-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainTestGANAblation.py
executable file
·457 lines (353 loc) · 18.3 KB
/
trainTestGANAblation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms as T
import torchvision
from torch.autograd import Variable
from PIL import Image
import cv2
import time
import os
from tqdm import tqdm
import json
from utils.dataset import SemSegDataset, AugSemSegDataset
from utils.util import save_tensorboard_images, get_images_with_mask
from segmentation_models_pytorch import Unet, MAnet, PSPNet, FPN, DeepLabV3Plus
from utils.metrics import pixel_accuracy, mIoU, get_lr, mIoUMeter
from torch.utils.tensorboard import SummaryWriter
import argparse
import albumentations as A
from utils.util import generate_distinguishable_colors
def fit(epochs, model, train_loader, val_loader, criterion, optimizer, scheduler, writer, device, n_classes, patch=False, args=None):
torch.cuda.empty_cache()
train_losses = []
test_losses = []
val_iou = []
val_acc = []
train_iou = []
train_acc = []
lrs = []
min_loss = np.inf
decrease = 1
not_improve = 0
aug_p = args.p
fit_time = time.time()
for e in range(epochs):
since = time.time()
running_loss = 0
iou_score = 0
accuracy = 0
miou_meter_train = mIoUMeter()
# training loop
model.train()
for i, data in enumerate(train_loader):
# training phase
image_tiles, mask_tiles = data
# if i > 10:
# break
if patch:
bs, n_tiles, c, h, w = image_tiles.size()
image_tiles = image_tiles.view(-1, c, h, w)
mask_tiles = mask_tiles.view(-1, h, w)
image = image_tiles.to(device)
mask = mask_tiles.to(device)
# forward
output = model(image)
loss = criterion(output, mask)
# evaluation metrics
iou_score += mIoU(output, mask, n_classes=n_classes)
accuracy += pixel_accuracy(output, mask)
# backward
loss.backward()
optimizer.step() # update weight
optimizer.zero_grad() # reset gradient
# step the learning rate
lrs.append(get_lr(optimizer))
scheduler.step()
running_loss += loss.item()
pred_mask = torch.argmax(output, dim=1)
miou_meter_train.update(pred_mask, mask, n_classes)
#SAVE IMAGES
#print("Output: ", output.shape)
color = generate_distinguishable_colors(args.n_cls)
masked_images = get_images_with_mask(images=image, masks_logits=output, color=color)
save_tensorboard_images(images=masked_images, label=f"[aug={aug_p}][TRAIN OUT]", logger=writer, iters = e)
mask = mask.unsqueeze(1)
mask = torch.cat([1-mask, mask], dim=1)
#print("mask: ", mask.shape)
#print("mask: ", torch.unique)
masked_images = get_images_with_mask(images=image, masks_logits=mask.float())
save_tensorboard_images(images=masked_images, label=f"[aug={aug_p}][TRAIN GT]", logger=writer, iters = e, color=color)
# else:
model.eval()
test_loss = 0
test_accuracy = 0
val_iou_score = 0
max_miou = 0
min_loss = np.inf
overfit_flag = False
miou_meter_val = mIoUMeter()
# validation loop
with torch.no_grad():
for i, data in enumerate(val_loader):
# reshape to 9 patches from single image, delete batch size
image_tiles, mask_tiles = data
if patch:
bs, n_tiles, c, h, w = image_tiles.size()
image_tiles = image_tiles.view(-1, c, h, w)
mask_tiles = mask_tiles.view(-1, h, w)
image = image_tiles.to(device)
mask = mask_tiles.to(device)
output = model(image)
# evaluation metrics
val_iou_score += mIoU(output, mask, n_classes=n_classes)
test_accuracy += pixel_accuracy(output, mask)
# loss
loss = criterion(output, mask)
test_loss += loss.item()
pred_mask = torch.argmax(output, dim=1)
miou_meter_val.update(pred_mask, mask, n_classes)
# calculation mean error for each batch
train_losses.append(running_loss / len(train_loader))
test_losses.append(test_loss / len(val_loader))
writer.add_scalars(f"[aug={aug_p}] Loss / Epoch", {'Train': running_loss / len(train_loader), 'Val': test_loss / len(val_loader) }, e)
if miou_meter_val.get_miou()[1] > max_miou:
max_miou = miou_meter_val.get_miou()[1]
#print('update best model...')
torch.save(model.state_dict(), os.path.join(args.prefix, 'ablation_results', args.train_id, args.model_name+'_best-mIoU.pth'))
if not overfit_flag:
if (test_loss / len(val_loader)) < min_loss:
min_loss = (test_loss / len(val_loader))
not_improve = 0 #ADD TO RESET THE COUNT
else:
not_improve += 1
if not_improve == 5:
overfit_flag = True
torch.save(model.state_dict(), os.path.join(args.prefix, 'ablation_results', args.train_id, args.model_name+'_earlystop.pth'))
# iou
val_iou.append(val_iou_score / len(val_loader))
train_iou.append(iou_score / len(train_loader))
train_acc.append(accuracy / len(train_loader))
val_acc.append(test_accuracy / len(val_loader))
writer.add_scalars(f"[aug={aug_p}] Accuracy / Epoch", {'Train': accuracy / len(train_loader), 'Val': test_accuracy / len(val_loader) }, e)
writer.add_scalars(f"[aug={aug_p}] mIoU / Epoch", {'Train': iou_score / len(train_loader), 'Val': val_iou_score / len(val_loader)}, e)
#SAVE IMAGES
#print("Output: ", output.shape)
masked_images = get_images_with_mask(images=image, masks_logits=output, color=color)
save_tensorboard_images(images=masked_images, label=f"[aug={aug_p}][VAL OUT]", logger=writer, iters = e)
mask = mask.unsqueeze(1)
mask = torch.cat([1-mask, mask], dim=1)
#print("mask: ", mask.shape)
#print("mask: ", torch.unique)
masked_images = get_images_with_mask(images=image, masks_logits=mask.float())
save_tensorboard_images(images=masked_images, label=f"[aug={aug_p}][VAL GT]", logger=writer, iters = e, color=color)
history = {'train_loss': train_losses, 'val_loss': test_losses,
'train_miou': train_iou, 'val_miou': val_iou,
'train_acc': train_acc, 'val_acc': val_acc,
'train_miou_all': miou_meter_train.get_miou()[1], 'val_miou_all': miou_meter_val.get_miou()[1],
'train_miou_class': list(miou_meter_train.get_miou()[0]), 'val_miou_class': list(miou_meter_val.get_miou()[0]),
'lrs': lrs}
summary = {'train_loss': np.mean(np.array(train_losses)), 'val_loss': np.mean(np.array(test_losses)),
'train_miou': np.mean(np.array(train_iou)), 'val_miou': np.mean(np.array(val_iou)),
'train_acc': np.mean(np.array(train_acc)), 'val_acc': np.mean(np.array(val_acc))
}
print('Total time: {:.2f} m'.format((time.time() - fit_time) / 60))
return history, summary
def test(model, test_loader, criterion, device, n_classes, patch=False, args=None):
model.eval()
test_loss = 0
test_accuracy = 0
test_iou_score = 0
miou_meter = mIoUMeter()
class_count_preds = np.zeros(n_classes)
class_count_gts = np.zeros(n_classes)
# validation loop
with torch.no_grad():
for i, data in enumerate(test_loader):
# reshape to 9 patches from single image, delete batch size
image_tiles, mask_tiles = data
# if i > 10:
# break
if patch:
bs, n_tiles, c, h, w = image_tiles.size()
image_tiles = image_tiles.view(-1, c, h, w)
mask_tiles = mask_tiles.view(-1, h, w)
image = image_tiles.to(device)
mask = mask_tiles.to(device)
output = model(image)
# evaluation metrics
test_iou_score += mIoU(output, mask, n_classes=n_classes)
test_accuracy += pixel_accuracy(output, mask)
# loss
loss = criterion(output, mask)
test_loss += loss.item()
pred_mask = torch.argmax(output, dim=1)
miou_meter.update(pred_mask, mask, n_classes)
pred_1hot = torch.nn.functional.one_hot(pred_mask, num_classes=n_classes).permute(0, 3, 1, 2).to(
torch.float)
mask_1hot = torch.nn.functional.one_hot(mask, num_classes=n_classes).permute(0, 3, 1, 2).to(torch.float)
# COUNT CLASS PREDICTIONS
B, K, H, W = pred_1hot.shape
class_count_pred = pred_1hot.view(B, K, H * W).sum(2).sum(0) / (H*W*B)
class_count_gt = mask_1hot.view(B, K, H * W).sum(2).sum(0) / (H*W*B)
class_count_preds += class_count_pred.cpu().numpy()
class_count_gts += class_count_gt.cpu().numpy()
# calculation mean error for each batch
test_losses = test_loss / len(test_loader)
# iou
test_iou = test_iou_score / len(test_loader)
test_acc = test_accuracy / len(test_loader)
history = {
'test_loss': test_losses,
'test_miou': test_iou,
'test_acc': test_acc,
'test_miou_all': miou_meter.get_miou()[1],
'test_miou_class': list(miou_meter.get_miou()[0]),
'class_counts_gt': list(class_count_gts / len(test_loader)),
'class_counts_pred': list(class_count_preds / len(test_loader)),
}
return history
def main():
init_time = time.time()
# Create the parser
parser = argparse.ArgumentParser()
#Train Params
parser.add_argument('--batch', type=int, default=16)
parser.add_argument('--real_size', type=int, default=100)
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--wd', type=int, default=1e-5)
parser.add_argument('--backbone', type=str, default='timm-mobilenetv3_small_075')
parser.add_argument('--head', type=str, default='Unet')
parser.add_argument('--n_cls', type=int, default=5)
parser.add_argument('--workers', type=int, default=4)
#Data Loading
parser.add_argument('--model_step', type=str, default="step_159999")
parser.add_argument('--train_id', type=str, default="maskGAN_dualD_Drgb") #which dataset to load
parser.add_argument('--aug_root', type=str, default="AugDatasets")
parser.add_argument('--split_root', type=str, default="dataSplit1000")
parser.add_argument('--prefix', type=str, default="")
parser.add_argument('--symLogAct_a', type=int, default=2)
parser.add_argument('--ablat_mode', type=int, default=0, help="0:only one customization per time, 1=all costomization but one")
args = parser.parse_args()
if args.ablat_mode == 0:
tails = ["", "_genXL", "_symLogA{}".format(args.symLogAct_a), "_adaC", "_advC", "_imcL", "_s&fL", "_clsB"]
elif args.ablat_mode == 1:
tails = ["_symLogA{}_adaC_advC_imcL_s&fL".format(args.symLogAct_a),
"_genXL_adaC_advC_imcL_s&fL",
"_genXL_symLogA{}_adaC_advC_imcL".format(args.symLogAct_a),
"_genXL_symLogA{}_adaC_advC_imcL_s&fL".format(args.symLogAct_a),
"_genXL_symLogA{}_adaC_advC_s&fL".format(args.symLogAct_a),
"_genXL_symLogA{}_adaC_imcL_s&fL".format(args.symLogAct_a), #failed to train
"_genXL_symLogA{}_advC_imcL_s&fL".format(args.symLogAct_a),
]
datasets = []
for t in tails:
datasets.append(os.path.join(args.prefix, args.aug_root, args.train_id+t+"_rs{}".format(args.real_size), args.model_step) )
file_names = ["dataset_{}_rs{}".format(tails[i], args.real_size) for i in range(len(tails))]
#ADDITIONAL DATASETS
datasets.append(os.path.join(args.prefix, args.aug_root, args.train_id+"_imcL"+"_rs{}".format(250), args.model_step) )
file_names.append("dataset_{}_rs{}".format("_imcL", 250) )
full_model_name = args.train_id
for t in tails:
full_model_name+=t
print("DATASET TO BE USED: ", datasets)
args.train_id += "_AblationTest_rs{}".format(args.real_size)
print(">>>>> TRAIN ID: ", args.train_id)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
writer = SummaryWriter(os.path.join(args.prefix, "./runs", args.train_id))
#CREATE LOG FOLDER
log_folder = os.path.join(args.prefix, 'ablation_results', args.train_id, f"{args.backbone}_{args.head}")
if not os.path.exists(log_folder):
os.makedirs(log_folder)
print(f"Created folder {log_folder}")
root = args.split_root
train_img_folder = os.path.join(args.prefix, root, "train", "data")
train_mask_folder = os.path.join(args.prefix, root, "train", "sem_seg")
val_img_folder = os.path.join(args.prefix, root, "val", "data")
val_mask_folder = os.path.join(args.prefix, root, "val", "sem_seg")
test_img_folder = os.path.join(args.prefix, root, "test", "data")
test_mask_folder = os.path.join(args.prefix, root, "test", "sem_seg")
n_classes = args.n_cls
mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]
b = args.backbone
head = globals()[args.head]
model = head(b, encoder_weights="imagenet", classes=n_classes, activation=None)
model.to(device)
#TRY DIFFERENT DATASETS
for i, aug_folder_100 in enumerate(datasets):
#BUILD THE MODEL
args.model_name = model.__class__.__name__ + "_{}".format(b)
print("################### Training&Test {} ##########################".format(args.model_name))
print("################### Dataset: {} ##########################".format(aug_folder_100))
#AUGMENTATION RATIOS
ratios = [0.0, 1.0, 2.5, 5.0, 10.0, 25.0, 50.0, 100.0, 250.0, 500.0]
#INIT LOG DICTIONARY
log_dict = dict()
for p in ratios:
log_dict[p] = {
'train':{},
'test_last':{},
'test_earlystop':{}
}
#file_n = "dataset_{}_rs{}".format(tails[i], args.real_size)
file_n = file_names[i]
log_file_name = file_n+".json"
args.log_dict = log_dict
#TRY DIFFERENT AUG RATIOS
for p in ratios:
args.p = p
print("+++++++++++++ p = {}".format(p))
start_time = time.time()
train_set = AugSemSegDataset(train_img_folder, train_mask_folder, aug_folder=aug_folder_100, aug_p=p, transform=None, real_size=args.real_size)
val_set = SemSegDataset(val_img_folder, val_mask_folder, transform=None)
test_set = SemSegDataset(test_img_folder, test_mask_folder, transform=None)
batch_size = args.batch
workers = args.workers
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=workers)
val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=workers)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=workers)
max_lr = args.lr
epoch = args.epochs
weight_decay = args.wd
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=max_lr, weight_decay=weight_decay)
sched = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr, epochs=epoch, steps_per_epoch=len(train_loader))
history, summary = fit(epochs=epoch,model= model,train_loader= train_loader,val_loader= val_loader,criterion= criterion,optimizer= optimizer, scheduler= sched,writer= writer,device= device,n_classes= n_classes, args= args)
print("+++++++++++++ Training set size {}".format(len(train_set)))
log_dict[args.p]['total_train_size'] = len(train_set)
log_dict[args.p]['train'] = history
history = test(model=model, test_loader=test_loader, criterion=criterion, n_classes=n_classes, device=device, args=args)
log_dict[args.p]['test_last'] = history
print("+++++++++++++ test 'LAST' mIOU {}".format(history['test_miou']))
print("+++++++++++++ test 'LAST' mIOU ALL {}".format(history['test_miou_all']))
print("+++++++++++++ test 'LAST' mIOU CLASS {}".format(history['test_miou_class']))
print("+++++++++++++ CLASS COUNTS GT {}".format(history['class_counts_gt']))
print("+++++++++++++ CLASS COUNTS PRED {}".format(history['class_counts_pred']))
es_model = os.path.join(args.prefix, 'test_results', args.train_id, args.model_name+'_earlystop.pth')
if os.path.exists(es_model):
model.load_state_dict(torch.load(es_model)).to(device)
history = test(model=model, test_loader=test_loader, criterion=criterion, n_classes=n_classes, device=device, args=args)
log_dict[args.p]['test_earlystop'] = history
print("+++++++++++++ test 'EARLY STOP' mIOU {}".format(history['test_miou']))
print("+++++++++++++ test 'EARLY STOP' mIOU ALL {}".format(history['test_miou_all']))
print("+++++++++++++ test 'EARLY STOP' mIOU CLASS {}".format(history['test_miou_class']))
else:
log_dict[args.p]['test_earlystop'] = history
print("+++++++++++++ NO OVERFITTING in {} epochs".format(args.epochs))
end_time = time.time()
execution_time = (end_time - start_time) / 60
print("+++++++++++++ Execution time:", execution_time, "minutes")
print("########################################################## \n\n")
with open(os.path.join(log_folder, log_file_name), 'w') as f:
json.dump(log_dict, f, indent=4)
#log_file.close()
#model.cpu()
end_time = time.time()
total_execution_time = (end_time - init_time) / (60*60)
print("######### END SCRIPT IN {} hours #########".format(total_execution_time))
if __name__ == "__main__":
main()