-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainTestGANAug.py
executable file
·596 lines (469 loc) · 24.6 KB
/
trainTestGANAug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
from torchvision import transforms as T
import torchvision
from torch.autograd import Variable
from PIL import Image
import cv2
import time
import os
from tqdm import tqdm
import json
from utils.dataset import SemSegDataset, AugSemSegDataset
from utils.util import save_tensorboard_images, get_images_with_mask
import segmentation_models_pytorch as smp
from utils.metrics import pixel_accuracy, mIoU, get_lr, mIoUMeter, intersectionAndUnionGPU, ConfMatrix
from torch.utils.tensorboard import SummaryWriter
import argparse
import albumentations as A
from utils.util import generate_distinguishable_colors
from torchvision.utils import draw_segmentation_masks
def fit(epochs, model, train_loader, val_loader, criterion, optimizer, scheduler, writer, device, n_classes, patch=False, args=None):
torch.cuda.empty_cache()
train_losses = []
test_losses = []
val_iou = []
val_acc = []
train_iou = []
train_acc = []
lrs = []
min_loss = np.inf
decrease = 1
not_improve = 0
aug_p = args.p
max_miou = 0
min_loss = 10000
overfit_flag = False
overfit_epoch = -1
fit_time = time.time()
for e in (range(epochs)):
since = time.time()
running_loss = 0
iou_score = 0
accuracy = 0
miou_meter_train = mIoUMeter()
miou_meter_val = mIoUMeter()
conf_mat_2 = ConfMatrix(2)
conf_mat_n = ConfMatrix(n_classes)
# training loop
model.train()
for i, data in enumerate((train_loader)):
# training phase
image_tiles, mask_tiles = data
if patch:
bs, n_tiles, c, h, w = image_tiles.size()
image_tiles = image_tiles.view(-1, c, h, w)
mask_tiles = mask_tiles.view(-1, h, w)
image = image_tiles.to(device)
mask = mask_tiles.to(device)
# forward
output = model(image)
loss = criterion(output, mask)
# evaluation metrics
iou_score += mIoU(output, mask, n_classes=n_classes)
accuracy += pixel_accuracy(output, mask)
# backward
loss.backward()
optimizer.step() # update weight
optimizer.zero_grad() # reset gradient
# step the learning rate
lrs.append(get_lr(optimizer))
scheduler.step()
running_loss += loss.item()
pred_mask = torch.argmax(output, dim=1)
miou_meter_train.update(pred_mask, mask, n_classes)
# compute metrics by confusion matrix
conf_mat_n.update(pred_mask.flatten(), mask.flatten())
conf_mat_2.update((pred_mask>1).long().flatten(), (mask>1).long().flatten())
#SAVE IMAGES
#print("Output: ", output.shape)
color = generate_distinguishable_colors(args.n_cls)
masked_images = get_images_with_mask(images=image, masks_logits=output, color=color)
save_tensorboard_images(images=masked_images, label=f"[aug={aug_p}][TRAIN OUT]", logger=writer, iters = e)
mask = mask.unsqueeze(1)
mask = torch.cat([1-mask, mask], dim=1)
#print("mask: ", mask.shape)
#print("mask: ", torch.unique)
masked_images = get_images_with_mask(images=image, masks_logits=mask.float())
save_tensorboard_images(images=masked_images, label=f"[aug={aug_p}][TRAIN GT]", logger=writer, iters = e, color=color)
# else:
model.eval()
test_loss = 0
test_accuracy = 0
val_iou_score = 0
val_conf_mat_2 = ConfMatrix(2)
val_conf_mat_n = ConfMatrix(n_classes)
# validation loop
with torch.no_grad():
for i, data in enumerate(val_loader):
# reshape to 9 patches from single image, delete batch size
image_tiles, mask_tiles = data
if patch:
bs, n_tiles, c, h, w = image_tiles.size()
image_tiles = image_tiles.view(-1, c, h, w)
mask_tiles = mask_tiles.view(-1, h, w)
image = image_tiles.to(device)
mask = mask_tiles.to(device)
output = model(image)
# evaluation metrics
val_iou_score += mIoU(output, mask, n_classes=n_classes)
test_accuracy += pixel_accuracy(output, mask)
# loss
loss = criterion(output, mask)
test_loss += loss.item()
pred_mask = torch.argmax(output, dim=1)
miou_meter_val.update(pred_mask, mask, n_classes)
# compute metrics by confusion matrix
val_conf_mat_n.update(pred_mask.flatten(), mask.flatten())
val_conf_mat_2.update((pred_mask > 1).long().flatten(), (mask > 1).long().flatten())
# calculation mean error for each batch
train_losses.append(running_loss / len(train_loader))
test_losses.append(test_loss / len(val_loader))
# print(f"[{e+1}/{epochs}] \n"
# f"TRAIN Loss {running_loss / len(train_loader):.3f} "
# f"mIoU {miou_meter_train.get_miou()[1]:.3f}, "
# f"mIoU_cm {conf_mat_n.get_metrics()[0]:.3f}, "
# f"mIoU_cm2 {conf_mat_2.get_metrics()[0]:.3f} \n"
# f"VALI Loss {test_loss / len(val_loader):.3f}, "
# f"mIoU {miou_meter_val.get_miou()[1]:.3f}, "
# f"mIoU_cm {val_conf_mat_n.get_metrics()[0]:.3f}, "
# f"mIoU_cm2 {val_conf_mat_2.get_metrics()[0]:.3f}, "
# )
#np_cm = val_conf_mat_n.get_matrix()
#class_losses = np_cm.diag() / np_cm.sum(1)
# print('VAL Pred/GT pixel count ratios:')
# print('bg: {:3f}'.format(class_losses[0]))
# print('rigid_plastic: {:3f}'.format(class_losses[1]))
# print('cardboard: {:3f}'.format(class_losses[2]))
# print('metal: {}'.format(class_losses[3]))
# print('soft_plastic: {:3f}'.format(class_losses[4]))
writer.add_scalars(f"[aug={aug_p}] Loss / Epoch", {'Train': running_loss / len(train_loader), 'Val': test_loss / len(val_loader) }, e)
current_iou = val_conf_mat_n.get_metrics()[0]
if current_iou > max_miou:
max_miou = current_iou
best_model_state = model.state_dict()
#print(f'Update best model with mIoU {max_miou:.3f}...')
torch.save(model.state_dict(), os.path.join(args.prefix, 'test_results', args.train_id, args.model_name+'_best-mIoU.pth'))
if not overfit_flag:
val_loss = (test_loss / len(val_loader))
if val_loss < min_loss:
min_loss = val_loss
not_improve = 0 #ADD TO RESET THE COUNT
else:
not_improve += 1
#print(f"VAL loss not improved for {not_improve} epochs.")
if not_improve == 5:
overfit_flag = True
overfit_epoch = e
#print(f"!!! OVERFITTING WARNING: VAL loss not improved for {not_improve} epochs.")
torch.save(model.state_dict(), os.path.join(args.prefix, 'test_results', args.train_id, args.model_name+'_earlystop.pth'))
# iou
val_iou.append(val_iou_score / len(val_loader))
train_iou.append(iou_score / len(train_loader))
train_acc.append(accuracy / len(train_loader))
val_acc.append(test_accuracy / len(val_loader))
writer.add_scalars(f"[aug={aug_p}] Accuracy / Epoch", {'Train': accuracy / len(train_loader), 'Val': test_accuracy / len(val_loader) }, e)
writer.add_scalars(f"[aug={aug_p}] mIoU / Epoch", {'Train': iou_score / len(train_loader), 'Val': val_iou_score / len(val_loader)}, e)
#SAVE IMAGES
#print("Output: ", output.shape)
masked_images = get_images_with_mask(images=image, masks_logits=output, color=color)
save_tensorboard_images(images=masked_images, label=f"[aug={aug_p}][VAL OUT]", logger=writer, iters = e)
mask = mask.unsqueeze(1)
mask = torch.cat([1-mask, mask], dim=1)
#print("mask: ", mask.shape)
#print("mask: ", torch.unique)
masked_images = get_images_with_mask(images=image, masks_logits=mask.float())
save_tensorboard_images(images=masked_images, label=f"[aug={aug_p}][VAL GT]", logger=writer, iters = e, color=color)
history = {
'train_loss': train_losses, 'val_loss': test_losses,
'train_miou': train_iou, 'val_miou': val_iou,
'train_acc': train_acc, 'val_acc': val_acc,
'train_miou_all': miou_meter_train.get_miou()[1], 'val_miou_all': miou_meter_val.get_miou()[1],
'train_miou_class': list(miou_meter_train.get_miou()[0]), 'val_miou_class': list(miou_meter_val.get_miou()[0]),
'lrs': lrs,
'overfit_epoch': overfit_epoch
}
# summary = {'train_loss': np.mean(np.array(train_losses)), 'val_loss': np.mean(np.array(test_losses)),
# 'train_miou': np.mean(np.array(train_iou)), 'val_miou': np.mean(np.array(val_iou)),
# 'train_acc': np.mean(np.array(train_acc)), 'val_acc': np.mean(np.array(val_acc))
# }
print('Total time: {:.2f} m'.format((time.time() - fit_time) / 60))
return history, best_model_state
def test(model, test_loader, criterion, device, n_classes, patch=False, args=None):
model.eval()
test_loss = 0
test_accuracy = 0
test_iou_score = 0
miou_meter = mIoUMeter()
confusion_matrix_n = ConfMatrix(n_classes)
confusion_matrix_2 = ConfMatrix(2)
class_count_preds = np.zeros(n_classes)
class_count_gts = np.zeros(n_classes)
# validation loop
with torch.no_grad():
for i, data in enumerate(test_loader):
# reshape to 9 patches from single image, delete batch size
image_tiles, mask_tiles = data
if patch:
bs, n_tiles, c, h, w = image_tiles.size()
image_tiles = image_tiles.view(-1, c, h, w)
mask_tiles = mask_tiles.view(-1, h, w)
image = image_tiles.to(device)
mask = mask_tiles.to(device)
output = model(image)
# evaluation metrics
test_iou_score += mIoU(output, mask, n_classes=n_classes)
test_accuracy += pixel_accuracy(output, mask)
# loss
loss = criterion(output, mask)
test_loss += loss.item()
pred_mask = torch.argmax(output, dim=1)
miou_meter.update(pred_mask, mask, n_classes)
# compute metrics by confusion matrix
confusion_matrix_n.update(pred_mask.flatten(), mask.flatten())
confusion_matrix_2.update((pred_mask > 1).long().flatten(), (mask > 1).long().flatten())
# pred_1hot = torch.nn.functional.one_hot(pred_mask, num_classes=n_classes).permute(0, 3, 1, 2).to(
# torch.float)
# mask_1hot = torch.nn.functional.one_hot(mask, num_classes=n_classes).permute(0, 3, 1, 2).to(torch.float)
#
# # COUNT CLASS PREDICTIONS
# B, K, H, W = pred_1hot.shape
# class_count_pred = pred_1hot.view(B, K, H * W).sum(2).sum(0) / (H * W * B)
# class_count_gt = mask_1hot.view(B, K, H * W).sum(2).sum(0) / (H * W * B)
#
# class_count_preds += class_count_pred.cpu().numpy()
# class_count_gts += class_count_gt.cpu().numpy()
############## Visualization
# B, C, H, W = image.shape
# for j in range(B):
#
# plt.subplot(2, 1, 1)
# plt.imshow(pred_mask[j].cpu())
#
# # print("Pred: ", pred_mask[j].unique() )
#
# plt.subplot(2, 1, 2)
# plt.imshow(mask[j].cpu())
# #
# # print("GT: ", mask[j].unique())
# #
# plt.show()
# print(f"****** TEST *************************************\n",
# f"mIoU {miou_meter.get_miou()[1]:.3f}, \n"
# f"mIoU_cm {confusion_matrix_n.get_metrics()[0]:.3f}, \n"
# f"mIoU_cm2 {confusion_matrix_2.get_metrics()[0]:.3f}, \n"
# f"IoU per class {list(miou_meter.get_miou()[0])}, \n"
# f"IoU_cm per class {list(confusion_matrix_n.get_metrics()[1])}, "
# )
np_cm = confusion_matrix_n.get_matrix()
class_losses = np_cm.diag() / np_cm.sum(1)
# print('TEST Pred/GT pixel count ratios:')
# print('bg: {:3f}'.format(class_losses[0]))
# print('rigid_plastic: {:3f}'.format(class_losses[1]))
# print('cardboard: {:3f}'.format(class_losses[2]))
# print('metal: {}'.format(class_losses[3]))
# print('soft_plastic: {:3f}'.format(class_losses[4]))
confusion_matrix_n.plot_confusion_matrix(args.cls_names, args.cm_save_path)
# calculation mean error for each batch
test_losses = test_loss / len(test_loader)
# iou
test_iou = test_iou_score / len(test_loader)
test_acc = test_accuracy / len(test_loader)
history = {
'test_loss': test_losses,
'test_miou': test_iou,
'test_acc': test_acc,
'test_miou_all': miou_meter.get_miou()[1],
'test_miou_class': list(miou_meter.get_miou()[0]),
'test_miou_CM': confusion_matrix_n.get_metrics()[0],
'test_acc_CM': confusion_matrix_n.get_metrics()[2],
'test_class_ious_CM': list(confusion_matrix_n.get_metrics()[1]),
'class_counts_gt': list(class_count_gts / len(test_loader)),
'class_counts_pred': list(class_count_preds / len(test_loader)),
}
return history
def main():
init_time = time.time()
# Create the parser
parser = argparse.ArgumentParser()
#Train Params
parser.add_argument('--batch', type=int, default=16) #16
parser.add_argument('--real_size', type=int, default=100)
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--lr', type=float, default=2.5e-3) #1e-4 2.5e-3
parser.add_argument('--wd', type=float, default=5e-4) #1e-5 5e-4
parser.add_argument('--n_cls', type=int, default=5)
parser.add_argument('--workers', type=int, default=4) #4
#Data Loading
parser.add_argument('--model_step', type=str, default="step_159999")
parser.add_argument('--train_id', type=str, default="maskGAN_dualD_Drgb") #which dataset to load
parser.add_argument('--aug_root', type=str, default="AugDatasets")
parser.add_argument('--split_root', type=str, default="zerowaste-v1")
parser.add_argument('--prefix', type=str, default="")
parser.add_argument('--use_imcLoss', action="store_true") #which dataset to load
parser.add_argument('--use_sharpFeat', action="store_true") #which dataset to load
parser.add_argument('--use_adaCustom', action="store_true") #which dataset to load
parser.add_argument('--use_advCustom', action="store_true") #which dataset to load
parser.add_argument('--use_symLogAct', action="store_true") #which dataset to load
parser.add_argument('--symLogAct_a', type=int, default=2)
parser.add_argument('--use_genXL', action="store_true") #which dataset to load
parser.add_argument('--use_clsBal', action="store_true") #which dataset to load
parser.add_argument('--trainFromScratch', action="store_true") #which dataset to load
args = parser.parse_args()
if args.use_genXL:
args.train_id += "_genXL"
if args.use_symLogAct:
args.train_id += "_symLogA{}".format(args.symLogAct_a)
if args.use_adaCustom:
args.train_id += "_adaC"
if args.use_advCustom:
args.train_id += "_advC"
if args.use_imcLoss:
args.train_id += "_imcL"
if args.use_sharpFeat:
args.train_id += "_s&fL"
if args.use_clsBal:
args.train_id += "_clsB"
args.cls_names = ['bg', 'rigid_plastic', 'cardboard', 'metal', 'soft_plastic']
print("###### ARGUMENTS #######")
print(args)
print("########################")
aug_folder_100 = os.path.join(args.prefix, args.aug_root, args.train_id+"_rs{}".format(args.real_size), args.model_step)
args.train_id += "_AugTest_rs{}".format(args.real_size)
print(">>>>> TRAIN ID: ", args.train_id)
if args.trainFromScratch:
print("Testing by training each model from scratches")
args.train_id += "_scratch"
else:
print("Testing by gradually fine tuning the model")
args.train_id += "_incremental"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
writer = SummaryWriter(os.path.join(args.prefix, "./runs", args.train_id))
#CREATE LOG FOLDER
log_folder = os.path.join(args.prefix, 'test_results', args.train_id)
if not os.path.exists(log_folder):
os.makedirs(log_folder)
root = args.split_root
train_img_folder = os.path.join(args.prefix, root, "train", "data")
train_mask_folder = os.path.join(args.prefix, root, "train", "sem_seg")
val_img_folder = os.path.join(args.prefix, root, "val", "data")
val_mask_folder = os.path.join(args.prefix, root, "val", "sem_seg")
test_img_folder = os.path.join(args.prefix, root, "test", "data")
test_mask_folder = os.path.join(args.prefix, root, "test", "sem_seg")
n_classes = args.n_cls
mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]
#backbones = ['resnet50', 'resnet101', 'timm-mobilenetv3_large_100', 'efficientnet-b6', 'tu-mobilevitv2_100']
#heads = [smp.Unet, smp.FPN, smp.PAN, smp.DeepLabV3Plus, smp.MAnet]
backbones = ['mit_b5', 'resnext101_32x8d', 'timm-mobilenetv3_large_100', 'tu-mobilevitv2_100']
heads = [smp.FPN, smp.MAnet, smp.Unet, smp.DeepLabV3Plus]
# backbones = ['resnet101', 'timm-mobilenetv3_large_100', 'tu-mobilevitv2_100']
# heads = [smp.Unet, smp.DeepLabV3Plus]
#TRY DIFFERENT MODELS
for b in backbones:
for h in heads:
last_state_dict = None
#BUILD THE MODEL
try:
# Your code that raises the exception
model = h(b, encoder_weights="imagenet", classes=n_classes, activation=None)
except ValueError as e:
print(str(e))
continue
model.to(device)
args.model_name = model.__class__.__name__ + "_{}".format(b)
print("################### Training&Test {} ##########################".format(args.model_name))
print("################### Dataset: {} ##########################".format(aug_folder_100))
#AUGMENTATION RATIOS
#ratios = [0.0, 1.0, 2.5, 5.0, 10.0, 25.0, 50.0, 100.0, 250.0, 500.0]
ratios = [0.0, 1.0, 2.5, 5.0, 10.0, 25.0]
#INIT LOG DICTIONARY
log_dict = dict()
for p in ratios:
log_dict[p] = {
'train':{},
'test_last':{},
'test_earlystop':{}
}
log_file_name = args.model_name+".json"
args.log_dict = log_dict
#TRY DIFFERENT AUG RATES
for p in ratios:
if args.trainFromScratch:
# BUILD THE MODEL
model = h(b, encoder_weights="imagenet", classes=n_classes, activation=None)
model.to(device)
elif last_state_dict is not None:
model.load_state_dict(last_state_dict)
args.p = p
print("+++++++++++++ p = {}".format(p))
start_time = time.time()
train_set = AugSemSegDataset(train_img_folder, train_mask_folder, aug_folder=aug_folder_100, aug_p=p, transform=None, real_size=args.real_size)
val_set = SemSegDataset(val_img_folder, val_mask_folder, transform=None)
test_set = SemSegDataset(test_img_folder, test_mask_folder, transform=None)
batch_size = args.batch
workers = args.workers
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=workers)
val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=workers)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=workers)
max_lr = args.lr
epoch = args.epochs
weight_decay = args.wd
#criterion = nn.CrossEntropyLoss()
weights = 1 - np.array([0.832770, 0.006781, 0.108312, 0.000917, 0.051221])
weigths = torch.tensor(weights, device=device, dtype=torch.float)
criterion = nn.CrossEntropyLoss(weight=weigths)
optimizer = torch.optim.AdamW(model.parameters(), lr=max_lr, weight_decay=weight_decay)
sched = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr, epochs=epoch, steps_per_epoch=len(train_loader))
print(f"TRAIN SET SIZE: {len(train_loader) * batch_size}")
print(f"VAL SET SIZE: {len(val_loader) * batch_size}")
print(f"TEST SET SIZE: {len(test_loader) * batch_size}")
history, best_model_dict = fit(epochs=epoch,model= model,train_loader= train_loader,val_loader= val_loader,criterion= criterion,optimizer= optimizer, scheduler= sched,writer= writer,device= device,n_classes= n_classes, args= args)
print("+++++++++++++ Training set size {}".format(len(train_set)))
log_dict[args.p]['total_train_size'] = len(train_set)
log_dict[args.p]['train'] = history
last_state_dict = model.state_dict()
model.load_state_dict(best_model_dict)
args.cm_save_path = os.path.join(log_folder, args.model_name+"_CM.png")
history = test(model=model, test_loader=test_loader, criterion=criterion, n_classes=n_classes, device=device, args=args)
log_dict[args.p]['test_last'] = history
#print("+++++++++++++ test 'LAST' mIOU {}".format(history['test_miou']))
#print("+++++++++++++ test 'LAST' mIOU ALL {}".format(history['test_miou_all']))
#print("+++++++++++++ test 'LAST' mIOU CLASS {}".format(history['test_miou_class']))
print("+++++++++++++ test 'LAST' mIOU {:.3f}".format(history['test_miou_CM']))
cls_mious = ' '.join(f'{num:.3f}' for num in history['test_class_ious_CM'])
print("+++++++++++++ test 'LAST' mIOU per class {}".format(cls_mious))
#print("+++++++++++++ CLASS COUNTS GT {}".format(history['class_counts_gt']))
#print("+++++++++++++ CLASS COUNTS PRED {}".format(history['class_counts_pred']))
es_model = os.path.join(args.prefix, 'test_results', args.train_id, args.model_name+'_earlystop.pth')
if os.path.exists(es_model):
model.load_state_dict(torch.load(es_model))
model.to(device)
history = test(model=model, test_loader=test_loader, criterion=criterion, n_classes=n_classes, device=device, args=args)
log_dict[args.p]['test_earlystop'] = history
# print("+++++++++++++ test 'EARLY STOP' mIOU {}".format(history['test_miou']))
# print("+++++++++++++ test 'EARLY STOP' mIOU ALL {}".format(history['test_miou_all']))
# print("+++++++++++++ test 'EARLY STOP' mIOU CLASS {}".format(history['test_miou_class']))
print("+++++++++++++ test 'EARLY STOP' mIOU {:.3f}".format(history['test_miou_CM']))
cls_mious = ' '.join(f'{num:.3f}' for num in history['test_class_ious_CM'])
print("+++++++++++++ test 'EARLY STOP' mIOU per class {}".format(cls_mious))
else:
log_dict[args.p]['test_earlystop'] = None
print("+++++++++++++ NO OVERFITTING in {} epochs".format(args.epochs))
end_time = time.time()
execution_time = (end_time - start_time) / 60
print("+++++++++++++ Execution time:", execution_time, "minutes")
print("########################################################## \n\n")
with open(os.path.join(log_folder, log_file_name), 'w') as f:
json.dump(log_dict, f, indent=4)
#log_file.close()
model.cpu()
end_time = time.time()
total_execution_time = (end_time - init_time) / (60*60)
print("######### END SCRIPT IN {} hours #########".format(total_execution_time))
if __name__ == "__main__":
main()