-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathresults.py
602 lines (542 loc) · 19.6 KB
/
results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
from copy import deepcopy
from pprint import pprint
import matplotlib
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from constants import (RESULTS_CF_DISSABLEMENT_FILE,
RESULTS_CF_SUFFICIENCY_FILE, RESULTS_OBS_FILE,
VIGNETTES_FILE)
from helpers import bintest, doctor_top_ns, mean_list
from utils import load_from_json, load_from_pickle
matplotlib.use("Agg")
def produce_results(*, args):
print(f"> Producing results from {str(args.results.absolute())}")
topn_results_obs = load_from_pickle(args.results / RESULTS_OBS_FILE)
topn_results_counter_diss = load_from_pickle(
args.results / RESULTS_CF_DISSABLEMENT_FILE
)
topn_results_counter_suff = load_from_pickle(
args.results / RESULTS_CF_SUFFICIENCY_FILE
)
make_supplementary_table_one(
args=args,
topn_results_obs=topn_results_obs,
topn_results_counter_diss=topn_results_counter_diss,
topn_results_counter_suff=topn_results_counter_suff,
)
make_figure_three(
args=args,
topn_results_obs=topn_results_obs,
topn_results_counter_diss=topn_results_counter_diss,
topn_results_counter_suff=topn_results_counter_suff,
)
make_table_one_and_supplementary_table_two(
args=args,
topn_results_obs=topn_results_obs,
topn_results_counter_diss=topn_results_counter_diss,
topn_results_counter_suff=topn_results_counter_suff,
)
df_results, doc_topn = make_supplementary_table_three(
args=args,
topn_results_obs=topn_results_obs,
topn_results_counter_diss=topn_results_counter_diss,
topn_results_counter_suff=topn_results_counter_suff,
)
make_table_two(args=args, df_results=df_results, doc_topn=doc_topn)
make_figure_four(args=args, df_results=df_results)
def make_supplementary_table_one(
*, args, topn_results_obs, topn_results_counter_diss, topn_results_counter_suff
):
p_obs = sum(topn_results_obs) / len(topn_results_obs)
error_obs = np.sqrt(p_obs * (1 - p_obs) / len(topn_results_obs))
p_counter = sum(topn_results_counter_suff) / len(topn_results_counter_suff)
error_counter = np.sqrt(
p_counter * (1 - p_counter) / len(topn_results_counter_suff)
)
_p_counter = sum(topn_results_counter_diss) / len(topn_results_counter_diss)
_error_counter = np.sqrt(
_p_counter * (1 - _p_counter) / len(topn_results_counter_diss)
)
dg2 = pd.DataFrame(
{
"N": list(np.arange(20) + 1),
"Posterior Accuracy": list(p_obs),
"Posterior Error": list(error_obs),
"Expected sufficiency": list(p_counter),
"ES error": list(error_counter),
"Expected disablement": list(_p_counter),
"ED error": list(_error_counter),
}
)
dg2["Posterior"] = (
dg2["Posterior Accuracy"].round(3).apply(str)
+ " $ \pm $ "
+ dg2["Posterior Error"].round(3).apply(str)
)
dg2["Disablement"] = (
dg2["Expected disablement"].round(3).apply(str)
+ " $ \pm $ "
+ dg2["ED error"].round(3).apply(str)
)
dg2["Sufficiency"] = (
dg2["Expected sufficiency"].round(3).apply(str)
+ " $ \pm $ "
+ dg2["ES error"].round(3).apply(str)
)
print(
dg2[["N", "Posterior", "Disablement", "Sufficiency"]].to_latex(
escape=False, index=False
)
)
def make_figure_three(
*, args, topn_results_obs, topn_results_counter_diss, topn_results_counter_suff
):
topn_results_obs = load_from_pickle(args.results / RESULTS_OBS_FILE)
topn_results_counter_suff = load_from_pickle(
args.results / RESULTS_CF_SUFFICIENCY_FILE
)
x = sum(topn_results_obs) / len(topn_results_obs)
y = sum(topn_results_counter_suff) / len(topn_results_counter_suff)
plt.figure(figsize=(5, 4))
p_obs = sum(topn_results_obs) / len(topn_results_obs)
error_obs = np.sqrt(p_obs * (1 - p_obs) / len(topn_results_obs))
p_counter = sum(topn_results_counter_suff) / len(topn_results_counter_suff)
error_counter = np.sqrt(
p_counter * (1 - p_counter) / len(topn_results_counter_suff)
)
xmarks = [i + 1 for i in range(len(p_obs))]
plt.plot(xmarks, 1 - p_obs, label="Associative", color="blue")
plt.plot(xmarks, 1 - p_counter, label="Counterfactual", color="seagreen")
plt.plot(xmarks, 1 - (1 - y) / (1 - x), linestyle="--", color="black")
plt.fill_between(
xmarks,
1 - p_obs - 2 * error_obs,
1 - p_obs + 2 * error_obs,
alpha=0.2,
edgecolor="#1B2ACC",
facecolor="#089FFF",
linewidth=0,
linestyle="None",
antialiased=True,
)
plt.fill_between(
xmarks,
1 - p_counter - 2 * error_counter,
1 - p_counter + 2 * error_counter,
alpha=0.2,
edgecolor="#1B2ACC",
facecolor="seagreen",
linewidth=0,
linestyle="None",
antialiased=True,
)
plt.xticks([i + 1 for i in range(16)])
plt.xlim(1, 15)
plt.ylim(0, 0.5)
plt.show()
plt.savefig(args.results / "algo_vs_algo.pdf")
def make_table_one_and_supplementary_table_two(
*, args, topn_results_obs, topn_results_counter_diss, topn_results_counter_suff
):
casecards = load_from_json(args.datapath / VIGNETTES_FILE)
results_obs = {
"common": [],
"rare": [],
"very_rare": [],
"almost_impossible": [],
"uncommon": [],
"very_common": [],
}
results_counter = {
"common": [],
"rare": [],
"very_rare": [],
"almost_impossible": [],
"uncommon": [],
"very_common": [],
}
wins_obs = {
"common": 0,
"rare": 0,
"very_rare": 0,
"almost_impossible": 0,
"uncommon": 0,
"very_common": 0,
}
wins_counter = {
"common": 0,
"rare": 0,
"very_rare": 0,
"almost_impossible": 0,
"uncommon": 0,
"very_common": 0,
}
draws = {
"common": 0,
"rare": 0,
"very_rare": 0,
"almost_impossible": 0,
"uncommon": 0,
"very_common": 0,
}
for num, card in enumerate(casecards.values()):
if args.first is not None and num >= args.first:
continue
rareness = card["card"]["diseases"][0]["rareness"]
r_obs = sum(topn_results_obs[num])
r_suff = sum(topn_results_counter_suff[num])
results_obs[rareness] += [min(21 - r_obs, 20)]
results_counter[rareness] += [min(21 - r_suff, 20)]
if r_obs > r_suff:
wins_obs[rareness] += 1
elif r_obs < r_suff:
wins_counter[rareness] += 1
else:
draws[rareness] += 1
results_obs_sum = []
wins_obs_all, wins_counter_all, draws_all = 0, 0, 0
for k, val in results_obs.items():
results_obs_sum += val
wins_obs_all += wins_obs[k]
draws_all += draws[k]
results_obs[k] = {"mean": np.mean(val), "std": np.std(val)}
results_obs["all"] = {
"mean": np.mean(results_obs_sum),
"std": np.std(results_obs_sum),
}
results_counter_sum = []
wins_counter_all = 0
for k, val in results_counter.items():
results_counter_sum += val
wins_counter_all += wins_counter[k]
results_counter[k] = {"mean": np.mean(val), "std": np.std(val)}
results_counter["all"] = {
"mean": np.mean(results_counter_sum),
"std": np.std(results_counter_sum),
}
draws["all"] = draws_all
wins_obs["all"] = wins_obs_all
wins_counter["all"] = wins_counter_all
print("> Observational Results")
pprint(results_obs)
print("")
print("> Counterfactual Results")
pprint(results_counter)
print("")
def make_supplementary_table_three(
*, args, topn_results_obs, topn_results_counter_diss, topn_results_counter_suff
):
casecards = load_from_json(args.datapath / VIGNETTES_FILE)
paired_results = {}
doc_topn = {}
doc_topn_caseav = {}
doc_score, obs_score = [], []
for num, card in enumerate(casecards.values()):
if args.first is not None and num >= args.first:
continue
true_id = card["card"]["diseases"][0]["id"]
pred_suff = topn_results_counter_suff[num]
pred_diss = topn_results_counter_diss[num]
pred_obs = topn_results_obs[num]
doc_res_n = doctor_top_ns(card, true_id)
for val in doc_res_n:
if val[1] == 0:
continue
if val[0] not in paired_results.keys():
paired_results[val[0]] = [
[
deepcopy(val[2]),
deepcopy(pred_suff[val[1] - 1]),
deepcopy(pred_diss[val[1] - 1]),
deepcopy(pred_obs[val[1] - 1]),
]
]
else:
paired_results[val[0]] += [
[
deepcopy(val[2]),
deepcopy(pred_suff[val[1] - 1]),
deepcopy(pred_diss[val[1] - 1]),
deepcopy(pred_obs[val[1] - 1]),
]
]
for val in doc_res_n:
if val[1] == 0:
continue
if val[0] not in doc_topn.keys():
doc_topn[val[0]] = {
"count": 1,
"sufficiency": {
val[1]: np.array([1, deepcopy(pred_suff[val[1] - 1])])
},
"disablement": {
val[1]: np.array([1, deepcopy(pred_diss[val[1] - 1])])
},
"obs": {val[1]: np.array([1, deepcopy(pred_obs[val[1] - 1])])},
"doctor": {val[1]: np.array([1, deepcopy(val[2])])},
}
else:
doc_topn[val[0]]["count"] += 1
if (
val[1] not in doc_topn[val[0]]["sufficiency"].keys()
): # this doctor has never had this score before
doc_topn[val[0]]["sufficiency"][val[1]] = np.array(
[1, deepcopy(pred_suff[val[1] - 1])]
)
doc_topn[val[0]]["disablement"][val[1]] = np.array(
[1, deepcopy(pred_diss[val[1] - 1])]
)
doc_topn[val[0]]["obs"][val[1]] = np.array(
[1, deepcopy(pred_obs[val[1] - 1])]
)
doc_topn[val[0]]["doctor"][val[1]] = np.array([1, deepcopy(val[2])])
else:
doc_topn[val[0]]["sufficiency"][val[1]] += np.array(
[1, deepcopy(pred_suff[val[1] - 1])]
)
doc_topn[val[0]]["disablement"][val[1]] += np.array(
[1, deepcopy(pred_diss[val[1] - 1])]
)
doc_topn[val[0]]["obs"][val[1]] += np.array(
[1, deepcopy(pred_obs[val[1] - 1])]
)
doc_topn[val[0]]["doctor"][val[1]] += np.array(
[1, deepcopy(val[2])]
)
this_card_res_doc = {
1: [],
2: [],
3: [],
4: [],
5: [],
6: [],
7: [],
8: [],
9: [],
}
this_card_res_suff = {
1: [],
2: [],
3: [],
4: [],
5: [],
6: [],
7: [],
8: [],
9: [],
}
this_card_res_diss = {
1: [],
2: [],
3: [],
4: [],
5: [],
6: [],
7: [],
8: [],
9: [],
}
this_card_res_obs = {
1: [],
2: [],
3: [],
4: [],
5: [],
6: [],
7: [],
8: [],
9: [],
}
for val in doc_res_n:
if val[1] == 0:
continue
if val[1] > 9:
continue
this_card_res_doc[val[1]] += [val[2]]
this_card_res_suff[val[1]] += [deepcopy(pred_suff[val[1] - 1])]
this_card_res_diss[val[1]] += [deepcopy(pred_diss[val[1] - 1])]
this_card_res_obs[val[1]] += [deepcopy(pred_obs[val[1] - 1])]
this_card_res_doc = dict(
[[k, mean_list(val)] for k, val in this_card_res_doc.items()]
)
this_card_res_suff = dict(
[[k, mean_list(val)] for k, val in this_card_res_suff.items()]
)
this_card_res_diss = dict(
[[k, mean_list(val)] for k, val in this_card_res_diss.items()]
)
this_card_res_obs = dict(
[[k, mean_list(val)] for k, val in this_card_res_obs.items()]
)
for k, val in this_card_res_doc.items():
if val == "none": # no data collected on differentials of this size
continue
else: # if a value was collected for this value for doctors, it was collected for the other two algorithms too
if k not in doc_topn_caseav.keys():
doc_topn_caseav[k] = {
"count": 1,
"suff": deepcopy(this_card_res_suff[k]),
"diss": deepcopy(this_card_res_diss[k]),
"obs": deepcopy(this_card_res_obs[k]),
"doc": deepcopy(this_card_res_doc[k]),
}
else: # we have recorded a case of this length before
doc_topn_caseav[k]["count"] += 1
doc_topn_caseav[k]["suff"] += deepcopy(this_card_res_suff[k])
doc_topn_caseav[k]["diss"] += deepcopy(this_card_res_diss[k])
doc_topn_caseav[k]["obs"] += deepcopy(this_card_res_obs[k])
doc_topn_caseav[k]["doc"] += deepcopy(this_card_res_doc[k])
# card mean score
if [val[2] for val in [_val for _val in doc_res_n if _val[1] != 0]] == []:
continue
doc_mean_score = np.mean(
[val[2] for val in [_val for _val in doc_res_n if _val[1] != 0]]
)
obs_mean_score = np.mean(
[
deepcopy(pred_obs[val[1] - 1])
for val in [_val for _val in doc_res_n if _val[1] != 0]
]
)
doc_score += [doc_mean_score]
obs_score += [obs_mean_score]
doc_score = []
doc_error = []
obs_score = []
obs_error = []
suff_score = []
suff_error = []
diss_score = []
diss_error = []
for k, val in doc_topn.items():
n = val["count"]
if n < 50:
continue
docp = sum(val["doctor"].values())[1] / n
obsp = sum(val["obs"].values())[1] / n
suffp = sum(val["sufficiency"].values())[1] / n
dissp = sum(val["disablement"].values())[1] / n
doc_score += [docp]
doc_error += [np.sqrt(docp * (1 - docp) / n)]
obs_score += [obsp]
obs_error += [np.sqrt(obsp * (1 - obsp) / n)]
suff_score += [suffp]
suff_error += [np.sqrt(suffp * (1 - suffp) / n)]
diss_score += [suffp]
diss_error += [np.sqrt(dissp * (1 - dissp) / n)]
raw_data = {
"doc_score": doc_score,
"doc_error": doc_error,
"obs_score": obs_score,
"obs_error": obs_error,
"sufficiency_score": suff_score,
"sufficiency_error": suff_error,
"disablement_score": diss_score,
"disablement_error": diss_error,
}
df_results = pd.DataFrame(
raw_data,
columns=[
"doc_score",
"doc_error",
"obs_score",
"obs_error",
"sufficiency_score",
"sufficiency_error",
"disablement_score",
"disablement_error",
],
)
df_results.to_pickle(args.results / "supp_table_3_df.p")
return df_results, doc_topn
def make_table_two(*, args, df_results, doc_topn):
comf_thresh = 0.05
res = np.zeros((4, 4))
total_number = 0
for k, val in doc_topn.items():
if val["count"] < 50:
continue
d_doc = [
[1 for i in range(_val[1])] + [0 for i in range(_val[0] - _val[1])]
for _val in val["doctor"].values()
]
fd_doc = [item for sublist in d_doc for item in sublist]
d_obs = [
[1 for i in range(_val[1])] + [0 for i in range(_val[0] - _val[1])]
for _val in val["obs"].values()
]
fd_obs = [item for sublist in d_obs for item in sublist]
d_sufficiency = [
[1 for i in range(_val[1])] + [0 for i in range(_val[0] - _val[1])]
for _val in val["sufficiency"].values()
]
fd_sufficiency = [item for sublist in d_sufficiency for item in sublist]
d_disablement = [
[1 for i in range(_val[1])] + [0 for i in range(_val[0] - _val[1])]
for _val in val["disablement"].values()
]
fd_disablement = [item for sublist in d_disablement for item in sublist]
pvalue_matrix = np.array(
[
[
0,
bintest(fd_doc, fd_obs, comf_thresh),
bintest(fd_doc, fd_sufficiency, comf_thresh),
bintest(fd_doc, fd_disablement, comf_thresh),
],
[
bintest(fd_obs, fd_doc, comf_thresh),
0,
bintest(fd_obs, fd_sufficiency, comf_thresh),
bintest(fd_obs, fd_disablement, comf_thresh),
],
[
bintest(fd_sufficiency, fd_doc, comf_thresh),
bintest(fd_sufficiency, fd_obs, comf_thresh),
0,
bintest(fd_sufficiency, fd_disablement, comf_thresh),
],
[
bintest(fd_disablement, fd_doc, comf_thresh),
bintest(fd_disablement, fd_obs, comf_thresh),
bintest(fd_disablement, fd_sufficiency, comf_thresh),
0,
],
]
)
res += pvalue_matrix
total_number += 1
print(np.around(res, decimals=3))
print(
f"Doctor Score:\t {round(df_results.doc_score.mean(), 4)}\n"
f"Obs Score:\t{round(df_results.obs_score.mean(), 4)}\n"
f"Suff Score: \t{round(df_results.sufficiency_score.mean(), 4)}\n"
f"Disab Score:\t{round(df_results.disablement_score.mean(), 4)}\n"
)
def make_figure_four(*, args, df_results):
cmap, norm = matplotlib.colors.from_levels_and_colors(
[0, 0.499, 0.501, 1], ["blue", "red", "green"]
)
x = df_results.doc_score
y = df_results.obs_score
col = [(x[i] - y[i]) + 0.5 for i in range(len(x))]
plt.figure(figsize=(6, 4))
plt.scatter(x, y, c=col, cmap=cmap, norm=norm)
xticks = np.linspace(min(min(x), min(y)), max(max(x), max(y)), 100)
yticks = xticks
plt.xticks(np.arange(0.5, 0.95, 0.1))
plt.yticks(np.arange(0.5, 0.95, 0.1))
plt.plot(xticks, yticks, "-r", linestyle="--")
plt.savefig(args.results / "obs_vs_doc.pdf")
plt.clf()
x = df_results.doc_score
y = df_results.sufficiency_score
col = [(x[i] - y[i]) + 0.5 for i in range(len(x))]
plt.scatter(x, y, c=col, cmap=cmap, norm=norm)
xticks = np.linspace(min(min(x), min(y)), max(max(x), max(y)), 100)
yticks = xticks
plt.xticks(np.arange(0.5, 0.95, 0.1))
plt.yticks(np.arange(0.5, 0.95, 0.1))
plt.plot(xticks, yticks, "-r", linestyle="--")
plt.savefig(args.results / "suff_vs_doc.pdf")