
## Day 1: Introduction, data simulation, discrete models
[Course Syllabus](PlanDeCoursBIO709.pdf)
:::: {.columns}
::: {.column width="50%"}
### Slides
* [Introduction to the course and location](slides/00_Introduction)
* [Data we'll be using](slides/01_Data)
* [Probability Distributions](slides/02_5_Distribution)
:::
::: {.column width="50%"}
### Exercises -- data simulation & discrete models
* [Catch a wild Distribution](topics/00_distributions)
:::
::::
:::{.callout-warning}
### Monday night Stan installation session!
You're free to proceed in this course using any modelling software you like.
We will be using Stan, so if you want to follow along you'll need to have it installed also! To do so, follow the steps [in this vignette](https://mc-stan.org/cmdstanr/articles/cmdstanr.html#compiling-a-model). Make sure you can run the example (up to "Running MCMC")
Please note that if you want help installing it, Andrew and Guillaume will be available on **Monday evening**. From Tuesday onwards we won't have time to pause to fix installation issues!
:::
## DAY 2: Intro to Stan and Regression
:::: {.columns}
::: {.column width="50%"}
### Slides
* [Bayesian and MCMC](slides/02_Bayesian)
* [Stan and HMC](slides/03_Stan)
* [Linear models](slides/04_Linear_model)
:::
::: {.column width="50%"}
### Exercises
* [Simulation and model fitting in Stan](topics/01_simulation)
* [Discrete predictors](topics/discrete_predictor)
* [Linear regression](topics/02_regression)
:::
::::
## Day 3: Hierarchical models
:::: {.columns}
::: {.column width="50%"}
### Slides
* [Simple hierarchical models](slides/06_Simple_hierarchical_model)
* [Complex hierarchical models](slides/08_Complex_hierarchical_model)
:::
::: {.column width="50%"}
### Exercises
* [Intercept-Only Model (and tidybayes discussion)](topics/intercept_only)
* [Hierarchy on the intercept](topics/03_one_random_effect)
* [Hierarchy on the slope](topics/correlated_effects)
:::
::::
## Day 4: Constrained models: Gaussian processes
:::: {.columns}
::: {.column width="50%"}
* [Slides](slides/09_Gaussian_process)
:::
::: {.column width="50%"}
* [A Practical demonstration in Stan](topics/04_gp)
:::
::::